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Abstract— As well-known in the Model Predictive Control
(MPC) community there is a need for looking computation-
ally affordable robust predictive control algorithms that are
suitable for on-line implementation. A new control approach
mixing Generalized Predictive Control (GPC) and Quantitavie
Feedback Theory (QFT) is presented for controlling a family
of linear uncertain plants. A cascade structure is proposed,
combining an inner loop containing a QFT controller with an
outer loop where a GPC controller provides adequate references
for the inner loop considering input saturations. The idea
consists in translating a QFT design to state space and then
using Linear Matrix Inequalities (LMI) to obtain a state-vector
feedback in such a way that the input reference for the inner
loop is calculated in order to satisfy robust tracking problems
considering input saturations. Therefore, the proposed solution
results in solving a set of constraints being formed by several
LMI and Bilineal Matrix Inequalities (BMI), where the aim is
to regulate to a fixed reference value.

Keywords—-predictive control, robust control, tracking con-
trol, constrained control.

I. INTRODUCTION

MPC is a family of control techniques that optimize a
given criterion by using a model to predict system evolution
and compute a sequence of future control actions. Therefore,
the performance and robustness of this kind of controllers
depend on how well a model is able to capture the dynamics
of a plant. A mathematical model can have different degrees
of complexity, but invariably in a realistic situation a model
cannot exactly emulate a physical process, and the problems
of stability and performance in a system mostly manifest
themselves from this model-plant uncertainty [4]. A large
number of works about robustness have been developed
in the GPC framework. Most results obtained for the un-
constrained case are based on using tuning guidelines to
increase the robustness, taking the T-polynomial as design
element, or using the Youla parametrization to robustify the
system. The Small Gain Theorem (SGT) is the tool used to
study the robust stability. Several tuning guidelines have been
proposed in [11], [3] and [26] to augment the robustness at
expense of poor performance. In [30], [26], [35], [27] some
rules are introduced to the selection of the T-polynomial

This work was supported by the Spanish CICYT and FEDER funds under
grants DPI2004-07444-C04-04 and DPI2004-01804.
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alamo@cartuja.us.es, eduardo@esi.us.es
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in order to reduce the effect of model uncertainties. As
pointed out, other formulations are found based on the Youla
parametrization, firstly used by [21], [22], and later by [2],
[1] and [31]. In most of these works, the computational load
of the algorithms is low, but the uncertainties are represented
as unmodelled dynamics while the SGT is used to study the
stability, obtaining too conservative results. In addition to the
above results, one of the most widely studied robust stability
methods for predictive control is the well-known min-max
approach [24]. Nowadays, this approach has a great interest
in the predictive control community [25], [33], [5], [6], [29]
and it was applied to GPC in [9] and [10]. Its main drawbacks
are that the control performance may be too conservative in
some cases (additive uncertainty), and its computational load,
although during the last years it has been shown that MPC
can be considered as a multiparametric quadratic or linear
programming problem, and that MPC solution turns out to
be a relatively easy-to-implement piecewise affine (PWA)
controller [5], [6], [29].

In this work, a new approach to increase the robustness of
the GPC algorithm is proposed related with the underlying
idea of the feedback linearization techniques [23], [19], and
feedback stabilizing laws [10], where an inner loop stabilizes
and linearizes the system so that a linear GPC algorithm
can be used transparently in order to control the linearized
system in the unconstrained case, or a constrained GPC
when input and output amplitude constraints are active. In
this case, instead of focusing on linearization issues, the
inner loop is included to decrease uncertainty in presence
of parametric uncertainties in the plant to control, so that
the QFT technique [16], [34] is selected to reduce them
and permit the use of a nominal GPC in the outer loop.
Thanks to QFT, the uncertainties are taken into account in
a systematic way to obtain results without conservatism.
Together, the QFT and the GPC algorithms provide a new
approach that is less sensitive to process uncertainties and
has low computational load.

On the other hand, it is well-known that the QFT technique
has several difficulties to manage the constraints, being nec-
essary to reformulate the original problem for this purpose
[28], [17]. So, the GPC-QFT approach [14] is used to take
into account input constraints in the QFT loop thanks to the
GPC abilities to include constraints in a systematic way. The
proposed ideas have also some similarities to the reference
governor [7], [32] approaches, which have been proposed in
several works as suboptimal solutions to predictive control.

