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Abstract 17 

In this work, non-destructive autofluorescence of plums was employed to study the 18 

chlorophylls’ concentration evolution along the maturation process. For that, excitation-19 

emission matrices (EEMs), containing full fluorescence information, were collected with 20 

a fibre-optic, assembled to a spectrofluorometer. Data analysis was performed with 21 

several second-order multi-way algorithms, such as parallel factor analysis (PARAFAC), 22 

multi-way partial least-squares (N-PLS), unfolded partial least-squares (U-PLS), and 23 

multivariate curve resolution-alternating least-squares (MCR-ALS). Firstly, the EEMs of 24 

each plum, collected each week along the maturation process, were processed with 25 

PARAFAC. Two components were used to model the data and the excitation and 26 

emission loadings were obtained. Score values for the first PARAFAC component 27 

showed a clear evolution with time, increasing during the first five weeks, and decreasing 28 

for the last weeks. Also, the chlorophyll concentrations obtained by HPLC analysis, in 29 

the skin and the whole fruit, were compared with those obtained with different algorithms 30 

mentioned before. Best results were obtained in the case of skin for all algorithms. Similar 31 

correlation coefficients (r) were obtained in all cases (0.899 (PARAFAC); 0.940 (U-32 

PLS); 0.936 (N-PLS) and 0.958 (MCR-ALS)). When the elliptical joint confidence region 33 

(EJCR), for the slope and intercept, were calculated, the theoretically expected values of 34 

1 and 0, for the slope and intercept, respectively, were included in all ellipses. However, 35 

it was observed that for the skin data and U-PLS and N-PLS algorithms, the EJCR 36 

confidence region was smaller than in the other cases.  37 

Keywords: Fibre-optic; plums; autofluorescence; second-order algorithms.  38 
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1. Introduction 39 

Nowadays, the use of non-invasive approaches to characterize solid samples is being a 40 

successful alternative in any environment. Among others, the autofluorescence of foods 41 

obtaining fluorescence data with a fibre-optic has drawn attention,  due to the fact that a 42 

previous extraction process is not necessary, and short response times and minimal 43 

instrumentation requirement are required.  44 

The multidimensional nature of photoluminescence makes fluorescence spectroscopy an unique 45 

potential for simultaneous characterization of multiple fluorescence components in complex 46 

matrices. Nevertheless, to support this multidimensional information, chemometric techniques 47 

are necessary to process and model the fluorescence data sets, in order to extract the highest 48 

possible information content. Methods of classification, modelling, multivariate regression, 49 

similarity analysis, principal components analysis, experimental design and optimization, have 50 

been applied in different fields, such as environmental [1], food control [2] or medical and 51 

biotech processes [3–5], among others.  52 

A common non-destructive technique widely employed for quality assessment of foods and 53 

agricultural products has been Near-Infrared Spectroscopy (NIRs). The benefit of this technique 54 

is due to the rapid, non-destructive and low-cost analysis [6]. The first-order data obtained with 55 

NIRs are mostly processed with partial least-squares regression (PLSR), being widely applied 56 

in food and in agriculture analysis [7–10]. NIR absorption spectra approximately describe the 57 

aggregate effect of absorption and scattering in food samples; they do not offer separate 58 

information on the absorption and emission properties. Hence, NIRs, in essence, is an empirical 59 

technique that relies on statistical methods to relate spectral features to the chemical or physical 60 

attributes of food samples. Because of its empiricism, conventional NIR measurements are not 61 

the most adequate for quantitative analysis. Other important trouble in NIRs analysis of solid 62 
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samples is that the spectral variations may be due to physical phenomena, such as dispersion, 63 

and not related with sample chemical information [11]. For last, the first-order data obtained 64 

with these techniques may not be enough to characterize complex matrices.  65 

With the object of obtaining more selective information for the evaluation of agricultural 66 

products using non-invasive techniques, artificial noses, tongues and sensors based in fibre-67 

optics have been developed, and the complex information provided by these instruments only 68 

can be interpreted as useful information by means of chemometric tools [12].  Hence, the 69 

combination of autofluorescence data, obtaining with a fibre optic probe, with chemometrics 70 

has been probed as a useful tool to characterize multiple fluorescent components in intact 71 

sample, allowing on-line monitoring for an appropriate quality control.  72 

In this context, numerous studies have been performed to assess fruit harvesting time and to 73 

study the evolution of the pigments along the maturation process [13]. The most visible and 74 

frequent change in maturing fruits is the loss of green colour due to chlorophyll degradation. 75 

