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Abstract

Background: Several methods, such as the half-cycle correction and the life-table

method, were developed to attenuate the error introduced in Markov models by the

discretization of time. Elbasha and Chhatwal have proposed alternative �corrections�

based on numerical-integration techniques. They present an example whose results

suggest that the trapezoidal rule, which is equivalent to the half-cycle correction, is

not as accurate as Simpson's 1/3 and 3/8 rules. However, they did not take into

consideration the impact of discontinuities.

Objective: To propose a method for evaluating Markov models with discontinu-

ities.

Design: Applying the trapezoidal rule, we derive a method that consists in adjust-

ing the model by setting the cost at each point of discontinuity to the mean of the left

and right limits of the cost function. We then take from the literature a model with a

cycle length of 1 year and a discontinuity on the cost function and compare our method

with other �corrections� using as gold standard an equivalent model with a cycle length

of 1 day.

Results: As expected, for this model the life-table method is more accurate than

assuming that transitions occur at the beginning or the end of cycles. The application

of numerical integration techniques without taking into account the discontinuity causes

large errors. The model with averaged cost values yields very small errors, especially

for the trapezoidal and the 1/3 Simpson rules.

Conclusion: In the case of discontinuities, we recommend applying the trapezoidal

rule on an averaged model because this method has a mathematical justi�cation and

in our empirical evaluation it was more accurate than the sophisticated 3/8 Simpson

rule.
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1 Introduction

Markov models are the most popular modeling framework in health technology assessment

(Beck and Pauker, 1983; Sonnenberg and Beck, 1993). They represent the state of a patient

as a set of mutually exclusive and exhaustive health states, such that the patient is in one

and only one of them at a time. All the possible events are represented by transitions from

one state to another. Every state has an associated cost and an e�ectiveness value. The total

cost and e�ectiveness, accumulated over time, determine the net bene�t of each intervention.

In economic evaluations of health technologies most Markov models use a discrete-time

approach, i.e., the time horizon is divided into a �nite number of intervals of the same

length, called cycles. In the classical presentation of these models, transitions can only occur

at the boundary between consecutive intervals. The evaluation of a Markov model applies

transition matrices to calculate for each cycle the probability that the patient is in one or

another state. In the case of monotonically decreasing costs�which typically happens when

patients are dying progressively�the assumption that transitions occur at the end of each

cycle overestimates the cost, and assuming that they occur at the beginning underestimates

it. The half-cycle correction (HCC) (Sonnenberg and Beck, 1993; Naimark et al., 2008) tries

to minimize the error by adding a cycle of half duration at the beginning of the process,

which can be interpreted as assuming that transitions occur exactly in the middle of each

cycle. Current guidelines for economic evaluation of health technologies recommend using

this correction (Siebert et al., 2012). However, in recent years there has been a controversy

about how to interpret and apply this method, and whether it should be replaced with a

di�erent approach, the life-table method, which averages the probabilities of state occupancy

at the boundaries of each interval (Naimark et al., 2008, 2013, 2014; Barendregt, 2009, 2014).

(Some authors present life tables as a way of implementing the HCC, but we refer to them

as a di�erent method for the sake of clarity.)

Recently Elbasha and Chhatwal (2016a,b) have proposed alternative within-cycle correc-
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tions based on numerical-integration techniques, which assume that cost and utility evolve

continuously over time. These authors present an example whose results �suggest that the

standard HCC method and the trapezoidal rule are not as accurate as Simpson's 1/3 and

3/8 rules� (Elbasha and Chhatwal, 2016a).

However, some medical models include abrupt changes in costs at certain points in time;

for example, when expensive drug treatments are provided only for a limited time. In

this case, the application of numerical integration may cause large errors because these

techniques are very sensitive to the values of cost chosen for the points of discontinuity.

Intuitively, a discontinuity is an abrupt change in the value of a function, as in Figure 2.