The GPC-QFT approach was developed in previous works
using transfer function formulations and obtaining good
computational efficiency and promising simulation results



Fig. 1. Control system scheme for LMI-based approach

[13], [14]. However, the algorithm lacks of a rigorous theo-
retical study to guarantee robust stability. The use of transfer
function formulation with uncertain parameters has a great
acceptance in the industrial environment, but it is difficult to
formalize the results in presence of constraints (for exam-
ple, to ensure constrained robust stability). LMI have been
proposed by several authors as solution to solve constrained
robust predictive control algorithms in polynomial time using
state space representations [20], where constrained robust
stability can explicitly be ensured. Thus, a possible solution
to prove robust stability in the GPC-QFT approach when
constraints are active, could be to translate the problem into
a state space representation, and then using LMI to obtain a
state-vector feedback in such a way that the input reference to
the inner loop is calculated in order to satisfy robust tracking
problems considering input saturation (see Figure 1). This
work describes the different steps necessary to obtain such
solution and how the problem with input saturation in the
inner loop can be solved using LMI-based solutions.

The final solution consists in solving a set of constraints
being formed by several LMI and BMI, where a Branch
and Bound algorithm has been developed in order to solve
the bilinear terms. Notice that the algorithm is implemented
for tracking problems where the aim is to regulate to a
fixed reference value and not to the origin, and also input
constraints are presented in the inner loop of the system.

II. QFT DESIGN

Most control techniques require the use of a plant model
during the design phase in order to tune the controller param-
eters. The mathematical models are an approximation of real
systems and contain imperfections by several reasons: use
of low-order descriptions, unmodelled dynamics, obtaining
linear models for a specific operating point (working with
poor performance outside of this working point), etc.

The robust control technique which considers more exactly
the uncertainties is QFT. It is a methodology to design robust
controllers based on frequency domain, and was developed
by Prof. Isaac Horowitz [15], [16]. This technique allows
designing robust controllers which fulfil some minimum
quantitative specifications considering the presence of uncer-
tainties in the plant model and the existence of perturbations.
With this theory, Horowitz showed that the final aim of
any control design must be to obtain an open-loop transfer
function with the suitable bandwidth in order to sensitize
the plant and reduce the perturbations. The Nichols chart is
used to achieve a desired robust design over the specified
region of plant uncertainty where the aim is to design a

compensator C(s) and a prefilter F(s) (if it is necessary), so
that performance and stability specifications are achieved for
the family of plants Π(s) describing a plant P(s). In the case
of this work, the family Π(s) is represented using parametric
uncertainties

Π(s) =
{

P(s) = κ
∏n

i=1(s+ �i)∏m
j=1(s

2 +2β jω0 j +ω2
0 j)

sN ∏a
r=1(s+ζr)∏b

s=1(s2 +2βsω0s +ω2
0s)

: (1)

κ ∈ [κmin, κmax], �i ∈ [�i,min, �i,max], ζr ∈ [ζr,min, ζr,max],
β j ∈ [β j,min, β j,max], ω0 j ∈ [ω0 j,min, ω0 j,max],
βs ∈ [βs,min, βs,max], ω0s ∈ [ω0s,min, ω0s,max],

n+m < a+b+N
}

As commented in the first section, in order to perform
a robust design in GPC, the T-polynomial or the min-
max approaches are mainly used. However, in both of them
conservatism and computational load (in the second case) are
usual. The approach presented in this paper tries to reduce
the effect of the uncertainties in a systematic way without
conservatism in order to utilize the original formulation
of GPC without including additional terms. The control
structure is shown in Figure 1, where a QFT controller with
two d.o.f. is placed in an inner loop to reduce the effect
of modelling errors presented in a plant with parametric
uncertainties, and a nominal GPC can be used to control
the inner loop as the effects of these modelling errors are
highly reduced [14].

So, the first steps to define the inner loop are the following
[14]:

1) Plant. The plant must be represented as a family of
plants with parametric uncertainties (see equation (1)).

2) Specifications. The desired requirements for the QFT
design are defined. For a design to be used in GPC, it
will be sufficient to establish the tracking and stability
specifications [16]. By tracking specification the effect
of the uncertainties will be reduced. It is only necessary
to impose the minimum and maximum values for the
magnitude of the closed-loop system in all frequencies

Ml ≤
(
| C( jω)P( jω)
1+C( jω)P( jω)

|
)
≤ Mu (2)

With respect to the stability specification, the desired
gain (GM) and phase (PM) margins are established,
translating these margins to magnitude limits (Ms) in
frequency domain according to

GM = 1+
1

Ms
PM = 180− 180

π
arccos(

0.5
M2

s
−1) (3)

Providing the following condition for stability issues

| C( jω)P( jω)
1+C( jω)P( jω)

| ≤ Ms (4)

So, the effect of the uncertainties is reduced and the
robust stability is ensured.



