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Ergotropy and entanglement in critical spin chains
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A subsystem of an entangled ground state (GS) is in a mixed state. Thus, if we isolate this subsystem from its
surroundings, we may be able to extract work applying unitary transformations, up to a maximal amount which
is called ergotropy. Once this work has been extracted, the subsystem will still contain some bound energy
above its local GS, which can provide valuable information about the entanglement structure. We show that
the bound energy for half a free fermionic chain decays as the square of the entanglement entropy divided by
the chain length, thus approaching zero for large system sizes, and we conjecture that this relation holds for all
one-dimensional critical states.
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I. INTRODUCTION

Quantum thermodynamics applies the core concepts
of quantum information theory [1–3] to design optimal
nanoscale devices, such as quantum thermal machines [4–6].
A very fruitful concept is that of ergotropy [7,8], i.e., the max-
imal work that can be reversibly extracted from a mixed state,
which is a crucial tool to build efficient quantum batteries
[9–11]. Indeed, ergotropy is known to be strongly influenced
by the presence of quantum correlations of different types
[12–16]. Of course, if we lift the reversibility constraint, we
may use quantum measurements to extract work in an optimal
way [17,18].

However, the connection works in both directions, and
we may employ quantum thermodynamics to characterize
the entanglement structure of a quantum system. As is well
known, a subsystem of a ground state (GS) is usually not
in its local GS. Instead, it must be described by a reduced
density matrix, which can be expressed as a thermal density
matrix under a certain entanglement Hamiltonian (EH), which
need not coincide with the local one [19,20]. Notice that
the EH allows us to describe the entanglement structure of
complex quantum states in thermal terms. Both the EH and
its eigenvalues, which define the entanglement spectrum (ES)
[21], have provided invaluable insight into characterizing the
entanglement structure of the low-energy states of quantum
many-body systems [22–30], in some cases exploiting their
conformal invariance [31–33].

In this paper, we introduce the notion of subsystem er-
gotropy within a GS to characterize its entanglement structure
through the analysis of the energetic relations between a sub-
system A and its environment B. The expected value of the
local energy of any subsystem will typically exceed its own
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GS energy, and the subsystem ergotropy is defined as the part
that can be extracted in the form of work. Our analysis will
focus on a few simple quantum many-body systems, starting
with a detailed analysis of free fermionic chains and extending
our study to other critical spin chains. In all the considered
cases, we benefit from the constraints imposed by conformal
invariance on the reduced density matrix. We show that, once
the maximal work has been extracted, the remaining bound
energy presents universal scaling as the square of the entan-
glement entropy of the block divided by the system size, thus
approaching zero for large system sizes.

This paper is organized as follows. Section II develops the
basic theoretical background, combining tools from quantum
thermodynamics and quantum information theory. Then we
show our analytical and numerical calculations for a free
fermionic chain in Sec. III. Other critical spin chains, such as
the Ising model in a transverse field or the Heisenberg model,
are briefly considered in Sec. IV. This paper ends with a
section describing our conclusions and suggestions for further
work.

II. THEORETICAL BACKGROUND

A. Ergotropy of generic mixed states

The ergotropy W of a mixed state ρ with respect to a
Hamiltonian H can be defined as the maximal amount of
work that can be extracted from the state by applying unitary
operations [7,8], i.e.,

W ≡ max
U

[Tr(ρ H ) − Tr(UρU † H )], (1)

where U is any unitary transformation. Alternatively, it can
be shown [7] that the ergotropy corresponds to the maximal
work that can be reversibly extracted from the system, but
the former characterization suits our purposes better. A state
defined by a density matrix ρ is called passive with respect
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to H when its ergotropy is zero, i.e., when we cannot ex-
tract any work from it by performing unitary operations. In
that case, the eigenstates of H and ρ must be aligned such
that the highest probability state of ρ will correspond to the
lowest eigenstate of H , and so on. Thermal states built on
H , written as ρ = Z−1 exp(−βH ) with β = 1/T the inverse
temperature (we assume kB = 1) and Z the normalization
factor, are always passive with respect to their Hamiltonian,
but the converse is not true. In other words, all thermal states
are passive, but not all passive states are thermal.

