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Abstract

Signi�cance testing is the most widely used statistical tool for quanti-

tative analysis in science and business. We want to explore in what sense

signi�cance testing can help in making ethical decisions, and in what

sense it may obstruct them. In the �rst section of this paper, we analyze

a simpli�ed model of ethical decision-making, showing how consistency in

the assignment of probabilities is a prerequisite for any consequentialist

justi�cation of our choices. In the second section we provide a short in-

troduction to signi�cance testing and its two main interpretations. In the

third section we point to inconsistencies in the actual practice of signi�-

cance testing. Finally, we discuss several proposals for a consistent use of

statistical tests in practical decision-making.

Introduction

Statistics is a mathematical discipline that provides advice in the making of

uncertain choices: for instance, if we want to invest in a company, we would

like to see a projection of future prospects before making a decision. There are

various statistical tools that we may use to cope with such uncertain choices. In

this paper we will focus on signi�cance testing, the most widely used statistical

tool for quantitative analysis in science and business. We want to explore in

what sense signi�cance testing can help in making ethical decisions, and in what

sense it may obstruct them.

Statistics is most useful for consequentialist approaches to ethics, where ac-

tions are assessed in terms of their consequences. However, not every statistical

tool allows us to justify our choices in a consequentialist manner. Statistical

tests can either be interpreted behaviorally, as guiding actual decisions that we

make, or evidentially, as providing evidence about the truth or falsehood of a

particular claim. In daily statistical practice, signi�cance tests are often used

for both ends, for inference and decision-making. It is this tension between

the behavioral and the evidential interpretation that stands at the heart of our

paper. After all, we need to be consistent in our interpretation of statistical

methods if we want a proper assessment of the uncertain prospects we face, and

a sound consequentialist appraisal of our choices.

In the �rst section of this paper, we analyze a simpli�ed model of ethical

decision-making, showing how consistency in the assignment of probabilities is

a prerequisite for any consequentialist justi�cation of our choices. In the second
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section we provide a short introduction to signi�cance testing and its two main

interpretations. In section three we point to inconsistencies in the actual practice

of signi�cance testing. Finally, in section four, we discuss several proposals for

a consistent use of statistical tests in practical decision-making.

1 Ethics and statistics

Long before the establishment of mathematical statistics as a discipline, the eth-

ical dimension of uncertain decisions was appraised in an Aristotelian tradition,

namely in terms of their prudence (Aubenque 1986): a good choice depended

on �nding the correct means for the correct goal. According to Aristotle, there

was no general rule for dealing with ethical choices under uncertainty. Rather,

like ancient medicine, good decision-making as thought of as a craft where one

had to apply one's practical wisdom (phronêsis). In the same way that we de-

fer to the advice of a medical doctor when we are sick, we should defer to the

practically wise in questions of ethical decision-making. His or her voice settles

disagreement about what we should do. One of the most salient examples in

Greek history was Pericles, the wise manager of the city of Athens in the 5th

century BC.

With Kant, almost two thousand years later, prudential choices are left out of

the proper realm of ethics. The highest ethical good does not consist any more in

achieving a certain goal, but in the good will. Moreover, in sharp contrast to the

Aristotelian deference to experts, Kant developed the categorical imperative as

a universal rule of action: to act in a way that could be generalized to a general

law. This single maxim is to be followed independently of the uncertainty of

the alternatives and the practical consequences they yield. For example, we are

not allowed to lie, even if as a consequence of our truth-telling, a malevolent

dictator will be able to track down innocent refugees. In such an act of lying,

we would use the person that we are lying to as an means to an end, something

that is incompatible with Kant's vision of human autonomy and dignity.

Evidently, statistical advice is most relevant for those approaches in ethics

that appraise the rightness of our choices in terms of their consequences. Re-

member that for Kant, we are morally compelled to abide by the categorical

imperative: you are not allowed to protect a refugee by lying about her where-

abouts. This emphasis on universal maxims and duties is a deontological ap-

proach. By contrast, a consequentialist in the prudential tradition (cf. Sinnott-

Armstrong 2008) would consider such action wrong, given the likely conse-

quences (the refugee being tortured and/or killed), and would have justi�ed

lying. Here, a statistical analysis can step in, by weighting the likely conse-

quences of our actions against each other: maybe the refugee will be able to

escape despite our collaboration with the regime, so telling the truth might not

be such a bad thing.