3) QFT controller. Now, the inner controller C(s) and the
prefilter F(s) are designed in the frequency domain
using QFT to reach the above specifications.
Remark 1: The design of the prefilter F(s) from QFT
could be omitted centering the design on ensuring
robust stability and moving the prefilter effect to GPC.
However, the use of the prefilter allows reaching robust
tracking specifications softening the set-point signal
and thus obtaining less aggressive control signals.

4) Discrete model for GPC. The plant used by GPC is
G(s) = F(s) C(s)P(s)

1+C(s)P(s) , so that the discrete nominal
model G0(z) can be obtained with the appropriate
sample time. The sample time will be chosen based
on the bandwidth of the nominal model. Notice that
the nominal model in GPC can be different from the
nominal model used in the QFT design.

III. STATE SPACE REPRESENTATION OF THE
INNER LOOP

Once the uncertainties have been reduced using QFT, the
inner loop is translated to state space representation in order
to applied LMI-based solutions.

A. Plant, prefilter and controller representations

GPC is based on CARIMA model, where the following
plant representation is considered

A(z−1)y(t) = B(z−1)u(t −1)+T (z−1)
ε(t)

Δ
(5)

where Δ = 1− z−1 and the delay is included into the B(z−1)
polynomial.

The polynomials A(z−1) and B(z−1) can be rewritten as

A(z−1) = 1+a1z−1 +a2z−1 + . . .+anz−n (6)

B(z−1) = b0 +b1z−1 +b2z−1 + . . .+bmz−m (7)

T (z−1) = 1+ t1z−1 + t2z−1 + . . .+ trz
−r (8)

where the coefficients a1, . . . ,an, b0, . . . ,bm,
depend multilineally on the parametric vector
φ = [Kz,c1, . . . ,cm, p1, . . . , pn]�. That is, each coefficient
depends affinely on each element of vector φ . In order
to express explicitly the dependence on the vector φ ,
the coefficients can be expressed as b0(φ), . . . ,bm(φ),
a1(φ), . . . ,an(φ). It is assumed that the coefficients of the
T (z−1) polynomial depends multilineally on a bounded
parametric vector φT and ε(t) is bounded for all t > 0, that
is, ‖ε(t)‖∞ < εmax, ∀t.

The plant dynamics can be represented by a state-space
representation, where the proposed state depends on the cur-
rent output, and the past outputs and inputs in the following
way

xp(t) = [y(t) y(t−1) . . . y(t −n+1) u(t −1) . . . u(t −m)]�

(9)
This state selection has the advantage that the state xp(t) is

always accessible, that is, the value of xp(t) is known since
it is always possible to access to the output y(t) and input
u(t) signals. So, the state space representation is given by

x+
p = Ap(φ̃)xp +Bp(φ̃)u+Ep(φ̃) (10)

y = Cpxp

where xp denotes the state vector, u the system input,
and x+

p the next state for the state xp (xp(t + 1)). In this
representation, φ̃ is a parametric vector containing φ , φT and
ε . Furthermore, it can be assumed that φ̃ can only take values
within a convex set (typically an hyperrectangle). Finally,
notice that Ap(φ̃), Bp(φ̃) and Ep(φ̃) depends multilineally
on parametric vector φ̃ .

Assume available state space descriptions for the prefilter
F(z−1) and controller C(z−1). Denoting xF as the state vector
of the filter F(z−1), r the filter input and rF the filter output,
it is supposed that matrixes AF , BF , CF , and DF describe the
filter dynamics as follows

x+
F = AFxF +BFr (11)

rF = CFxF +DFr

In the same way, xC denotes the state vector for the
controller C(z−1) and u the controller output. The matrices
AC, BC, CC and DC describe the controller dynamics as
follows

x+
C = ACxC +BC(rF − y) (12)

u = CCxC +DC(rF − y)

Note that the input to the controller is given by the filter
output rF minus the plant output y, and the plant is subject
to uncertainties and disturbances as discussed above.

B. Inner loop representation. QFT loop.

As commented previously, the goal is to design a robust
predictive controller considering input saturation in the inner
loop. Therefore, the state space representation of the inner
loop must be developed including the saturation.

