
 1

Path integral Monte Carlo study of quantum-hard sphere solids 
 
Luis M. Sesé 
 
Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad 

Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid, Spain 

 

 

A path integral study of the fcc, hcp, and bcc quantum hard-sphere solids is presented. Ranges of 

densities within the interval of reduced de Broglie wavelengths *0.2 0.8Bλ≤ ≤  have been 

analyzed using Monte Carlo simulations with Cao-Berne propagator. Energies, pressures, and 

structural quantities (pair radial correlation functions, centroid structure factors, and Steinhardt 

order parameters) have been computed. Also, applications of the Einstein crystal technique (J. 

Chem. Phys. 126, 164508 (2007)) have been made to compute the free energies of the fcc and 

hcp solids. Some technical points related to the latter technique are discussed, and it is shown 

that these calculations produce consistent results with increasing sample sizes. The fluid-solid 

(fcc and hcp) equilibria have been studied, thus completing prior work by this author on the 

fluid-fcc equilibrium. Within the accuracy attained no significant differences between the relative 

stabilities of the fcc and hcp lattices have been detected. The bcc case stands apart from the other 

two lattices, as the simulations lead either to irregular lattices (two types) that keep some traces 

of bcc-memory, or to spontaneous transitions to hcp-like lattices. The latter transitions make 

manifestly clear the potential repercussions that the quantum hard-sphere behavior can have on 

solid-solid equilibria at low temperatures in real systems (e.g. helium). 
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I. INTRODUCTION 

 The hard sphere model (σ =  classical collision parameter) appears as a good choice to 

carry out computer simulations of fluid or solid phases. Its usefulness in the classical domain is 

well-established.1-10 On the other hand, quantum statistical studies with this singular model 

(QHS) are far more involved, because of the non-analytical potential and the wave/spin nature of 

particles. In this regard, a number of quantum approaches have been put forward to deal with 

QHS11-27 and, among them, Feynman’s path integrals (PI) stand out as a most powerful tool.15,17-

27 In particular, the use of PI and/or QHS has led to an understanding of a number of general 

features of helium in the condensed phases,14-15 thus serving as a complement to studies with 

continuous potentials of this important system.28,29  

 Focusing attention on the modeling of solid phases, there is a good deal of results 

obtained with classical hard-spheres. One may mention the relative stability of the lattices face-

centered cubic (fcc) and hexagonal close-packed (hcp), which turns out to be slightly greater for 

fcc,3,7 and also the fluid-solid equilibrium of colloids.9,10 However, to the knowledge of this 

author, only a few PI studies of the QHS face-centered cubic and body-centered cubic (bcc) 

lattices are available,15,30-32 and there are some reasons that indicate that further work on the QHS 

solids would be worthwhile to complete the picture of solids at low temperatures. For example, 

the bcc lattice is known to play a significant role in the initial nucleation of metastable fluids,7,33 

and one finds bcc lattices for a substantial number of the metals on the left-hand side of the 

Periodic Table.4,33,34 Moreover, bcc also appears under certain conditions as the structure of solid 

phases composed of light atoms as the helium isotopes.35-39 In this connection, the bcc lattice of 

He isotopes is being subject of active research,38,41 and so is the hcp–bcc equilibrium in 4He in its 

own right.38-39 Furthermore, based on previous experience9,10,14,15,25 it seems clear that work on 

the QHS system could give more insights into the study of highly complex real systems. In this 

regard, it is hoped that QHS, bare or with attractive forces, may prove its usefulness for the 
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understanding of hard-sphere like systems, such as colloids or ultra-hard materials, at very low 

temperatures.  

 Over the past years work by this author has dealt with a wide range of issues of the QHS 

fluid and solid phases.26-27,30-32,42-49 Some of them are of interest to this work: the accurate 

equation of state for the fluid phase reported recently,49 a preliminary study of the fluid-solid fcc 

transition for intermediate densities,31,32 and also the computation of a number of properties of 

the fcc and bcc lattices.30  With the better computational means of today this article is devoted to 

extending and completing the foregoing QHS results by studying the properties of the fcc, hcp, 

and bcc solid phases.  

 To undertake this project, a significant number of density conditions for each type of 

lattice, within the range of isotherms 0.2 ≤ * 0.8Bλ ≤  * 2 1/ 2[ / /(2 ) ],B B Bh mk Tλ λ σ π σ= =  are 

analyzed. Path-integral Monte Carlo (PIMC) simulations utilizing Cao-Berne propagator23 are 

carried out to obtain the mechanical and structural properties. Moreover, application of the 

Einstein crystal technique (EC) for QHS, as put forward in Ref. 31, is made to obtain the fcc and 

the hcp free energies. In this connection, some further aspects of the EC implementation are 

discussed in the present work. By so doing, and with the use of the recent QHS-fluid equation of 

state,49 a more accurate examination of the QHS melting-freezing transition is achieved in this 

work. Furthermore, a detailed investigation of the mechanical and structural properties of the 

peculiar solids (bcc-q) arising from the PIMC bcc simulations is conducted. Free energies for the 

bcc-q cases are not calculated, because of the uncertainties brought about by their symmetry 

features. In spite of this, clear evidence of the principal role played by the QHS behavior in the 

bcc→hcp transition at low temperatures is obtained.  

 The outline of this article is as follows. Section II describes the basic theory, Sec. III the 

computational details, and Sec. IV the results and discussion. Finally, Sec. V collates the main 

conclusions of this work. 
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II. THEORY 

 A canonical ensemble ( , , )N V T  of identical hard spheres with diameter σ and mass m 

will be used to describe the QHS solid system. The bulk number density will be denoted by 

/ .N N Vρ =  For convenience, this quantity will be expressed throughout this article in terms of 

the reduced density * 3.N Nρ ρ σ=  Note that in the canonical simulation of a given state point the 

bulk number density is kept fixed, i.e. / ,N S SN Vρ =  where SN  and SV  are the number of 

particles and the volume of the central box, respectively. This intensive quantity is central to the 

definition of the thermodynamic limit (i.e. lim : , ,S ST N V− →∞  / /N S SN V N Vρ = = =  

0),finiteconstant >  in which simulation work is deeply rooted. Hereafter, angular brackets ...  

will stand for an ensemble average, and quantum exchange will be neglected. 

A. PI concepts 

 Every particle of the QHS system is described by an elastic necklace composed of P 

beads numbered 1,2,..., .t P=  Theoretical Trotter accuracy 50( )P →∞  is thus replaced by 

statistical convergence, which will be assumed to occur for a finite P hereafter. The general form 

of the PI canonical partition function is given by ( 1/ )Bk Tβ =  

[ ]
3 / 2

2
1 1

exp ,
2

NP N P
t

PI i NP
i t

mPZ C d Wβ
πβ = =

 
= × − 

 
∏∏∫ r

=
      (1) 

where 1C =  for solids, ( ) 1!C N −=  for fluids, t
ir  denotes the spatial coordinates of bead t (i.e. 

imaginary time / )t Pβ=  belonging to necklace i, and NPW  is the effective potential ruling the 

model system composed of N P×  beads. To deal efficiently with the special features of the QHS 

interactions in the vicinity of the hard core,19 NPW  has been built with Cao-Berne pair action.23 

By so doing, physically significant results can be obtained with a reduced P value.15,26,49 The 

reader may find the related formulas elsewhere.30,48 
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 For the current purposes three key quantities are the pressure p, the internal energy E, and 

the pair instantaneous correlation function 2 ( ).ETg r  The QHS pressure involves the other two 

quantities and reads as51 

2 3 2 2
2
2

( )2 ,
3 3

N ET

r

d g rEp
V m dr σ

ρ πσ

= +

 
= +  

 

=        (2) 

where the pair radial correlation function (instantaneous) can be cast as the “equal-time” average 

1
2

1

( ) ( ) , ,
P

t t t t
ET ij ij i j

t

g r P r r rδ−

=

= − = −∑ r r       (3) 

and the internal energy is given by 

( ) 11 2
/ /

1 2
2 2 1

1 1 1

exp / 23 ( ) 1 ,
2 2 ( )

t tN P P
ij ijt t

i i t t
i t i j t ij ij

r r mPBNP mPE B
r r

β

β β σ σ

−
+

+
+

= = < =

 
 = − − − −
 + − 

∑∑ ∑∑r r
=

=
 (4) 

with ( )1( )( ) 1 cos ,t t
ij ijB r rσ σ γ+= − − +  where γ  is the angle between t

ijr  and 1,t
ij
+r  and the primed 

sums imply 1 1.P + ≡   

 The computation of free energies can be carried out by integrating the equation of state 

along isotherms to obtain Helmholtz A 

2

1

*2 1 , .,N
B

N

dA A pV const
RT RT RT

ρ

ρ

ρ λ
ρ

= + =∫        (5) 

and then Gibbs G via .G A pV= +  This route requires knowledge of A at some target state point 

( )*

1
, .N Bρ λ  This process is straightforward for the fluid phase,15,42 whereas it becomes highly 

involved for solid phases as shown below. 

