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Abstract 1 

Fluorescence spectroscopy in combination with chemometric analysis was applied to discriminate 2 

between Japanese Angeleno variety of plums, according to the date of harvesting. Emission 3 

spectra (obtained from 280 to 500 nm, and from 345 to 500 nm, respectively) of methanolic 4 

extracts of plums at two excitation wavelengths (280 and 330 nm, respectively) were obtained. 5 

The fluorescence spectral data were firstly processed by Principal Component Analysis (PCA), 6 

as an exploratory study, to extract relevant information from the spectral data, and revealed 7 

differentiation between plum samples based in the harvested time. In addition, Partial Least-8 

Squares-Discriminant-Analysis (PLS-DA) was used for the development of the classification 9 

models, allowing 100% accuracy to differentiate between the date of harvesting, independently 10 

that pulp or skin plum extracts were analyzed. Spectral patterns of plums showed significant 11 

differences during maturation period, with a special emphasis between the months of May and 12 

September. In addition, calibration models were obtained for different individual polyphenols 13 

with partial least-squares (PLS) regression, obtaining the best results for epicatechin and 14 

neochlorogenic acid determination.    15 

 16 
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1. Introduction 19 

Fruit consumption is essential for a healthy diet thanks to the great contribution of benefits thereof 20 

[1]. As a result, consumption of fruit is increasingly requiring strict quality parameters, also, is 21 

important the goal of preserving fresh products on the market for longer periods of time. To have 22 

a good acceptation of fruits in the market requires appropriate physico-chemical properties related 23 

to fruit maturity stages. Typically, the fruit gatherers use morphological changes such as fruit 24 

colour, changes in shape, taste and softness, as indicators for determining the optimal maturity 25 

stage for harvesting [2]. One of the objectives of the collection of the fruit before its full maturity 26 

is to keep the fresh product on the market for a longer time. In consequence, it is important to 27 

dispose the sufficient knowledge to ensure that their products have the highest possible quality 28 

and to predict early harvest characteristics and post-harvest behaviour, as well as determining the 29 

optimum date of harvest. However, the traditional methods for determining the optimal maturity 30 

stage for harvesting are destructive, time consuming, laborious, and costly, and require specific 31 

sample preparation steps  [3]. 32 

Stone fruits, including plums, are polyphenol rich. The most important phenolic compounds in 33 

plums are hydroxycinnamic acids, mainly caffeoylquinic acid isomers, where neochlorogenic 34 

acid is predominant [4]. Together with other phenolic acids, such as flavonoids, the level of this 35 

compound varies significantly among the harvest date. These compounds are described in many 36 

works as fluorescence compounds, being fluorescence spectroscopy an appropriate technique for 37 

their analysis [5,6].  38 

The use of classification techniques has made remarkable progress during the last decades in all 39 

fields, for example, food, pharmaceuticals, environmental, biomedical matrices, and so forth. In 40 

the agronomic-food field, it is becoming a common tool both for controlling production and for 41 

studying the influence of storage on the qualities of the final product [7,8]. Actually, the fact of 42 

having instruments not excessively sophisticated that are capable of obtaining abundant 43 
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information on the characteristics of the samples has facilitated the implementation of these 44 

techniques.  45 

Until now, spectroscopic techniques in combination with chemometrics have been widely 46 

employed for discrimination of different food matrices such as food of vegetal origin [9], 47 

alcoholic beverages [10], herbs and spices [11] and many others [12]. However, there are few 48 

works in the literature about the use of fluorescence for discrimination of foods in spite the 49 

presence of compounds with fluorescence properties in fruits and foods in general.  Fluorescence 50 

signal, as descriptive variable with classification purposes, in the food field, has the advantage 51 

that a relatively small number of the compounds present in food samples contributes to native 52 

fluorescence, thus increasing the selectivity of the information.  53 

For example, fluorescence in combination with different chemometric approaches has been used 54 

in the discrimination of apple juices using right angle or front-face fluorescence due to 55 

antioxidants properties [13], the discrimination between apple juices belonging to two categories: 56 

those produced directly, not from concentrate, and those reconstituted from concentrate apple 57 

juices [14] or between commercial berry fruit beverages [15]. Another example included the use 58 

