£

IM-:'- "

@;-Sf:r Proceedings of the International Multiconference on ISSN 1896-7094
Computer Science and Information Technology pp. 811-820 © 2007 PIPS

Interactive Real-Time Control Labs with
TrueTime and Easy Java Simulations

Gonzalo Farias!, Karl-Erik Arzén2, and Anton Cervin?

! Departamento de Informatica y Automatica, UNED, Spain,
gfarias@bec.uned.es
2 Department of Automatic Control, Lund Institute of Technology, Sweden,
{karlerik, anton}@control.lth.se

Abstract. This paper presents the development of interactive real-time
control labs using TrueTime and Easy Java Simulations. TrueTime is a
freeware Matlab/Simulink based tool to simulate real-time control sys-
tems, and Easy Java Simulations allows rapid creation of interactive sim-
ulations in Java. Authors can use TrueTime to develop the simulation
of a real-time control system, and then move to Easy Java Simulations
to link the system and create the graphical user interface which provides
the visualization and user interaction. The combination of these tools
brings together the best of them.

1 Introduction

Control education has to adapt to the new scenario that the information tech-
nologies provide. In this context interactive virtual labs take advantage of these
new possibilities and improve the understanding of the system behavior [1,2].
The interactivity should allow the user to simultaneously visualize the evolution
of the system, and its response on-the-fly to any change introduced by the user.
This immediate observation of the gradient of change of the system as response
to user interaction is what really helps the student get useful practical insight
into control system fundamentals. TrueTime is a MATLAB/Simulink based tool
[3-5], which facilitates co-simulation of controller task execution in real-time ker-
nels, network transmissions, and continuous plant dynamics. The tasks are pro-
cesses that control continuous-time plants modeled as ordinary Simulink blocks.
However, models created with Simulink suffer from a certain lack of interactivity
in the sense described. A typical instructor would face difficulties if (s)he had to
develop, using only Simulink, virtual labs with graphical and interactive capabil-
ities.This is where Easy Java Simulations (Ejs) comes in handy. Ejs is a software
tool designed to create simulations in Java with high-level graphical capabili-
ties and with an increased degree of interactivity [6]. The paper is organized as
follows. In Section 2 both tools TrueTime and Ejs are introduced. In Section
3 main aspects of the integration between TrueTime and Ejs are commented.
Section 4 shows three examples of this approach. Finally, Section 5 presents the
main conclusions and further work.

811

812 Gonzalo Farias, Karl-Erik Arzén, Anton Cervin

2 TrueTime And Easy Java Simulations

In this Section both TrueTime and Easy java Simulation (Ejs) are described
briefly. TrueTime is a Matlab/Simulink based tool to simulate real-time systems,
and Ejs is an authoring tool to create simulations in Java. Since Ejs has a link
to reuse Simulink models, authors can create interactive real-time control labs
combining both tools.

2.1 A Brief Overview Of TrueTime

TrueTime is a Matlab/Simulink-based simulator for networked and embedded
control systems that has been developed at Lund University since 1999. The sim-
ulator software consists of a Simulink block library (see Fig. 1) and a collection of
MEX files. The kernel block simulates a real-time kernel executing user-defined
tasks and interrupt handlers. The various network blocks allow nodes (kernel
blocks) to communicate over simulated wired or wireless networks. TrueTime
can be downloaded from http://www.control.lth.se/truetime/.

5 Library: truetime

File Edit Miew Foi Help
O/A
AP Snd Rov X3
Interrupts ~ Schedule sng 1 rcy data data snd
Monitors Schedule
- . i tGetilsg ttSendMsg
TrueTime MNetwork

TrueTime Kemel

Snd Rcv
P E ® “Bchedule
TrueTime Batery TrueTime Wireless
Metwaork

TrueTime Block Library 1.5
Copyright (c) 2007
Martin Chlin, Dan Henriksson and Anton Cervin
Department of Automatic Control, Lund University, Sweden
Flease direct guestions and bug reports to: truetime@control.lth.se

Fig. 1. The TrueTime 1.5 block library

To create real-time simulations TrueTime provides mainly two kinds of blocks,
TrueTime Kernel and TrueTime Network. The TrueTime Kernel block simulates
a computer node with a generic real-time kernel, A/D and D/A converters, and
network interfaces. The block is configured via an initialization script. The script
may be parameterized and the programmer may create objects such as tasks,
timers, interrupt handlers, etc., representing the software executing in the com-
puter node. The TrueTime Kernel block supports various pre-emptive scheduling