The input saturation in the inner loop is given by

σp(u) =

⎧⎨
⎩

Umin if u < Umin

u if Umin ≤ u ≤Umax

Umax if u > Umax

(13)

where nonsymmetric saturation can be presented.
Firstly, the saturation is redefined in order to use a sym-

metric representation to facilitate the calculation. Therefore,
the saturation is obtained as

σp(u) = Lsσ(
1
Ls

(u−uc))+uc (14)

where

σ(u) =

{ −1 i f u < −1
u i f −1 ≤ u ≤ 1
1 i f u > 1

(15)

uc =
Umax +Umin

2
, Ls =

Umax −Umin

2



Then, the plant representation (10) is modified to consider
input saturation in the following way

x+
p = Apxp +Bp(Lsσ(

1
Ls

(u−uc))+uc)+Ep (16)

y = Cpxp

where Ap = Ap(φ̃), Bp = Bp(φ̃), and Ep = Ep(φ̃) will be
considered from now on for the sake of simplifications.
The proposed extended vector x including the inner loop
dynamics is defined as

x =
[

xp xC xF
]�

(17)

Then, the full system described by the plant, prefilter,
and controller has r as input (prefilter input), and y as
output (plant output). In this way and after some algebraic
manipulations the closed-loop state representation for the
inner loop is described as

x+ = Ax+Buσ
(Cu

Ls
x+

Dur−uc

Ls

)
+E +Brr (18)

y = Cyx

where

A =

⎡
⎣ Ap 0 0

−BCCp AC BCCF

0 0 AF

⎤
⎦ , Bu =

⎡
⎣ LsBp

0
0

⎤
⎦

E =

⎡
⎣ Ep +Bpuc

0
0

⎤
⎦ ,Br =

⎡
⎣ 0

BCDF

BF

⎤
⎦ ,Cy =

[
1 0 0

]

Cu =
[ −DCCp CC DCCF

]
,Du = DCDF

IV. TRACKING PROBLEM. PRELIMINARIES
IDEAS

Most of the results obtained for constrained MPC using
LMI have been proposed to regulate the system to the origin.
In this way, the results obtained in [20] can be used to
calculate a control law r = Ksx for the plant (18) considering
the system free of disturbances (E(φ̃) = 0) and regulating
to the origin. Notice that x = 0 is an equilibrium for the
system and for all value of φ̃ . Therefore, Ks can be calculated
ensuring robust stability and in such a way that the control
law r = Ksx regulates to the origin for all posible initial
conditions and any value of φ̃ [20], [8]. However, one of
the objectives in the GPC-QFT approach is to make the
output y reach the reference value w. Therefore, the problem
formulation must be oriented to this objective. This chapter
presents some preliminary ideas based on the extensions
proposed in [20] for set-point tracking.

Firstly, it is necessary to notice that due to the dependence
on the parametric vector φ̃ , it is imposible to find static values
for x and r (xe and re) such that the system finds an unique
equilibrium for all values of the parametric vector φ̃ . In this
work in order to address this problem, the following control
law is proposed

r = re +Ks(x− xe) (19)

where xe, re, and Ks will be obtained in such a way that the
performance of the closed-loop system is enhanced and the
system evolution is ensured to be in an invariant ellipsoid
containing the problem initial conditions.

Substituting r in equation (18) by the desired control law
r = re +Ks(x− xe) and after some basic manipulations it is
obtained that

x̄+ = ABcx̄+BBcσ(
Kux̄+du

Ls
)+EBc (20)

y = Cyx̄+Cyxe

where

ABc = (A+BrKs), BBc = Bu, EBc = E +Axe +Brre − xe

Ku = Cu +DuKs, du = Cuxe +Dure −uc

Define ℘(Ps,ρ) = x̄�Psx̄ ≤ ρ as an ellipsoid where x̄0 ∈
℘(Ps,ρ) with x̄0 = x0−xe. In this way, the tracking problem
ensuring constrained robust stability for the system (20)
will be solved using LMI and performing the following
objectives:

1) Firstly, the decision variables xe, re, Ks, Ps, and ρ are
calculated in such a way that the ellipsoid ℘(Ps,ρ)
is invariant containing the system initial conditions x̄0

and using the control law r = re +Ks(x− xe).
2) After that, new constrains will be included in order to

fulfill a certain performance criteria.

These objectives will be addressed in next sections, but
how to take into account the saturation term presented in
(20) will be addressed before.

