
Journal of Cloud Computing:
Advances, Systems and Applications

Mondragón-Ruiz et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:32
https://doi.org/10.1186/s13677-021-00245-7

RESEARCH Open Access

An experimental study of fog and cloud
computing in CEP-based Real-Time IoT
applications
Giovanny Mondragón-Ruiz1†, Alonso Tenorio-Trigoso2†, Manuel Castillo-Cara1,2* , Blanca Caminero3

and Carmen Carrión3

Abstract

Internet of Things (IoT) has posed new requirements to the underlying processing architecture, specially for real-time
applications, such as event-detection services. Complex Event Processing (CEP) engines provide a powerful tool to
implement these services. Fog computing has raised as a solution to support IoT real-time applications, in contrast to
the Cloud-based approach. This work is aimed at analysing a CEP-based Fog architecture for real-time IoT applications
that uses a publish-subscribe protocol. A testbed has been developed with low-cost and local resources to verify the
suitability of CEP-engines to low-cost computing resources. To assess performance we have analysed the
effectiveness and cost of the proposal in terms of latency and resource usage, respectively. Results show that the fog
computing architecture reduces event-detection latencies up to 35%, while the available computing resources are
being used more efficiently, when compared to a Cloud deployment. Performance evaluation also identifies the
communication between the CEP-engine and the final users as the most time consuming component of latency.
Moreover, the latency analysis concludes that the time required by CEP-engine is related to the compute resources,
but is nonlinear dependent of the number of things connected.

Keywords: Fog Computing, Cloud Computing, Edge Computing, Complex Event Processing, Real-Time IoT
Applications, Benchmark Analysis

Introduction
Currently, Internet of Things (IoT) applications are part
of people’s daily lives and their growth, in recent years,
is increasing (according to Gartner [1], the total num-
ber of connected things will reach 25 billion by 2021,
producing immense volume of data). Thus, the model
known as cloud computing, executor of interconnectiv-
ity and execution in IoT, faces new challenges and limits
in its expansion process. These limits have been given
in recent years due to the development of wireless net-
works, mobile devices and computer paradigms that have

*Correspondence: jmcastil@ulima.edu.pe
†Giovanny Mondragón-Ruiz and Alonso Tenorio-Trigoso contributed equally
to this work.
1Center of Information and Communication Technologies, Universidad
Nacional de Ingenieria, Lima, Peru
2Universidad de Lima, Lima, Peru
Full list of author information is available at the end of the article

resulted in the introduction of a large amount of informa-
tion and communication-assisted services [2]. For exam-
ple, in Smart Cities the use of IoT systems involves the
deployment of a large number of interconnected wire-
less devices, which generate a large flow of information
between them and require scalable access to the Cloud
for processing [3]. In addition, many applications for
Smart City environments (i.e., traffic management or pub-
lic safety), carry real-time requirements in the sense of
non-batch processing [4].
Under this context, the data processing architecture

for IoT systems has moved from a centralized paradigm
such as cloud computing to a distributed paradigm
known as fog computing, as critical problems must be
addressed such as obtaining a scalable, robust, secure and

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00245-7&domain=pdf
http://orcid.org/0000-0002-2990-7090
mailto: jmcastil@ulima.edu.pe
http://creativecommons.org/licenses/by/4.0/

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 2 of 17

experience-centric data processing architecture andQual-
ity of Service (QoS) from end users [5]. Therefore, fog
computing emerges as a complementary model of cloud
computing. It can be said that it is a natural extension,
which seeks to decentralize work on the Cloud server
by creating a hierarchy of layers between the hardware
components of the architecture [6, 7].
Therefore, the fog computing architecture derives from

the cloud computing architecture as an extension in which
certain applications and data processing are performed at
the edge of the network (edge level) before being sent to
the Cloud server (core level) [8, 9]. The devices that imple-
ment this functionality can consist of the end devices
themselves (i.e., smartphones), local micro datacenters
[10], low-cost hardware platforms that act as gateways
between the sensors and the Cloud [11], or even the same
devices that make up the infrastructure of the intercon-
nection network [12], among others.
Thanks to this, it is sought that the analysis, computa-

tion and data processing services are closer to their data
sources and end users, thus reducing both the use of
the access network to the Cloud server and the latency
of sending and replying with the edge devices (sensors
and actuators) and the final users [13, 14]. However, fog
devices are usually constrained resources and this may be
one of the main drawbacks of the system.
The objective of this work is to evaluate the perfor-

mance of a fog computing architecture capable of detect-
ing in real time a pattern of system behaviour based on
the information collected by the final devices. More pre-
cisely, the architecture is endowed with the intelligence
necessary for data processing by means of a Complex
Event Processing (CEP) engine [15]. It is important to note
that, in this paper, the concept “real time” does not refer
to the traditional definition of real time computing (i.e.,
hard real time), related mostly to control systems which
need response times in the order of milliseconds (or even
lower). Here, the term “real time” has the meaning of
expecting a short time response from the system in human
terms, with higher orders of magnitude, even up to a few
seconds (i.e., soft real time).
Moreover, one key goal of this research study is to make

a comparative study among the features of traditional
cloud computing versus fog computing architectures. To
assess performance, the study is based on an analysismod-
elling and a testbed evaluation in which both the perfor-
mance of the end user and resource usage are considered
[16]. A graphical overview of the approach towards the
comparative evaluation of cloud and fog architectures is
presented in Fig. 1.
Thus, the structure of this paper is as follows. First of

all, some preliminary information and concepts are intro-
duced in “Background” section, in order to ease the under-
standing of this work. Next, the related work is presented

in “Related work” section. Then, the description of the
architecture and ecosystem considered in this work are
described in “Architecture and ecosystem” section. Later,
“Fog & cloud computing: analysis modelling” section
details the analysis modeling considered for cloud and
fog computing. Subsequently, in “Fog & cloud computing:
performance evaluation” section an objective study is car-
ried out on the optimisation of computational resources
and improvement of the latency of fog computing with
respect to cloud computing for IoT applications. Finally,
“Conclusions and future plans” section analyses the con-
clusions and future work to be carried out in subsequent
investigations.

Background
In this section, the key technologies that support the pro-
posal of this paper are briefly introduced, in order to ease
its understanding. More specifically, these are fog com-
puting (and related terms), the telemetry protocols and
CEP.

Fog computing architecture
The fog computing paradigm can be simply defined as a
natural extension of the cloud computing paradigm. In the
literature, there exist related terms, such as edge comput-
ing or mist computing. There is not a standard criteria
about the layered architecture of fog computing and there
are different approaches [17]. While mist computing is
more commonly agreed to refer to the processing capabil-
ity that lies within the extreme edge of the network (i.e.,
the IoT devices themselves) [18], the terms edge and fog
computing are not strictly separated layers. Some authors
consider them as different tiers but others use both terms
in a different way. For example, Bonomi et al. [13] literally
state that “fog computing extends the cloud computing
paradigm to the edge of the network”, thus including edge
computing as part of the fog computing paradigm. Recip-
rocally, in Dolui et al. [19] fog computing is considered a
particular implementation of edge computing. Also, the
reference architecture outlined by Buyya et al. [20] depicts
a continuum of resources available from the cloud to the
sensors (the things).
In any case, the fog computing architecture can be

deemed as conceptually integrated by two main levels: the
core level, which encompasses the cloud-based datacen-
ters, and the edge level, which includes different devices
and their interconnections, such as sensors, smart mobiles
or single-board computers deployed at several places
between the final IoT devices and the cloud.
The edge level usually includes a Wireless Sensor Net-

work (WSN), because it is the most flexible interconnec-
tion approach for many use cases [21]. This leads to the
fact that different network technologies operate in fog
computing architectures, namely:

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 3 of 17

Fig. 1 Overall Schema of the Proposal

• Personal Area Networks (PANs), that interconnect all
the information extraction devices (i.e., the sensors).

