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Abstract 14 

The aim of this study was developing a non-destructive method for the determination of color in 15 

paprika powder. Non-destructive Raman spectroscopy was applied directly to paprika powder 16 

employing a laser excitation of 785 nm for the first time. The fluorescence background was 17 

estimated, by fitting a polynomial to each spectrum, and then subtracted. After preprocessing the 18 

spectra, some peaks were clearly identified as characteristic from pigments present in paprika. 19 

The preprocessed Raman spectra were correlated with the ASTA color values of paprika by partial 20 

least squares regression (PLSR). Twenty-five paprika samples were adulterated with Sudan I at 21 

different levels and the PLSR model was also obtained. The coefficients of determination (R2) 22 

were 0.945 and 0.982, respectively, and the root mean square errors of prediction (RMSEP) were 23 

8.8 ASTA values and 0.91 mg/g, respectively. Finally, different approaches were applied to 24 

discriminate between adulterated and non-adulterated samples. Best results were obtained for 25 

partial least squares – discriminant analysis (PLS-DA), allowing a good discrimination when the 26 

adulteration with Sudan I was higher than 0.5 %. 27 

 28 

Keywords: Raman spectroscopy, ASTA values, Sudan I, partial least-squares regression, partial 29 
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1. INTRODUCTION 36 

Paprika powder is a spice that is being increasingly consumed in many areas, such as cookery or 37 

restaurant business.  Paprika is also used as natural colorant in seasonings, sauces, confectionary, 38 

processed cheeses and so on. This product contains over 20 different carotenoid pigments that 39 

give its reddish color. Depending on how the paprika is manufactured and which Capsicum 40 

varieties of peppers are employed, the content of carotenoids may differ (Monago Maraña, 41 

Bartolomé García, & Galeano Díaz, 2016).  42 

Color is an important quality parameter in paprika powder and is usually determined according 43 

to the American Spice Trade Association (ASTA) (ASTA, 2018), by obtaining absorbance values 44 

at 460 nm of an acetone extract of the sample (Method 20.1, revised October 2004). The ASTA 45 

color value is one of the parameters established to determine if the paprika is of high quality or 46 

not. For example, the Regulation of the Spanish Protection Designation of Origin (PDO) 47 

“Pimentón de La Vera” specify that the ASTA color values in paprika must be higher than 90 48 

(MAPAMA, 2006). The samples belonging to this PDO possess some special characteristics due 49 

to the production process, which consists of a smoke drying system that gives the smoke flavor 50 

and aroma. This drying system also preserves the pigments better, while other systems induce a 51 

stronger degradation of the pigments during processing and storage (Velázquez et al., 2014). 52 

Usually, liquid chromatography is employed to determine individual carotenoids content in 53 

paprika (Molnár et al., 2016). Capsanthin and capsorubin are the major carotenoids present in the 54 

red fraction and β-carotene is the major carotenoid in the yellow fraction.  55 

Paprika powder loses its color during storage (Pérez-Gálvez, Mínguez-Mosquera, Garrido-56 

Fernández, Lozano-Ruiz, & Montero-de-Espinosa, 2004). For this reason, it can be tempting to 57 

add illegal colorants, such as Sudan dyes, which are stable yellow-orange or red azo-dyes to give 58 

more persistent and intensive colors to the spices. Hence, the paprika will appear fresher and of 59 

higher quality.  60 
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Rapid detection of these illegal Sudan dyes has been attempted with spectroscopic techniques. 61 

Some authors determined the adulteration of spices and other foodstuffs with Sudan I-II-III-IV 62 

by UV-visible spectroscopy and multivariate classification showing good results in levels of 63 

concentration higher than 1.0 mg/L, 2.5 mg/L, 5 mg/L (in dissolution) or 3.6 mg/g depending on 64 

the samples and the study that they perform (Di Anibal, Rodríguez, & Albertengo, 2014; Di 65 

