
1 

ACA-19-1036Rev.Highlighted 1 

2 

3 

Four- and five-way excitation-emission 4 

luminescence-based data acquisition and modeling 5 

for analytical applications. A review 6 

7 

Mirta R. Alcaraz,a,b,c  Olga Monago-Maraña,d,e  Héctor C. Goicoechea,a,b 8 

Arsenio Muñoz de la Peñad,e,*9 

10 

11 

a Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química 12 
Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 13 
Ciudad Universitaria, Santa Fe (S3000ZAA), Argentina 14 

b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 15 
CABA (C1425FQB), Argentina. 16 

c Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad 17 
de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 18 
Ciudad Universitaria, Pabellón 2, 1428, Buenos Aires, Argentina.19 

d Department of Analytical Chemistry, University of Extremadura, Badajoz, 06006, Spain 20 

e Research Institute on Water, Climate Change and Sustainability (IACYS), Badajoz, 06006, 21 
Spain 22 

23 

* Corresponding author: A. Muñoz de la Peña. E-mail: arsenio@unex.es24 

25 

Manuscript after review

Access to published version: https://www.sciencedirect.com/science/article/pii/S000326701930786X

mailto:arsenio@unex.es
https://www.sciencedirect.com/science/article/pii/S000326701930786X


2 
 

Abstract 26 

The latest advances in both theory and experimental procedures on third-order/four-27 

way and fourth-order/five-way calibration methods are discussed. This report is focused on 28 

excitation–emission (fluorescence and phosphorescence) matrices generation, employing 29 

different variables as the third data mode (time retention in chromatography, pH gradient, 30 

fluorescence/phosphorescence lifetime, kinetics, or other chemical treatments). Fully 31 

capitalizing on the second-order advantage, it has been possible to develop appealing 32 

analytical applications in despite of the complexity of the data. Extraction of the significant 33 

chemical information about the system under study as well as the individual abundance of 34 

the contributing constituents after proper higher-order data decomposition has allowed to 35 

analytical researchers performing quantitative analysis of complex samples. The 36 

experimental works reported up to the present are introduced and discussed in order to 37 

illustrate concepts. Throughout this work, the analytical benefits achieved by modeling third- 38 

and fourth-order data are exposed, attempting to contribute to the ongoing debate in the 39 

chemometric community regarding the existence and the true nature of the third-order 40 

advantage.  41 

 42 
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1. Introduction  47 

The field of multivariate calibration has been expanding in the last years with 48 

uncountable analytical applications of a large number of compounds of interest, in complex 49 

samples, in several research areas. In this context, several reviews, books and articles about 50 

recent advances in multivariate calibration can be found in the literature, becoming an 51 

indicator of the growing interest in chemometrics. These reports mainly deal with second-52 

order calibration, although third-order calibration sections are included [1–8] and, 53 

specifically for chromatographic data, several recent reviews and a book chapter cover 54 

second- and third-order calibration [9–13].  55 

A pioneering excellent work of Booksh and Kowalski, in 1994 [14], entitled The 56 

Theory of Analytical Chemistry, has defined and established a concept in the context of 57 

second-order calibration, the 'second-order advantage', still in use nowadays, which has 58 

opened the multivariate calibration scenario. The outstanding advantage of second-order 59 

calibration relies in the fact that, under certain circumstances, the concentrations of individual 60 

components of interest can be accurately achieved through separating the signals of target 61 

analytes from those of uncalibrated background or interferences [1,8]. Interestingly, the 62 

authors dedicated a few premonitory words at the end of the paper about third-order 63 

calibration as follows: “[…] One advantage of third-order calibration is known: with 64 

trilinear data from one sample, the intrinsic profiles in each order can be determined 65 

uniquely for each species in the sample. […] However, the complete third-order advantage, 66 

or the Nth-order advantage for that matter, is unknown. [...] The limits and advantages of 67 

third-order and higher-order analysis are unknown […]”. At present, twenty-five years later, 68 

these words are still topical and different authors are discussing the limitations and 69 

advantages of third- or higher-order calibration. At this respect, Olivieri established that there 70 
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is no general consensus on the existence of additional advantages when working with four-71 

way data [15]. On the contrary, Wu et al. [16] defended that four-way data should have more 72 

obvious advantages, that is, the so-called 'third-order advantage'. It not only retains the 73 

second-order advantage but also has additional benefits that have been demonstrated:  1) the 74 

possibility of decomposing a unique data array of a given sample independent of other 75 

samples [14,17,18], 2) the enhancement in sensitivity and selectivity as well as the 76 

improvement of other analytical figures of merits [8,15], and 3) the feasibility of solving 77 

collinearity effects when an extra instrumental mode is included. This is the direct 78 

consequence of Kruskal´s condition; generalized Kruskal´s fundamental results on the 79 

uniqueness of trilinear decomposition of three-way arrays, to the case of multilinear 80 

decomposition of four- and higher-way arrays [19]. In consequence, the introduction of 81 

fourth mode can relieve the serious problem of collinearity [20]. However, these authors also 82 

recognized that more intense research should be dedicated to the basic theory of multiway 83 

calibrations to explore the essence of third-order or higher-order methodologies [21].  84 

The main body of the current developed methodologies is related with first- and 85 

second-order based analytical applications. However, the report of third- and fourth-order 86 

methods is still scarce in spite of the potential of third- and higher-order multivariate 87 

calibration. Multivariate calibration models are being applied to third- and higher-order data 88 

in several fields. The calibration based on this kind of data can be named as third-order or 89 

four-way calibration; the former one is related to the number of modes of a single sample, 90 

whereas the latter focuses on the number of modes of a set of samples. When third-order data 91 

are joined for several samples into a fourth direction, a four-way array is obtained. 92 

Most of the third- and fourth-order applications have been developed using excitation-93 

emission luminescence as analytical detection technique. This is due to the fact that a 94 
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spectrofluorimeter is a second-order instrument that can straightforwardly generate a 95 

complete luminescence data matrix (a second-order data) per sample, i.e. the excitation-96 

emission luminescence matrix (EEM).  97 

The present article serves as a review with intent to summarize the advances in the 98 

generation of third- and fourth-order experimental excitation-emission luminescence data, as 99 

well as to provide a succinct survey of the multi-way algorithms used for data modeling in 100 

different analytical applications.  101 

 102 

2. Data properties, algorithms and figures of merit  103 

Multilinearity is a property of paramount importance when modeling multi-way data, 104 

which must be strongly considered before selecting the chemometric modeling. For third-105 

order data, where signal additivity is maintained, a trilinear third-order array for a given 106 

sample should be the sum of the individual contribution of the constituents. Equation (1) 107 

represents the response xjkl at sensors j, k and l of a third-order data: 108 

𝒙!"# =#𝑏!$𝑐"$𝑑#$

%

$&'

+ 𝑒!"# (1) 

where bjn, ckn and dln are the elements along the first, second and third instrumental data mode 109 

for the component n, respectively, and N is the number of responsive constituents. ejkl 110 

represents the residues of the modeling. Hence, an array fulfills the 'low-rank trilinearity' 111 

property (commonly called as trilinear) when the signal is described following Eq. (1) in 112 

which the three data modes are mutually independent. It should be remarked that this 113 

equation is also valid to explain trilinearity of a three-way array utilized in second-order 114 

calibration methods. 115 
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When an additional mode is included, i.e. the concentration mode, the four-way data 116 

array, obtained by joining several three-dimensional data arrays for a sample set, fulfills 117 

quadrilinearity property only if each element of the array is defined as: 118 

𝒙(!"# =#𝑎($𝑏!$𝑐"$𝑑#$

%

$&'

+ 𝑒(!"# (2) 

being all symbols the same as in Eq. (1), with ain describing the changes in constituent 119 

concentrations along the concentration mode. 120 

In the case of four-way calibration, a classification for four-way data was presented by 121 

Olivieri and Escandar [7] to facilitate the evaluation of the gathered data. An adaptation of 122 

the original scheme is depicted in Fig. 1.  123 

 124 
The quadrilinearity property can be lost in case of presence of one or more 125 

quadrilinearity-breaking modes, i.e. constituent profiles changing among samples along the 126 

mode, for example, lack of reproduction of the chromatographic retention time. In case the 127 

four-way data presents one, two or three quadrilinearity-breaking modes, the non-128 

quadrilinear four-way data are classified as type 1, 2 or 3, respectively (see Fig. 1). 129 

In the case of five-way data modeling, extensions of known four-way models were 130 

adapted maintaining the multilinear decomposition philosophy. In comparison with four-way 131 

data, five-way data comprises an additional dimension which represents an extra 132 

experimental variable of the data. The quinquelinear model follows the expression:  133 

𝒙(!"#) = #𝑎($𝑏!$𝑐"$𝑑#$𝑓)$

%

$&'

+ 𝑒(!"#) (3) 
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being bjn, ckn dln and fmn the individual elements of each instrumental variable and ain the 134 

elements of the concentration mode. In this case, quinquelinearity can be broken in presence 135 

of loss of reproducibility in at least one of the five data modes.  136 

Table 1 summarizes the most common algorithms used to model four- and five-way 137 

data. For detailed information of the algorithms, see the cited literature. It should be 138 

mentioned that each algorithm requires a specific data array structure in base on the 139 

multilinearity property of the data, which is depicted in Table 1. 140 

To initiate the decomposition, the algorithms used for multi-way data modeling require 141 

knowing in advance the number of active species that are involved in the system under study. 142 