B. Einstein crystal technique (EC) 

 This technique was originally proposed by Frenkel and Ladd to obtain A for classical 

solids.6 It has evolved into producing finer approaches,52 and it can also be adapted to carry out 

computations of A energies for quantum solids.15,31,52(e) When studying QHS solid phases EC is 

specially valuable in that hard cores can be dealt with in a fully consistent way. The goal is to 
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devise a reversible path connecting a target state point of the N P×  solid with a reference state 

point of same symmetry and known free energy. To do so, one utilizes the following auxiliary 

partition function15,31 

( )
3 / 2 *

*
0,2

1 11 1

2
( ) exp ,

2

NP N P N P
t tC

PI C i NP i i
i ti t

mPZ d W
P
αα β

πβ = == =

   
= × − + −   
    

∑∑∏∏∫ r r r
=

  (6) 

where the beads belonging to necklace i are harmonically linked to the i-site 0,ir  of the solid 

lattice. It is worth noting that Eq. (6) can be obtained by taking a conventional N-particle 

Hamiltonian, which also includes the one-particle couplings to the lattice sites, and then by 

applying the PI approach49 plus the superposition of Cao-Berne pair actions.19,23 For * 0Cα =  one 

retrieves the actual target state point of the quantum solid, whilst the Einstein crystal is attained 

with a truly large *
Cα  value which makes NPW  negligible. However, one notes that for 

sufficiently large values * * ,C Mα α�  the Einstein crystal associated with *
Mα  yields already a fine 

description of the theoretical Einstein limit for the target state point. Given that ,NPW  though 

small, turns out to be nonzero when use of *
Mα  is made, a correction to the final free energy is 

needed. This correction can be obtained via perturbation theory and umbrella sampling, as 

explained elsewhere.15,31 It is also interesting to stress that *
Mα  increases with P, the dependence 

being somewhat close to a linear one as indicated by numerical work (see below). 

 From the *
Cα − derivative of Eq. (6) one obtains the basic equation for the free energy of 

the target state point 

( )
*

* * * 1
0,

0 1 1

2

*
( 0) ( ) ,

M N P
E t

C M i i
i t

A A d P
α

α
α α α −

= =

= = − −∑∑∫ r r      (7) 

where EA  is the free energy of the *
Mα -Einstein crystal, and the ensemble average 

*
...

α
 to be 

integrated has to be determined at a number of *α  values. The practical application of Eq. (7) 

requires a number of further steps connected to: i) the effective reaching of the Einstein crystal; 
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ii) the drifting of the center-of-mass (COM) of the solid lattice in a simulation; and iii) the 

behavior of the resulting computational procedure with increasing sample sizes. Most of the 

discussion related to i) and ii) was contained in Refs. 15 and 31, although for the sake of 

completeness some related remarks will be made below together with item iii). 

 In using PIMC simulations with sample size ,SN P×  one finds that the free energy of the 

target state point of the actual solid is31 

( )
2

0,2
1 1 ,

2

0

(0) 3 1ln
2

SM N P
tB M
i i

i tS COM

A P d
RT P N P

α

α

λ α α
π = =

 
= − − + 

 
∑∑∫ r r  

32

3/ 2 1/ 2

3 1ln ln ,
2

M

COM
NP N BB M

S S S

W

RT N P N N P
α ρ λλ α

π
  

− +   
   

      (8) 

where *.α βα=  The first contribution will be denoted by 1( / )A RT  and is the A reduced energy 

of the Einstein crystal computed at .Mα  The second contribution, 2( / ),A RT  is the reversible 

work obtained with simulations including the constraint of fixed COM for the solid lattices. The 

third contribution, 3( / ),A RT  is the perturbation correction alluded to above obtained under the 

constraint of fixed COM. The fourth and fifth contributions, 4( / )A RT  and 5( / ),A RT  stand for 

the finite corrections brought about by the COM constraint for the Einstein and the actual crystal 

calculations, respectively. 

 It is worth noting that a reliable definition of the lattice COM in PIMC simulations is 

given by the global center of mass of the SN P×  beads in the sample. Accordingly, the fifth 

contribution in Eq. (8) is obtained by extending the usual Wigner-Seitz argument31,52(a) to the 

SN P×  sample. This “classical” procedure is motivated by the fact that, all along the *
Cα − path, 

the configuration integral in Eq. (6) always represents an effective system composed of SN P×  

particles, and never a system composed of just SN  particles. Although trivial, one notes that by 

taking 0,NPW =  the Einstein crystal energy is independent of * /C Pα  and shows 3 SN P  degrees 
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of freedom (i.e. equipartition theorem). Therefore, the corrections 4( / )A RT  and 5( / )A RT  in Eq. 

(8) are dealt with in the same manner regarding the number of degrees of freedom of the two 

model systems EC and PI employed. There is another choice for 5 /A RT  which is just the 

classical expression (i.e. 1)P =  and is based on the global features of the COM translation.52(e) 

The differences between both choices can be made negligible in practical EC-PI applications, as 

shown later on.  

 To understand the usefulness of Eq. (8) it will suffice to concentrate on the situations of 

practical interest and use numerical information available. As regards the first and second 

contributions in Eq. (8), numerical calculations indicate that when P increases the behavior of 

1 /A RT  is somehow compensated by that of 2 /A RT , as expected on physical grounds. The role 

of 3 /A RT  is just to smooth out the differences brought about by the different choices of Mα  and 

P that can be made. With respect to 4( / )A RT  and  5( / ),A RT  one notes that by setting 1P =  

(i.e. the classical situation) both quantities tend to zero in the T – lim.  It is also known that in PI 

applications the quantum limit is reached before the T – lim is. Then, by assuming that the 

quantum limit to describe the particles has been reached with a finite P, the T-lim also makes 

these two COM-corrections tend to zero, as expected. The reader will find confirmation of all 

these facts in the results given in this article. 

 Nevertheless, some important remarks regarding COM calculations remain to be 

highlighted. First, there is evidence that the fixed-COM corrections depend on the geometry and 

volume of the simulation box,53 and corrections based on Ref. 52 (a) do not show such 

dependence This effect can affect extrapolations to the T-lim and, to the knowledge of this 

author, a general formula/procedure to deal exactly with this issue has not yet been found. 

Fortunately, the magnitude of this effect turns out to be quantitatively small when use of a 

sufficiently large SN  is made. On the other hand, one must realize that COM corrections prove 
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to be necessary52(a) to obtain consistent results when working with finite samples (see below), 

and one cannot rule out their use. Second, from a practical point of view, one has to be aware 

that in Eq. (8) the SN  and the P effects are intertwined. Accordingly, as the quantum effects and 

P increase, the number SN  must also be augmented, so as to keep the corrections small and 

produce consistent results. Third, in general all the foregoing COM drawbacks can always be 

greatly reduced by using a sufficiently large .SN  In particular, for SN P>>  the role of P in 

5 /A RT  would be negligible, and hence so would the difference between 5 /A RT  and its 

(classical) counterpart correction obtained by setting 1.P =  Fourth, it is clear then the 

importance of using  PI techniques that reduce P (i.e. pair actions,23,28 higher-order 

propagators)29 in undertaking these calculations. This work is within the latter strategy and its 

results show the full consistency of the procedure based on Eqs. (6)-(8).  