Interactive Real-Time Control Labs with TrueTime and Ejs 813

algorithms such as fixed-priority scheduling and earliest-deadline-first schedul-
ing. It is also possible to specify a custom scheduling policy. The TrueTime Net-
work block and the TrueTimeWireless Network block simulate the physical layer
and the medium-access layer of various local-area networks. The types of net-
works supported are CSMA /CD (Ethernet), CSMA/AMP (CAN), Round Robin
(Token Bus), FDMA, TDMA (TTP), Switched Ethernet, WLAN (802.11b), and
ZigBee (802.15.4). The blocks only simulate the medium access (the scheduling),
possible collisions or interference, and the point-to-point/ broadcast transmis-
sions.

2.2 A Brief Overview of Easy Java Simulations

Ejs is an authoring tool designed for rapid creation of interactive simulations
in Java. Ejs is different from most other authoring tools in that Ejs is not
designed to make life easier for professional programmers, but has been con-
ceived by science teachers, for science teachers and students. That is, for people
who are more interested in the content of the simulation, and much less in the
technical aspects needed to build the simulation. Ejs can be downloaded from
http://www.um.es/fem /Ejs/.

(=)(5)5%) [l 22 rasy Java simutations - Pendutum xmi
o Description O Model ®View

=]
T ctomentsfor the view (]
=]
srap=rmwx] |l
EEe & Center
»] \\
@ \
| f=] \
8 .
= tenath
-
7;;41 = [
e NNAMET 8 e [Istow i
LEIE®TH S
==]| [
oo ||| You i raceive output messages nere [l oupn
—0— [o—

Fig. 2. Ejs uses the model and the view to create the simulations

Ejs structures a simulation in two main parts, the model and the view (see
Fig. 2). The model can be described by means of Ordinary Differential Equations,
Java code or external applications. The view provides the visualization of the
simulated system, either in a realistic form or using one or several data graphs,
and the user interface elements required for user interaction. These view elements
can be chosen from a set of predefined components to build a tree-like structure.
Both model and view need to be interconnected. Any change in the model state
must be immediately reflected by the view in order to keep a dynamic and on-
the-fly visualization of the system.

814 Gonzalo Farias, Karl-Erik Arzén, Anton Cervin

3 Integration TrueTime and Easy Java Simulations

Ejs has an special link with Matlab/Simulink. In this case Ejs is used to create
the graphical user interface and the TrueTime model to provide the system
behavior.

3.1 Improving the Link

The connection with Simulink models allows users develop in an easy and fast
way interactive simulations. The procedure, described in |7, 8], is quite simple. It
basically consists in connecting Ejs’ variables to signals (input, output or param-
eters) of the blocks in the Simulink model. Ejs also provides a set of predefined
methods that allow the users read and write variables in the Matlab workspace,
for instance to read the variable myMatlab Var from Matlab workspace the next
instruction could be used: myEjsVar—_ external.getDouble("myMatlabVar");

These methods are similar (same signature) to functions defined in the Mat-
lab Engine Library. In this way the integration between TrueTime and Ejs is
very direct, but to improve the performance of the initial results it was needed
to consider two features of TrueTime simulations, i.e., zero crossings evaluations
and scheduler data.

The first aspect is taken into account because the simulation with True-
Time involves a lot of zero-crossing functions, which produces slow, though good
enough, simulations using the TrueTime Simulink blocks. However the simula-
tions in the Ejs-TrueTime combination are even much slower. To solve this ob-
stacle a new way to link Ejs and Simulink was created. Until now the updating
of the Ejs’ variables was done in every step of the Simulink solver, but with
the new link the variables are updating at fixed time intervals, which involves
a faster and "smooth" simulation. In the Fig. 3 more details are presented. To
indicate this link the user just needs to specify the time interval in the External
File option in Ejs (see Fig. 4).

The second feature considered was the schedule output signals generated by
TrueTime.These signals are rather important to understand the performance of
the real-time system, so it is necessary to catch all samples from schedule data.
However, Ejs has a mechanism to avoid waiting a long time for a Matlab variable,
so sometimes a few samples from schedulers were lost and the plot of these signals
was not good. Hence the new method _ external.set WaitForEver(true) was added
in Ejs to wait until the sample is caught.

