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Abstract 

Segmentation of moving objects is an essential component of any vision 

system. However, its accomplishment is hard due to some challenges such as 

the occlusion treatment or the detection of objects with deformable appearance. 

In this paper an artificial neuronal network approach for moving object 

segmentation, called LIAC, which uses accumulative computation and recurrent 

lateral interaction is revisited. Although the results reported for this approach so 

far may be considered relevant, the problems faced each time (environment, 

objects of interest, etc.) make that the system outcome varies. Hence, our aim 

is to improve segmentation provided by LIAC in a double sense: by removing 

the detected objects not matching some size or compactness constraints, and 

by learning suitable parameters that improve the segmentation behavior 

through a genetic algorithm. 
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1 Introduction 

 

Segmentation is a common low-level component in every visual surveillance 

system [20-21] which tries to establish the image regions in which the belonging 

pixels share certain characteristics (generally related with motion [10][22]). As a 

result, the foreground and the background are separated in each frame, i.e. the 

objects of interest are highlighted over the background. 

 The main problems that the segmentation suffers are the occurrence of 

false positives or foreground noise (classification of background elements or 

defects of capture as objects of interest), and false negatives or background 

noise (classification of an object of interest as background). In addition, when 

one moving object overlaps –partially or totally- another, a motion ambiguity can 

be produced, confusing so the regions involved. This problem is called 

occlusion. Nevertheless, this issue affects more the tracking than the 

segmentation. The tracking is a higher level module [26] responsible for storing 

the trajectory of the objects of interest detected during the sequence. 

 We must keep in mind that motion segmentation is different from object 

segmentation based on motion [D]. In this work, we face the latter problem but 

not the former, because we attend to spatial relationships. 

 The resulting regions of the segmentation process are called blobs. For 

the sake of simplicity, we suppose that each blob obtained corresponds to only 

one moving object, though we are aware that this is not always true [35]. 

Indeed, a single blob can correspond to an entire object, to a part of a single 

object, to multiple objects, or even to a false positive (i.e. a shadow or a 

reflection), depending on the success in segmentation. In order to increase the 

reliability of the segmentation some segmentation systems, as the proposed in 

[E], label the blobs as: real moving object, shadow, ghost, reflection, fluctuation 

or background noise.  
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 The segmentation method used is significant, as it is the kind of action 

observed. The segmentation outcome can be bad if the objects of interest: (a) 

are too close or too distant to the camera, (b) are too many, (c) occludes 

themselves frequently or (d) change its motion direction and velocity constantly. 

In the literature, there are mainly three segmentation methods, based on: (a) 

frame difference [19][F], (b) background subtraction [33][18] and (c) optical flow 

[32][C]. In some cases, there are authors that make their own developments 

based on a combination of the previous, resulting in hybrid methods [G][H] . 

 In this paper, our study is focused on a segmentation method based on 

lateral interaction in accumulative calculation (LIAC) [7-9], that can be 

generically included in the image difference methods. LIAC is a multi-layer 

artificial neuronal network (ANN) inspired in two models: local accumulative 

computation [11] and recurrent lateral interaction [27].  

 In comparison with other contemporary approaches, the most significant 

contribution of the model is that it is capable of detecting all elements moving in 

an indefinite sequence of images with any kind of motion type [8]. Moreover, 

LIAC does not require image pre-processing, reference images, or high-level 

knowledge injection. 

 LIAC is a 2D approach to motion estimation, but it does not suffer the 

typical restrictions due to illumination, as it operates on regions instead of 

individual pixels. Since the method does not depend on the pattern of 

translation motion, it is not affected by the greatest disadvantage of region-

based methods: the translation pattern is valid while the regions are remained 

quite small. In addition, the method provides charge values that could facilitate 

the object classification. 

 On the other hand, the most important limitation of the LIAC is the 

impossibility to differentiate among objects that are seen as a whole due to 

occlusions [8][26]. 