Plums are climacteric fruits in which the chlorophyll content decreases during ripening, and the 76 

measurement of this change is an unequivocal indication of maturation [14]. The chlorophylls 77 

determination involves tedious treatments of the sample such as several extraction steps, under 78 

dimmed light to prevent isomerization and photodegradation of pigments. These processes are 79 

time-consuming and require specialized sample preparation [15,16].   80 

Few studies can be found in the literature where fluorescence has been employed for the 81 

estimation of maturity. For example, this technique was used to estimate the maturity of citrus 82 

using deep learning [17] or for assessment of winegrape phenolic maturity [18]. Also, 83 

chlorophyll fluorescence has been employed as non-destructive method to assess maturity of 84 

mango fruits [19] and the chlorophyll fluorescence was measured with a hand-held multi-85 

parametric fluorescence sensor to follow the maturation of plums [20]. However, a different 86 
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variety was used in that study. There are no studies where the full information provided by 87 

EEMs was employed for this purpose.  88 

The objective of this work is to show the usefulness of chemometrics for the control of 89 

maturation process of plums, without treatment of the sample, using well-established 90 

chemometric tools available to any user. For that, EEMs were analysed with different purposes: 91 

exploratory analysis and quantification of chlorophylls. Different algorithms were used for that: 92 

parallel factor analysis (PARAFAC) [21] for exploratory analysis, and PARAFAC, multiway 93 

partial least-squares (N-PLS) [22], unfolded partial least-squares (U-PLS) [23], and 94 

multivariate curve resolution-alternating least-squares (MCR-ALS) [24] for quantification.  95 

 96 

2. Materials and Methods 97 

2.1. Reagents, solvents and standards 98 

Chlorophylls a and b (chl a and chl b) were obtained from Sigma-Aldrich Chemical Co. and 99 

used as received. Stock solutions of chlorophylls a and b were prepared by dissolving the 100 

ampules content (1 mg of each chlorophyll) in 25.0 mL of acetone and stored at −4 °C in 101 

darkness until use. Working solutions were prepared by dilution of the appropriate aliquots with 102 

acetone. Acetone was purchased from Merck (Darmstadt, Germany) and methanol (MeOH), 103 

acetonitrile (ACN), both of HPLC-grade, were purchased from Panreac (Barcelona, Spain). A 104 

methanolic solution of 5 mM ammonium acetate was prepared by dissolving a suitable amount 105 

of ammonium acetate in methanol. 106 

2.2. Sampling 107 

The effect of maturity was studied with Friar Plums variety. Plums sampling was carried out 108 

in a cultivar located in Badajoz, Extremadura, Southwest of Spain. Fruits were harvested each 109 
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week, from last week of May to August 2018. Samples were randomly collected and, for each 110 

week along the maturation process, four fruits were analyzed. Firstly, the EEMs of each one 111 

were recorded and, after that, the skin and the whole fruit were treated to extract the 112 

chlorophylls.   113 

2.3. Excitation-emission matrices (EEMs) collection 114 

For each plum randomly collected each week, four EEMs were collected in four spots, in order 115 

to have an average of the whole fruits. Hence, measurements were obtained from peduncle 116 

zone, from the bottom and from other two plum faces. All measurements were obtained with 117 

direct contact between the fibre and the fruits under normal laboratory illumination with a Cary 118 

Eclipse spectrofluorimeter, where a fibre-optic was assembled (Agilent Technologies, Madrid, 119 

Spain). The equipment was connected to a PC microcomputer via an IEEE 488 (GPIB) serial 120 

interface. The Cary Eclipse 1.2 software was used for data acquisitions. EEMs were recorded 121 

as a set of fluorescence emission spectra over a range of excitation wavelengths. The excitation 122 

wavelengths ranged was from 360 to 500 nm in 5 nm increments. At each excitation 123 

wavelength, the emission spectra were recorded from 600 to 700 nm, at 1 nm intervals. The 124 

slits of excitation and emission monochromators were set at 2.5 and 5 nm, respectively. The 125 

photomultiplier tube sensitivity was 700 V and the scan rate was set at 300 nm min−1. The total 126 

scanning time per sample was approximately 5 min.  127 

2.4.  Softwares for data modelling 128 

All calculations were carried out in Matlab (Matlab R2007b, version 7.5.0.342). Routines for 129 

PARAFAC were available on the internet thanks to Bro (http://www.models.kvl.dk/source/). 130 