of excitation – emission fluorescence spectroscopy coupled with multi-way chemometrics 59 

techniques for the classification of large beers [16]. Also, this technique has been used for the 60 

discrimination between Argentinean yerba mate from three commercial categories employing 61 

first and second-order models and different chemometric approaches (LDA, QDA, PARAFAC 62 

and N-PLS) [17]. 63 

The application of classification methods, as chemometric strategies for predicting a qualitative 64 

response, implies building a model that can assign an individual to a category based on the data 65 

that have been collected to describe it. In this context, a category (or class) is a group of objects 66 

sharing similar characteristics. In discriminant analysis, spectral data are assigned to definite 67 

classes, so that qualitative information complements quantitative spectral data. The purpose of 68 

the classification methods is to obtain weighted combinations of data that minimize variances 69 
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within classes and maximize variances between classes. Then, the classification rules are used to 70 

assign new or unknown samples to the most probable subclasses. Prior to discriminant analysis, 71 

principal component analysis is often applied to spectral data sets to reduce data set size and 72 

minimizing possible co-linearity effects. The validity of a classification method can be verified 73 

by a comparison of distances or testing [18]. 74 

With respect to the classifications of plum samples, UV–Vis, near infrared (NIR) and 75 

synchronous fluorescence, in combination with chemometric methods, have been used to 76 

discriminate samples of high-quality plum brandies of different varietal origins [19], and front-77 

face fluorescence has been used to discriminate samples from different maturation stages [20].  78 

With this background, in this work, we will explore the use of fluorescence, using the classical 79 

right-angle technique, from methanolic extracts of plums, in combination with chemometrics 80 

(classification and quantification techniques), for the discrimination of plums according to their 81 

date of harvesting, and the quantification of the content of the main polyphenol compounds in 82 

plums.  83 

 84 

2. Materials and methods 85 

2.1. Samples and standards 86 

A total of fifty-six samples were used in this study. Samples were collected on an experimental 87 

plot located in the “Vegas Bajas del Guadiana” (Badajoz, Spain) in an altitude of 184 m. Variety 88 

of plums was a late-maturation Japanese Angeleno plum variety planted in 2005. Samples were 89 

divided in four groups when they were analyzed: extracts from skin of plums collected in May 90 

(group 1), extracts from skin of plums collected in September (group 2), extracts from pulp of 91 

plums collected in May (group 3) and extracts from pulp of plums collected in September (group 92 

4).  93 
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Standard solutions of catechin, epicatechin, chlorogenic acid, neochlorogenic acid and 94 

procyanidin B2 were used to register reference spectra. Catechin, epicatechin and neochlorogenic 95 

acid were purchased from Sigma Aldrich Chemie (Steinheim, Germany), chlorogenic acid was 96 

obtained from Fisher Scientific, and procyanidin B2 was supplied by Extrasynthése (Genaym, 97 

France).  98 

2.2. Preparation of methanolic extracts 99 

Samples were peeled and skin was separated from pulp before lyophilization and extraction to 100 

perform the different analysis. Then, 0.5 g of lyophilized samples were used for extraction with 101 

10 mL of methanol:water:formic acid (50:49:1, v/v), using an ultrasonic extraction for 14 minutes. 102 

After that, extracts were centrifuged for 10 min, at 10000 rpm, at 4ºC. Supernatants were diluted 103 

1/100 (v/v) with methanol for further analysis.  104 

2.3. Reference polyphenols analysis  105 

Polyphenols analysis of samples was performed by HPLC following the method described by 106 

Cabrera-Bañegil et al. [6]. An Agilent 1260 Infinity High Performance Liquid Chromatograph 107 

(Agilent Technologies, CA, USA) and a Teknokroma Tracer Excel 120 ODS-A column (150 mm 108 

× 4.6 mm and 5 μm particle size) were used. Mobile phase was composed of 0.5% (v/v) formic 109 

acid and water (A), and acetonitrile (B). Analytes were eluted in gradient mode: 90% of 0.5% 110 

(v/v) formic acid in water (eluent A) and 10% of acetonitrile (eluent B) was held for 20 min. 111 