Anibal, Rodrí-guez, Albertengo, & Rodrí-guez, 2016). Moreover, UV-visible spectroscopy  have 66 

also been used by Yuan, Liao, Lin, Deng, & He (2008) to determine Sudan dyes in chili powder 67 

samples. These authors determined Sudan I in chili samples employing gradual changes in the 68 

absorption spectra with different solvents and second order algorithms. In this case, lower 69 

concentrations of Sudan I were detected and sample pretreatment was required.  70 

In order to determine low concentrations of these Sudan dyes, separative techniques have been 71 

widely used as shown in different reviews (Rebane, Leito, Yurchenko, & Herodes, 2010; 72 

Reinholds, Bartkevics, Silvis, van Ruth, & Esslinger, 2015). After that, other studies show that 73 

liquid chromatography coupled to various detectors can be used in the adulteration control of 74 

different foods (Rajabi, Sabzalian, Barfi, Arghavani-Beydokhti, & Asghari, 2015; Sricharoen, 75 

Limchoowong, Techawongstien, & Chanthai, 2017; Tsai, Kuo, & Shih, 2015).  76 

Furthermore, near infrared spectroscopy (NIRS) was applied directly to paprika powder samples 77 

in order to determine the ASTA color values content in paprika samples (Bae, Han, & Hong, 78 

1998) where they built a PLS model with 8 components obtaining good results (R2 = 0.896). Han 79 

et al. (2015) also determined ASTA color values with UV/NIR hyperspectral image obtaining a 80 

square correlation coefficient of 0.88.  81 

With their unsatured and conjugated chemical structure, carotenoids and other pigments usually 82 

have very favorable Raman scattering properties. However, Di Anibal, Marsal, Callao, & 83 

Ruisánchez  (2012) suggested that using conventional Raman spectroscopy directly on paprika 84 

powder is impossible due to the strong fluorescence background. Hence, the studies found in the 85 

literature mostly employ surface enhanced Raman spectroscopy to determine Sudan dyes in food 86 

(Gao et al., 2015; Jahn et al., 2015). Although surface-enhanced Raman spectroscopy is a 87 
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commonly used method for enhancing sensitivity in Raman spectroscopy, the technique is based 88 

on interactions between the analyte and nanoparticles, ant it can be difficult to obtain useful 89 

signals for quantification.  90 

Note that all the studies mentioned above, except NIRS, require sample pre-treatment, which 91 

means more time, solvents and, consequently, the approaches are more expensive. The literature 92 

concerning the application of direct Raman spectroscopy to determine the adulteration of spices 93 

with Sudan dyes is scarce (Haughey, Galvin-King, Ho, Bell, & Elliott, 2015). Hitherto, the 94 

application of Raman using a 785 nm laser on paprika powder has not been reported yet.   95 

As reported in the literature, the 1064 nm Raman excitation can be a good choice to determine 96 

Raman sensitive compounds in samples that exhibit strong fluorescence (Waesner & Longmire, 97 

2001), since fluorescence for this excitation is generally lower than for shorter wavelengths. 98 

However, the use of longer laser wavelengths decreases the efficiency of Raman scattering and 99 

the CCD detector has a very weak response for Raman signals excited at longer wavelengths than 100 

785 nm. Hence, longer laser wavelength rapidly disqualifies the CCD as a viable detector and 101 

room-temperature indium gallium arsenide (InGaAs) or liquid nitrogen-cooled germanium (Ge) 102 

detectors have to be used (Waesner & Longmire, 2001). These detectors are more expensive than 103 

CCD detectors, especially for portable instruments. Besides, the equipment with a 785 nm laser 104 

is more sensitive, faster, and generally, less than half of the price compared to instruments that 105 

employ 1064 nm lasers. Hence, it can be a challenge employ 785 nm laser combined with 106 

mathematical methods for quantifying these samples which exhibit high fluorescence signals, 107 

employing this methodology as an alternative to Fourier-transform Raman spectroscopy.  108 