A. Linear Difference Inclusion of the saturation function

Notice that due to the input saturation, a nonlinear term
appears in the system dynamics, σ(Kux̄+du

Ls
). This nonlinear

term can be approximated using the Lineal Difference In-
clusion (LDI) results obtained in [18] and [12] where it is
shown that, if b ∈ R satisfies |b| ≤ 1 then

σ(a) ∈ Co{a,b}, ∀a ∈ R

being Co the convex hull. In particular, if |Hsx̄+h| ≤ 1 ∀x̄ ∈
℘(Ps,ρ) then

σ(
Kux̄+du

Ls
) ∈ Co{Kux̄+du

Ls
,Hsx̄+h}, ∀(

Kux̄+du

Ls
) ∈ R,

∀x̄ ∈℘(Ps,ρ)

Therefore and as will be shown in next sections, each
objective commented above will be translated to analyze if
it satisfies the extremes of the convex hull

x̄+ = ABcx̄+BBc(
Kux̄+du

Ls
)+EBc (21)

x̄+ = ABcx̄+BBc(Hsx̄+h)+EBc (22)

On the other hand, the inequality |Hsx̄ + h| ≤ 1 must
be considered. This inequality can be translated to a LMI
in order to be included in the final optimization problem.



The inequality can be expressed as two inequalities in the
following way

Hsx̄+h ≤ 1 ⇒ Hsx̄ ≤ 1−h, ∀x̄ ∈℘(Ps,ρ) (23)

Hsx̄+h ≥−1 ⇒ Hsx̄ ≥−1−h, ∀x̄ ∈℘(Ps,ρ) (24)

where these inequalities must be satisfied in the ellipsoid
℘(Ps,ρ). In the next section, this ellipsoid will be forced to
be invariant containing the system initial conditions.

Considering the previous inequalities (23), (24) and using
the S − procedure (Farkas lemma [8]), it is equivalent to
study the existence of λ2 ≥ 0 such that the following in-
equalities are fulfilled:[

1−h−λ2ρ V
V� 4λ2W

]
> 0 (25)

[
1+h−λ2ρ V

V� 4λ2W

]
> 0 (26)

Property 1: Suppose that there exits λ2 ≥ 0 such that LMI
(25) and (26) are fulfilled, then:

σ(
Kux̄+du

Ls
) ∈ Co{Kux̄+du

Ls
,Hsx̄+h}, ∀x̄ ∈℘(Ps,ρ),

where P = W−1 and H = W−1V .

B. Robust Invariant Ellipsoid

As commented previously, one of the objectives is to
calculate the decision variables xe, re, Ks, Ps, and ρ in
such a way that the ellipsoid ℘(Ps,ρ) is invariant including
the system initial conditions and using the control law r =
re + Ks(x− xe). Therefore, in order to ensure the ellipsoid
being invariant the following inequality must be fulfilled

(x̄+)�Ps(x̄+) ≤ ρ, ∀x̄ ∈℘(Ps,ρ) (27)

This problem can be reformulated using S− procedure as
follows:

(x̄+)�Ps(x̄+)−λ1x̄�Psx̄+ρ(λ1 −1) ≤ 0, ∀x̄, λ1 ≥ 0 (28)

Lets consider the following property:
Property 2: Suppose that Ps > 0, then

z�Psz ≥ v�Psv+2v�Ps(z− v) = −v�Psv+2v�Psz

and
z�Psz = max

v
{−v�Psv+2v�Psz} (29)

Therefore, using the previous property and the closed-loop
system dynamics (20), the inequality (28) results

−v�Psv+2v�Ps(ABcx̄+BBcσ(
Kux̄+du

Ls
)+EBc)− (30)

−λ1x̄�Psx̄+ρ(λ1 −1) ≤ 0

where this inequality must be satisfied ∀x̄ and ∀v.
Notice that in order to address this problem and demon-

strate that the system evolution belongs to an invariant
ellipsoid, it is necessary to obtain a LDI of the saturation term
as shown in the previous section (see Property 1). Therefore,
the inequality (31) must be satisfied for the extremes of

the convex hull, Kux̄+du
Ls

and Hsx̄+h, resulting the following
inequalities:

⎡
⎣ ρ(1−λ1) ∗ ∗

0 λ1W ∗
Axexe +Brere +Ee AwW +ByY W

⎤
⎦ > 0 (31)

⎡
⎣ ρ(1−λ1) ∗ ∗

0 λ1W ∗
Anlxexe+Bnlrere+Bhh+Enle AnlWW+BnlYY+BvV W

⎤
⎦>0 (32)

where Axe = A− I + ( 1
Ls

)BuCu, Bre = Br + ( 1
Ls

)BuDu, Ee =
E−( 1

Ls
)Buuc, Aw = A+ 1

Ls
BuCu, By = Br + 1

Ls
BuDu, Y = KsW ,

Anlxe = (A− I), Bnlre = Br, Bh = Bu, Enle = E, AnlW = A,
BnlY = Br, Bv = Bu, Y = KsW , and V = HsW .