Between 20 and 45 min the percentage of eluent B increases from 10 up to 30% and, between 45 112 

min and 46 min, the percentage of eluent B increases from 30 up to 100% and the formic acid 113 

content decreased in correspondence. These conditions were maintained until 53 min and, finally, 114 

the eluent B content was decreased to the initial conditions (10% B), and the column was re-115 

equilibrated for 5 min. A flow of 0.5 mL/min was used and a volume of 20 µL was employed as 116 

injection volume. A fast-scanning fluorescence detector was used and excitation/emission 117 

wavelengths were set at 270/ 350 nm, for catechin, epicatechin and procyanidin B2, and at 118 



7 
 

320/430 nm for chlorogenic and neochlorogenic acids. The quantification of polyphenolic 119 

compounds was carried out by standard addition calibration. 120 

2.4. Fluorescence measurement 121 

Fluorescence data were obtained from pulp and skin methanolic extracts, by means of a 122 

fluorescence spectrophotometer Varian Model Cary Elipse (Agilent Technologies, Madrid, 123 

Spain) in the conventional mode, using a right angle. A quartz cell of 10 mm was used. Emission 124 

spectra (280 – 500 nm, each 1 nm) were recorded at an excitation wavelength of 280 nm; and 125 

emission spectra (345 – 500 nm, each 1 nm) were also collected at an excitation wavelength of 126 

330 nm. Slits of excitation and emission monochromators were set at 5 nm, respectively, with a 127 

scan rate of 300 nm/min. To obtain the excitation – emission matrix the excitation range was from 128 

240 to 380 nm, each 5 nm, and the emission range was from 280 to 500, each 1 nm.  129 

2.5. Data processing and multivariate analysis 130 

Firstly, all spectra were smoothed using the Savitzky Golay method to eliminate some noise 131 

signals [21]. In order to explore the main variation among the four groups of samples, Principal 132 

Component Analysis (PCA) [22] was applied using all the fifty-six samples mentioned before. 133 

As two excitation wavelengths, 280 and 330 nm, were used, two data sets were considered for 134 

analysis.  135 

After that, to evaluate the possibility of discrimination of samples according to the date of 136 

harvesting. Partial least-squares-discriminant analysis (PLS-DA) was used as classification 137 

algorithm [23]. PLS-DA involves performing a multivariate regression model to establish class 138 

limits and placing a numeric value to each object/sample first, and then classifying new samples 139 

into a specific class. Data analysis was done using a graphical interface [24] in Matlab (R2016b, 140 

The MathWorks, Inc. Natick, MA, USA).  141 
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To obtain calibration models for polyphenols quantification, PLS regression was applied [25]. 142 

Cross-validation was used to determine the number of components to use in the calibration and 143 

to evaluate the performance of the models. Number of components were selected according to the 144 

explained variance. The Unscrambler version 6.11 (CAMO Software AS, Oslo, Norway) was 145 

used for data analysis.  146 

3. Results and discussion 147 

3.1. Spectral information 148 

For this study, methanolic extracts from the pulp and from the skin of the plums with different 149 

maturation stages, were obtained. In first place, and with the object to visualize the emission 150 

spectral zones, excitation-emission fluorescence landscapes of methanolic extracts of skin and 151 

pulp of plums were obtained and two characteristics spectral regions were observed (Figure 1A). 152 

The first region presented a maximum excitation wavelength at 280 nm, and the second region 153 

presented an excitation maximum at 330 nm.  Figures 1B and 1C show the emission spectra for 154 

the methanolic extracts from the pulp and from the skin, obtained at the two different excitation 155 

wavelengths, the most characteristic ones. In Figure 1B (excitation at 280 nm), the main 156 

differences correspond with intensity of signals when samples harvested in different months were 157 

compared. This is, extracts from May exhibited higher fluorescence, about three times more, than 158 

extracts from September in both cases: pulp and skin. These high intensity maxima have been 159 

also obtained, by synchronous fluorescence, in plum brandies samples with little differences in 160 

function of the presence or absence of color in the sample [26]. In addition, when the emission 161 

spectra of the skin and pulp samples were compared some differences could also be highlighted. 162 