 Nowadays, the most common approach to detect motion in a sequence 

of images is background subtracting that is achieved by taking absolute 



 4 

differences between each incoming frame and a background model of the 

scene. It is supposed to provide the best compromise between performance 

and reliability, even though is very sensitivity to illumination changes [A][B]. The 

development of adaptive background models is the answer for a suitable 

illumination treatment. However, this introduces new problems such as 

appearance of holes inside moving blobs [19]. 

 In addition, there is an important trend in improving the segmentation: by 

reducing non-desired noise produced [23], by including some domain 

knowledge [3], by minimizing the errors at system deployment time [28] and so 

on. The segmentation methods that uses the colour has become a recent focus 

of intensive research and would seem to produce robust segmentation results 

[E]. 

 Segmentation algorithms usually contain a set of configuration 

parameters that have to be adapted to each concrete situation. Traditionally, an 

expert was in charge of configuring these parameters; but this practice is 

neither effective nor efficient, and sometimes it turns even impossible. Thus, 

several algorithms have been developed so far to adjust automatically these 

parameters. For instance, a parameter estimator based on the relationship 

among image features has been introduced [5]. Also, a set of subsystems has 

been proposed for auto-critical evaluation, for auto-regulation of the parameters 

and for error recovery to provide a reduction in the sensitivity to environmental 

changes [14]. Moreover, another example for marks-based motion capture has 

been provided [30]. 

 Since we can assess the fitness of each set of parameters -at least, in an 

intuitive manner-, we recognize an optimization problem. A genetic algorithm 

(GA) fits perfectly in this context due to its capacity to achieve good results in 

wide solution spaces. During the last few years, the GA has been used in many 

studies on problems related to computer vision [3-4]. For example, a GA in 

which the chromosomes (codification of parameters of interest) are initialized 

using the results of the previous frame in a video sequence, instead of using 

random values is presented in [16]. This way, the unstable chromosomes 

correspond to motion objects that are evolved by crossover (genetic exchange) 
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and mutation (alteration at random). The application of GA is not trivial and that 

is why there are specific designs depending on the problem. In [2] a distributed 

GA (DGA) is used to optimize a large set of 30 parameters, while in [17] another 

DGA is used to extract objects and to track them, without using any a priori 

knowledge. In [12] a new model of GA is presented, namely the distributed 

hierarchical GA: a hybrid technique that partitions the search space into sub-

spaces. Recently, evolutionary algorithms are combined with multi-agent 

systems, generating a group of "segmentation agents" and a single 

"coordination agent" [25]. In this approach the whole systems acts as a GA 

population. 

 The relation between segmentation algorithms and ANNs also occupy an 

important place. In this case, the problem of parameter optimization is again 

present, now in form of weight setting, state configuration and so on. In [29] 

several methods for automated parameter estimation are compared. The paper 

concludes that the stochastic optimization methods usually overcome the 

deterministic ones. In addition, hybrid methods are the most promising ones. In 

this sense, many GAs have been applied to ANNs. For instance, a work is 

presented to both optimize parameters and to assist the network design [13]. 

Another example introduces the combination of a GA with a neuronal network, 

to form a classifier decision tree with classification rules for similarity, where the 

GA is used to synthonize (or to tune) the parameters of the neuronal network 

[34]. However, this association sometimes is inverted, using the neuronal 

network to improve the GA performance. This is the case, for example, of a 

work where GA carries out object tracking, whilst the neuronal network 

increases its effectiveness for multiple target tracking [31]. 

 

Fig. 1. LIAC outcome for a frame using three different parametric configurations 
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 In fact, LIAC may be affected deeply by the background conditions, the 

high variety of objects of interest, etc. The adaptation to all these circumstances 

depends on correct system parameters tuning (Fig. 1 shows some very different 

system outputs depending on the parametric configuration). Such a job is not 

automatic and requires an expert to perform the adjustment, interpreting the 

scene a priori and handling the system to detect exactly the objects of interest. 

In this paper an approach that tries to achieve the auto-configuration of LIAC is 

presented. We introduce two modules: the first one aiming to improve the 

overall output by using new parameters that filter the system outcome and the 

second one seeking to provide a feedback to the LIAC system to learn more 

suitable parameters by means of a genetic algorithm. 