Property 3: Suppose that there exists λ1 ≥ 0 and λ2 ≥ 0
such that the LMI (25), (26), (31) and (32) are fulfilled. Then,
℘(Ps,ρ) is an invariant ellipsoid using the control law r =
re +Ks(x− xe) and containing the system initial conditions,
where P = W−1 and K = W−1Y .

Remark 2: Notice that the previous LMI depends multi-
lineally on the parametric vector φ̃ ∈ Φ due to the depen-
dence of Ap = Ap(φ̃), Bp = Bp(φ̃), and Ep = Ep(φ̃). Then,
properties 7.1 and 7.3 must be satisfied for all extreme plants
of the hyperrectangle Φ.

C. Including Performance Inequality

Consider the representation of system (20) for the instant
time k

x̄+
k = ABcx̄k +BBcσ(

Kux̄k +du

Ls
)+EBc (33)

yk = Cyx̄k +Cyxe

and suppose the following equality

w = Cyxe (34)

For an initial condition x0 and the reference w, it is desired
to calculate the system input rk by the law rk = re +Ks(x−xe)
such that the the following functional is minimized

J =
N

∑
k=0

(yk −w)�Q(yk −w)+ x̄�K�
u RuKux̄ (35)

where Q > 0 and Ru > 0 are symmetric matrices positive
semi-defined.

From the equality (34), it results that the functional J can
be rewritten as

J =
N

∑
k=0

x̄�k C�
y QCyx̄k + x̄�K�

u RuKux̄ (36)

Defining LJ(x̄k) = x̄�k C�
y QCyx̄k + x̄�K�

u RuKux̄, it results that

J =
N

∑
k=0

LJ(x̄k) (37)

In the following property a strategy is defined for a correct
selection of Ks, xe and re in order to fulfill the performance
criteria (35).



Property 4: Suppose that

x̄�k+1Psx̄k+1 − x̄�k Psx̄k ≤−LJ(x̄k)+ γ, ∀φ̃ ∈ Φ, ∀x̄

and that an initial condition is equal to x0. Suppose also that
the control law rk = re +Ks(xk−xe) is applied to the system,
then

J ≤ x̄�0 Psx̄0 +Nγ

where x̄0 = x0 − xe.
Proof: The assumption of the property leads to

x̄�k+1Psx̄k+1 − x̄�k Psx̄k ≤−LJ(x̄k)+ γ, ∀φ̃ ∈ Φ, ∀k ≥ 0

Therefore,

x̄�1 Psx̄1 − x̄�0 Psx̄0 ≤ −LJ(x̄0)+ γ
x̄�2 Psx̄2 − x̄�1 Psx̄1 ≤ −LJ(x̄1)+ γ

...

x̄�N Psx̄N − x̄�N−1Psx̄N−1 ≤ −LJ(x̄N−1)+ γ
x̄�N+1Psx̄N+1 − x̄�N Psx̄N ≤ −LJ(x̄N)+ γ

If the previous inequalities are added, it is obtained that

x̄�N+1Psx̄N+1 − x̄�0 Psx̄0 ≤−J +Nγ

J ≤ x̄�0 Psx̄0 +Nγ

So, from the previous property the following optimization
problem can be proposed

min
Ps,Ks,xe,re,γ

x̄�0 Psx̄0 +Nγ (38)

s.a. (x̄+)�Ps(x̄+)− x̄Psx̄ <

< −x̄�C�
y QCyx̄− x̄�K�

u RuKux̄+ γ, ∀φ̃ ∈ Φ, ∀x̄

in order to calculate the control law that minimizes an upper
limit of the functional.