3.2 Creating the Interactive Simulations

After the improvement phase, the linking between TrueTime models and Ejs
was direct, in this situation just two main activities were done, selecting the
signals and connecting the global variables (see Fig. 4). The procedure to select
the signals from TrueTime model is the same as in any other Simulink model,
and is simple because the link between Ejs variables and Simulink signals is
done by a single mouse click. The procedure to connect global variables and

Interactive Real-Time Control Labs with TrueTime and Ejs 815

Wew Simstion. Fgmat. Toos b

N ‘,,‘, DEEd& L b g ema o BWB

2 TrueTime 1.5 PID-control of a DC servo
Copyright (c) 2007
Martin Ohin, Dan Henriksson and Anton Cenvin
Department of Automatic Control, Lund University, Sweden
0 Please direct questions and bug reports to: truetime@control h se

—slnt
out1 1000,
in2 e s2+s ¥
Compuier DC Sevo

Ejs_stb_servoR

Kp=.96 (Td-05 Ti12 |~ Execution Time - 0,002

® X
(3 L, ezl = sk
= Task PID

<<<<<

Clock timeToWS
T T MATLAB
| 124 | Function
fixedStep
Pause Simulink
O [| o

(©)

Fig. 3. Ejs simulations using a TrueTime model. The graphical user interface is shown
in (a), the Simulink model is presented in (b), in (c) the submodel Ejs_sub_servoR
shows the blocks to speed up the simulation. Note that the fixed time interval is equals
to 0.01

Ejs variables requires more work, but it is also simple. In order to affect any
variable in the TrueTime code functions, it just needed to declare them as global
and use the read and write predefined methods in Ejs to set or get the values.
An example of a modified code function is presented in Listing 1.1. Finally the
method _ external.step() is used in the Evolution section to simulate the Simulink
model.

Listing 1.1. pidcodel function modified to set a link between Ejs and TrueTime.
Commented lines are original lines of the function

function |exectimeAux,data|=pidcodel (seg,data_) % Ejs
% function [exectime,data]=pidcodel (seg,data)
global data exectime; % Ejs
switch seg,
case 1,
r = ttAnalogIn (data.rChan); % Read reference
y — ttAnalogln (data.yChan); % Read process output
data = pidcalc(data, r, y); % Calculate PID action

exectimeAux—exectime; % exectime = 0.002%rand;
case 2,

ttAnalogOut (data.uChan, data.u); % Control Signal

exectimeAux = —1; % exectime = —1;

end

816 Gonzalo Farias, Karl-Erik Arzén, Anton Cervin

B2 Easy Java Simulations - simplepid.xml

O Description ® Model © View

® Variables O Initialization O Evolution © Constraints < Custom
Var Tahle External rVar Table Internal rVar Table \iew ‘

&= External File|=mat\ab(U 01)=_sxamples/ExarmalApps/Simulinktruetime/simple_pidisenoR.mul

MNarne Valug Tvpe Dimension Connected to
ime 0.0 double time
reference 0 double inputl {Computer)
output a.o double outputl (D Zerva)
control a.o double outputl (Computer)
scheduledtate (0.0 double oubput3 [Computer /TrueTime Kernel)
roncde 2 doud e args (Computer/TrueTime Kernel)
K 0.96 doub le

Fig. 4. Setting a link between Ejs and a TrueTime model, note the fixed time interval
updating is used and the Ejs’ variables are connected to inputs or outputs of Simulink’s
blocks

4 Examples

In this section three examples using the TrueTime-Ejs integration will be shown.
The first example is an introduction to the TrueTime simulation environment.
The second one is an extension of the first one. Finally, the third example uses
TrueTime Network block to show a distributed control application.

£ simple Servo Model using TrueTime and Easy Java Simulations

Command_Help
e s 0
2

(b)

Reference and Conral Op

Kp =96 Td=05 | Ti=12| |~ Execution Time =0,002 ||| © st ask ® Simulink Block

O Steep Until Trigger Task

Period of Task = 0,012
!

