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Abstract 
Variants of the background subtraction method are broadly used for the detection of moving objects in video sequences in different applications. In 
this work we propose a new approach to the background subtraction method which operates in the colour space and manages the colour information 
in the segmentation process to detect and eliminate noise. This new method is combined with blob-level knowledge associated with different types of 
blobs that may appear in the foreground. The idea is to process each pixel differently according to the category to which it belongs: real moving 
objects, shadows, ghosts, reflections, fluctuation or background noise. Thus, the foreground resulting from processing each image frame is refined 
selectively, applying at each instant the appropriate operator according to the type of noise blob we wish to eliminate. The approach proposed is 
adaptive, because it allows both the background model and threshold model to be updated. On the one hand, the results obtained confirm the 
robustness of the method proposed in a wide range of different sequences and, on the other hand, these results underline the importance of handling 
three colour components in the segmentation process rather than just the one grey-level component. 
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1. Introduction
The detection of moving objects in video sequences is the first relevant step in the extraction of
information in many computer vision applications including, for example, semantic video
annotation, recognition pattern, video surveillance, traffic monitoring and people tracking. The
quality of the results obtained by applying this stage is very important. The more reliable the shape
and position of moving objects, the more reliable their identification is. In turn, this will guarantee
greater success in subsequent tasks related to tracking and classification. Therefore, the crucial
issues related to automatic video segmentation are to separate moving objects from the background
and obtain accurate boundaries from this kind of objects.

There are different methods for detecting moving objects based, for example, on statistical methods 
(Horprasert et al, 1999; Lee, 2005; Stauffer and Grimson, 1999), fuzzy logic (Jadon et al, 2001), the 
subtraction of consecutive frames (Lipton et al, 1998), optical flow (Wang et al, 2003), genetic 
algorithms (Kim and Park, 2006; Carmona et al, 2006; Martínez-Cantos et al, 2006) or hybrid 
approaches (Collins et al, 2000; Dedeoglu, 2004) that combine some of the aforementioned 
techniques. Nevertheless, one of the most frequently used approaches with a fixed camera is based 
on background subtraction method and its multiple variants (Wren et al, 1997; Haritaoglu et al, 
2000; Stauffer and Grimson, 2000; McKenna et al, 2000; Kim and Kim, 2003; Cucchiara et al, 
2003; Xu et al, 2005; Leone and Distante, 2007), because of its speed and ease of implementation. 
Basically, this method enables moving regions to be detected by subtracting, pixel by pixel, the 
current image from a background model taken as a reference. 

The outputs produced by the detection algorithms mentioned above, especially if working with real 
scenes, generally contain noise. The causes of noise are primarily due to the intrinsic noise of the 
camera itself, undesired reflections, objects whose total or partial colour coincides with the 
background and the existence of sudden shadows and changes (artificial or natural) in lighting. The 
total effect of these factors may be twofold: first, it may mean that areas that do not belong to 
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moving objects are incorporated into the foreground (foreground noise) and secondly, that 
determined areas belonging to moving objects no longer appear in the foreground (background 
noise). Specifically, in the set of approaches that use the background subtraction method to do 
segmentation, different proposals exist to detect and eliminate this noise. Thus, proposals exist that 
address the problem partially, for example, by only detecting the shadows (Xu et al, 2005; Leone et 
al, 2006; Leone and Distante, 2007). Other proposals, however, attack the problem globally, i.e., 
trying to differentiate and classify moving object blobs and different types of noise blobs 
(Cucchiara et al, 2003). 
 
In this work we propose an adaptive segmentation method based on a new variant of the 
background subtraction method which uses relevant information from different types of blobs that 
may appear in the foreground as a result of processing the current frame. This information is closely 
related to different regions of interest that appear in the colour space by comparing the angle and 
module of the vector associated with each point of the image and the corresponding vector from the 
background model. Thus, it is possible to characterise and classify each point of the image 
according to the region to which it belongs: real moving object, shadow, ghost, reflection, 
fluctuation or background noise. The final aim is to use this new information based on blob-level 
knowledge to refine the foreground and update the background model to thereby achieve maximum 
precision during the segmentation. At all times, we will suppose that we are working with colour 
video sequences obtained from a fixed standard camera and, without losing generality, that we are 
working on the standard RGB colour space. The method could be applied in any other colour space. 
 
The rest of this article is organised as follows: section 2 characterises different types of foreground 
blobs. Then, the segmentation method that we propose, called the truncated cone method (TCM) is 
described and broken down into its different stages. First (section 3), a transformation of the 
representation space of the problem is done, passing from a three-dimensional space (colour space) 
to another two-dimensional one (angle-module space). This enables us to define a rule, called 
angle-module rule, whose application produces a foreground map as an initial approach to the 
segmentation result. Second (section 4), this new representation space allows us not only to 
characterise the different noise blobs in a more operative way than section 2, but also to define a 
simple set of operators to eliminate them from the foreground. The arrangement of all these 
elements (rules and operators) in a suitable order will form the TCM (section 5). The section 6 
shows the results of the different made experiments as well as its discussion. Finally, the 
conclusions of this work are described in section 7. 
 