In the case of fluorescence, the number of components (N) that explains the system should 143 

be in accordance with the real number of the spectroscopically active species that constitute 144 

the samples. However, in complex systems or samples of unknown composition, the number 145 

of components may not be intuitive and, then, must be estimated. The estimation of N can be 146 

accomplished by following different procedures depending on the model implemented for 147 

the data analysis. For instance, core consistence diagnostic analysis (CORCONDIA) [22] is 148 

the most used approach to estimate the value of N when parallel factor analysis (PARAFAC) 149 

is chosen as trilinear model. Despite this analysis aids to establish the magnitude of N, this 150 

value should lead to the best fit of the model and to the minimal residual fit [7]. It should be 151 

highlighted that most of the trilinear decomposition (TLD)-based algorithms require an 152 

accurate estimation of N to avoid overfitting although AQLD series algorithms demonstrated 153 

to be insensitive to the excess number of components.  154 

For quantitative evaluation of the chemometric modeling performance, analytical 155 

figures of merit are computed. Several expressions have been presented by Olivieri et al. [8] 156 
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for obtaining sensitivity (SEN) figures for the different multi-way models. Equation (4) 157 

presents the SEN computation for four-way PARAFAC modeling: 158 

 159 

SEN!"#"$"%,'()*+ = 𝑠, &'(𝐁-*./ 𝐏0,123𝐁-*.+ ∗ (𝐂-*./ 𝐏%,123𝐂-*.+ ∗ (𝐃-*./ 𝐏4,123𝐃-*.+/
(50

(5/7
 (4) 

 160 

where sn is the slope of the PARAFAC pseudo-univariate plot, Bcal, Ccal and Dcal collect the 161 

loading matrices for the calibrated analytes, ‘*’ is the element-wise and PB,unx, PC,unx and 162 

PD,unx are projection matrices given by I-BunxBunx+, I-CunxCunx+ and I-DunxDunx+, respectively, 163 

being I the identity matrices, Bunx, Cunx and Dunx collect the loading matrices for the 164 

unexpected samples constituents, and the superscript ‘+’ indicates the generalized inverse 165 

operation. Moreover, Olivieri has presented extensions of Eq. (4) to utilize when computing 166 

SEN in unfolded and N-way partial least-squares with residual trilinearization (U-PLS/RTL 167 

and N-PLS/RTL, respectively) [8]. For five-way data modeling evaluation, extensions 168 

derived from the aforementioned expressions for SEN4-way estimation are utilized.  169 

A different expression to estimate SEN is utilized when multivariate curve resolution-170 

alternating least–squares (MCR-ALS), is used:  171 

SEN*+, = 𝑠$[𝐽(𝐂-𝐂).'].'/0 (5) 

where sn is the slope of the MCR-ALS pseudo-univariate plot, J is the number of data points 172 

in each submatrix in the augmented mode, and C is a matrix containing the profiles for all 173 

sample components in the non-augmented direction [8].  174 

Once the SEN is computed, both the limit of detection (LOD) and the limit of 175 

quantitation (LOQ) can be obtained through Eq. 6 and Eq. 7, respectively: 176 
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LOD = 	2 × 𝑡1.13,5
𝑠67897
SEN = 3.3

𝑠67897
SEN  (6) 

LOQ = 10
𝑠67897
SEN  (7) 

where t0.05, ∞ is the one-tail t value assuming a large number of calibration samples and α 177 

value of 0.05, and sdtest represents the standard deviation of the estimated net signal when its 178 

true value is zero. 179 

 180 

3. Fluorescence EEMs 181 

3.1. EEMs-kinetics  182 

One of the most used approaches to induce four-way data is by including the kinetic 183 

behavior as additional information, laying on the fact that the compounds can degrade, 184 

oxide/reduce or new spectroscopically active products can arise. Hence, the modes of the 185 

four-way data shall be the excitation wavelengths, the emission wavelengths, the kinetic 186 

profiles and the sample concentrations. In all the presented cases, the chemical reaction 187 

involved in the analysis follows first-order kinetics. Details of the described analytical 188 

approaches are summarized in Table 2.  189 

The first analytical application reported was a method to quantitate mixtures of 190 

catecholamines, adrenaline and noradrenaline, in which the lutine reaction was accomplished 191 

in a flow system, to obtain the corresponding fluorescing lutines (3,5,6-trihydroxyindole 192 

derivatives). PARAFAC and N-PLS were chosen to solve the system achieving similar 193 

results. [22].  194 

PARAFAC is the most widespread multilinear model and has been widely utilized for 195 

several analytical applications. For instance, it was utilized for the analysis of polycyclic 196 

aromatic hydrocarbons (PAHs) by photocatalytic degradation [23]. It was demonstrated that 197 
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this methodology offered a good resolution for three PAHs (benz[a]anthracene (B[a]A), 198 

benzo[k]fluoranthene (B[k]F and dibenz[a,h]anthracene (B[2,a,h]A)), whose signals were 199 

strongly overlapped. Another example of the good performance of PARAFAC was presented 200 

by Nahorniak et al. [24], who proposed a photochemical degradation based methodology for 201 

the analysis of fenvalerate, a non-fluorescent compound. The degradation products were 202 

monitored by EEMs registering and the further chemometric data analysis achieved 203 

satisfactory analytical results.  204 

Another common reaction employed in kinetics studies is based on the oxidation with 205 

potassium permanganate. In this regard, Olivieri et al. [25] determined methotrexate (MTX) 206 

and leucovorin (LV) in human urine with PARAFAC and trilinear least-squares (TLLS). The 207 

successful resolution of the individual analytes was accomplished in spite of the presence of 208 

uncalibrated interferences arising from the urine background components. This fact was 209 

possible by means of the third-order advantage achieved by using four-way EEM-kinetics 210 

arrays. On the other hand, owing to exploit the advantages of the known bilinear 211 

decomposition methods, Arancibia et al. [26] introduced two new trilinear decomposition 212 

algorithms for four-way data based on TLLS and U-PLS coupled to RTL. These algorithms 213 

were utilized for the evaluation of MTX and LV in presence of interferents by oxidation with 214 

potassium permanganate. It was demonstrated that TLLS/RTL and U-PLS/RTL were able to 215 

exploit the second-order advantage and enabled to satisfactorily quantitate the analytes in 216 

presence of uncalibrated interferents.  217 

Muñoz de la Peña et al. [27] reported an approach to determine folic acid and MTX in 218 

urine samples by oxidation with potassium permanganate with PARAFAC and N-PLS data 219 

analysis. For the kinetics monitoring, several EEMs were collected between 0 and 5 minutes 220 

after reaction initiated. Then different multi-way calibration methods were assessed. Results 221 
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demonstrated that the best performance was obtained when third-order calibration was 222 

employed. In addition, as an extension of this work, this chemical reaction was reported for 223 

the analysis of folic acid and methotrexate in human serum [28]. Here, the authors compared 224 

N-PLS, PARAFAC and U-PLS/RTL performances. Although PARAFAC and N-PLS 225 

offered satisfactory results in urine samples, poor analytical figures of merit were obtained 226 

for human serum samples (relative error of prediction (REP)> 30 %). In this regards, U-227 

PLS/RTL improved the latter results, reaching REP values lower than 12 %. This 228 

improvement was explained by the fact that U-PLS/RTL can handle the analyte-background 229 

interaction, which is a troublesome condition for the other algorithms.  230 

Pursuing an improvement in the analytical performance, Damiani et al. developed a 231 

new third-order multivariate calibration algorithm based on the combination of N-PLS with 232 

RTL [29]. This algorithm was employed to determine procaine and its metabolite p-233 

aminobenzoic acid in equine serum by means of the hydrolysis reaction of procaine at pH = 234 

13 and Tª = 40 ºC. Results demonstrated the ability of the algorithm to successfully predict 235 

the analyte concentrations in presence of uncalibrated interferences. Thereafter, N-PLS/RTL 236 

was used for the determination of folic acid and its metabolites (5-methyltetrahydrofolic acid 237 

and tetrahydrofolic acid) in serum samples which were subjected to photochemical 238 

degradation by means of on-line UV irradiation [30]. The EEMs registering was performed 239 

as a function of the irradiation time by using a fast scanning spectrofluorimeter. In this case, 240 

since quadrilinearity property was not fulfilled, PARAFAC and TLLS did not provide 241 

satisfactory results. In contrast, N-PLS/RTL and U-PLS/RTL offered the uttermost in 242 

efficiency by predicting the analytes in presence of non-modeled interferences.  243 