Notably, a statistical analysis does not impinge on our goals: these are taken

as given. But if our decision depends on the likelihood of attaining these goals,

a statistical analysis may evaluate the ethical correction of our decision. For
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instance, if a hedge fund manager invests her customers money on the basis

of careless calculations, we will consider her morally blameworthy: we need

accurate estimates of the consequences of our investment decisions in order to

justify them. Here arises a source of epistemic and ethical concerns: since the

correction of our choice depends on the correspondence between our models

and the actual risks we are dealing with, how do we know that our model

adequately captures such risks? The gist of Nassim Taleb's (2007) best seller

The Black Swan is that risks in �nancial markets (as in other domains) are

often not adequately described: we mistakenly assume that the real risks can

be structured by a simple probabilistic model, such as the Normal distribution.

Due to the idealizing nature of such assumptions (e.g, the extremely thin tails

of the Normal distribution), we are ill prepared to estimate the real likelihood

of high-impact events.1

The recent �nancial crisis illustrates that we can rarely apply statistics

blindly, as if we had a mechanical algorithm: statistical analysis depends on

a number of assumptions about the data and the proper way to handle them.

Intuitively, the decision-maker seems to have the responsibility to check those

assumptions. For instance, according to Michael Lewis (2010), there were a

number of traders who anticipated the 2007 crash of the subprime mortgage

market and actually earned signi�cant amounts of money by selling insurance

against it. The standard procedure to redistribute the risk of a mortgage de-

faulting was through a collateralized debt obligation (CDO), a bond in which

thousands of loans were gathered in tranches with di�erent levels of risks, under

the assumption that they would not all default together. According to Lewis, it

took just a simulation of the e�ects of home price appreciations on these loans to

convince an insightful trader (such as Gregg Lippmann) that default rates would

violate the CDO assumptions: they could very easily collapse simultaneously.

Should we blame the sellers of CDOs for not conducting such simulations?

Before we answe �yes�, we need to be aware of what we may legitimately expect

and require from statistics in order to attribute the responsibility for a proper

or improper use. In particular, such a responsibility cannot be easily attributed,

unless we have a regulative ideal against which to evaluate a particular choice.

The classical regulative ideal in consequentialist decision-making is Subjec-

tive Expected Utility Theory (SEUT), developed by, inter alia, Ramsey (1926)

and Savage (1954). By now, it has become the standard model of decision-

making under uncertainty in social science and in moral and political philoso-

phy. The classical justi�cation proceeds by outlining an intuitive axiom system

for individual preferences, demanding that they be complete, transitive, respect

the sure-thing principle, apply to mixed bundles of goods, and so on. Then,

it is shown that such a system of preferences admits a (unique up to a�ne

transformation) representation in terms of a real-valued utility function over

the outcomes and a probability function representing the subjective uncertainty

of the agent. That is, if a1, . . . , an denote the available actions, p(·) denotes

our subjective probability function over states s1, . . . , sn, and ukl the utility of
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action k in state l, then action ai is better than action aj if and only if

n∑
k=1

p(sk)uik >

n∑
k=1

p(sk)ujk. (1)

In other words, the averaged or expected utility of ai exceeds the expected

utility of aj with respect to one's subjective probability funtion, hence the name

Subjective Expecte Utility Theory.

As a descriptive model of the average economic agent, SEUT is often con-

tested (Allais 1953; Ellsberg 1961). However, it is often defended on normative

grounds (Jallais et al. 2008). If you are a consequentialist, not taking into ac-

count the principles of probability will put you in a di�cult position. Take, for

example, the representation of uncertainty by a probability function � an essen-

tial cornerstone of SEUT. If our degrees of belief violate the axioms of probabil-

ity, a malicious bookie can set up a gamble (according to our degrees of belief)

whose set of odds and bets guarantees a pro�t for him, whatever the actual

outcome (Vineberg 2011). Since degrees of belief are standardly operational-

ized via betting behavoir or judgments on the fairness of bets, non-probabilistic

degrees of belief are arguably self-defeating.