 
 
2. Blob characterisation: an initial approach 
In this section, we make one first approach to the characterization of the different types of blobs that 
may appear in the foreground. Later, in section 4, we will refine this approach. Other proposals 
exist (Cucchiara et al, 2003), but ours consists of a set of entities and relations (see Figure 1) that 
are initially defined by comparing the current image and background model intensity levels: 
 

• Blob: set of connected points. 
• Foreground: binary image obtained from comparing the current image with the background 

model and applying a threshold value. In this image, theoretically, only the points associated 
with real moving objects appear. 

• Moving Visual Object (MVO): foreground blob, bMVO, associated with a real moving object. 
• Foreground Noise (FN): blob that erroneously appears in the foreground but does not 

correspond to any real moving object. 



• Background Noise (BN): blob that erroneously does not appear in the foreground (virtual 
blob) but corresponds to some real moving object. This type of noise usually appears when 
the colour of a part of a real moving object is similar to that area of the background located 
in the same position and the threshold used is not sufficiently tuned to segment correctly. 
Therefore, in first approach, this type of noise is characterised because all and each of the 
points, p, in this type of virtual blob, bBN, have the property: |It(x,y)–Bt(x,y)|<δ,∀(x,y) 
p(x,y)∈bBN and δ segmentation threshold. 

• Shadow: a type of foreground noise. It is associated with any zone of the image covered by a 
real shadow. In first approach, it is characterised because all and each of the points in this 
type of blob, bSh, have the property: [It(x,y)–Bt(x,y)]<0, ∀(x,y), p(x,y)∈bSh.  

• Reflection: a type of foreground noise. It is associated with any zone of the image enhanced 
by a real reflection. In first approach, it is characterised because all and each of the points in 
this type of blob, bRf, have the property: [It(x,y)–Bt(x,y)]>0, ∀(x,y), p(x,y)∈bRf.  

• Ghost: a type of foreground noise. It is associated with the final position of a moving object 
that is stopped or the initial position of a stationary object that initiates its movement. In 
both instances, the difference |It(x,y)–Bt(x,y)| is sufficiently great to make foreground blobs 
appear associated with the positions, final or initial, mentioned. 

• Fluctuation: a type of foreground noise. With this term, we are talking about small 
variations in lighting that are caught between two consecutive frames. These variations can 
be produced because the optical sensors from a video camera, even in the absence of 
changes in lighting, do not register the light intensity values received in an exactly constant 
manner and/or because the very source of light (artificial or natural) can be subject to slight 
oscillations. Thus, the pixels in this type of blob, bFl, have the property: |It(x,y)–It-1(x,y)|≈0, 
∀(x,y) p(x,y)∈bFl, and therefore, in first approach, |It(x,y)–Bt(x,y)|≈0,∀(x,y) p(x,y)∈bFl. In 
other words, the difference is next to zero but is not rigorously null. 

 
It is important to underline that all the properties mentioned previously establish necessary but not 
sufficient conditions. For example, if |It(x,y)–Bt(x,y)|<δ, then point (x,y) could belong to background 
noise or fluctuation. This circumstance will have to be considered at the time of classifying each 
image point into one or several blob classes.  In any case, the aim is to use the characterization each 
one of the entities defined above to facilitate identification of each type of blob in the scene and, in 
the last instance, do a more precise segmentation and more effective updating of the background 
model. 
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Figure 1. Classification of types of foreground blobs. 

 
 
 
 



3. Segmentation: angle-module rule 
We present here a transformation of the three-dimensional representation colour space to a new 
two-dimensional space called angle-module space that will be the reference frame of the 
segmentation method that we propose. The new resulting space allows us to define a segmentation 
rule whose application produces an initial approach to the final foreground map and constitutes the 
first stage of the truncated cone method. Thus, for each position, (x,y), of a pixel of a given image 
frame and at a moment of time, t, the relation existing between the image RGB vector associated 
with this position, It

(x,y)(r,g,b), and the background RGB vector, Bt
(x,y)(r,g,b), can be characterised 

with the value of the angle that they form, θt
(x,y), and the magnitude of difference of their modules in 

absolute value, Δt
(x,y)

mod. From here onwards, to simplify the notation, we will use Mt(x,y) to refer to 
the RGB vector associated with the point (x,y) pertaining to map, M, at moment t.  
 
