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Received: date / Accepted: date

Abstract In this work, we present a new methodol-
ogy to simultaneously segment anatomical structures

in medical images. Additionally, this methodology is
instantiated in a method that is used to simultane-
ously segment the optic disc (OD) and fovea in reti-

nal images. The OD and fovea are important anatom-
ical structures that must be previously identified in
any image based computer aided diagnosis system ded-
icated to diagnosing retinal pathologies that cause vi-

sion problems. Basically, the simultaneous segmenta-
tion method uses an OD-fovea model and an evolu-
tionary algorithm. On the one hand, the model is built

using the intra-structure relational knowledge, associ-
ated with each structure, and the inter-structure rela-
tional knowledge existing between both and other reti-

nal structures. On the other hand, the evolutionary al-
gorithm (differential evolution) allows us to automati-
cally adjust the instance parameters that best approx-
imate the OD-fovea model in a given retinal image. The

method is evaluated in the MESSIDOR public database.
Compared with other recent segmentation methods in
the related literature, competitive segmentation results
are achieved. In particular, a sensitivity and specificity
of 0.9072 and 0.9995 are respectively obtained for the
OD. Considering a success when the distance between
the detected and actual center is less than or equal to

η times the OD radius, the success rates obtained for
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the fovea are 97.3% and 99.0% for η = 1/2 and η = 1,
respectively. The segmentation average time per image

is 29.35 s.

Keywords Evolutionary algorithm · Differential

evolution · Optic disc · Fovea · Segmentation · Retinal
image

1 Introduction

One of the first requirements of any image based com-

puter aided diagnosis system is the previous identifica-
tion of the main anatomical structures associated with
the pathology to be diagnosed. In particular, the first

step for automatic screening of most retinal pathologies
is localization and segmentation of the optic disc (OD)
and fovea/macula (see Fig. 1). For example, OD seg-

mentation is an important step for the detection of glau-
coma. The localization of an anatomical structure can
also facilitate the automatic detection of other anatom-
ical structures. For example, OD localization has been

used traditionally as a reference to detect the fovea.
Additionally, in order to detect signs of several reti-
nal diseases, the localization of the different anatomical
structures can also be used as landmarks. For example,
previous OD localization is necessary for the computa-
tion of some important diagnostic indexes for hyperten-
sive/sclerotic retinopathy based on vasculature [1]. In
the same way, the proximity of a bright or dark lesion
to the fovea can indicate a high risk of maculopathy.
In particular, the risk of macular edema can be eval-
uated by computing the distance of exudates to the
fovea center. Finally, it is important to know the local-
ization of the anatomical structures to avoid confusing

them with other pathological structures. For example,
the OD may be easily confounded with large exudative
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Fig. 1: Main anatomical structures in a retinal image

(left eye).

lesions [2, 3, 4], and the fovea, with retinal hemorrhages

or microaneurysms [5, 6].

The OD segmentation task goal is usually to ob-

tain its contour. On the other way, as the fovea con-

tour is not sharply defined, the fovea segmentation task

goal is usually to obtain its center as accurately as

possible. Many strategies have been used to segment

the OD and fovea. In a first classification, the differ-

ent approaches can be divided into two groups: (i) one

that just uses the intrinsic properties of each anatom-

ical structure (brightness, darkness, shape, etc.) in or-

der to segment it; and (ii) another that, additionally,

also uses geometrical properties between both struc-

tures and other structures such as, for example, the

vascular tree. Henceforth, following the same nomen-

clature as that used in [7], the first type of knowledge

will be denoted as intra-structure relational knowledge

(intra-SRK) and, the second one, as inter-structure re-

lational knowledge (inter-SRK).

Regarding those approaches that just use intra-SRK

to segment the OD, most of them apply a previous step

to search for a reference point that is an approximate

position of the OD center or, alternatively, any other

point that is contained inside the OD. The idea is to

limit OD segmentation to a sub-region of the original

image, big enough to contain the OD and centered at

the reference point. In this context, and taking into ac-

count the most recent works, the segmentation stage

has been tackled with different methods, for example,

mathematical morphology [8, 9, 10], Hough transform

[8, 11], watershed transformation [10], meta-heuristics

[12, 13, 14, 15], active contours [16], topological active

nets [13], fitting of incrementally complex contour mod-

els at increasing resolutions [17], sliding band filters

[18], level set models [19], and super-pixel classification

[20]. Alternatively, the solutions proposed in the liter-

ature to locate fovea using just intra-SRK are scarce

[21]. Most fovea segmentation approaches have used in-

formation from other previously segmented or detected

retinal structures, such as the OD or vascular tree.

Regarding those approaches that use intra- and inter-

SRK to segment one or more structures, most of them

perform the segmentation sequentially. For example,

structure-1 segmentation is based on structure-1 intra-

SRK and previous structure-2 segmentation (use of inter-

SRK). In turn, structure-2 segmentation is based on

structure-2 intra-SRK and previous structure-3 segmen-

tation (use of inter-SRK) and, finally, structure-3 seg-

mentation is done through the single use of structure-3

intra-SRK. In this context, OD segmentation is nor-

mally made using the vascular tree (previously seg-

mented) as a reference [9, 22, 23]. Note that the junc-

tion point of the superior and inferior arcades of the

vascular tree is very close to the OD center. On the

other way, localization of the fovea is obtained using

the position of the OD as a reference [24] and, in other

cases, additionally [25, 26, 27] or alternatively [28], the

vascular tree. The inter-SRK used in these cases makes

use of two properties: (i) the fovea center is located on

average at 5 OD radii from the OD center following

the axis of symmetry separating the superior and infe-

rior arcades; and (ii) the fovea is always included in the

region covered by the two arcades.

There are some works in the literature that simul-

taneously use both types of knowledge and they are

fairly recent. Thus, in [29], each retinal image is pro-

cessed to compute several maps highlighting the dif-

ferent anatomical structures (vessels, fovea and OD).

Then, fovea and OD center candidates are found us-

ing seed detectors in the respective maps. After select-

ing a set of macula/OD pairs, the best candidates are

sent to the OD segmentation method based on local K-

means followed by a polynomial fitting regularization

step. Pair scores are updated and the final best mac-

ula/OD center pair is chosen, including the OD contour.

In [30], the authors developed and trained a convolu-

tional neural network to automatically and simultane-

ously segment the OD, fovea and blood vessels; their

results are competitive but the main inconvenience is

the high computational cost necessary to train and use

the neural network.

All the bibliographic references mentioned above are

just a representative sample of the substantial amount

of approaches reported in the literature. However, seg-
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mentation of anatomical structures in retinal images re-

mains an open problem today and new approaches con-

tinue to appear in this area. Current trends are directed

towards the joint use of intra- and inter-SRK, but con-

sidering two types of segmentation strategies: sequen-

tial and simultaneous. The main drawback of sequential

segmentation is that a failure in segmentation or detec-

tion of the first structure (usually the OD) will likely

result in a segmentation failure of the second structure

(usually the fovea) [26]. In other cases, there are meth-

ods that propose to automatically segment a structure,

assuming that the segmentation of other structure is al-

ready known. However, the success of this kind of meth-

ods will always be conditioned to the degree of success

of the assumption made. That is why in this work we

propose a new methodology aimed at the simultaneous

segmentation of two or more structures, taking advan-

tage of all available relational knowledge (intra- and

inter-SRK) from the structures to be segmented in the

process. In addition, this methodology will be applied

to the simultaneous segmentation of the disc and fovea

in fundus images, considering the following steps: (1)

creation of an OD model based on OD intra-SRK; (2)

creation of a fovea model based on fovea intra-SRK;

(3) creation of an OD-fovea model based on combining

the two intra-SRK models and the existing inter-SRK

between both structures; this model will be used as a

reference in order to search for the best OD-fovea in-

stance that minimizes error with respect to said model

in a given retinal image; and (4) an evolutionary algo-

rithm will be proposed as a new segmentation method

to solve this minimization problem.