For a mathematical de�nition, see Sec. 2.1.2. In this paper we propose a new method for

evaluating Markov models with discontinuities, based on the application of the trapezoidal

rule. At the points of discontinuity, instead of setting the cost to the left or the right limit

of the cost function, we set it to the average of the limits. We then take a model from the

literature�in fact, the model that made us aware of the problem of discontinuities�and,

using a slightly modi�ed version of it as a gold standard, compare several �corrections�. Our

experiments show that the direct application of numerical integration may cause large errors,

while the averaged model returns very accurate results, especially when evaluated with the

trapezoidal and 1/3 Simpson rules.

2 Methods

2.1 Evaluation of Markov models

A discrete Markov model consists of a (usually �nite) set of states, together with a prob-

ability distribution P0(s) for the states at time 0 and a transition function that describes

the dynamics of the system and allows to compute the distribution Pt(s) for any point in

time after 0�see Eq. 3 below. This is sometimes called state membership function because

it indicates the probability that the system (the patient) is in state s at time t. Markov
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models used for economic evaluation also contain functions that specify the cost and the

e�ectiveness for every state at each moment, c(s, t) and e(s, t) respectively, and discount

functions for them. In this paper we focus on how to calculate the costs; the calculation of

e�ectiveness is analogous.

Let c(s, t) be the cost function and γ(t) the corresponding discount function; necessarily,

γ(0) = 1. The instantaneous discounted cost is

c(t) =
∑
s

Pt(s) · c(s, t) · γ(t) (1)

and the total cost is

C =

∫ tf

t0

c(t) · dt . (2)

In most models the cost function c(t) decreases monotonically because the cohort that enters

the model requires fewer and fewer resources as patients progressively die.

2.1.1 Evaluation of discrete-time Markov models

Discrete-time Markov models divide the time into a �nite number of intervals of the same

length, τ , called cycles. When the model is evaluated for a limited number of cycles, h (the

horizon), the time points that delimit the intervals are {0, τ, 2τ, . . . , hτ}. The probability of

being in state s at time iτ is

Pi(s) =
∑
s′

Pi(s | s′)Pi−1(s′) . (3)

where Pi(s | s′) is the transition matrix. When the transition matrix is time-independent,

we can drop the subindex and just write P (s | s′). (In order to simplify the notation, we

have written Pi(s) instead of Piτ (s).) This way we obtain a set of probability distributions,

{P0(s), P1(s), . . . , Ph(s)}. Applying Equation 1 we can obtain the cost at the points that

separate the cycles, {c(0), c(τ), . . . , c(hτ)}.
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When the probability function Pt(s) and the cost function c(s, t) vary smoothly, so does

the instantaneous discounted cost, c(t). Then the trapezoidal rule approximation says that

the cost accrued in the i-th cycle is

∫ (i+1)τ

iτ

c(t) · dt ≈ c(iτ) + c((i+ 1)τ)

2
· τ , (4)

and consequently the cost

CTR =
τ

2
· c(0) + τ

h−1∑
i=1

c(iτ) +
τ

2
· c(hτ) . (5)

is a good approximation of the total cost, C.

2.1.2 Evaluation of discrete-time Markov models with discontinuities

In mathematics, a function c(t) is continuous at a point t′ when

lim
t→t′+

c(t) = lim
t→t′−

c(t) = c(t′) ; (6)

otherwise, there is a discontinuity at t′.

When c(s, t) is discontinuous at the boundaries of the i-th interval and continuous inside,

Equation 4 should be replaced with

∫ (i+1)τ

iτ

c(t) · dt ≈ τ ·
(

lim
t→iτ+

c(t) + lim
t→(i+1)τ−

c(t)

)
. (7)

If we de�ne

c∗(s, t) =
1

2

(
lim
t→iτ−

c(s, t) + lim
t→iτ+

c(s, t)

)
, (8)

and use this value instead of c(s, t) when applying Equation 1 to compute the instantaneous

cost, then Equation 5 is still a good approximation of the total cost. This means that if the

cost function c(s, t) is discontinuous at iτ for a state s, we can apply the trapezoidal rule
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provided that in the model we set the cost for c(s, iτ) to the average of the left and right

limits of c(s, t). This is the �correction� we propose for the evaluation of Markov models

with discontinuities.