Many mathematical methods have been proposed to pre-process Raman spectra (Cordero et al., 109 

2017; Gautam, Vanga, Ariese, & Umapathy, 2015; Liland, Kohler, & Afseth, 2016; Liu, Sun, 110 

Huang, Li, & Liu, 2015). Polynomial fitting (Lieber & Mahadevan-Jansen, 2003) and extended 111 

multiplicative scatter correction  (Martens & Stark, 1991) are examples of such methods.  112 
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Polynomial fitting is based on an approximation of the broad fluorescence background as an n-113 

order polynomial function. The polynomial is then subtracted from the raw Raman spectrum. This 114 

approach has been applied to measurements from different analytical techniques, such as liquid 115 

chromatography (Mecozzi, 2014), 2-D electrophoresis (Færgestad et al., 2007) and Raman 116 

spectroscopy (Afseth, Segtnan, & Wold, 2006; Kourkoumelis, Polymeros, & Tzaphlidou, 2012; 117 

Mclaughlin & Lednev, 2015; Qin, Chao, & Kim, 2013; J. P. Wold, Marquardt, Dable, Robb, & 118 

Hatlen, 2004) in different fields and matrices.  119 

The main objective of this work was to analyse paprika powder with 785 nm excitation Raman 120 

spectroscopy and remove the fluorescence background by subtracting it prior to data analysis. 121 

The corrected Raman spectra were evaluated for the determination of ASTA color values in 122 

paprika samples and detection of illegal Sudan I dye concentration in adulterated paprika powder. 123 

In addition, a classification technique was assayed to establish the lowest Sudan I concentration 124 

that can be detected by Raman spectroscopy in adulterated samples. 125 

2. EXPERIMENTAL 126 

2.1. Chemicals and samples 127 

Acetone (grade HPLC), sulfuric acid (99.999 %), ammonium cobalt (II) sulfate hexahydrate 128 

(NH4)2Co(SO4)2 · 6 H2O, potassium dichromate (K2Cr2O7) and Sudan I (≥ 95 %) were purchased 129 

from Sigma-Aldrich (St. Louis, MO).  130 

The set of paprika powder samples consisted of 58 samples from different origins. A total of 32 131 

samples were from the Spanish PDO “Pimentón de La Vera”, 20 samples were from Spanish local 132 

markets not belonging to the PDO and 6 samples were from Norwegian local markets. Samples 133 

belonging to the PDO were from different years (2010 – 2016).   134 

Five different paprika samples, with representative ASTA color values, were selected for the 135 

adulteration experiment. The five samples had the following ASTA color values: 25, 63, 85, 140 136 

and 149. Each sample was adulterated with the illegal Sudan I dye at five concentration levels: 137 

1mg/g, 2.5 mg/g, 5 mg/g, 10 mg/g and 25 mg/g. Hence, a total of twenty-five adulterated samples 138 
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were prepared. Each adulterated sample was prepared by mixing 4.0 g (± 0.0001 g) of paprika 139 

with various amounts of Sudan I (from 4 mg to 100 mg). The samples were manually mixed to 140 

obtain a homogeneous blend.  141 

2.2. Reference ASTA measurements 142 

The ASTA reference values were obtained by means of the AOAC International (2002) method 143 

971.26 (Velázquez et al., 2014). A volume of 20.0 mL of acetone was added to 0.1000 g of paprika 144 

sample. Then samples were axially shaken (140 rpm) during three hours in a water bath at 25 ºC. 145 

After that, the samples were centrifuged during 5 min at 4000 rpm. The mixture was diluted 1:5 146 

in acetone. Absorption spectra were acquired using an Agilent 8453 UV-Visible 147 

spectrophotometer (Agilent Technologies). The extraction solvent was used as blank for baseline 148 

correction and the Chemstation software was used for data acquisition. With the absorbance at 149 