At each instant of time, the difference in modules, in absolute value and matrix form, Δt

mod, is 
computed as (1), where |It| and |Bt| are the image and background module matrix, respectively. The 
calculation of angle, in matrix notation, Θt, is calculated from (4), using the two alternative 
definitions of the scalar product, see eqs. (2) and (3). In (3), the operator A⋅*B denotes the product 
of the two matrices, A and B, element by element. In (4), the operator, (A/B), denotes the quotient 
between matrix A and B, element by element, the operator, A⋅B, denotes the product between matrix 
A and B, element by element, and ε represents a very small value which avoids a possible division 
by zero.  
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By adequately comparing the respective values of these two matrices, Θt

 and Δt
mod, some interesting 

relations can be obtained. The idea is the following, for each point, (x,y), of the image, a revolution 
cone can be built in the RGB space (see Figure 2) by using as an axis the straight line that contains 
the point vector, (rB,gB,bB), associated with position (x,y) of the background, B(x,y), and another 
straight line as a generatrix which, passing through the origin, forms an angle ω with the previous 
one. If we now trace three planes perpendicular to the vector B(x,y), one containing the point 
(rB,gB,bB), and the other two, situated above and below this, at a distance h, they will delimit, along 
with the cone surface, two regions of interest: a truncated cone located on the upper part of the 
intermediate plane and another on the lower part.  
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Figure 2. Truncated cones associated with a background point, (x,y), in the RGB space. 
 
Once the size of the truncated cone region is determined by means of, for example, [ω0, h0], the 
point (rI,gI,bI), associated with the position (x,y) in the image, I(x,y), will belong to the volume 
delimited by this region if and only if the two conditions, (5) and (6), are verified simultaneously, 
where ω0 and h0 are threshold values. 
 

0ω≤),(Θ yx  (5) 
 

0hyx ≤),(Δmod  (6) 
 
The advantage of using the angle-module space is twofold: on the one hand, it reduces the 
dimensionality, transforming the segmentation problem from a RGB three-dimensional to a two-
dimensional space and, on the other hand, as will be seen in the following section, it will facilitate 
the characterization of the different types of blobs that may appear in the foreground, according to 
the fulfilment or non-fulfilment of these two conditions. In particular, it is quite intuitive that if we 
choose sufficiently small ω0 and h0, it is possible to establish as a condition of movement that every 
point (r,g,b) associated with the position (x,y) of the image, I(x,y), which is outside the truncated 
cone region defined by conditions (5) and (6), will belong to a real moving object. For this to 
happen, one of the two conditions will not be fulfilled. Thus, it is possible to define a rule, (7), to 
calculate approximately the first foreground map. 
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Really, in the method that we propose, the angle threshold values, ωi, and the module threshold 
values, hi, are calculated according to the position (x,y) and the instant t, Ωt(x,y) and Ht(x,y), 
respectively. Consequently, equation (7) is transformed into a new rule, (8), that has been 
denominated angle-module rule. 
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Both the background model and the threshold matrices represent statistical properties of the pixel 
intensities observed in the image sequences from earlier moments {Ik(x,y)} for k<t. B1(x,y) is 



initialised with the first image (in which it is supposed that there are no moving objects), in other 
words, B1(x,y)=I1(x,y), and H1(x,y) and Ω1(x,y) are initialised with some predetermined value 
different from zero. The literature offers several ways of updating this type of matrices over time 
(Collins et al, 2000; Kim and Kim, 2003; Dedeoglu, 2004; Leone and Distante, 2007). Here, we 
propose the approach expressed in (9), (10) and (11), where αB ∈[0.0, 1.0] is a learning constant 
that specifies how much information from the incoming image is transferred to the background, αΩ, 
βΩ ∈[0.0, 1.0] are learning constants that specify how much information from the angle matrix, 
weighted by the value of γΩi, i={1,2}, is transferred to the angle threshold matrix, and αH, βH ∈[0.0, 
1.0] are learning constants that specify how much information from the matrix of module 
differences, weighted by the value of γHi, i={1,2}, is transferred to the module threshold matrix. The 
values for αi, i∈{B,Ω,H}, βj, j∈{Ω,H}, γΩk, and γHk, k={1,2}, are adjusted according to experience based on 
the type of scene and the objectives to achieve at later stages in the segmentation process. 
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It should be stressed that the Bt(x,y) value is only updated for non-foreground points. This could 
cause the appearance of foreground noise from ghost blobs (Dedeoglu, 2004). The solution to this 
problem is considered in the following section.  
 
4. Noise detection  
The aim of this section is to describe the characteristics of some notable regions that may be defined 
in the angle-module space, by combining the fulfilment or non-fulfilment of conditions (5) and (6), 
and properly choosing the values ω0 and h0 from some domain knowledge heuristic. The result is 
the characterisation of the different types of noise blobs according to whether or not they belong to 
one of these regions, allowing a more operative definition than the one in section 2. Finally, to a 
great extent, this characterisation will facilitate the construction of filtering operators that will 
selectively be applied to eliminate each type of noise blob. 
 
4.1 Detecting shadows 
One of the major causes of foreground noise are the shadows that objects project with highly 
undesirable effects (Horprasert et al, 1999; Salvador et al, 2004). Therefore, it is necessary to use a 
method to eliminate this type of noise because, otherwise, failure at a possible subsequent stage of 
tracking and/or classification is almost certain. 
 