In a study performed by García-Reiriz et al. [31], the Hantzsch reaction between 244 

malonaldehyde and methylamine, which provides a highly fluorescent compound, was 245 
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utilized. Due to the non-linear nature of the kinetics, the data were subjected to unfolded 246 

principal component analysis, residual trilinearization with further radial basis functions 247 

analysis (U-PCA/RTL/RBF), allowing the successfully determination of malonaldehyde in 248 

olive oil samples. Following the same data analysis procedure, Ni et al. [32] developed a 249 

method based on the alkaline hydrolysis of nitrofurans (nitrofurazone and nitrofurantoin) for 250 

their determination in fish samples. EEM-kinetics data were subjected to multi-way 251 

decomposition through PARAFAC and U-PCA/RTL aiming to obtain the instrumental 252 

profiles and the individual contribution of the analytes. Furthermore, the scores obtained 253 

from the chemometric modeling were subjected to RBF-artificial neural network (ANN) to 254 

build the calibration model due to the non-linear relationship between the nominal 255 

concentration and the fluorescence contribution of the analytes. It was demonstrated that U-256 

PCA/RTL coupled to RBF-ANN accomplished better results whose were comparable to the 257 

chromatographic reference method.  258 

Over the last years, several researches have been focused on the determination of 259 

carabaryl, a carbamate insecticide that mainly degrades to 1-naphtol by hydrolysis in alkaline 260 

medium. One of the reported works was centered on the carbaryl determination in effluent 261 

water by following the hydrolysis reaction trough EEMs acquisition and utilizing PARAFAC 262 

as chemometric modeling [33]. On the other hand, Maggio et al. extended the approach to 263 

simultaneously determine carbaryl and its degradation product in natural water by employing 264 

U-PLS/RTL for the data analysis [34]. Last, carbaryl, 1-naphtol and propoxur were 265 

simultaneously determined in river water and the data were analyzed through U-PLS/RTL 266 

and N-PLS/RTL [35]. It should be highlighted that carbaryl and 1-naphtol present large linear 267 

dependence under the hydrolysis reaction, due to the fact that 1-naphtol is a hydrolysis 268 

product of carbaryl. Nevertheless, by implementing U-PLS/RTL and N-PLS/RTL models 269 
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instead of PARAFAC, quantitative results were significantly improved, since the former 270 

algorithms can tackle the linear dependence situation.  271 

The determination of tyrosine and levodopa in human plasma by oxidation catalyzed 272 

by polyphenol oxidase has been reported as model system to assess the performance of 273 

different quadrilinear decomposition models. Alternating quadrilinear decomposition 274 

(AQLD) [36], slicing AQLD (SAQLD) [37] and a four-way algorithm combination method 275 

(FACM) [38], all developed by the same research group, were reported as novel four-way 276 

calibration models and the ability of decomposing the same EEM- kinetics four-way data 277 

was assessed. The latter was proposed as an alternative of quadrilinear modeling that merges 278 

the individual particularities of PARAFAC and AQLD. In all cases, the proposed algorithms 279 

allowed the proper determination of the two analytes exploiting the second-order advantage 280 

and satisfactory analytical figures were reached. All the results aid to conclude that the 281 

inclusion of a fourth mode enhances the analytical performance over three-way calibration 282 

methods. In the case of SAQLD and FACM, comparison analysis with known quadrilinear 283 

decomposition algorithms, i.e. PARAFAC and AQLD, among others, proved that these 284 

algorithms converge faster, tolerate overestimations of the number of components and can 285 

cope with severe collinearity effects. However, results support the fact that FACM is the 286 

most suitable alternative to process four-way data with high level of noise and strong 287 

collinearity. In addition, FACM allowed accomplishing better quantitative figures than those 288 

obtained with the individual involved algorithm, i.e. PARAFAC and AQLD. 289 

Fragoso et al. [39] have employed PARAFAC to determine thiamine (vitamin B1) in 290 

multivitamin complexes by following the thiamine conversion to thiochrome, by oxidation 291 

catalyzed by Hg2+ in alkaline medium. Although PARAFAC can exploit the second-order 292 

advantage, it cannot deal with matrix effects, inner filter effects or compounds that interfere 293 
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with the reaction mechanism or the kinetic properties. Hence, standard addition was 294 

accomplished for the quantitative analysis of the analyte in multivitamin complexes.  295 

In addition, Kang et al. developed a method for the quantitative kinetic analysis of the 296 

degradation reaction of nicotinamide adenine dinucleotide (NADH) and the formation 297 

reaction of flavin adenine dinucleotide (FAD) in human plasma [40]. These authors showed 298 

good results when three-way calibration was applied. However, they suggested the four-way 299 

calibration as a potential alternative, which was used to indicate if the half-life of an analyte 300 

is independent of its initial concentration, being able to provide a correct decomposition and 301 

regression in complex systems. The algorithms employed for the quantitation in this case 302 

were PARAFAC, regularized self-weighted alternating quadrilinear decomposition 303 

(RSWAQLD) and constrained alternating trilinear decomposition (CATLD). 304 

Carabajal et al. employed four-way calibration for the simultaneous determination of 305 

five PAHs in environmental aqueous samples by Fenton degradation [41]. In this work, it 306 

was demonstrated the superiority of four-way PARAFAC modeling over three-way 307 

calibration methods by mean of figures of merit and predictive ability (REP % was between 308 

8 - 11 % for the four-way calibration and 11 - 17 % for the three-way calibration). 309 

Interestingly, these results might support the existence of a third-order advantage. Later, the 310 

Fenton reaction was utilized to quantitate bisphenol A and nonylphenol in food-contact 311 

plastic by monitoring the fluorescence signal evolution. PARAFAC demonstrated being able 312 

to decompose the system in absence of interferents, whereas U-PLS/RTL and MCR-ALS 313 

showed to be capable to successfully solve the system in presence of uncalibrated 314 

components. In all cases, satisfactory analytical figures of merit were obtained [42]. 315 

In 2017, a four-way method to determine azinphos-methyl (AZM) in fruits [43] by 316 

means of a photochemical reaction was published. In this work, third-order data were built 317 
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with EEMs registered at different UV-irradiation times. The evolution of the fluorescence 318 

intensity against irradiation time is depicted in the Fig. 2. The application of PARAFAC and 319 

U-PLS/RTL to the gathered data enabled to favorably quantitate the analyte in presence of 320 

the non-modeled interferences arising from the fruit matrix.  321 

By monitoring the hydrolysis reaction, Wu’s research group has recently developed a 322 

method to determine irinotecan (CPT-11) in human plasma, by means of four-way data 323 

analysis through alternating weighted residual constraint quadrilinear decomposition 324 

(AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) [44]. The 325 

results were compared with those obtained by three-way calibration and it was demonstrated 326 

that even though both three- and four-way calibration methods are able to accomplish real-327 

time quantitative analysis of CPT-11 in human plasma, three-way calibration methods seem 328 

to be suitable for several types of dynamic reactions, while four-way calibration methods can 329 

only be applied for the analysis of first-order kinetics. 330 

 331 

3.2. EEMs-LC (liquid chromatography)  332 

In the multivariate calibration field, liquid chromatography (LC) coupled to 333 

fluorescence spectral detection has gained increasing interest due to the potential to combine 334 

high-resolution with high-sensitivity, allowing solving extremely complex systems. Over the 335 

last years, several LC strategies were proposed involving the registering of EEMs to enhance 336 

this potentiality. However, this analytical procedure is not a trivial matter from the 337 

chemometrics standpoint. Notwithstanding modern instrumentation aids obtaining multi-338 

way data from EEM-LC experiments, the challenge of performing discrete acquisition of 339 

complete fluorescence matrices in a continuous chromatographic procedure has encourage 340 
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the development of different instrumental setups, and even the development of a new 341 

fluorescence spectrophotometer.  342 

It was in 1981 when Apellof and Davidson published the original idea of monitoring a 343 

chromatographic run through EEMs registering [45]. The report describes a method for the 344 

qualitative evaluation of effluent samples containing a mixture of fluorophores, aimed to 345 

obtain estimates on the number of components and the fluorescence spectra of each 346 

component. The data processing was performed on a unique EEM-LC three-dimensional data 347 

matrix, which was obtained by injecting the effluent sample in a HPLC system and recording 348 

the fluorescence signal with a video fluorometer. For data analysis, nonlinear iterative least 349 

squares (NILES) procedure was utilized. This work was presented as a proof of concept, to 350 

demonstrate the advantage of incrementing the number of instrumental modes, to enhance 351 

the selectivity in the resolution of the mixture components.  352 

On the other hand, the first known research about acquisition and chemometric analysis 353 

of EEM-LC four-way data for an analytical application was reported by R. Bro, 1998 [46], 354 

who described an approach for the identification of molecular entities of thick juice. The 355 

procedure consisted in the collection of 28 discrete fractions eluting from the chromatograph, 356 

whose were then individually analyzed in a spectrofluorimeter by acquiring a complete EEM 357 

for each fraction. In that way, a three-way object was built comprising excitation spectra, 358 

emission spectra and the elution time (or fractions) for each sample. Moreover, different juice 359 

samples were identically analyzed, and a four-way array was subjected to chemometric 360 

decomposition. The author clarifies that even though the three-dimensional object 361 

corresponding to the individual samples fulfills the trilinearity property, differences in the 362 

elution time among samples cause a lack of quadrilinearity in the four-way array, which 363 

impairs the application of multilinear models, such as PARAFAC. Hence, to cope with this 364 
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situation, PARAFAC2 was proposed as the alternative to modeling this kind of data, 365 

maintaining the uniqueness of the multi-way model, obtaining the individual attributes of 366 

each components and allowing their identification. 367 

In 2013, a new alternative to acquire EEM-LC third-order data was proposed by the 368 

