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Abstract: Roller mills are commonly used in the production of mining derivatives, since one of their 

purposes is to reduce raw materials to very small sizes and to combine them. This research evaluates 

the mechanical condition of a mill containing four rollers, focusing on the largest cylindrical roller 

bearings as the main component that causes equipment failure. The objective of this work is to make 

a prognosis of when the overall vibrations would reach the maximum level allowed (2.5 IPS pk), 

thus enabling planned replacements, and achieving the maximum possible useful life in operation, 

without incurring unscheduled corrective maintenance and unexpected plant shutdown. Wireless 

sensors were used to capture vibration data and the ARIMA (Auto-Regressive Integrated Moving 

Average) and Holt–Winters methods were applied to forecast vibration behavior in the short term. 

Finally, the results demonstrate that the Holt–Winters model outperforms the ARIMA model in 

precision, allowing a 3-month prognosis without exceeding the established vibration limit. 
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1. Introduction 

Prognostics and health monitoring (PHM) analysis requires several stages, includ- 

ing data collection, data processing, condition monitoring, diagnostics, prognostics, and 

decision support [1]. The information generated by a PHM system can be divided into 

diagnostics and prognostics. Diagnostics include anomaly detection, fault isolation, fault 

classification, and uncertainty [2], while prognostics include the estimation of the remaining 

useful life (RUL) and the prediction of behavior at the design stage.   These procedures 

ensure that the component is in good condition before installation and operation. 

Researchers have identified the importance of information on the system’s operational 

condition [3–5]. The selection of the appropriate technology for data acquisition, as well 

as the extraction and management of these data, has been a challenge, as can be seen in 

several reports, such as the Forbes survey by Gil Press [6], where preparing and managing 

data for analysis took around 80% of the research time. 

Rolling bearings are some of the most crucial components in rotating machinery sys- 

tems; therefore, their failure may cause substantial economic losses and even endanger 

operators’ lives [7]. An interesting background report about rolling bearings covering topics 

such as, their historical development, characteristics, types or selection, and dimensioning 

depending on the application, was provided by Desnica et al. [8]. Rolling-bearing faults 

represent up to 51% of all rotating mechanical problems, making them one of the main 

factors affecting the reliable and safe operation of mechanical systems [9,10]. The identifica- 

tion of the root cause of the bearing failure becomes very complex due to the combination 

of several factors, such as the misalignment of the ball bearing fitted in the main shaft of 
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an aero engine, as described by Ejaz et al. [11], or the misalignment in the angular contact 

ball bearing, as investigated by Murugesan et al. [12]. Other examples of bearing failures 

can originate from undesirable electrical currents between the track surfaces for races [13] 

or improper assembly operation, such as the use of excessive tightening force, as reported 

by Hou et al. [14]. All these cases reveal the importance of monitoring the health status of 

bearings during operation to reduce equipment failure [15]. 

It is very important to take into account that the cost of each bearing is approximately 

USD 200k, and the labor needed to replace the bearing costs USD 150k, incurring a total cost 

of approximately USD 350k per bearing to keep the bearings serviced. Hence, to prevent 

unexpected shutdowns, it is necessary to plan these activities to avoid penalty costs for 

non-compliance with the production plan and secondary effects on other equipment in 

the process. Therefore, the prediction of an accurate remaining useful life (RUL) of this 

type of component is key to optimizing maintenance/replacement tasks and improving 

the efficiency of machine operation. The methodology for prediction of RUL has two 

phases: data collection and health indicator (HI) definition. HI construction is the process of 

reflecting the bearing degradation from data; therefore, the construction of HI directly affects 

the accuracy of RUL prediction. Furthermore, it allows maintenance to be scheduled in 

advance while ensuring a fault-free service life [16]. Several authors have studied prognostic 

modeling options for RUL, such as knowledge-based options, life expectancy, and artificial 

networks, as described by Sikorska et al. [17]; data-driven models (DDMs) [18,19], physics- 

based models (PbMs) [20,21], or both, as shown by Cubillo et al. [22]; a signal-level deep 

learning framework as proposed by Wang et al. [23]; computer modeling and simulation, as 

studied by Andras, et al. [24]; the use of auto-associative kernel regression, as proposed by 

