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Abstract Multivariate scale mixtures of skew-normal distributions are flexi-
ble models that account for the non-normality of data by means of a tail weight
parameter and a shape vector representing the asymmetry of the model in a
directional fashion. Its stochastic representation involves a skew-normal vec-
tor and a non negative mixing scalar variable, independent of the skew-normal
vector, that injects tail weight behavior into the model. In this paper we look
into the problem of finding the projection that maximizes skewness for vec-
tors that follow a scale mixture of skew-normal distribution; when a simple
condition on the moments of the mixing variable is fulfilled, it can be shown
that the direction yielding the maximal skewness is proportional to the shape
vector. This finding stresses the directional nature of the shape vector to reg-
ulate the asymmetry; it also provides the theoretical foundations motivating
the skewness based projection pursuit problem in this class of distributions.
Some examples that illustrate the application of our results are also given;
they include a simulation experiment with artificial data, which sheds light
on the usefulness and implications of our results, and the application to real
data.
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1 Introduction
1.1 Skew-normal and scale mixtures of skew-normal distributions

The multivariate skew-normal (SN) distribution is a widely used distribution
due to its flexibility to regulate asymmetry departures from normality. The
study of its theoretical properties and applications has originated a great deal
of research (Azzalini and Capitanio 1999; Capitanio et al 2003; Azzalini 2005;
Contreras-Reyes and Arellano-Valle 2012; Balakrishnan and Scarpa 2012; Bal-
akrishnan et al 2014; Azzalini and Capitanio 2014). In this paper we adopt the
notation of the seminal works by Azzalini and Dalla Valle (1996) and Azzalini
and Capitanio (1999) to define the density function of a p-dimensional SN
vector with location vector £ = (&1, ...,&,)" and scale matrix 2 as follows:

fla:€ 0, 2) = 2¢y(x — & D)D(a'w™ (x — ) : z€R”, (1)

where ¢,(-; §2) denotes the p-dimensional normal density function with zero
mean and covariance matrix £2, @ is the distribution function of a standard
N(0,1) variable, w = diag(wi,...,wp) is a scale diagonal matrix with non
negative entries such that 2 = w='2w~! is a correlation matrix and a is a p-
dimensional shape vector that accounts for the asymmetry of the multivariate
model. Note that the scale matrix w can be written as w = (20 I,)'/?, where
the symbol ® denotes the entry-wise matrix product.

We put X ~ SN,(€, 12, o) to denote that X follows a p-dimensional SN
distribution whose density function is given by (1); if & = 0 then we have
X ~ N,(&, £2). We can also observe that X = £+wZ, where Z is a normalized

multivariate SN variable with density function given by

f(z;0,a, 2) = 2¢,(2z; 2)P(a'2). (2)

The multivariate scale mixture of skew-normal (SMSN) distribution is an
extension of the SN model that incorporates an additional parameter to reg-
ulate tail weight behavior. The SMSN family was introduced as a subclass of
the more general class of skew-elliptical distributions (Branco and Dey 2001);
it has become an increasingly popular multivariate model because it defines
a wide class of distributions for handling skewness and tail weight simultane-
ously.

The SMSN family contains popular models used in the statistical practice
like the skew-t or the double exponential multivariate distributions. The family
is essentially characterized by the product of a SN vector and an independent
non negative scalar variable; while the former controls the non-normality of the
multivariate distribution in terms of asymmetry, the later injects tail weight
into the multivariate model. Thus, the family has become a flexible model to
handle departures from normality in multivariate data analysis. Theoretically
insights and properties of the SMSN class have been described in the literature
to show its richness and flexibility (Kim 2008; Lachos et al 2010b; Capitanio
2012; Kim and Kim 2017).
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In this paper we use the notation adopted by Capitanio (2012) to define
the family of multivariate SMSN distributions as follows.

Definition 1 Let Z be a random vector such that Z ~ SN,(0, 2, «), with
density function (2), and let U be a non negative scalar variable, independent
of Z. The random vector X = é4+wU V2Z =€ +wSZ, with S = U~'/2 and
w a scale diagonal matrix, is said to follow a multivariate SMSN distribution.

The scalar variable S is known as the mixing variable of the SMSN model,
which accounts for the tail weight behavior of the multivariate distribution.
The density function of X can be obtained by integrating out its conditional
distribution given that U = w. Taking into account (1), we obtain as a result
the density function:

Up(x; €, 00, 02,H) = /O h 20, (x — &u ' 2)P(u' o/ w ™ (x — €))dH (u) (3)

where H is the distribution function of the scalar variable U. Here, H may be
an absolutely continuous distribution or a discrete distribution.

We will write X ~ SMSN,(&, £2, a, H) to indicate that X follows a multi-
variate SMSN distribution. If & = 0 then X becomes a scale mixture of normal
distributions, a subclass of the multivariate elliptical family. Note that, when
H is degenerate at U = 1 we have X ~ SN, (&, 2, o).