 Since the tracking systems are usually robust enough to support the 

casual loss of an object in the trace, we will try to avoid the maximum amount of 

noise, preserving the blobs corresponding to objects of interest, even though an 

object could be lost in some frames. 

 The success degree achieved will be measured in a quantitative manner, 

mainly by means of an error function. We assume the hypothesis of obtaining 

one blob per moving object for each frame, but it is difficult to say when an 

object is stopped completely (total absence of motion). Therefore, we pursue to 

satisfy the user that uses the surveillance system. 

 

2 LIAC in image segmentation from motion 

The complete LIAC process is distributed along four layers. In this section the 

role of each of these four layers is explained. 

 

2.1 Layer 0: segmentation by grey level bands 

This layer covers the need to segment the image at a predefined group of n 

grey level bands.  Each element (x, y) is capable of processing motion from 

input grey level value IN(x, y, t) and its proper charge value. Let GLSk(x, y, t) be 

the presence or absence of grey level k at element (x, y) at time t. 
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where k is a particular grey level band. In other words, we have to determine in 

what grey level band a certain pixel falls. So, we are not evaluating, at this level, 

if there is motion in a grey level band for a given pixel. This task is left to the 

following layer. 

 It must be clear that one, and only one, of the outputs of all the detecting 

modules of the grey level bands can be activated at a given instant. This fact, 

although obvious, is of great interest at the higher layers of the architecture, 

since it will avoid possible conflicts among the values offered by the different 

grey level bands. Indeed, only one grey level band will contain valid values. 

 

2.2 Layer 1: lateral interaction for accumulative computation 

This layer has been designed to obtain the permanence value PMk(x, y, t) on a 

decomposition on a grey level band basis. We will have n sub-layers and each 

one of them will memorize the value of the accumulative computation present at 

global time scale t for each element. Lateral interaction in this layer is thought to 

reactivate the permanence charge of those elements partially loaded and that 

are directly or indirectly connected to maximally charged elements. The 

permanence charge of each element will be offered to the following layer as 

output. 

 Firstly, at global time scale t, permanence memory charge or discharge 

due to motion detection is performed. This information, given as input from layer 

0, is associated to sub-layer k of layer 1 (grey level band k). The accumulative 

computation equation may be formulated as 
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where ldis is the discharge or minimum permanence value, lsat is the saturation 

or maximum permanence value, and dv is the discharge value due to motion 

detection. 

 Notice that ∆t determines the sequence frame rate and is given by the 

capacity of the model’s implementation to process one input image. At each 

element (x, y) we are in front of three possibilities: (1) the sub-layer does not 

correspond to the grey level band of the image pixel. The permanence value is 

discharged down to value ldis; (2) the sub-layer corresponds to the grey level 

band of the image pixel at time instant t, and it did not correspond to the grey 

level band at the previous instant t - ∆t. The permanence value is loaded to the 

maximum of saturation lsat; (3) the sub-layer corresponds to the grey level band 

of the image pixel at time instant t, and it also corresponded to the grey level 

band at the instant t - ∆t. The permanence value is discharged by a value dv 

(discharge value due to motion detection); of course, the permanence value 

cannot get off a minimum value ldis. 

 The discharge of a pixel by a quantity of dv is the way to stop maintaining 

attention to a pixel of the image which had captured our interest in the past. As 

it will be seen later on, if a pixel is not directly or indirectly bound by means of 

lateral interaction mechanism to a maximally charged pixel (lsat), it goes down to 

the total discharge with time. 

 Secondly, an extra charge rv - recharge value due to neighboring - is 

added to the permanence memory in those image pixels that receive a stimulus 

from maximally charged element almost l1 pixels far away in any of four 

directions. This recharge can only happen one time, and provided that none 

neighbor element up to the maximally charged element is discharged. l1 is 

called number of neighbors in accumulative computation. This recharge 

mechanism allows maintaining attention on those pixels directly or indirectly 

connected to maximally charged pixels. This mechanism is even able to 

reinforce the permanence memory value if rv > dv. 