• Local Area Networks (LANs), which implement the
interconnection of the WSN gateway with its nearest
fog node.

• Wide Area Networks (WAN), which connect the fog
nodes to the cloud.

Fog computing architectures accelerate data process-
ing and response to events by eliminating a round trip
to the cloud for analysis. In addition, they avoid the
need for costly bandwidth extensions caused by upload-
ing/downloading large amounts of traffic to/from the core
network. It also protects sensitive data by analysing them
within the local network. Ultimately, organisations that
adopt fog computing get deeper and faster information,
which increases business agility, increases service levels
and improves security [22]. Nevertheless, the design of
a profitable fog architecture has to consider Quality of
Service (QoS) factors such as throughput, response time,

energy consumption, scalability or resource utilization
[23].

Telemetry protocols
Telemetry is an aspect of great importance when it comes
to developing an efficient IoT network with QoS for a
fog computing architecture. Several messaging protocols
exist that can play this role: Message Queue Teleme-
try Transport (MQTT), Constrained Application Protocol
(CoAP), Advanced Message Queuing Protocol (AMQP)
or Hypertext Transfer Protocol (HTTP). In [24] a detailed
comparison among them is carried out and conclude that
there is not a clear optimal election to fit all use cases.
Nevertheless, according to [24], the most used teleme-

try protocols is the MQTT [25], a Machine-to-Machine
(M2M) communication protocol between different com-
ponents of the fog computing, because it consumes
very little bandwidth, easily adapts to different lev-
els of latency and can be used in most embedded
devices with few resources [20]. The MQTT architec-

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 4 of 17

ture follows a star topology based on the publication-
subscription messaging paradigm, in which a central
node acts as a server or broker, which is responsi-
ble for managing the network, receiving messages from
the publishers and transmitting the messages to the
subscribers.

Complex event processing (CEP)
CEP [26] is a technology that allows to ingest, analyze and
correlate a large amount of heterogeneous data (simple
events) with the aim of detecting relevant situations in a
particular domain (complex events). In the context of this
paper, CEP performs tasks related to the fusion of data
processing collected by the sensor nodes to generate com-
plex events or alarms1. The main result of the process is
to notify interested parties of patterns derived from the
analysis of lower level events [15].
One drawback of CEP is that it can potentially exhibit

heavy storage requirements related to the amount of
simple events that need to be stored for analysis. How-
ever, it should be noted that in the context of IoT,
even though devices generate data streams continuously,
these data need to be analyzed within a short period
of time to be meaningful and harness the potential
of fog computing. Thus, storage requirements are con-
siderably reduced. Data analysis over large periods of
time (for example, in order to identify trends over data)
should be deployed at resources placed in the cloud
level.
CEP offers a wide variety of data analysis patterns for

event generation [15]. In general, the procedure of analysis
and generation of events in CEP can be summarised with
the three main steps shown below (in that order):

1. Input : data flows from sources (i.e., sensors) arrive at
the CEP engine.

2. Analysis: all the incoming data flows are processed
by dividing and realising the logic to the events.

3. Action: once the specified pattern has been fulfilled,
an alarm is notified.

Moreover, there are several alternate open-source
frameworks for distributed stream processing, which
exhibit different performance and are best suited to dif-
ferent use cases. A comparative evaluation can be found
in Nasiri et al. [27], focusing on the most popular ones
(namely, Apache Storm, Apache Spark Streaming, and
Apache Flink). According to this study, Apache Flink
(an implementation of a CEP engine) is able to provide
capability to run real time data processing pipelines in
a fault-tolerant way at a scale of millions of tuples per
second.

1The identification and generation of a complex event will be also referred to
as an alarm throughout this paper.

Related work
In this section, some implementations based on distri-
buted fog computing architectures are reviewed, as well
as work related to the performance evaluation of these
architectures.

Fog computing
Many architectures that are developed initially as a cen-
tralised architecture type (i.e., cloud computing) are cur-
rently adapting to a decentralised type (i.e., fog com-
puting), as is the case of FIWARE for Smart Cities [2].
This work exposes the use cases in which it is of great
importance, and necessity, to decentralize resources with
a fog computing architecture. In addition, it shows that
the reasons for implementing this type of architecture
focus primarily on operational requirements rather than
performance issues related to the Cloud.
Following this trend of implementing distributed archi-

tectures, different adaptations arise today such as mobile
computing that is still a fog computing architecture, being
the Edge Node a smartphone. In Dhillon et al. [28], the
authors show an interesting development with the adapta-
tion of a CEP engine for remote patient monitoring. That
is, the system performs the analysis and detection of com-
plex events on the smartphone by sending the results to
a hospital back-end server for further processing. By tak-
ing advantage of the large computing capacity of today’s
smartphones, the authors demonstrate the viability of
their entire system and mobile application by reducing
the workload on hospital servers, in addition to reduc-
ing latency for a test pattern. Moreover, CEP has been
used to analyze events generated at both edge and core
level to facilitate decision-making before storing data in
a database, which removes repetition of queries and web
services as expose Alfonso Garcia-de-Prado et al. [15].
On the other hand, the emerging Industry 4.0 takes

advantage of technology to offer improvements in the pro-
duction areas thanks to real-time indicators that serve to
create better administrative and logistic plans. An exam-
ple is the work done by Fernández-Caramés et al. [29],
which uses a two-layer fog computing architecture. The
first layer (Node Layer) is where certain sensors and actua-
tors with radio frequency emitters are located. The second
layer (Fog Layer) is the intermediate layer, withmicrocom-
puters, in which sub modules are distinguished according
to their functionality; for example, event detection and
sending notifications regarding Business Intelligence. The
implementation of fog computing offers faster answers on
average due to the reduction of latency with the detected
events offering, in addition, the ability to analyse more
data, which in this case would increase its production.
However, they mention that their work is under the con-
ditions of the place where the tests were carried out;
therefore, the results cannot be generalised.

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 5 of 17

Finally, an interesting aspect in this type of architectures
is also taking place in the field of online games with an
improvement in the user experience thanks to the reduc-
tion in response time. This is the example of the Pokemon
Go game and its iPokeMon version, which works on fog
computing [30]. Specifically, the Data Center is an Ama-
zon virtual machine located in Dublin and the edge node
is an Odroid XU+E microcomputer. The partition of tasks
mentioned is given so that the server in the cloud main-
tains a global view of the Pokemons, while the edge node
has a local view of the users that were connected to it.
The edge node periodically updates the global view of the
cloud server. As a result, a 20% decrease in the average
response time and a 90% reduction in the size of data sent
to the server is obtained. In this research, we can observe
that when implementing a decentralised architecture like
fog computing, both functionality and resource usage are
optimized.