Then, the problem (38) can be reformulated as

min
Ps,Ks ,xe,re ,γ,αs

αs (39)

s.a. x̄�0 Psx̄0+Nγ<αs

(x̄+)�Ps(x̄+)−x̄�Psx̄<−x̄�C�
y QCyx̄−x̄�K�

u RuKux̄+γ

The problem inequalities will be translated to LMI form in
order to address the optimization problem. Firstly, the upper
inequality is considered

x̄�0 Psx̄0 +Nγ < αs (40)

This can be easily expressed as a LMI using the Schur
complement in the form[

αs −Nγ x̄(0)�
x̄(0) W

]
≥ 0 (41)

On the other hand, and remembering the presence of the
saturation term in (33), the another inequality

(x̄+)�Ps(x̄+)− x̄�Psx̄ < −x̄�C�
y QCyx̄− x̄�K�

u RuKux̄+ γ
(42)

must be satisfied for two extreme vertices of the LDI, Ksx̄+du
Ls

and Hsx̄+h, in the same way that for the invariant ellipsoid.
So, using the Property 1 on the previous inequality and
after several manipulations the two following inequalities are
obtained:

⎡
⎢⎢⎢⎢⎣

γ ∗ ∗ ∗ ∗
0 W ∗ ∗ ∗

Axexe +Brere +Ee AwW +ByY W ∗ ∗
0 Q1/2CyW 0 I ∗
0 RWW +RYY 0 0 I

⎤
⎥⎥⎥⎥⎦ > 0

(43)

⎡
⎢⎢⎢⎢⎣

γ ∗ ∗ ∗ ∗
0 W ∗ ∗ ∗

Anlxexe+Bnlrere+Bhh+Enle AnlWW+BnlYY+BvV W ∗ ∗
0 Q1/2CyW 0 I ∗
0 RvV 0 0 I

⎤
⎥⎥⎥⎥⎦>0

(44)
where Axe = A− I + ( 1

Ls
)BuCu, Bre = Br + ( 1

Ls
)BuDu, Ee =

E−( 1
Ls

)Buuc, Aw = A+ 1
Ls

BuCu, By = Br + 1
Ls

BuDu, Y = KsW

and RwW +RyY = R1/2
u CuW +R1/2

u DuKsW .
Finally, the equality (34), which was supposed before,

must be included in the optimization problem. Therefore, the
optimization problem has been reformulated to minimize the
value of αs subject to a set of LMI. The following section
describes the final optimization problem and the different
obtained LMI.

D. Final Optimization Problem

Notice that in section III, it was considered that Ap =
Ap(φ̃), Bp = Bp(φ̃), and Ep = Ep(φ̃) for simplification
reasons. That is, it is necessary to remind that the matrices
of the plant depend multilineally on the parametric vector
φ̃ . In this way, the previous LMI that were formulated for
the nominal case, must be satisfied for all extreme values
of the hyperrectangle Φ. Hence, the final problem can be
formulated to calculate the decision variables xe, re, Ks, Ps,
ρ , Hs, and h, in such a way that using the control law
r = re +Ks(x−xe), ℘(Ps,ρ) is an invariant ellipsoid and the
system fulfills the performance criteria given by J (35). The
final optimization problem is given by

min
Ps ,Ks ,xe,re,γ,αs

αs (45)

s.a. x̄�0 Psx̄0+Nγ<αs

(x̄+)�Ps(x̄+)−x̄�Psx̄<−x̄�C�
y QCyx̄−x̄�K�

u RuKux̄+γ

Then, considering the results obtained in previous section,
a conservative way to solve the optimization problem con-
sists in solving the following constraints

w = Cyxe (46)

[
αs−Nγ x̄(0)�

x̄(0) W

]
>0 (47)



[
ρ x̄(0)�

x̄(0) W

]
>0 (48)

⎡
⎢⎢⎢⎢⎣

γ ∗ ∗ ∗ ∗
0 W ∗ ∗ ∗

Axe(φ̃)xe+Bre(φ̃)re+Ee(φ̃) Aw(φ̃)W+By(φ̃)Y W ∗ ∗
0 Q1/2Cy(φ̃)W 0 I ∗
0 RW (φ̃)W+RYY 0 0 I

⎤
⎥⎥⎥⎥⎦>0

(49)

⎡
⎣ ρ(1−λ1) ∗ ∗

0 λ1W ∗
Axe (φ̃)xe+Bre (φ̃)re+Ee(φ̃) Aw(φ̃)W+BYY W

⎤
⎦>0 (50)

⎡
⎢⎢⎢⎢⎢⎢⎣

γ ∗ ∗ ∗ ∗
0 W ∗ ∗ ∗

Anlxe(φ̃)xe+Bnlre(φ̃)re+

+Bh(φ̃)h+Enle(φ̃)