( ) ( )[ ]satkk l,rvTT,y,xPMminT,y,xPM ⋅ε+∆−=  

where 
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Finally, back at global time scale t, the permanence value at each pixel 

(x, y) is threshold by means of a permanence value threshold (θ1) and sent to 

the next layer. 

 In order to explain the central idea of this layer 1, we will say that the 

activation toward the lateral modular structures (up, down, right and left) is 

based on the following basic ideas: (1) all modular structures with maximum 

permanence value lsat (saturated) output the charge toward the neighbors; (2) 

all modular structures with a no saturated charge value, and that have been 

activated from some neighbor, allow to pass this information through them (they 

behave as transparent structures to the charge passing); and (3) the modular 

structures with minimum permanence value ldis (discharged) stop the passing of 

the charge information toward the neighbor (they behave as opaque structures). 

Therefore, we are in front of an explosion of lateral activation beginning at the 

structures with permanence memory set at lsat, and that spreads lineally toward 

all directions, until a structure appears in the pathway with a discharged 

permanence memory. 

 

2.3 Layer 2: lateral interaction for charge redistribution by grey level 
bands 

Layer 2 is also made up of n sub-layers, where, by means of lateral interaction, 

charge redistribution among all the connected neighbors in a surrounding 

window of l2 * l2 pixels that hold a minimum charge is performed. Besides, 

distributing the charge Ck(x, y, t) in grey level bands at this level the charge due 

to the motion of the background is also diluted. The new charge obtained in this 

layer is offered as an output toward layer 3. 
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 Starting from the values of the permanence memory in each pixel on a 

grey level band basis, we will see how it is possible to obtain all the parts of an 

object in movement. A part of an object concretely means the union of pixels 

that are together and in the same grey level band. The discrimination of each 

one of the parts that compose the objects is equally obtained by a lateral co-

operation mechanism. In case of layer 2, the charge will be homogenized 

among all the pixels that pertain to the same grey level band and that are 

directly or indirectly united to each other.  This way, a double objective will be 

obtained. (1) To dilute the charge due to the false image background motion 

along the other pixels of the background. This way, there should be no 

presence of motion characteristic of the background, but we will rather keep 

motion of the objects present in the scene. (2) To obtain a parameter common 

to all the pixels in the part of the object in a surrounding window of l2 * l2 pixels 

with a same grey level band. 

 Initially, at global time scale t, the charge value at every pixel (x, y) and at 

every sub-layer k is given by the value of the permanence from the previous 

layer. 

 Afterwards, at local time scale T, provided that the neighbor input charge 

values are high enough, the center element (x, y) calculates the mean of its 

value and the partially charged neighbors in a surrounding window of l2 * l2 

pixels. l2 is denominated number of neighbors in charge redistribution 
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 Again at global time scale t, the charge value at each pixel (x, y) is 

threshold by means of a charge value threshold (θ2) and sent to the next layer. 
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2.4 Layer 3: lateral interaction for spot fusion 

In every element of layer 3, we have an input from each corresponding element 

of the n sub-layers of layer 2. This layer has as purpose the fusion into uniform 

spots of the objects in a surrounding window of l3 * l3 pixels. That is why it takes 

the input charges of each one of the grey level bands and performs a fusion of 

these values, obtaining uniform parts of all the moving objects of the original 

image. Its output is a set of spots S(x, y, t). 

 Up to now attention has been captured on any moving objects in the 

scene by means of co-operative calculation mechanisms in all the grey level 

bands. Motion due to background has also been eliminated. It is now necessary 

to fix as a new objective to distinguish clearly the motion of the different objects. 

This discrimination is also obtained by lateral co-operation mechanisms. Again 

we will connect the modular structures of this layer in a mesh form in layer 3. 

Nevertheless, from now on we will no longer work with sub-layers, but rather 

with a single layer in which all the information of the n sub-layers of layer 2 ends 

up. In layer 3, we will homogenize the charge values among all the pixels that 

contain some charge value superior to a minimum threshold and that are 

physically connected to each other in a radius of l3 pixels. 

 Firstly, the spot charge value at each pixel (x, y) is given by the charge 

value of the maximally charged sub-layer k from the previous layer. 