1.2 Skewness based projection pursuit

Projection pursuit is an exploratory data analysis tool for finding interesting
data projections that may reveal the existence of outliers or some kind of struc-
ture in multivariate data; this task is accomplished by the maximization of a
projection index quantifying the interestingness of a data projection (Fried-
man and Tukey 1974; Huber 1985; Friedman 1987; Jones and Sibson 1987;
Cook et al 1993; Caussinus and Ruiz-Gazen 2010). The well-known principal
component analysis (PCA) can be considered as a projection pursuit method
which focuses on second order moments and uses a scale measure as a pro-
jection index. Actually, the PCA approach captures the whole structure of
dependence when the underlying model follows a multivariate normal distri-
bution; however, in non-normal scenarios with skewed multivariate data, PCA
entails obvious limitations since multivariate associations will involve higher
order moments. Hence, recent works resort to the use of skewness based pro-
jections as a byproduct for addressing the projection pursuit problem when
the multivariate data at hand exhibit asymmetries (Loperfido 2018; 2019).
Although projection pursuit was born as an exploratory data analysis tech-
nique, the need for advances towards inferential results motivated the study
of multivariate models whose parameters are related to the maximization of a
non-normality projection index (Loperfido 2010; Arevalillo and Navarro 2015;
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Loperfido 2018). This paper contributes to the problem by addressing skew-
ness based projection pursuit for a wide and flexible family of multivariate
distributions, the class of SMSN distributions: Specifically, when the input
vector is such that X ~ SMSN,(&, 12, a, H), the direction yielding the max-
imal skewness projection for X is found; its connection with the shape vector
n' = o’w™! that regulates the asymmetry of the multivariate distribution is
also discussed. The same problem was addressed for SN vectors by Loperfido
(2010), who also suggested its extension to a more general framework. In this
paper we revisit the problem and establish its generalization for SMSN vectors.
A second order condition on the moments of the mixing variable suffices to
derive an analytical solution to the skewness maximization problem for SNSM
vectors; the results stress the interpretation of the shape vector as a parameter
for assessing the asymmetry of the multivariate model in a directional fashion.
Several examples illustrating the theoretical results are also given in order to
elaborate on the computational and applied facets of the theoretical findings
through a simulation experiment and applications to real data.

The paper is organized as follows: In Section 2 we address the problem
of finding the maximal skewness projection for vectors that follow a SMSN
distribution; this is the main theoretical contribution of the paper. The appli-
cations shed light on the theoretical findings and are presented in Section 3.
The last section gives some summarizing and concluding remarks.

2 Skewness maximization

Let X be a vector such that X ~ SMSN,(&, 2, o, H) and let us denote by
U = X 1/2(X —¢) its scaled version, with X the covariance matrix of X . From
Definition 1 we obtain the stochastic representation: X = €4+wSZ = £+ SZ7,
with Z* ~ SN, (0, £2,1) where n = w™la and 2 = ww.

We address the problem of finding the direction ¢ for which the scalar
variable Y = ¢’U attains the maximum skewness. Our goal is to solve the
optimization problem: m%)]g y1(c'U), with ~; the skewness index defined by

ceRy

v _ 3

1 (Y) = E? (7/“/) and R{ the set of all non-null p-dimensional vectors.
oy

Since ~y; is scale invariant, we can confine to vectors such that ¢'c¢ = 1;

hence, the problem of finding the directional skewness can be described as
1 (X) = maxy (¢U) (4)

where S, = {¢ € R? : ¢'c = 1}. Alternatively, it can be stated by the following
equivalent formulation:

D
Vi,p(X) = max 7 (d'X) (5)

where d = X~ Y2¢ and S; ={deR’:d'Xd=1}
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The solutions of any of the previous equivalent problems are given by
Ax = dX), v = /
x arggleagyl( ) s Au = arg géagfm(c U) (6)

Both solutions satisfy that Ax o 2_1/2)\11.

2.1 Main contribution

First of all we need to prove the next auxiliary lemma.

Lemma 1 Let X be a vector such that X ~ SMSNy(E, 02, a, H), whose
mizing variable has finite second order moment. If X is the covariance matrix

2
of X then X~ 'v, where v = ————— is proportional to n = w 'a.
V1+n'2n

Proof. The covariance matrix for SMSN multivariate distributions is given by

2= B(§)0 - 2B Sy = B(S?) (9 - %%W)

(Capitanio 2012; Azzalini and Capitanio 2014). In order to calculate > we
use the well-known Sherman-Morrison formula which is given by

A luv' AT
Atuw) =41 """ 7
( ) 1+v'A (™)
2 E?
Taking A = 2, u = —Tgﬂy and v = -y we obtain that
™
-1 _ 2 E*(S) ro—1 B B
E(S2)271 _ Qfl o Q 7( TrE(S2) v Q - Q71 + Q 177/9 1
B I = B(5° -1
1+ (7%52595;) v 2y 5};5(53 -2y
N7y

from which we get X'y = after some matrix cal-

B(S) — 2B (S 2y

culations. Consequently, 3 _17 is proportional to Q_l'y = N

V1+n'02n
implies the assertion of the statement. [

The quantity %f?p in (4) is a multivariate skewness index that captures
the directional nature of the asymmetry (Malkovich and Afifi 1973). Although
it depends on the form of the stochastic representation of the SMSN vector,
specifically on the distribution of the mixing variable S, we now show that the
vector yielding the maximum skewness projection lies on the direction of 7.
This is true when it holds a simple condition on the moments of S, as stated
by the next theorem.

, which
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Theorem 1 Let X be a random vector such that X ~ SMSN,(&, 2, a, H)
with mixing variable having finite first and second order moments satisfying

4
that —E*(S) > E(S?). Then the mazimum skewness in (5) is attained at the
7r

direction of the vector n’ = o’w™1!.

Proof. Taking into account the following equivalent restrictions: ¢ € S, or
d € S; from (4) or (5), we get

n(Y)=m(U)=E*U - EU)) = E

d (X —e—E(S) %7)

wRa n

Vitaa VItnOn
The previous expression for v; admits the following reformulations:

with d = X Y2¢c and v =

(YY) =7n(cU) =n(dX) =7(d(X - ) (8)
where d'(X — &) = SZy and Zy = d’'Z™ is a scalar random variable such that
__dy
Vwa — (d'v)?
and Capitanio 2014; formula (5.44)). Alternatively, Zy can be represented by
Zo = w}*Uy with Uy ~ SNy (0,1, ag).

In order to find an analytical expression for the quantity in (8), we need
the moments of Uy up to the third one. They are given by

2 2
B =\ 200 B3 = 1 ond B = | 2380 - 0.
2

% = wj't, with t = (d'v)?, is a quantity such that 0 < &5 =
1+a3

wy 't < 1. Inserting these moments into (8), we get

Zy ~ SNi (0,wa, aq), with ag = and wqg = d'2d (Azzalini

where 67 =

n(d(X — &) = B*[(SZo — B(5Z0))°] = wgB?[(SUs — E(SUp))°]
= walE(S*)E(US) — 3B(S*)E(S)E(U5)E(Us) + 2E°(S) E° (Uo))?