Muñoz de la Peña’s group for the analysis of olive oils [47]. In this work, only a 369 

chromatograph equipped with an auto-sampler and a fast-scanning fluorescence detector was 370 

used. For the acquisition of the third-order data, emission spectra were scanned at every 371 

elution time of the run; therefore, elution time-emission spectra matrices (TEMs) were 372 

gathered for each run. The third instrumental mode was obtained by recording several TEMs 373 

at different excitation wavelengths. The analysis of green pigments in olive oils was 374 

performed in 7 samples by injecting 8 aliquots of a given sample and registering the emission 375 

spectra at different excitation wavelengths. This strategy was later utilized for the 376 

determination of pesticides in fruits [48], but only 6 aliquots by sample were injected. In both 377 

works, PARAFAC and U-PLS/RTL were used for the chemometric analysis of the four-way 378 

array and prediction ability of each algorithm was assessed. Besides, N-PLS/RTL and MCR-379 

ALS were used. The authors demonstrated that the best results were achieved when using U-380 

PLS/RTL, due to the flexible inner structure of the algorithm, which is less sensitive to the 381 

lack of multilinearity.  382 

The described approach was after implemented for the determination of 383 

pharmaceuticals in water in a comparative study of different EEM-LC data generation 384 

approaches. In this work, it was demonstrated that lack of quadrilinearity, as a result of 385 

differences in elution time among runs, was accompanied by a loss of trilinearity [10]. This 386 

phenomenon derives from the fact that trilinearity/quadrilinearity are only fulfilled in case 387 

the elution times are perfectly reproducible among runs. Hence, following the classification 388 
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tree for four-way data introduced by Olivieri and Escandar elsewhere [7] (see Fig. 1), non-389 

quadrilinear data type 4 is generated since elution time and excitation wavelength modes are 390 

mutually dependent. It must be mentioned that quadrilinear decomposition models are not 391 

able to cope with this kind of data, except in case of very low degree of lack of 392 

trilinearity/quadrilinearity.  393 

In order to improve the aforementioned results, a new data processing approach was 394 

proposed [49]. The so-called APARAFAC algorithm was developed to solve four-way data 395 

using an augmented three-way structure, allowing decomposing non-quadrilinear type 1 data. 396 

It was demonstrated that this algorithm retrieves improved results in comparison to 397 

PARAFAC and similar to those obtained from U-PLS/RTL and MCR-ALS. These 398 

observations lie in the assumptions that APARAFAC overcomes the lack of multilinearity 399 

drawback by virtue of the augmented structure of the data, presenting the additional 400 

advantage of obtaining physically interpretable results.  401 

Following the path pioneered by R. Bro [46], Alcaraz et al. presented an approach 402 

[10,50,51]  describing the determination of 3 fluoroquinolones in drinking water, by using 403 

EEM-LC data and chemometric analysis. Here, an automated custom-made device allowed 404 

the collection of the chromatographic fractions in 96-well plates. Subsequently, the plate with 405 

the fractions was placed into a fluorescence spectrophotometer equipped with a plate reader, 406 

allowing performing the EEMs acquisition of every individual well-plate. Once the EEMs 407 

were registered, a three-way object was built comprising the EEMs collected for every 408 

fraction. An important point to be highlighted is the fact that every EEM was individually 409 

registered in static conditions; therefore, elution time, excitation wavelength and emission 410 

wavelength modes are mutually independent, which guarantees the trilinearity of the data 411 

array. However, lack of reproducibility in elution time mode among samples leads to a break 412 
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in the quadrilineality of the four-way object. To model this data, several data structures were 413 

built, and different algorithms were utilized to demonstrate the ability to extract meaningful 414 

information of the system. For this purpose, MCR-ALS, APARAFAC and PARAFAC were 415 

applied to augmented two-way, augmented three-way and four-way arrays, respectively. For 416 

the augmented two-way matrices, each EEM corresponding to every fraction was unfolded 417 

generating row vectors that were then utilized to assembling the matrices of individual 418 

samples, generating a two-dimensional data array, (elution time × excitation-emission rows). 419 

Eventually, the individual samples were combined to a column-wise data object along the 420 

quadrilinearity breaking-mode (Fig. 3), obtaining the augmented two-way data matrix. To 421 

build the augmented three-way data array, the three-dimensional data objects of individual 422 

samples (elution time × excitation wavelength × emission wavelength) were appended along 423 

the elution time mode (Fig. 4) fulfilling the requirements of the trilinear modeling. The results 424 

demonstrated that MCR-ALS and APARAFAC are the utmost in performance dealing with 425 

non-quadrilinear data and obtaining reliable and meaningful quantitative figures. The results 426 

obtained in the analysis of the four-way data by MCR-ALS and APARAFAC were compared 427 

to those obtained in second-order calibration method (LC × emission × samples), which 428 

enables corroborate that incorporating the excitation mode, better figures of merit are 429 

obtained in terms of SEN and limit of detection and quantitation. For instance, SEN figures 430 

for second- and third-order calibration were 5.2 and 7.2, respectively, when MCR-ALS was 431 

utilized while for PARAFAC, an increment of about 3-times the SEN value obtained for 432 

second-order calibration was observed for third-order calibration [50]. 433 

Another strategy was recently proposed and encouraged diverse applications including 434 

variations in the instrumental setup. The basis of the approach relies in the hyphenation of a 435 

chromatograph and a fast-scanning spectrofluorimenter through a flow cell, allowing the 436 
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registering of EEM while the chromatographic flow is running. The first description of this 437 

procedure was reported in a review in 2017 [10]. In this work, the authors introduced the 438 

instrumental configuration that would permit the registering of successive discrete EEMs, 439 

covering the total chromatographic run. The main inconvenient found by the authors is the 440 

incompatibility between the elution rate of the analytes and the fluorescence scanning rate of 441 

the EEMs, leading to strong elution time mode-dependence with both spectral modes, which, 442 

in chemometric terms, represents a significant loss of trilinearity in the three-dimensional 443 

array for individual samples. This kind of data is classified as non-quadrilinear data of type 444 

4, phenomenon that was firstly demonstrated and described in this report.  445 

The first strategy that was reported to cope with the time-dependence inconvenience 446 

was published in 2017 by Escandar’s group for the simultaneous quantitation of heavy-PAHs 447 

(h-PAHs) in natural water samples [52]. This work describes an interesting instrumental 448 

modification that would diminish the time-dependence effect, by a reduction in the linear 449 

flow rate of the mobile phase, which becomes as the product of the incorporation of a large 450 

inner-diameter tube between the column and the flow-cell. Thus, according to the authors, 451 

the time-dependence effect is negligent, and the third-order data of individual samples are 452 

considered as trilinear. Moreover, no lack of reproducibility in the elution time among 453 

samples was observed, then, quadrilinearity concept was fulfilled. Hence, four-way 454 

PARAFAC model was successfully implemented and satisfactory analytical figures were 455 

achieved.   456 

Another alternative to face the time-dependence phenomenon was described for the 457 

quantitation of h-PAHs in tea leaves [53]. The authors detailed a way to deal with non-458 

quadrilinearity data type 4 obtained from EEM-LC experiments, performed by using a 459 

conventional hyphenated instrumental setup. This work reported for the first time the 460 
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resolution of data with mutually dependent instrumental modes by means of the application 461 

of MCR-ALS. To achieve this goal, unfolded matrices were used to build a super-augmented 462 

two-way array. Unlike the strategy proposed by Alcaraz et al. [50,51], the super augmented 463 

two-way data matrices were built by assembling unfolded elution time-excitation 464 

wavelength × emission wavelength matrices. In that way, bilinear elution time-excitation 465 

wavelength × emission wavelength matrices were obtained for individual samples that were 466 

then appended along the unfolded mode generating the super-augmented two-way data 467 

matrix (Fig. 5). The analytical results obtained with this strategy were similar than those 468 

previously obtained [52], but experimental improvements were accomplished, e.g. shorter 469 

time of analysis, less reagent consumption and less solvent waste. 470 

The hyphenated instrumental configuration with a large i.d. tube earlier described [52] 471 

was further applied for the determination of organic pollutants in environmental water [54]. 472 

Since the evaluated contaminants do not exhibit native fluorescence, a post-column 473 

photoreactor was included and photoinduced EEMs were obtained. Lack of reproducibility 474 

in elution time among samples was observed, and then quadrilinearity condition was not 475 

fulfilled. Hence, data could not be subjected to quadrilinear decomposition and MCR-ALS 476 

was applied instead. For this purpose, an augmented data matrix was assembled following 477 

the strategy proposed by Alcaraz et al. [50,51]. The results demonstrated that the combination 478 

of the instrumental configuration and MCR-ALS data resolution are a powerful tool to solve 479 

complex systems, considering both the complexity of the sample composition and the 480 

generated data.  481 

At last, a new EEM detector was presented as a very promising solution to the problem 482 

of non-multilinear data acquisition in time-dependent experiments [55]. Here, the basic idea 483 

proposed by Myrick et al. in 1996 [56] to perform direct measurements of fluorescence 484 