Evaluation of fog computing
As it has been observed, one of the main fundamentals
to deploy a fog computing architecture is to reduce the
latency in the final applications. Likewise, we can observe
that the enhancement of this metric entails improvements
in different ones, such as, for example, the reduction of
energy consumption [31], improving the QoS [32], max-
imising the Quality of Experience (QoE) [33], among
others. In this sense, for the analysis of the distribution
of computational resources it is necessary to be able to
evaluate this type of architectures.
Thus, Jalali et al. [34] carry out a comparative study

between Data Centers with cloud computing architec-
ture and Nano Data Center with fog computing, the latter
being implemented with Raspberry Pis. The performance
of the two architectures is evaluated considering differ-
ent aspects but always focused on energy consumption.
For this, several tests are carried out such as static web
page loads, applications with dynamic content and video
surveillance, and static multimedia loading for videos on
demand. Some of the conditions that were worked on
were variants in the type of the access network, the idle-
active time of the nodes, number of downloads per user,
etc. Moreover, the authors determine that under most
conditions the fog computing platform shows favourable
indicators in energy reduction. However, in a few cases
the opposite is seen. Hence, the authors conclude that in
order to take advantage of the benefits of fog computing,
the applications whose execution on this platform have
an efficient consumption of energy throughout the system
must be identified.
Regarding Raspberry Pi microcomputers, the tests of

different authors, such as Morabito et al. [35], show that
they are efficient when handling low volumes of network
traffic. Their results support how useful they are in the

execution of lightweight IoT-oriented applications, based
on specific protocols such as CoAP and MQTT.
On the other hand, Shi et al. [36] propose a mechanism

for redistribution and retransmission of tasks to reduce
the average latency of the Cloud-Fog integrated network
architecture service in Industrial Internet of Things (IIoT).
This mechanism consists in optimizing the flow of infor-
mation from when the data is collected in the end devices
until it reaches the Cloud. The results show a reduction in
latency from 10s when cloud computing is used up to 1.5s
with fog computing. Although, as can be seen, in addition
to the fact that latency is a serious problem, the system
suffers from architecture components for data analysis,
such as CEP, which add an additional bonus, both to
latency and the consumption of computational resources.
Finally, a spine-leaf fog computing network to reduce

network latency and congestion problems in a multilayer
and distributed virtualized IoT data center environment
is presented in Okafor et al. [32]. This approach is cost
effective as it maximizes bandwidth while maintaining
redundancy and resistance to failures in mission critical
applications. These results, in latency and QoS metrics,
are obtained for datacenters by comparing these two
methods for a typical fog computing architecture with
respect to cloud computing.
As it can be seen, in most evaluations the benefits of

using fog computing together with conventional data cen-
ters are shown. Taking into account this evaluation set
out in the literature, the actual load of this architecture
has been evaluated in our work, but specifically in real-
time IoT applications. For these types of applications in
IoT, two important and critical architecture components
emerge, to be integrated into both the edge nodes and
the cloud, these are, the CEP technology and the MQTT
protocol.
Finally, note that identifying the main bottlenecks of

CEP-based fog architectures is an open area for future
improvements. This work evaluates the performance of
the key elements that take part in the communication pro-
cess for applications with real-time requirements. To the
authors’ knowledge, no previous research work focused
on analysing the cost of communication of CEP-based fog
and cloud architectures.

Architecture and ecosystem
In this section we will describe in detail the layers that
compose the fog computing architecture where our exper-
iments focus, their components and the key functional
aspects of the proposal.

Fog computing architecture
The fog computing architecture considered in this work
integrates the core level and the edge level (see Fig. 2).
It should be noted at this point that the main idea of

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 6 of 17

Fig. 2 Ecosystem of the Developed Architecture

the described architecture is that fog applications are
not involved in performing batch processing, but have to
interact with the devices (sensors, smart watches, etc) to
provide real-time streaming. Hence, the edge level has the
capacity to perform a first information processing step.
In the edge level, the critical and main component of the

considered fog computing architecture is the Fog Node,
that is located within the LAN layer (see Fig. 2). The Fog
Node is the point of link between the edge level and core
level of the platform, besides being able to analyse and
make decisions [31]. Therefore, the Fog Node in an IoT
network has the main role of acquiring data sensed by the
end-points and collected by the gateways, analysing them
and taking actions, that is, sending them to the Cloud or
notifying the end users. More specifically, each Fog Node
analyses the WSN information collected within its LAN
zone.
The Fog Node is formed by a CEP engine for data pro-

cessing tasks and a Broker for communication tasks, from
now on called as Local CEP and Local Broker, respectively.
More precisely, the Local Broker receives the information
collected by the WSN endpoints (i.e., the gateways) and
makes it available to the Local CEP engine for processing.

Also, the Local Broker communicates with the core level,
so that persistent system data is stored.
The core level has two main areas of work: (i) stor-

age of information from the edge level to provide data
persistence in the system; and, (ii) global information pro-
cessing on data from the different WSNs. The Global CEP
and the Global Broker are in charge of this processing.
Therefore, the CEP events generated in this layer will be
those created by analysing the data from different WSNs,
since the events generated from a particular WSN will be
tasks associated with the Fog Node deployed in thatWSN.
Likewise, the notifications generated when analysing the
information in the core level will be sent to the subscribed
users through the Internet.

Fog computing ecosystem
The design of a centralized or distributed computational
architecture for IoT applications entails the use and inte-
gration of different services such as identification, com-
munication, data analysis or actuation, to mention some.
Nevertheless, making a thorough enumeration of all the
technologies that can be used at each one of the lay-
ers of the considered architecture is out of the scope of

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 7 of 17

this paper. Rather than that, focus will be put on those
elements that are key in our proposed architecture.
Figure 2 outlines a set of architecture components

located in the core level and the edge level to build
and deploy distributed IoT applications. The feasibility
of using devices with limited storage and computational
resources as Fog Nodes is hugely related to the cost of
the data analysis and the communication service. So, the
most important components of a Fog Node in our archi-
tecture are the CEP engine and the MQTT Broker. More
specifically, the CEP engine performs data analysis and
processes complex events, while the MQTT Broker is
used to feed data into the CEP Engine and to distribute
complex events (alarms, from now on) to the actuators,
final devices or subscribed users (more details in “Data
flow analysis” section).

Telemetry: MQTT protocol
The MQTT Broker is used to feed data into the CEP
Engine and to distribute complex events (also named as
alarms in this context) to the subscribed end devices
(more details in “Data flow analysis” section).
The location of MQTT Brokers is one key design deci-

sion regarding telemetry. So, in our architecture there are
two types of brokers belonging to the application level, as
shown in Fig. 3. On the one hand, at the edge level there
will be a Local Broker for eachWSN, which will subscribe
to the events generated by the WSN in particular, known

as Local Events. On the other hand, a Global Broker in
the core level will subscribe the events generated by the
different WSN, known as Global Events.
It is important to note that the implementation of the

Local Broker in Fog Nodes does not involve removing the
Global Broker. So, each Fog Node will work with the flow
of information from the sensor network assigned to its
coverage area (Local Events). On the contrary, the Global
Broker will work with the flow of information from the
different Fog Nodes, (Global Events).

Complex event processing
The CEP engine is also implemented at both levels of the
proposed architecture. Likewise to the MQTT brokers,
Local Events (generated in the WSN at the edge level)
will be processed in the corresponding Fog Node through
the Local CEP, while Global Events (the ones that takes
data from different WSNs) must be analysed in the CEP
located in the core level, i.e., the Global CEP.
In any case, events are fed into the CEP engine by means

of MQTT clients. Whenever a complex event is detected,
a new publication to its corresponding topic is made into
the MQTT broker, notifying the alarm.
Figure 4 depicts the data analysis procedure with CEP,

from the data that arrive from the sensors at a given time
to finally detect and obtain the complex event.
This work uses the Closer-context events methodol-

ogy. This case attempts to determine if an event could

Fig. 3 Telemetry: Local and Global events

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 8 of 17

Fig. 4 Flow Process in the CEP Engine that Analyses Data from Different Sensors at Different Fractions of Time.

be generated by analysing the current data with a close
past, i.e., data from a sensor at a time t, Vy(t), is anal-
ysed together with the data obtained from another sensor
at time t − n, Vz(t − n), where n ∈ N ≥ 1. The CEP
pattern used in this work is described in detail in “CEP
pattern” section.