2.2 Empirical evaluation

2.2.1 Our gold-standard

In order to compare several methods for the evaluation of Markov models, other authors have

used synthetic examples (Soares and Canto e Castro, 2012; Naimark et al., 2013; Baren-

dregt, 2014; Elbasha and Chhatwal, 2016a,b). In this paper we use a slightly modi�ed

version of a real-world model, built by Chancellor et al. (1997) to determine the incremen-

tal cost-e�ectiveness ratio (ICER) of two interventions for HIV: monotherapy, which only

applies zidovudine, and combination therapy, which adds lamivudine for two years, until

it becomes ine�ective for clinical reasons. The model has a cycle length of 1 year and

was evaluated for a horizon of 20 years. It is now obsolete for clinical practice because

there are more e�ective treatments for HIV, but it is still useful for pedagogic purposes.

In particular, this model is studied as an example in the book of Briggs et al. (2006).

An Excel version of the original model is available at www.herc.ox.ac.uk/downloads/

decision-modelling-for-health-economic-evaluation. We have reimplemented it as

a Markov in�uence diagram (MID) (Díez et al., 2017)�see Fig. 1�using OpenMarkov, an

open source tool developed by our group (Arias et al., 2017). The model is available at

www.probmodelxml.org/networks.

The inaccuracy introduced by the discretization of time into cycles increases with the

cycle length: when it approaches 0, all the methods studied in this paper converge to the

same results as a continuous-time model (Soares and Canto e Castro, 2012; Naimark et al.,

2008, 2013; Barendregt, 2014; Chhatwal et al., 2016; Elbasha and Chhatwal, 2016b). This

should be our gold standard for comparing the accuracy of di�erent methods. However, it
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Figure 1: A Markov in�uence diagram for the HIV model of Chancellor et al. (1997). The
rectangular node represents the decision of applying either monotherapy or combined ther-
apy. Rounded rectangles represent variables that are not under the direct control of the
decision maker. Hexagons represent costs and e�ectiveness; their value only depends on the
state of the patient, except for the cost of lamivudine, which also depends on the choice of
therapy and the time in treatment. This node induces a discontinuity because lamivudine is
withdrawn at the end of the second year.

is impossible to adjust the transition rates so that they lead to exactly the same transition

probabilities as in the Markov model (Chhatwal et al., 2016). So we used as gold standard

a Markov model with a cycle length of 1 day leading to annual transition probabilities very

close to the original ones, and then used the model with these new annual probabilities to

compare the di�erent �corrections�. Figure 2 shows that the cost function, calculated with the

daily-transitions model, has a discontinuity at t = 2, when the patients in the combination

therapy arm stop receiving lamivudine.

2.2.2 Comparison of di�erent approximations

As mentioned in the introduction, we have applied three �classical� approaches. Two of them

are based on the assumption that transitions occur at the beginning or at the end of each

cycle. The third is the life-table method (Barendregt, 2009, 2014), which �rst averages the

occupancy probabilities at the boundaries of the cycle and then calculates the discounted

costs. Another classical approach is the HCC, which cannot be applied to this model because
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Figure 2: Instantaneous cost for combination therapy obtained from our gold standard,
i.e., the model with a cycle length of one day. It has a sharp discontinuity at t = 2. The
upper plot results from assuming that combination therapy is applied throughout the interval
[0, 2 years), and the plot in the middle throughout the interval (0, 2 years]. The lower plot
is obtained from the model in which the costs at t = 2 are the average of the limits.
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it assumes that the cost function for each state is constant. These methods are explained in

more detail in the Appendix.

We have also applied three of the numerical-integration methods proposed in (Elbasha

and Chhatwal, 2016b): the trapezoidal rule and two Simpson rules, called 1/3 and 3/8.

(We did not study the Riemann-sums rules because they are equivalent to the �classical�

techniques that assume that transitions occur at the beginning or the end of each cycle.)