The rest of the paper is organized as follows. Sec-

tion 2 describes the retinal image database used in this

work. Section 3 provides an explanation of the proposed

methodology, and Section 4 shows the necessary steps

to instantiate it in a simultaneous segmentation method

of OD and fovea. Section 5 presents the segmentation

results obtained and their discussion. Finally, the con-

clusions are provided in Section 6.

2 Materials

We have used three different databases for the experi-

ments: MESSIDOR [31, 32], ONHSD [16, 33], and DI-

ARETDB1 [34, 35]. The MESSIDOR database contains

1200 retinal images, RGB format, 8 bits/pixel, FOV =

45o and three different sizes: 1440 × 960, 2240 × 1488

and 2304×1536. The OD ground truth for this database

is available on the MESSIDOR web [31]. The annota-

tions of fovea centers from 1136 MESSIDOR images

were created and published by the University of Huelva

[36]. The remaining 64 annotations, up to 1200, were

kindly provided by the authors of [25]. The ONHSD

database contains 99 retinal images, RGB format, 8

bits/pixel, FOV = 45o and size of 640 × 480. Here,

only the optic disc ground truth is provided on the

web of this database [33]. Specifically, each OD con-

tour used as a reference was obtained as a result of

averaging four OD contours traced by four different ex-

perts. Finally, the DIARETDB1 database contains 89

retinal images, RGB format, FOV = 50o and size of

1500× 1152. On the web of this database [34], there is

no ground truth for the fovea and OD. Here, the fovea

annotations were obtained from [27]. All the mentioned

databases contain healthy eyes and eyes with several

kinds of retinopathies. A more detailed description for

each database can be consulted in their respective bib-

liographic references.

3 Methodology

A block diagram, which describes the generic methodol-

ogy proposed for simultaneously segmenting two anatom-

ical structures in medical images, is shown in figure 2.

It should be noted that the methodology consists of

two stages. In the first, the model is learned and, in

the second, the learned model is used to simultane-

ously segment two anatomical structures. On the one

hand, the learning of the model consists of the follow-

ing steps. First, making use of the intra-SRK associated

with structure #1, a model of such a structure is gen-

erated, called the intra-SRK model. The process is re-

peated for structure #2. In both cases, a medical image

database, where the ground truth of each structure is

known, should be used. Next, the two intra-SRK models

are combined into a new model, named the intra&inter-

SRK model, which also incorporates the inter-SRK as-

sociated with both structures. On the other hand, the

stage related to the use of the model involves trans-

forming the problem of simultaneously segmenting the

structure #1 and #2 in a medical image into a new op-

timization problem consisting of finding an anatomical

structure instance that minimizes its error with respect

to the learned intra&inter-SRK model. Owing to the

high number of model parameters and their real defini-

tion domain, a brute force method can not be used to

obtain the optimal instance. Therefore, an evolutionary

algorithm is proposed in order to find an optimal (or

near optimal) solution. In this way, the best individ-

ual of the population obtained at the end of the evolu-

tionary process will represent the searched-for solution.

Note that there is a preprocessing step that is applied in

both stages. It works in the same way in both cases and

its main purpose is to ensure that the learning of the
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model and the segmentation process are independent of

the size of the input image.

The presented methodology could be extended re-

cursively in two directions. For example, on the one

hand, the two structure intra&inter-SRK model could

be combined with the intra-SRK model of a third struc-

ture, including the inter-SRK between the three struc-

tures, in order to create a new intra&inter-SRK model.

On the other hand, three intra-SRK models, together

with the corresponding inter-SRK, could be combined

to create a new intra&inter-SRK model. In both cases,

the new intra&inter-SRK model would allow us to si-

multaneously segment three structures, and so on.

4 OD and fovea simultaneous segmentation

This section describes the steps followed to instanti-

ate the methodology previously described into a new

method to simultaneously segment the OD and fovea in

retinal images. First, an image preprocessing step will

be detailed. Second, the steps to build the OD and fovea

models (intra-SRK models) will be described. Third,

the combination of both intra-SRK models and the in-

jection of existing relational knowledge between OD

and fovea will allow us to define the OD-fovea model

(intra&inter-SRK model). Finally, we will describe how

the OD-fovea model will be used by a segmentation

method based on an evolutionary algorithm that will

allow us to find the best approximation for the OD and

fovea in a given retina image.

4.1 Preprocessing

Here we describe a set of image preprocessing steps that

will be applied both to the generation of the different

models and the evaluation of their respective instances.

They are the following: (a) reduction of input image

size to obtain a common work resolution independent

of the original image resolution; (b) image horizontal

flipping if the type of eye does not match with that

established by default (left); and (c) normalization of

the three RGB channels.

The reduction of size is done using a scale factor

oriented to obtain a fixed image resolution value. This

reduction has several advantages. First, it helps to de-

crease the image processing time and also eliminates

some noisy artifacts that are present in the original im-

age. Second, the use of a fixed resolution will allow us

to implement and configure models and segmentation

methods that are independent of the original size and

resolution of the input image. Thus, assuming that we

will work with a standard resolution K0, defined by the

Table 1: Retinal area for different angle values of the

field-of-view (FOV), according to [37].

FOV Retinal Area (mm2)

30◦ 56.4

40◦ 99.2

45◦ 124.8

50◦ 153.1

user and expressed in pixel/mm, Eq. (1) establishes the

scale factor α needed to transform the input image to

the resolution chosen [7], where Aθmm2 and Apx repre-

sent the input image retinal area, expressed in mm2

and pixels, respectively.

α = K0

[
Aθmm2

Apx2

]1/2

(1)

The value of Aθmm2 depends on the FOV of the input

image, which is defined by the so-called external angle

view of the fundus camera. Table 1 shows different val-

ues of Aθmm2 for FOV typical values. The value of Apx
is easily calculated from the input image, counting the

number of actual retinal pixels. The value chosen for

the work resolution is K0 = 25 px/mm. This value is

not critical, but should be low enough to eliminate some

artifacts present at higher resolutions and high enough

so that the fovea and OD do not lose details of interest.

In order to make the segmentation of each structure

independent of the type of eye, each image is checked:

if it does not match the type of eye established by de-

fault (left), it will be horizontally flipped. The left eye

criterion was chosen arbitrarily. The method used to

automatically determine the type of eye is described in

[7].

Finally, in order to use the maximum range of each

RGB channel, a normalization based on contrast stretch-

ing is applied, that is, a linear transformation fCh :

[minret,maxret] → [0, 255], where minret and maxret
represent the minimum and maximum intensity values,

respectively, of the image channel Ch for a given image.

4.2 Optic disc model

In a retinal image, the optic disc, also called papilla,

has a bright oval shape and contains the output point

of the major blood vessels that supply the retina (see

Fig. 1). It also contains a rounded area located approx-

imately in its center, called optic cup, which represents

the brightest area of the retina in the absence of noise.

More specifically, in relation to the points that define

the OD contour, we can classify them into three cate-

gories: border points, crossing points and noisy points.
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Fig. 2: Block diagram associated with the generic methodology proposed and particularized to two structures:

(a) learning the intra&inter-SRK model, (b) using the learned model to simultaneously segment two anatomical

structures in a medical image.

A border point is characterized by having a neighbor-

hood divided into two zones of high contrast (OD region

and retinal background). A crossing point is defined by

the intersection of a vessel with the OD contour. Fi-

nally, because real images will contain noise, all those

OD contour points that can not be characterized as

border or crossing points will be called noisy points.

For example, an OD contour point that is not a cross-

ing point and whose neighborhood is blurred will be a

noisy point.