Fog & cloud computing: analysis modelling
In this section, the data flow for both cloud and fog
architectures will be described and the process of the
latency analysed, after briefly introducing the application
considered as a case study.

Case study application
With the purpose of evaluating the proposed architec-
ture, a case study application must be deployed. In order
to assess the latencies experienced in the different ele-
ments of the overall system, a simple application has been
considered which adds little overhead to the basic and
minimum components of the ecosystem.
More precisely, the end-points are configured to send a

sequence of numerical values, while the CEP and Broker
have been configured to generate a closer-context event.
The pattern detected by CEP generates an alarm if the
consecutive values received from two different end-points
are bigger than a preconfigured threshold.
Real applications can deploy more sophisticated event

detection procedures, thus adding more overhead to the
CEP engine. But with this simple application we can
measure a performance baseline for the system.

Data flow analysis
In order to carry out an exhaustive study of the use of
computational resources in the fog computing architec-
ture, we will analyse the communication and functionality
of its components. In addition, we will compare to amodel
of centralised computational architecture type cloud com-

puting to add a comparative analysis. Thus, Fig. 5 details
the data flow of the fog computing and cloud computing
architecture. As can be seen, in both architectures two lev-
els to be analysed are distinguished: edge level and core
level.
On the one hand, in the case of fog computing (see

Fig. 5a), we can see that the edge level will perform all
the data processing while the core level will only work for
the storage of the information. More deeply, in every Fog
Node of the edge level a CEP and Broker are deployed for
the Local Events generation.
On the other hand, in the case of cloud computing (see

Fig. 5b), the edge level will be a passive element, that is,
it will only send the information to the core level, which
will be the entity that deploys the Broker and CEP to
the generation of Global Events. Keep in mind that the
study focuses on seeing the impact of deriving computing
resources to the Fog Nodes. Keep in mind that the Broker
and CEP located in Fog Nodes (edge level) are named as
Local CEP and Broker; and those in the Cloud (core level)
as Global CEP and Broker.
Therefore, a difference in both flows lies first in the loca-

tion of the CEPmodule for event detection and the Broker
for subscription. In the fog computing model these mod-
ules are found both at the edge level and at the core level.
However, for the load tests that will be carried out, when
simulating only the data from a WSN, Global CEP and
Broker will be active, although no load to analyse since this
task will be carried out entirely in the Fog Nodes. Regard-
ing the cloud computing model, the Fog Nodes will not
have activated the Local CEP and Broker since these will
be deployed in the Cloud globally.
The second difference that affects the functionality of

the Local Broker is the type of publications made. In the
case of fog computing, the Fog Node makes a double
publication: one for the analysis by CEP of the data and
another publication to the Cloud for storage. While, in

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 9 of 17

Fig. 5 Data Flow Diagram at the Two Different Levels (Edge Level and Core Level) for the Two Architecture Models: Fog Computing vs. Cloud
Computing

the case of cloud computing, Fog Node makes a single
publication to the cloud.
In summary, the flow of information is as follows: in

fog computing, the event is generated and distributed
through the Local CEP and Broker, respectively, which is
located in the Fog Node. Optionally, in the case of mul-
tiple WSNs and depending on the application, the Global
CEP and Broker could also be used. However, in cloud
computing, the event is generated and distributed exclu-
sively in the same cloud, that is, in the Global CEP and
Broker. It should be noted that, for the evaluation tests
performed, all the underlying architecture is exactly the
same.

Latency analysis
In this section we are going to focus our attention on the
latency of both the fog and cloud architectures. The flow

data previously depicted for the fog and cloud architec-
tures helps us to provide a simple and high-level model to
analysis the latency.
Figure 6 shows the main characteristics of the abstrac-

tion model considered, where we can observe three main
entities:

• Source: it will be the entity that sends the data
simulating the operation of the end-points associated
with a WSN. For the tests, and with the idea of
having controlled the number of events that are
generated, Source is a script written in Python that
will indicate in our case the flow of information to be
sent to the Fog Node over the Internet.

• CEP-Broker: it will be the entity that will analyse the
information and generate the events turned into
alarms. This entity will be the Local CEP and Broker

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 10 of 17

Fig. 6 Overall schema of the stress test from a Source to Final User

located in the Fog Node (for the analysis of the fog
computing architecture); or the Global CEP and
Broker if you are in the Cloud (for cloud computing
analysis).

• Final User: will be the entity that will receive the
alarms. For our study we have used a smartphone
that will receive messages through the Internet,
specifically through a 4G Connection.

Hence, tx refers to the topic to which the end-point is
subscribed. mx is the message sent between the different
entities, such that x = 0 corresponds to the flow from
Source to CEP-Broker, whereas x = 1 corresponds to the
flow from CEP-Broker to Final User. This message also
includes its departure time. Note that we instrument the
CEP-Broker to send back a message to the Source (and
respectively, from the Final User to the CEP-Broker) to
calculate an estimation of the one-way latency of the mes-
sages. We assume here that the upwards and backwards
latency are the same.
Therefore, in this context the total time or latency

(in seconds), Ltotal, from Source to Final User will be
defined as the sum of times of several sectors, as shown in
Equation 1.

Latency = Ltotal = L1 + LCEP + L2 (1)

Figure 6 details the procedure to calculate the times in
each sector:

• L1 will be the time since sending a message from
Source to CEP-Broker, whose latency is denoted as l1,
(Fog Node or Cloud). It should be noted that, for the
calculation of this value, and due to the fact that the
Broker has its own messaging manager making
unfeasible to know exactly the time in which the

alarm is distributed, a confirmation message, whose
latency is represented as l′1, will be sent. Notice that
the shipment from Source will be made by
subscription to the Broker. Therefore, the time spent
sending the message t0m0 is defined according to
Equation 2.

L1 = l1 + l′1
2

(2)

• LCEP will be the time in CEP, that is, the time in
which the data reaches the CEP engine T ′′

1 , is
analysed and the complex event in the form of an
alarm, T ′′

2 is obtained as output. Therefore, the
analysis and generation time of the event is defined
according to Equation 3.

LCEP = T
′′
2 − T

′′
1 (3)

• L2 will be the time since leaves the CEP engine, the
alarm is published through the Broker and reaches the
Final User, with a latency l2. Additionally, Final User
will send a confirmation message, whose latency is l′2.
Thus, the latency in this last sector, when sending the
t1m1 message, will be defined as shown in Equation 4.

L2 = l2 + l′2
2

(4)

To conclude this section, it should be noted that in
the tests carried out on this model, whose results are
shown in “Cloud vs. fog: latency evaluation with stress
workload” section, the three entities (Source, CEP-Broker
(Local and Global) and Final User) are located at differ-
ent geographical points from the same city, and they have
associated different public IP addresses. In addition, as
mentioned, both for the data flowmodel in cloud comput-
ing and in fog computing represented in Fig. 5, the latency
has been calculated with the same equations and following
the same procedure.
Therefore, once the case study is defined, the data flow

analysis and the latency study have been carried out, we
will perform the performance evaluation for both archi-
tectures.

Fog & cloud computing: performance evaluation
This section begins with the description of the testbed
where the evaluation tests have been carried out. Next, the
CEP pattern that has been used in the tests, as well as the
details of load generation will be specified. Already enter-
ing to the evaluation itself, a first analysis is presented on
the impact of using various network technologies in the
latency experienced by the end users of the system when
receiving the generated events, depending on whether a
fog or cloud computing architecture is used. Subsequently,
a stress test is performed on both architectures taking
into account the latency according to the number of alerts

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 11 of 17

generated, to end with an analysis of the consumption of
resources between both architectures.