C. Order parameters 

 In addition to 2 ( )ETg r  a number of significant parameters related to the PI centroids (i.e. 

necklace centers of mass) are used in this work to characterize order in the solid phases. These 

parameters are described below. 

 a) The pair radial correlation function between centroids, which can be cast as 

2 , , , ,( ) ( ) , ,CM CM ij CM ij CM i CM jg r r R Rδ= − = −R R      (9) 

where the i-centroid position vector is 1
, .t

CM i it
P−= ∑R r  The continuous linear response pair 

function 2 ( )LRg r  is not utilized as a general tool in this work,30,32,54 since for solid phases, apart 

from the slight penetration into the hard core, it is very close to 2 ( ).ETg r  Only a couple of 

examples of 2 ( )LRg r  will be given below to illustrate this latter point. 

 b) The configurational structure factor given by  

( )2
,

1

2

( ) exp ,
SN

CM
S CM i

i
S N i−

=

= ⋅∑k k R         (10) 
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which reaches its maximum value –unity-  for certain wave vectors of the perfect solid 

lattices.55,56 For computational convenience, a rectangular parallelepiped ( , , )x y zL L L  is normally 

taken as the central box in simulation work, regardless of the lattice type.8 Therefore, wave 

vectors are expressed in terms of the three side lengths as ( )2 / , / , / ,x x y y z zk L k L k Lπ=k  where 

,xk  ,yk  and zk  are integers. Sets of three commensurate wave vectors can be selected for perfect 

lattices so as to have55  

( )3
1 2 3( ) 2 / ,S SN Vπ⋅ × =k k k         (11) 

which in the case of cubic lattices the three of them reach max 1,S =  whereas in the hcp case one 

can always find one wave vector associated with the parallelepiped for which max 1.S =  If the 

final phase attained in a simulation admits sets of commensurate wave vectors (although with 

max 1),S <  this will be indicative of its closeness to the standard lattice types. Hereafter, the 

values of CMS  will be also referred to as the intensities of the wave vectors k. 

 c) Steinhardt et al 4
CMQ  and  6

CMQ  parameters, which are given by the rotationally 

invariant configurational quantities57 

, ,

1/ 22
4 1 ( , ) , 4,6.

2 1

l
CM
l lm CM ij CM ij

bm l b

Q Y l
l N
π θ φ

=−

  = = +  
∑ ∑      (12) 

The b-sum runs over all the fictitious bonds between pairs of centroids separated by less than a 

given cut-off distance ,Cd  which insures that around a given centroid all its neighbors in the first 

coordination shell are counted. The quantities θ  and φ  are the polar angles of , ,CM i CM j−R R  

with respect to a reference coordinate system. The set of lQ  parameters take well-defined values 

for perfect lattices, thus serving as a complementary basis of comparison for identifying solid 

phases in simulations. Table I shows the perfect lattice values of 4Q  and 6Q  for fcc, bcc and hcp, 

together with examples of sets of commensurate wave vectors which maximize ( ).S k  It is 
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worthwhile to note that for partially crystalline phases the qualitative behaviors of all the ET2 (or 

LR2) parameters follow those of CM2, although the latter show more pronounced features.30,31 

 

III. COMPUTATIONAL DETAILS 

 PIMC simulations were carried out in the canonical ensemble for the fcc, bcc and hcp 

lattices. The ranges of * *( , )N Bρ λ  conditions explored were as follows. For the fcc and hcp 

lattices: *(0.8 0.9;Nρ≤ ≤ * 0.2),Bλ =  *(0.68 0.8;Nρ≤ ≤ * 0.4),Bλ =  *(0.6 0.7;Nρ≤ ≤  * 0.6),Bλ =  

*(0.525 0.625;Nρ≤ ≤ * 0.8),Bλ =  using for most of the computations the density spacing *
Nρ∆ =  

0.025 (also 0.02, 0.03 and 0.05). For the bcc lattice: *(0.8125 0.925,Nρ≤ ≤ * 0.2),Bλ =  

*(0.69 0.825;Nρ≤ ≤ * 0.4),Bλ = *(0.6 0.725;Nρ≤ ≤ * 0.6),Bλ = *(0.5375 0.675,Nρ≤ ≤ * 0.9;Nρ =  

* 0.8),Bλ =  using *
Nρ∆ =  0.0125, 0.02 and 0.025. The sample sizes employed SN P×  were taken 

as: a) 500×12 for fcc; b) 512×12 for hcp; and c) 432×12 for bcc [also 432×24 at 

*( 0.9;Nρ = * 0.8)].Bλ =  The central simulation boxes were taken as cubes (fcc and bcc) or right 

parallelepipeds (hcp), and the usual periodic boundary conditions were employed. The 

corresponding perfect lattice was always selected as the initial configuration at every state point 

for fcc, hcp and bcc. In addition to this, bcc complementary compression (increasing-density) 

runs were conducted along each isotherm in order to clarify finer details of the final solid 

structures obtained. In these bcc-compression calculations, the last configuration obtained for a 

state point at a given density was used as the starting point for the simulation of the state point at 

the next (higher) density by rescaling the bead coordinates. By using a density spacing 

* 0.0125,Nρ∆ =  the five state points analyzed per isotherm within this compression program were 

the following: a) along * 0.2,Bλ =  starting from * 0.8375,Nρ =  *0.85 0.9;Nρ≤ ≤  b) along * 0.4,Bλ =  
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starting from * 0.725,Nρ =  *0.7375 0.7875;Nρ≤ ≤  c) along * 0.6,Bλ =  starting from * 0.635,Nρ =  

*0.65 0.7;Nρ≤ ≤  d) along * 0.8,Bλ =  starting from * 0.575,Nρ =  *0.5875 0.6375.Nρ≤ ≤   

 In the EC applications to the fcc and hcp lattices (Table II) the target points selected were 

the same: *( 0.8;Nρ = * 0.2),Bλ =  *( 0.7;Nρ = * 0.4),Bλ =  *( 0.6;Nρ = * 0.6),Bλ =  *( 0.6;Nρ = * 0.8).Bλ =  

The sample sizes employed were those quoted above, and a number of extra runs were carried 

out at hcp *( 0.7;Nρ = * 0.4),Bλ =  with ( 12,P = 64,216)SN =  and ( 512,SN =  P =  3, 6, 18, 24). 

It is worth remarking that all the Cao-Berne 12P =  results (mechanical and thermal) reported in 

this article are fully consistent with those obtained in Ref. 15 by Runge and Chester. The latter 

authors carried out EC simulations with the simpler image propagator22 and 40P =  for 

* 0.88,Bλ >  and did not use explicit COM corrections. All of this indicates the reliability of the 

all-purpose 12P =  selection made in this article, and also of Eq. (8). 

 The particle mass and diameter were set to 28.0134m =  amu and 3.5σ = Å, respectively. 

The algorithms employed in the PIMC and EC-COM simulations were based on the PI-necklace 

normal modes along the lines described elsewhere.31 After equilibration, the run lengths were as 

follows (1 kpass=103 
SN P×  attempted bead moves; standard 50% - acceptation criterion). a) 

For the fcc and hcp simulations (PIMC and EC) 800 kpasses, and also in between 1850 and 6250 

kpasses for some EC-hcp applications at *( 0.7;Nρ = * 0.4).Bλ =  b) For the bcc simulations (PIMC) 

1840 kpasses at each state point, augmented to 2760 kpasses at some of them (e.g. lowest 

densities along each isotherm, and the P = 24 calculation). Subaverages for mechanical 

properties (E, p, and 2g  functions) were calculated with blocks sized 80 kpasses (fcc and hcp) 

and 92 kpasses (bcc). In this connection, to compute 2ETg  and 2CMg  the total number of 

configurations employed were 48 10×  for fcc and hcp, and in between 418.4 10× - 427.6 10×  for 

bcc. These configurations were taken at regular intervals throughout the corresponding 

simulation. Histograms for these functions were defined with 0.1 Å as the width of the bins, 
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except for the short-range distances of 2ETg  in the vicinity of the hard core, where bins of 0.005 

Å and 0.01 Å were used.49 This yields the centers of the bins for distances (in Å) not close to the 

hard core as follows: a) for ET2, (3.65, 3.75, 3.85, etc.); and b) for CM2, (3.45, 3.55, 3.65, etc.). 