Next, we propose making an estimate of the prob-

ability p that an OD contour point, according to its

position, belongs to the set of border points. In order

to estimate Np probabilities, being Np the number of

regularly spaced points that are evaluated in each el-

liptical OD contour, we propose algorithm 1. The al-

gorithm procedure is as follows: first of all, as input

information, a retinal image set is used, Ii, i = 1, ..., N ,

in which the OD contour ground truth, CntODi
, and

fovea center, CFi , of each image are known. Next, an

external for-loop visits the entire set of images and,

for each of them, three different stages are performed:

(i) preprocessing; (ii) extraction of the vessel network;

and (iii) evaluation of the probability that each OD con-

tour point, depending on its position, is a border point

(internal for-loop). Finally, the average probabilities

are calculated for each point of the OD contour.

The preprocessing stage uses the steps described in

Sect. 4.1: (i) input image normalization; (ii) normalized

image transformation into a smaller image with stan-

dard resolution K0; and (iii) if it applies, transformed

image horizontal flipping in order to unify the type of

eye (left). Additionally, the RGB image resulting from

the latter step is used to store the green channel IG that

is transformed into a grayscale image IGS (weighted

sum of the three RGB channels). Next, a rough seg-

mentation of the vessel network V is performed using

IG as input and the vessel detection method described

in [7]. There is experimental evidence in the literature

on the high contrast between vessels and background

for the green channel [38]. The rest of the algorithm

works with IGS .

In order to facilitate the definition of the OD model,

an elliptical shape is assumed for the OD contour. This

approximation is common in the literature [39, 12, 40,

41]. That is why, in line 5 of algorithm 1, the actual

OD contour provided by the expert is approximated by

an ellipse, eOD (see Fig. 3.a). The probability that each
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Algorithm 1 Pseudo-code to obtain the OD model.
Inputs

Ii, input image set (i = 1, ..., N)
K0, work resolution
eye, type of eye (left)
CntODi

, OD contour ground truth for the i-th image
CFi

, fovea center ground truth for the i-th image
δ, distance from OD ellipse (eOD) to auxiliary ellipse (eaux)
Np, Number of sampling points in eOD and eaux

n+ 1, Number of neighborhood points to check in eaux

Output
MOD, OD model

(01) t:=[N, ..., N ]1×Np ;

(02) for i:=1 to N
(03) [IGS , IG,CntOD,CF ]:=Preprocess(Ii,CntODi

,CFi
, eye,K0);

(04) V:=Segment-Vessels(IG);
(05) eOD:=Approx-Ellipse(CntOD);
(06) eaux:=Build-Ellipse(eOD, δ);
(07) [POD, Paux]:=Obtain-Cut-Pts(eOD, eaux,CF );
(08) [ẽOD, ẽaux]:=Sample-Ellipses([eOD, POD], [eaux, Paux], Np);
(09) for j:=1 to Np

(10) if ẽOD(j) ∈ CrossingPoint
(11) p(i, j):=0;
(12) else if ẽOD(j) ∈ BorderPoint
(13) p(i, j):=1;
(14) else
(15) p(i, j):=0;
(16) t(j):=t(j)− 1;
(17) end-if
(18) end-for
(19) end-for

(20) MOD:=[
∑N

i=1(p(i, 1)/t(1),...,
∑N

i=1(p(i, Np)/t(Np))];

OD contour point is a border point depends on its po-

sition. Therefore, it is necessary to establish a reference

point in the elliptical contour that allows us to unequiv-

ocally define the position of the rest of points in the

contour, independently of the degree of inclination of

the ellipse major axis. For this (line 7), the intersection

points of eOD and eaux with the straight line joining

the OD and fovea centers are calculated (see Fig. 3.b).

These points, POD and Paux, will mark the initial point

(reference point) of sampling and storage of Np regu-

larly spaced points in eOD and eaux, respectively (line

8). The purpose of eaux is explained below.

Three conditions are checked in an if-elseif-else struc-

ture (lines 10-17) to store the probability that a point

in eOD is a border point according with its position.

First, using the binary image of the segmented vessels

V, it is checked if the current point belongs to a crossing

point. If so, it is assigned a zero probability of belong-

ing to border point. If not, the intensity of the current

point is compared with those of the n + 1 neighbor-

ing points that are located in an auxiliary ellipse eaux.

This ellipse is built concentrically and externally to eOD
and is separated from it by a distance δ (see Fig. 3.b).

So, if the intensity of the current point is greater than

that of all its n + 1 nearest neighbors located in eaux,

the current point will be assigned a probability equal

to one of belonging to a border point. This heuristic is

based on the property that a border points is character-

ized by having a neighborhood divided into two zones

of high contrast: the papillary zone (brighter) and the

retinal zone (less bright). Therefore, the membership of

the j-th ellipse point, ẽOD(j), to a border point can be

expressed mathematically by Eq. (2).

ẽOD(j) ∈ Pborder ⇐⇒

{
IGS(ẽOD(j)) > IGS(ẽaux(k)),

∀k ∈ {j − n
2 , .., j, .., j + n

2 }
(2)

Finally, if the current point does not fulfill any of the

two conditions previously mentioned, it will be labeled

as a noisy point and its contribution to the calculation

of the final average probability will be ignored. For this,

a zero probability is assigned (line 15) and, in addition,

this point is not counted for the total computation of

points used to calculate the average probability (line

16). Figure 3.c shows an example of OD elliptical con-

tour point labeling.

The MESSIDOR database (N = 1200) was used to

build the probability model. The number of regularly

spaced points was NP = 140, the distance between eOD
and eaux was δ = 2 pixels and the number of neighbor

points (n + 1) in eaux was n = 8. These three values

were experimentally obtained. However, it should be

taken into account that Np, δ and n are related to K0,

in such a way that the former must increase when the

latter does and vice versa.

Figure 4.a shows the probability curve obtained by

applying algorithm 1 (see continuous line). The x-axis

represents the location of the Np sampled points, start-

ing from POD and traveling the ellipse perimeter in a

clockwise direction. The y-axis represents the average

probability of each point being a border point. It can be

observed that the peak values correspond to the nasal

and temporal zone, that is, where there is a lower con-

centration of vessels (see Fig. 1) and, therefore, p→ 1.

On the other hand, the valley values correspond to the

superior and inferior zone (p � 1), that is, the zones

where the majority of the vessels leave the OD and,

subsequently, branch out through the rest of the retina.

Finally, a Fourier series expansion with ten harmonics

is used to smooth and filter the high frequency noise

of the obtained probability curve. The resulting curve

is shown in Fig. 4.b. Henceforth, the probability vector

MOD that orderly stores the different average proba-

bilities that a point of the papillary contour is a border

point will be called the OD model. Figure 4.b also shows

the average probability (1−p) of belonging to a crossing

point (see dashed line).

Once the OD model (MOD) is obtained, the ques-

tion is how to evaluate a model instance, M̂OD, that is,

how to evaluate an ellipse of parameters (ĈOD, â, b̂, ρ̂)
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(a)

P(j)

P(j-n/2)

P(j+n/2) eOD

eaux

CF
POD

Paux

COD

...

(b) (c)

Fig. 3: Example showing different representations of the OD contour: (a) approximating the OD contour by an

ellipse, eOD (the vessel segmentation is also shown); (b) the n+ 1 nearest points belonging to eaux that are used

to evaluate the probability that P (j) is a border point (the cut points, POD and Paux, are also shown, being CF
the fovea center); (c) example of classification of the OD contour points as border points (red), crossing points

(white) or noisy points (green). See color figure online.
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Fig. 4: The OD model (MOD) is represented by the curve that stores the average probability that each OD-

ellipse point is a border point: (a) MOD obtained by algorithm 1 (blue line); (b) MOD obtained as a result of

approximating the original MOD by a Fourier series expansion with 10 harmonics (blue line). In both subfigures,

it is also shown the curve that stores the average probability that each OD-ellipse point is a crossing point (green

line). The vessel zone (red line) is shown in (b). See color figure online.

in a given retinal image I, being ĈOD, â and b̂ the cen-

ter, major and minor semi-axis the ellipse, respectively,

and ρ̂ the angle of the ellipse major axis with the x-

axis. The answer to that question can be formalized by

means of Eq. (3), where ĈF , which is also part of the

model instance, is a fovea center prediction (see Fig.