( ) ( )[ ] [ ]2550,k,T,y,xCmaxT,y,xS k ∈∀=  

 At local time scale, provided that the neighbor input charge values are 

high enough, the center element (x, y) calculates the mean of its value and the 

partially charged neighbors in a surrounding window of l3 * l3 pixels. l3 is 

denominated number of neighbors in object fusion. 
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 Back to the global time scale t, the spot charge value at each pixel (x, y) 

is threshold by means of a shape value threshold (θ3). 

 

3 LIAC improvements 

In this section, we present a framework that includes the previous LIAC 

approach and two new modules to improve the former parameters and 

outcome. Fig. 2 shows the layout of the new proposed segmentation system. 

 

Fig. 2. Framework proposed including by the LIAC system and two new modules for the filtering 

and parameter learning outcome 

 

 As shown in Fig. 1, LIAC in image segmentation from motion produces 

one set of blobs for each frame. The system enhancement is based on the 
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management of those blobs; on the one hand by avoiding the generation of 

noisy blobs, and on the other hand by removing those noisy blobs already 

generated. Briefly, the module called “object discrimination” filters those blobs 

according to the user criterion to obtain only the objects of interest for each 

image, while the module called “parametric refinement” handles the LIAC 

parameters depending on the number of detected objects in relation to the 

user’s indications. 

 

3.1 Object discrimination 

The resulting blob set from segmentation is filtered in this module by means of 

size and compactness criteria, in terms of certain characteristics of the 

bounding box -of minimum size- that envelopes the object. Each object is 

accepted or rejected according to the adjustment to some spatial restrictions. 

On the one hand, by describing the maximum width (wmax), minimum width 

(wmin), maximum height (hmax) and minimum height (hmin) allowed. On the other 

hand, by considering the area actually occupied by the object inside its 

bounding box; that is, the compactness of the object. This ratio is also defined 

between two values, namely, maximum compactness (cmax) and minimum 

compactness (cmin). 

 This module results in an outcome improvement due to the removing of 

noise and unwanted objects. Facing the next module, for each frame the 

number of detected objects (Sd(t)) is stored. 

 

3.2 Parametric refinement 

The LIAC structure is built as an artificial neuronal network and hence it inhabits 

a learning system by itself. However, it hasn’t been taken advantage of this 

capability yet. For that reason, we intend to enhance the LIAC behavior through 

the modification of its parameters. It is clear that we are facing an optimization 

problem, and hence we will use a genetic algorithm in order to obtain sets of 

parameters for a suitable segmentation. The segmentation success is 

measured considering the difference between the number of objects detected in 

each frame and the user’s ideal number (indication of how many objects are 
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moving during the scene). This rough measurement is enough and avoids 

having to specify more accurate knowledge. 

 In our genetic approach, the individuals involved have a representation 

based on the LIAC parameters. The chromosome configuration is performed by 

concatenating those parameters. Therefore, we consider the parameters 

presented in section 2; however, we do not want to be limited by parameters 

related to the number of neighbors in charge redistribution. So, the parameters 

explained previously, i.e. number of neighbors in accumulative computation (l1), 

number of neighbors in charge redistribution (l2) and number of neighbors in 

object fusion (l3) have been set to such a high fixed value  that lateral interaction 

is not affected by them. Since each child is composed from chromosome pieces 

of his/her parents by means of the crossover operator, it is recommended to 

locate related parameters into consecutives genes. Following this advice, we 

put the charge value (dv) together with the discharge value (rv), and the 

thresholds (θ1, θ2, θ3) aligned. Therefore, (n, dv, rv, θ1, θ2, θ3) is a suitable 

chromosome where each gene is coded as an 8-bits unsigned integer. 

 Our genetic algorithm uses a stack where every new individual of the 

population is put on. The selection of parents is performed by taking pairs from 

the bottom to the top (the population must always have even size), and every 

single couple is crossovered generating a single child whose genes can be 

affected by mutation. Then, the worst adapted parent of each couple (i. e. the 

parent with worst fitness) is removed from the population (like in a steady-state 

model), and hence it is extracted from the stack. 