Baraldi et al. [25]; a method that includes monitoring bearing degeneration, determining the 

initial degeneration point, and RUL estimation, based on combining a novel health indicator 

and particle filtering, as proposed by Quiu et al. [26]; a combination of machine learning 

techniques, such as a regression model and multilayer artificial neural network model, as 

explored by Li et al. [27]; an investigation of the time-dependent reliability of the main shaft 

device based on the accumulation of fatigue damage, as performed by Cao et al. [28]; and an 

artificial neural network model provided by Patil et al. [29] to measure the wear of several 

ball bearing materials. 

Bearings are commonly employed in numerous engineering applications, such as 

power plants [30], machines for production lines [31], aerospace applications [32], marine 

applications [33], railway vehicles [34,35], wind turbines [36], robotic applications [37], and 

mining applications [38]. Some of the techniques employed for bearing diagnostics are 

acoustic emissions [39] and thermal analysis [40]. As the analysis of vibration signals is a 

widely used technique, there are several studies on this topic, such as the one performed 

by Ali et al. [41], which proposed a method based on run-to-failure vibration signals using 

an artificial neural network. Bertoni and André [42] proposed a bearing diagnosis method 

called the Bearing Frequency Estimation Method to detect the early appearance of bearing 

faults. Shakya et al. [43] proposed a Time Synchronous Averaging method that uses data 

from probes in close proximity to supplement the information from the accelerometer.  

This approach improved the accuracy of bearing diagnosis. Kass et al. [44] developed an 

indicator to detect, identify, and classify faults on rolling elements. This indicator is based 

on the Fast-Order-Frequency Spectral Coherence. Its capability for self-running diagnosis 

has been demonstrated. Kecik et al. [45] evaluated the effectiveness of the recurrence 

method for detecting defects in ball bearings and demonstrated its promising performance 

in short time series. 

This work focuses on the use of wireless sensors to collect data and vibration signal- 

processing-based approaches, which present some advantages. Statistical features, such as 

the root mean square (RMS) [46], are suitable degradation indicators for predicting bearing 

defects and their sizes [47,48]. 

The Holt–Winters and ARIMA (Auto-Regressive Integrated Moving Average) models 

for univariate time series are analyzed and compared to confirm which one is the most 
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reliable for prediction. The prognosis of univariate time series represents a great challenge 

for predictive analytics models since the most robust models are multivariate and include 

predictor variables, such as multiple regression, Support Vector Machine (SVM) [49], and 

the COX model. Thus, this research aims to provide a methodology, applying advanced 

analytical techniques (adequate for univariate time series), such as the Holt–Winters and 

ARIMA models, to establish reliable predictions of vibration behavior based on experimen- 

tal data obtained from wireless monitoring to plan maintenance activities and visualize a 

mechanical condition pattern of the rollers that allows their useful life to be increased. 

2. Materials and Methods 

2.1. Geometrical Dimensions, Set-Up, and Process Parameters 

For this research, a four-shaft centric roller mill from a cement production plant 

was used to set up the roller system in which two double-row spherical roller bearings 

(designation F-562181.02.PRL) were installed in each of the four shafts. 

The bearings were of different sizes; the larger one received the greatest amount of operat- 

ing load, and was also subjected to vertical damping movements, as shown in Figure 1. 
 

Figure 1. Mill roller bearings set up. 
 

The main features of the equipment are shown in Table 1. Figure 2 shows the section 

of the roller bearing. 

Table 1. General bearing weight and dimensions. 
 