Let p0 � p1 � · · · � pN−1 be the eigenvalues of ρ, where
N is the dimension of the Hilbert space. Similarly, let E0 �
E1 � · · · � EN−1 denote the eigenvalues of H in ascending
order, and let E = Tr(ρH ) be the expected value of the energy
of the system. Now let us define the passivized state:

ρ̃ ≡ UρU †, (2)

with U the unitary operator implicitly defined in Eq. (1).
Naturally, the spectra of both density matrices must coincide:

Sp(ρ) = Sp(ρ̃) = {pk}N−1
k=0 . (3)

Since the passive energy Ẽ ≡ Tr(ρ̃H ) must be minimal
among all density matrices with the same spectrum, we de-
duce that the maximal probability p0 must share an eigenstate
with the GS energy of H , E0; the second probability p1 with
the first excited state E1, and so on. Therefore,

Ẽ =
N−1∑
k=0

pkEk, (4)

and degeneracies do not pose any complications. The er-
gotropy is given by

W ≡ E − Ẽ � E − E0. (5)

Notice that, since we have chosen a common basis of eigen-
vectors of H and ρ̃, the two operators must commute,
[H, ρ̃] = 0. In general, this density matrix ρ̃ need not be ther-
mal for H , i.e., it may not be written as ρ̃ ≈ Z−1 exp(−βH )
for any value of β.

B. Subsystem ergotropy

Let us consider a quantum system on a composite Hilbert
space H = HA ⊗ HB, with Hamiltonian H :

H = HA ⊗ IB + IA ⊗ HB + HAB ≡ H0 + HAB, (6)

where H{A,B} acts on H{A,B}, respectively, and HAB will be
called the interaction Hamiltonian. Of course, this decompo-
sition is not unique, and we will assume that HAB has been
chosen as small as possible in some norm. Let |�〉 be the
(nondegenerate) GS energy of H , which can always be written
as a Schmidt decomposition:

|�〉 =
χ∑

k=1

p1/2
k

∣∣φA
k

〉 ⊗ ∣∣φB
k

〉
, (7)

where |φA
k 〉 ∈ HA and |φB

k 〉 ∈ HB are two orthornormal
sets, pk � 0 (also in nonincreasing order), and χ �
min[dim(HA), dim(HB)] is the Schmidt number. The reduced

FIG. 1. Illustration of the energies involved in our discussion of
the subsystem ergotropy and their differences. Indeed, EA denotes
the expected value of HA within the global ground state (GS) of
H , ẼA is the minimal energy achieved through unitary operations
on HA, and EA,0 is the GS of HA. Moreover, �EA = EA − EA,0 is
the excess energy, WA = EA − ẼA is the subsystem ergotropy, and
QA = ẼA − EA,0 is the subsystem bound energy. The blue arcs denote
entanglement, as explained in the text. Notice that, to define these
energies, block A must be physically separated from its environment.

density matrix for part A can be written as

ρA =
χ∑

k=1

pk

∣∣φA
k

〉〈
φA

k

∣∣. (8)

Being positive definite, this matrix can always be written as a
thermal density matrix:

ρA = exp(−KA), (9)

where KA is called the EH associated with part A. Of course,
KA need not be equal to HA, the local Hamiltonian, and this
difference will be crucial in what follows. Also, let us intro-
duce the ES as the spectrum of the EH [21].