Still, even if we are convinced by this �Dutch Book Argument� in favor of

coherent probabilities, it has not been demonstrated that we should maximize

the average expected utility. The standard argument to that end goes that in the

long run, acting in accordance with SEUT delivers practical success. In his 1951

essay �Why should statisticians and businessmen maximize moral expectation?�,

Jacob Marschak tried to derive from the rule of maximizing expected utility the

satisfaction of �the rule of long run success�: under certain assumptions, it will

be almost certain that a sequence of strategies maximizing expected utility will

outperform any other consequentialist decision rule (Marschak 1951, 504-505).

Unlike the Dutch book argument, Marschak's case was about winning, rather

than not losing, appealing to the practical rationality of businessmen. Still,

this argument has, apart from doubts about the plausibility of its assumptions,

often been challenged � particularly by the empirical �ndings of Kahneman and

Tversky (1979).

Objections put aside for the moment, we see two di�erent consequentialist

justi�cations for SEUT as a standard of rational and ethical choice. If the

moral correctness of our decisions depends on an accuracy of their consequences,

SEUT contributes to it in two ways. There is, on the one hand, (probabilistic)

coherence: make your choices in a way that it is not self-defeating for your aims.

On the other hand, there is success: make your choices in a way that actually

maximizes your chances of attaining your goals. We will, in the remainder, use

SEUT as a regulative ideal against which we evaluate di�erent approaches to

statistical testing. If we do not apply our statistical techniques consistently,

we cannot expect statistics to increase our chances of success. Hence, from a

consequentialist perspective, we will lack a proper statistical justi�cation of our

decisions. We will be just deceiving ourselves or misleading our audience into

the incorrect belief that we have such a justi�cation.
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2 Two varieties of frequentist statistics

Statistics tries to anticipate random events by drawing on the data that have

accumulated in our experience. We try to discern a pattern in the random

distribution of these data (past, present and future): we form hypotheses about

such distributions and we use statistical tests to check whether our hypotheses

are correct. In its simplest form, a hypothesis test compares two hypotheses H0

and H1 about an unknown quantity of interest, represented by the parameter

θ ∈ Θ. Sometimes we deal with a precise hypothesis about θ, e.g., H0 : θ = θ0
� the null hypothesis � and oppose it to an unspeci�ed alternative H1 : θ 6= θ0.

It is then tested whether the data are compatible with the null, or whether a

signi�cant deviation is present. Such hypothesis testing is the prime activity of

frequentist inference � inference that shuns subjective assessments of uncertainty

and only builds on the probability of events under the tested hypotheses, that

is, the sampling distribution.

There are two main approaches to hypothesis testing within frequentists

statistics. The �rst one, devised by Jerzy Neyman, argues that statistical testing

is about making decisions about the acceptability of a hypothesis. The second

one, due to Ronald A. Fisher, claims that statistical tests should only provide

an assesment of the evidence for or against a particular scienti�c claim. Both

interpretations are often confused in practice. Below, we spell out the di�erence:

con�ation of both approaches goes at the expense of conceptual consistency that

we seek in order to make properly informed decisions.

Together with Egon Pearson, Neyman designed a hypothesis test as a proper

decision rule, that is, as a function T : X → {acceptH0, rejectH0}, X being

the sample space. Think, for example, of industrial quality control. Should we

accept a delivery of bulbs which we have sampled for defective elements? The

answer will, inevitably, depend on how many elements in our sample have been

found to be defective. We might make the wrong decision if, by chance, we pick

a nonrepresentative sample, but if the test is properly designed, only a small

number of our decisions will be mistaken.