 

Roller Weight (kg) Roller Weight (lb) 
Outside Diameter

 
Outside Diameter 

(in) 
 

 

1759 3878 1090 43 

 

Figure 2. Sectional drawing of roller bearings with bearing detail. 
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The vibration data-collection technology selected was a biaxial piezoelectric accelerom- 

eter wireless sensor (technical specifications in Table 2) to capture vibration data within 

the frequency range of 0.5 Hz to 5000 Hz, together with the Sensor-Agnostic Condition 

Monitoring Software Platform by © SensOs v. 2023. 

Table 2. Technical specifications of wireless sensors. 
 

Type of Characteristic Description 
 

Sensor Features IP 67 Rated/3.6 V Battery/weight: 100 g/Size: 47 mm × 33 mm. 

Mounting type  Universal Heavy-duty Magnet 
 

Cloud connectivity, Modbus TCP/IP communication, MQTT 
protocol, and OPC communication 

Conventional 5 VDC at 2 A power supply/Processor Quad 
Core 105 GHz/RAM 512 Mb/Wi-Fi protocol 2.4 and 5 GHz 

 

 

These sensors were installed on the four rollers as required, as shown in Figure 3. 
 

Figure 3. Locations of wireless sensors in mill roller bearings. 
 

The characteristics of the captured data are summarized as follows: 

• Four rollers were analyzed, classified as R1, R2, R3, and R4. 

• Vibrations were measured in RMS velocity (IPS) and acceleration (g’s). 

• Vibrations were captured in the radial horizontal (H) and vertical (V) directions. 

• Data were captured every 5 min with Spectrums and Waveforms. 

• The capture period was 25 June to 25 October of 2021 (Timeframe). 

Figure 4 provides the trends of the overall vibration of the 4 rollers during the pe- 

riod observed. 
 

Figure 4. Overall vibration trends of the roller bearings. 

Gateway type 

Gateway feature 
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2.2. Data Modeling 

For the effective analysis of data, the selection of suitable analytic methodologies is 
vital. In this study, the data were modeled utilizing both the CRISP-DM (The Cross-Industry 

Standard Process for Data Mining) [50] and SEMMA (Sample, Explore, Modify, Model, 
and Assess) [51,52] methodologies. In the CRISP-DM’s modeling phase, mathematical 

techniques were employed to formulate models, be they equations or other logic, to bolster 
business decision making [53]. During the SEMMA modeling phase, emphasis was placed 
on employing various data-mining techniques on the prepared data, striving to establish 

models that potentially yield the anticipated outcome [17]. Descriptive analytics, involving 
data aggregation and data mining, offers insights into past events, answering the question, 

“What has happened?”. Meanwhile, predictive analytics employ statistical models and 
forecasting techniques to offer a perspective on potential future events, addressing the 
query, “What could happen?” [22]. For this model phase, data mining and statistical 

software SAS® Studio, together with R Studio statistical computing software, were used. 

Descriptive analysis was conducted to pinpoint the current severity levels of the rollers 

and set the permitted thresholds. This analysis encompassed: 

• A descriptive statistical examination of time series data; 

• The inspection of extreme values. 

Models aiming to predict time series variables, or for prognosis, strive to forecast a 

variable’s future behavior based on its historical behavior. Identifying suitable models for 

time series data is a complex task. A strategy akin to that devised by Box and Jenkins in 

1976 involves three primary steps [54]: 

• Model identification; 

• Model fitting; 

• Model diagnostics. 

2.3. Predictive Models 

Predictive analytics were used in this study to evaluate two widely recognized meth- 

ods for univariate time series modeling: ARIMA (Auto-Regressive Integrated Moving 

Average) and Holt–Winters (exponential smoothing), both implemented in R code. 

2.3.1. ARIMA 

This model is expressed as ARIMA (p, d, q), where (AR) is auto-regressive, (I) is the 

integration, (MA) is the moving average, (p) is an auto-regressive term that denotes the 

number of auto-regressive orders, (d) specifies the order of differentiation applied to the 

series to the estimate model, and (q) specifies the order of moving average parts [55]. Some 

advantages of using ARIMA are that it: 

• Is good for short-term forecasting; 

• Only needs historical data; 

• Models non-stationary data. 