Now let us physically separate subsystem A from its en-
vironment, i.e., subsystem B, by suddenly quenching HAB

to zero. The subsequent behavior of our subsystem will be
described by HA, with spectrum {EA,k}, which we may assume
to be nondegenerate. We define the three energies involved in
our problem:

(1) EA = 〈�|HA ⊗ IB|�〉, the expected value of HA in the
global GS;

(2) ẼA = ∑
k pkEA,k , the passive energy of the system,

obtained through unitary transformations; and
(3) EA,0, the GS of HA.
These three energies must be in descending order, EA �

ẼA � EA,0. We define the excess energy as �EA ≡ EA − EA,0.
The subsystem ergotropy can be computed as

WA = EA − ẼA, (10)

while

QA ≡ ẼA − EA,0 (11)

denotes the amount of energy which is unavailable, which we
will call the subsystem bound energy [3]. See Fig. 1 for an
illustration. The top panel represents the GS of H , and EA is
the energy associated with block A. The light blue arcs rep-
resent the entanglement links [34,35] which characterize the
entanglement structure. We reach the middle panel applying
a suitable unitary operator on block A, maximally reducing
its energy to ẼA while preserving the ES and, a fortiori, the
amount of entanglement with the rest of the system, which
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in this figure is represented by the number of links leaving
A. The newly established links are now denoted in dark blue.
Finally, the lowest panel denotes the GS of HA, which is now
disentangled from the environment, with energy EA,0.

C. Ergotropy and time evolution

Once we have split the subsystem A from its environment,
it will evolve under the action of its local Hamiltonian, HA,
following von Neumann’s equation:

ih̄ ∂tρA = [HA, ρA]. (12)

Remarkably, this time evolution preserves both the expected
value of the energy EA and the full spectrum of the density
matrix, even though the subsequent dynamics can be complex
[36–38]. It is relevant to ask how much work we can ob-
tain from this time-evolved density matrix employing unitary
transformations, i.e., how the ergotropy evolves after the split
quench. The answer is that the ergotropy is exactly preserved
along the time evolution. A proof of this fact is straightfor-
ward. The time-evolved density matrix for the subsystem after
the split can be written as ρA(t ) = V (t )ρA(0)V †(t ) for some
unitary transformation V (t ). The ergotropy of this matrix, de-
fined in Eq. (1), is the same because the associated passivized
state, given in Eq. (2), is the same, if we just use the identity:

ρ̃A = UρA(0)U † = UV †(t )ρA(t )V (t )U †, (13)

allowing us to define a new unitary transformation Ũ =
UV †(t ), such that ρ̃A = ŨρAŨ †. This result implies that the
work extraction procedure need not start immediately after the
disconnection between the subsystem and its environment, if
the subsequent evolution is unitary.

D. Interaction energy inequality

Thus, we can extract work from a subsystem of a composite
quantum state in its GS. However, this work should always be
less than the corresponding increase in the energy of the sys-
tem induced by our interaction because, otherwise, the current
system energy would be lower than the GS energy E . We can
prove this result easily. After the unitary transformation on
subsystem A, the global system will be |�̃〉, such that

〈�̃|H |�̃〉 = Ẽ = ẼA + ẼB + ẼAB, (14)

where each term on the right-hand side corresponds to the
expectation value of one of the three operators HA, HB, and
HAB on |�̃〉, and we notice that ẼB = EB. This energy Ẽ � E ,
the GS energy, which can be decomposed equally, E = EA +
EB + EAB. Considering that EA − ẼA = WA, we obtain

ẼAB − EAB � WA � 0, (15)

which implies that the gain through ergotropy must be less or
equal than the loss in the interaction term.

III. ERGOTROPY OF A FREE FERMIONIC CHAIN

We now particularize the previous calculation to the case
of a free fermionic chain before extending our results to other
critical spin chains. As we will show, the ergotropy and bound
energy of free fermionic chains can be explicitly computed

and present universal features associated with conformal in-
variance, like the Casimir energy [39–41]. For simplicity, we
will restrict ourselves to the case in which block A corre-
sponds to the left half of the chain.