460 nm, ASTA values were calculated using the following equation:   150 

𝐴𝑆𝑇𝐴 = 𝐴("#$%&) ∗ 16.1 ∗ 𝐼𝑓/𝑤𝑒𝑖𝑔ℎ𝑡	    [1] 151 

where A is the absorbance of the extract, If is the deviation factor of the spectrophotometer, which 152 

is calculated by dividing the theoretical absorbance (At =0.600) by the real absorbance (As) of a 153 

standard color solution (0.01 M K2Cr2O7 and 0.09 M (NH4)2Co(SO4)2 · 6 H2O in 1.8 M H2SO4) 154 

at 460 nm, and weight is the paprika sample weight in grams. 155 

2.3. Raman measurements 156 

A RamanRXN2TM Hybrid system (Kaiser Optical Systems, Inc., Ann Arbor, MI) was employed 157 

to perform the Raman measurements. This instrument was equipped with a non-contact PhAT-158 

probe (Kaiser Optical Systems, Inc., Ann Arbor, MI). The excitation wavelength was 785 nm 159 

with a circular spot size of D =6 mm at 25 cm working distance operating at an average power of 160 

400 mW. Raman spectra were collected in the range from 300 – 1800 cm-1 with a total of 150 161 

scans and an accumulation time of 0.1 sec/scan.  162 
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For predicting ASTA values, Raman spectra were collected in triplicate, and the average spectrum 163 

of the three was used for further analysis.   164 

For Raman spectra used to detect adulteration with Sudan I, each sample was measured five times 165 

and the average spectrum from each sample was used for further analysis. Five replicates were 166 

collected to ensure that the average spectrum would be representative of the sample.  167 

2.4. Pre-processing of Raman spectra  168 

The fluorescence background signal in the Raman spectra was removed by polynomial fitting, a 169 

method introduced by Brennan, Wang, Dasari, & Feld (1997) and refined by Lieber & 170 

Mahadevan-Jansen (2003). In the traditional approach of polynomial fitting, one polynomial of a 171 

given degree is fitted to a spectrum. The resulting baseline correction is often unsatisfactory 172 

because the polynomial fitting is severely affected by the Raman peaks in the spectrum, and not 173 

only by the baseline. The approach used here is an iterative procedure where the baseline of a 174 

given spectrum is estimated through successive polynomial fitting. It works as follows: 1. The 175 

fitted baseline is first approximated by the spectrum itself. 2. A polynomial of a given degree is 176 

fitted to the intermediate baseline. 3. The polynomial and the intermediate baseline are compared, 177 

and for each spectrum variable the lowest value of either the polynomial or the baseline is chosen. 178 

The resulting values are stored as the next approximation to the baseline. 4. The procedure of 2. 179 

and 3 are repeated for a preselected number of iterations (for instance 1000), or until the difference 180 

between the intermediate baseline and the fitted polynomial is appreciably small. 5. When the 181 

final polynomial is obtained, this polynomial is subtracted from the original spectrum.  182 

The correction was applied from 900 to 1800 cm-1 with a fourth order polynomial correction.  The 183 

calculations were done with Matlab R2007b (MATLAB Version 7.5, The Marhworks, Natick, 184 

Massachusetts, 2007).  185 

 186 
2.5. Regression analysis 187 

Partial least squares regression (PLSR) is a multivariate regression method widely used with 188 

Raman spectroscopy as described in the literature (Czaja, Mazurek, & Szostak, 2016; Su, He, & 189 
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Sun, 2017). For applying the classification method, the data set of samples was randomly divided 190 

in a training set and a test set, resulting in 66 samples (47 non-adulterated (75 % of non-adulterated 191 

samples) and 19 adulterated (75 % of adulterated samples)) for the training set, and 22 samples 192 

(16 non-adulterated and 6 adulterated), for the test set. 193 

In PLSR, the response variable, y (Ix1) (ASTA values) is regressed on an ill-conditioned X (IxJ) 194 