22 
 

matrices by bidimensional excitation and emission spatial dispersion was implemented. The 485 

developed device is presented as a simple, very fast, in-flow fluorescence matrix 486 

spectrometer, which allows the registering of complete fluorescence images in the order of 487 

milliseconds by means of a CCD camera. Figure 6 illustrates the images collected during the 488 

chromatographic analysis of three dyes in water samples. The feasibility of the setup in 489 

obtaining trilinear EEM-LC third-order data was successfully assessed by the evaluation of 490 

a model system containing several well-known analytes through PARAFAC. A 491 

chromatographic validation model was built and the data were satisfactory decomposed with 492 

APARAFAC by using an augmented three-way object. An additional advantage of the 493 

presented approach is the capability of obtaining a large number of matrices for a short 494 

chromatographic run (1450 matrices – 4.5 min run), which could not be possible 495 

accomplishing until then. 496 

 497 

3.3. EEMs-pH  498 

In the literature, a scarce number of reports concerning four-way fluorescence 499 

excitation-emission matrices coupled to pH variation has been published. Most of them are 500 

focused on the development of new quadrilinear algorithms for the analysis of four-way data 501 

arrays, based on the fact that, in absence of inner filter, the consequent four-way data object 502 

built with several EEMs fulfills the quadrilinearity property. Under the assumption of the 503 

fulfilment of the quadrilinearity principle in EEM-pH four-way data, Wu and his 504 

collaborators have made important contributions to chemometrics by developing different 505 

four-way decomposition algorithms (see Table 1), whose performances were properly 506 

demonstrated. APQLD [20] was developed and applied for the analysis of procaine 507 

hydrochloride (PRH) and its hydrolysate product, p-aminobenzoic acid (PAA), in plasma 508 
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samples. On the other hand, aiming at demonstrating a way to deal with systems that present 509 

high level of collinearity, the same research group introduced the extension of self-weighted 510 

alternating normalized residue fitting (SWANRF) model, for the determination of serotonin 511 

in human plasma by the analysis of four-way pH-EEM data [57]. The efficiency of 512 

decomposing EEM-pH four-way data through the novel AQLD algorithm was further 513 

assessed by means of the simultaneous analysis of four fluoroquinolones in river water 514 

samples [58]. In all cases, four-way PARAFAC decomposition was utilized as the reference 515 

quadrilinear model and results were then compared.  516 

In addition, a very recent work manifests that FACM algorithm can be implemented as 517 

a suitable alternative to model four-way data in some particular complex cases. To 518 

demonstrate the performance of the proposed combined method, a multivariate calibration 519 

method based on EEM-pH data analysis was developed for the simultaneous quantitation of 520 

cancer biomarkers (xanthopterin and isoxanthopterin), in plasma and urine. All the results 521 

were compared with those obtained from existing four-way algorithms and demonstrated that 522 

the FACM is suitable for modeling four-way data in case of high noise level and strong 523 

collinearity, exploiting the individual qualities of the involved algorithms, i.e. fast 524 

convergence, insensitiveness to initial estimates and excess number of components, 525 

overpassing the performance of each individual algorithm [38]. Moreover, in order to explore 526 

the presence of possible additional advantages achieved by third-order calibration models, 527 

two recent works were published in which four-way PARAFAC models were utilized in the 528 

determination of three fluorescent amino acids (L-phenylalanina, L-tyrosine and L-529 

tryptophan) in human plasma [59] and in the quantitation of three phenolic acids (gallic acid, 530 

caffeine and p-hydroxybenzoic acid) in cosmetic samples [60]. In the latter, a comparison 531 

with second-order calibration model was carried out.  532 
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A last work introduces a modification of the well-known AQLD allowing imposing 533 

constraints on the decomposition. The CAQLD algorithm was utilized in the analysis of 534 

intracellular metabolic coenzymes, FAD and flavin mononucleotide (FMN). These analytes 535 

present fluorescence spectra of strong similarity. Moreover, the samples of the cell contain 536 

several fluorescent constituents which overlap with the analyte signals. The authors 537 

demonstrated that several three-way calibration alternatives, i.e. (excitation × emission × 538 

samples), (pH × excitation × samples) and (pH × emission ×  samples), were not capable to 539 

solve the system due to the strong overlapping between spectra, and then, the quantitative 540 

analysis was not successful in all cases (average recoveries between 104-114 % with errors 541 

oscillating between 32-243%). Hence, four-way calibration of EEM-pH data empowered the 542 

modeling to get meaningful information about the system and to retrieve the individual 543 

contribution of the analytes. In that way, satisfactory analytical figures were reported and the 544 

analytes were successfully quantitated (average recoveries of 99.9 ± 8.4 % and 545 

101.0 ± 10.6 % for FAD and FMN, respectively). These achievements were possible by 546 

exploiting the second-order advantage, besides the additional benefits gathered from the 547 

incorporation of the fourth instrumental mode [61].  548 

In the all aforementioned works, the basic experimental calibration procedure, which 549 

is schematically depicted in Fig. 7, involved the preparation of several samples at different 550 

analyte concentration levels. To obtain the three instrumental modes, different pH values 551 

were adjusted to aliquots of the prepared samples and EEMs were acquired to each aliquot. 552 

In that way, the EEM-pH third-order data object was built for each sample, and the four-way 553 

data array was thereby assembled and subjected to the chemometric analysis. The results 554 

have demonstrated that second-order advantage is successfully accomplished and also have 555 

shed light on the presence of additional advantages. The authors emphasized the fact that 556 
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increasing the number of instrumental modes mitigates the effect of high collinearity present 557 

in some systems, which represents a troublesome condition for three-way modeling. 558 

Moreover, an improvement of the analytical figures was observed when the dimension of the 559 

data is increased [60], a fact that has been already demonstrated by Olivieri et al. [8]. These 560 

observations led the authors to the conclusion that third-order advantage may exist but need 561 

to be supported with further experimental and theoretical evidences. In this regard, it is worth 562 

mentioning that the majority of the evidences about the existence of the third-order advantage 563 

were demonstrated through the application of quadrilinear models on data that fulfill the 564 

quadrilinerity property and the results were directly compared against those obtained by 565 

trilinear models on trilinear data. Hence, extensions of these studies are also needed in order 566 

to strengthen the existence of the third-order advantage even in data that do not fulfill the 567 

concept of multilinearity.  568 

Unlike the experimental strategy described above, an in-flow methodology was 569 

implemented to generate a double pH-gradient for the acquisition of four-way fluorescence 570 

data. This methodology was employed for the quantitative analysis of 3 fluoroquinolones in 571 

urine [62]. In this case, a fast-scanning spectrofluorimeter was connected to the end of the 572 

flow injection system, through a flow-cell, and successive EEMs were registered while the 573 

pH was changing. Owing to produce the double pH gradient into the flow stream, a sample 574 

at alkaline pH was injected into the carrier that consisted in the same sample solution but 575 

adjusted at low pH. The authors clarify that, in in-flow pH-gradient systems, loss of 576 

quadrilinearity in the data can occur due to the lack of reproducibility in the generation of the 577 

pH gradient and by virtue of the pH-spectral modes dependency. Moreover, the closure 578 

relationship between pH-equilibrating species should be considered in pH-dependence 579 

experiments, due to the fact that the involved species are mutually correlated. However, the 580 
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authors did not find these inconveniences and the resolution were successfully accomplished 581 

by using four-way PARAFAC. The authors ascribed this achievement to the fact that changes 582 

in the total contribution of the analytes in the flow stream, and undesired effects of the 583 

instrumental mode-dependence, are avoided by implementing the proposed experimental 584 

procedure.  585 

 586 

3.4. EEMs - Time resolved fluorescence 587 

Interesting, the original reported paper using time resolved fluorescence four-way data 588 

date back to as early as 1990 [63]. In that report, a three-way excitation × emission × lifetime 589 

array was generated. To generate the array, several EEMs were acquired at different 590 

modulation frequencies. Using this approach, a binary mixture of benzo[b]fluoranthene 591 

(B[b]F) and B[k]F was successfully resolved through generalized rank annihilation method 592 

(GRAM) [63].   593 

Twenty two years later, a work using fluorescence time resolved excitation-emission 594 

cube arrays (TREECs) was reported for the quantitation of 15 PAHs in soil samples [64]. 595 

The target analytes were extracted from soil samples and analyzed through laser excited time-596 

resolved Shpol’skii spectroscopy (LETRSS). Here, the third instrumental mode was achieved 597 

by selecting six different time delays in the order of the nanoseconds. Owing to the presence 598 

of matrix effect, a standard addition method was implemented for calibration and four 599 

TREECs were recorded for each sample. It was noticed that, for non-spiked samples, the 600 

relative signal contribution of each PAH changes with the time window, affecting positively 601 

the selectivity of the method. With the acquired TREECs data, a four-way array was 602 

constructed, and two different models were applied: PARAFAC and U-PLS/RTL, which 603 

enabled achieving highly satisfactory results. 604 
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3.5. EEMs - other chemical treatment 605 