Testbed description
Now the main hardware and software components of the
testbed developed for carrying out the experiments will
be described. The edge level of the testbed is deployed as
a Python script that emulates 20 end-points and 2 gate-
ways (10 end-points for each), namely, the Source entity
in “Latency analysis” section. For the Fog Node, a Rasp-
berry Pi 3 model B+ type microcomputer has been used,
which has a 4-core 64-bit 1.4GHz processor, a 1GB RAM
LPDDR2 SDRAM and Raspbian (without Graphical User
Interface) operative system.
In order to keep control of the environment (i.e., net-

work latencies), the core level has been implemented
on-premise by using local resources. More precisely, the
core level was implemented on an Intel Core i7 computer
at 2.90GHzx8 with 8GB of RAM and 1TB of Hard Disk.
Final User is a Huawei P20 Lite smartphone with Android
version 8. A basic Android application has been developed
in order to receive the alarms from CEP-Broker. As noted
above, all the components have been deployed at different
locations in Lima (Peru) and are interconnected through
the public Internet.
The CEP engine used in this work is Apache Flink (ver-

sion 1.8.0). Apache Flink is an open-source framework
for state calculations on unlimited and limited data flows.
Two types of processes are created during the runtime
environment in Apache Flink. On the one hand, the Job-
manager implements 50 and 175 threads in Local and
Global CEP, respectively, and is responsible for coordinat-
ing distributed execution, assignment of tasks, fault man-
agement, etc. On the other hand, the Taskmanager, con-
figured with 512MB, is responsible for executing the tasks
assigned by the Jobmanager on the data flow. The configu-

ration of these two types of processes was optimised to
minimize latency in the generation of alarms for our case
study.

CEP pattern
The following is the implemented CEP pattern that will
be used to analyse the incoming data, generate the events
and notify with an alarm, in addition to the simulation of
events that will be used to study the latency and perfor-
mance set out in the next section.
In the tests performed, a CEP engine has been deployed

for processing Closer-context events with a simple pat-
tern. Thus, an alarm will be generated provided that,
in moments of time t1 and t2, the values Vx(t1) and
Vy(t2), received from different end-points, x and y, exceed
a set threshold, Th. That is, it is true that Vx(t1) >

Th & Vy(t2) > Th with t1 < t2.
Thus, Fig. 7 shows an example of simulation until the

second 120 to clarify the process of generating alarms. For
our simulation a threshold Th = 40 has been established.
For the generation of events, it must be fulfilled that in
consecutive moments a data arrives V1(t1) y V2(t2) such
that V1(t1) > 40 & V2(t2) > 40 with t1 < t2.
The process is as follows (in that strict order):

1. At the beginning, when it reaches CEP, the data
V1(0) = 40 is discarded for not fulfilling the
condition.

2. Upon arrival of the second data V2(40) = 41 this is
stored by fulfilling the first case of the employer.

3. In the next 80 seconds another data arrives
V3(80) = 42 so the complete pattern has been
fulfilled and, therefore, generates the event and we
close this first case of alarm generation. Likewise, the
first pattern is met again with this data, so we open a
second case of event generation.

Fig. 7 Simulation for the Generation of Events, Type Closer-Context Events, with CEP Pattern on a Time Line

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 12 of 17

4. In the second 120, we see that V4(120) = 40 arrives
so the pattern does not meet and the second case is
discarded for not complying with the established rule.

It is important to note that the number of alarms
can be increased by sending more topics in less time-
frames, so we can set the maximum number of alarms
per minute. Therefore, for all the tests, 10-minute simula-
tions were made simulating a controlled number of alerts
every minute in an equidistant manner, that is, 10 tests
were carried out generating the same number of alerts
every minute. For example, in a first round a consumption
test was performed with the generation of 200 alarms per
minute for 10 minutes; once the services are restarted, a
load of 400 alarms is performed per minute for 10minutes
and the services are restarted.
For this work a maximum limit of 800 alarms/min has

been established since when generating more alarms, a
bottleneck was created in the Fog Node and events were
beginning to be lost. To do this, 20 end-points are emu-
lated and a total of 1600 data per minute is sent, that is,
80 data per end-point. Note that the load applied to the
system is the same for all tests, varying only the number
of alarms; therefore, the use of network bandwidth from
Source is always the same.
Finally, it should be noted that for the following results,

30 tests were performed to ensure its accuracy. Mean
values have been represented.

Influence of network technology on the latency
A key aspect of the proposed architecture is the network
technology used by the Final Users (see Fig. 6). These ele-
ments can be connected to the Fog Node thanks to WAN
networks or LAN networks depending on the location
of the Final User. Performance depends on the techno-
logy used. Thus, in this section we are going to evaluate
the impact of some of the most widely used technologies.
More precisely, in these experiments we are going to eval-
uate the influence of 3 different technologies: 3G, 4G and
WiFi on latency.
So, the testbed described in “Testbed description”

section has been deployed considering 3 different Final
Users, all of them subscribed to the Local Broker: (i) one
is subscribed by WiFi (it is in its wireless LAN coverage
area); and (ii) the other two are subscribed through 3G and
4G telephone networks respectively (WAN connection).
Hence, Fig. 8 shows the results of making this compar-

ison between the different connections to the Broker for
a load with the pattern described in the previous subsec-
tion and a total of 800 alarms/min. As expected, a user
who is on the same LAN of the Fog Node (WiFi connec-
tion) will receive the alert in less time than one connected
by 3G and 4G, although 4G is very close to WiFi. One of
the strengths of 4G is the speed and stability of the sig-

Fig. 8 Specification of the Latency Obtained in the Final User Entity
for 3G, 4G and WiFi Connections

nal with respect to 3G which, as can be seen, has a more
pronounced variance than 4G [36].
Thus, it can be seen from this study that the fog com-

puting approach allows recipients in the area of coverage
of the Fog Node to receive the alarm with a significantly
lower latency than those recipients connected by tele-
phony network. It should be noted that with a cloud
computing approach, recipients can only receive the alert
from the core level. The additional latencies incurred may
be harmful for a wide range of applications.

Cloud vs. fog: latency evaluation with stress workload
Since the 4G telephony network has stable results and
good latency performance, this will be the network used
to send alarms to Final User in the remaining experi-
ments. In addition, and as we will see in this section, this
latency study should be extended so that we can com-
pare if latency is reduced with the generation of Local
Events (fog computing), rather than Global Events (cloud
computing). Thus, in this particular case, and by which
the subsequent performance study will be carried out, we
will compare the latency in both architectures for a con-
trolled number of alarms generated, specifically 200, 400,
600 and 800 alarms/min. Equation 1 has been used to cal-
culate total latency (see “Latency analysis” section). In all
the cases, averaged values for latencies are shown.
In this context, we can see in Fig. 9 how using a fog com-

puting architecture reduces latency considerably, that is,
the notification of an event arrives earlier to Final Users
than in a cloud computing architecture.
Now, in this case we can see how the latency exceeds

the second in the case of cloud computing. Moreover, it
has a growing linear trend with a steep slope. On the other
hand, fog computing also presents a linear trend, although
it has much smoother slope, that is, it almost maintains
a constant value. Therefore, we can consider that the
latency in fog computing, in addition to being lower than