E(S3)\/§(35O —68) — 3E(S2)E(S)\/gc$0 + 2E3(S)\/§%5§]

2 352 2 2 2 2
= —wydglady — 3b]* = —tlat — 3b
Zw3tladd — 36 = Ztlat — 3bod?,

—
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where a = %EB(S) — E(S?) and b = E(S)E(S?) — E(S?).

The previous calculations show that v1(Y) = v (c'U) = v (d' (X — €) is a
function of the quantity t = (d’v)?, specifically

2 2
7 (Y)=h(t) = ;t[at — 3bwg)? = ;53w3[a53 — 3b)? 9)

2n
VI On

Firstly, we prove the non-decreasing behaviour of h(t), whose first deriva-
tive is given by

2 t t 2bct
W) = %a <a_3b) <a_b_0> 0 <wilt <1,
T wd wd wd

where as before v =

2 E%(S)
T E(S?)
The well-known moment inequality E(S%) > E(S)E(S?) implies that b <
0, so we are going to distinguish two cases: if @ > 0 then A'(t) > 0 and h(¢)
is a non-decreasing function. On the other hand, when a < 0 the condition
on the moments of S assumed in the statement implies that b < a, which in

with a and b as previously defined, and the quantity ¢ given by ¢ =

b
turn gives — > 1. Taking into account that 0 < w;lt < 1 we can assert that
a

t
2 _ > 0 from which we obtain that 7’ (t) > 0 and once again we conclude
wq
that h(t) is a non-decreasing function.
Since h(t) is non-decreasing, its maximum is attained at the maximum
value of t = (d’v)?; so our problem in (6) is simplified to finding the direction
that maximizes (d'~y)2. We know that

(dy)? = (€ Z712)? < (de)(Z7129) (Z71/2) = v/ 271,

with the maximum of the previous scalar product attained when c is propor-
tional to 271/27. Hence, we can conclude that Ay 271/27 which, taking
into account that Ay o< X~Y2Ay from (6), implies that Ay oc X~ '~. This
finding, together with the result of Lemma 1, proves the statement. [

4
Observe that the condition a = —E3(S) — E(S®) > 0 also ensures the
7r
validity of Theorem 1 as already shown by the arguments employed for proving
the theorem. In fact, taking into account that b = E(S)E(S?) — E(S?) < 0,
4
this third order moment condition implies the condition — E%(S) — F(S%) >0
s

given by the statement of Theorem 1. However, this third moment condition
is not satisfied by some popular subfamilies within the SMSN family.

As a result of Theorem 1, we could also calculate the Malkovich-Afifi’s
skewness index (5) for multivariate SMSN distributions as follows: We just
have to take for d in (9) the vector giving the maximal skewness direction
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>y

involved in expression (9) become

Ax = . When d = Ax, some calculations show that the quantities

7127192717
wa = =
! vy E(S?) - 2E2(S)y' 2 1y

YRy
(5%) ~ 2B

b= 57" =7'Z = - = wa(v'271y),

/ ’.Qn 2
de2 =y 'ly=—20 -1 - ith A2 = 1/ 2n.
and 65 =527y = e = T~ T n' 2
) 2
A2 [a# — 3b}
Therefore, we get v1(Y) = = T 5 Taking into
T E(s?) - 2B2(5) 25

account the expressions for a and b, as used in the proof of Theorem 1, we
obtain that the theoretic value of the maximal skewness given by

22 [(AE3(S) — BE(S) E(S?) + 2E(5%)X? — 3(E(S)B(S?) - B(5%))]?
m [B(S?) + (E(5?) — 2E2(5)) A2]°

Y, (X)

(10)

2.2 Examples

In this section we present some particular examples within the SMSN family
for which the result of Theorem 1 is valid. They are all well-established and
used multivariate models.

2.2.1 The multivariate SN distribution

The SN multivariate model is obtained when the mixing variable is degenerate
at S = 1. In this case a > 0 and the result of Theorem 1 is satisfied; this finding
was previously derived by Loperfido (2010). It is also worthwhile noting that
in this case E(S) = F(S?) = E(S?) = 1 and the maximal skewness in (10)
reduces to

9 3
B30 =20 - m {2 (1)

which agrees with the Malkovich-Afifi’s skewness measure for the multivariate
SN distribution (Loperfido 2010; Azzalini and Capitanio 2014).
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2.2.2 The multivariate skew-t distribution

The multivariate skew-t (ST) distribution arises when the mixing variable
of the SMSN vector is S = U~/? with U ~ x2/v. In this case, as stated
by Azzalini and Capitanio (2003), we obtain that the density function (3)
becomes

vV+p
Qw+V

1/2
f(@:& 02, a,v) =2t,(z;v)Th (a'wl(w -§) < ) v+p| xeRP

(12)
where t,(x; V) is the density function of a p-dimensional ¢ variable with v de-

: . I (v +p)/2) AN
grees of freedom given by t,(xz;v) = 22 ()2 L (0]2) (1 + 7)
T1(y; v+p) is the distribution function of a ¢ scalar variable with v+ p degrees
of freedom and Qg = (x — £)' 2 (x — &).