These methods are based on the instantaneous cost values, {c(0), c(τ), . . . , c(hτ)}, which

correspond to the dots in the three plots in Figure 2. Unlike the classical approaches,

numeric integration is sensitive to the value of the cost function at t = 2, and for this reason

we have examined the three cases shown in Figure 2.

3 Results

Table 1 summarizes the results obtained with each method. As expected, the approaches

that assume that transitions occur at the beginning or the end of each cycle give higher

errors than the life-table method.

We also observe that numerical integration is very sensitive to the value of the cost

functions at the point of discontinuity because these methods try to estimate the value of

the cost, c(t), around the point t = 2 by �propagating� it towards its left and its right.

Thus, taking the left limit (as in the upper plot in Figure 2) overestimates the cost of

combination therapy and, in turn, increases the ICER by 13% with respect to the gold

standard. Reciprocally, taking the right limit underestimates the cost and reduces the ICER

by a similar amount. In contrast, the estimates obtained from the averaged model (lower

plot in Figure 2) are much more accurate. The �rst of them, based on the trapezoidal rule,

is justi�ed by the analysis in Section 2.1.2. The second and the third are based on the

two Simpson rules. Even though we have no mathematical justi�cation for them, in this

particular example the 1/3 rule is more accurate than the trapezoidal rule. However, the
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Method ICER
(�/QALY)

Percentage error
(%)

Gold standard (cycle length = 1 day) 6,543
Classical approaches
transitions at the beginning of cycle 6,680 2.09
transition at end of cycle 6,401 −2.17
life tables 6,539 0.06

Numerical integration
� Left limit at t = 2 years

trapezoidal 7,440 13.71
1/3 Simpson 7,146 9.22
3/8 Simpson 7,603 16.20

� Right limit at t = 2 years
trapezoidal 5,640 −13.80
1/3 Simpson 5,945 −9.14
3/8 Simpson 5,579 −14.73

� Average of limits at t = 2 years
trapezoidal 6,540 −0.05
1/3 Simpson 6,545 0.03
3/8 Simpson 6,590 0.72

Table 1: Impact of di�erent within-cycle correction methods in the ICER and the percentage
error with respect to gold standard. (ICER: incremental cost-e�ectiveness ratio. QALY:
quality-adjusted life year. HCC: half-cycle correction.)

estimate made by the 3/8 rule is much worse that the others. This result might be surprising

at �rst sight because this rule is in general more accurate than the others. The explanation

is that in the presence of a discontinuity the attempt to approach the non-linearity of the

function as faithfully as possible leads to an �overadjustment� that results in the opposite

e�ect.

With respect to computational e�ciency, the evaluation of the gold standard model, with

daily transitions, required 22.64 hours, while the classical approaches and the numerical-

integration methods applied to a model with yearly transitions only took one or two seconds

(1.40 s on average). Each evaluation has been made using the algorithm described in Díez

et al. (2017).
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4 Discussion

The usual way of presenting discrete-time Markov models states that transition can only

occur at the boundaries between cycles, i.e., at t = 0, τ, 2τ, 3τ . . . When transitions are

allowed at t = 0, most authors say that �transitions occur at the beginning of the cycle�;

when they are not allowed, it is said that �transitions occur at the end�. Both assumptions

lead to inaccuracies when computing accumulative outcomes, such as cost and e�ectiveness.

HCC was proposed by Sonnenberg and Beck (1993) as a method for obtaining more

accurate estimates. Naimark et al. (2008) o�ered two analytical justi�cations of HCC with

didactic purposes. Their idea was criticized as a �kludge� in a paper entitled �The half-

cycle correction: banish rather than explain it� (Barendregt, 2009), which argued that HCC

should be replaced with a more accurate technique, the life-table method. A few years later

Naimark et al. (2013) proposed several modi�cations aimed at �redeeming the kludge�, but

again Barendregt (2014) criticized their work severely, to the point that Naimark et al. (2014)

surrendered and accepted that �the standard approach to the HCC is �awed and should be

abandoned�.