However, there are certain constraints to be considered before applying the ARIMA 

method, such as computation weakness due to the integration and moving average part of 

the model. The parameters p, d, and q need to be manually defined. In addition, this model 

cannot be applied in cases where there is multiple seasonality. 

This method is time-series-based and depends on the assumption that the series is 

stationary. Therefore, the first step of the process is to check whether the assumption is 

fulfilled using the Dickey–Fuller (DF) stationary test [56]. This test consists of proving the 

null hypothesis that there is a unit root in an AR model, which implies that the data series 

is not stationary. 

The model-selection test using PACF (Partial Auto Correlation Function) [57] provides 

the model’s orders, such as p for AR and q for MA, to select the best model for forecasting. 

This function is part of the Box–Jenkins approach to time series modeling. 
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Finally, the Box–Ljung test (often called the “portmanteau” test) is applied to evaluate 

the model. This test is based on the autocorrelation plot, but instead of testing randomness 

at each distinct lag, it tests the “overall” randomness based on the number of lags. 

The formula for the ARIMA model in R is given in Equation (1): 

Xt = a1Xt−1 + · · · + apXt−p + et + b1et−1 + · · · + bket−k (1) 

where 

- Xt is the time series value at time t; 

- a1, . . ., ap are the parameters of the autoregressive part of the model; 

- et is the error term at time t; 

- b1, . . ., bk are the parameters of the moving average part of the model. 
 

2.3.2. Holt–Winters 

The Holt–Winters model, also known as triple exponential smoothing, is used for fore- 
casting time series data when there is a trend and seasonal pattern. Exponential smoothing 

encompasses various methods. The most elementary form is termed simple exponential 

smoothing, which is pertinent to series without a pronounced trend or seasonality. For 

series with a trend but lacking seasonality, Holt’s method is suitable. Should there be 

seasonality, potentially accompanied by a trend, Winters’ method becomes relevant. It must  

be pointed out that this method assumes that the level, trend, and seasonality of the data 

have to be constant or linear; otherwise, it is not very reliable for complex and nonlinear 

patterns. Notably, the latter two methods are often jointly referred to as the Holt–Winters 

model [58]. 

The formula for the additive version of the model in R is shown in Equation (2): 

 

 
where: 

 
^ 
t+h = at + h ∗ bt + s ∗ [t − p + 1 + (h − 1) ∗ mod p] (2) 

^ 
t+h = the forecast equation; 

at = the level component; 
bt = the trend component; 

st = the seasonal component; 

p = the length of the seasonal period; 

h = the number of periods ahead for forecasting. 

The level component (at) is obtained using Equation (3): 

at = α ∗ (Yt − st−p) + (1 - α) ∗ (at−1 + bt−1) (3) 

The trend component (bt) is calculated using Equation (4): 

bt = β ∗ (at − at−1) + (1 − β) ∗ bt−1 (4) 

Finally, Equation (5) is used to obtain the seasonal component (st): 

st = γ ∗ (Yt − at) + (1 − γ) ∗ st−p (5) 

The three aspects of the time series behavior—value, trend, and seasonality—are expressed 

as three types of exponential smoothing. The model requires the parameters (α, β, γ). 

Smoothing parameters: 

α (alpha) = smoothing parameter for the level, the “base value”. A higher alpha puts 
more weight on the most recent observations. 

β (beta) = smoothing parameter for the trend, the “trend value”. A higher beta means 

the trend slope is more dependent on recent trend slopes. 

Y 

Y 
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−
n

 

n 

 

γ (gamma) = smoothing parameter for the seasonal component, the “seasonal compo- 

nent”. A higher gamma puts more weight on the most recent seasonal cycles. 