In addition to the above described techniques, there are other reported alternatives that 606 

allow incrementing the number of instrumental modes of the data, by using a distinct 607 

chemical treatment.  608 

The pioneering strategy implemented was the reported by Ross et al. who used different 609 

levels of potassium iodide as fluorescence quencher to solve a system composed by a mixture 610 

of dyes [65]. After, same group developed a method based on the variation of Mg2+ to resolve 611 

the fluorescence spectra of pigment-complexes in pea thylakoids by utilizing PARAFAC 612 

[66]. Here, the resolution relied on the fact that Mg2+ differently affects the different pigment-613 

complexes. In a similar way, Ross and Leurgans evaluated the fluorescence behavior of 2-p-614 

toluidinonphthalene-6-sulphonate (TNS) in presence of different concentrations of Tb3+ in a 615 

suspension of chloroplast membranes [67]. In 2001, other study reported a work that employs 616 

several concentrations of nitromethane as quencher for the resolution of different synthetic 617 

mixtures of PHAs [68]. Here, several EEMs were registered varying the quencher 618 

concentrations and the third-order data were further decomposed by TLD method. All these 619 

works were developed with qualitative aims, in which a unique three-dimensional array was 620 

decomposed with trilinear method decomposition.  621 

It is known that in the analysis of samples of complex composition, the matrix effect 622 

negatively affects the development of quantitative methods. To overcome this phenomenon, 623 

a clever strategy was proposed by utilizing different volumes of sample acting as quencher 624 

as the third instrumental mode in the acquisition of the third-order data. In this regard,  a 625 

method for the quantitation of tetracycline in tea solutions was reported in 2009 [69]. The 626 

change in the fluorescence intensity of fluorescence caused by the quencher quantity was 627 

employed to obtain the four-way array. The data analysis was accomplished with PARAFAC 628 
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and N-PLS, obtaining better results with the latter model. The same strategy was followed 629 

for the determination of several carbamate pesticides (carbaryl, carbendazim and 1-naphthol) 630 

implementing the standard addition method for the quantitation in lettuce [70]. Here, three 631 

dilution levels of the matrix extract were utilized to create the third instrumental mode of the 632 

data. Further, a four-way array was built and decomposed by PARAFAC. Similarly, in 2011, 633 

another publication reports a third-order calibration method for the determination of 634 

oxaprozin in human plasma in presence of inherent plasma interferents [71]. For this purpose, 635 

EEMs of every sample were acquired at different volume of plasma in order to create the 636 

third mode of the data. PARAFAC and AWRCQLD were used to decompose the four-way 637 

data for the quantitative analysis. The obtained results were compared to those obtained by 638 

second-order calibration, in which no standard addition was performed. This comparison 639 

demonstrated an improvement in the quantitative results when the extra mode (volume of 640 

sample) was included, principally in the predictive analysis (average recoveries between 155-641 

367% and 95-97% for second- and third-order calibration, respectively). These figures 642 

validate the hypothesis that problems of collinearity are solved by the introduction of the 643 

extra mode, leading to an improvement in the resolution and the quantitative performance of 644 

the method. Moreover, this evidence shed light on the existence of the third-order advantage.  645 

Exploiting the particularity of fluorescence components in being sensitive to the nature 646 

of the solvent medium, Zhang et al. introduced the strategy of varying the solvent medium 647 

as third instrumental mode in a four-way calibration method. The purpose of the method was 648 

the quantitation of active ingredients of Schisandra chinensis (schizandrol A and schizandrol 649 

B) in Dulbecco´s modified eagle medium (DMEM) samples [72]. SWANRF and PARAFAC 650 

were chosen as chemometric tools, which allowed tackling problems of high overlapping 651 
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degree between components and significant chemical information about the system was 652 

successfully gathered.  653 

Differences in solvent solutions have been also employed as fourth mode. Hence, two 654 

solvent media, with presence and absence of β-cyclodextrin in 10 % methanol-water solution, 655 

were used for the determination of aflatoxins B1 and B2 in peanut samples.  EEMs were 656 

collected in both solvents obtaining the four-way data. After converting the data to 657 

augmented three-way data, several three-way methods, BLLS-RBL and PARAFAC, were 658 

applied [73]. 659 

Interesting, to best of our knowledge, only one work based on the generation of four-660 

way data for classification analysis has been published [74]. This study informs a 661 

methodology for the classification of grapes (Tempranillo) according the maturation stage 662 

and the hydric status. For EEM data acquisition, front-face fluorescence modality was used. 663 

The extra mode was built by changing the nature of the solvent of extraction (extracts in 664 

water were re-extracted with diethyl ether). Hence, the excitation × emission × extraction 665 

solvent × samples four-way array was obtained. PARAFAC-linear discriminant analysis 666 

(LDA) and LDA-U-PLS were further employed to discriminate the samples. The addition of 667 

a second solvent allowed discrimination of samples with different hydric status whose EEMs 668 

were quite similar, increasing both selectivity and sensitivity. The results obtained for the 669 

differentiation between maturation stages were the same, independently of the data order 670 

used.   671 

 672 

3.6. EEMs-five-way  673 

Although Nth-order multivariate calibration is possible to accomplish with modern 674 

instrumentation, only three analytical applications of fluorescence fourth-order/five-way data 675 
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have been reported. The first reported method allowed the determination of carbaryl in water 676 

samples in presence of other two pesticides, fuberidazole and thialbendazole, acting as 677 

interferents [75]. The fourth-order data corresponding to individual samples were obtained 678 

by registering several EEMs during the kinetic hydrolysis reaction of carbaryl to 1-naphtol 679 

at different pH values. The gathered data were processed with U-PLS with residual 680 

quadrilinearization (U-PLS/RQL) algorithm, which is the quadrilinear extension of U-681 

PLS/RTL. The obtained results demonstrated the superiority in performance of this algorithm 682 

over PARAFAC in terms of predictive ability. In comparison to PARAFAC (RMSE of 9.3 683 

µg L-1 and REP of 6.2 %), lower RMSE and REP values were obtained with U-PLS/RQL 684 

model (7.0 µg L-1 and 4.7 %). These results are consequences of the inherent latent-structured 685 

flexibility of U-PLS/RQL, which allows processing data that are not strictly quadrilinear.  686 

A second report introduced a new fourth-order calibration algorithm, alternating fitting 687 

weighted residue quinquelinear decomposition (AFWRQQLD). The algorithm was 688 

employed for the analysis of the imidacloprid in environmental waters. Since the analyte has 689 

no intrinsic fluorescence in aqueous medium, samples were irradiated with UV light in 690 

alkaline medium in order to obtain a fluorescent product. The fourth-order data of each 691 

sample was obtained by recording EEM at different UV irradiation times for different 692 

volumes of sample, and the five-way data were built by joining the fourth-order objects 693 

obtained for different samples. The five-way object was further decomposed by 694 

AFWRQQLD, allowing to overcome the matrix effect by introducing the volume of 695 

environmental water as an extra instrumental mode [76]. This observation was demonstrated 696 

with the RMSE and REP % values, which were extraordinarily lower (7.4 ng mL–1 and 697 

8.4 %) than those obtained in four-way calibration methods, utilizing AFRQLD, AWRCQLD 698 
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and PARAFAC algorithms to model four-way EEM-kinetics data (47.2-51.9 ng mL–1 and 699 

17.3 -19.6 %) [76]. 700 

At last, the most recent article reports the determination of diclofenac sodium in river 701 

water samples. It should be remarked that diclofenac sodium shows unstable fluorescence in 702 

aqueous medium and, then, its fluorimetric determination is challenging. This work proposed 703 

a five-way calibration method to deal with this phenomena, which is based in the registering 704 

of several EEM at different irradiation time by varying the pH [77]. The obtained data array 705 

(excitation × emission × irradiation × pH × concentration) was decomposed by 706 

AFWRQQLD, PARAFAC and alternating quinquelinear decomposition (AQQLD) 707 

algorithms [78]. This procedure allowed to successfully determinate the analyte in real 708 

complex samples, even in the presence of indomethacin as interferent. 709 

 710 

4. Phosphorescence EEMs 711 

4.1. EEMs - kinetics (room temperature phosphorescence)  712 

The unique report on room-temperature phosphorescence (RTP) based approach is the 713 

one combining RTP data with kinetics [79]. The RTP four-way data were obtained by 714 

following the kinetic evolution of phosphorescence EEMs (EEPMs). PARAFAC, AQLD and 715 

AWRCQLD were used for the data decomposition. The three methodologies gave 716 

satisfactory results, but AQLD seemed to provide better results in terms of recovery study, 717 

SEN and selectivity figures, as well as demonstrated to be insensitive to the excess of factors 718 

used in calculation, indicating that it was a promising alternative to existing chemometric 719 

tools. The method was applied for the determination of carbaryl in tap water samples by 720 

following the hydrolysis kinetics of the analyte in presence of uncalibrated phosphorescence 721 

backgrounds, unexpected components and spectral background drift. 722 
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 723 