Although intensities in May were similar for both skin (blue) and pulp (violet) groups, a shift was 163 

shown in their spectra. In the case of extracts from skin, an emission maximum is located at 321 164 

nm. However, in the case of extracts from pulp, the emission maximum shows a small 165 

hypochromic effect, and it is located at 315 nm. This might be related with different polyphenol 166 
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compounds present in both extracts. This region is characteristic for catechin, epicatechin and 167 

procyanidin, main polyphenols presented in plums [6].  168 

In the case of the second excitation wavelength, 330 nm (Figure 1C), similar trends were 169 

observed. In this case, an emission maximum appeared at 424 nm for the skin extracts and at 435 170 

nm for the pulp extracts. For both extracts, the emission band presents a wide shape. In this 171 

spectral region, and with the samples harvested in May, it is noted that the fluorescence intensity 172 

of the skin extracts is significantly higher than the pulp extracts. With respect to the samples 173 

harvested in September, the fluorescence of the skin extracts decreases, and the fluorescence of 174 

the pulp extracts disappears. In accordance with previous studies, this region is characteristic for 175 

chlorogenic and neochlorogenic acids, that are the predominant phenolic acids in plums [6,27,28]. 176 

Also, this fluorescence region maximum has been observed by synchronous fluorescence in 177 

colored and colorless plum brandies samples [26]. 178 

3.2. Exploratory analysis: Principal Component Analysis 179 

In order to evaluate the main differences between the four groups, an exploratory analysis was 180 

performed with PCA. PCA analysis allowed detecting potential outliers and systematic artifacts 181 

in the samples. In this case, when residual x- variance was plotted versus leverage, no outliers 182 

were observed in our samples.  This is an unsupervised method, and it was used to evaluate 183 

whether clustering exists without using class membership information. Samples were divided in 184 

two data sets according to the excitation wavelength. For each data set, all groups of samples 185 

(skin September, pulp September, skin May and pulp May) were analyzed.   186 

In the set of emission spectra with excitation at 280 nm, best discrimination was obtained for 187 

scores for PC1 and PC2, explaining 98 and 2% of the variance, respectively. Figures 2A and 2B 188 

show the scores and loadings obtained, respectively. Score values for PC1 are higher for samples 189 

harvested in May, which means that positive loadings are positively related to these samples. The 190 

main variable affecting the separation of groups is observed in the loading for PC1, Figure 2B, 191 
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and was located at an emission wavelength of 318 nm. This variable might be related with 192 

procyanidin and epicatechin that exhibit maxima signal around 314 nm (Figures 3A and 3B). This 193 

result is in accordance with the general decrease of total phenolic and total flavonoids in plums 194 

of Sanshua variety during fruit maturation [29]. Another group was observed, according to the 195 

PC2, which explained only 2% of variance but it was enough for differentiation. In this case, the 196 

main variable affecting the separation was at 308 nm (positive) and 340 nm (negative). Score 197 

values for PC2 were higher for samples from pulp than from skin. In this case, differentiation 198 

might be due to the presence of catechin that presents a maximum signal around 308 nm (Figure 199 

3C).    200 

In the set of spectra with excitation at 330 nm, best discrimination was obtained for scores of PC1 201 

explaining 99% of the variance. Figures 2C and 2D show the scores and loadings obtained, 202 

respectively. Along the first component, samples were divided by harvesting date, being the 203 

contribution of first component higher for May than for September. In this case, no differentiation 204 

was observed according to skin and pulp. In this set, the loadings of the PC1 can be related with 205 

the presence of chlorogenic and neoclorogenic acids in plums, showing the main variables 206 

affecting the separation of groups at 424 nm for emission wavelength. 207 

3.3. Classificatory analysis: Partial Least-Squares – Discriminant Analysis 208 

After PCA, classificatory analysis was performed with different strategies. In a first step, all 209 

samples were considered as training samples and PLS-DA was assayed in both sets of data. With 210 

two components, the total variance was explained (100%) in both cases. Results are shown in 211 