From an epistemological point of view, the Neyman-Pearson approach re-

ceives its justi�cation by the associated error probabilities. Let the null hy-

pothesis be that in our delivery of bulbs, there are not more than 10% defect

elements, and let the alternative posit that there are more than 10% defect

bulbs. (Assume that 10% is the highest proportion of defect bulbs at which it is

still economically advantageous for us to accept the delivery.) The test statistic

T is then so designed that the null hypothesis is rejected in at most 5% of all

cases where it is true, that is, where the delivery is acceptable.2 This type I

error level � the probability of an erroneous rejection of the null � can also be

chosen to be 10%, or 1%, etc. � the cuto� is purely conventional and re�ects

how important we �nd it that the null is not erroneously rejected.

Evidently, there are various tests that satisfy this property. Trivially, even

a test that always accepts the null (and the delivery of bulbs) will have a type

I error level as low as 0%. While such a test appears desirable in theory, it is

practically unsound: the decision does not depend at all on how many defect
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bulbs are found. In other words, the test is not responsive to the strength of

the evidence. Therefore, the acceptance region should be chosen such that,

for a type I error level deemed acceptable, say, 5%, the type II error level � the

probability of an erroneous acceptance of the null � is minimized. We say in that

case that the power of the test, its ability to recognize the alternative when it

is true, is maximized conditional on the level of the test being 5%. In this way,

both possible types of error are controlled, and the optimal Neyman-Pearson

test will rarely lead to a wrong decision:

we shall reject H0 when it true not more, say, than once in a hundred

times, and in addition we may have evidence that we shall reject H0

su�ciently often when it is false. (Neyman and Pearson 1933, 291,

notational details changed)

Such a behavioral rationale is well-suited to inform real decisions with concrete,

immediate impact. Neyman's approach emerged from the world of industrial

quality control, where every decision has costs and bene�ts. Statistical tests

à la Neyman were aimed at hedging costs, conforming to the consequentialist

spirit presented in the previous section. But not every statistician shared such

an applied perspective: many �decisions� in science are just preliminary and

subject to further evidence. A behavioral interpretation of statistical testing

was considered inferior to an evidential, inferential interpretation, where we

assess the truth of a hypothesis, independently of the consequences of a wrong

assessment. As R.A. Fisher put it:

In the �eld of pure research no assessment of the cost of wrong

conclusions [. . . ] can conceivably be more than a pretence, and in

any case such an assessment would be inadmissible and irrelevant in

judging the state of the scienti�c evidence. (Fisher 1935, 25�26)

Two arguments are implied here. First, we cannot quantify the utility that cor-

rectly accepting or rejecting a hypothesis will eventually have for the advance-

ment of science. The far-reaching consequences of such a decision are beyond

our horizon. Second, statistical hypothesis tests should state the evidence for

or against the tested hypothesis: a scientist is interested in whether she has

reason to believe that a hypothesis is true or false, and her judgment should

not be obscured by the long-term consequences of working with this rather than

that hypothesis. For Fisher, testing an hypothesis requires an assesment of the

signi�cance of the evidence against it. By his emphasis on evidence rather than

decisions, Fisher departs from Neyman and Pearson's consequentialist reason-

ing � a change that severely a�ects the interpretation of those statistical testing

procedures.

Signi�cance tests aim at determining whether a perceived e�ect in the data

is real or possibly due to chance. If the discrepancy between data and null hy-

pothesis is large enough, we are entitled to infer to the presence of a signi�cant

e�ect. Suppose we have a precise null hypothesis H0 : θ = θ0 vs. H1 : θ 6= θ0.

For measuring the discrepancy in the data x := (x1, . . . , xN ) with respect to pos-

tulated mean value θ0 of a population with known variance σ2, one canonically
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uses the standardized statistic

z(x) :=
√
N

1
N

∑N
i=1 xi − θ0√
σ2

(2)

Thus, we may re-interpret equation (2) as

z =
observed e�ect− hypothesized e�ect

standard error
. (3)

Determining whether a result is signi�cant or not depends then, on the dis-

tribution of the value of z. Practitioners usually use the so-called p-value or

signi�cance level, the �tail area� of the null under the observed data (see �gure

1), which can be computed as

p := P (|z(X)| ≥ |z(x)|) (4)

that is, as the probability of observing a more extreme discrepancy under the

null than the one which is actually observed. On that reading, a low signi�cance

level indicates evidence against the null since the chance that z would take

a value at least as high as z(x) is very small, if the null were indeed true.