(Raman spectra). This is done by defining a lower rank principal component space that maximizes 195 

the covariance between X and y. In this study, leave-one-out cross-validation was used to 196 

determine the rank of the principal component  space (i.e. the number of principal components 197 

included in the PLSR model)  (Haaland & Thomas, 1988). Spectra were mean centered prior to 198 

PLSR modeling. 199 

The software package Unscrambler® v6.11 (CAMO A/S Olav Tryggvasonsgt, N-7011, 200 

Trondheim, Norway) was employed for the building of the regression models.  201 

2.6. Exploratory analysis and classification techniques 202 

For applying the classification method, the data set of samples employed were the same that in 203 

the regression analysis. In order to perform discrimination between adulterated and non-204 

adulterated samples, different techniques were used. Principal component analysis (PCA) was 205 

used for exploratory analysis of the spectral data. Like PLSR, PCA benefits from modeling the 206 

matrix X (Raman spectra) in a lower dimensional principal component space. In PCA, X is 207 

decomposed into scores and loadings (and residuals). The loadings describe the direction of each 208 

principal component  in the original X-space and the scores are the projections of the original data 209 

onto the loading vectors (S. Wold, Esbensen, & Geladi, 1987).  210 

Partial least-squares discriminant analysis (PLS-DA) was employed for supervised classification. 211 

This technique requires defined classes of samples and aims to divide the data space into different 212 

sub-spaces, each of which correspond to one class. Unknown samples are classified into the 213 

closest class (Callao & Ruisánchez, 2018). PLS-DA was used to determine the lowest limit of 214 
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detection for Sudan I in paprika powders evaluating the probability of detection (POD) curves 215 

(López, Callao, & Ruisánchez, 2015). 216 

In order to carry out the PLS-DA classification, the tutorial provided by Ballabio & Consonni 217 

(2013) was followed. The first step is to determine the optimal number of latent variables. For 218 

that, the venetian blinds cross-validation procedure was used. The cross-validation was done with 219 

2, 5 and 10 data splits (i.e. for the case with 10 data splits each validation set is determined by 220 

selecting every 10th samples in the data set, starting at sample 1 through 10). Background 221 

fluorescence was removed and spectra were mean centered prior to classification.  222 

3. RESULTS AND DISCUSSION 223 

3.1. ASTA reference measurements 224 

Variability in sample origin and age resulted in a wide range of ASTA values (20 - 150).  Samples 225 

from 2010 to 2014 (PDO samples) had ASTA values lower than 90, as the degradation of 226 

pigments is occurring over time. However, the PDO samples from the years 2015 and 2016 did 227 

still have ASTA values higher than 90. Most of the non-PDO samples had ASTA values below 228 

90. This meant that compared with the PDO samples, the color quality of these samples was 229 

lower.    230 

3.2. Raman spectra pre-processing and peak identification 231 

Figure 1A shows that there was a strong fluorescence background in the Raman spectra due to 232 

the many fluorescent compounds in paprika (Monago-Maraña, Galeano-Díaz, & Muñoz de la 233 

Peña, 2017). This background signal was not reproducible between replicates and it was not 234 

correlated with the color. The sample with the highest ASTA color value produced a medium 235 

fluorescence signal, while a sample with low ASTA value gave a more intense fluorescence 236 

signal.  237 

When the background fluorescence was removed it could be seen that the three replicates gave 238 

very similar spectra (Figure 1B), which meant that the correction preserved the Raman 239 
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information. In the corrected spectra, the main bands appeared at 1521 cm-1, 1157 cm-1 and 1107 240 

cm-1. These peaks correspond with the three main Raman bands of carotenoids in paprika, namely 241 

C=C and C-C stretching and C-CH3 deformation, termed n1, n2 and n3  (De Oliveira, Castro, 242 

Edwards, & De Oliveira, 2010). The major paprika pigment capsanthin has three Raman bands at 243 