Table 1. As seen, results confirmed the good classification of the four groups. In this case, a test 212 

set was not used as all samples were used as training set. It was observed that better discrimination 213 

was obtained for spectra at 280 nm of excitation wavelength (error rate (ER) = 0) than for spectra 214 

at 330 nm (ER = 3.5%).  215 
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A second strategy consisted on dividing the entire sample data set into the training set, comprising 216 

the 50% of the samples, and use the rest of samples as test samples. In this case, also two 217 

components were enough to explain 100% of the variance. For the training set, acceptable 218 

predictions were obtained (Table 2), with ERs of 3.5 and 7% respectively, for the two different 219 

excitation wavelengths. However, when the test set (50% of samples) was predicted using these 220 

models, all samples were well-attributed to their group, Table 2.  221 

Finally, a third strategy, using 30% of samples as training set and 70% of samples as test set was 222 

carried out. Total variance was explained by two components in both cases. For training set, 100% 223 

of accuracy was obtained in both data sets. In this case, acceptable predictions were obtained for 224 

test set, with ERs of 3 and 8%, respectively.  These classification studies demonstrated the huge 225 

variability between four groups, being possible to create models with only four samples per class 226 

and obtain good results for predicted samples. In short, all models could be considered acceptable 227 

taking into account the criteria that ER were lower than 10% in all cases [30]. 228 

3.4. Quantification of polyphenols 229 

In addition, quantification studies were performed. For that, random samples of plums (twenty-230 

three samples) were analyzed by HPLC to obtain the reference values of polyphenols.  231 

Correlation coefficients (Pearson’s r) between the different polyphenolic compounds were 232 

obtained. The results revealed a high correlation between catechin and epicatechin (r = 0.86), 233 

which means, those samples with high content of catechin also present high content of 234 

epicatechin. In addition, a high correlation was found between procyanidin and catechin (r = 0.85) 235 

and epicatechin (r = 0.90). In the case of chlorogenic and neochlorogenic acids, weak correlation 236 

were found with the previous ones, but the correlation between them was 0.58. The high 237 

correlations between some polyphenols might influence in the calibration models when individual 238 

polyphenols try to be quantified.   239 
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Using the spectra as X and individual polyphenol content obtained by HPLC as Y, calibration 240 

models were obtained by means of cross-validation procedure. Table 3 provides the results 241 

obtained for the different models based on the spectra at the two excitation wavelengths. 242 

Components were selected according to the explained variance, obtained few components (2 or 243 

1) in all cases, which means that overfitting did not occurred.  244 

As observed, the best model was obtained for epicatechin, with a low prediction error and a high 245 

determination coefficient (R2). The regression coefficients for this model are shown in Figure 4B, 246 

corresponding the main variables affecting the models with the maxima obtained in the spectrum 247 

for the pure standard (Figure 3B). Also, acceptable models were obtained for catechin and 248 

procyanidin. Regression coefficients for procyanidin model (Figure 4C) offered same information 249 

than in the case of epicatechin (Figure 4B), which may be expected due to the similarity of 250 

standard spectra for both compounds (Figure 3C). However, in the case of catechin (Figure 4A), 251 

the regression coefficients did not show the main variables from catechin (Figure 3A), so this 252 

model might be a bit uncertain due to the low concentration of this compound in samples.  253 

In the case of chlorogenic and neochlorogenic acids, the best model was obtained for the last one. 254 

Both compounds presented a similar spectrum (Figure 3D and 3E), as a result, similar regression 255 

coefficients (Figure 4D and 4E) were obtained for their corresponding models, although a shift in 256 

the main variables was observed. The better results obtained for neochlorogenic acid might be 257 

related with the fact that the concentration interval found for this compound is wider than for 258 

chlorogenic acid. Similar determination coefficient was obtained and a high root-mean-square-259 

error for cross validation. (RMSECV) resulted.  260 

Calibration models offered promising results which need to be expanded including more samples 261 

with high variability. It would be possible to quantify polyphenols in methanolic extracts using 262 

simple fluorescence spectra and avoiding large procedures by HPLC, which requires more time, 263 

solvents and higher cost.  264 
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4. Conclusions 265 

Emission spectra of methanolic extracts of plums were used as fingerprints for their 266 

differentiation. PCA allowed discrimination of samples by date of harvesting (May or September) 267 

in both data set used. However, the discrimination between the two parts of plums (skin or pulp) 268 

was only obtained with emission spectra at 330 nm of excitation. Samples were better 269 

discriminated with PLS-DA obtaining accuracy around 100%. Also, models composed by 270 

reduced number of samples offered acceptable prediction results. Classification results were due 271 

to polyphenol content. In addition, calibrations models obtained by PLS provided good results 272 

about individual quantification of polyphenols with R2 values of 0.74 and 0.89, for 273 

neochlorogenic acid and epicatechin, respectively, which could be interesting to investigate in the 274 

future to expand the calibration models with more samples.  275 
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Figure captions 

Figure 1. A) Excitation-emission matrix and contour plot of a methanolic extract from pulp plum 

sample. B) Samples emission spectra obtained exciting at 280 nm. C) Samples emission spectra 

obtained exciting at 330 nm.  