Conventionally, one says that p < 0.05 means signi�cant evidence against the

null, p < 0.01 very signi�cant evidence, etc. To repeat, p-values serve, in the

�rst place, the purpose of statistical inference, not the purpose of statistically

informed decision-making.

Fisher has interpreted signi�cance levels as �a measure of the rational grounds

for the disbelief [in the null hypothesis] it augments� (Fisher 1956, 43). What

is more, Fisher is explicit that some cuto� value for p should be regarded as

necessary for speaking about the presence of a scienti�cally signi�cant e�ect:

Personally, the writer prefers to set a low standard of signi�cance at

the 5 per cent point, and ignore entirely all results which fail to reach

this level. A scienti�c fact should be regarded as experimentally

established only if a properly designed experiment rarely fails to

give this level of signi�cance. (Fisher 1935, 504)

The possibility of integrating these two approaches to statistical inference into

a consequentialist framework are remarkably di�erent. Neyman incorporates

an explicit consequentialist dimension: we can justify the acceptance of a hy-

pothesis in terms of the balance between the number of successes and failures

we will obtain if we consistently apply our decision rule. If we are willing to

bear a mistaken decision about hypothesis in 5 out of every 100 tests, an ap-

propriate hypothesis test provides the statistical tools to ensure this error rate

in the long run. In this way, frequentist statistics can be naturally integrated

into reponsible decision-making.

However, the majority of inferences and decisions in science and business

are derived from observed signi�cance levels, in line with Fisher's evidential ap-

proach. Indeed, Fisher's above quote demonstrates that the borderline between

evidence and practical decisions is thin (�ignore entirely all results which fail to
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Figure 1: The rejection region for testing the mean of a N(0,1)-distributed
random variable at the 5% level.

reach this [signi�cance] level�). Signi�cance tests do not quantify how often will

we suceed or fail if we apply such rules, and leave ample room for interpreta-

tion when we try to apply them in practice. As a consequence, they are often

misused, without no clear way to attribute responsibility for the failures. The

next section illuminates those criticisms in detail.

3 Misuses of signi�cance testing

As mentioned above, signi�cance tests are, although devised as procedures for

stating the evidence against the null, frequently used for substantiating practical

decisions, e.g., the null is either accepted or rejected depending on the strength

of the evidence. Is this practice compatible with the regulative ideal of SEUT?

Do signi�cance tests give a valid assessment of our uncertainty about the tested

hypothesis?

Concretely, we have to ask whether p-values can be meaningfully related

to subjective posterior probabilities (that is, probabilities conditional on the

observed evidence) that enter the expected utility analysis. While a subjective

analysis is often charged with being arbitrary, it cannot be doubted that in

some cases, e.g., when reasoning in games of chance, subjective probability

assignments can be objectively grounded. In these canonical cases, p-values

should give a valid cue about subjective posterior probabilities.

However, the analyses of Berger and Delampady (1987) and Berger and
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Sellke (1987) have shown that p-values tend to grossly overstate evidence against

the null, to the extent that the posterior probability of the null � and even the

minimum of p(H0|x) under a large class of prior uncertainty assessments �

is typically much higher than the observed p-value. In other words, even a

subjectivist analysis that is maximally biased against the null is still less biased

than a p-value analysis. This has led statisticians to state that �almost anything

will give a better indication of the evidence provided by the data against H0�

(Berger and Delampady 1987, 330). The main source of the problem is that

p-values do not make use of the full information contained in the data � namely

that the observed discrepancy is equal to z � but only of the information that

the discrepancy is greater or equal to z, cf. equation (4).

The situation is further complicated if we focus on the justi�cation for using

(4) as a statistic that measures the strength of the evidence against the null.