We write X ~ ST,(£, £2, o, v) to denote that X follows a p-dimensional
ST distribution with density function (12). Figure 1 shows how the vector o
deforms the symmetry of the ¢ distribution when the asymmetry is injected
into the multivariate model across different directions; the contoured plots for
each density function are also depicted. It is worthwhile noting that when
v — 00, the ST becomes the SN distribution, i.e. X ~ SN,(&, 2, o).
(v/2)*21 (5*)

r(s)
v >k :k > 1. From this expression we obtain that for v > 3

4 5 v QFQ(%) 1
a:E(S) (;E (S)l/—3> :VE(S) (; [,2(%) V—S)’

)

In this case the moments of S are E(S*) = provided that

with @ < 0 when v < 9 and @ > 0 when v > 9. This assertion can be proved if a

— 3\ 2 (=L
is rewritten as a = z/E(S)V%2 (h(y) - g), with h(v) = %7
2

3m
taking into account that h is a non-decreasing function.
Using Lemma 1 from Arevalillo and Navarro (2015), we can conclude the

4
validity of the second order moment condition: —E?(S) > E(S?).
T

2.2.3 The multivariate skew double exponential distribution

We say that a p-dimensional vector follows a double exponential (DE) distri-
bution with location £ and full rank scale matrix §2 if it has a density function
given by

(S]]

S8, D) = - )21+p|9|_1/2 P {_% [(x— &) 2 (@ - 5)}1/2} ,

w72 T (p)
(13)
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(c) & =(-3,-3) (d) &' =(3,-3)

Fig. 1: Density functions of the bivariate ST variable, with location & = (0, 0),
scale matrix £2 = Iy and v = 4, for different shape vectors.

The multivariate DE distribution is a scale mixture of normal varjables with
mixing variate S = U~/2, where U = W~ and W ~ Gamma 2%1,%
(Gémez-Sénchez-Manzano et al 2008); equivalently, we could say that the
scalar variable U follows an inverse gamma distribution. When we put this
mixing variable in Definition 1, we get the multivariate skew double exponen-
tial (SDE) distribution. We write X ~ SDE,(£, £2, «) to indicate that the
random vector X follows a p-dimensional SDE distribution with location &,
scale matrix £2 = wf2w and shape vector a. If the distribution H in (3) is re-
placed by the inverse gamma distribution then we obtain the density function
of the multivariate SDE model, which is given by

¢p($a€vav ) (pT) 8pTl

r
/Om%(w—

The plots of the bivariate SDE densities are depicted by Figure 2; note the
effect of parameter o on the shape of the densities and their contoured plots
after injection of asymmetry across different directions. A simple comparison
with Figure 1 gives an idea of the differences between both subclasses.

WP 2w @ — u T e B (14)
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(c) &’ =(—3,-3) (d) &' =(3,-3)

Fig. 2: Density functions of the bivariate skew double exponential with £ =
(0,0) and scale matrix §2 = I, for different shape vectors.

In this case the moments of the mixing variable are given by the general

8k/2F ptk+1 k/2 p
formula: E(S*) = (sz ) = 29I (5) I+ k) : k > 1, where the
I () rpr (k)

21" (n — 1)!
last equality follows from the well-known property: I (%) = Ezfl)')\/g .

2
Taking in this general formula k = 1,2, we obtain that

4 2 p?I? (2)
=E(S)( =E*S)—4(p+2) | =4E(9) | = =25 — 2
o= B(5) (22%(5) - 1ty +2) ) =5 )(Wp(%) (h+2)),
which gives negative values when p < 5 and positive values when p > 5.
4
In order to check if the moment condition —E?(S) > E(S?) is held, we
T
define the function:

2
1 (ol (5)

ey

After taking logarithms, we can see that its first derivative is given by

70 =9 |2 +0 (3) -0 () - o]

o p>1.

9(p)
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F/
where ¥(z) = (z) is the digamma function.

I'(x)
1
Taking into account the well-known property: ¢(x + 1) = — + ¢(x) and
T

1
the following inequalities for the digamma function: log (z — 5) < YP(x) <

1 1
log(z) — o when z > 3 (Merkle 1998), we get

v =0 [ (552) ~o (57) - 3]

p+1 p+1 1 1
1 — | -1 — =
o0 [os (757 s (757 + i =] =

which implies that g(p) is a non-decreasing function for p > 1. Consequently,
pL (%)
r(&)
to the moment condition %EQ (S) > E(S?), so the result of Theorem 1 is also
valid for the multivariate SDE distribution.

2
g(p) > g(1) = g or equivalently -

] > p+ 1. This inequality leads

2.2.4 The multivariate skew-slash distribution

Another flexible model that combines both asymmetry and tail weight behav-
ior is the skew-slash (SSL) multivariate distribution (Wang and Genton 2006).
It corresponds to the mixing variable S = U~1/2 with U ~ Beta(q/2,1), where
q is a tail weight parameter such that ¢ > 0. We put X ~ SSL,(&, 2, «,q)
to indicate that X follows a p-dimensional SSL distribution with location &,
scale matrix £2 = ww, shape vector a and tail weight parameter ¢ > 0.
The density function of a SSL vector can be easily derived from (3) taking
into account that H is the distribution of a Beta(q/2,1) random variable; it
is given by

Up(a; €, 0, £2,9) = ¢ /O h dp(@—&u " 2)P(u' 2w (x—€))u?> du (15)

Note that when ¢ — oo, the SSL becomes a SN distribution. Figure 3
shows the bivariate SSL density functions for several directions of asymmetry;
the contoured curves are also displayed for each case.

In this case we know that the moments of the mixing variable are given by

E(Sk) = E(U_k/Q) = Lk for ¢ > k. From now on, we assume that ¢ > 3.
q—

E(S? —1)?
Let us define the function: g(q) = EES)g = ((;zq — ;) . Since g is a decreasing

function, we have g(q) < g(4) < —; consequently, the second order moment

SIS

condition of Theorem 1 also holds.
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Fig. 3: Density functions of the bivariate skew-slash variable, with location
& = (0,0), scale matrix £2 = I, and tail weight parameter ¢ = 5, for different
shape vectors.