2.3.3. Models Comparison 

After applying the ARIMA and Holt–Winters models, it is necessary to compare the 

two models to determine which model should be utilized for each roller. The criteria 

used to select the most effective model included comparisons of the two models’ mean 

error (ME) and mean absolute percentage error (MAPE) [59]. Additionally, the mean 

absolute error (MAE) and root mean squared error (RMSE) for each model were analyzed 

to determine the effectiveness of each model. Percentage errors are useful because they are 

scale-independent and can compare forecasts between different data series. 

The MAE and RMSE are scale-dependent errors that can be used to evaluate the 

individual models and can be used as comparisons between data series that are on the 

same scale. The formulas for the evaluation measures are shown in Equations (6)–(8): 

 RMSE 
s 

1  n    

a

  c   2 (6) 
=  ∑( i i) 

i=1 

MAE = 
|a1 + c1| + |a2 + c2| + · · · + |an + cn| 

n 

 
(7) 

MAPE 1 n |ai − ci| (8) 
 
 

where: 

ai = predicted values; 

ci = observed values; 

n = number of observations. 
 

3. Results and Discussion 

3.1. Data Collection and Analysis 

= ∑ 
i=1 

Utilizing the comprehensive vibration data, each model projected daily radial vibra- 

tions from 25 June 2021 to 25 October 2021. Given the limited number of variables in the 

datasets, no variables were excluded during the modeling process, as each had a significant 

impact on the accuracy of the predictive model. 

Multiple models were crafted and evaluated utilizing various software packages and 

open-source languages, including SPSS (Statistical Package for the Social Sciences) [60] and 

SAS (Statistical Analysis System) [61]. 

The descriptive analytics presented in Table 3 encompass a comprehensive summary of 

the vibration values for each roller, exhibiting a Gaussian distribution. This pattern suggests 

that the behavior of the overall vibration values is predictable and can be extrapolated for 

further analysis and forecasting. 

Table 3. Summary of overall vibration. 
 

Statistical 
Parameter 

Rms Vel. H 
Roller #1 

Rms Vel. H 
Roller #2 

Rms Vel. H 
Roller #3 

Rms Vel. H 
Roller #4 

Mean 0.748 0.617 0.693 0.616 
Variance 0.060 0.064 0.046 0.033 
Std. Dev. 0.245 0.252 0.215 0.183 
Median 0.690 0.560 0.660 0.610 
Mode 0.192 0.186 0.167 0.148 
Minimum 0.600 0.570 0.520 0.890 
Maximum 0.350 0.250 0.040 0.265 
Count 748.000 748.000 748.000 748.000 

Sum 559.710 461.700 518.500 461.115 

ai 
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The severity chart was constructed using the overall vibration mean values and the 

sum of the accumulated overall vibrations, which is named the exposure time to high 

vibrations. As a result, a clear correlation appeared that shows that Roller #1 and Roller #3 

had the highest level of overall vibrations and the greatest time of exposure, as shown in 

Figure 5. 
 

 

Figure 5. Overall vibration trend of each roller. 
 

For the analysis of extreme values, only values greater than Inch/S (IPS) were captured. 

As shown in Figure 6, it can be clearly seen that Roller #1 and Roller #3 were the most 

exposed to extreme values; the severity shown in Figure 5 is thereby validated. 

3.2. ARIMA Model Application 

To apply the ARIMA methodolody, it is first necessary to check whether the series 

are stationary. Therefore, as explained in Section 2.3.1., the Dickey–Fuller test was applied, 

whose results are shown in Table 4. 

Table 4. Summary of the Dickey–Fuller test results. 
 

Stationary Test R1 R3 

Dickey–Fuller 5.0492 5.3859 
Lag order 6 7 
p-value 0.01 0.01 
Alternative hypothesis stationary stationary 

From the stationary tests, it can be observed that the p-value obtained (0.01) is lower 

than the theoretical p-value of 0.05; therefore, the alternative hypothesis is accepted, and it 

is concluded that the series is stationary. 
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(a) 

 
(b) 

 
(c) 

(d) 

Figure 6. Analysis of extreme values of the overall vibrations: (a) Roller #1, (b) Roller #2, (c) Roller #3, 

and (d) Roller #4. 
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The next step is to perform a model selection test by using PACF in accordance with 

the Box–Jenkins approach; see Table 5. 