For uniformity of comparison with the perfect lattice positions of neighboring particles around a 

given one, in the graphs below the latter histogram centers were used as the relative positions of 

neighbors in the perfect lattice (differences from the actual positions are negligible). Also, for 

convenience of further reference, the distances will be reported in the figures in reduced units, 

i.e. * / .r r σ=  

 Solid pressures were computed by making use of the behavior  2
2 ( ) ( )ETg r a r σ= −  in the 

vicinity of the hard core,11(b),13 and applying the weighting procedure described in Ref. 49. To 

obtain the reversible work 2 /A RT  in Eq. (8) the EC maximal parameters Mα  and the auxiliary 

constants ( ) 2
0 0

1

0
( )

C
c

α

−

=
= −r r  also had to be determined, which was done along the lines 

explained in Ref. 31. These EC basic parameters are collected in Table II, where one can observe 

that the assumption of ( )M P Pα ∼  seems to be close to the true dependence. Gauss-Legendre 

quadrature with ten points was used to compute 2 / .A RT  The Mα  values chosen render NPW   

lower than 2% of the whole effective potential in Eq. (6), and the actual NPW  contribution in Eq. 

(8) was fixed with umbrella sampling. The 2
0,( )t

i i−r r  statistics were gathered every 5000 

attempted normal-mode moves (also 2000 moves for the SN = 64, 216 hcp test simulations). The 

reader is referred to Ref. 31 for full details regarding all these calculations. Except for the 

foregoing Gauss-Legendre quadrature applications, numerical integrations in this article were 

performed using an algorithm based on cubic splines. 

 Calculations of the order parameters 4 ,CMQ  6
CMQ   and ( )CMS k  were carried out three 

times per block at equally spaced intervals. Although this scanning of parameters is not 
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exhaustive, it keeps the cost of the simulations low and, in all likelihood, produces uncorrelated 

data regarding the structure to be analyzed. Besides, it turns out to be sufficient to determine the 

salient structural traits of the solid phases. Note that the CM2 parameters serve to better identify 

the symmetries obtained30,31 than if the ET2 parameters had been used instead. The Q-

neighborhood parameter Cd  was set to 1.5σ  (also 2σ  at low densities along * 0.8).Bλ =  The 

values reported below for 4
CMQ  and 6

CMQ  are the resulting averages over the runs. As regards 

( ),CMS k  the ten k wave vectors leading to the largest intensities per block were recorded. To do 

so, triplets of integers ( , , )x y zk k k  in the mesh 2 2 225 100,x y zk k k≤ + + ≤  10 10,ik− ≤ ≤  were 

monitored. This allows one to estimate the limits of variation of this quantity in partially 

crystalline phases. 

 The determination of the fluid-solid (fcc, hcp) coexistence was achieved at each isotherm 

by finding the intercept between the fluid and solid ( )G G p=  curves. The statistical errors in the 

common (p, G) were obtained by adding the variances of each property at the corresponding 

fluid and solid state points. These errors have been employed to define those affecting the 

coexistence densities.  

 

IV. RESULTS 

A. fcc and hcp mechanical properties 

 Figures 1 and 2 show the radial correlation functions obtained at typical fcc and hcp state 

points. As seen, the positions of the maxima and minima agree very well with the expected for 

the perfect lattices. Although well-known, the fcc/hcp differences beyond the third peak have to 

be kept in mind for a better understanding of the bcc results obtained in this work. Also, the close 

proximity between 2ETg  and 2LRg  is apparent. In addition to this, sets of three commensurate 

wave vectors that maximize ( )CMS k  have been found. They agree with those which arise in the 
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fcc and hcp perfect lattices. The maximal max ( )CMS k  increase with the density and, for example 

along the two extreme isotherms, are in between the following values:58 a) for fcc, 

max(0.69 0.87;CMS≤ ≤ * 0.2)Bλ =  and max(0.66 0.87;CMS≤ ≤ * 0.8);Bλ =  and b) for hcp, 

max(0.68 0.84;CMS≤ ≤ * 0.2)Bλ =  and max(0.64 0.87;CMS≤ ≤ * 0.8).Bλ =   

 The mean centroid parameters 4
CMQ  and 6

CMQ  behave in accord with the foregoing 

results. For example, the mean values found along the two extreme isotherms are:58 a) for fcc, 

4(0.13 0.16;CMQ≤ ≤ 60.40 0.49;CMQ≤ ≤ * 0.2)Bλ =  and 4(0.15 0.18;CMQ≤ ≤   60.41 0.52;CMQ≤ ≤  

* 0.8);Bλ =  and b) for hcp,  4(0.07 0.08;CMQ≤ ≤ 60.34 0.42;CMQ≤ ≤  * 0.2)Bλ =  and 

4(0.08 0.09;CMQ≤ ≤  60.35 0.44;CMQ≤ ≤  * 0.8).Bλ =  The overall agreement between the patterns 

shown by all the order parameters indicates the internal consistency of the present calculations. 

Therefore, all the solid phases obtained in these groups of simulations can be safely classified as 

partially crystalline fcc or hcp. 

 The comparison between the current results for fcc and those reported in Ref. 31 reveals 

that: i) state points *( 0.775;Nρ = * 0.2)Bλ =  and *( 0.58;Nρ = * 0.6),Bλ =  formerly classified as solid 

phases, have long equilibration stages and now are proven to be fluid; and ii) for the rest of the 

state points, max ( ),CMS k  4
CMQ  and 6

CMQ  do not differ significantly, and this in spite of the much less 

demanding sampling carried out in Ref. 31.  

 Figures 3 and 4 show the fcc and hcp mean reduced internal energies /E RT  and mean 

compression factors / .PV RT  Also shown are the fluid branches along each isotherm, as 

determined in Ref. 49 with isothermal compressibility data. The numerical results are given as 

supplementary material.58 The statistical error (one-standard deviation) in the solid phase values 

for /E RT  and /PV RT  remains below 0.5% and 1.7%, respectively. Within these margins no 

significant fcc/hcp differences appear at any state point. This raises the question of the possibility 

of detecting the influence of the different packing patterns on the relative stability of the fcc and 
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hcp quantum lattices. The consideration of this interesting issue, which has its counterpart in 

classical statistical mechanics,7 is deferred to subsection C.  

B. Features of the EC calculations 

 To grasp the salient features of the EC calculations Table III contains the results at hcp 

*( 0.7;Nρ = * 0.4)Bλ =  using different sample sizes and run lengths. All the behaviors discussed in 

Sec. II.B are present here. For instance: i) the increasing absolute values of 1A  and 2A  with P, 

their compensation, and the effect of the umbrella sampled 3;A  ii) the role of the COM 

corrections coming from 4A  and 5 ,A  which become smaller (or larger) with increasing SN  (or 

P) – also recall that 4 ( ) ;MA f α= −  iii) the SN − control on the P effect; and iv) the scale of the 

computational effort to achieve higher accuracy in the determination of 2 ,A  and thereby of A 

(512×24 results). As seen in Table III, when the proposed COM corrections31 are used in Eq. (8) 

they bring about fully consistent results for the different sample sizes employed. This latter effect 

is more noticeable for low values of the SN  or P parameters. As seen, practical convergence is 

reached by increasing the sample size and the run length. All of this is very rewarding in that the 

current EC calculations of QHS free energies do not yield any irregular behavior in the results. 

 With respect to the effect of applying the classical expression for 5 /A RT  instead of that 

given in Eq. (8), it is worth noting the following facts. First, the changes in /A RT  turn out to be 

even smaller than the final statistical errors. For example: a) the most extreme case occurs at the 

least physically significant sample 64×12, for which /A RT =  1.588(74)→1.607(74); and b) the 

latter situation should be compared with that of the sample 512×12, for which 

/A RT = 1.655(59)→1.658(59). Second, although not shown in Table III, in this regard the 

results for the rest of the target state points calculated are similar, for example at  fcc-500×12 

*( 0.6;Nρ = * 0.8)Bλ =  /A RT = 5.576(41)→5.579(41). 
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C. fcc and hcp – fluid equilibria 

 Table IV contains the thermodynamic data of the fluid-solid coexistence as obtained in 

this work. The slight differences between fcc and hcp can be explained by the error bars in the 

results. Therefore, no significant differences between both solid-fluid equilibria have been 

obtained. In particular, the fcc and hcp relative stabilities along their corresponding coexistence 

lines with the fluid phase cannot be distinguished from one another. The same result is obtained 

when comparing the relative stabilities of the fcc and hcp state points along the four isotherms.58 

In Table IV the pressure is reported in reduced units 2 1 5* /( ),p p m σ− −= =  whereas Gibbs energy 

is reported in units of ,RT  as usual. 