To characterise this type of noise, we make use of the fact that, for each pixel belonging to a 
shadow region, the associated image RGB vector is approximately in the same direction as the 
background RGB vector and the RGB vector module of the image pixel is always slightly less than 
the corresponding vector module of the background pixel (Horprasert et al, 1999). This means that 
all shadow noise image points will be confined in the lower truncated cone region of the RGB 
space. Thus, initially, the shadow map, Sht(x,y), is given by equation (12), where φsh and hsh are 
thresholds. 
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The shadow map thus defined also contains all those MVO pixels whose colour is confined in this 
small region and their elimination from the foreground produces background noise. In order to 
minimize the inclusion of this type of points in the shadow map, a second definition, (13), is 
proposed, where hshi and φshi, i={1,2} are thresholds that fulfil hsh1>hsh2, hsh1,hsh2∈[0.0,1.0] and 
φsh1<φsh2. This allows greater flexibility to delimit the shadow region (see Figure 3a). 
Experimentally, it is observed that with φsh1,φsh2∈[0.0,6.0]º and hsh1,hsh2∈[0.5,1.0] good results are 
obtained. Instead of working with absolute module threshold values, as proposed in (12), in the new 
definition of the shadow map, percentage values are calculated relative to the module of the 
background RGB vector. It is a way of normalising with respect to the module size. From a 
practical point of view, this allows better results to be obtained. 
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4.2 Detecting reflections 
To characterise this type of noise, we applied the opposite reasoning to the one used for shadows. 
Thus, for each reflection pixel, the associated image RGB vector is approximately in the same 
direction as the background RGB vector and the RGB vector module of the image pixel is always 
slightly greater than the corresponding vector module of the background pixel. This means that all 
reflection noise image points will be confined in the upper truncated cone region of the RGB space 
(see Figure 3b). Therefore, the reflection map, Rft(x,y), is given by (14), where hrfi and φrfi, i={1,2}, 
are thresholds that fulfil hrf1>hrf2, hrf1,hrf2∈[1,∞), φrf1<φrf2. Experimentally, it is observed that with 
φrf1,φrf2∈[0.0,6.0]º and hrf1,hrf2∈[1.0,2.0] the best results are obtained. 
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4.3 Detecting fluctuations 
To characterise this type of noise in the context of our approach, it is necessary to consider that the 
fluctuation will be associated with small variations in module differences, |It| and |Bt|, and small 
variations in the angles, Θt. Consequently, all points from the fluctuation noise image will be 
confined in the upper and lower truncated cone region of the RGB space, with very small h and ω 
(see Figure 3c). Thus, the fluctuation map, Flt(x,y), is given by (15), where hf1 and φf1 are now 
absolute thresholds of small value. 
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Nevertheless, note that the condition that makes it possible to delimit the fluctuation noise region, 
characterised by eq. (15), is exactly the opposite to the condition expressed by the angle-module 
rule, (8). This means that the segmentation obtained initially by applying just the angle-module rule 
excludes all the fluctuation noise points and, therefore, it is not necessary to use any operator to 
eliminate this type of noise. 
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Figure 3. Noise blob characterisation based on the truncated cone method: (a) shadow region, (b) reflection region, (c) 
fluctuation region. 
 
4.4 Detecting ghosts 
The elimination of ghosts could have been done (Dedeoglu, 2004) if we had updated the 
background of all the foreground pixels in equation (9), i.e., just as it is indicated in expression (16), 
where α, β∈[0.0,1.0]. 
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The smaller the value of β, the faster the background updates and, therefore, the faster the ghost 
blobs are eliminated from the foreground. However, there is one disadvantage: if the value of β is 
too small, as well as eliminating the foreground ghosts in the scene, a kind of wake-effect can 
appear in the foreground in the opposite direction to the object’s movement. This effect is more 
pronounced the larger the moving object, the slower it moves and the lower the value of β. 
Consequently, if we want the system to be highly reactive in eliminating the ghost, this strategy is 
not recommended. Thus, we propose a strategy for eliminating ghosts based on the permanence 
memory concept, PM, (Fernández et al, 2003). At each instant of time, t, permanence memory 
defines a map of data, and each PMt(x,y) is obtained from its value in the previous instant, t-1, and 
from a binary reference input Yt(x,y), just as is indicated in equation (17), where ∀x,y PM0=0, C0 
(respectively, D0) is a constant with which PM is incremented (decremented), Cmax is the saturation 
value, and Cmin is the minimum value that can be stored in PM. 
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In our approach, the permanence memory is a matrix the same size as the foreground matrix (binary 
input). Since every ghost pixel has the property of remaining constant at value 1 in the foreground, 
a constant charge increment will occur in the permanence memory position associated at this pixel 
and, consequently, the following condition can be imposed: if at a time instant, t, a pixel of the 
permanence memory, PMt(x,y), reaches the saturation value, Cmax, then the background pixel 
situated in the same position, Bt(x,y), is updated to the value of the current image at that instant, 
It(x,y). All those points (x,y) of the permanence memory that fulfil this condition will be associated 
with ghosts, and the automatic updating of the background to the current image in these positions 
will force this type of noise to disappear from the foreground at the following instant, t+1. The 
particularisation of the permanence memory concept that we propose here is given by the 
expression (18). 
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And, if the effect of charging this memory is considered, the background updating given in (9) is 
now transformed into equation (19). 
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Note that, in our case, it is not necessary to use the constant D0 because every ghost pixel always 
increments the charging in PM. Any other cause (MVOs, noise different to the ghost) that makes 
the charging of other positions of PM increment, is not permanent and, when this cause ceases, 
these positions directly discharge the minimum value, Cmin=0. Furthermore, the C0 value is equal to 
1. Thus, the value chosen for Cmax will determine the number of frames that must pass to eliminate a 
ghost pixel from the instant in which this appears in the foreground. In fact, this last constant 
measures reactivity to eliminate ghost blobs: the smaller Cmax, the greater reactivity. Nevertheless, 
the constant value will depend on the typical speeds of the moving objects in the scene and the 
objectives to be reached at later stages in the segmentation process. Thus, for example, in scenes 
where the typical speeds of the moving objects are low they will require greater values of Cmax than 
if these speeds are high, otherwise, it could eliminate foreground pixels associated to slow MVOs. 
Moreover, for a specific application, it could be necessary to keep all the ghost blobs in the 
foreground, then, in this case, Cmax→∞.  
 