1521 cm-1, 1155 cm-1 and 1107 cm-1 and β-carotene has bands at 1527 cm-1, 1157 cm-1 and 1106 244 

cm-1. The observed peaks were clearly related to the main paprika pigments.  245 

In the case of Sudan I, the peaks corresponding to this compound are described in the literature 246 

as: 763/722 cm-1 (dCCC, in-plane angular deformation), 1002/984 cm-1 (dCCC, in-plane angular 247 

deformation), 1169 cm-1 (dCH), 1227 cm-1 (nsCC, symmetric stretching vibration; dCH 1258     248 

cm-1 (nsNN, dNH, nsCC, dCH), 1341 cm-1 (nsCC; dCH), 1389 cm-1 (nsC=N; dNH; nsCC),  1495 249 

cm-1 (nsCC; dCH; nsC-NH),  1547 cm-1 (nsC=O; gsC=N; nsC=N)  and 1596 cm-1 (nsCC, dCH; 250 

dNH) (Ferreira, Garcia, Couri, Dos Santos, & De Oliveira, 2013).  Figure 2 shows that some of 251 

these peaks appeared clearly in the adulterated samples: 1228, 1386, 1496 and 1598 cm-1. 252 

3.3. Regression analysis 253 

PLSR models were built for quantification of ASTA values in paprika samples and Sudan I in 254 

adulterated paprika samples. The results from PLSR models are presented in Table 1 and Figures 255 

S1 and S2. In order to get the calibration models by means of cross-validation procedure, the 256 

training set was employed and for validating this calibration, the samples of test set were 257 

predicted.  258 

From the results obtained in the case of the ASTA measurements calibration model, the root mean 259 

square of prediction (RMSEP) was 8.9 ASTA values and the squared correlation coefficient (R2) 260 

was 0.94. Good results of prediction were obtained for the validation samples (Table 1). Hence, 261 

this method could most likely be employed in industry in order to obtain ASTA values rapidly 262 

and without any color extraction. In addition, these measurements could be collected in the line 263 

of production for a more exhaustive control of all samples.  264 



12 
 

Figure S1 shows the regression coefficient for the model of ASTA values determination, which 265 

is corresponding with the main peaks of carotenoids Raman spectrum, which means that these 266 

variables are influencing the model the most. These variables are: 1008.3, 1157.7, 1520.1 cm-1. 267 

All these variables are the main variables of majority carotenoid present in paprika samples 268 

(capsaicin and b-carotene), as indicated above.  269 

In the case of Sudan I determination calibration model, the RMESP was  0.75 mg/g and R2 was 270 

0.98. In the case of validation samples, good results of prediction were obtained (Table 1). This 271 

result suggests that the method is suitable for effective detection of Sudan I adulterated paprika 272 

samples. It is likely that also other Sudan dyes could be detected as they present different peaks 273 

from the true pigments in paprika.  274 

A low number of principal components (4) was required in the present study to obtain the 275 

corresponding calibration model. In general, it is favorable to have calibrations that rely on few 276 

components, as this eases model interpretation and reduces risk of overfitting.  277 

Figure S2 shows the regression coefficient for the model of Sudan I determination, which is 278 

corresponding with the main peaks of the Sudan I spectrum, which means that these variables are 279 

influencing the model the most. These variables are: 986.1, 1002.2, 1169, 1226.7, 1259.4, 1340.4, 280 

1391.4, 1496.7, 1549.5 and 1597.5 cm-1. All these variables are the main variables of Sudan I 281 

described by Ferreira et al. (Ferreira et al., 2013). 282 

Hence, with the Raman spectrum of one paprika sample, the ASTA value and the Sudan I 283 

concentration can be determined simultaneously. It should also be noted that the large quality 284 

variation of the samples used in this study indicates that the method is robust. This robustness 285 

was obtained by including samples from different origins and ages as Haughey et al. (2015) 286 

suggested in their study. In other similar studies, the methods were only applied to different types 287 

of paprika from local markets. 288 

3.4. Discrimination of adulterated from non-adulterated samples  289 
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PCs 1 and 2 did not offer a good discrimination due to the fact that these components are related 290 

with the carotenoids and noise in the matrix. There are no difference in the carotenoid content 291 

between adulterated and non-adulterated samples. The clustering results from PCA are shown in 292 