3.b), and f̂OD is an evaluation function.

M̂OD = f̂OD(I, ĈOD, â, b̂, ρ̂, ĈF ) (3)

We propose algorithm 2 as a function f̂OD, where the

parameters K0, eye, δ, and Np keep the same values

as those used to construct MOD. The rest of the algo-

rithm runs quasi-parallel to algorithm 1, with the only
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difference that the probabilities to consider here cor-

respond to the input ellipse points and are evaluated

as follows. If an ellipse point, j, is a border point (see

Eq. (2)), then it is assigned the j-th probability of the

OD model (MOD). If the j-th point is a noisy point, a

zero value is assigned as a penalty value, thus maximiz-

ing the error value associated with this type of points

(this will be clarified later in Sect. 4.5.2). Finally, if the

j-th point is a crossing point, the probability value is

assigned depending on whether that point belongs or

not to a zone denominated the vessel zone, that is, a

region located in the superior and inferior zone of the

OD contour (see Fig. 4.b). The criterion given by Eq.

(4) establishes when an ellipse point belongs to the ves-

sel zone, where (1−MOD(j)) represents, according to

the OD model, the probability that a point is a crossing

point, and κ ∈ [min(1−MOD(j)),max(1−MOD(j))]

is a fixed threshold, chosen by the user, which estab-

lishes the width of the vessel zone.

(ẽOD(j) ∈ Vessel Zone)⇐⇒ (1−MOD(j)) ≥ κ (4)

Then, if the j-th point is a crossing point and belongs

to the vessel zone, it will be assigned a probability

(1 −MOD(j)) (lines 13-14 of algorithm 2). Otherwise,

it will be considered a noisy point and will be assigned

a zero probability (lines 15-16). The purpose of defin-

ing the vessel zone is to penalize ellipses that follow

the path marked by the borders associated with ves-

sels in the temporal or nasal area of the OD contour.

The higher κ is, the narrower the vessel zone will be

(see Fig. 4.b) and, therefore, the lower the possibility

of selecting ellipses with the mentioned problem. How-

ever, if we assign to κ the maximum value, the width

of the vessel zone will be zero and, therefore, all the

crossing points will be labeled as noisy points. Taking

into account both factors, we experimentally obtained

the best results for κ = 0.4.

Finally, in order to assess how close an OD instance

(ellipse in the image) is to the OD model, it will be

sufficient to evaluate Eq. (5), where ferrOD can be any

error function, chosen by the user, that computes the

error between MOD and M̂OD.

errorOD = ferrOD(MOD, M̂OD) (5)

4.3 Fovea model

In a retinal image, intensity levels in the fovea area

grow following the direction of an imaginary beam lo-

cated in the fovea center (see Fig. 1). Here we propose

Algorithm 2 Pseudo-code to evaluate an OD model

instance.
Inputs

I, input image

(ĈOD, â, b̂, ρ̂), parameters of the ellipse to evaluate (instance)

ĈF , fovea center
κ, width of the vessel zone
(K0, eye, δ, Np, n), same parameters and values as the...

parameters defined in algorithm 1
Output

M̂OD, evaluation of the OD model instance

(01) [IGS , IG]:=Preprocess(I, eye,K0);
(02) V:=Segment-Vessels(IG);

(03) [eOD, eaux]:=Build-Ellipses([ĈOD, â, b̂, ρ̂], δ);

(04) [POD, Paux]:=Obtain-Cut-Pts(eOD, eaux, ĈF );
(05) [ẽOD, ẽaux]:=Sample-Ellipses([eOD, POD], [eaux, Paux], Np);
(06) for j:=1 to Np

(07) if (ẽOD(j) ∈ BorderPoint);

(08) M̂OD(j):=MOD(j);
(09) end-if
(10) if ẽOD(j) /∈ CrossingPoint) & (ẽOD(j) /∈ BorderPoint

(11) M̂OD(j):=0;
(12) end-if
(13) if ẽOD(j) ∈ CrossingPoint) & (ẽOD(j) ∈ VesselZone(κ)

(14) M̂OD(j):=1−MOD(j);
(15) else if ẽOD(j) ∈ CrossingPoint) & (ẽOD(j) /∈ VesselZone(κ)

(16) M̂OD(j):=0;
(17) end-if
(18) end-if
(19) end-for

to built a fovea model characterizing this intensity vari-

ation pattern and using the angles and modules of the

vectors resulting from applying the gradient operator

to the fovea region.

Algorithm 3 shows the steps followed in order to

build a model that approximates the above-mentioned

fovea pattern. A set of retinal images, Ii, i = 1, ..., N , is

used as input information, where the actual fovea cen-

ter CFi
is known for each image. Next, a preprocessing

stage is applied: First, a green channel normalization

IG of the input image is done. There is evidence in the

literature about the green channel offers the greatest

contrast to segment the fovea [25, 42]. Second, the res-

olution of the normalized green channel is transformed

to the work resolution K0. Third, if applicable, a hori-

zontal flipping is used in order to unify the type of eye

(left). Next, a for-loop goes through all the images

and, in each of them, the gradient operator is applied

to the sub-window, WF , of size L × L and centered

on the actual fovea center. Two matrices, Gx(i) and

Gy(i), i = 1, ..., N , are obtained, each one containing

the respective values of the components x and y of the

gradient vectors. Once all the images have been pro-

cessed, the average value of each component, Gx and

Gy, is calculated. Finally, the matrices MFM
and MFA

store, respectively, the result of calculating the modu-

lus and angle of the gradient vectors from Gx and Gy.

Henceforth, the set of matrices MF = {MFM
,MFA

}
will be called the fovea model.
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Algorithm 3 Pseudo-code to obtain the fovea model.
Inputs

Ii, input image set ( i = 1, ..., N)
K0, work resolution
eye, type of eye (left)
CFi

, fovea center ground truth in i-th image
L, size of fovea sub-window (L× L)

Output
MF , fovea model

(01) for i:=1 to N
(02) [IG,CF ]:=Preprocess(Ii,CFi

, eye,K0);
(03) WF :=Extract-Fovea-Subwindow(IG,CF , L);
(04) [Gx(i),Gy(i)]:=Compute-Gradient(WF );
(05) end-for
(06) Gx:=Compute-Means(Gx(1), ...,Gx(N));
(07) Gy:=Compute-Means(Gy(1), ...,Gy(N));
(08) MFM

:=Compute-Modules(Gx,Gy);
(09) MFA

:=Compute-Angles(Gx,Gy);
(10) MF :=[MFM

,MFA
];

In order to build the fovea model, we used a sub-

set of N = 546 MESSIDOR images without macular

pathologies. The sub-window size chosen was L = 27

pixels (at resolution K0). This value is obtained from

considering that the typical fovea radius is between 2/3

and 2/4 of one ROD [43, 25, 44]. The ROD value in pix-

els, at resolution K0, is obtained from Eq. (6), where

ROD,mm = 0.925 mm is the mean radius of the optic

disc in mm [1].

ROD = K0 ·ROD,mm (6)

Figure 5 shows the information of interest related to the

obtained fovea model. In particular, the figure shows

the matrices of angles (Fig. 5.c) and modules (Fig. 5.d)

of the average vector field (Fig. 5.b) that result from

applying the gradient operator to the fovea region en-

compassed by WF (see Fig. 5.a) in the set of images

used.