A. Free fermionic chains

Let us consider a fermionic chain of N (even) sites with
open boundaries, described by the Hamiltonian:

HN = −
N∑

i, j=1

Ji j c†
i c j, (16)

where c†
i and ci denote the fermionic creation and annihilation

operators on site i, and Ji j = J̄ ji denotes the hopping matrix.
We will focus on the homogeneous chain with open bound-
aries, whose hopping amplitudes are given by Ji j = δi, j±1. In
this case, the low-energy behavior of the chain can be accu-
rately represented by a conformal field theory (CFT) [42,43].

The GS of the Hamiltonian in Eq. (16) can be obtained
through the eigenvalues {εk} (in increasing order) and eigen-
modes {Uk,i} of the hopping matrix Ji j , which are usually
called single-body energies and modes, respectively. The
spectrum presents particle-hole symmetry εk = −εN+1−k , and
the GS is obtained by filling up the N/2 negative energy
modes, such that

E =
N/2∑
k=1

εk, (17)

while the corresponding eigenstate is a Slater determinant
determined by its correlator matrix, defined as

Ci j ≡ 〈c†
i c j〉 =

N/2∑
k=1

Ūk,iUk, j . (18)

All the entanglement properties can be determined from ma-
trix C. Indeed, the reduced density matrix of any block A of
size � can be obtained diagonalizing the corresponding � × �

submatrix CA. The set {νA
k } of eigenvalues of CA, where each

νA
k ∈ [0, 1] determines uniquely the full ES, will be called en-

tanglement occupations. The von Neumann entropy of block
A can be expressed as [25]

SA = −
�∑

k=1

[
νA

k ln
(
νA

k

) + (
1 − νA

k

)
ln

(
1 − νA

k

)]
. (19)

Conformal symmetry fixes the universal part of the entangle-
ment entropy of a lateral block A = {1, · · · , �} of a critical
chain with N sites [44–46]:

SA ≈ c

6
ln

[
N

π
sin

(
π�

N

)]
+ c′, (20)

where c = 1 is the central charge of the associated CFT
[42,43], and c′ is a nonuniversal constant. Moreover, the EH
of a free fermionic chain must also present a free fermionic
form, Eq. (16), with a different hopping matrix [19,20]:

ρA = 1

Z
exp(−KA) = 1

Z
exp

⎛
⎝−

�∑
i, j=1

KA
i jc

†
i c j

⎞
⎠. (21)
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The single-body energies of the EH, EA
k , can be obtained

from the entanglement occupations through the Fermi-Dirac
expression:

νA
k = 1

1 + exp
(
EA

k

) , (22)

and they are (approximately) equally spaced, with a level
separation given by the so-called entanglement gap EA ≈
EA

k+1 − EA
k , which is known to behave like [32]

EA ≈ 2π2

ln(γ N )
, (23)

where ln γ ≈ 2.3 is a nonuniversal constant [32]. Moreover,
an approximate inverse relation has been proposed between
the entanglement gap and the entanglement entropy:

EASA ≈ π2

3
. (24)

B. Casimir energy and free fermions

Our next aim is to compute the three energies involved in
our calculations: EA, ẼA, and EA,0. Let us start with EA,0 for
convenience. We proceed to build HA, the hopping matrix for
the block A, and obtain its eigenvalues {εA

k }N/2
k=1 in increasing

order. The GS energy of A is given by

EA,0 =
N/4∑
k=1

εA
k . (25)

An approximate expression for EA,0 as a function of N can
be provided [39–41]:

E0(N ) = −c0(N − 1) − cB − cπvF

24N
+ O(N−2), (26)

where we distinguish three terms. The first one, −c0(N − 1),
with c0 = 2/π , is the bulk energy. The second term, −cB =
−(4/π − 1), is the boundary term. The third one provides the
finite-sized correction and is fixed by conformal invariance.
Indeed, c = 1 is the central charge associated with our theory,
and vF = 2 is the Fermi velocity. Thus, we have