Fisher famously argued that a low p-value, that is, a highly signi�cant �nding,

means that �either an exceptionally rare chance has occurred, or the theory

[=the null hypothesis] is not true� (Fisher 1956, 39). That is, in the face of

surprising results, we make an inference to the best explanation, namely to

the falsity of the null. On a super�cial glance, this inference rule provides a

natural implementation of Popper's critical rationalist attitude into statistical

reasoning. According to that school of philosophy, scienti�c method consists in

the successive testing and refutation of conjectures one comes up with. However,

the analogy is super�cial. Fisher's Disjunction can be rephrased as the inference

p(Data|Null Hypothesis) is low.
Data is observed.
Null Hypothesis must be false.

Many arguments and counterexamples have been raised in order to show that

this probabilistic modus tollens is invalid (Hacking 1965; Cohen 1994). First of

all, what is valid in deductive logic need not be valid in probabilistic logic. Sec-

ond, only with respect to a well-speci�ed set of alternatives we can meaningfully

say that a certain set of data constitute evidence against a hypothesis. The idea

of testing a hypothesis �in isolation�, without consideration of alternatives, has

proved to be incoherent (Edwards, Lindman and Savage 1963; Spielman 1974;

Royall 1997). In other words, even for purely evidential purposes, we should

not use signi�cance testing without a very careful consideration of the way we

frame a hypothesis and the alternatives.3

In actual practice such caution in the use and interpretation of sign�cance

testing is often missing. In economics, for instance, the economists Deirdre

McCloskey and Stephen Ziliak have launched strong attacks against signi�cance

tests in a series of papers and books (McCloskey and Ziliak 1996, 2008; Ziliak

and McCloskey 2004, 2008). Let us give their favorite example.

Assume that we have to choose between two diet cures, based on pill A and

pill B. Pill A has an average e�ect of making you lose 10 pounds, with an an

average variation of 5 pounds.4 Pill B will make you lose 3 pounds on average,

with an average variation of 1 pound. Which one leads to more signi�cant loss?

Naturally, we opt for pill A, in spite of the higher variation, because the e�ect
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size is so much larger.

However, if we translate the example back into signi�cance testing and iden-

tify the null hypothesis with the default claim that there is no e�ect at all, the

order is reversed. Observing a three pounds weight loss after taking pill B, with

a known standard error of one pound, is stronger evidence for the e�cacy of

B than observing a ten pounds weight loss after taking pill A, with a known

standard error of �ve pounds, is evidence for the e�cacy of B:

zA(10) =
10− 0

5
= 2 zB(3) =

3− 0

1
= 3

Thus, there is a notable discrepancy between our intuitive judgment about which

pill is e�ective in making a patient lose weight. This occurs because statistical

signi�cance is supposed to be �a measure of the strength of the signal relative

to background noise� (Hoover and Siegler 2008b, 58). On this score, pill B

indeed performs better than pill A, and reasonably so because there is quite

some noise in the e�ects of pill A. But what really matters, what economists,

businesswomen and policy-makers are interested in, is the e�ect size, not the

signal strength/noise ratio captured by signi�cance tests, argue McCloskey and

Ziliak. We are not interested in whether we can ascertain the presence of some

e�ect, but whether we can demonstrate a substantial e�ect. In other words, we

have to state in which currency we measure e�ects, and what a deviance of one,

two, or three standard errors actually means for the intended application.

According to McCloskey and Ziliak, economists and other social scientists

frequently commit the fallacy of neglecting this fundamental di�erence. By scru-

tinizing the statistical practice in the top journal American Economic Review,

as well as by surveying the opinion of economists on the meaning of statistical

signi�cance, they arrive at the conclusion that most economists are unaware of

the proper meaning of statistical concepts.5 In practice, �asterisking� prevails:

e.g., in correlation tables, the most signi�cant results are marked with an aster-

isk, and these results are the ones that are supposed to be real, big, of economic

importance. Whereas the other correlations are neglected. This neglects two

salient pitfalls: �rst, an e�ect need not be statistically signi�cant to be big and

remarkable (like pill A), second, a statistically signi�cant e�ect can be quite

small and uninteresting (like pill B).