Once the fovea model (MF ) is obtained, the ques-

tion is how to evaluate a model instance, M̂F . That is,

given a retinal image, I, how can an image sub-window

of size L×L and centered on a point ĈF be evaluated.

The answer to that question can be formalized by Eq.

(7), where f̂F is an evaluation function.

M̂F = f̂F (I, ĈF ) (7)

We propose algorithm 4 as a function f̂F , where the

parameters K0, eye and L keep the same values as those

used to build MF . The rest of the algorithm runs quasi-

parallel to algorithm 3, with the only difference that the

gradient vectors evaluated here correspond to the area

covered by the sub-window centered on the point ĈF

of the input image. Finally, in order to assess how close

an instance (sub-window in the image) is to the fovea

model, it will be sufficient to evaluate Eq. (8), where

ferrF can be any error function, chosen by the user,

that computes the error between MF and M̂F .

errorF = ferrF (MF , M̂F ) (8)
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Fig. 5: Fovea model based on the computation of an-

gles and modules of the average vector field resulting

from applying the gradient operator to the fovea region

of a subset of MESSIDOR healthy images: (a) partial

view of a retina image (green channel) in which the

sub-window WF centered on the actual fovea center

is shown; (b) average gradient vector field; (c) angles

of the average gradient vector field; (d) modules of the

average gradient vector field.

4.4 OD-fovea model

The OD intra-SRK could be used to just segment the

OD and, similarly, the fovea intra-SRK, to just segment

the fovea. However, we should use all the available rela-

tional knowledge, intra- and inter-SRK, to increase the

robustness of the segmentation process of both struc-

tures. In this section, we describe how to merge the

two previously built intra-SRK models, adding the re-

lational knowledge that exists between OD and fovea,

to create an OD-fovea model. Then, as we will see in

Section 4.5, the resulting relational model will be used

by a segmentation method (evolutionary algorithm) to

simultaneously segment the OD and fovea.

First, it is known that the average distance between

the centers of the OD and fovea, D(COD,CF ), is ap-
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Algorithm 4 Pseudo-code to evaluate a fovea model

instance.
Inputs

I, input image
(K0, eye, L), same parameters and values as the parameters...

defined in algorithm 3

ĈF , center of the sub-window ŴF to evaluate as fovea instance
Output

M̂F , evaluation of the fovea model instance

(01) [IG]:=Preprocess(I, eye,K0);

(02) ŴF =Build-Subwindow(IG,ĈF ,L)

(03) [Ĝx, Ĝy]:=Compute-Gradient(ŴF );

(04) M̂FM
:=Compute-Modules(Ĝx, Ĝy);

(05) M̂FA
:=Compute-Angles(Ĝx, Ĝy);

(06) M̂F = [M̂FM
, M̂FA

];

COD

CF

b

a

D(C
OD,C

F)
L

L

Fig. 6: Schematic representation of the OD-fovea model.

proximately five times ROD [45], that is:

D(COD,CF ) ≈ 5ROD (9)

Note that D(COD,CF ) is a constant that can be com-

puted, at work resolution K0 using Eqs. (6) and (9).

Therefore, the distance between the centers of the OD

and fovea for any image can be expressed using Eq. (10),

where ε is a positive or negative distance increment,

which represents a possible deviation fromD(COD,CF )

of the actual distance between the OD and fovea centers

for a given image.

D(COD,CF ) = D(COD,CF ) + ε (10)

Finally, it is also known that, the OD and fovea cen-

ter are not usually horizontally aligned. There exists

a positive or negative angle ϕ between the horizontal

and the segment that joins both centers [46, 26]. Fig-

ure 6 illustrates and summarizes the resulting OD-fovea

model.

Once the OD-fovea model is built, the question is

how to evaluate an instance (ĈOD,â,̂b,ρ̂,ϕ̂,ε̂) of such a

model. First, from the tuple (ĈOD, ϕ̂, ε̂), it is direct to

obtain the components of ĈF using Fig. 6:

ĈFx = ĈODx + (D(COD, CF ) + ε̂) · cos(ϕ̂)

ĈFy = ĈODy + (D(COD, CF ) + ε̂) · sin(ϕ̂)
(11)

Therefore, the evaluation of a relational model instance

can be done by Eq. (12), where f̂OD and f̂F are com-

puted using algorithms 2 and 4, respectively.

M̂OD F = f̂OD F (I, ĈOD, â, b̂, ρ̂, ϕ̂, ε̂)

= [f̂OD(ĈOD, â, b̂, ρ̂, ĈF ), f̂F (ĈF )]
(12)

Finally, in order to evaluate how close the instance is to

the relational model, it will be enough to use Eq. (13),

where ωOD and ωF are two weighting factors chosen by

the user, and ferrOD and ferrF are computed from Eqs.

(5) and (8), respectively.

errorOD F = ferrOD F (MOD F , M̂OD F )

= ωOD · ferrOD(MOD, M̂OD)+

ωF · ferrF (MF , M̂F )

(13)

4.5 Evolutionary algorithm

The advantage of the relational model proposed in the

previous section is that it allows us to transform the

problem of the simultaneous segmentation of the OD

and fovea into a new problem consisting of minimizing

the expression (13), taking into account Eq. (11). This

minimization problem can be formalized by Eq. (14).

min
(COD,a,b,ρ,ϕ,ε)

errorOD F (14)

Since the problem thus defined depends on the opti-

mization of seven real parameters (COD has two com-

ponents), it can not be solved by brute force. Therefore,

an evolutionary algorithm is proposed instead. Through-

out this section, the necessary steps to address an opti-

mization problem with this type of algorithms are de-

scribed: (i) representation of the individuals, (ii) defi-

nition of the fitness function, and (iii) instantiation of

the evolutionary algorithm.

4.5.1 Representation of individuals

Each individual will encode an instance of the OD-fovea

relational model defined in Sect. 4.4. Thus, an indi-

vidual (chromosome) is defined as a fixed length vec-

tor, where each component (gene) is associated with

each of the parameters of the relational model. Table 2

shows the correspondence between each vector compo-

nent and each model parameter, as well as the defini-

tion domain of each parameter. All the values shown in

the definition domains are calculated at work resolution

(K0 = 25). In particular, we assumed that each param-

eter a and b is modeled by a normal distribution with

mean and standard deviation (µa = 24.3, σa = 2.2)

and (µb = 22.2, σb = 2.2), respectively. These means

and standard deviations were calculated from the 1200
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MESSIDOR images. The approximated definition do-

main of each one of these two parameters was built con-

sidering the property that about 99.7% of values drawn

from a normal distribution are within three standard

deviation away from the mean. The domain for param-

eter ρ was defined without restrictions and, for param-

eter ϕ, a criterion similar to that employed in [26] was

used. Finally, in relation to parameter ε, its definition

domain was chosen in such a way that the distance be-

tween the centers of the OD and fovea can vary ±1ROD
with respect to its average distance (see Eq. (9)).

4.5.2 Fitness function

In a first approximation, the fitness function is defined

by Eq. (13). Therefore, it will be necessary to define

two error functions, ferrOD and ferrF . Here, we pro-

pose the functions given by Eqs. (15) and (16), where

maxOD(i) = max{MOD(i), 1−MOD(i)}.

ferrOD =

∑Np

i=1

(
maxOD(i)− M̂OD(i)

)
∑Np

i=1 (maxOD(i))
(15)

ferrF =

∑L
i=1

∑L
j=1 MFM

(i, j)
∣∣∣(MFA

(i, j)− M̂FA
(i, j))

∣∣∣
180

∑L
i=1

∑L
j=1 MFM

(i, j)

(16)

Note that the value returned by both functions is nor-

malized in [0, 1]. In particular, for the OD, the worst

case (ferrOD = 1) corresponds to an ellipse in which

none of its points is a border point, that is, ∀iM̂OD(i) =

0, and the best case (ferrOD = 0) is obtained when

all the ellipse points are correctly classified, that is,

∀i M̂OD(i) = maxOD(i). Whilst, for the macula, the

worst case (ferrF = 1) is reached when the absolute er-

ror evaluated in each sum of the numerator always re-

turns the maximum error of angle (180◦), and the best

case (ferrF = 0), when the model and instance angle

matrices match, that is, ∀ij M̂FA
(i, j) = MFA

(i, j).