EA,0 ≈ −c0

(
N

2
− 1

)
− cB − π

6N
. (27)

We can use a similar strategy to estimate EA, but we should
proceed with care. Indeed, we can obtain EA numerically from
the GS of the whole chain, subtracting the energy associated
with the central link and dividing by two:

EA = E0(N )

2
− CN/2,N/2+1. (28)

The first term can be easily estimated from Eq. (27):

E0(N )

2
≈ −c0

(
N

2
− 1

)
+ c0

2
− cB

2
− π

24N
, (29)

FIG. 2. Top: The three energies involved, EA, Ẽ , and EA,0, for a
free fermionic chain, with A the left half, as a function of the system
size, along with the theoretical asymptotic expressions, Eqs. (27),
(32), and (39). Bottom: The three energy differences, �EA = EA −
EA,0, WA = EA − Ẽ , and QA = Ẽ − EA,0, and their expected theoreti-
cal values according to Eqs. (33), (40), and (41)

and the second one can be found by making use of Eq. (18),
giving rise to an alternating behavior:

Cn,n+1 ≈ −c0

2
− π

24(N + 1)2

+ (−1)n

2(N + 1) sin
[

π (n+1/2)
N+1

] , (30)

which, since N/2 is even, reduces for the central link to

CN/2,N/2+1 ≈ −c0

2
− π

24(N + 1)2
+ 1

2(N + 1)
, (31)

yielding

EA ≈ −c0

(
N

2
− 1

)
− cB

2
−

(
π

24
+ 1

2

)
1

N
. (32)

We notice that the bulk term is the same as for EA,0, and the
boundary term is exactly half, as we would expect intuitively
since this subsystem only possesses one boundary instead of
two. We should stress that a naïve calculation would yield
a Casimir correction π/(24N ), but we obtain an additional
contribution from the energy associated with the central link.
The validity of the approximations to these two energies, EA,0

and EA, can be checked in Fig. 2.
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Therefore, the excess energy �EA = EA − EA,0 is given by

�EA ≈ cB

2
+

(
π

8
− 1

2

)
1

N
. (33)

C. Bound energy and entanglement

Extracting the maximal amount of work through unitary
operators reversibly is equivalent to minimizing the block en-
ergy while preserving the full spectrum of the reduced density
matrix. Thus, we proceed to align the occupation eigenvectors
with the eigenstates of HA, whose eigenvalues will be denoted
by {εA

k }. The passive energy ẼA can be written as

ẼA =
�∑

k=1

νkε
A
k . (34)

Since EA � ẼA � EA,0, it is reasonable to consider that the
passive energy ẼA will also present the same bulk term as in
Eq. (27) but with different corrections. Let us provide a similar
asymptotic expansion to its value.

The eigenvalues of HA can be found exactly:

εA
p = −2 cos

(
pπ

N/2 + 1

)
, (35)

with p ∈ {1 · · · N/2}, and those of the correlation matrix CA

can also be approximated as

νA
p ≈ 1

1 + exp [−β(p − N/4)]
, (36)

where β corresponds to the entanglement gap, given in
Eq. (23) [32]. Thus, the passive energy is given by

ẼA =
N/2∑
p=1

εA
pν

A
p ≈

N/2∑
p=1

−2 cos(2π p/N )

1 + exp[−β(p − N/4)]
. (37)

If we take the continuum limit, making use of the Sommerfeld
expansion [47] and the Euler-Maclaurin formula, we arrive at

ẼA ≈ −c0

(
N

2
− 1

)
− cB − cπvF

12N
+ 2π3

3Nβ2
, (38)

so we obtain the final form:

ẼA ≈ −c0

(
N

2
− 1

)
− cB − π

6N
+ ln2(γ N )

6πN
. (39)

We may now find the analytic expression for the ergotropy:

WA = EA − ẼA ≈ cB

2
+

(
π

8
− 1

2

)
1

N
− ln2(γ N )