 Since we are interested in evaluating the feasibility of the genetic 

approach proposed, we will run several executions trying to achieve: (a) fast but 

not premature convergence (gaining some quality at low computational cost), 

(b) enough selection pressure (forcing the improvement), (c) proportionally 

reward the individual’s aptitude regarding the fitness of the whole population 

(the more suitable the individual, the more offspring it will have), and (d) 

guarantee of offspring for each individual (at least one chance for everyone). 

For the moment, the exploration should prevail over the exploitation, because 

further works will be able to study in depth the promising results presented in 

this paper. 
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 The evaluation function designed for the genetic algorithm (E) tries to 

minimize the error generated by the number of detected objects in each instant 

(Sd(t)) according  the number of expected objects indicated by the user (Sm), in 

a sequence of k frames: 

( ) SmtSd
k
tsinE

k

t
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
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
 π= ∑

−

=

1

0
 

 So, this adaptation or fitness function considers in each frame the 

difference between the number of detected objects and the number of expected 

objects, providing more importance to the middle frames in the sequence. The 

reason of this weight is that in the sequences we use all the objects are not 

present or they are hardly detectable at the beginning and at the end of the 

sequence. Moreover, the first frames processed are useless, until the 

accumulative computation is stable, i.e. the convergence state is achieved. 

 

4 Data and results 

In order to show the performance enhancement due to our proposal, we carry 

out an analysis about the produced results, depending on how the modules 

"object discrimination" and "parametric refinement" are handled. We use an 

image sequence from the own LIAC proposal [9], composed of 100 frames with 

size 128x128 pixels in 256 grey levels. Fig. 3a and 4a show some frames. 

Initially, a human standing in the center of a room receives other two persons, 

each one entering through opposite sides. During the sequence, the people 

greet and interact with each other, whilst some occlusions happen and 

sporadically someone stops moving and then starts again. Finally, all the people 

leave the scene one to one to the left. 
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Fig. 3. Comparative: (a) Original sequence. (b) Segmentation outcome using reference 

parameters without object discrimination (fitness = 22.4 x 103). (c) (16, 96, 6, 121, 183, 50) with 

object discrimination (fitness = 156.62). (d) (16, 235, 157, 76, 189, 0) with object discrimination 

(fitness = 153.79). 

 Indeed, LIAC applied to image segmentation offers acceptable results 

when the parameters are well configured, even though it can not be assessed 

visually. A typical set of parameters that have shown good behavior in general 

[9] is: 8 as grey level bands (n), 63 as discharge value due to motion detection 

(dv), 31 as recharge value due to neighboring (rv) and 150 for each threshold, 

namely, permanence value threshold (θ1), charge value threshold (θ2) and 

shape value threshold (θ3), respectively. According to the description offered in 

the previous section, the chromosome or candidate solution that summarizes 

the typical configuration of LIAC is (8, 63, 31, 150, 150, 150), called reference 

parameters henceforth. 
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 However, for challenging sequences such as those with low resolution, 

containing various moving objects, some occlusions and so on -as it can be 

observed in [9] and in Fig. 3b-, the obtained blobs are badly defined and mixed 

with a lot of noise. The selection of non effective parameters produces more 

noise, perhaps invalidating the whole segmentation. Looking qualitatively into 

Fig. 3b, a human watcher can not notice that the sequence offers an average 

number of 312 objects detected per frame. This makes the information 

treatment harder and more expensive for higher level software layers using the 

LIAC as its segmentation engine. 

 In this scenario, we set Sm = 3 (three objects of interest in the scene, i.e. 

the three humans beings) in order to check the fitness of the parameters 

obtained. It must be highlighted that Sm is an ideal value indicated by the user; 

it is quite imperfect, since Sm = 3 communicates to the system that there should 

be detected exactly three objects in each frame. Nonetheless, in this sequence 

it doesn't happen this way, because the objects of interest are not always 

present and even when they are present they are not moving all the time. 