Table 5. Summary of model selection test results. 

 
 
 
 
 
 
 
 
 
 

0.0250 

 

0.04332 

 
 
 

Figure 7 shows the forecast from ARIMA (1,1,1) and ARIMA (3,1,1) with the drift for 

Roller #1 and Roller #3, respectively. 

 

 

Figure 7. R1 and R3 ARIMA Vibration Time Series 2-month forecasting. NOTE: The blue line 

represents the projection of the vibrations, and the blue and gray area is the confidence limit of the 

projection, which is 95%. 

Model Selection Test  

Suggested by PACF AR(1) AR(3) 
Model ARIMA(1,1,1) ARIMA(3,1,1) 
Series R1 R3 
Drift Coefficients 

ar1 
 

0.2399 
 

0.2974 
 0.0608 0.0511 

ar2 - 0.0434 
 - 0.0510 

ar3 - 0.1078 

 
ma1 

- 

−0.9327 

0.0510 

−0.9327 
0.0250 

drift −3 × 10−4 −3 × 10−4 

 
σ2 estimation 

1 × 10−3 1 × 10−3 

0.0296 
log likelihood 51.48 156.22 
AIC 94.96 300.44 
AICc 94.84 300.26 
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The model evaluation from the Box–Ljung test showed a good fit to the data from 

both Rollers R1 and R3, since the p-values are greater than 0.05, and there is white noise. 

Therefore, the model successfully addresses the underlying project goal, which is to predict 

the rollers’ overall vibration. Moreover, the Average Absolute Percentage Error is 15.39% 

for Roller R1 and 4.85% for Roller R3, as shown in Table 6. 

Table 6. Summary of the Box–Ljung test. 
 

Model Evaluation (Box–Ljung Test)  

data Residuals (Roller #1) Residuals (Roller #3) 
X-squared 0.071579 0.0013889 
df 1 1 

p-value 0.7891 0.9703 

 
3.3. Holt–Winters Model Application 

The parameters set during the vibration model’s creation ensured the consideration of 

non-seasonality and the inclusion of diverse model types for optimal forecast accuracy. The 

Holt–Winters exponential smoothing parameter values for value, trend, and seasonality 

are shown in Table 7. 

Table 7. Summary of the Holt–Winters test’s parameters’ results. 
 

Stationary Test R1 R3 

α (alpha) 0.3 0.2 
β (beta) 0.1 0.1 

γ (gamma) 0.1 0.1 

level 0.95 0.95 

 
In Figure 8, it can be seen that using the Holt–Winters command in R [62] creates 

a graph in red, where a new series of data is created that are in theory very close to the 

original data, which are in black. 
 

 

Figure 8. Vibration time series data for R1 and R3 for the Holt–Winters training set (black) vs. the test set (red). 
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Figure 8 shows the vibration time series data for Rollers #1 and #3, comparing the 

Holt–Winters model’s training set (black) and test set (red): 

Roller #1: The training set data, depicted in black, show fluctuations around a mean 

level with no clear trend. The test set data, in red, appear to follow the training set pattern 

quite closely, suggesting that the model has captured the underlying process well for the 

training period. 

Roller #3: Similar to Roller #1, the black line, representing the training set data, shows 

variability around a central level. The test set data, in red, also track the training data closely, 

indicating a good fit of the model to the observed data for the time period considered. 

In both cases, the close tracking of the test data to the training data suggests that the 

Holt–Winters model performs adequately in forecasting the vibration levels for both rollers. 
Figure 9 shows the results of Holt–Winters filtering for vibration data of rollers R1 and R3. 

 

 

Figure 9. Holt–Winters filtering for vibration time series for R1 and R3 with 3-month forecasting. 
 

The black line represents the observed vibration data. 