 In this connection, through extensive and thorough computations,7 it was found some 

years ago that in the classical hard sphere (CHS) system the fcc lattice is more stable than the hcp 

lattice, but by a really small fraction of RT  (i.e. for A-energy: from 0.26% at close packing to 

0.23% at melting). Nevertheless, the same sort of question in the QHS system still seems far 

from being settled. A number of issues should be addressed in undertaking this project. Among 

them one may mention: i) the computation of solid pressures with more elaborate procedures 

than the based on Eq. (2) and/or the conducting of simulations in the (N, P, T) ensemble59 to 

complement the thermodynamic data on this system; ii) the use of more advanced pair actions;24 

iii) the going beyond pair actions to incorporate many-body effects; and iv) the solving of the 

geometry problems associated with the fixed-COM corrections.53 Note that quantum hard 

spheres repel each other before contact, the repulsion being strongly dependent on the second 

derivative at contact of ETg  [Eq. (2)]. Hence, some sort of concerted many-body behavior could 

play a significant role as the density increases. This may be regarded as a situation parallel to that 

observed in CHS: significant fcc/hcp differences in the pressure were identified as arising from 

collision contributions associated with successive-shell neighbors.3,7 In addition to this, there is 

the problem of the computational efficiency. In this regard, the QHS non-analytic interactions 
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make it difficult to devise alternatives (e.g. Morales-Singer,52(e),60 PI molecular dynamics)61 

different from the general Monte Carlo one followed in this article. 

 Another point to be considered is the comparison with the former fcc-fluid equilibrium 

results based on a previous calculation of the fluid isothermal compressibilities.31 There are a 

number of dramatic changes (Figs. 5 and 6) which are to be ascribed to the much better general 

accuracy achieved both in this work and in Ref. 49, and also to the correct identification of the 

fluid state points mentioned above. In general, the coexistence properties *
Nρ  (fluid and solid), p, 

and G, are shifted to higher values. The most pronounced changes occur at * 0.2Bλ =  and 0.6, for 

which the shifts in ( , )p G  are (15%,16%)  and (26%,22%) , respectively. Note the logarithmic 

scale used for pressures in Fig. 5. Moreover, the anomalous behavior of the entropy31 on both 

sides of the coexistence line at * 0.4Bλ =  and 0.6 is not present in the current calculations. Thus, 

clear monotonic patterns for /G RT  and /S R  with *
Bλ  are obtained (Fig. 6). Furthermore, the 

fractional change in density ( ) /S F Sρ ρ ρ ρ∆ = −  (S = solid; F = fluid) is modified and indicates a 

larger separation from the classical value9,62 (0.094-0.095) at * 0.2,Bλ =  that is: 0.091 (former)31 

→ 0.086 (Table IV). It is also interesting to remark that the linear dependence between the fluid 

and the solid densities along coexistence is still shown by the current results. By extending these 

results with the classical data,62 plus Runge-Chester’s results15 at * 0.89,Bλ =  1.25, 1.98, one finds 

again an almost perfect linear correlation between the mean densities * *1.143 0.038fcc Fρ ρ= −  

(correlation coefficient = 0.99997). There still remains a valuable extra feature related to the 

absolute maxima of the fluid centroid structure factors along the coexistence line.49 The rather 

irregular behavior obtained in Ref. 32  is absent from the current calculations. As determined in 

the present work, these ( )CMS k  maximal intensities fall within 3 0.06,≈ ±  a uniformity which is 



 19

to be compared with the general classical result 2.85 0.1,±  which also holds for classical hard 

spheres.63 

 Under the current conditions, and in spite of the substantial differences between QHS and 

CHS, one obtains for the entropy of both changes of phase / 1.1 0.1,QHS
F SS R→∆ ≈ − ±  which is 

certainly close to the classical value9,63 / 1.16.CHS
F SS R→∆ ≈ −  In addition, note the smallness of the 

energy differences between the fluid and solid phases at coexistence. Therefore, the quantum 

changes of phase in Table IV are controlled by entropic effects, which is the same to what is 

observed in the classical domain. Moreover, as observed in Ref.15, to find the energy-controlled 

regime in QHS one should go to very low temperatures *( 2)Bλ >  and deal with quantum statistics 

for the fluid phase.  

 Figure 7 shows a comparison between the melting-freezing lines of QHS and 4He for 

* 2,Bλ <  where the experimental data have been taken from McCarty’s work64 and the value 

σ (4He) = 2.2 Å has been assumed.15 As seen, the patterns are consistent with each other, which 

is in agreement with the well-known image of helium atoms as hard spheres. The differences can 

be fixed by adding an attractive tail to the hard-sphere interaction and using perturbation theory, 

as discussed in Ref. 15, although to complete such a project a further definition of an effective 

collision parameter as * *( , )N Bσ ρ λ  should be made. 

D. The peculiar bcc-q solids 

 Figure 8 shows the energy and the compression factor for most of the final bcc-q state 

points investigated by starting their simulations from the corresponding bcc-perfect lattices 

(related data are given in the supplementary material).58 At each isotherm one can observe that 

both quantities display some sort of irregular behavior, which for the reader to grasp is hinted 

approximately by dotted segments in Fig. 8. As seen, the effect is more pronounced in the 

compression factor. This effect suggests the possibility of two solid branches for the bcc-q data. 
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The inclusion of state points at higher densities would even reveal the possibility of a third solid 

branch, but the following analysis will concentrate just on Fig. 8.  

 On the other hand, the route based on the bcc-compressions yields thermodynamic (and 

structural) results that, in the overwhelming majority of cases, agree within statistics with those 

in Fig. 8. This has been determined at a level of significance 5% (two-sided) by assuming 

Gaussian behavior. Only at *( 0.8625;Nρ = * 0.2)Bλ =  and *( 0.6625;Nρ = * 0.6)Bλ =  the /E RT  and 

/PV RT  mean values are greater than, although relatively close to, those of their corresponding 

state points in Fig.8. These differences cannot be explained by statistics, and this suggests that by 

reducing further the density spacing in the compression program they could be fixed, and an 

even better agreement between the solids obtained via both routes could be obtained. 

Nevertheless, the whole assessment of this question, such as is, cannot be regarded as conclusive 

whatsoever. At this juncture, and to avoid carrying out more computations, one can resort to a 

detailed analysis of the structural parameters obtained in the bcc-q simulations. 

 First, 6
CMQ  always remains lower than the perfect lattice value (0.511) along every 

isotherm, whilst for * 0.2Bλ >  4
CMQ  can reach values that are significantly higher than its 

reference (0.036).57 Thus, one finds 4
CMQ  to be in between: a) 0.045 – 0.056 at * 0.4;Bλ =  b) 

0.057 – 0.089 at * 0.6;Bλ =  and c) 0.020 – 0.111 at * 0.8.Bλ =  Moreover, the variations in the CMQ  

parameters do not appear to be always monotonic with the density.58 These facts reveal that the 

mechanically stable solids attained can be far from being proper bbc lattices. In this regard, one 

should bear in mind the fcc and hcp reference values given in Table I, in particular 4
CMQ  (hcp) = 

0.097, and 4
CMQ  (fcc) = 0.191. 