Even more disconcerting is that according to empirical surveys, many prac-

titioners believe that if a result speaks highly signi�cantly against the null, then

it must be wrong (Oakes 1986). In other words, the null is believed to be highly

improbable if a highly signi�cant result is observed. But posterior probabilities

of the null hypothesis don't have a place in the frequentist inference framework

that we have assumed so far. Even if that particular fallacy is avoided, con�a-

tion often reigns: p-values are often perceived as the probability of replicating

an e�ect of at least the same size, as the level of type I error, etc. None of these

standpoints are statistically valid.6

A main danger of conducting signi�cance tests is thus that misinterpreta-

tion is so proli�c, distorting the results. Methodologists such as Fidler (2005)

and Cumming and Finch (2005) have therefore suggested to drop signi�cance
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tests altogether and to report con�dence intervals for the parameter of inter-

est instead. Taken together with the more theoretical criticisms of signi�cance

tests, it seems that the practice of basing business and science decisions on sta-

tistical data is often far from the ideal of ethically responsible and prudential

decision-making.

Conclusion

Our analysis has revealed that despite their apparent simplicity, signi�cance

tests are di�cult to interpret and to practically use in a consistent manner.

From a consequentialist perspective, we should not value much decisions that

are grounded on misinterpreted signi�cance tests. If our hedge-fund manager

had made an investment on the basis of any such test, we may consider him

morally blameworthy, but if the confusion is so widespread (as the CDO case

seems to point out) no court will declare him guilty.

Therefore, it is not only an epistemological, but also an ethical requirement

to publicly agree on standards for consistent statistical practices. As for sig-

ni�cance testing, there is much room for improvement. We brie�y sketch three

possible options within the frequentist paradigm, none of them being entirely

unproblematic.

1. Keep signi�cance tests, but interpret them properly, e.g., by including

e�ect size and power measures. This proposal by Hoover and Siegler

(2008a,b) accepts that failure to distinguish between signi�cance level and

e�ect size is a fallacy, but argues that signi�cance testing does have an im-

portant function in science and particularly economics: namely to decide

whether the error in a statistical model can be regarded as truly random,

or whether a systematic bias is present. To our mind, however, pure sig-

ni�cance testing without considering explicit alternatives has trouble to

be embedded into a coherent logic of inference.

2. Move to con�dence intervals. A solution that has become increasingly

popular in psychology and that has, in the meantime, reached out to edi-

torial policies (Wilkinson et al. 1999). Con�dence intervals replace signif-

icance level by providing 95%/99%/etc. coverage areas for the data, given

a particular value of the parameter of interest. It has been argued (Cum-

ming 2008) that they are a much better indicator of e�ect replication than

signi�cance levels, and that they are more stable for the purpose of meta-

analysis. However, these intervals must not be interpreted as credible in-

tervals in the sense that with 95% probability, the parameter is contained

in the con�dence interval. If scientists already have trouble to distinguish

between p-values and posterior probabilities, they may be equally likely to

commit the natural fallacy of interpreting con�dence intervals along the

lines of degrees of belief about the location of the parameter value.

3. Retract to Neyman's behavioral interpretation of statistical tests. That is,

statistical tests are not used for �nding out whether a hypothesis is right
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or wrong, but only for supporting a particular decision. This proposal

has never found many supporters in practice. One of the most salient

reasons is that any statistical analysis would then be highly idiosyncratic,

dependent on the interests and the particular loss function of the individ-

ual that conducts the analysis. Intersubjective communication of results

and conclusions would, as a consequence, su�er. Moreover, the technical

problems � how to compute the level and the power of more complicated

testing problems, how to avoid the slippery slope to a subjectivist frame-

work � are far from trivial. � An intermediate position between Neyman

and Fisher is advocated by Mayo and Spanos (2006) under the label of

error statistics.