5. Truncated cone method 
The final aim of any segmentation system for moving objects in the scene is that their detection is 
as precise as possible. Thus, the condition of movement expressed by the angle-module rule, see eq. 
(8), is not enough. Indeed, it implies the detection, not only of MVOs, but also reflection, shadow 
and ghost blobs. In order to filter other noise blobs and just have the MVOs in foreground, TCM 
applies a sequence of operators according to the flow chart shown in Figure 4.  
 
Thus, after calculating the angle matrix, Θt, and the module difference matrix, Δt

mod, for the current 
image frame, we obtain an initial approach to the foreground map by applying the angle-module 
rule. Next, we proceed to eliminate reflections in this map by applying a reflection-filtering 
operator. The implementation of this operator requires two stages: one for detecting noise and 
another for filtering. The detection is done by calculating the reflection binary map from eq. (14). 
The filtering implies doing an operation and between the foreground obtained from the angle-
module rule and the result of applying an operation not on the reflection map (see Figure 4). In 
particular, with the operation and it is possible to select those points that simultaneously belong to 
the foreground and, furthermore, do not belong to reflection noise (not operation). Next, we proceed 
to eliminate shadows by applying a shadow-filtering operator. The dynamics of this operator is 
identical to the reflection-filtering operator. Now, however, the shadow noise needs to be removed. 
Thus, the detection stage is done by calculating the shadow map from eq. (13). Furthermore, the 
filtering stage is done by applying an operation and between the foreground obtained after 
eliminating the reflection noise and the result of applying an operation not on the shadow map (see 
Figure 4). With the application of shadow-filtering operator, the foreground from the final stage of 
the segmentation process is obtained.  
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Figure 4. Flow chart of the truncated cone method. The broken lines represent updating mechanisms that are executed 
after obtaining the final foreground and the charging/discharging of permanence memory. 
 
 
As indicated in Figure 4, the final segmentation, in addition to the MVOs, may contain ghosts and 
background noise. The appearance of this first type is temporary, i.e., the ghost pixels, if they exist, 
only appear during the time interval that the respective positions of the permanence memory take to 
charge to the value chosen for Cmax. From this instant, the pixels associated with these positions 
disappear from the foreground. This is a direct consequence of how background is updated, see eq. 
(19). Conversely, the appearance of background noise will depend on the number of MVO pixels 
that are confined in the truncated cone regions shown in Figure 3. Nevertheless, given that the size 
of these regions is delimited by small angle and height values, their final volume will also be small 
and, therefore, the hypothesis is that the number of pixels missing in the foreground belonging to 
MVOs (background noise) will also be small. Otherwise, the solution is to apply morphological 
post-processing to the ‘Final Foreground’ (see Figure 4) to recover approximately the missing 
pixels. Finally, Figure 5 complements the flow chart and it represents the pseudocode algorithm of 
the truncated cone segmentation method. 
 
6. Experimental results 
In this section we showed the results obtained after making several experiments and comparing our 
method with other approaches in different video sequences. Nevertheless, in the first place, an 
output example of each of the stages in the process from applying the TCM to a video sequence will 
be shown (see Figure 6). Thus, from the image frame in Figure 6a, with the application of the angle-
module rule it is possible to obtain the map shown in Figure 6b where, as well as the MVO, other 
noise blobs can be seen. Immediately after, the application of the operator to eliminate reflections 
produces the map shown in Figure 6d. The map in Figure 6c shows all the undesired reflection 
noise that was filtered. Figure 6e shows the shadow noise in the scene and using the filtering 
operator to eliminate shadows gives the foreground map depicted in Figure 6f. As indicated in the 
previous section, to refine even more the quality of the foreground obtained, the post-processing 



stage is applied, which here simply consists of applying a filtering operator of small isolated points. 
On other occasions, this filtering is usually followed by a morphological closing to compensate for 
the noise due to background noise. The post-processing result is the final foreground map that is 
shown in Figure 6g. Figure 6h shows the RGB segmentation of the original image using the post-
processing foreground map as a mask. The other subfigures show the current state of the different 
dynamic maps used by the method. Thus Figure 6i shows the state of the background model,  
Figure 6j-k represents the map of the angle and module threshold matrix, respectively, and Figure 6l 
shows the state of the permanence memory. 
 