6πN
, (40)

where the requirement WA � 0 demands that cB > 0. This
expression can be checked in the bottom panel of Fig. 2.
Furthermore, we can estimate the bound energy:

QA = ẼA − EA,0 ≈ ln2(γ N )

6πN
� 0, (41)

which is unconditionally positive and can also be checked in
the bottom panel of Fig. 2. Notice that Eq. (41) implies that
the bound energy is directly related to the inverse squared
of the entanglement gap of the system or the square of the

FIG. 3. Numerical check of the linear relation between the bound
energy multiplied by the system size QA N and the entanglement
entropy squared S2

A for the free fermionic chains, Eq. (42), for sizes
N in the same range as in Fig. 2. The slope of the straight line, as
expected, is 6/π ≈ 1.9.

entanglement entropy. Using Eqs. (20) and (23), we obtain an
approximate relation:

QA N ≈ 6

π
S2

A, (42)

which provides a relation between the entanglement entropy
of a block of a free fermionic chain and the bound energy
associated. Equation (42) is the main prediction of this work,
and we conjecture that its validity extends beyond the case of
free fermionic chains, to any critical state in one-dimensional
(1D) described by a CFT. The validity of this expression can
be numerically checked in Fig. 3.

We may define an ergotropy fraction wA = WA/�EA and
a bound fraction qA = QA/�EA as the ratios between the
ergotropy or the bound energy to the excess energy. We can
see that wA → 1 and qA → 0 as N → ∞, implying that, for
larger systems, we can extract most of the excess energy in the
form of work using unitary transformations.

IV. PRELIMINARY RESULTS ON OTHER CRITICAL
MODELS

We have considered two other spin chains, the critical Ising
model in a transverse field (ITF) and the Heisenberg model,
and performed numerical explorations using a combination of
Lanczos and exact diagonalization for small systems which
provide preliminary numerical evidence of the validity of
Eqs. (41) and (42) for these systems.

The Hamiltonian of the ITF model that we have considered
is given by

HITF = −
N−1∑
i=1

σ z
i σ z

i+1 − �

N∑
i=1

σ x
i , (43)

for � = 1. The low-energy eigenstates of HITF are known to
follow a CFT with central charge c = 1

2 [42,43]. Therefore,
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FIG. 4. Subsystem energy decomposition for small Ising critical
chains, with N up to 14. Top: Energies �EA, WA, and QA for the
left half-chain as a function of the system size, along with the ex-
pected theoretical fits. Bottom: Approximate linear relation between
QA N and ln2(N ), showing the expected relation between QA and SA,
Eq. (42), along with a linear fit to the last five points.

the entanglement entropy of the left half can be written as
a linear function of ln(N ). We have obtained preliminary
numerical results employing exact diagonalization up to size
N = 14, which are shown in Fig. 4. In the top panel, we show
with points the energy decomposition �EA, WA, and QA, for
the left half-chain of the even-sized systems, along with their
fits with continuous lines to theoretical curves suggested by
the generalization of Eqs. (33), (40), and (41), i.e.,

�EA ≈ α1 − α2

N
,

WA ≈ α1 − α2

N
− α3

ln2(α4N )

N
,

QA ≈ α3
ln2(α4N )

N
. (44)

In our case, the optimal values of the parameters are α1 ≈
0.137, α2 ≈ 0.07, α3 ≈ 0.044, and α4 ≈ 5.5. We would like
to stress that we fit the 21 points of the three curves using
the same values for the αi parameters. In the bottom panel
of Fig. 4, we observe an approximate linear relation between
NQA and ln2(N ), as expected, along with a linear fit obtained
from the larger systems. Even though the functional form is
shown to be approximately correct, we should use these fitting
parameters with care, due to the small system size.