 Second, despite the fact that sets of bcc-commensurate maximizing wave vectors Eq. (11) 

are always obtained, the k-space results for the PI centroids along the four isotherms point to 

important changes in the original structure of the bcc-lattice (Table V and supplementary 



 21

material).58 The situation may be summarized as follows. i) For low densities the intensities of 

the three maximizing wave vectors are far from unity, but they remain close to each other, which 

is the expected result. ii) As the density increases, the maximum intensity increases with respect 

to the latter set. At the same time, one finds a range of medium densities in which the three 

intensities separate significantly from each other. This anomalous effect is noteworthy in that one 

of the intensities becomes much smaller than the other two. And, iii) by increasing further the 

density, the intensity values close up again reaching higher values than those in i) and ii). This 

indicates that the resulting solid phase at high density has reorganized itself into a more ordered 

structure. To illustrate the latter feature only some significant data of the simulations at 

*( 0.925;Nρ = * 0.2)Bλ =  and *( 0.9;Nρ = * 0.8)Bλ =  are reported in Table V, where one observes 

that the centroid intensities reach maximal typical values 0.75 and 0.78, respectively. All of this 

bcc-behavior contrasts sharply with those of fcc and hcp (Table V). Therefore, along every bcc 

isotherm there are three ranges of densities (low, medium, and high), each of which showing a 

distinctive structure. This amounts to having three types of different phases, which will be 

termed bcc-q: bcc-qI for low densities, bcc-qII for medium densities, and bcc-qIII for high 

densities. However, the limitations imposed by the periodic boundary conditions used in the bcc 

simulations preclude one from drawing further conclusions from the k-space data. 

 Third, one notes that the openness of the bcc lattice has to play a role in the above 

behavior (e.g. the bcc packing fraction is 0.68, whereas that of fcc or hcp is 0.74). Two QHS 

additional features are to be taken into account: the really strong repulsions and the quantum 

delocalization of particles. Therefore, as the density increases a variety of subtle arrangements of 

the particles can occur yielding the so-called bcc-q solids.30 This discussion can be 

complemented by inspecting some typical shapes of the pair radial correlations. For example Fig. 

9, where two facts are to be noted: i) that the proper bcc symmetry is not contained in the 

examples shown; and b) that the CM2 and ET2 salient features coincide with one another (CM2 
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is obviously more structured). As a matter of fact, and in agreement with the foregoing bcc-q 

classification based on k-space data, one finds in the obtained results the following three 

different types of solid radial structures. i) bcc-qI, which is similar to that of bcc classical 

calculations.34,36 This is the type of structure which has been taken as the starting point for the 

increasing-density program along isotherms. ii) bcc-qII, which corresponds to the lower plots in 

Fig. 9 *( 0.9;Nρ = * 0.2).Bλ =  And iii) bcc-qIII, which corresponds to the upper plots in Fig. 9 

*( 0.9;Nρ = * 0.8).Bλ =  

 Fourth, the comparison between the bcc-q and the hcp pair radial correlation functions 

yields a surprising result: within the bcc-qII range of conditions the perfect-bcc lattice adjusts 

itself to perform a spontaneous transition to an hcp-like lattice, i.e. bcc→bcc-qII ≈ hcp. With a 

few exceptions, this sort of transition takes place quickly, after two or three equilibration blocks. 

Although this result can be seen in the graph for the state point at * 0.2Bλ =  in Fig. 9, Figs. 10 and 

11 describe this situation in a more complete way. Figure 10 displays the marked similarity 

between bcc-qII and hcp at another representative state point *( 0.625;Nρ = * 0.8).Bλ =  Figure 11 

contains the plots of the ET2 functions at the latter state point and shows, beyond any reasonable 

doubt, the closeness between the bcc-qII and hcp actual structures (instantaneous) and, also, the 

patent dissimilarities between bcc-qII and fcc. Also, hcp presents peaks and valleys slightly more 

pronounced than bcc-qII *( 4r ≤  or r/Å 14≤  for the parameters used in this work). This behavior 

occurs along the four isotherms investigated, and it displays clearly the quantum phase transition 

bcc→hcp. The following results are worth noting: a) the bcc-q 4
CMQ  values can become quite 

close to that of perfect hcp (0.097); and b) although 4
CMQ  is more sensitive than 6

CMQ  to 

identifying these lattice similarities, for certain * *( , )N Bρ λ  conditions the bcc-qII and the hcp 

structures show a remarkable proximity between their  CMQ order parameters.58  
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 The fcc and hcp structures do not present any of the bcc-q problems (Table V, Figs. 1 and 

2, and Ref. 58), which is what permits devising safe EC procedures to compute QHS free 

energies for these regular quantum lattices. However, the above bcc-q features pose major 

symmetry problems to the calculation of QHS free energies. Extreme examples are, for instance, 

the density conditions for which bcc-qII and bcc-qIII state points are obtained, for the definition 

of a significant reversible path leading to a perfect bcc Einstein crystal is not feasible. It is 

interesting to recall that, when dealing with classical hard spheres arranged in a bcc lattice (a 

system whose structure is unstable to shear), a useful device to carry out some exploratory free-

energy calculations is to impose within the simulation cell constraints that maintain the integrity 

of this lattice.34 Clearly, the results of this procedure cannot lead to a true thermodynamically 

stable bcc phase. 

 The energies and the pressures of bcc-q phases are significantly higher than those of the 

fcc or hcp phases at the same density and temperature. This fact and the bcc structural problems 

point to the thermodynamic instability of bcc-q with respect to the close-packed structures. With 

regard to the comparison between the energies and pressures of bcc-qII and hcp, it is easy to 

understand that the differences result from the combination of the QHS behavior and the 

unnatural space (i.e. a cube instead of a right parallelepiped) in which the simulated bcc-qII 

phases are trapped.  

 Finally, in relation to the two-way computations performed, the direct bcc→ bcc-qII ≈ 

hcp and the compression bcc-qI→ {bcc − qII ≈ },hcp  a reconsideration of the features present in 

Fig.8 is in order. When differences in the phase entropies are expected (e.g. the fluid-solid 

transitions in Table IV), one may apply the rationale that QHS phase transitions for * 0.8Bλ ≤  

should be entropy-driven. In this way, the really small irregularities in the bcc-q energies might 

be explained. However, a better explanation can be provided by noting that this phase transition 

shows signatures of a second-order transition. First, the calculations bcc→ bcc-qII show that at 
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constant volume there are direct changes in the solid symmetry (Fig.12), a fact supported further 

by the consistency with the results arising from the bcc-qI→{bcc − qII} calculations. Second, no 

discontinuity in the interaction potential energy is present. Accordingly, one can expect a 

continuous behavior of /E RT  and of /PV RT  at the transition points in the isotherms 

investigated (the same for the rest of thermodynamic properties). On the other hand, given that a 

finite density spacing is employed, and also that the pressure is more sensitive to the short-range 

structure of the solid phase under consideration [i.e. Eq. (2)], the results display a more 

pronounced irregularity in /PV RT  than in /E RT  on both sides of the transition.  

 

V. CONCLUSION 

 In this study of quantum hard sphere solids (fcc, hcp, bcc) mechanical, structural and 

thermal properties have been determined using path integral Monte Carlo simulations involving 

Cao-Berne pair action and also the Einstein crystal technique.31 An extensive use of centroid 

quantities 4[ ,CMQ  6 ,CMQ  2 ( ),CMg R and ( )],CMS k  and also of the instantaneous function 2 ( ),ETg r  

has been made to characterize all the solid phases obtained in this work. As expected, the 

2 ( )ETg r  instantaneous features follow closely those of 2 ( ).CMg R  Although the ( )CMS k  

information has been in general very useful, in the bcc applications the symmetry problems and 

the restrictions imposed by the periodic boundary conditions do not allow one to interpret the 

related k-space results in a direct way.  

 The simulations to obtain mechanical (fcc, hcp and bcc) and thermal properties (fcc and 

hcp) have employed long run lengths, thereby yielding more accurate results than in previous 

works.30-32 These more accurate results, together with the improved equation of state for the fluid 

phase reported in Ref. 49, have produced reliable results for the fluid – solid (fcc or hcp) 

equilibria. In this regard, no significant differences between both equilibria have been obtained. 

Along the two isotherms * 0.2Bλ =  and 0.6, some of the former results regarding the fluid – fcc 
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equilibrium have undergone significant changes. For example, there is an increase in the 

coexistence pressure and Gibbs energy by an amount in between 15% – 26%. Also, a uniform 

behavior of the main peak of the centroid structure factors ( 3.0)≈  at the fluid side of the 

coexistence line is obtained. Moreover, it is worth noting that, none of the thermodynamic results 

concerning the fluid-solid coexistence in this article are out of the ranges signaled by the 

structural calculations. Furthermore, the Einstein crystal technique as developed in Ref. 31 has 

been shown to provide a useful computational framework for path-integral applications, as it 

yields consistent results when variations in the simulation sample size SN P×  are made.  