In our opinion, the problem was that in (Sonnenberg and Beck, 1993) and (Naimark

et al., 2008) the HCC was not justi�ed as the application of the trapezoidal rule to the

instantaneous discounted cost but as its application to the state-occupancy probabilities in

order to subsequently calculate the cost and e�ectiveness accrued in each cycle. That was

the source of several mathematical inconsistencies and made the HCC impossible to apply

when the cost function is discontinuous (Barendregt, 2009, 2014). Another problem of the

traditional way of presenting the HCC is the assumption that transitions can only occur at

the boundary between cycles�an idea repeated again and again in the literature. However,

Elbasha and Chhatwal (2016a,b) showed that (in the absence of discontinuities) the trape-

zoidal rule returns exactly the same result as the HCC�see Sec. A.2 in the Appendix�but

the interpretation is di�erent, because that rule does not assume that transitions only occur
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at the boundaries between cycles or halfway through each cycle.

Elbasha and Chhatwal also argued that more sophisticated numerical-integration tech-

niques, such as Simpson 1/3 and 3/8 rules, generally give more accurate results than the

trapezoidal rule when the function of interest is not linear inside each cycle. Unfortunately

they did not take into account one of Barendregt's criticism of the HCC: its inaccuracy when

the model has discontinuities, a problem which also a�ects numerical-integration approaches.

We faced it when evaluating the HIV model: the cost function has a severe discontinuity at

the end of the second year, when lamivudine becomes clinically ine�ective and is withdrawn.1

Common sense says that it does not matter whether it is withdrawn just one second before

t = 2 or one second later, so a model in which lamivudine is applied in the interval [0, 2)

should give the same results as if it is applied in the interval [0, 2]. A continuous-time model

would be insensitive to this modeling decision, but numerical integration is very sensitive to

the cost at t = 2. In our example, the di�erence between withdrawing lamivudine just before

or after t = 2 is higher than 27%; the error with respect to the gold standard is ±13%. If the

ICER estimated is close to the willingness-to-pay threshold, this error may lead to making

a wrong decision.

Table 1 also shows that the errors were reduced when applying numerical-integration

techniques on a model in which the cost at t = 2 is the average between administering

lamivudine and not administering it. The application of the trapezoidal rule to this model is

justi�ed by the algebraic analysis in Section 2.1.2 and results in an error of only −0.05% in

the ICER. The 1/3 Simpson rule also gives a small error, 0.03%. These are smaller than the

0.06% of the life-table method and much smaller than the 0.72% of the 3/8 Simpson rule.

A limitation of our study is that we have only studied one model. Further studies are

necessary in order to determine to what extent the qualitative results obtained generalize

to other models. However, our analysis serves at least as a warning that in the case of

discontinuities numerical-integration techniques may give wrong results because they were

1The cost function c(s, t) is discontinuous only for the three states in which the patient is alive. When
the patient is dead (fourth state) there is no discontinuity.
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designed for continuous functions.

Most of the issues arising from discretization into cycles can be mitigated (if we have

data) by choosing an appropriate cycle length (Soares and Canto e Castro, 2012). Likewise,

most problems arising from discontinuities could be addressed by choosing the appropriate

within-cycle correction�based on the domain knowledge.

Finally, we should mention that some costs are incurred continuously over time while

others occur at speci�c points in time. For example, in the case of cochlear implants,

there is the upfront cost of the device and the surgery (Pérez-Martín et al., 2017). These

costs should be accounted for separately, excluding them in any within-cycle correction, as

explained by Elbasha and Chhatwal (2016a).