Figure 3A. PCs 3 and 4 gave the best discrimination between adulterated and non-adulterated 293 

samples. The adulterated and non-adulterated samples are partly overlapping. The adulterated 294 

samples, which overlap with the non-adulterated samples, present a concentration of Sudan lower 295 

than 0.5 % of adulteration.  The loadings from PC3 and PC4 contained some of the characteristics 296 

peaks of Sudan I.   297 

To refine the results, a new PCA was performed utilizing only the regions where Sudan I presents 298 

distinct Raman bands. Different ranges were checked and the best result was obtained when only 299 

the range 1573.2 – 1613.4 cm-1 was used. Figure 3B shows the loadings and scores corresponding 300 

to the two first components. The best discrimination between the two groups was obtained by the 301 

first component. The loadings of the first PC corresponded with one of the bands of the Sudan I, 302 

1597 cm-1 (nsCC, symmetrical stretching vibration; dCH, in-plane angular deformation; dNH, in 303 

plane angular deformation). In Figure 3B, the clustering of the samples is better than in Figure 304 

3A. In this case, the adulterated samples, which overlap with non-adulterated samples, present a 305 

concentration of Sudan I lower than 0.25 % of adulteration.   306 

Finally, PLS-DA was employed to check the utility of Raman spectra for automated detection of 307 

adulterated samples. For the supervised classification, the data set was randomly divided in a 308 

training set and a test set as indicated in section 2.6. The main peaks corresponding to the pigments 309 

were deleted from the spectra to get better classification results.  310 

In order to carry out the PLS-DA classification, the first step was to obtain the optimal number of 311 

Latent Variables (LVs) by cross validation based on the venetian procedure. Cross-validation with 312 

2, 5, and 10 cross validation groups were checked and the results are shown in the Figure S3. 313 

Taking into account the error rate and the non-assigned samples, the number of optimal 314 

components selected was 4. Because the results obtaining in the error rate and non-assigned 315 

samples for the different cross validation groups (data shown in Figure S3) are quite similar, it 316 
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can be concluded that the model is robust. The confusion matrices obtained for the cross 317 

validation and the test samples are presented in the Table 2.  318 

From these results, taking into account the assigned and non-assigned samples, it can be observed 319 

that 87 % of the non-adulterated calibration samples are well-classified and the 89 % of 320 

adulterated samples are well-classified. In the case of test samples, the results were also 321 

satisfactory, the 100% of non-adulterated samples were well-classified and the 83 % of 322 

adulterated samples were well-classified.  323 

The classification parameters are summarized in the Table 3. In this case, as two classes are the 324 

only classes, the specificity and sensitivity are symmetrical, this means that the specificity of non-325 

adulterated samples is the sensitivity of adulterated samples, and vice versa. In the cross-326 

validation model, the specificity and sensitivity are equal to 0.872 and 0.895, respectively. This 327 

means that considering only the assigned samples, the 87 % of non-adulterated samples are well-328 

assigned as non-adulterated and 89 % of adulterated samples are well-assigned as adulterated. 329 

Since sensitivity and specificity are similar, it can be deducted that the type of error is balanced, 330 

that is, there is no particular trend in the model to recognize adulterated samples as non-331 

adulterated samples, or vice versa. If it is important to not misclassify non-adulterated samples, 332 

the decision line can simply be adjusted to higher concentration levels of Sudan.  333 