4.2. EEMs - time resolved phosphorescence  724 

A literature search reveals that the unique work reported employing EEMs time 725 

resolved phosphorescence was carried out by setting different excitation wavelengths in 726 

order to obtain wavelength–time matrices (WTMs) [80]. This array is a series of emission 727 

spectra at a single excitation wavelength registered at different time delays after a laser 728 

excitation pulse. In this way, the third-order data, excitation-modulated WTM (EMWTM), 729 

is finally obtained, which can be appreciated in Fig. 8. These particular data, based on laser-730 

excited time-resolved Shpol’skii phosphorescence spectroscopy, were used for the 731 

quantitation of 2,3,7,8-tetrachloro-dibenzo-para-dioxin in extremely contaminated waters. 732 

Interestingly, both high sensitivity and significant increasing on selectivity were 733 

accomplished by means of a proper four-way PARAFAC modeling. Concentrations of the 734 

analyte in the order of parts-per-trillion were reached even in samples with a large number 735 

of spiked compounds acting as interferents. 736 

 737 
5. Conclusions 738 

The growing interest in multi-way analysis is reflected in the large number of reports 739 

that are found in the literature. Numerous analytical applications based on multivariate 740 

calibration have been developed capitalizing on the advantages offered by the higher-order 741 

modeling. Nonetheless, third- and fourth-order analytical applications are still scarce despite 742 

all the benefits that have been demonstrated for third- and fourth-order calibration analysis.  743 

In the field of the third-order/four-way and fourth-order/five-way calibrations, 744 

luminescence-based analytical protocols are the most utilized for the determination of a large 745 

number of compounds in samples of diverse composition. Luminescence techniques 746 
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(fluorescence and phosphorescence) offer exceptional analytical properties, such as high-747 

sensitivity and selectivity, that enabled solving complex samples. It has been demonstrated 748 

that the analysis of total excitation-emission luminescence signals coupled to an additional 749 

instrumental variation, e.g., chromatography, kinetics, pH variation, empowers the 750 

performance of the analytical procedures. Consequently, the synergistic effect of combining 751 

excitation-emission luminescence data with higher-order calibration has been widely 752 

exploited. In this regards, environmental, biological and food samples, among other, have 753 

been successfully analyzed through higher-order multivariate calibration. 754 

The main conclusions about benefits, limitations and potentials of the developed 755 

methodologies using four- and five-way luminescence have been summarized in this review, 756 

and the existence of additional advantages over the known second-order advantage was 757 

exposed. The main benefits that have been supported with experimental evidences by a 758 

number of authors are 1) the possibility of decomposing a data array for each sample and 759 

independent of other samples, 2) the enhancement of the sensitivity and selectivity and more 760 

resolving power than three-way methods, by incorporation of additional information of the 761 

sample through a third instrumental mode and 3) the possibility to tackle collinearity 762 

problems. However, more works on the development on the fundamental theories are needed 763 

to fully understand the properties of third– and fourth-order calibration. In addition, new 764 

applications methods are needed to elucidate the advantages associated to higher–order 765 

calibration strategies, even in data that do not fulfill the concept of multilinearity. In these 766 

regards, it should be highlighted that beside all the analytical benefits that were widely 767 

demonstrated in terms of analytical figures and chemometric matter, a comprehensive 768 

evaluation involving instrumental requirements and experimental work is recommended to 769 
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provide stronger evidences about the potentialities of the higher-order based calibration 770 

methods.  771 
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Table 1: Principal algorithms and properties for modeling four-way data. 

Algorithms Required data arraya Multilinear propertyb Softwarec Reference 

Parallel factor analysis (PARAFAC) 

Four-way (I×J×K×L) 
 

Quadrilinear 

The N-way 
Toolbox 

MVC3_GUI 
PLS_Toolbox 

 

[81,82] 

Five-way (I×J×K×L×M) Quinquelinear PLS_Toolbox [81] 

Alternating quadrilinear decomposition (AQLD) and 
Alternating penalty quadrilinear decomposition 

(APQLD) 

Four-way (I×J×K×L) 
 

Quadrilinear MVC3_GUI [20,83] 

Alternating weighted residual constraint quadrilinear 
decomposition (AWRCQLD) 

Four-way (I×J×K×L) 
 Quadrilinear MVC3_GUI [71] 

Four-way self-weighted alternating normalized 
residue fitting algorithm (SWANRF) 

Four-way (I×J×K×L) 
 

Quadrilinear  [57] 

Regularized self-weighted alternating quadrilinear 
decomposition (RSWAQLD) 

Four-way (I×J×K×L) Quadrilinear  [58] 

Slicing alternating quadrilinear decomposition 
(SAQLD) Four-way (I×J×K×L) Quadrilinear  [37] 

Four-way algorithm combination method (FACM) Four-way (I×J×K×L) Quadrilinear  [38] 
Constrained alternating quadrilinear decomposition 

(CAQLD) Four-way (I×J×K×L) Quadrilinear  [61] 

Multivariate curve resolution  
coupled to alternating least squares (MCR-ALS) 

Two-way (IL×JK) 
 

Quadrilinear and non-
quadrilinear Type 1 

MCR-ALS 2.0 
toolbox 

MVC3_GUI 

[84] 

Two-way (IJL×K) Quadrilinear and non-
quadrilinear Type 4 [53] 

PARAFAC2 Four-way (I×J×K×L) 
Quadrilinear and non-
quadrilinear Type 1 MVC3_GUI [85] 

 

Augmented parallel factor analysis (APARAFAC) Three-way (IL×J×K) 
Quadrilinear and non-
quadrilinear Type 1 

MVC3_GUI [49] 
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Table 1: Principal algorithms and properties for modeling four-way data. 

Algorithms Required data arraya Multilinear propertyb Softwarec Reference 

Unfolded partial least-squares/residual 
trilinearization (U-PLS/RTL) 

- Calibration step: 
two-way (I×JKL) 

- Second- and higher-order 
advantage step (RTL): three-way 

(L×J×K) 

Quadrilinear and non-
quadrilinear Types 2 and 3 

MVC3_GUI [26] 

N-way partial least-squares/residual trilinearization 
(N-PLS/RTL) 

- Calibration step: 
two-way (I×JKL) 

- Second- and higher-order 
advantage step (RTL): three-way 

(L×J×K) 

Quadrilinear and non-
quadrilinear Types 2 and 3 

MVC3_GUI [29] 

Alternating fitting weighted residue quinquelinear 
decomposition (AFWRQQLD) Five-way (I×J×K×L×M) Quinquelinear  [76]  

Alternating quinquelinear decomposition algorithm 
(AQQLD) Five-way (I×J×K×L×M) Quinquelinear  [78]  

Unfolded partial-least squares/residual 
quadrilinearization (U-PLS/RQL) Five-way (I×J×K×L×M) Quinquelinear  [75]  

a J, K and L are the first, second and third instrumental data modes. In this case, J, and K correspond to the fluorescence signal modes (excitation and emission wavelength, 
respectively), L is the experimental variable mode (elution time, time resolved, reaction time, pH or other chemical treatment), and I refers to the concentration mode (number of 
samples). 
b According to Fig. 1. 
c The N-way Toolbox for MATLAB: http://www.models.life.ku.dk/algorithms; MVC3_GUI: www.iquir-conicet.gov.ar/descargas/mvc3.zip; PLS_Toolbox: 
http://www.eigenvector.com; MCR-ALS 2.0 toolbox: https://mcrals.wordpress.com/. 

http://www.models.life.ku.dk/algorithms
http://www.iquir-conicet.gov.ar/descargas/mvc3.zip
http://www.eigenvector.com
https://mcrals.wordpress.com/
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Table 2: Methods employing EEM-kinetics third-order data. 
Analytes Matrix Algorithms Reaction details Reference 

Adrenaline and noradrenaline 
from catecholamine standards - PARAFAC 

N-PLS 

Lutine reaction. K3Fe(CN)6 as oxidizing agent. 
ZnSO4 as catalyst. Alkaline solution (pH 10). 

C6H8O6 as antioxidant 
[22] 

Methotrexate and leucovorin Urine PARAFAC 
TLLS Oxidation with potassium permanganate [25] 

benz[a]anthracene, 
benzo[k]fluoranthene and 

dibenz [a,h]anthracene  
- PARAFAC Photocatalytic degradation with a reactor [23] 

Fenvalerate - PARAFAC Photochemically induced degradation.  [24] 

Folic acid and methotrexate Urine PARAFAC 
N-PLS 

Oxidation with potassium permanganate. pH 
3.4, chloroacetic/chloroacetate buffer and 20 ºC [27] 

Leucovorin and metotrexate - 
PARAFAC 
TLLS/RTL 
U-PLS/RTL 

Oxidation with potassium permanganate. 
Presence of uncalibrated components [26] 

Folic acid and methotrexate Human serum 

N-PLS 

PARAFAC 

U-PLS/RTL 

Oxidation with potassium permanganate [28] 

Procaine and its metabolite p-
aminobenzoic acid Equine serum N-PLS/RTL Hydrolysis reaction of procaine. pH 13 and Tª = 

40 ºC [29] 

Folic acid, 5-
methyltetrahydrofolic acid and 

tetrahydrofolic acid. 
Human serum U-PLS/RTL 

N-PLS/RTL 
On line photochemical reaction with a UV lamp 

in a flow system [30] 