5 Conclusion

In many cases it is not possible to build a continuous-time Markov model or to shorten the

cycle length of a given discrete-time model (Chhatwal et al., 2016), but so-called �within-

cycle corrections� may give very good approximations (Soares and Canto e Castro, 2012;

Elbasha and Chhatwal, 2016a,b). However some models have discontinuities in costs due

to the withdrawal of expensive therapies. (There might also be discontinuities in the ef-

fectiveness, but we have not found any example.) In this case, the direct application of

those �corrections� may lead to signi�cant errors. We have proved mathematically that the

trapezoidal rule�formally equivalent to the half-cycle correction but with a di�erent inter-

pretation�yields a good approximation also when the cost function has discontinuities at

the boundaries between cycles but is constant or varies smoothly within each cycle, provided

that it is applied on a model in which the value of the instantaneous cost function at each

point of discontinuity is set to the average of the left and right limits, as dictated by Equa-

tion 8. In the real-world model we have studied, the 1/3 Simpson rule also gave a good result,

even though we did not have mathematical justi�cation for it, but the 3/8 Simpson rule,
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which is more accurate for models without discontinuities, introduced signi�cantly larger er-

rors. As a conclusion, when a model has discontinuities we recommend building an averaged

model and applying the trapezoidal rule instead of more sophisticated numerical-integration

techniques.
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A Appendix: A comparison of classical methods

In recent years we have witnessed an interesting debate: HCC vs. the life-table method (LT).

Even though the controversy seems to be closed after the insightful analyses of Elbasha and

Chhatwal (2016a,b), we hope that this appendix can still shed some light on the issue. Here

�classical methods� are those not based on numerical integration.

A.1 Absence of within-cycle transitions

The usual way of presenting discrete-time Markov models states that transition can only

occur at the boundaries between cycles, i.e., at t = 0, τ, 2τ, 3τ . . . It implies that the state

of the system does not change within a cycle. When transitions are not allowed at t = 0,

most authors say that �transitions occur at the beginning of each cycle�. In this case the

probability in the interval [iτ, (i+1)τ) is Pi(s). With these assumptions and approximations,
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the total cost is

CE = τ
h−1∑
i=0

∑
s

Pi(s) · ci(s) · γ(iτ) , (9)

where the subindex E stands for �end�. When the instantaneous cost function (cf. Eq. 1)

decreases monotonically, this assumption leads to an overestimation of the total cost, i.e.,CE

is higher than the true cost, C, given by Equation 2.

When transitions at t = 0 are allowed, it is said that �transitions occur at the beginning

of the cycle�. Therefore the probability in the interval (iτ, (i + 1)τ ] is Pi+1(s) and the total

cost is

CB = τ
h−1∑
i=0

∑
s

Pi+1(s) · ci(s) · γ(iτ) , (10)

where the subindex B stands for �beginning�. When the cost function decreases mono-

tonically, this assumption leads to an underestimation of the total cost, so that we have

CB < C < CE.

A.2 The half-cycle correction

In an attempt to obtain a better approximation, Sonnenberg and Beck (1993) introduced

the half-cycle correction, which consists in including a cycle of length τ/2 at the beginning

of the process, in which no transition has yet occurred, and another cycle of the same length

at the end, so that the total duration of the process is hτ . This is equivalent to assuming

that the transitions occur at the time points {0.5τ, 1.5τ, 2.5τ, . . .}, i.e., halfway through each

cycle (Sonnenberg and Beck, 1993; Naimark et al., 2008). The approach is justi�ed in the

literature as a method for approximating the state-occupancy probabilities�the vertical axis

in Figure 10 in (Sonnenberg and Beck, 1993), reproduced as Figure 3 in (Naimark et al.,

2008), clearly shows it. Those �gures also show that the HCC still assumes that transitions

only occur at certain points in time, which makes the occupancy probability constant between

consecutive points.

The approximate state-occupancy probabilities are multiplied by the cost of each state
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to compute the cost accrued in each interval. This calculation makes sense when the cost is

constant, but encounters a problem when there is an abrupt discontinuity at the boundary

between two intervals. In the HIV example there is a discontinuity at t = 2τ , so it is not

clear which costs this method should use for the second interval, which extends from 1.5τ to

2.5τ .