MVC2, a useful Matlab graphic interface (http://www.iquir-conicet.gov.ar/descargas/mvc2.rar) 131 

was used for PARAFAC, U-PLS, N-PLS and MCR-ALS calculations [25,26]. 132 

http://www.models.kvl.dk/source/
http://www.iquir-conicet.gov.ar/descargas/mvc2.rar
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2.5. Extraction and HPLC analysis of chlorophylls 133 

For samples picked each week, the skin and whole fruit were independently analysed. The skin 134 

of plums from fresh fruits was quickly removed and immediately treated. For the analysis of 135 

whole plums, seeds were removed just before homogenization during 20 s with a mill. In all 136 

cases, adequate weights (4 g of skin or 10 g of whole fruit) were extracted three times with 15 137 

mL of THF:MeOH (1:1, v:v), in presence of BHT 0.1%, and 1 g of magnesium carbonate, with 138 

continuous stirring. The supernatants were filtered under vacuum through quantitative filter 139 

paper nº 1242 (Filter-Lab, Anoia, Barcelona, Spain) on a Büchner funnel. The combined 140 

supernatants were re-extracted three times with 15 mL of petroleum ether and 15 mL of 10% 141 

NaCl. The combined organic phases were evaporated to dryness (35 ºC in a rotatory 142 

evaporator), and the residue dissolved in 5.0 mL of THF:MeOH (1:1, v:v). The measurements 143 

of chlorophylls were carried out by diluting each aliquot (1:250). The extracts were filtered 144 

with 0.25 μm diameter Chromafil filters (Düren, Germany), prior to the injection into the HPLC 145 

system (UFLC Shimadzu Prominence LC-AD) and using a modification of the method 146 

proposed by Orazem et al [27]. The analytical column was a Kinetex C18 (150 x 4.6 mm, 5 147 

μm), with an analytical temperature of 30 ºC. The injection volume was 5 μL. The mobile phase 148 

consisted on acetonitrile:methanolic solution of ammonium acetate (5 mM), 95:5 (v/v), with a 149 

flow-rate of 1.0 mL min−1. A fluorimetric detector was used, and 660 and 420 nm were set for 150 

emission and excitation wavelength, respectively. External standard calibration, based on peak 151 

areas, was used for quantification, and the concentrations of chlorophyll pigments were 152 

determined in whole fruit and in the skin. 153 

3. Results and discussion 154 

3.1. Excitation-emission matrices description of intact plums 155 
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In order to obtain the fluorescence fingerprints from intact plums, EEMs were collected with a 156 

fibre-optic along nine weeks from May to August 2018. The advantage of using a fibre-optic is 157 

that it allows obtaining fluorescence information of fruits directly on the tree or in the packaging 158 

conveyor belt. The conditions employed to collect the EEMs were as described in section 2.3. 159 

In Figure 1, the EEMs of samples harvested the first and the last sampling weeks and some 160 

pictures of samples from these weeks are illustrated. As can be observed, during the first weeks, 161 

samples exhibited high fluorescence signals at emission wavelengths between 670 and 700 nm, 162 

with high excitation signals between 400 and 500 nm. This fluorescent signal decreases as 163 

plums maturation takes place, and it is not appreciated practically after the week number eight. 164 

Visually, the change of colour is also appreciated in the pictures.    165 

The advantage of using fluorescence signals as fingerprint of samples is related with its high 166 

selectivity and sensitivity. Three-dimensional map of samples offers a huge information of 167 

complex samples as foods are. Furthermore, the obtention of the EEMs with a fibre-optic avoids 168 

the sample treatment and allows on-line monitorization of samples for an appropriate quality 169 

control.  170 

3.2. Qualitative study about the maturation process of plums 171 

Firstly, a previous qualitative study about the maturation process was performed. For that, 172 

EEMs of the plums, recollected each week, during a period of nine weeks, were separately 173 

examined. A different 3D data set for each week was built, resulting 12 EEMs, corresponding 174 

to three plums samples and, for each plum, four EEMs obtained in different faces of the fruit.  175 

PARAFAC was applied independently in the 12 EEMs of each week. The data were arranged 176 

in 3D arrays with dimensions 12 x 101 x 29 (samples (3 plums x 4 faces of each plum) x number 177 

of emission wavelengths x number of excitation wavelengths). These arrays were decomposed 178 
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by PARAFAC [21], applying the core consistency diagnostic (CORCONDIA) [28], analysing 179 

the residuals [29], and evaluating the shape profile of the loadings, for optimization of the 180 

number of components [26]. The core consistency analysis consists on studying the structural 181 

model based on the data and the estimated parameters of gradually augmented models. A model 182 

is considered to be appropriate if adding other combinations of components does not improve 183 

the fit considerably [28]. On the other hand, the analysis of residuals considers the residual fit 184 

of the PARAFAC model as a function of increasing number of factors. The appropriate model 185 

is the one which is not statistically different from the model leading to the minimum residual 186 

fit [26,29]. For the 3D array of each week, different numbers of components were assayed (from 187 