AnlW (φ̃)W+BnlYY+

+Bv(φ̃)V
W ∗ ∗

0 Q1/2Cy(φ̃)W 0 I ∗
0 RvV 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

>0

(51)

⎡
⎢⎢⎣

ρ(1−λ1) ∗ ∗
0 λ1W ∗

Anlxe(φ̃)xe+Bnlre(φ̃)re+

+Bh(φ̃)h+Enle(φ̃)

AnlW (φ̃)W+BnlYY+

+Bv(φ̃)V
W

⎤
⎥⎥⎦>0 (52)

[
1−h−λ2ρ V

V� 4λ2W

]
≥0 (53)

[
1+h−λ2ρ V

V� 4λ2W

]
≥0 (54)

where it is necessary to incorporate constrains for each ex-
treme value of the hypercube Φ. Also, as observed from the
resulting constraints, some of them are BMI (Bilineal Matrix
Inequalities) containing different bilineal terms ρ(1 − λ1),
λ1W , λ2ρ), and 4λ2W . So, in order to obtain an stable MPC
controller with good performance, it is necessary to choose
λ1 and λ2 in a convenient way.

Property 5: Suppose that there exist λ1 ≥ 0 and λ2 ≥ 0
such that the constraints (46), (47), (48), (49), (50), (51),
(52), (53), and (54) are feasible for every extreme of the
hypercube Φ. Then, there exits a control law r = re +Ks(x−
xe) providing that ℘(Ps,ρ) is an invariant ellipsoid and the
system fulfills the performance criteria given by J (35),
where P = W−1 and K = W−1Y .

A typical Branch & Bound algorithm has been used in
order to find the optimal solution [14].

V. NUMERICAL EXAMPLES

An integrator example is presented in order to test the
proposed optimization problem. The plant was defined by

P(s) =
Kp

s
, Kp ∈ [1,10]

and the prefilter and controller designed from QFT by

C(s) =
0.2267s+13.84

0.0002331s2 +0.05145s+1
F(s) =

1
0.1761s+1

Considering the sample time Tm = 0.01 s, N = 20, Ru = 1,
Q = 1, w = 1, and x0 = [0 0 0 0]�, the Branch and Bound
algorithm found an optimal solution for λ1 = 0.993275 and
λ2 = 0.005826 obtaining

Ks =
[

22.89834 −0.32026 −1.64460 −1.3475
]

Figure 2 shows the results of applying the obtained solution
to the example considering all plants of the family. It can be
seen how the system reaches the proposed reference w = 1
obtaining good performance.
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Fig. 2. Integrator example using LMI-based approach with x0 = [0 0 0 0]�.

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
ll 

o
u

tp
u

ts

Time(s)
0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

A
ll 

re
fe

re
n

ce
s

Time(s)

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
ll 

co
n

tr
o

l s
ig

n
al

s

Time(s)

Fig. 3. Integrator example using LMI-based approach with x0 =
[−0.5 0 0 0]�.

The initial condition of the system is changed in order
to lead the control into saturation. Then, the same design
parameters are used considering x0 = [−0.5 0 0 0]�. In this
case, the obtained solution is given by λ1 = 0.9905853 and
λ2 = 0.0015258 being

Ks =
[

23.41569 −1.38874 −1.23738 −1.44615
]

Figure 3 shows the results where it can be observed how the
system goes into saturation.
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Fig. 4. Search space division by the Branch and Bound algorithm.

On the other hand, the Branch and Bound algorithm has
presented a good behavior in finding optimal values for λ1

and λ2. This fact can be observed from Figure 4 where it is
shown how, for the previous example, the algorithm divides
correctly the search space in order to find optimal values.

VI. CONCLUSIONS

A mixed GPC-QFT approach has been presented where
the aim is to design a predictive control algorithm augment-
ing the robustness in presence of uncertainties. A LMI-based
approach has been proposed in order to obtain a state-vector
feedback in such a way that the input reference to the inner
loop is calculated in order to satisfy robust tracking problems
considering input saturation. The proposed solution consists
in solving a set of constraints being formed by several LMI
and BMI, where a Branch and Bound algorithm has been
developed in order to solve the bilinear terms. Notice that
the algorithm is implemented for tracking problems where
the aim is to regulate to a fixed reference value and not to the
origin, and also input constraints are presented in the inner
loop of the system.
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