Malonaldehyde Olive oil U-PCA/RTL/RBF 

Reaction between malonaldehyde and 
methylamine to obtain 1,4-disubstituted-1,4-

dihydropyridine-3,5-dicarlbaldehyde. Solutions 
in sodium acetate/acetic acid buffer (pH 3.8) 

and isopropanol  

[31] 

Carbaryl Effluent water PARAFAC Hydrolysis reaction in alkaline buffer (pH 9.3). 
Presence of unknown interferences  [33] 

Carbaryl and 1-naphtol Water U-PLS/RTL 
Alkaline hydrolysis of carbaryl with a buffer 
phosphate (pH 10.2). Presence of potential 

interferents (fuberidazole and thiabendazole) 
[34] 
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Table 2: Methods employing EEM-kinetics third-order data. 
Analytes Matrix Algorithms Reaction details Reference 

Nitrofurans Fish PARAFAC 
UPCA/RTL/RBF-ANN Alkaline hydrolysis  [32] 

Carbaryl, 1-naphtol and 
propoxur River water U-PLS/RTL 

N-PLS/RTL 

Alkaline hydrolysis with a buffer phosphate 
(pH 10.2). Carbendazim and thiabendazole as 

interferents 
[35] 

Tyrosine and levodopa Human plasma AQLD Enzyme-induced kinetics with polyphenol 
oxidase [36] 

Nicotinamide adenine 
dinucleotide and flavin adenine 

dinucleotide 
Human plasma 

CATLD  
RSWAQLD 
PARAFAC 

Degradation reaction of NADH and formation 
of FAD. Uncalibrated components present [40] 

Thiamine Multivitamin 
complexes PARAFAC 

Oxidation of thiamine-Hg (II) complex to 
thiochrome. Standard addition calibration.  
Reaction to 25 ºC. Unknown interferents 

[39] 

Tyrosine and Levodopa Human plasma SAQLD Enzyme-induced kinetics with polyphenol 
oxidase [37] 

Benzo[a]pyrene, 
dibenz[a,h]anthracene, 
benzo[b]fluoranthene, 

benzo[k]fluoranthene and 
Benzo[a]anthracene 

Natural water PARAFAC 

Fenton degradation. Acetate/acetic acid buffer 
(pH 5), Fe (II) ion concentration of 2 mg/L, 

H2O2 concentration of 5 g/L,  
Tª = 20 ºC, M-b-CD concentration of  

0.01 mol/L 

[41] 

Azinphos-methyl  Apple, pear, peach PARAFAC 
U-PLS/RTL Irradiation with UV-light [43] 

Irinotecan  Human plasma AWRCQLD 
APQLD Hydrolysis of CPT-11 [44] 

Tyrosine and levodopa Human plasma FACM Enzyme-induced kinetics with polyphenol 
oxidase [38] 

Bisphenol A and nonylphenol Food-contact 
plastics 

PARAFAC 
U-PLS/RTL 
MCR-ALS 

Fenton degradation. Reaction with hydrogen 
peroxide catalyzed by iron, generating strong 

non-specific oxidant hydroxyl radicals 
[42] 
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Table 3: Methods employing EEM-LC third-order data. 
Analytes Matrix Algorithms Experimental System Reference 

Perylene, fluoranthene, 
tethracene and 9,10-
dimethylanthracene 

Effluent Nonlinear iterative 
least squares HPLC connected to a video fluorometer [45] 

Molecular entities  Thick juice PARAFAC 
PARAFAC2 Collection of chromatographic fractions [46]  

Chlorophlylls a and b and 
pheophytins a and b Olive oils 

PARAFAC 
U-PLS/RTL 
N-PLS/RTL 

Multiple injections at different excitation wavelength, collecting 
time-emission spectra matrix [47] 

Carbendazim, fuberidazole, 
thiabendazole, carbofuran, 

carbaryl and naphtol 
Fruit juice 

PARAFAC 
U-PLS/RTL 
MCR-ALS 

Multiple injections at different excitation wavelength, collecting 
time-emission spectra matrix [48] 

Chlorophlylls a and b and 
pheophytins a and b Olive oils APARAFAC 

MCR-ALS 
Multiple injections at different excitation wavelength, collecting 

time-emission spectra matrix [49]  

Ofloxacin and ciprofloxacin Drinking water 
PARAFAC 
U-PLS/RTL 
MCR-ALS 

Collection of chromatographic fractions and further fluorescence 
detection to each fraction [50] 

Ofloxacin, ciprofloxacin and 
danofloxacin  Drinking water APARAFAC 

MCR-ALS 
Collection of chromatographic fractions and further fluorescence 

detection to each fraction [51] 

Fluoroquinolones Drinking water 
PARAFAC 

APARAFAC 
MCR-ALS 

Collection of chromatographic fractions and further fluorescence 
detection to each fraction 

 
Multiple injections at different excitation wavelength, collecting 

time-emission spectra matrix 
 

On-line EEM registering using an hyphenated LC-fast-scanning 
fluorimeter system 

[10] 

Fluoranthene, pyrene, 
benz[a]anthracene, 

chrysene, 
benzo[b]fluoranthene, 
benzo[k]fluoranthene, 
benzo[a]pyrene and 

dibenz[a,h]anthracene 

Underground and 
stream water PARAFAC On-line EEM registering using an hyphenated LC-fast-scanning 

fluorimeter system [52] 
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Table 3: Methods employing EEM-LC third-order data. 
Analytes Matrix Algorithms Experimental System Reference 

Rimsulfuron, fuberidazole, 
carbaryl, naproxen, 

albendazole, tamoxifen 
Well and river water MCR-ALS On-line EEM registering using an hyphenated LC-fast-scanning 

fluorimeter system with on-line photoreactor [54] 

Benz[a]anthracene, 
chrysene, 

benzo[b]fluoranthene and 
benzo[a]pyrene 

Tea leaves MCR-ALS On-line EEM registering using an hyphenated LC-fast-scanning 
fluorimeter system [53]  

7-Hidoxyquinoline, Eosin Y 
and Resorufin Water  PARAFAC 

APARAFAC 
On-line EEM registering using an hyphenated LC-CCD based 

spectrometer system [55]  
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Table 4. Methods employing EEM-pH third-order data 
Analytes Matrix Algorithms Experimental System Reference 

Procaine hydrochloride and 
p-aminobenzoic acid Human plasma PARAFAC  

APQLD 
Discrete pH levels:  

6.0 8.0. 11.5 12.2 12.8  [20] 

Serotonin Human plasma PARAFAC 
SWANRF 

Discrete pH levels: 
9.10, 9.22, 9.40, 9.50 [57] 

Flumequine, enoxacin, 
ciprofloxacin and 

marbofloxacin 
River water PARAFAC 

RSWAQLD 
Discrete pH levels:  

2.2, 3.0, 4.0 
[58] 

 

L-phenylanaline, L-tyrosine, 
L-tryptophan Human plasma PARAFAC Discrete pH levels:  

3.6, 4.0, 4.4, 4.8, 5.2 [59]  

Ofloxacin, norfloxaxin and 
ciprofoxacin Urine PARAFAC 

In-flow pH gradient: 
Carrier solution pH 3 

Injection solution pH 7 
[62] 

Xanthopterin and 
isoxanthopterin 

Human urine 
and serum 

FACM 
AQLD 

PARAFAC 

Discrete pH levels:  
6.5, 7.0, 7.5, 8.0 [38] 

Gallic acid, caffeine acid 
and p-hydroxybenzoic acid Drinking water PARAFAC Discrete pH levels:  

7.0, 7.3, 7.5, 7.8 [60] 

Flavin adenine dinucleotide 
and flavin mononucleotide Cancer cells  CAQLD Discrete pH levels:  

2.2, 2.6, 3.0, 3.4, 3.8, 4.2 
[61] 
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Figure captions 

Fig. 1. Classification scheme for four-way data for a set of samples according to whether the 
individual three dimensional arrays data are trilinear or not and according to the number of 
quadrilinearity-breaking modes. Adapted from [7]. 
 
Fig. 2. Evolution of the fluorescence intensity of AZM (lexc = 240 nm; lem = 390 nm) and 
EEMs, as a function of irradiation time. Reprinted with permission from [43]. Copyright 
2017 Elsevier. 
 
Fig. 3. Schematic representation of MCR-ALS model to third-order EEM-LC data 
processing. Reprinted with permission from [10]. Copyright 2017 Elsevier. 
 
Fig. 4. Schematic representation of APARAFAC model to third-order EEM-LC data 
processing. Reprinted with permission from [10]. Copyright 2017 Elsevier.   
 
Fig 5. Schematic illustration of the application of MCR-ALS to type 4 non-quadrilinear data 
proposed by Carabajal et al [53].  
 
Fig. 6. Chromatographic profiles of Eosine Y (red), Resorufin (blue) and Fluorescein (green) 
obtained from four-way PARAFAC decomposition and original fluorescence images at 
different times acquired with the CCD-based fluorescence detector. Dotted gray line 
represents the chromatographic profile of the ternary mixture as would be measured at single 
excitation and emission wavelengths. A total number of 1450 matrices were registered in a 
run of 4.5 min. 

 
Fig 7. Experimental procedure to acquire EEM-pH data in static conditions. 
 

Fig 8. Schematic representation of the third-order array EMWTM obtained for each analyzed 
sample.  
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