Figure 2. Score values (A) and loadings (B) obtained from PCA of emission spectra at 280 nm 

for excitation. Score values (C) and loadings (D) obtained from PCA of emission spectra at 330 

nm for excitation. 

Figure 3. Emission spectra for different standards: epicatechin (A), procyanidin (B), catechin (C), 

chlorogenic acid (D) and neochlorogenic acid (E). A, B and C were obtained at 280 nm excitation 

wavelength and D and E were obtained at 330 nm excitation wavelength.  

Figure 4. Regression coefficients obtained for the different models: catechin (A), epicatechin (B), 

procyanidin (C), chlorogenic acid (D), neochlorogenic acid (E) and chlorogenic + neochlorogenic 

acids (F).
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Table 1. Confusion matrices for the different training sets studied. 
All samples (Training set) 

Excitation 280 nm 
Real/ 

Predicted 
May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 14 - - - 
September (skin) - 16 - - 

May (pulp) - - 12 - 
September (pulp) - - - 14 

Excitation 330 nm 

 May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 12 - 2 - 
September (skin) - 16 - - 

May (pulp) - - 12 - 
September (pulp) - - - 14 

50% samples (Training set) 
Excitation 280 nm 

Real/ 
Predicted 

May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 7 - - - 
September (skin) - 7 1 - 

May (pulp) - - 6 - 
September (pulp) - - - 7 

Excitation 330 nm 
Real/ 

Predicted 
May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 5 - 2 - 
September (skin) - 8 - - 

May (pulp) - - 6 - 
September (pulp) - - - 7 

30% samples (Training set) 
Excitation 280 nm 

Real/ 
Predicted 

May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 4 - - - 
September (skin) - 5 - - 

May (pulp) - - 4 - 
September (pulp) - - - 4 

Excitation 330 nm 
Real/ 

Predicted 
May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 4 - - - 
September (skin) - 5 - - 

May (pulp) - - 4 - 
September (pulp) - - - 4 
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Table 2. Confusion matrices for the different tests set studied. 
50% samples (test set) 

Excitation 280 nm 
Real/ 

Predicted 
May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 7 - - - 
September (skin) - 8 - - 

May (pulp) - - 6 - 
September (pulp) - - - 7 

Excitation 330 nm 
Real/ 

Predicted 
May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 7 - - - 
September (skin) - 8 - - 

May (pulp) - - 6 - 
September (pulp) - - - 7 

70% samples (test set) 
Excitation 280 nm 

Real/ 
Predicted 

May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 9 1 - - 
September (skin) - 11 - - 

May (pulp) - - 8 - 
September (pulp) - - - 10 

Excitation 330 nm 
Real/ 

Predicted 
May  
(skin) 

September 
(skin) 

May  
(pulp) 

September 
(pulp) 

May (skin) 8 - 2 - 
September (skin) - 11 - - 

May (pulp) - - 9 - 
September (pulp) - - - 9 

 

Table 3. Summary of PLS regression models obtained for predicting different polyphenols. 
Excitation 280 nm 

 Range 
(µg/mL) Nº components R2 (CV) RMSECV 

(µg/mL) 
Catechin 0 – 0.32 2 0.73 0.05 

Epicatechin 0.1 – 2.6 1 0.89 0.23 
Procyanidin B 0 – 1.7 1 0.67 0.29 

Excitation 330 nm 

 Range 
(µg/mL) Nº components R2 (CV) RMSECV 

(µg/mL) 
Chlorogenic acid 0 – 0.52 1 0.54 0.09 

Neochlorogenic acid 0 – 1.8 1 0.74 0.18 
Chlorogenic acid + 

Neochlorogenic acid 0 – 1.8 1 0.73 0.24 

RMSECV: root-mean-square-error for cross validation 
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