Moreover, we must keep in mind that the first frames of the sequence always 

increment the error due to the convergence effect. To conclude, although the 

evaluation function is an error measurement, we observe that it is impossible to 

reach the value 0. Fig. 3b shows the typical outcome of LIAC using the 

reference parameters, obtaining a fitness rate as high as 22.4 x 103. 

 

4.1 Results with object discrimination and without parametric refinement 

Since we try to determine the feasibility of the proposed solution, we are 

interested in obtaining several acceptable solutions instead of producing few 

very well-refined ones. This way, we choose to use an ample range of 

discrimination values, both in compactness (20% minimum and 95% maximum), 

and in size (height between 78 and 116 pixels, and width between 7 and 44 

pixels). Thus, we won't force the genetic algorithm to search for the best 

solutions, but rather we will try to find "clues of optimum solutions". 

 Using the reference parameters defined in the previous section and 

applying the mentioned discrimination values, we obtain a fitness of 182.15 
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(quite reduced in comparison with the one obtained without such a 

discrimination). So, the discrimination cleans a lot the segmentation, almost 

eliminating all the noise. Moreover, this module removes the transitory objects 

produced by the LIAC convergence effect. Nevertheless, objects of interest are 

also removed sometimes. At this point, we must warn that the fitness value is a 

guidance towards improvement, that it can confuse us if it classifies "ghosts" as 

objects of interest (false positives). Frequently, the ghosts are present as 

shadows and reflections (Fig. 4). 

 

 

Fig. 4. “Ghost apparition”: (a) Original sequence. (b) Some blobs obtained do not correspond 

with real objects in motion, but with shadows, reflections and so on. 

 

4.2 Results with object discrimination and parametric refinement 

In a previous paper [24] the effectiveness of this approach has been 

demonstrated on simple sequences: for a scene where a single human walks 

along a room, we get a perfect blob involving the whole object. Now, we face a 

bigger challenge because the current sequence is quite more complex due to: 

interactions between humans, discontinuous motion, occlusion presence, low-

contrast clothes, and so on. 

 We decided to run the genetic algorithm several times, about 20 

executions, enough to get an idea about the improvement. The “object 
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discrimination” module remains configured as mentioned in the previous 

section. Since it was already observed that a big population size is better than a 

smaller one, it has been chosen that there are 20 individuals whose 

chromosomes are generated at random. The stop condition has been set to a 

fixed number of generations, exactly 14, because the fitness improvement 

corresponds to a descendent exponential function and this number is enough to 

show the population’s trend (achieving the exploration-exploitation frontier). 

 Moreover, since the executions are not very long, the crossover has 

been configured to 3 cut points so that there will be a greater heterogeneity 

(many jumps between different regions of the space of solution). As many 

authors agree, the mutation probability has been assigned to a low value, 

exactly 9% per gene. For efficiency reasons the values of number of grey level 

bands were restricted to 2, 4, 8 and 16, which are those of a better behavior, 

just as the LIAC authors do guarantee. 

 In figures 3c and 3d the outcome of some frames of difficult 

segmentation are represented using two chromosomes obtained through the 

genetic algorithm,  (16, 96, 6, 121, 183, 50) and (16, 235, 157, 76, 189, 0). The 

fitness measurements demonstrate a substantial improvement: 156.62 and 

153.79, respectively. A thorough analysis of every frame involved in the 

resulting sequences shows that the detection of "ghosts" is almost null. 

 This can be justified keeping in mind that the set of parameters is 

configured to values able to classify human motion, removing the sporadic 

appearance of reflections and shadows. The optical flow of human motion 

seems to be more homogeneous than the apparent motion due to ghosts. On 

the one hand, ghosts are usually morphologically unacceptable to the “object 

discrimination” module, and on the other hand, the parameters are set to detect 

blobs with certain evolution during few frames. 