 In the current fcc and hcp calculations no unforeseen order behavior has been observed. 

Although the possibility of establishing the relative stability of the fcc and the hcp phases has 

been considered, no significant differences between them have been found.  It is clear that there 

remains a great deal of work to be done to settle this question, and a number of different 

complementary strategies have been discussed in the main text of this article. One might hope to 

find a less expensive and, perhaps, more rigorous method (avoiding the unsolved geometry-

volume problems)53 to obtain free energies for the stable lattices of PI quantum hard spheres. 

However, as discussed in this work, the singular nature of the QHS interactions makes it difficult 

to complete some stages of such a project in a straightforward way.  

 On the other hand, the theoretical bcc quantum hard-sphere lattice turns out to be 

mechanically unstable and its integrity is not kept in the simulations. This is analogous to the 

classical situation, although some important differences have been observed in this study. A first 

consequence of this instability is that three different types of solid structures have been obtained: 

bcc-qI (classical-like),36 bcc-qII (hcp-like), and bcc-qIII (ordered, but highly irregular). They are 

far from the perfect bcc symmetry, occur along every isotherm investigated, and their appearance 

depends on the density of the sample. The most striking fact is that for medium densities the two-

way bcc simulations performed lead to spontaneous transitions to hcp-like structures (bcc-qII). 
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Furthermore, these bcc→ bcc-qII ≈ hcp transitions show typical second-order transition 

signatures, a result which seems to be in sharp contrast with the classical situation.34,36,65 In 

identifying this change in the symmetry of the solid phases, the use of the order parameters has 

been crucial. One notes that the computation of energies, pressures and structure factors, hinted 

that different bcc-q solid phases arose from the simulations. However, clear checks of the 

spontaneous transitions bcc→ hcp-like (and not fcc!) have been obtained through: i) the pair 

radial functions (centroid and instantaneous); and ii) the sensitivity of the 4
CMQ  parameter. The 

computation of free energies for the above bcc-q phases seems far from being straightforward 

owing to the major symmetry problems they present.  

 Therefore, and despite the absence of attractions, one is forced to conclude that in the 

QHS system the strong repulsions together with the delocalization of the particles, by finding 

their way through the voids of the bcc structure, can act as a source of order under certain 

conditions * *( , )N Bρ λ . Accordingly, given the well-established connections between quantum hard 

spheres and helium atoms for medium and high densities,14-15,54 one is led to think that the 

quantum hard-sphere behavior could also play an important role in the helium bcc→hcp 

transition at low temperature (e.g. in 4He 1.45 /T K< < 1.8, * 38,393).Bλ ≈  On the other hand, 

attractive interactions must be taken into account when dealing with real systems (at high solid 

densities also triplet interactions are needed). Furthermore, quantum statistics becomes crucial 

for describing non-perfect crystals and solid-fluid interfaces at low temperatures.41,66 Therefore, 

the final picture for helium solids is certainly far more complex than the one provided by the 

QHS model in this work. 

 There remain a number of QHS interesting issues to be worked out, and the results 

reported in this article are intended to be a useful basis of comparison for further research on this 

topic. In particular, the spontaneous bcc→hcp transition found in this work seems to deserve 

further investigation. As regards the PI applications where quantum exchange can be neglected it 
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may be well-worth exploring: a) the complementary use of other ensembles with increasing 

sample sizes;59,67-70 b) more exhaustive and refined techniques to analyze order in the sample 

(e.g. true bead-bead order parameters,30,31 functional theories34 plus simulation,68-70 etc.); and c) 

the inclusion of attractive interactions, which supplement the QHS model48 and stabilize the bcc 

lattice against shear modes. Also, one can try to gain more insight into the outstanding helium 

solid-solid problems by using hard spheres. In addition to the foregoing measures, one should: d) 

evaluate the influence of quantum statistics on the bcc stability and on the solid-fluid interfaces;  

and e) make a comparison with results obtained with realistic models for the He-He 

interaction.71,72,73  
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TABLE I. Reference structural data for the perfect fcc, bcc and hcp lattices. For computational 

convenience, the central boxes are assumed to be cubes in fcc and bcc and a rectangular 

parallelepiped in the hcp case. Wave vectors are expressed as ( )2 / , / , / ,x x y y z zk L k L k Lπ=k  

where ,xL  yL  and zL  denote the three lengths of the box. 

Lattice 4Q  6Q         SN    x y zk k k  max ( )S k  

fcc 0.1909 0.5745 500    (10×10×5)  5 5 5−  

 5 5 5−  

5 5 5− −  

1 

1 

1 

bcc 0.0364 0.5107 432     (12×6×6)   6 0 6  

  0 6 6  

  6 6 0  

1 

1 

1 

hcp 0.0972 0.4848 512     (8×8×8)   0 0 8  

  8 0 4−

  4 8 4−  

1 

0.75  

0.75  
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TABLE II. Einstein crystal parameters utilized in this article. Hard-sphere collision parameter in 

this article σ =3.5 Å. 

Lattice *
Nρ  *

Bλ  SN P×  (Mα Å-2) 0 (c Å-2) 

fcc 0.8 0.2 500×12 51 10×  2.058 

 0.7 0.4 500×12 47 10×  2.130 

 0.6 0.6 500×12 41 10×  1.502 

 0.6 0.8 500×12 41 10×  2.153 

hcp 0.8 0.2 512×12 51 10×  1.992 

 0.7 0.4 512×12 47 10×  2.105 

 0.6 0.6 512×12 41 10×  1.488 

 0.6 0.8 512×12 41 10×  2.136 

hcp 0.7 0.4 64×12 43 10×  2.376 

   216×12 43 10×  2.203 

   512×3 33 10×  2.035 

   512×6 37 10×  2.098 

   512×18 47 10×  2.075 

   512×24 51 10×  2.098 
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TABLE  III. Einstein crystal results at hcp * *( 0.7; 0.4)N Bρ λ= =  for different sample sizes. A = 

total Helmholtz free energy, Ai = components of A as defined in Eq. (8). Numbers in parentheses 

stand for one-standard deviation in the last decimal(s). 1 kpass = 103 SN P×  attempted bead 

moves. 

SN P×  kpasses /A RT  1 /A RT  2 /A RT  3 /A RT  4 /A RT  5 /A RT  

64×12 6250 1.59 (7) 87.612   −85.964 (74) 0.2770 (2) −0.1723 −0.1654 

216×12 1850 1.64 (5) 87.612   −86.140 (53) 0.2770 (2) −0.0511 −0.0575 

512×12 800 1.66 (6) 102.864 −101.276 (59) 0.1187 (1) −0.0240 -0.0268 

512×3 800 1.68 (1) 24.018   −22.342 (12) 0.0483 (2) −0.0189 -0.0254 

512×6 800 1.67 (2) 43.185   −41.622 (23) 0.1484 (1) −0.0193 -0.0261 

512×12 800 1.66 (6) 102.864 −101.276 (59) 0.1187 (1) −0.0240 -0.0268 

512×18 800 1.65 (6) 132.400 −131.101 (62) 0.4008 (4) −0.0228 -0.0272 

512×24 800 1.63 (10) 168.661 −167.649 (96) 0.6647 (6) −0.0230 -0.0274 

512×24 5600 1.65 (4) 168.661 −167.630 (39) 0.6647 (6) −0.0230 -0.0274 
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TABLE IV. Results for the fluid-solid equilibria of quantum hard spheres (F = fluid, S = fcc, hcp). Numbers in parentheses are one-standard 

deviation in the last digit(s). Reduced pressures *p  in units of 2 5( / ).mσ=  In this article: m =  28.0134 amu, σ = 3.5 Å. 