2.2.5 The multivariate skew-contaminated normal distribution

The family of skew-contaminated normal distributions arises when the mixing
variable of the multivariate SMSN model is S = U~1/2 with U a scalar variable
following a discrete distribution such that

PU=~v=¢ , PU=1l)=1-c¢

where 0 < € < 1 is a parameter quantifying the amount of contamination and
0 < v <1 is a scale inflation factor (Lachos et al 2010a). In this case the
density function of the input vector X is given by

f@: €, 2,a,7,€) =2 |edp(x — &7 2)D(v 2w (z - €))
+(1—e)gp(x — & 2)P(d'w ™ (z —&))] (16)

We will write X ~ SCN, (&, £2, a, 7, €) to denote that the vector X follows
a p-dimensional skew-contaminated normal distribution. It can be observed
that if we take € = 0 or v = 1 then the model reduces the multivariate SN
distribution.
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4
In order to check the validity of the moment condition —E?(S) > F(S?%)
T
from Theorem 1, we must take into account that E(S*) = 77 #/2¢ 41 —e. The

4
expression —E?(S) — E(S?) can be written as a function of y~/2 as follows:
m

4
—E2(S) — E(S?) = h(y~Y/?), where h is a function defined by the following
7r

second order degree polynomial:

T tew— )P~ [1+e(@®—1)]

™

h(z)

4 4
€<—61>$2+§€(16)$+—(61)21+6,
7T T T

whose roots are given by the values

—Le(1—¢) - \/46(1 —e)(2-1)

2e (1) and

xr1 =

—Se(l— )+ /21— ) (£ - 1)
2 (4 —1) '

ro =

T
We can see that h is a convex function provided that — < e < 1. There-

fore, if this inequality holds then we can assert that z; < zo and we ar-
rive to the following implications: The first implication is that the function
h is negative when x € (r1,22) and positive when z ¢ (x1,x2). The second

implication is that, as a result of the condition 1 < € < 1, the inequality
V4e(1 —€) (4/m — 1) < 2¢(4/m —1) holds and consequently o < 1. Therefore,
4
we can conclude that the quantity —E2(S) — E(S?) = h(y~'/2) > 0.
7r

T
On the other hand, if 0 < e < — then we can easily see that xo < z1 and h

is a concave function such that h(xz) > 0 when € (22, 21) and h(z) < 0 when
x ¢ (x2,21). Moreover, once again it holds that zo < 1. Consequently, we can

4

state that —FE2(S) — E(S?) = h(y~%?) > 0 as long as v~'/2 < x;; however,
v

the sufficient condition of Theorem 1 is not satisfied when y~1/2 > z;.

This example has provided a situation for which the condition on the mo-
ments of the mixing variable doesn’t hold; so we cannot guarantee the result
established by Theorem 1 when 0 < € < % and y~1/2 > z;. This fact doesn’t
mean that the shape vector ' = o’w™! will fail at yielding the maximal

skewness projection since the moment condition of the theorem is a sufficient
condition.
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3 Simulations and application

In this section the theoretical results are illustrated by means of a simulation
experiment for artificial data and a couple of applications to real data, which
are aimed at illustrating the usefulness of the MazSkew principle for feature
construction and pattern recognition in the analysis of genomic data, and
also for class discovery in data. We will focus on the computational side for
the estimation of 1 using the functionalities implemented in the MaxSkew R
package (Franceschini and Loperfido 2016).

3.1 Simulation experiment

This experiment comprises several simulation scenarios for some of the SMSN
subfamilies studied in Section 2.2; they include the multivariate skew-t, skew-
slash and skew-contaminated normal distributions. The simulation study is
carried out for different dimensions of the input vector, p = 2,10, and sample
sizes n = 100,500. In order to establish the common framework that will
parameterize all the multivariate distributions, we take the following settings
for location and scale parameters: £ = 0 and §2 a correlation Toeplitz matrix
defined by 2 = (w; j)1<i j<p, with w; j = pli=7l : 1 <4 < j < p, where for the
values of p we take: p = —0.3,0.3, —0.8, 0.8, and w defined by a diagonal matrix
whose entries are generated at random from the set of integers {1,2...,100}.
The shape vector of the distributions is set on the basis of the idea of injecting
skewness into the multivariate model through a singular direction such as the
first principal component of the scale matrix; another direction like the last
component of the scale matrix is also considered for a comparative purpose.

For each one of these simulation scenarios, 5000 replicates of the experiment
are carried out by drawing samples from the corresponding skewed input vector
X . The maximal skewness direction is estimated using the third order moment
matrix, on the basis of the implementation provided by the MaxSkew R package
(Franceschini and Loperfido 2016) —from now on MazSkew estimation— and
the mean square error (MSE) is computed by comparing the unit length vectors
corresponding to the direction estimated by the maximal skewness principle
and the exact theoretical direction.

8.1.1 Results for the multivariate skew-t distribution

In this scenario we consider a skew-t input vector X whose tail weight is
regulated by the degrees of freedom v. In this case, for each combination of
the triple (n, p, p), three simulation trials are carried out for v = 4,8, 50.

The MSEs of the MaxSkew estimation when the shape vector lies on the
direction of the first principal component of the scale matrix are shown in
Table 1: Observe that the errors are quite similar for opposite values of p;
overall slight lower errors are obtained for the lower |p|. On the other hand,
as expected, the smaller errors appear for the larger sample size. However,
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Table 1: MSEs obtained from the skew-t distribution with shape vector lying
on the direction of the first principal component of the scale matrix.

| v | 4 8 50 | 4 8 50
p=—-0.8 p=0.8

_o | 100 | 13170 13571 15563 | 1.3071 1.3546  1.5463

P= 500 | 0.9991 0.8809 1.0047 | 0.9997 0.8550  1.0077

100 1.8749 1.8755 1.9093 | 1.8713 1.8728 1.9057
500 1.7624 1.6091 1.4369 | 1.7633 1.6102 1.4182

p=-03 p=0.3

—9 100 1.2054 1.2935 1.5518 | 1.1953 1.2718 1.5501
p= 500 0.8501  0.7541 1.0097 | 0.8590 0.7375 1.0026
100 1.7634 1.7962 1.9084 | 1.7711 1.7988  1.8948
500 1.6023 1.5229 1.6771 | 1.6079 1.5182 1.6518

we don’t observe a clear pattern of variability of the MSE with respect to v.
Finally, we can see that the accuracy deteriorates for the larger p.