However, we can further refine the definition of our

fitness function. In particular, the intra-SRK can also

be used to establish constraints on the model param-

eters or other derived parameters. Next, we analyze

the statistical knowledge associated with ρ, one of the

model parameters, and two derived parameters: ellipse

area (A) and difference between ellipse semi-axes (λ).

The choice of these three parameters is based on the

following domain knowledge: (a) the major axis of the

OD standard gold ellipses tends to be vertically oriented

(ρ ≈ 90◦); (b) given that the contour of the optic cup

can present a pattern similar to the OD contour, an area

constraint is used to discard possible false positives; (c)

the ellipse major semi-axis is always larger than or equal

to the minor semi-axis and, in addition, the eccentric-

ity of the OD standard gold ellipses tends to be small.

Table 3 shows the estimated probability density func-

tion and definition domain (Xo, Xf ) of each parameter,

considering the 1200 MESSIDOR images at work reso-

lution (K0 = 25). The interval extremes (Xo, Xf ) were

chosen assuming that 95% of the values extracted from

each of the estimated distributions are within the men-

tioned interval.

The idea is to use each interval (Xo, Xf ) to define

constraints that allow us to penalize genetic ellipses

whose parameters ρ, A and β move away from the range

of the mentioned intervals. The most immediate way to

use these constraints in the optimization problem is to

incorporate them as penalties within the function that

evaluates the error of the OD model, that is, in ferrOD.

To do this, three penalty functions are defined, P (ρ),

P (A), and P (λ), following the scheme of the generic

function given by Eq. (17), where (X0, Xf ) is given by

Table 3 for each value of X ∈ {ρ,A, λ}.

P (X) =

{
0 if Xε (Xo, Xf )

10 · min{|X−Xo|,|X−Xf |}
(Xf−Xo) other case

(17)

As we are addressing a minimization problem, the prob-

lem of minimizing ferrOD will be transformed into the

problem of minimizing the function given by Eq. (18),

where the constraints are taken into account.

f
(c)
errOD = ferrOD + P (ρ) + P (A) + P (λ) (18)

Finally, the fitness function to be minimized by the evo-

lutionary algorithm is given by Eq. (19), where wOD
and wF contributed with the same value (equal to 0.5),

given that both the OD and fovea search have the same

importance in the segmentation process.

F = ωOD · f (c)
errOD + ωF · ferrF (19)

4.5.3 Differential evolution

In this work, we propose differential evolution (DE) [47]

as a candidate to play the role of evolutionary algorithm

(EA). Several reasons motivate this decision. First of

all, DE is simple and straightforward to implement and

yields promising results. Second, DE manages in a nat-

ural way individuals expressed as fixed dimension real

vectors. Third, the DE control parameter space com-

plexity is low compared with some of the most compet-

itive real parameter optimizers [48]. Finally, DE has al-

ready been successfully used for segmentation of images
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Table 2: Information associated with each gene encoded in a chromosome, including its description and domain of

definition. See Section (4.5.1) for more information.

#Gen Gen Description Domain of definition

1 CODx Coordinate x of COD [min(x),max(x)] / ∃y p(x, y) ∈ retina

2 CODy Coordinate y of COD [min(y),max(y)] / ∃x p(x, y) ∈ retina

3 a Major semi-axis of ellipse [µa − 3σa, µa + 3σa] = [17.7, 30.9]

4 b Minor semi-axis of ellipse [µb − 3σb, µb + 3σb] = [15.6, 28.8]

5 ρ Angle(a, axisx) [0, 180]◦

6 ϕ Angle((COD,CF ), axisx) [−25, 25]◦

7 ε Deviation from D(COD, CF ) [−ROD, ROD] = [−23.1, 23.1]

Table 3: Information associated with the parameters ρ, A and λ, including their estimated probability density

functions and definition domains. See Section (4.5.2) for more information.

Variable (X) Probability density function (Xo, Xf )

A = πab Normal (µ = 1712.3 px2, σ = 317.1 px2) (2346.5, 1078.1)

ρ = angle(a, axisx) Normal (µ = 90.6◦, σ = 22.8◦) (45.0, 136.2)

λ = (a− b) Gamma (A = 2.6817, B = 0.7979) (0.39, 5.36)

in different medical domains [49, 50, 51, 52]. However,

taking into account the type of representation used and

the characteristics of the problem to be solved, other

EA candidates and their variants could be used, such as

genetic algorithms [53], evolution strategies [54] or co-

variance matrix adaptation-evolution strategies (CMA-

ES) [55], or even other metaheuristics, such as particle

swarm optimization [56] or biogeography-based opti-

mization [57, 58], among others. In any case, it is im-

portant to note that the methodology proposed here to

simultaneously segment the OD and fovea is indepen-

dent of the type of metaheuristic used to tune the seven

parameters of the OD-fovea model.

Basically, DE follows the typical stages of an EA

(initialization, parent selection, mutation, recombina-

tion and survival selection), but it is characterized by

a particular implementation of the mutation. There are

different DE variants [59]. Here, we selected that de-

noted by “DE/rand/1/bin”, that is, the standard vari-

ant (see algorithm 5, where a minimization problem is

assumed). Thus, for each individual of the population,

xi, mutation produces a new individual given by Eq.

(20), where xp, xq, and xr are three individuals ran-

domly selected from the population, without replace-

ment and different from xi; and F ∈ [0, 2] is a constant

chosen by the user and called the differential weight.

y = xp + F · (xq − xr) (20)

Recombination is done using the different components

from xi and y with a probability given by CR, where

CR ∈ [0, 1] is called the crossover probability. If the

fitness of the resultant child y is better than xi, then

the first replace the latter in the population. The no-

tation “DE/x/y/z” is interpreted as follows: the label

x refers to how the individual playing the role of xp

Algorithm 5 Pseudo-code of the DE algorithm

(“DE/rand/1/bin” variant).
Inputs:
f : Rn → R, fitness function to minimize
CR ∈ [0, 1], crossover probability
F ∈ [0, 2], differential weight
PS, population size

Output:
x∗, the best individual from final population (P)

(01) Initialize-randomly P = {x1, ...,xPS}
(02) until (termination-criterion)
(03) for each xi ∈ P
(04) Pick-Randomly {p, q, r} ∈ {1, .., PS}...

where i 6= p, i 6= q, i 6= r, p 6= q, p 6= r, q 6= r
(05) Pick-Randomly R ∈ {1, . . . , n}
(06) for each j ∈ {1, . . . , n}
(07) rj ≡ U(0, 1)
(08) if rj < CR or j = R
(09) yj = xpj + F · (xqj − xrj)
(10) else
(11) yj = xij

(12) end-if
(13) end-for
(14) if f(y) < f(xi) then xi = y end-if
(15) end-for
(16) end-until

in the mutation is selected (in our case, randomly, i.e.,

“x = rand”); the label y denotes how many couples of

individuals are involved in the computation of the sub-

traction shown in Eq. (20) (in our case, “y = 1”); and

the label z refers to the type of recombination used (in

our case, binomial, i.e., “z = bin”, such as is shown in

lines 6-13 of algorithm 5).

Table 4 shows the value used for each of the dif-

ferent parameters of the DE-based algorithm. These

values were obtained experimentally. Initially, we start

with the value recommended for this type of algorithms

[47]. Thus, with respect to the population size, PS, we

start with a value equal to ten times the number of

chromosome genes. However, decreasing the value for

population size to 25 and establishing the maximum
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Table 4: Values of the parameters used in the DE algo-

rithm.