In practice, HCC is implemented using (the equivalent of) Equation 5, whose �rst term

on the right-hand side can be interpreted as the cost accrued in a cycle of length τ/2 in which

no transition has yet occurred. However, that equation stems from applying the trapezoidal

rule the instantaneous costs, not to the occupancy probabilities. This inconsistency was

severely criticized by Barendregt (2009, 2014), who proposed the life-table method as a

better alternative.

A.3 The life-table method

This method, being consistent with the arguments put forward by the advocates of HCC,

�rst estimates the average state-occupancy probabilities inside each cycle by averaging the

probabilities at its boundaries and then calculates the costs:

∫ (i+1)τ

iτ

c(t) · dt ≈
∑
s

Pi(s) + Pi+1(s)

2
· ci(s) · γ(iτ) · τ , (11)

where ci(s) is the cost inside the i-th interval, again assumed to be constant. This implies

that

CLT =
h−1∑
i=0

∑
s

Pi(s) + Pi+1(s)

2
· ci(s) · γ(iτ) · τ , (12)

This is called the life-table method because it is based on the procedure that demographers

use it to estimate life expectancy (Barendregt, 2009).

It is easy to check that

CLT =
CE + CB

2
.
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We have already seen that when the total-cost function decreases monotonically, CE is an

overestimation of the true cost and CB is an underestimation, so their arithmetic mean, CLT ,

is expected to be closer to the true value than if we assumed that all transitions occur either

at the beginning or at the end of each cycle.

Please note that this method is insensitive to discontinuities that occur at the boundary

between intervals, which explains the small error it returned for the HIV model�see Table 1.

A.4 A comparison of HCC and LT

The justi�cation of HCC implicitly assumes that the instantaneous cost for each state is

time independent; this allows us to write c(s) instead of c(s, t). Under this assumption,

HCC computes exactly the same value as the trapezoidal rule, CTR. Equation 5 stems from

Equation 4, which can be rewritten as

∫ (i+1)τ

iτ

c(t) · dt ≈
∑
s

Pi(s) · γ(iτ) + Pi+1(s) · γ((i+ 1)τ)

2
· c(s) · τ . (13)

Comparing this expression with Equation 11, we can see that they only di�er in the way of

applying the discounts.2 When the cycle length τ is short or the discount function decreases

slowly, then γ(iτ) ≈ γ((i + 1)τ) and CLT ≈ CTR. The main di�erence is that Equation 13,

implicitly used by the trapezoidal rule and HCC, applies the correct discount at each bound-

ary of the cycle, while LT applies the same discount, γ(iτ), from the beginning to the end

of the cycle.

Therefore we disagree with some of the arguments claiming the superiority of LT over

HCC.3 For example, Barendregt (2009) argued that the standard HCC method is incom-

patible with discounting. Naimark et al. (2013), who were initially strong advocates of the

2Therefore, the assertion of Elbasha and Chhatwal (2016b) that the trapezoidal rule gives the same result
as LT is true only when there is no discount. In fact, Section 9.2.1 in (Gray et al., 2011) shows an example
in which the two methods yield di�erent numerical results.

3In these remarks we agree with Elbasha and Chhatwal (2016a,b), except for minor details that do not
deserve a discussion here.
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HCC, �nally agreed with him. However, the computation of CTR clearly uses the discounted

costs (cf. Eqs. 1 and 5).

Barendregt (2009) also said: �I know of very few relevant Markov models in medical

decision making where QALY weights and unit costs are constant across all cycles�. However,

HCC does not require that the cost function c(t), given by Equation 1, be constant. In our

analysis, the derivation of Equation 5 only required that c(s, t) be constant for every state s,

as it is in many models�the HIV examined in this paper is rather an exception.

In turn, Naimark et al. (2013) said that �the standard approach to the HCC assumes

that the state membership curve is declining and monotonic.� However, when Equation 5 is

justi�ed as the application of the trapezoidal rule, it does not require that assumption.

In summary, we claim that there was nothing wrong in the application of the HCC in

the absence of discontinuities. On the contrary, CTR, given by Equation 5, is generally more

accurate than CLT , given by 12. The problem was in the way of explaining and justifying

the method.
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