 

Initially: 
B0(x,y)=I0(x,y) 
∀x,y, PM0(x,y)=0,  Ω1(x,y)=Cte1, and H1(x,y)=Cte2 
 

FOR t=1 TO t=tfinal 
 

1. Computes module difference matrix, Δtmod, and 
angle matrix, Θt: see eq. (1) and (4), respectively 
 

2. Computes foreground, Ft: see eq. (8) 
 

2. Computes reflection map, Rft(x,y): see eq. (14) 
 

3. Updates foreground, Ft(x,y)= Ft(x,y) & ¬ Rft(x,y) 
 

4. Computes shadow map, Sht(x,y): see eq. (13) 
 

5. Computes final foreg., Ft(x,y)= Ft(x,y) & ¬ Sht(x,y) 
 

6. Charges/discharges permanence memory, PMt: 
 eq. (18) see     

7. U        
pdates background, Bt+1(x,y): see eq. (19) 

8. Updates thresholds, Ωt+1(x,y) and Ht+1(x,y): see 
eq. (10) and (11), respectively. 

 

ENDFOR 
 

Figure 5. Algorithm in pseudocode of the truncated cone method. 
 
 
To show the quantitative results of the TCM, we are going to work with two types of video 
sequence. The first sequence, which we have called Human walks, consists of colour image frames 
of 320x240 pixels. The main characteristic of this sequence is that, although it does not present a 
very complex background, it does contain mainly reflection and shadow noise. In this instance, a 
human appears on the left of the scene, carries a suitcase in one hand and a coat in the other, walks 
and, finally, disappears on the left. The second scene, Hall Monitor, is a 352x240 pixel colour 
image frame sequence, frequently used in benchmarking. This sequence presents a complex 
background, the moving objects are relatively small and, moreover include non-uniform lighting 
and noise which makes the segmentation process more difficult.  
 
First, we are going to do an experiment to compare the quality of segmentation obtained by 
applying just the angle-module rule, i.e., not using the noise filtering operators, with that obtained 
by applying simple background subtraction. In both instances dynamic updating of the background 
model and thresholds is done. With the angle-module rule, since the colour management is done 
naturally, colour images will be used. This does not occur in background subtraction, so this will be 
applied to the same former images but after they have been transformed to the grey-level using a 
linear combination of the three RGB components. The aim of this experiment is to analyse the 
importance of working or not in colour and whether the need to update the two threshold maps that 



the angle-module rule requires is justified, compared with updating just one threshold map in 
background subtraction. The comparison will be done in terms of sensitivity (Se=TP/TP+FN) and 
specificity (Sp=TN/TN+FP), with TP and FP, true and false positives, and TN and FN, true and 
false negatives, respectively. Sensitivity computes the percentage of the MVO pixels detected by 
the method compared with the real MVO pixels existing in the scene. If in a frame no MVOs exist 
and, after applying the segmentation method, TP=FN=0 is obtained, then the indetermination 
obtained from trying to calculate the sensitivity value, will be resolved doing Se=1. Moreover, 
specificity computes the percentage of background pixels detected by the method regarding the real 
background pixels in the scene. Sensitivity is directly related to background noise. Thus, the lower 
the number of holes and/or fractures in the segmented MVO silhouette, the greater the sensitivity. 
Specificity, on the other hand, is related to the remaining noise. In other words, when fewer 
shadows, reflections, fluctuation and ghosts are obtained in the segmentation result, the greater the 
specificity value. Thus, perfect segmentation would produce a sensitivity and specificity value equal 
to 1. Figure 7 shows the results of the comparison for the Human walks sequence. It can be seen 
that the angle-module rule produces greater sensitivity (Figure 7a) and specificity (Figure 7b) in 
virtually all the sequence frames. This supremacy of the angle-module rule is repeated in the 
relatively more complex Hall Monitor sequence (see Figure 8). 
 
 
 

 
 

Figure 6. Output example of each of the stages in the truncated cone method applied to a video sequence frame. 
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Figure 7. Comparison of the simple background subtraction (Backg. Subt.) and the angle-module rule (A&M rule) 
applied to the Human Walks sequence.(a) Sensitivity, (b) Specificity. 
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Figure 8. Comparison of the simple background subtraction (Backg. Subt.) and the angle-module rule (A&M Rule) 
applied to the Hall Monitor sequence. (a) Sensitivity, b) Specificity. 
 