) 01 02

! =
Trlalm we-b ioe L TE]

(a)

Fig. 5. (a) Graphical User Interface of the first example. Note that it is possible to
change the control parameters on-the-fly using the sliders. (b) The Signals when Exe-
cution Time is incremented from 2[ms| to 9[ms]

4.1 First Example: The Simple PID Servo Controller

The example considers simple PID control of a DC-servo process. The process
is controlled by a controller task implemented in a TrueTime kernel block. Four

Interactive Real-Time Control Labs with TrueTime and Ejs 817

£ Three Servo Controllers in a Computer using TrueTime and Easy Java Simulations (=] Histograms ®
Command _Histogram Code_Help

» L]

© Input Ouput Latency () Response Time

[RefsAndOutputs | Controls |

04
15 . H
10 — 00
05 = 00 05 10 15 20 25
00 10%

X

| 010015 om0 om0 04
Retarnce ana Canol O et 0 I
[Pt [P2 | Po3 ® Rate Monotoni Earest DoadL e st
EIRGTE B b - 00 05 10 15 20 25
Kp= 90 Td~05-| ~Tin12 85 W10 5

I nn nn a8
Execution Time = 0,002 B0 025 0350
Period PID1 = 0,006 - | Period PID2 = 0,005 -Period PID3 - 0,004

))

5 o 005 o : 5 :
O || I || ster 010w Oz0% Osow || 0005 olls g5 o1je o5 o1 a0

WeRt-— werrz-- e 00 05 10 ts 20 18
I I toronce =0 NotFeasie x10?

(a) (b)

[r— %)
PIDCalc |

Code
function data = pidcalc(data, ,)

P = data K" (data betary),
1= datalold;
D= data. Tu(ata.N"data h+data To)"data. Dol data.N"data K"tata.Tui(dataN"data h+data o) (data yolcy);

il

Read Again | Write Changes.

(c)

Fig. 6. Graphical user interface of the second example. Figures: (a) is the main view,
(b) show histograms of input-output latencies or response time for three tasks, (c) is
the dialogCode where the user can read and write the code of PID computation. Note
the schedule data of the red task and its control performance

different modes of implementation of the controller task are provided: Built-in
Task, Simulink Block, Sleep Until and Trigger Task. The graphical user interface
of the example is shown in Fig. 5. The user can modify different parameters like:
reference type, control settings, execution time of the controller and the mode of
the implementation of the tasks. In the Fig. 5b the performance of the controller
is shown when the execution time change from 2[ms]| to 9[ms].

4.2 Second Example: The Three Servo Controllers

This example extends the simple PID control to the case of three PID-tasks
running concurrently on the same CPU controlling three different servo sys-
tems. The effect of the scheduling policy on the global control performance is
demonstrated. The graphical user interface is shown in Fig. 6. Main view has the
same appearance than the previous example. There is also an auxiliary dialog to
show histograms of input-output latencies or response time of three tasks, and
there is another dialog to enable the user to modify the code for calculate the
PID action.

In the main view the user can modify the parameters for three controllers as
in the first example, but also can add some jitter to the execution time. Note
also the scheduler data for the tasks is presented in this window. The policies
are chosen from radio buttons Rate Monotonic and Earliest Deadline First. Note

818 Gonzalo Farias, Karl-Erik Arzén, Anton Cervin

£ Distributed Servo Control using TrueTime and Easy Java Simulations
Command _Graphics Code _Help

10

» vim Lo8

HL

aferaTCRRRHOT | CortrofSinal | Bt Sos

20 I Td=01 B-5 N=,1 [Msp] 3;
o—

15 =l 1 ==t 00 05 10 15 20 25

10 = = 0 1|l0 10 Sensor-Actuator Time [ms] x10%
15 75

05) . Contraller Time =0,5[ms] (b)

00 —_—

0 2 4 65 8 10

Durmmy Task Time [ms]

-0 -9 ||o1 os om

030 035 040 045 050 056 Senso

| | | reference = 0 Measurement Time = 50 [us]| [~ Package Size = 80 [bits]
S e | | e
0 20 40 60 80 100 0 128 256 384 512 Py) BT) N B B) B—
[Network Tyve [Rou obin =
Data Rate [bits/s] 80000 Miimum Frame Size bits] 40 ||| ““7 {0fe e
Loss Probabilty 0 Actuator Time = 5 [ms] Band width = 50 :
3 5 n - b aollll o 2" & nolf [0 20 a0 "0 a0 00 100 100 102 103 1se 10
(a) (c)
£ dialogCode. ®
[ctricode |
coe
function [exectime_, data) = cticode(seg, data) ﬂ
[
%Eis
global dataController mytime Amytime; ‘
data=dataContoler -
read | wite

Fig. 7. Graphical user interface of the third example. Figures: (a) is the main view, (b)
show histograms of sensor-actuator time, (c) is the scheduler data for the four nodes,
(d) is the dialogCode where the user can read and write the code of controller

in Fig. 6b the input-output latencies for three task, since the rate monotonic
policy was selected the task 1 (red) has the lowest priority and the performance
is not good. The dialogCode can be used for instance to modify the algorithm
to compute the PID controller.