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 13 of 17

Fig. 9 Average Latency for the Different Loads Established, Comparing Fog Computing (FC) and Cloud Computing (CC)

in the cloud computing architecture, has a more stable
value, independently of the assigned load.
In this context, the following test tries to determine

which element of the architecture has the greatest impact
on latency. For these results, the description of the latency
and how to obtain it in each sector must be taken into
account (see “Latency analysis” section). In particular,
latencies in the three sectors are shown: (i) L1 time
between the Source entity and before analysing in CEP
(see Equation 2); (ii) TCEP time since a data is analysed and
the event is generated (see Equation 3); and (iii) L2 time
since the event becomes an alarm and reaches Final User
(see Equation 4).
Therefore, Fig. 10 shows the average latency data, bro-

ken down by each sector indicated above. In it, it can
be seen that in both architectures, the element that con-
tributes most to latency is the MQTT Broker in the two
phases of communication.
Taking into account the times obtained in the study of

latency in Fig. 10 we can draw the following conclusions
by sector:

• L1 (see Fig. 10a): In this sector, the cloud computing
architecture records a growing trend: the more
alarms per minute there are, the higher latency L1. In
the case of fog computing we can observe that the
latency is constant and independent, as soon as we
analyze a considerable set of events. Note that this
parameter includes both the transmission time of the
network and the work done by the MQTT Broker. In
both architectures the communication latency has a
low variance (see Fig. 8, 4G connection) so the
variation observed in the latency values of the figure

is due to the initialisation behaviour of the MQTT
Broker as the first data arrives from Source.

• TCEP (see Fig. 10b): The first behaviour to observe
between both architectures is that the time observed
in fog computing is slightly longer than the time in
cloud computing because the resources in the Fog
Node are more scarce than in the cloud. In any case,
the time in both architectures is very similar and
practically constant in this sector and, therefore, not
very significant.

• L2 (see Fig. 10c): For this sector we can see how,
unlike L1, in both architectures there is a constant and
independent trend to the number of alarms, because
the Broker service is already initialised and it only
distributes the alarms to the Final User. On the other
hand, it is observed that in this case the latency for
the cloud computing architecture is more than twice
the one obtained by the fog computing architecture.

In summary, we can see that the growing trend in cloud
computing (see Fig. 9) is due to the time spent in the
L1 sector. In addition, an important factor that we can
observe at this point has been that the MQTT Broker is a
critical point of latency, while CEP performs the analysis
of the data at a minimum latency.
Finally, not only latency is important to evaluate in

both architectures. The distribution of computational
resources in the different architectures must also be
assessed.

Cost analysis: use of resources
In this section we will continue with the stress test devel-
oped for latency, but analysing the computational con-

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 14 of 17

Fig. 10 Average Latency Breakdown - Fog Computing (FC) vs. Cloud Computing (CC) Architectures

sumption for a fog computing architecture with respect to
a cloud computing one. See Fig. 5 to remember the work-
flow in both architectures, analysing the distribution of
resources at the core and edge level.

Case 1: core level
In the following results the measurements have been
made in the core level, that is, in the central server
(Cloud). The idea of this test is to know the computa-
tional consumption in the core level when using any of
the architectures to evaluate. To this end, the Perf tool
[37, 38] has been used to measure the energy consumed,
Joules/millisecond (J/msec), and the Linux top tool to
obtain the percentage of CPU and RAM consumed (see
Fig. 11).
At first sight, we can see that cloud computing has a

higher computational consumption in the measured val-
ues, so, by using a fog computing architecture we have
reduced considerably the consumption of resources in the
Cloud. The metrics evaluated are detailed below:

• As for average CPU consumption (in %), see Fig. 11a,
we can see that it has not been excessive in both
architectures since the events sent do not perform
complex mathematical operations that stress the
CPU, but are simple comparison events. It can be
seen that when cloud computing is used, CPU
consumption is at most 1% higher than in fog
computing, which is a very insignificant increase.

• Regarding the consumption of RAM (in %), see
Fig. 11b, we see more interesting results. It is possible
to appreciate that the single activation of the CEP
engine and the Broker represents a 35% increase in
memory consumption. This aspect is due to the fact
that CEP performs the analysis of events by storing
data in the buffer and the Broker distributes the
alarms from RAM. In contrast, in the case of fog
computing, we see a very low value since the Broker
and CEP services are not activated.

• In matters of energy, see Fig. 11c, we see an average
reduction of 69% in benefit of using fog computing
with respect to cloud computing, without becoming
high values. It is a consequence of the lower use of
CPU and RAM.

It has been possible to verify how the use of fog comput-
ing download of work at the core level. This would be an
additional benefit of the fog computing architectures (dis-
tribute resources across the different distributed devices)
that will be more noticeable the more sophisticated the
processing to be performed on the data.

Case 2: edge level
To obtain computational consumption at the edge level,
when using a Raspberry Pi as Fog Node, only the con-
sumption (in %) of CPU and RAM could be obtained
because the Perf tool is not available for ARM processors.
Therefore, the measurements made are now observed in

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 15 of 17

Fig. 11 Performance Breakdown at the core level - Fog Computing (FC) vs. Cloud Computing (CC)

Fig. 12. Note that the scales used in the graphs are differ-
ent than in Case 1 (see Fig. 11). However, it is reported
that the maximum energy consumption of a Raspberry Pi
board at maximum load (i.e., the worst case) is 5.1W [39],
leading to 0.0051J/msec, which is negligible compared to
the energy consumed in the core level.
At first glance we can see how to use fog computing

we have a greater consumption of resources in the Fog
Node. This point is interesting and corroborates that the
decrease in the consumption of computational resources
in the core level implies a redistribution of resource usage
towards the edge level. The metrics evaluated are detailed
below:

• Regarding the CPU consumption (in %), see Fig. 12a,

we can observe for both architectures a linear
behavior with the number of alarms processed per
minute, although the slope obtained in the fog
computing architecture is much steeper, reaching a
consumption of 20% compared to 6% of cloud
computing for 800 alarms/min. This is due to two
facts: i) The limited performance of low-cost devices,
such as the Raspberry Pi of our testbed; and ii) The
workload since it is not only assigned by the CEP
engine, but also that of the Broker who must make a
double publication. However, the result obtained at
this point is key: low-cost devices (less than US$40
per device) can be used to analyze data from IoT
applications with real-time requirements using a CEP
engine without overloading the system.

Fig. 12 Performance Breakdown at the Edge Level - Fog Computing (FC) Vs. Cloud Computing (CC)

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 16 of 17

• Regarding the consumption of RAM (in %), see
Fig. 12b, it can be seen that the CEP and Broker
engine consume up to 80% of the RAM in the Fog
Node, that is, almost 70% more than in the cloud
computing model, since in the latter case the Fog
Node is a passive element. Like the core level analysis,
CEP performs the event analysis and the Broker
distributes the alarms from RAM. A key aspect that
certifies the feasibility of using low-cost devices is
that the % of memory in use is constant and
independent of the number of alarms generated.

As a summary, we can observe that the assignment of
tasks and work to the edge level with CEP and Broker
brings with them a distribution of work assigned to the
Fog Nodes while the core level has a much lower load.
This is an interesting fact since in addition to harnessing
the computing power at the edge level, it also highlights
that the response times to the end user are much shorter,
which in turn enables the deployment of a large number
of applications with real-time requirements in IoT.