When the advantages of the angle-module rule had been analysed, the effect of the noise filtering 
operators on the two work sequences was studied which, along with this rule, compose the 
truncated cone method. The sensitivity analysis on the Human Walks sequence (Figure 9a) revealed 
that the effect of the noise filtering operators on the final segmentation was to slightly increase the 
background noise (decreased sensitivity) in comparison with the results obtained by applying the 
angle-module rule. This is because the filtrate operators not only eliminate pixels associated to 
noise but that also eliminate all those MVO pixels contained in the truncated cone regions 
associated to noise. This circumstance was described in section 5. However, it is possible to 
eliminate a large part of this noise by applying post-processing to the foreground obtained with the 
TCM. Specifically, in this instance morphological closing was applied and the final result improved 
sensitivity. However, where the TCM is highly competitive is the elimination of the remaining 
noise. This is evident in the high specificity value close to 1 (see Figure 9b), obtained with the TCM 
for practically all the sequence frames. As was to be expected, the effect of morphological post-
processing adds some false positives to the final segmentation and slightly decreases specificity 
compared with the TCM output without post-processing. Figure 10 shows the qualitative result of 
the segmentation process for some frames of this sequence. Similarly, the sensitivity (Figure 11a) 
and specificity results (Figure 11b) obtained for the Hall Monitor sequence are similar to the ones 



mentioned for the previous sequence. Lastly, Figure 12 shows the final qualitative segmentation 
result for some of the frames in this sequence. 
 

 
Figure 9. Comparison of the resulting segmentation from applying the angle-module rule (A&M rule), the truncated 
cone method without post-processing (TCM) and with processing (TCM+Postp) to the HumanWalks sequence. (a) 
Sensitivity, (b) Specificity. 
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Figure 10. TCM segmentation results for some frames of the HumanWalks sequence. For each column from top to 
bottom, the first box contains the current image, the second and third show the foreground resulting from eliminating 
sequentially reflections and shadows, and the fourth shows the final segmentation after applying post-processing. 
 
 



 
Figure 11. Comparison of the resulting segmentation from applying the angle-module rule (A&M rule), the truncated 
cone method without post-processing (TCM) and with processing (TCM+Postp) to the Hall Monitor sequence. (a) 
Sensitivity, (b) Specificity. 
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Figure 12. TCM segmentation results for some frames of the Hall Monitor sequence. For each column from top to 
bottom, the first box contains the current image and the second shows the final segmentation after applying post-
processing.. 
 
To illustrate reactivity of the TCM stage to eliminate ghosts, based on the permanence memory 
concept, our strategy will be compared with that proposed by (Dedeoglu, 2004), based on the idea 
of dynamically updating the background model with eq. (16). To compare both strategies a 
sequence1  piece will be used where the first frame, used as initial background model, already 
contains moving objects (see Figure 13a). The displacement of these objects in successive frames 
will cause ghosts to appear when they abandon the positions that they had in the initial frame. As 
mentioned in section 4.4, the saturation charge constant, Cmax, see eq. (19), and β, see eq. (16), 
condition the reaction speed. Thus, a low value in both instances will provide a greater reactivity. 
Nevertheless, the segmentation deteriorates because the updating of the background model is so fast 
that the background takes the moving object’s pixels, causing a characteristic wake-effect (see 
Figure 13b). Consequently, so that the goodness of the result of both methods are not dependent on 
the value chosen for these constants, their value is taken in such a way that the capacity to react is 
maximum but without causing any wake-effect on the sequence being studied. Specifically, 
Cmax=48 and β=0.97. The qualitative result of the process for eliminating ghosts for both methods 
can be seen in Figure 13. Note that at the instant when the ghost (vehicle initial position) is 
eliminated in the background model (Figure 13c) and, consequently, in the segmentation output 
(Figure 13d) with the TCM, it just begins to fade into the background model (Figure 13e) obtained 
with the Dedeoglu’s strategy, but it is still present in the segmentation output (Figure 13f).  
 
                                                           
1 PETS’2001 Dataset (http://ftp.pets.rdg.ac.uk/) 



 
Figure 13. Qualitative comparison of the capacity to react to eliminate ghosts using the truncated cone method (TCM) 
and the strategy proposed by (Dedeoglu, 2004). (a) Frame no. 608, initial frame, (b) example of increased reactivity, 
which can be achieved with both methods, at the expense of bad segmentation, (c) frame no. 634, elimination of the 
ghost from the background model and (d) from the segmentation output using the TCM, (e) frame nº 634, ghost remains 
in the background model and, therefore, (f) it is still present in the segmentation output according to the strategy 
proposed by Dedeoglu. 
 