 The chromosomes obtained after the executions provide an excellent 

way to understand the parameter configuration. A successful number of bands, 

n, is usually 8 or 16 (higher values). It always occurs that the discharge value 

due to motion is greater than the recharge value due to neighboring (dv > rv or 

even dv >> rv). The thresholds θ1 and θ3 always have values lower than θ2: it is 

interesting to observe how the chromosome used to obtain the frames 
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represented on Fig. 3d, even disables θ3. The results provided in [24] agree in 

this sense. 
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Fig. 5. Average of moving objects detected by the 20 chromosomes obtained, compared with 

moving objects perceived by a human observer 

 

 Fig. 5 compares, for each frame, the amount of: (a) objects of interest 

present (humans in this case), (b) moving objects (those with enough motion 

than a human can notice it) and (c) moving objects detected by the average of 

the 20 chromosomes obtained. It is worth noting that we distinguish among 

number of objects really present in the scene and number of moving objects. 

Both data have been gathered manually, and, hence, it is just an artificial 

approximation. In fact, we have decided in what moment an entering or exiting 

object starts or stops to count, respectively, and when an object is in motion and 

when it is not. 

 Since the average outcome provided by the chromosomes achieves 

certain similarity with the human observation, it is clear that we have obtained 

an important improvement. However, there are two adverse events. 

 On the one hand, in Fig. 5 we can observe some peaks in the “moving 

objects” line. This fact represents a hard situation in which several objects start 
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and stop motion simultaneously. Peaks require a high discharge value while, 

generally, human motion requires slow discharges (indeed, it is more or less 

affected by the whole set of parameters). Therefore, maybe there are 

controversial cases that make the design of a unique parameter set for a large 

application difficult. 

 On the other hand, in Fig. 5 we can notice delays between the 

observation of moving objects and the detection of that motion. This is due to 

the effect of the permanence memories of the accumulative computation, which 

are firstly charged and then discharged. Therefore, there is an implicit limitation 

in the response of the segmentation system that we could not overcome. 

 

5 Conclusions and future work  

In this paper the problem of motion segmentation has been presented, focusing 

on a particular neuronal network called lateral interaction in accumulative 

computation (LIAC). The weakness of this class of systems is that they need 

their parameters to be tuned correctly. This task is not trivial at all. Therefore, 

we proposed a software wrapper that automates the parameter optimization, 

composed by two modules. In other words, the improvement add-on performs a 

noise cleaning and a learning of suitable parameters. 

The human supervision has been reduced successfully, because the 

user only needs to vaguely establish some morphological features of the 

objects of interest (size and compactness), as well as to indicate approximately 

how many moving objects are present in the sequence, instead of manually 

setting parameters and comparing their outcomes during many computationally 

expensive tests. 

 Both modules “object discrimination” and “parametric refinement” 

contribute to the improvement: the former by cleaning the noise of the LIAC 

outcome and the latter by learning the more suitable sets of parameters. As a 

result, the LIAC output has been greatly improved because the resulting images 

show in most of the cases only the objects of interest. In spite of the fact that 

the enhancement is limited by the segmentation method itself, as we have 

highlighted, the charge and discharge of pixels causes a delay in the detection. 
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 Some additional experiments have pointed out that the number of objects 

of interest reported by the user does not need to be exactly the number of 

objects visible at the same time during the sequence. It is enough to report a 

finite number, equal to or greater than the real number of objects of interest. 

This is true, because it has been demonstrated that a trained LIAC easily 

classifies the visual objects in motion, removing the false positives (ghost 

apparition). Thus, false positives are more unlikely to be considered as objects 

of interest, each time one real object of interest is detected. Setting an implicit 

high number of objects constitutes an idea for future work. 

 This is only one step beyond and a lot of work may still be carried out. It 

is our intention to achieve a learning system with no initial knowledge at all 

about what is going to be monitorized, by making implicit the overall parameters 

that the user currently inputs. So, the final goal is that the whole proposed 

system does not need any input parameter. In further works, we will try to 

develop more powerful evaluation functions. In this way, we will study to do 

implicit the functionality of the “object discrimination” module, avoiding the 

presence of the user.  

 Lastly, we suggest detecting the moving objects as groups of – one or 

more - blobs, instead of forcing the relation one to one, because it is more 

difficult to split one blob into two objects than to compose one from its parts. 

Moreover, the higher layers of a surveillance system handle more easily the 

scene interpretation if they can retrieve the object parts.  
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