4.3 Third Example: Distributed Servo Control

This example simulates distributed control of a DC-servo. The example contains
four computer nodes, each represented by a TrueTime kernel block. A time-
driven sensor node samples the process periodically and sends the samples over
the network to the controller node. The control task in this node calculates the
control signal and sends the result to the actuator node, where it is subsequently
actuated. The simulation also involves an interfering node sending disturbing
traffic over the network, and a disturbing high-priority task executing in the
controller node. The Graphical User Interface is shown in Fig. 7. The main view
allows the user to modify parameters of the network and nodes. There are also
three auxiliary dialogs to show an histogram of end-to-end latency, to modify
the code for the controller node, and to show the scheduler data for the four
tasks.

In the main view the user can modify control parameters and also add a
dummy disturbing high-priority task with different execution times. In the same
view, but in the section Sensor the user can modify the measurement time and
the package size. This last parameter is important to see the effect of the size of

Interactive Real-Time Control Labs with TrueTime and Ejs 819

the package in the control performance. The section BandWidth allows the user
to increase bandwidth used by the interference node. The network parameters
can be modified in the TrueTime Settings section.

5 Conclusions

Interactivity is crucial aspect in virtual labs that are to be used for pedagogical
purposes in the field of control engineering.

In the context of simulation of real-time systems, TrueTime is a freeware
that provides functionalities that simulates control models under resources con-
straints. However from a teaching point of view, and since True-Time is a Mat-
lab/Simulink based tool, to create an interactive simulations using Matlab fea-
tures could demand hard work. That’s why Ejs was used.

Ejs is also a freeware tool designed to create quickly interactive simulations
in Java. Besides, Ejs has a direct link with Matlab/Simulink models, and is
not difficult to get a first version of the interactive lab after a few minutes.
However it was necessary to improve the link in order to get more robust and
faster simulations. That finally involved new features that made possible the
acceleration of the simulation and prevented the loss of scheduler data.

Three examples of TrueTime models were developed. These allow the user
to modify parameters like execution time, jitter, and see how the whole system
is affected.

The creation of this kind of labs is not difficult, and probably in order to
get a final version a couple of days is needed. However most of the time the
designer will not worry about Java programming details, but about finding new
functionalities to add to the lab.

Further work could involve further development of web-based labs or the
creation of a link between Ejs and Scilab version of TrueTime.

References

1. Heck B. S. (editor): Special report: Future directions in control education: IEEE
Control Systems Magazine, Vol. 19, No. 5, (1999) 35-58.

2. Dormido S.: Control learning: Present and future: IFAC Annual Control Reviews,
Vol. 28, (2004), 115-136.

3. Ohlin M., Henriksson D., Cervin A.: TrueTime 1.5 Reference Manual.: Manual,
Department of Automatic Control, Lund University, Sweden, (2007).

4. Cervin A., Henriksson D., Lincoln B., Eker J. and Arzén K.: How does control
timing affect performance? IEEE Control Systems Magazine 23(3), 16-30,(2003).

5. Andersson M., Henriksson D., Cervin A. and Arzén K.: Simulation of wireless
networked control systems, In Proceedings of the 44th IEEE Conference on Decision
and Control and European Control Conference ECC (2005). Seville, Spain.

6. Esquembre F.: Easy Java Simulations: A software tool to create scientific simula-
tions in Java, Comp. Phys. Comm. 156, (2004), 199-204.

7. Sanchez J., Dormido S., Esquembre F.: The learning of control concepts using
interactive tools, Computer Applications in Engineering Education, Vol. 13, No 1,
(2005) 84-98.

820 Gonzalo Farias, Karl-Erik Arzén, Anton Cervin

8. Dormido S., Esquembre F., Farias G., Sanchez J.: Adding interactivity to exist-
ing Simulink models using Easy Java Simulations, In Proceedings of the 44th

IEEE Conference on Decision and Control and European Control Conference ECC
(2005). Seville, Spain.