A radically di�erent solution goes back to the grounding of decisions and

tests in SEUT. The idea is to conceive of statistical inference as providing the

relevant probabilities for what might or might not be the case, and to feed these

probabilities into an expected utility analysis. That is, we inform good decisions

by means of well-calibrating our assessments of uncertainty. The standard way

of doing so is via Bayesian Conditionalization. If we are revising our degree of

belief in hypothesis H in the light of evidence E, our new degree of belief in H

can be computed as

pnew(H) := p(H|E) = p(H)
p(E|H)

p(E)
. (5)

Statistical analysis can thus inform right decisions in the following way: we

start with a prior probability function p(·) that represents our initial uncer-

tainty, revise it in the light of statistical evidence E by equation (5), and apply

the principle of maximizing expected utility with our new posterior probability

function p(·|E).

This subjective understanding of statistical inference is called Bayesian in-

ference. It dominates in moral and political theory, decision theory and game

theory. One of its big advantages is its coherence, simplicity and universality:

it is by construction in sync with SEUT. Moreover, while complex applications

demand mathematical sophistication, the basic conceptual framework of equa-

tion 5 remains unscathed. Finally, the epistemic and the ethical/utility-related

aspects of the analysis are separated from each other (an advantage vis-à-vis

Neyman's approach), and the probabilistic assessment precedes and serves as

an input for the actual decision-making.

However, many scientists � in particular those coming from the natural sci-

ences � have problems with the subjective interpretation of probability, or con-

sider it unsuitable for scienti�c analysis. According to that view, science should

deal with objective facts, objective evidence, not with revising subjective (and

ultimately arbitrary) degrees of belief. A fortiori, scienti�c inference must not

proceed by Bayesian Conditionalization. The main attraction of the frequentist

paradigm is, to repeat, that it eschews degrees of beliefs, builds on the view of

probability as relative frequency and devises statistical methods that �t these

parsimonious modeling assumptions. But in the light of the problems that the

most popular frequentist testing procedures experience, the Bayesian paradigm
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may deserve more attention. Indeed, recent developments in statistical method-

ology support a trend towards increased use of Bayesian methods.

Thus, a responsible decision-maker needs to think carefully about statistical

methodology: too much can depend on choosing an adequate or inadequate

interpretation of a statistical test. We believe that striving for ethically sound

decisions does not commit oneself to Bayesianism or frequentism; however, the

frequentist stance may be loaded with more challenges and pitfalls with respect

to applying it consistently.
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Notes

1Frank Knight (1921) famously argued that statistical theory could not be applied to
business decisions. When a businessman is making a choice between uncertain alternatives,
this uncertainty arises from so many particular circumstances that there is no way of telling
if such a decision will ever take place again. For Knight, each choice is entirely unique and
cannot be made part of a class of similar choices arising from a general decision rule. On the
other hand, statistical decision theory is a theory of probabilistic decisions, and at Knight's
time, probabilities in statistical inference were usually explicated as relative frequencies. We
could estimate how risky a decision rule is analysing how frequently it yields successful choices,
but if each decision is entirely singular, as Knight argued, we cannot quantify the risk: we
are dealing with real uncertainty. Modern �nancial economics assumes precisely the opposite:
there are precise mathematical models of the risks involved in most of our economic decisions,
and these models allow us to determine which option is best.

2Mathematically, this is done by assigning the acceptance region a weight of 0.95, that is´
T=0 P (x)dx = 0.95.

3See Hartmann and Sprenger (2011) for further discussion of the problems of interpreting
signi�cance tests.

4The concept of �average variation� is intuitively explicated as the statistical concept of
standard deviance: for a random variable X, we calculate

√
E[(X − E(X))2].

5Their results are disputed by Hoover and Siegler (2008a) and Spanos (2008), but rea�rmed
in McCloskey and Ziliak (2008). It is fair to say that the discussion of this point is still open.
See also Zellner (2004).

6Even sophisticated defenders of signi�cance testing in economics, such as Hoover and
Siegler (2008b, 58), sometimes go wrong, e.g., when they call a signi�cance level a �type
I error probability�. To recall, error probabilities are pre-experimental characteristic of a
decision procedures, signi�cance levels are measures of discrepancy between data and null.
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