The implication in obtaining the different type of errors (false positive and false negatives) is 334 

quite different considering the studied adulteration problem. The fact that assigning adulterated 335 

samples as non-adulterated samples is so dangerous for consumer health. On the other hand, the 336 

assignation of non-adulterated samples as adulterated implies an economic risk since these 337 

samples must be withdrawn from markets.  338 

To evaluate the performance parameters related to concentration, Probability of Detection (POD) 339 

curves were established, estimating the decision limit, the capacity of detection and the 340 

unreliability region.  341 
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The POD curves showed that for concentrations close to zero of Sudan I, the chance of giving a 342 

positive output (adulterated sample) was lower than 5 %. CCa (decision limit) had a very low 343 

value (almost zero) which is characteristic of the P(x) POD curves that are exponential. CCβ 344 

(detection capability) was set for concentrations at or above 0.5 % of adulteration (5 mg/g) which 345 

meant that the probability of giving a negative output was also lower than 5 % at or above this 346 

concentration of adulteration.  347 

The unreliability region is between the two limits. In between those two limits, the probability of 348 

making a wrong decision is higher than 5 %. In this regard, unreliability could be related to 349 

uncertainty in quantitative analysis. But, unreliability cannot be considered as dispersion around 350 

a value as the response in qualitative analysis is not quantifiable.  351 

Hence, the limit of detection could be stablished around this value, which means that it is 2 times 352 

lower than the limit proposed by Haughey et al. (2015) in the study with chilli powder where they 353 

discriminated between adulterated and non-adulterated samples in a percentage between 1-5 % 354 

of adulteration.  355 

4. CONCLUSIONS 356 

This study shows that Raman spectroscopy, with a 785 nm laser excitation, can be applied directly 357 

on paprika powder for the determination of ASTA values and Sudan I content simultaneously. 358 

Mathematical pre-treatment of the Raman spectra was done by fitting a polynomial to each 359 

spectrum and then subtracting it, to remove the fluorescence background signal and this was key 360 

for proper interpretation and modelling of the spectra. The method is quick, non-destructive and 361 

easy to use. No pre-treatment of the paprika powders is required. The method therefore easily 362 

lends itself to industrial use.  363 
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508 

Table 1. Statistical parameters of the PLS models constructed with Raman 
spectra. 

 ASTA R2  RMSEP* 
(ASTA values) Nº comp. 

Calibration n = 66 0.943 8.9 
1 

Validation  n = 22 0.954 7.5 
 Sudan I R2 (val) RMSEP* (mg/g) Nº comp. 

Calibration n = 88 0.981 0.75 
4 

Validation  n = 22 0.986 1.01 
*RMSEP: root-mean-square error of prediction. 509 

 510 

Table 2. Confusion matrices obtained in cross validation (with 2 groups split in venetian blinds) 
and test samples. 

Cross validation 
 non-adult. Adult. not-ass. %CC 

non-adult 41 6 0 87 
adult 2 17 0 89 

Test samples 
 non-adult. Adult. not-ass. %CC 

non-adult 16 0 0 100 
adult 1 5 0 83 

% CC: percentage of correctly classified samples; adult.: adulterated; non-adult.: non-adulterated.  511 

Table 3. Classification parameters (non-error rate, error rate, class specify and sensitivity, ratio 
of not assigned samples) obtained cross validation (with 2 groups split in venetian blinds) and 
on the test set.  

 Non-adulterated Adulterated  
 NER ER Specificity Sensitivity Specifity Sensitivity Not ass. 

Cross validation 0.883 0.116 0.872 0.895 0.895 0.872 0.0 
Test set 0.917 0.083 1 0.833 0.833 1 0 

NER: non-error rate; ER: error rate.  512 
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513 

Figure captions 514 

Figure 1. Raman spectra from different paprika samples with different ASTA values (A). The 515 

same spectra after subtraction of fitted polynomial (B).  516 

Figure 2. Pre-processed Raman spectra of a paprika sample adulterated with different 517 

concentrations of Sudan I.  518 

Figure 3. A) Loadings for principal components 1, 2, 3 and 4 (left). Score values of PC 4 versus 519 

PC 3 (right). B) Loading of the PCs 1 and 2 (left). Score values of PC 1 versus PC 2 (right). 520 
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