For comparison we also study the case of a shape vector lying on the
direction of the last principal component of the scale matrix. The results are
shown in Table 2 only for p = 0.3,0.8, as they provide similar outputs as the
negative values of p. Note that in nearly all the cases the errors are smaller than
in Table 1 with more noticeable differences in the models which are furthest
from the SN. Moreover, the increasing trend of the MSE with respect to p is
more remarkable in this case.

Table 2: MSEs obtained from the skew-t distribution with shape vector lying
on the direction of the last principal component of the scale matrix.

| m\v | 4 8 50 | 4 8 50
p=0.3 p=0.8
—9 100 | 0.6495 0.8115 1.3418 | 0.9737 1.1358 1.5733
p= 500 | 0.2335 0.1991 0.6670 | 0.5362 0.4885 1.0033

100 1.4027 1.5105 1.8312 | 1.6563 1.7149  1.9065
500 1.0188 1.0132 1.5572 | 1.4262 1.4192 1.7587

3.1.2 Results for the multivariate skew-slash distribution

Now we assume that the input vector follows a skew-slash distribution with
the previously defined settings for location and scale parameters. In this case
the tail weight is controlled by the parameter ¢; so each simulation experiment
is carried out for the following values of the tail weight: ¢ = 5,25, 50.

The results are provided by Table 3 which displays the MSEs when the
shape vector lies on the direction of the principal eigenvector of the scale
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matrix: It is observed that the impact of p on the accuracy of the estimations
is more remarkable when the dimension increases. We can also see that the
MSE increases with p and, to a lesser extend, with the tail weight q.

Table 3: MSEs obtained from the skew-slash distribution with shape vector
lying on the direction of the first principal component of the scale matrix.

| nN\g | 5 25 50 | 5 25 50

p=—-038 p=0.38

_o | 100 | 14258 1.6016 1.6276 | 1.4413 1.5821 1.6251

P= 500 | 0.9892 1.0712 1.1035 | 1.0007 1.0706 1.1185

_q0 | 100 | 18838 1.9075 1.9132 | 1.8786 1.9165 1.9166

= 500 | 1.7157 1.4453 1.4436 | 1.7282 1.4463  1.4407
p=-03 p=0.3

_o | 100 | 13777 1.6167 1.6500 | 1.3660 15864 1.6367

P= 500 | 0.8895 1.1078 1.1509 | 0.9081 1.1224 1.1587

_q0 | 100 | 18063 1.9320 1.9347 | 1.8170 1.9269 1.9482

P= 500 | 1.6529 1.7508 1.7925 | 1.6518 1.7737  1.7861

Once again we also study the case of a shape vector lying on the direction of
the last principal component of the scale matrix. The results are summarized
by Table 4 for p = 0.3, 0.8. Similarly to the skew-t, the MSE increases with the
p parameter and the dimension. The outputs show a more accurate estimation
than in Table 3 only when ¢ = 5, which corresponds to the model furthest
from the skew-normal.

Table 4: MSEs obtained from the skew-slash distribution with shape vector
lying on the direction of the last principal component of the scale matrix.

| nN\g | 5 25 50 | 5 25 50
p=0.3 p=0.38

—9 100 1.0026  1.4891 1.5131 | 1.2724 1.6352 1.7102
p= 500 0.3532  0.9307 0.9677 | 0.6965 1.1921  1.2698
100 1.5366  1.9213 1.9028 | 1.7142 1.9793  1.9602
500 1.1654 1.8005 1.7949 | 1.5498 1.9101 1.9070

3.1.3 Results for the multivariate skew-contaminated normal distribution

Finally, we consider an input vector X following a skew-contaminated nor-
mal distribution. In this case we will fix the inflation factor to v = 0.5 and
we compute the MSEs, under the established settings for location and scale,
varying the simulation trials for the following proportions of contamination:
€=10.3,0.5,0.8.
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The results are displayed in Table 5. We observe the same pattern for op-
posite values of p; the impact of p in the errors is the same as in the skew-slash.
Once again, the results reveal that the MSE increases for the larger dimen-
sion, which comes up as a quite natural finding for nearly all the trials under
consideration. In this case an interesting finding is that the MSE decreases as
we approach the model with equal contamination € = 0.5.

Table 5: MSEs obtained from the skew-contaminated normal with shape vector
lying on the direction of the first principal component of the scale matrix.

| n\e | 03 0.5 08 | 03 0.5 0.8

p=-0.8 p=038

_o | 100 | 14416 14166 15128 | 1.4563 14840 15014

P= 500 | 0.9026 0.8742 0.9580 | 0.9062 0.8674 0.9625

_q0 | 100 | 1.8838 1.8813 1.8913 | 1.8860 1.8817  1.8969

P= 500 | 1.3923 1.3433 1.3694 | 1.3840 1.3479 1.3857
p=-0.3 p=0.3

_ o | 100 | 14150 1.3947 14973 | 14376 1.4514 1.4931

P= 500 | 0.8403 0.8130 0.9441 | 0.8478 0.8095 0.9419

_q0 | 100 | 1.8567 1.8640 1.8912 | 1.8641 1.8650 1.9048

P= 500 | 1.5166 1.5042 1.6267 | 1.5152 1.5105 1.6296

The previous experimental trials are now repeated taking a shape vector
that lies on the direction of the last principal component; the resulting MSEs
are shown in Table 6. In this case the MSE exhibits the same increasing pattern
with respect to p as the one observed in Tables 2 and 4.