Parameter Value

DE variant “DE/rand/1/bin”

Population size (PS) 25

Maximum number of generations (Gmax) 800

Crossover probability (CR) 0.7

Differential weight (F ) 0.8

Fitness function See Eq. (19)

[ωOD,ωF ] (see Eq. (19)) [0.5, 0.5]

number of generations to 800, the quality of the re-

sults obtained did not become worse. Finally, different

values were tested for the crossover rate, CR, and the

differential weight, F . The pair of values with which we

obtained the best results was (CR,F )=(0.7, 0.8).

5 Experimental results and discussion

In order to evaluate the retinal structure segmenta-

tion results, there are different indexes in the litera-

ture. For example, in OD segmentation, Jaccard’s (JC)

and Dice’s (D) coefficients are frequently used (see Eqs.

(21) and (22), respectively), which describe the degree

of overlap between the gold standard area, AGS , and

the segmented area, AS , being equal to 1 when the seg-

mentation is perfect. Other indexes like accuracy, true

positive fraction and false positive fraction are also typ-

ically used. In particular, accuracy (Ac) is determined

by dividing the sum of pixels correctly classified as OD

and non-OD by the total number of pixels in the im-

age. The true positive fraction (TPF) is obtained by

dividing the pixels correctly classified as OD by the

total number of OD pixels in the gold standard. The

false positive fraction (FPF) is calculated by dividing

the pixels misclassified as OD by the total number of

non-OD pixels in the gold standard.

JC =
|AGS ∩AS |
|AGS ∪AS |

(21)

D =
2 |AGS ∩AS |
|AGS |+ |AS |

(22)

As regards fovea segmentation, the so-called ( 1
8 )ROD,

( 1
4 )ROD, ( 1

2 )ROD and 1ROD criteria are typically used.

These criteria are based on evaluating the percentage

of cases where the distance between the estimated fovea

center and the actual fovea center is less than ( 1
8 ), ( 1

4 ),

( 1
2 ) and 1 ROD, respectively. In our case, these criteria

were calculated at work resolution K0, where ROD is

calculated according to Eq. (6).

Finally, sensitivity (Sens) and specificity (Spec) have

also been used in order to evaluate both fovea and OD

segmentation. The former is defined as the TPF, and

the latter, as the true negative fraction (TNF) which

is equivalent to 1-FPF. Here it is necessary to mention

that, in order to calculate the values of sensitivity and

specificity in fovea segmentation, the circles centered

in the actual and estimated fovea center were consid-

ered as the gold standard and estimated fovea region,

respectively. The diameter of both circles is the same

and equal to the sub-window size, L, chosen to build

the fovea model (see Section 4.3).

In order to make a fair comparison, we should com-

pare our method with other recent methods existing in

the literature that simultaneously segment the OD and

fovea using both types of knowledge (intra- and inter-

SRK). Table 5 shows the results of this comparison. On

the one hand, regarding the results obtained in [29],

their OD results are slightly better than ours, but our

fovea results improve theirs. On the other hand, our re-

sults are also competitive compared to those obtained

in [30], where a convolutional neural network (CNN)

was used (deep learning). It should be noted that the

Tan et al ’s method was evaluated in just 20 images. On

the other way, we evaluated our method in a database

of 1200 images. As far as the authors know, the work

presented in [30] is the only study in which CNNs are

applied to the joint segmentation of the OD and fovea

in fundus images.

It would also be interesting to compare our simul-

taneous segmentation method with other methods that

also use both types of knowledge but where the segmen-

tation process is done sequentially. Here, there could be

two possibilities: (i) the OD is previously localized and

is used as a reference to segment the fovea; and (ii) the

fovea is previously localized and is used as a reference to

segment the OD. However, as far as the authors know,

there are no works in the literature that address the

second case. Regarding the first case, Table 6 shows

the results obtained for comparison. We can say that

our results are competitive when the distance threshold

considered varies from 2ROD to 1/4ROD, obtaining suc-

cess rates above 94% with our method. Alternatively,

if the threshold 1/8ROD is used, the winning method

is [25], although the best success rate falls to values of

80% when this very restrictive criterion is used.

We also compare our method with segmentation

methods that only use intra-SRK. Here, there are also

two possibilities: (i) OD segmentation methods; and

(ii) fovea segmentation methods. When we compare

our method with these latter two, it is important to

note that our method segments two structures (fovea

and OD), whereas the other two methods just segment
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Table 5: Comparison of our method with other methods that use both types of knowledge (intra- and inter-SRK)

to simultaneously segment the OD and fovea. The best results are highlighted in bold.

Method
Database

(#Imag.)

Fovea OD

Sens Spec ≤ 1
2ROD ≤ 1ROD Sens Spec JC

[Girard et al. 29]
MESSIDOR

(1200)
- - 94.0% 98.0% - - 0.90

[Tan et al. 30]
DRIVE

(40)
0.8853 0.9914 - - 0.8790 0.9927 0.62

This Work
MESSIDOR

(1200)
0.8841 0.9996 97.3% 99.0% 0.9072 0.9995 0.87

Table 6: Success rate comparison (in %) of our method with other competitive methods that use both types of

knowledge but where the segmentation process is done sequentially to obtain the fovea (the OD is previously

localized and is used as a reference). All the methods were evaluated using the MESSIDOR database. The best

results are highlighted in bold.

Method Database #images 1
8ROD

1
4ROD

1
2ROD 1ROD 2ROD

[Yu et al. 24] MESSIDOR 1200 - - 95.0 - -

[Gegundez et al. 25] MESSIDOR 1200 80.4 93.9 96.1 96.9 97.8

[Aquino 27] MESSIDOR 1136 - 83.0 91.3 98.2 99.6

[Kao et al. 26] MESSIDOR 1200 - - 97.8 98.2 -

This work MESSIDOR 1200 74.7 94.1 97.3 99.0 99.6

one of them. Table 7 shows the results of comparing

our method with OD segmentation methods. As can

be seen, our results are only slightly surpassed by [18].

However, a closer analysis of these results reveals that

our TPF and FPF values are the lowest. This indicates

that our method is the most conservative, that is, it

identifies a lower number of actual OD pixels (true pos-

itives), but it has the advantage of detecting a smaller

number of false positives. This behavior could be moti-

vated by the elliptical shape imposed on our OD model.

In contrast, in [18], any irregular geometrical form can

be used to approximate the OD contour and, there-

fore, their OD model is more flexible than ours. At the

other extreme, the search used in [10] is even more rigid

than our method because the OD contour is approxi-

mated by a circumference, and their results are slightly

worse than ours. These results reveal that our method

could improve OD segmentation if the OD contour was

modeled by an irregular geometrical form instead of an

ellipse. On the other hand, there are not many methods

in the literature that address fovea segmentation using

only intra-SRK. The main reason is that the fovea is

more difficult to localize than the OD and, therefore,

most approaches that segment the fovea use the OD

previously localized as a reference. In any case, Table 8

shows the results obtained from comparing one of these

methods with our approach. Note that our results con-

tinue to be competitive.

In order to provide evidence on the robustness of our

method, two more public databases were used: ONHSD

and DIARETDB1. Both databases have also been used

in the related literature for segmentation and detection

method benchmarking. However, as far as the authors

know, there are no studies in which simultaneous seg-

mentation of OD and fovea is performed on the men-

tioned databases. Therefore, our method is compared

with methods that just segment one of the two struc-

tures. In particular, Tables 9 and 10 show, respectively,

the segmentation results obtained for the OD (ONHSD)

and fovea (DIARETDB1). It is very important to note

that our method was evaluated in the ONHSD and DI-

ARETBD1 databases using the same models and con-

figuration of parameters as those used in the MESSI-
DOR database. Two considerations can be made in re-

lation to the results obtained by our method, both for

the OD and fovea. On the one hand, they are consistent

with the results obtained in the MESSIDOR database.