1 to 5). In all cases, non-negative constraints, for the resolved profiles in all modes, were 188 

applied, with the purpose of obtaining a realistic solution, because concentrations and spectral 189 

values cannot be negative.  190 

In Table 1, core consistency values, explained variance and the standard deviation of residuals 191 

with the number of components are shown. The optimum number of components for each week 192 

are bold remarked. As appreciated, during the first six weeks, and using the core consistency 193 

criterion, the optimal number of components was two. This optimization was performed 194 

considering that the optimal number of components is selected as the largest tested value for 195 

which the core consistency is larger than ≈50%. For the first six weeks, when the number of 196 

components goes from two to three, the core consistency percentage falls from 100% to about 197 

40%. The SD residual values decrease from 3 to 1, approximately, when the number of 198 

components goes from one to two and then, the value was stable from two to five. Hence, with 199 

this criterion, the optimal number of components was also two. For the explained variance, it is 200 

appreciated that in all cases is higher than 99 % when two components are used as optimal.   201 
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In the Figures 2A, 2B and 2C it can be seen the excitation-emission profiles retrieved from 202 

PARAFAC for different weeks (week 2, week 4 and week 7). The excitation and emission 203 

loadings of the first components show very similar profiles along the weeks sampling. The first 204 

component shows a very clear and defined shape with an emission maximum at 685 nm, and 205 

two excitation maxima at 440 and 485 nm. Regarding to the second component, its emission 206 

profile does not show relevant information, however, the excitation profile is well-defined with 207 

a maximum at 395 nm and it slightly increases when the maturation process does it.  208 

From seventh week, when PARAFAC was applied to the recorded EEMs, the number of 209 

components increased as indicated by the core value, which falls from 60% to 20% 210 

(approximately) when the number of components goes from three to four (Table 1). Also, 211 

increasing the number of components the value for the explained variance is similar to previous 212 

weeks. The excitation and emission profiles of the three components are represented in Figure 213 

2C. The shape of the two first components are similar to those obtained along the first six weeks, 214 

and the third component shows a well-defined excitation maximum at 400 nm, and two 215 

emission maxima at 600 nm and 650 nm. However, it was difficult the identification of this 216 

component.  217 

After this, taking into account the variability of different EEMs along the maturation process, 218 

different 3D arrays were obtained with the objective of reducing that variability. The first 3D 219 

array was from plums (average of four measurements in different faces) of each week, resulting 220 

a structure with dimensions 27 x 101 x 29 (samples (3 plums x 9 weeks) x number of emission 221 

wavelengths x number of excitation wavelengths). As in previous case, different criteria were 222 

used to select the optimal number of components and two were enough to explain 99.4 % of 223 

the variance. Figure 3A shows the score values for the first and second components with the 224 

time. Score values for the first component increase during the first weeks and then decrease 225 
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from the sixth week. Scores values for the second component appear quite constant along the 226 

time, a clear trend is not observed in this case. 227 

Secondly, another data set was obtained from the average of all EEMs from each week. In this 228 

case, the number of samples was reduced to 9, corresponding with the number of weeks that 229 

samples were recollected. As appreciated in Figure 3B, the evolution of score values for the 230 

first component shows that it increases along the three first weeks, after that, it is constant for 231 

two weeks and, then, it starts to decrease until it is almost zero.  232 

According to the excitation and emission wavelengths of the loading profiles for the first 233 

component, this component could be related with the chlorophyll compounds present in plums. 234 

In the literature, the excitation/emission maxima for the chlorophyll are 458/653 nm when the 235 

spectra were register in acetone/water medium [30]. The position of the maximum can shift to 236 

different wavelengths when spectra are obtained from intact solid samples rather from a 237 

solution due to the variation that molecules could suffer, as we proved in another study with 238 

other compounds [31]. 239 

For this reason, a quantification of these compounds was performed by HPLC-FLD, as detailed 240 

in the next section. Taking into account that the best results were obtained when using the 241 

average of samples from each week, these data were used in the following section. 242 