Conclusions and future plans
This paper shows the development of a distributed fog
computing architecture for the deployment of IoT appli-
cations. Our study shows how these architectures opti-
mise the distribution of resources throughout the entire
deployed platform, in addition to considerably reducing
latency.
On the one hand, regarding resource distribution, we

have observed that by deploying critical data analysis and
decision-making applications (CEP and the MQTT Bro-
ker, in our case), the values of the evaluated metrics are
reduced considerably (CPU consumption, RAM memory
and power consumption) on the cloud server, with the
consequent savings for the cloud provider. Specifically, the
fog computing approach enables a reduction of RAM con-
sumption up to 35% and energy up to 69% at the core
level, since it fully exploits the computational resources of
fog nodes. In addition, it has been verified that low-cost
devices, such as Raspberry Pi with a cost less than US$40,
have enough computing resources to offer the quality of
service required by IoT applications with real-time needs.
On the other hand, regarding latency, the work high-

lights how a fog computing architecture considerably
reduces latency with respect to cloud computing, up to
35% better. Breaking down the latency results, we can also
see how the Broker is the critical element of the increase
in latency.
Regarding future work, the authors of this work consider

it appropriate to evaluate Software Defined Networks
(SDN) techniques in the Fog Nodes. As observed in the
document, the limit of 800 alarms/min can be mitigated
by developing a spine-leaf layer between the core and edge

level, which allows the analysis to be redirected in case of
Fog Node overload.
Likewise, a study on the creation of micro services in

the Fog Node for the Broker and CEP through containers
would be very interesting to provide a certain degree of
isolation between different applications deployed on the
edge level. To do this, using microclouds techniques in
the Fog Node can be an interesting aspect for reducing
consumption and latency.
Finally, it is proposed to use more sophisticated micro-

computers that have built-in accelerators (graphics cards,
Tensor Processing Units (TPUs), . . .) to analyse the impact
of deriving machine and deep learning techniques from
the Cloud to the Fog Node.

Acknowledgements
Not applicable

Authors’ contributions
G. Mondragón-Ruiz and A. Tenorio-Trigoso has directed the
Conceptualisation, Data Curation, Formal Analysis, Writing – Original Draft
Preparation, Writing – Review & Editing. M. Castillo-Cara, M. B. Caminero and C.
Carrión have directed the Conceptualisation, Formal Analysis, Writing –
Review & Editing. All authors reviewed and approved the final manuscript.

Authors’ information
GiovannyMondragón-Ruiz, received the B.Sc. degree in Computer Science
from the Universidad Nacional de Ingenieria (UNI) from Lima - Perú in 2018. He
is currently a member of Intelligent Ubiquitous Technologies – Smart City
(IUT-SCi) Lab at the Universidad Nacional de Ingeniería. He is researching Edge
Level Architectures and Fog Computing optimizations. His research interests
include Complex Event Processing, Mobile Computing and Internet of Things.
Alonso Tenorio-Trigoso received the M.Sc. degree and he is studying the
PhD in Computer Science from the UCLM, Albacete, Spain. He has been
working on university educational issues at the Computer Science as an
Associate Professor and a member of IUT-SCi Lab at UNI. His research interests
includes Distributed Computing, IoT technologies and Internet protocols.
Manuel Castillo-Cara received the PhD degree from the University of
Castilla-La Mancha (UCLM) in July 2018. He has been working on university
educational issues at the Computer Science as an Associate Professor and
head of Intelligent Ubiquitous Technologies – Smart City (IUT-SCi) Lab at
Universidad de Lima. His current research is focused on Intelligent Ubiquitous
Technologies, especially on in Wireless Sensor Networks, Distributed
Computing, Pattern Recognition and Artificial Intelligence.
Blanca Caminero is an Associate Professor in Computer Architecture and
Technology at the Computing Systems Department at UCLM. She teaches
networking related subjects at the School of Computer Science and
Engineering in Albacete since 2000. She holds a Ph.D. Degree in Computer
Science from the UCLM, and her current research interests are QoS support
and efficient resource scheduling in distributed systems (Cloud, Fog, Edge. . .).
She is a member of the IEEE.
Carmen Carrión is an Associate Professor in Computer Architecture and
Technology at the Computing Systems Department at the UCLM. She holds a
Ph.D. Degree in Physics from the University of Cantabria, and her interests
include resource management schemes, virtualization technologies and QoS
in Fog-IoT frameworks.

Funding
This work has been partially funded by the Spanish Ministry of Science,
Innovation and Universities (ref. RTI2018-098156-B-C52), by the Research Plan
of the University of Castilla-La Mancha (ref. 2019-GRIN-27060), and by
FONDECYT / World Bank (ref. 026-2019 FONDECYT-BM-INC.INV).

Availability of data andmaterials
The analysis code is available in JAVA language program for the CEP analysis
(.java files).

Mondragón-Ruiz et al. Journal of Cloud Computing (2021) 10:32 Page 17 of 17

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Center of Information and Communication Technologies, Universidad
Nacional de Ingenieria, Lima, Peru. 2Universidad de Lima, Lima, Peru.
3Department of Computing Systems, University of Castilla-La Mancha,
Albacete, Spain.

Received: 21 December 2020 Accepted: 6 May 2021

References
1. Omale G (2018) Gartner Identifies Top 10 Strategic IoT Technologies and

Trends. https://www.gartner.com/en/newsroom/press-releases/2018-
11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends.
Accessed 21 Dec 2020

2. Yannuzzi M, van Lingen F, Jain A, Parellada OL, Flores MM, Carrera D, Pérez
JL, Montero D, Chacin P, Corsaro A, et al. (2017) A new era for cities with
fog computing. IEEE Internet Comput 21(2):54–67

3. Sarkar S, Chatterjee S, Misra S (2018) Assessment of the Suitability of Fog
Computing in the Context of Internet of Things. IEEE Trans Cloud Comput
6(1):46–59. https://doi.org/10.1109/TCC.2015.2485206

4. Mahmud R, Koch FL, Buyya R (2018) Cloud-fog interoperability in
IoT-enabled healthcare solutions. In: Proceedings of the 19th
International Conference on Distributed Computing and Networking.
ACM, Varanasi. p 32

5. Xiong Z, Feng S, Wang W, Niyato D, Wang P, Han Z (2018) Cloud/fog
computing resource management and pricing for blockchain networks.
IEEE Internet Things J 6(3):4585–4600

6. Luan TH, Gao L, Li Z, Xiang Y, Wei G, Sun L (2015) Fog computing:
Focusing on mobile users at the edge. ArXiv:1502.01815. https://arxiv.
org/abs/1502.01815

7. Roman R, Lopez J, Mambo M (2018) Mobile edge computing, fog et al.: A
survey and analysis of security threats and challenges. Futur Gener
Comput Syst 78:680–698

8. Rahmani AM, Liljeberg P, Preden J-S, Jantsch A (2017) Fog computing in
the internet of things: Intelligence at the edge. Springer International
Publishing. pp 17–31. https://doi.org/10.1007/978-3-319-57639-8

9. Barik RK, Dubey H, Misra C, Borthakur D, Constant N, Sasane SA, Lenka RK,
Mishra BSP, Das H, Mankodiya K (2018) Fog assisted cloud computing in
era of big data and internet-of-things: systems, architectures, and
applications. In: Cloud Computing for Optimization: Foundations,
Applications, and Challenges. Studies in Big Data, vol 39. Springer, Cham.
pp 367–394. https://doi.org/10.1007/978-3-319-73676-1_14

10. Dignan L What’s next for data centers? Think micro data centers. https://
www.zdnet.com/article/whats-next-for-data-centers-think-micro-data-
centers/. Accessed 21 Dec 2020

11. Xu Z, Zhang Y, Li H, Yang W, Qi Q (2020) Dynamic resource provisioning
for cyber-physical systems in cloud-fog-edge computing. J Cloud
Comput 9(1):1–16

12. Devnet C What is IOx? https://developer.cisco.com/docs/iox/. Accessed
21 Dec 2020

13. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in
the internet of things. In: Proceedings of the first edition of the MCC
workshop on Mobile cloud computing. ACM, Helsinki. pp 13–16