On the other hand, our results are also competitive in

relation to the non-simultaneous segmentation methods

considered in the comparison. Therefore, from a global

point of view, these results support and reinforce the

hypothesis that our method is robust and independent

of the database considered.

Also interesting is the approach presented in [62],

where a deep learning framework is used for OD seg-

mentation in fundus images. Although the Wang et al ’s

method does not segment the fovea, it shows how the si-

multaneous use of intra- and inter-SRK produces better

segmentation results than when just intra-SRK is used.

This result is in line with the methodology presented

in our work. In particular, in [62], a Jaccard’s index

equal to 0.874 is obtained when only OD-intra-SRK is
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Table 7: Comparison of our method with different competitive methods that address the OD segmentation problem

using only intra-SRK. All the methods were evaluated using the 1200 MESSIDOR images. The standard deviation

(SD) is also provided. The best results are highlighted in bold.

Method JC±SD D±SD Ac±SD TPF±SD FPF±SD

[Morales et al. 10] 0.8228± 0.1384 0.8950± 0.1056 0.9949± 0.0050 0.9300± 0.1239 0.0035± 0.0041

[Dashtbozorg et al. 18] 0.8859± 0.0818 0.9373± 0.0509 0.9987± 0.0012 0.9481 ± 0.0459 0.0008± 0.0010

[Rehman et al. 60] 0.747 0.851 0.988 0.948 0.012

This work 0.8730± 0.1254 0.9252± 0.1068 0.9985± 0.0020 0.9072± 0.1224 0.0005± 0.0008

Table 8: Comparison of our method with a competitive method that addresses the fovea segmentation problem

using only intra-SRK. The best results are highlighted in bold.

Method Database #images 1
4ROD

1
2ROD 1ROD

[GeethaRamani and Balasubramanian 61] MESSIDOR 1200 85.0 94.1 99.3

This work MESSIDOR 1200 94.1 97.3 99.0

used to train the model, but the mentioned index in-

creases to 0.891 when vessel-intra-SRK, OD-intra-SRK

and vessel-OD-inter-SRK are used simultaneously.

From the point of view of the output produced by

the simultaneous segmentation method proposed in this

work, Fig. 7 shows segmentation examples obtained for

some MESSIDOR images. The method fails mainly in

those images where there are severe signs of pathologies

related to the macula (high number of micro-aneurysms

or hemorrhages, or large hard exudates in the macular

area) or the OD (advanced peripapillary atrophies or

posterior staphylomas), such as is shown in Figs. 7.(e)-

(f), respectively.

It should also be noted that the evolutionary search

used in our method is separable from the proposed re-

lational models. On the one hand, this means that the

better each of the intra- and inter-structure models used
is, the better the results should be in the evolutionary

search for the OD and fovea. On the other hand, other

DE variants or evolutionary algorithms could use the

intra- and inter-structure models proposed here in or-

der to try to improve our segmentation results.

Finally, the computation cost of the segmentation

method is analyzed. The method was implemented with

MATLAB language, in a laptop with CPU Intel Core

i7-2640M, 2.8GHz and 8GB RAM. Table 11 shows a

comparison of our approach with other methods in the

literature that perform simultaneous segmentation of

the OD and fovea. As these algorithms were imple-

mented in a different computer system, the run-time

should be interpreted in function of the hardware and

programming language used. Although the results us-

ing convolutional neural networks (deep learning) are

promising, the main drawbacks associated with these

methods are the enormous amount of samples for train-

ing the model and the high computational cost to train

and use the model. In particular, in [30], 4 538 439 pix-

els were used to train and test the model, each epoch of

training took 9.83 hours (40 epochs of training and test-

ing were run to create the neural network model), and

a complete segmentation on a single image took 33.92

min (if the algorithm is run on GPUs, the segmentation

can be completed in just under 10 min).

6 Conclusions

In this paper, we present a methodology for the simulta-

neous segmentation of anatomical structures in medical

images. In particular, the methodology is instantiated

in a method that is used to simultaneously segment the

OD and fovea in retinal images. The idea is to build

an OD-fovea model and use an evolutionary algorithm

(differential evolution) to find the best model instance

in a given retinal image that minimizes the error with

respect to the model. The OD-fovea model integrates

the intra-SRK of each structure with the inter-SRK of

both and other structures.

The segmentation results obtained with our method

are competitive compared with other recent methods

in the literature, including methods that address seg-

mentation individually, sequentially or simultaneously.

Therefore, the proposed method shows that the joint

use of relational models and evolutionary algorithms

can be a useful tool for the recognition of patterns in

medical images. A limitation of our method is given by

the computational cost associated with the population-

based solution search performed by the evolutionary

algorithm. However, it is not difficult to parallelize an

evolutionary algorithm if a computer cluster is avail-

able. In this case, the computational cost could be re-

duced considerably.

As future work, two main lines are open. On the

one hand, other models could be proposed as intra- or

intra&inter-SRK models and other evolutionary algo-
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: Examples of segmentation obtained with our method for several MESSIDOR images: (a-b) both structures

are segmented with a very good approximation; (c-d) both structures are segmented with a good approximation;

(e) just the OD is correctly segmented; (f) just the fovea is correctly segmented. The solid line represents the gold

standard and, the dashed line, the segmentation obtained. See color figure online.
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Table 9: Comparison of our method with other competitive methods that address the OD segmentation problem

in the ONHSD database. The standard deviation (SD) is also provided. The best results are highlighted in bold.

Method JC±SD D±SD Ac±SD TPF±SD FPF±SD

[Girard et al. 29] 1 0.8400 - - - -

[Morales et al. 10] 0.8045± 0.1175 0.8867± 0.0776 0.9941± 0.0042 0.9310± 0.1046 0.0043± 0.0042

[Dashtbozorg et al. 18] 0.8341± 0.0912 0.9173± 0.0634 0.9968± 0.0027 0.9435± 0.0791 0.0012± 0.0027

[Rehman et al. 60] 0.824 0.897 0.993 0.924 0.005

This work 0.8417± 0.1132 0.9083± 0.0971 0.9979± 0.0022 0.8756± 0.1153 0.0005± 0.0010
1

This work uses OD and fovea simultaneous segmentation but it does not provides results for the fovea in the ONHSD database.

Table 10: Success rate comparison (in %) of our method with other competitive methods that address the fovea

segmentation problem in the DIARETDB1 database. The best results are highlighted in bold.

Method Database #images 1
4ROD

1
2ROD 1ROD 2ROD

[Welfer et al. 5] DIATETDB1 89 - - 92.1 -

[Qureshi et al. 63] DIATETDB1 89 - - 98.7 -

[Medhi and Dandapat 6] DIATETDB1 89 - - 95.5 -

[Kao et al 26] DIATETDB1 89 - - 92.1 94.4

[Aquino 27] DIATETDB1 89 44.9 70.8 94.4 100

[GeethaRamani and Balasubramanian 61] DIATETDB1 89 51.7 88.8 97.7 100

This work DIARETDB1 89 79.4 93.1 100 100

Table 11: Comparison of OD and fovea simultaneous segmentation methods, considering the hardware, program-

ming language and computation time used.

Method Hardware Language Time (s)

[Girard et al. 29] Multi-core processing C++ 6.4

[Tan et al. 30] Two Intel Xeon, 2.66GHz, 24GB RAM MATLAB 2035

This work Intel Core i7-2640M, 2.8GHz, 8GB RAM MATLAB 29.35± 0.91

rithms (or metaheuristic in general) could be used as

an optimization method to tune the relational model

parameters. On the other hand, the proposed methodol-

ogy could be used for segmentation of anatomical struc-

tures in other types of medical images.
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