3.3. Quantification of chlorophylls with second-order algorithms 243 

Once a previous identification of PARAFAC components on the basis of the fluorescence 244 

spectrum was done, it was interesting to confirm this assumption evaluating the relationship 245 

between score values obtained by PARAFAC for the first component and the concentration of 246 

chlorophyll. The chlorophyll concentrations were obtained by HPLC-FLD in extracts of plums 247 

recollected along the nine weeks, in both, skin and the whole fruit. Firstly, in the case of skin 248 
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chlorophyll content, when the score values of the first PARAFAC component were related with 249 

chlorophyll concentration values, a correlation coefficient of 0.8998 was found. In the case of 250 

whole fruit, this coefficient was lower (r = 0.8626).  251 

In order to compare these results with those obtained with other algorithms, MCR-ALS, U-PLS 252 

and N-PLS were applied. In all cases, the data were arranged in a 3D array with dimensions 9 253 

x 101 x 29 (samples (average values in each of the 9 weeks) x number of emission wavelengths 254 

x number of excitation wavelengths). The first step when using MCR-ALS was to obtain the 255 

augmented matrices in the excitation wavelength direction. The number of components in each 256 

augmented matrix was estimated by principal component analysis (PCA), and justified taking 257 

into account the presence of the corresponding analytes, possible interferences, and background 258 

signals. Non-negativity restriction was applied in both modes, emission and excitation 259 

spectroscopic spectral data, and unimodality restriction was applied only to the signals 260 

corresponding to the analytes, and not to the background signals. After ALS optimization for 261 

each sample, and with the aid of the corresponding pseudounivariate calibration curves, the 262 

constituents were identified and quantified. The optimal number of components was 3, which 263 

explained the 99.7 % of variance. In Figure 4, excitation profiles retrieved by MCR-ALS and 264 

the emission spectra for each component are shown. A comparison of the profiles of the first 265 

component with those obtained by PARAFAC, indicates that the excitation and emission 266 

maxima are very similar (Pearson regression coefficients of 0.9890 and 0.9637, for emission 267 

and excitation, respectively, and with 95 % of level confidence were calculated). The 268 

correlation coefficient between the score values of the first component and the HPLC data was 269 

0.9581, when the score values of the first component versus the measured HPLC content of 270 

chlorophyll in the skin, were plotted, and 0.8851 for the whole fruit content.  271 
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Furthermore, U-PLS and N-PLS were assayed. In these cases, the Haaland and Thomas 272 

criterion [32,33] was employed to select the number of optimal components, which are those 273 

given a PRESS value statistically no different to the minimum PRESS value (F-ratio probability 274 

falling below 0.75). The optimum number of latent variables was three. When concentrations 275 

of chlorophyll were predicted by both algorithms, the correlation coefficients between predicted 276 

and true concentration were 0.9400 and 0.9360 for U-PLS and N-PLS, respectively, for the 277 

concentration in the plums’ skin, and 0.8770 and 0.9091, respectively for concentration in 278 

whole fruits. Figures 5A and 5C show the plots obtained for all algorithms between true and 279 

predicted concentrations.  280 

In Table 2, all figures of merit are included. It can be appreciated that the best results were 281 

obtained in the skin and for the U-PLS and N-PLS algorithms because the root mean square 282 

error of predictions (RMSEPs) and the relative error of predictions (REPs) are lower in these 283 

cases.  284 

Finally, the elliptical joint confidence region EJCR test (at 95% confidence level) [34] was 285 

applied for the different algorithms to evaluate the slope and intercept, corresponding to the 286 

linear regression of predicted concentrations for the algorithms vs the HPLC concentrations. 287 

The corresponding ellipses are shown in Figures 5B and 5D, for the skin and whole fruit results, 288 

respectively. Note that in all cases the critical point (1,0) is included, which proved the accuracy 289 

between true and predicted concentrations for the different algorithms. However, in the case of 290 

the skin analysis, the ellipses for U-PLS and N-PLS are smaller in size, suggesting higher 291 

precision for these algorithms.  292 

As conclusion, it can be said that the results were quite similar for all algorithms, and better in 293 

the case of the skin results. From the results obtained in this study, it can be highlighted that 294 

second-order algorithms are a powerful tool for the characterization of agronomic processes. 295 
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Furthermore, the combination with a non-destructive technique, such as a fibre-optic, and using 296 

a selective signal, as autofluorescence of the sample, is another step in the possible 297 

automatization of the maturation process. 298 

 299 

4. Conclusions 300 

Non-destructive characterization of fresh plums was performed for the first time, employing 301 

fibre-optic data with second-order calibration. Results showed that chlorophyll content could 302 

be a good indicator of maturation process. Taking into account that timing of fruit picking 303 