*
Bλ  System *

Fρ  *
Sρ            *p      /G RT     /FE RT     /SE RT    /FS R    /SS R    fρ∆  

0.2 F - fcc 0.789 (3) 0.863 (4) 1566.49 (2359) 11.632 (202) 2.620 (8) 2.519 (11)  3.63 (5)  2.45 (6) 0.086 

 F - hcp 0.789 (3) 0.863(4) 1563.64 (2390) 11.606 (205) 2.620 (8) 2.520 (10)  3.63 (4)  2.45 (6) 0.086 

0.4 F - fcc 0.672 (2) 0.731 (2)   344.05 (380) 14.138 (153) 3.538 (15) 3.432 (7)  2.44 (3)  1.28 (6) 0.081 

 F - hcp 0.671 (3) 0.730 (3)   342.23 (420) 14.070 (166) 3.529 (15) 3.425 (11)  2.45 (3)  1.29 (6) 0.081 

0.6 F - fcc 0.589 (3) 0.635 (3)   140.05 (196) 16.118 (198) 4.381 (16) 4.309 (12)  1.88 (4)  0.83 (6) 0.072 

 F - hcp 0.589 (3) 0.636 (3)   139.83 (185) 16.098 (183) 4.381 (16) 4.319 (12)  1.88 (4)  0.82 (5) 0.074 

0.8 F - fcc 0.533 (2) 0.573 (3)     78.78 (116) 18.885 (221) 5.336 (16) 5.374 (10)  1.51 (4)  0.49 (4) 0.070 

 F - hcp 0.534 (3) 0.574 (3)     79.37 (153) 19.002 (285) 5.357 (16) 5.391 (12)  1.50 (4)  0.48 (5) 0.070 
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TABLE V. Representative integer components of maximizing commensurate centroid wave vectors for the QHS partially crystalline solids 

simulated with boxes that are cubes for  fcc and bcc-q and rectangular parallelepipeds for hcp. Hard-sphere parameter σ =3.5 Å. 

                              * 0.2Bλ =                                  * 0.8Bλ =                                       qbcc −  

 *
Nρ           fcc            hcp  *

Nρ          fcc          hcp  *
Nρ  * 0.2Bλ =  *

Nρ  * 0.8Bλ =  
 

max
CM

x y zk k k S  max
CM

x y zk k k S  
max
CM

x y zk k k S  max
CM

x y zk k k S    max
CM

x y zk k k S    max
CM

x y zk k k S  
0.8  5 5 5 0.69−  0 0 8 0.68 0.525  5 5 5 0.66 0 0 8 0.64  0.8125 6 6 0 0.53−  0.5375 6 0 6 0.56−  
   5 5 5 0.65  4 8 4 0.50− −  5 5 5 0.63− −  8 0 4 0.47  0 6 6 0.51−   6 6 0 0.53−  
 5 5 5 0.62− −  8 0 4 0.46−  5 5 5 0.63−   4 8 4 0.45−  0 6 6 0.50   6 6 0 0.48  
          
0.875 5 5 5 0.81− −  0 0 8 0.82 0.575 5 5 5 0.80− 0 0 8 0.79  0.85 6 0 6 0.63−  0.6 6 6 0 0.70  
  5 5 5 0.81 8 0 4 0.61−   5 5 5 0.79−  8 0 4 0.60−   0 6 6 0.60−   6 0 6 0.68−  
 5 5 5 0.81−   4 8 4 0.59   5 5 5 0.77 4 8 4 0.59−   6 6 0 0.42   6 0 6 0.58  
          
0.9 5 5 5 0.87− −  0 0 8 0.84 0.625 5 5 5 0.87− − 0 0 8 0.87 0.875 6 6 0 0.67−  0.625 6 6 0 0.72  
 5 5 5 0.85−  4 8 4 0.66− −  5 5 5 0.85− 4 8 4 0.65−   6 0 6 0.63−   0 6 6 0.68  
  5 5 5 0.84  8 0 4 0.65−   5 5 5 0.85  4 8 4 0.64−   0 6 6 0.27   0 6 6 0.40−  
          
      0.9  6 6 0 0.70  0.65 6 6 0 0.76  
       0 6 6 0.63  6 0 6 0.64−  
       2 8 2 0.19− −   8 2 2 0.17− −  
          
      0.925 6 6 0 0.75  0.675 0 6 6 0.78−  
       6 0 6 0.74   6 0 6 0.68  
        0 6 6 0.74   2 2 8 0.23−  
          
        0.9   0    6    6     0.78 
         6 6 0 0.78−  
         6 0 6 0.78−  
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Figure Captions 
 
Figure 1. 
 
Typical pair radial correlation functions (GCM-2 = centroids; GET-2= instantaneouos) for fcc partially 

crystalline state points. To complete the information the pair continuous linear response function GLR-

2 at one state point is also shown. The upper graphs are shifted by +6. All the graphs are smoothed 

with B-splines. The dotted vertical lines mark the positions of the neighboring atoms in the 

corresponding fcc perfect lattices (see main text). Their heights are a guide to the eye. Radial distance 

in reduced units * /r r σ=  ( 3.5σ =  Å). 

Figure 2 
 
The same as Fig. 1 but for hcp partially crystalline state points. 
 
Figure 3 
 
Reduced internal energies of the fcc and hcp partially crystalline state points investigated in this article. 

Also shown are the results for the fluid phase (Ref. 49). 

Figure 4 
 
The same as Fig. 3 but for the compression factors. 

 Figure 5 

Coexistence fluid – solid fcc curve for quantum hard spheres including data for * 0.8Bλ >  taken from 

Runge-Chester’s work (Ref. 15). Also shown former 2007 results (Ref. 31) obtained via the calculation 

of isothermal compressibilities for the fluid and Eq. (2) –virial – for the solid. Note the logarithmic 

scale for reduced pressures * 2 1 5( / ).p p m σ− −= =  The connecting lines are guides to the eye. 

Figure 6 

Comparison between the QHS current and 2007 (Ref. 31) data for reduced Gibbs free energies (black) 

and entropies (blue) for the range * 0.8.Bλ ≤  Error bars (one-standard deviation) also shown, and the 

smallness of the current ones is to be noted. In both cases the fluid-solid fcc equilibrium are obtained 

via calculations of the fluid isothermal compressibilities. The connecting lines are guides to the eye. 
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Figure 7 

Comparison between the melting-freezing lines of QHS (fcc – fluid) and helium-4 for the reduced 

pressure (black) and the fluid number density (blue). Experimental data for 4He taken from Ref. 64, 

and 4( He)=σ 2.2 Å as defined in Ref. 15. The connecting lines are guides to the eye.  

Figure 8 
 
Reduced internal energies (squares) and compression factors (circles) for the bcc-q state points 

investigated in this article. The dotted segments are a guide to the eye for identifying the non-regular 

behaviors along each isotherm. 

Figure 9 
 
The two typical forms of the pair radial correlation functions (GCM-2 and GET-2) for the bcc-qII and 

III state points. The upper plots have been obtained with 2760 kpasses and a sample size 432 24,×  and 

are shifted by +7. All the graphs are smoothed with B-splines. The dotted vertical lines mark the 

positions of the neighboring atoms in the corresponding perfect bcc lattice (see main text).  Their 

heights are a guide to the eye. Radial distance in reduced units * /r r σ=  ( 3.5σ =  Å). 

Figure 10 
 
Plots of the pair radial structures GCM-2 and GET-2 at * *( 0.8; 0.625)N Bρ λ= =  studied with hcp and 

bcc-qII simulations. The upper plots are shifted by +5. All the graphs are smoothed with B-splines. 

The dotted vertical lines mark the positions of the neighboring atoms in a perfect hcp lattice at the 

same density (see main text). Their heights are a guide to the eye. Radial distance in reduced units 

* /r r σ=  ( 3.5σ =  Å). 

Figure 11 

Comparison between bcc-qII, hcp, and fcc instantaneous pair radial correlation functions at the same 

conditions as those in Fig.10, where the bcc→bcc-qII (hcp-like) transition takes place. All the graphs 

are smoothed with B-splines. Radial distance in reduced units * /r r σ=  ( 3.5σ =  Å). 
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Figure 12. 

Plots of the instantaneous structure of a typical bcc-qII state point at selected stages of its simulation 

by starting the calculations from the perfect bcc lattice (the volume is kept constant). One bcc-q block 

consists of 92 kpasses. The upper plots are shifted by +5 and +10, respectively. The dash-dotted 

vertical lines mark the positions of the neighboring atoms in the corresponding perfect bcc lattice (see 

main text). Their heights are a guide to the eye. Radial distance in reduced units * /r r σ=  ( 3.5σ = Å). 
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