Table 6: MSEs obtained from the skew-contaminated normal with shape vector
lying on the direction of the last principal component of the scale matrix.

| n\e | 03 0.5 08 | 03 0.5 0.8
p=0.3 p=038

_9 100 1.1699 1.0891 1.3195 | 1.3510 1.4039 1.4683
p= 500 | 0.4014 0.3449 0.5902 | 0.7197 0.6948  0.9221
100 1.6780 1.7306 1.8136 | 1.8620 1.8641 1.9066
500 1.2028  1.1829  1.4982 | 1.5771  1.5427 1.7244

Overall, the simulations have revealed an accurate and quite homogeneous
behavior of the MazSkew approach when applied under several underlying
models that belong to the wide family of SMSN distributions. Hence, we ad-
vocate the use of the maximal skewness principle for analyzing multivariate
skewed data. The next sections present a couple of real data applications that
illustrate its usefulness.
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3.2 Application to genomic data analysis

Individuals diagnosed with triple negative breast cancer (TNBC) are clinically
heterogeneous and have more adverse prognosis than patients affected by other
breast cancer subtypes. A genomic data set containing gene expression mea-
sures of TNBC patients was obtained from Gene Expression Omnibus (GEO)
repository through accession series GSE31519. The data contained gene ex-
pression measures for 13146 genes from 579 TNBC tumors; after removal of
85 patients treated with neoadjuvant chemotherapy we obtained a data set
with 13146 gene expression measures for 495 TNBC tumors samples.

Recent studies on genomics, proteomics and microRNA data have revealed
the usefulness of probabilistic graphical models to obtain association net-
works that provide insights about an underlying functional biological structure
(Gamez-Pozo et al 2015; Zapater-Moros et al 2018; Prado-Vézquez et al 2019).
In brief, the approach takes a set of variables and, using mutual information
to assess variable association, it applies the Chow-Liu algorithm (Chow and
Liu 1968) to search the closest tree to the underlying dependence structure.
The method provides a structure of connected branches which can be ana-
lyzed separately (Edwards et al 2010); this may be an important initial step
to undertake dimension reduction in high-dimensional data as it will help to
identify groups of variables on the basis of their associations.

When applied to the TNBC data using the 2000 most variable genes as
input variables it allowed to identify 26 functional biological groups of genes,
similarly as in Prado-Vazquez et al (2019). In this example we propose to
apply data projections, using the skewness maximization principle, in order
carry out a dimension reduction that leads to a representative gene for each one
of the functional groups (labelled by “Node..” in Figures 5 and 6). Due to the
asymmetries observed in gene expression measures, we advocate the use of the
maximal skewness principle for constructing and assessing metagenes (genes
related to a specific biological function), as an alternative to standard averages
(Rody et al 2011; Prado-Vazquez et al 2019); we call the maximal skewness
genes the MazSkew metagenes. Our ultimate goal is to use such skewness
based projection pursuit approach, as a dimension reduction method, in order
to highlight outstanding observations or to uncover hidden patterns in data on
the basis of the application of the multidimensional scaling (MDS) technique
to the expression measures provided by the MazSkew metagenes. The results
are compared with an exploratory data analysis that applies only MDS to all
the genes and with an application of the MDS to the expression measures
obtained from the first principal component derived on each functional group.

The results provide the following insights: when the MDS is applied to all
the genes, the representation of the data on the first two MDS coordinates
shows a noisy cloud of points (top left plot of Figure 4); the fact is observed
when the first principal component is used to summarize each one of the func-
tional groups and the MDS is applied accordingly (top right plot of Figure 4).
Meanwhile, when MDS is applied to the expression measures of the MazSkew
metagenes, it reveals the presence of a compact bulk of points, another small
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group of individuals surrounding the bulk and two isolated observations that
could be labeled as outliers (see the plot at the bottom of Figure 4). These
preliminary insights are corroborated by the scatter plot matrices correspond-
ing to the top six most variable MazSkew metagenes and the bottom six least
variable MazSkew metagenes depicted by Figure 6 which, once again, can be
compared with the scatter matrices obtained from the first principal compo-
nent metagenes (Figure 5). Once again, it is highlighted the existence of a few
abnormal observations that were unnoticed by the first principal component.

There is another intriguing fact revealed by a simple exploration of the cor-
relations between the metagenes. The plots of Figure 7 show that the MaxSkew
method leads to much lower correlated metagenes than the first principal com-
ponent method. This issue is relevant from the biological viewpoint since it
might be desirable for interpretability to handle a few uncorrelated or nearly
uncorrelated biological factors which may be useful to shed light on the molec-
ular and genomic underpinnings of the disease; we argue that they can be
summarized by the MazSkew metagenes, obtained by the maximal skewness
based projection pursuit approach, as they lead to lower correlated constructs.

Therefore, we have shown that the maximal skewness principle can be a
useful tool to solve the relevant biological problem of data reduction in high-
dimensional genomic data by defining MazSkew metagenes from functional
groups of genes. This example illustrates how the skewness based projec-
tion pursuit method contributes to summarize the gene expression of high-
dimensional genomic data; it also provides a powerful approach to identify
outliers in high-dimensional genomic data, to uncover potential hidden pat-
terns and to identify outstanding individuals as well.

3.3 Application to the detection of classes in data

Here, we present a simple example that illustrates the usefulness of the max-
imal skewness principle as a data dimension reduction tool for unsupervised
learning that allows to uncover hidden groups or classes in data. The example
deals with a data set that consists of biomedical measures collected by the Aus-
tralian Institute of Sport (AIS) for 202 athletes (Cook and Weisberg 2009); let
us consider the input vector X = (RCC,WCC, Bfat, LBM, Ht,Wt) whose
components quantify the following measures: red cell count, white cell count,
percent body fat, lean body mass, height (cm) and weight (kg). Multivariate
skewed distributions were reported as adequate models for fitting this data
(Azzalini and Capitanio 1999). Lin (2010) showed that AIS data can be better
modelled by mixtures of multivariate skew distributions, as later evidenced by
Lin et al (2014) and Lee and McLachlan (2016).