On the other hand, we have considered the antiferromag-
netic spin- 1

2 Heisenberg chain with open boundaries, given by

FIG. 5. Subsystem energy decomposition for small Heisenberg
chains, with N up to 24, using only multiples of four. Top: Energies
�EA, WA, and QA for the left half-chain, along with the expected the-
oretical fits. Bottom: Approximate linear relation between QA N and
ln2(N ), showing the expected relation between QA and SA, Eq. (42),
along with a linear fit to the last five points.

the Hamiltonian:

HHeisenberg =
N−1∑
i=1

�Si · �Si+1, (45)

which also corresponds to a CFT for low energies, with c = 1
in this case, and can be mapped to an interacting fermion
Hamiltonian using the Jordan-Wigner transformation [42,43].
As mentioned above, the GS can be analytically obtained
using the Bethe ansatz, but we have chosen to obtain it using
the Lanczos algorithm up to N = 24, considering the full
SU(2) symmetry of the model. The top panel of Fig. 5 shows
the energy decomposition for the left half of the chain, using
only values of N which are multiples of four. Again, we plot
along a fit of these 18 points to the form in Eq. (44), obtain-
ing approximate parameters α1 ≈ 0.44, α2 ≈ 0.9, α3 ≈ 0.41,
and α4 ≈ 1.32. The bottom panel of Fig. 5 shows the linear
relation between QA N and ln2(N ), highlighting the validity
of Eq. (42), again comparing with a linear fit for the largest
sizes.

The approximate validity of Eq. (42) in all three models is
related to the fact that it only depends on the following:

(1) The Casimir expression for the energy of the GS,
(2) the affine relation between the entanglement entropy

and ln(N ), and
(3) the approximate inverse relation between the entangle-

ment entropy and the entanglement gap.
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All these relations stem from conformal invariance, a prop-
erty shared by all three models discussed in this paper.

It would be interesting to check the validity of our prelimi-
nary results for larger system sizes in the ITF and Heisenberg
cases. The ITF case can be evaluated using a combination of
Jordan-Wigner and Bogoliubov transformations. The Heisen-
berg case is more involved since, e.g., the density matrix
renormalization group cannot be used in a straightforward
manner [48] because we need to use both the ES and the full
energy spectrum of the subsystem.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we have considered the excess energy pos-
sessed by a subsystem of a GS. Part of this excess energy can
be extracted via unitary operations, which we call subsystem
ergotropy, and part of it cannot be extracted in this way,
which we call subsystem bound energy. For concreteness,
we have considered 1D systems which present conformal
invariance, and we have done the calculations in detail for
free fermionic chains, combining numerical calculations with
a detailed analysis of the Casimir corrections to the GS energy.
The most relevant relation found is a linear functional depen-
dence between the subsystem bound energy and the square
of its entanglement entropy divided by the system size. We
have shown that this relation is likely to apply to other critical
spin chains, thus allowing us to conjecture that its validity will
extend to all 1D CFTs.

We would like to stress that, as the system size grows, the
fraction of excess energy which can be extracted as work ap-
proaches one. In other words, almost all the subsystem energy
becomes available in the thermodynamic limit. This result is
nontrivial, although it correspondes with our intuition that, for

larger systems, we have larger freedom to manipulate the local
mixed state. It is relevant to ask how general this result is. For
instance, we may wonder about the behavior of the subsystem
ergotropy away from criticality, i.e., for dimerized spin chains
or for the Ising model with a noncritical value of the transverse
field �, or how to extend it to higher-dimensional systems.

Our results encourage further exploration of the application
of quantum thermodynamics to the analysis and characteri-
zation of entanglement. Beyond the quantitative study of the
ergotropy and bound energies, it is relevant to ask about the
passive state which we obtain when all the ergotropy has been
obtained. Indeed, it must be a thermal state under the EH, but
it is also relevant to ask about its properties under its own local
Hamiltonian and how these two Hamiltonians relate. Given
the relation between the EH and the Unruh effect [49–51], this
research program may bear fruits also to the interplay between
gravity, entanglement, and thermodynamics.
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