14. Wu C, Li W, Wang L, Zomaya A (2018) Hybrid Evolutionary Scheduling for
Energy-efficient Fog-enhanced Internet of Things. IEEE Trans Cloud
Comput:1–1. https://doi.org/10.1109/TCC.2018.2889482

15. Garcia-de-Prado A, Ortiz G, Boubeta-Puig J (2017) COLLECT:
COLLaborativE ConText-aware service oriented architecture for intelligent
decision-making in the Internet of Things. Expert Syst Appl 85:231–248

16. Goudarzi M, Wu H, Palaniswami MS, Buyya R (2020) An Application
Placement Technique for Concurrent IoT Applications in Edge and Fog
Computing Environments. IEEE Trans Mob Comput 20(4):1–1

17. Mahmud R, Ramamohanarao K, Buyya R (2020) Application Management
in Fog Computing Environments: A Taxonomy, Review and Future
Directions. ACM Comput Surv 53(4). https://doi.org/10.1145/3403955

18. Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J,
Jue JP (2019) All one needs to know about fog computing and related

edge computing paradigms: A complete survey. J Syst Archit 98:289–330.
https://doi.org/10.1016/j.sysarc.2019.02.009

19. Dolui K, Datta SK (2017) Comparison of edge computing
implementations: Fog computing, cloudlet and mobile edge computing.
In: 2017 Global Internet of Things Summit (GIoTS). pp 1–6. https://doi.org/
10.1109/GIOTS.2017.8016213

20. Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016) Chapter 4 -
fog computing: principles, architectures, and applications. In: Buyya R,
Vahid Dastjerdi A (eds). Internet of Things. Morgan Kaufmann. pp 61–75.
https://doi.org/10.1016/B978-0-12-805395-9.00004-6

21. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey.
Comput Netw 52(12):2292–2330. https://doi.org/10.1016/j.comnet.2008.
04.002

22. Bellavista P, Berrocal J, Corradi A, Das SK, Foschini L, Zanni A (2019) A
survey on fog computing for the Internet of Things. Pervasive Mob
Comput 52:71–99

23. Haghi Kashani M, Rahmani AM, Jafari Navimipour N (2020) Quality of
service-aware approaches in fog computing. Int J Commun Syst
33(8):4340. https://doi.org/10.1002/dac.4340

24. Naik N (2017) Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP. In: 2017 IEEE International Systems
Engineering Symposium (ISSE). IEEE, Vienna. pp 1–7

25. MQTT.org (2021) MQTT: The Standard for IoT Messaging. https://mqtt.
org/. Accessed 4 Mar 2021

26. Luckham DC (2011) Event Processing for Business: Organizing the
Real-time Enterprise. Wiley

27. Nasiri H, Nasehi S, Goudarzi M (2019) Evaluation of distributed stream
processing frameworks for IoT applications in Smart Cities. J Big Data
6(52). https://doi.org/10.1186/s40537-019-0215-2

28. Dhillon AS, Majumdar S, St-Hilaire M, El-Haraki A (2018) Mcep: A mobile
device based complex event processing system for remote healthcare.
IEEE Int Conf Internet Things: 203–210. https://doi.org/10.1109/
Cybermatics_2018.2018.00064

29. Fernández-Caramés TM, Fraga-Lamas P, Suárez-Albela M, Díaz-Bouza MA
(2018) A fog computing based cyber-physical system for the automation
of pipe-related tasks in the industry 4.0 shipyard. Sensors 18(6). https://
doi.org/10.3390/s18061961

30. Varghese B, Wang N, Nikolopoulos DS, Buyya R (2017) Feasibility of fog
computing. ArXiv: 1701.05451. https://arxiv.org/abs/1701.05451

31. Castillo-Cara M, Huaranga-Junco E, Quispe-Montesinos M,
Orozco-Barbosa L, Antúnez EA (2018) FROG: a robust and green wireless
sensor node for fog computing platforms. J Sensors 2018:1–12

32. Okafor KC, Achumba IE, Chukwudebe GA, Ononiwu GC (2017) Leveraging
fog computing for scalable IoT datacenter using spine-leaf network
topology. J Electr Comput Eng 5(4):3246–3257

33. Shah-Mansouri H, Wong VWS (2018) Hierarchical Fog-Cloud Computing
for IoT Systems: A Computation Offloading Game. IEEE Internet Things J
5(4):3246–3257

34. Jalali F, Hinton K, Ayre R, Alpcan T, Tucker RS (2016) Fog computing may
help to save energy in cloud computing. IEEE J Sel Areas Commun
34(5):1728–1739

35. Morabito R (2017) Virtualization on Internet of Things edge devices with
container technologies: a performance evaluation. IEEE Access
5:8835–8850

36. Shi C, Ren Z, Yang K, Chen C, Zhang H, Xiao Y, Hou X (2018) Ultra-low
latency cloud-fog computing for industrial internet of things. In: 2018
IEEE Wireless Communications and Networking Conference (WCNC). IEEE,
Barcelona. pp 1558–2612

37. perf (2019) perf: Linux profiling with performance counters. https://en.
wikipedia.org/wiki/Perf_(Linux). Accessed 21 Dec 2020

38. Lovón-Melgarejo J, Castillo-Cara M, Huarcaya-Canal O, Orozco-Barbosa L,
García-Varea I (2019) Comparative Study of Supervised Learning and
Metaheuristic Algorithms for the Development of Bluetooth-Based
Indoor Localization Mechanisms. IEEE Access 7:26123–26135

39. Geerling J (2020) Power Consumption Benchmarks. https://www.
pidramble.com/wiki/benchmarks/power-consumption. Accessed 21 Dec
2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://doi.org/10.1109/TCC.2015.2485206
https://arxiv.org/abs/1502.01815
https://arxiv.org/abs/1502.01815
https://doi.org/10.1007/978-3-319-57639-8
https://doi.org/10.1007/978-3-319-73676-1_14
https://www.zdnet.com/article/whats-next-for-data-centers-think-micro-data-centers/
https://www.zdnet.com/article/whats-next-for-data-centers-think-micro-data-centers/
https://www.zdnet.com/article/whats-next-for-data-centers-think-micro-data-centers/
https://developer.cisco.com/docs/iox/
https://doi.org/10.1109/TCC.2018.2889482
https://doi.org/10.1145/3403955
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1109/GIOTS.2017.8016213
https://doi.org/10.1109/GIOTS.2017.8016213
https://doi.org/10.1016/B978-0-12-805395-9.00004-6
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1002/dac.4340
https://mqtt.org/
https://mqtt.org/
https://doi.org/10.1186/s40537-019-0215-2
https://doi.org/10.1109/Cybermatics_2018.2018.00064
https://doi.org/10.1109/Cybermatics_2018.2018.00064
https://doi.org/10.3390/s18061961
https://doi.org/10.3390/s18061961
https://arxiv.org/abs/1701.05451
https://en.wikipedia.org/wiki/Perf_(Linux)
https://en.wikipedia.org/wiki/Perf_(Linux)
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption

	Abstract
	Keywords

	Introduction
	Background
	Fog computing architecture
	Telemetry protocols
	Complex event processing (CEP)

	Related work
	Fog computing
	Evaluation of fog computing

	Architecture and ecosystem
	Fog computing architecture
	Fog computing ecosystem
	Telemetry: MQTT protocol
	Complex event processing

	Fog & cloud computing: analysis modelling
	Case study application
	Data flow analysis
	Latency analysis

	Fog & cloud computing: performance evaluation
	Testbed description
	CEP pattern
	Influence of network technology on the latency
	Cloud vs. fog: latency evaluation with stress workload
	Cost analysis: use of resources
	Case 1: core level
	Case 2: edge level

	Conclusions and future plans
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