(harvest maturity) significantly impacts in the postharvest handling systems, especially when 304 

international deliveries are performed, it is very important to dispose non-destructive 305 

techniques that allow deciding the harvest date. Moreover, fluorescence fingerprints in 306 

combination with second-order calibrations can be a powerful tool for determination of 307 

chlorophyll content in plums.  308 

Although the best results are obtained with U-PLS and N-PLS in the skin of plums, as indicate 309 

the smaller size of EJCR regions, it is interesting the possibility that PARAFAC and MCR-ALS 310 

offer to be able to obtain spectral information about the fluorescence components.  311 

The obtained results seem very promising and which could be used as references of maturation 312 

in situ, employing a fibre-optic probe with a portable system. However, more samples will be 313 

necessary to expand the calibration data set to develop a robust prediction model that can be 314 

used in practice.  315 
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Figure captions 

Figure 1. Fluorescence contour plots of the EEMs obtained with a fibre-optic, and 

pictures from samples corresponding to the first week of sampling (May 2018) and last 

week of sampling (August 2018). 

Figure 2. Excitation and emission PARAFAC profiles of samples belonging to different 

maturation weeks: A) week 2; B) week 4; C) week 7. 

Figure 3. Evolution of the score values for the first and second components retrieved by 

PARAFAC, considering the average of each plum measurement (A), and considering the 

average of each week (B), along the time (in weeks).  

Figure 4. (A) Excitation profiles retrieved by MCR-ALS analysis for different weeks of 

recollection. (B) Emission spectra retrieved by MCR-ALS. Dashed lines correspond to 

excitation profiles and emission spectra retrieved by MCR-ALS for unknown compounds 

and background signals. Continuous lines correspond to excitation and emission spectra, 

retrieved by MCR-ALS, for chlorophyll.   

Figure 5. Plots of chlorophyll predicted concentrations, for the different algorithms, as a 

function of the true concentrations obtained by HPLC (A and C). Corresponding elliptical 

joint regions (at 95 % confidence level), for the slopes and intercepts of the regressions. 

The theoretical point (intercept = 0; slope = 1) is marked in the figure by the black cross 

(B and D).  
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Table 1. Core, SD values and explained variance obtained along the nine weeks studied.  
 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 

Components Core SD Core SD Core SD Core SD Core SD Core SD Core SD Core SD Core SD 
1 100 2.3 100 2.3 100 2.7 100 3.1 100 3.3 100 3.1 100 2.4 100 3.1 100 2.0 
2 100 0.97 100 0.94 99 1.1 99 1.3 100 1.4 99 1.3 100 1.1 99 1.4 97 1.2 
3 48 0.86 43 0.80 38 0.90 33 1.1 38 1.1 33 1.1 58 0.89 57 1.0 57 0.64 
4 24 0.75 9 0.71 7.7 0.74 15 1.0 23 1.0 15 1.0 18 0.81 26 0.87 4.9 0.58 
5 6 0.86 3 0.64 -0.94 0.66 0.46 0.87 0.74 0.87 0.5 0.87 1.0 0.72 2.3 0.79 3.0 0.55 

Explained 
variance (%)* 99.5 99.4 99.3 99.4 99.3 98.9 99.3 99.1 98.9 

*for optimal number of components 
 



22 
 

Table 2. Figures of merit for different algorithms assayed. 
 Skin Whole fruit 

Algorithm Components Slope Intercept R2 Sr Test of 
significance 

RMSEP 
(mg/g) 

REP 
(%) Slope Intercept R2 Sr Test of 

significance 
RMSEP 
(mg/g) 

REP 
(%) 

PARAFAC 3 1.0 -0.001 0.8097 0.2 s 0.2 26 1.0 -1e-7 0.7440 0.1 s 0.1 37 
U-PLS 3 0.93 0.03 0.8842 0.1 s 0.1 20 0.67 0.09 0.7691 0.2 s 0.1 24 
N-PLS 3 0.94 0.03 0.8767 0.1 s 0.1 21 1.0 -0.09 0.8256 0.2 s 0.1 38 

MCR-ALS 3 1.3 -0.31 0.9180 0.8 s 0.2 44 1.1 -0.15 0.7835 0.4 s 0.1 74 
s: Pearson correlation significative test (p-value < 0.05). 

 

 

 

 

 