Figure 14 shows a more detailed analysis, where the number of FP and FN for each sequence frame 
is counted. Obviously, when the ghosts are eliminated, the FP provide the most information on the 
process because, at very moment, every ghost pixel always increases the FP count. Thus in Figure 
14b three very different zones can be established. The first zone, FP increase to a maximum, 
corresponds to the appearance of the ghost that increases its size as the vehicle follows its trajectory 
and abandons the position in the initial frame. The second zone, FP decrease to a low value, 
corresponds to the progressive updating of the background model because of the progressive 
charging of the permanence memory to the saturation value. The third zone, FP stay around a low 
value, corresponds to the stationary situation where the ghost has been completely eliminated from 
the background model. As it is shown in the Figure 14b, our strategy, as well as identifying the 
ghost pixels sooner, also updates the background model more quickly. Furthermore, the evolution 
of the FN (Figure 14a), as was to be expected, is practically the same in the two instances. The high 
value of the FN in the initial frames is because, first of all, the background model contains the very 
vehicle and until this abandons its initial position there will be colour coincidences between part of 
the vehicle and the background, causing background noise in this zone. In this example, bearing in 
mind that the value chosen for the saturation charge was Cmax=48, and that the sequence was 
recorded at 25 fps, it means that the ghost would appear in the scene during a time equivalent to less 
than 2 seconds recording time. Note that if the situation had been that of a parked car that starts up 
and begins its movement or that of a moving car that parked, the ghost associated with both 
situations would also be eliminated after Cmax frames. It should also be mentioned that with the 
ghost eliminating strategy the sequence on which the TCM is going to be applied no longer needs to 
be initialized with a set of frames where there are no moving objects. Finally, compared with other 
ghost eliminating strategies, ours has the advantage of being very fast computationally because it 
only requires checking one condition that is a function of the permanence memory values and, in 
turn, the updating of the PM only implies updating the values of a matrix by the addition of a 
constant. Thus, for example, in Sakbot (Cucchiara et al, 2003) several conditions have to be 
checked. One of them implies some computational cost because it has to calculate the average 
optical flow of the pixels of each blob that appears in the foreground. Nevertheless, Sakbot has the 



advantage of not depending on the value of an initialisation constant, as indeed occurs in our 
strategy with the constant Cmax. 
 

 
Figure 14. Comparison of reactivity to eliminating ghosts using the trunk cone method (TCM) and the strategy based on 
the proposal by (Dedeoglu, 2004). (a) False negatives, and (b) False positives. 
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7. Conclusions 
The principal contribution of this work is twofold: first, it provides a new segmentation method 
based on the well known background subtraction method and, secondly, it establishes a set of rules 
that allows the characterization of the different objects detected in the segmentation process: 
MVOs, shadows, reflections, fluctuations, ghosts and background noise. With this blob-level 
knowledge, the method proposed here significantly improves MVO segmentation and background 
updating. The application of shadow, ghost and reflection filtering operators is based on blob-level 
knowledge and therefore leads to better understanding and prediction of the result of their action. 
This aspect is important as it facilitates the understanding of the result of each stage of the process. 
Furthermore, the truncated cone method is completely independent of later stages typical of a vision 
system like, for example, tracking and classification. In addition, it uses colour in an intuitive and 
natural way. Although the description of the method has been done in the framework of the RGB 
space, TCM could also be applied to any other colour space. 
 
It is also important to highlight one of the most powerful characteristics of the TCM: its low 
computational cost. Unlike other background subtraction methods that do complex statistical 
background calculations for each frame, ours only requires the application of low computational 
cost rules and operators, and simple updatings of different model maps (background, thresholds and 
permanence memory). Thus, for example, for a Pentium M 1.8GHz, the video sequence used in 
Figure 10 (320x240 pixel image frames) and a implementation of TCM in MATLAB, the average 
frame rate is of 0.47 s. If we bear in mind that MATLAB is an interpreted language, it is not 
disproportionate to think that, for a compilable language, the previous ratio can be reduced by a 
factor of 10, i.e., reaching a ratio lower than 0.047 s. Consequently, ratios higher than 21 fps could 
be reached and thus, we would be talking of the possibility of doing tracking and classification in 
real time. The Sakbot system (Cucchiara et al, 2003) reports an average frame rate of 9.82 fps, for a 
sequence with the same dimension frames and with Pentium 4, 1.5 GHz. As well as low 
computational cost, the method also includes eliminating shadows, reflections and ghosts compared 
with other approaches based on background subtraction method that make segmentation but do not 
eliminate any kind of noise (Kim and Kim, 2003). Specifically, in (Kim and Kim, 2003) the authors 
report a processing time of 0.23s on average, with a image frame size of 320x340, in a Pentium III 
850-MHz PC and using an MS Visual C++ implementation. Finally, the TCM was successfully 
tested in different types of scenes, indoor and outdoor environments and with artificial/natural light. 
Figure 15 shows the result of segmentation in different frames from some of these video sequences. 
 



 

 
Figure 15. Examples of segmentation with the TCM applied to different types of sequences: indoor and outdoor. (a) 
Four frames of the Highway1 sequence, (b) Four frames of the AVSS PV Easy2 sequence, (c) Two frames of the AVSS 
AB Easy2 sequence, (d) Two frames of the Walk13 sequence (in this last sequence, in order to increase the detail, a 
zoom has been done in the segmented frame). 
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