From the scatter plots of Figure 8, it can be observed the lack of well-
defined groups, perhaps with the exception of the scatter plot for the inputs
Bfat and LBM. Now, we apply the proposed method to the construction of
new features and use them for group detection; an exhaustive analysis showed
that the maximal skewness projections led to MazSkew features derived from
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Fig. 4: Projection of data on the MDS coordinates obtained from all the genes
(top left), on the MDS coordinates from the 26 metagenes given by the first
principal component (top right) and on the MDS coordinates obtained from
the 26 MazSkew metagenes (bottom).

the triples (WCC, Bfat, Wt), (WCC, LBM, Ht) and (WCC, Ht,Wt), which
highlight two groups when used as the new features for two standard clustering
methods like K-means and model based clustering with the BIC criterion for
model selection —see the left plots of Figures 9 and 10 which depict the result-
ing groups. Actually, both findings are in close agreement with an underlying
classification by sex, as shown by the right plots in both figures. Hence, the
maximal skewness principle is also helpful as an auxiliary feature engineering
tool for uncovering groups in data.

Unsurprisingly, the previous patterns are also validated by a multidimen-
sional scaling (MDS) representation of the maximal skewness features when
projected onto the two-dimensional MDS space, as shown by Figure 11. More-
over, it is worthwhile noting that the cases 113, 160, 161, 163, 166 and 178
appear isolated; this finding is consistent with the results displayed by Fig-
ures 9 and 10 which also highlight the abnormality of these observations, a
revealing issue that may deserve further investigation.
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Fig. 5: Scatter plots for the six most variable metagenes generated by the first
principal component (left) and the six least variable metagenes generated by
the first principal component (right).
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Fig. 6: Scatter plots for the six most variable MazSkew metagenes (left) and

the six least variable MaxzSkew metagenes (right).

This example illustrates the maximal skewness principle providing an ap-
proach for dimension reduction that allows to summarize combos of inputs
into the transformed MazSkew features that convey a consistent represen-
tation of multivariate skewed data. When applied in combination with other
exploratory techniques for group finding and pattern recognition, the proposed
method reveals outstanding patterns and observations in multivariate data.
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Fig. 7: Plots depicting the absolute value of correlations between first principal
component metagenes (left) and MazSkew metagenes (right).
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Fig. 8: Matrix of scatter plots for the AIS data set.

4 Summary and concluding remarks

In this paper we have addressed the problem of finding directions yielding
maximal skewness projections for vectors that follow a SMSN distribution.
We have found a simple condition on the moments of the mixing variable
which guarantees that the direction yielding the maximal skewness projection
is proportional to the shape vector n’ = o’w™!; this finding stresses the role
of i’ to regulate the asymmetry of the model in a directional fashion.
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Fig. 9: K-means clustering with two groups derived from the MazSkew features:
scatter plot based on the first two principal components (% of variance), with
the concentration ellipses at 0.95 level (left), and grouped by sex (right).
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Fig. 10: Two component model based clustering derived from the MaxSkew
features: scatter plot based on the first two principal components (% of vari-
ance), with the concentration ellipses at 0.95 level (left), and grouped by sex
(right).

It is worthwhile noting that if the condition on the moments of the mixing
variable is not satisfied then we cannot ensure that the shape vector lies on
the direction maximizing skewness: This is the case for the skew-contaminated
normal distribution when 0 < € < 7/4 and v~'/2 > z;; we also guess a similar
situation comes up for the multivariate skewed exponential power distribution.
However, in such cases we cannot assert that the shape vector fails at defining
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Fig. 11: Multidimensional scaling obtained from the MazSkew measures (left).
Sex label superimposed on the multidimensional scaling projections obtained
from the MaxSkew features with the red color corresponding to males and the
black to females (right).

the projection maximizing skewness since the moment inequality established
by Theorem 1 defines a sufficient condition. Anyway, the condition is met
by the most popular multivariate distributions within the SMSN family; they
include the skew-normal, skew-t, skew double exponential and skew-slash dis-
tributions. The paper contributes to the field by extending previous work for
the skew-normal and extended skew-normal families (Loperfido 2010; Frances-
chini and Loperfido 2014). In fact, it would allow to pursue research in the
skewness based projection pursuit problem both from the theoretical and ap-
plied viewpoints under the general SMSN family.

The extension of the results established in this paper opens the road for
future investigation: The SNSM family models skewness and kurtosis simulta-
neously; on the other hand, a family like the generalized skew-normal distri-
butions (Loperfido 2004) models multimodality, although their skewness and
kurtosis ranges are limited; hence, scales mixtures of generalized skew-normal
distributions may define a broader and flexible family for modeling skewness,
kurtosis and multimodality; we wonder if the results established in this paper
can be generalized to this wider family. Another open problem would consist
of looking into the connection between model based projection pursuit under
SMSN vectors and multivariate kurtosis and skewness stochastic orderings, as
established by previews works on the issue, along the lines pursued by Wang
(2009) or by Arevalillo and Navarro (2012; 2019).

The theoretical findings established by this work have been illustrated
through a simulation experiment that includes the skew-t, skew-slash and
skew-contaminated normal distribution as the multivariate underlying non-
normal model. The results have shown the accuracy of the MazSkew method by
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Franceschini and Loperfido (2016) to compute maximal skewness data projec-
tions. On the other hand, the simulations have also shown that the performance
of skewness-based projection pursuit deteriorates as the number of variables
increases; this result supports the theoretical findings in Bickel et al (2018)
and might be motivating sparse projection pursuit. Finally, when applied to
gene expression measures from a genomic cancer experiment, the MaxSkew
method has proved its usefulness at providing a strategy for multivariate data
reduction in genomic data, which may also motivate an alternative approach to
define metagenes from biologically well-established functional groups of genes.
These findings may highlight relevant insights for biologists and oncologists.
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