The red line indicates the fitted values from the Holt–Winters model, which shows the 

model’s attempt to capture the underlying trend and seasonality up to the last historical point. 

The blue line forecasts future vibration values based on the model’s fitted values. 
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The vertical dotted line marks the boundary between historical data and forecasted values. 

For Roller #1, the forecast suggests a steady increase in vibration levels, while for 

Roller #3, a decline is predicted. Both forecasts show a divergence from the relatively stable 

historical pattern, which could be indicative of changing conditions or potential issues 

requiring attention. 

3.4. Model Comparison and Prognosis 

Table 8 indicates that the Holt–Winters model outperforms the ARIMA model for 

both rollers’ data sets, with lower MAPE, MAE, and RMSE. Although both models show  

acceptable accuracy when compared, the Holt–Winters method was the best fit, so it was 

selected for prognosis. 

Table 8. Performance evaluation of the methods. 
 

Roller #1 Overall Vibration ME MAPE MAE RMSE 

ARIMA 
Holt–Winters 

−0.079 

−0.050 

0.212 
0.197 

0.088 
0.085 

15.394 
14.210 

Roller #3 Overall Vibration ME MAPE MAE RMSE 

ARIMA 
Holt–Winters 

−0.007 

−0.006 

0.138 
0.100 

0.055 
0.036 

7.850 
4.850 

 
The evaluation period was approximately 4 months, and a prognosis of 3 months was 

made for both rollers in R [63], and 4 months with SAS, with a confidence interval of 90%. 

In R, the prognosis for Roller #1 shows a stable and linear trend with a slight positive 

slope; however, the uncertainty level exceeds 2.5 IPS at 2 months, but in SAS, the prognosis 

confidence band raises the limit of 2.5 IPS at 4 months, as can be seen in Figure 10. Taking 

this factor into account and based on the confidence interval, it can be concluded that the 

model is accurate for a 3-month prognosis without the risk that vibrations may exceed the 

unacceptable limit of 2.5 IPS. 
 

Figure 10. Holt–Winters vibration time series prognosis for R1. 
 

Projecting until 15 January 2022, the vibration value will be at an average of 1.02 IPS, 

as shown in Figure 10. 

In R, the prognosis for Roller #3 shows a stable and linear trend with a positive slope; 

however, the uncertainty level exceeds 2.5 IPS at 2 months, but in SAS, the prognosis 
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confidence band raises the limit of 2.5 IPS at 3 months (see Figure 11). Thus, the situation is 

very similar to that for Roller #1; therefore, it can be concluded that the model is accurate 

for a 2.5-month prognosis without the risk that vibrations may exceed the unacceptable 

limit of 2.5 IPS. 
 

Figure 11. Holt–Winters vibration time series prognosis for R3. 
 

Figure 11 shows that, for a projection until 15 January 2022, the vibration value will 

average 0.82 IPS. 

4. Conclusions 

This research was motivated by the need for innovation in the traditional predictive 

maintenance methods. The application of statistical methods such as Holt–Winters and 

ARIMA, which allow for better results to be achieved and the operational life of key indus- 

trial components to be extended, ultimately contributes to more efficient and economical 

plant operations. In order to do this, the mechanical condition of a four-roller mill was 

evaluated, focusing on the largest cylindrical roller bearings, which are known to be the 

predominant failure point in such equipment. Utilizing wireless sensors, we captured 

vibration data across a broad frequency range for four months, aiming to predict when 

overall vibrations would attain critical levels. Severity analysis underscored Rollers #1 and 

#3 as bearing the majority of the overall vibrations, which was corroborated by analyses of 

exposure time and extreme values. The ARIMA and Holt–Winters forecasting methods, 

adept for short-term prediction in such univariate time series, were implemented and 

compared, with the result that the Holt–Winters outperformed ARIMA in precision. The 

study progressed through established PHM stages, culminating in a prognostic model 

that reliably forecasts vibration trends without signaling imminent bearing failure within 

the next three months, allowing for timely maintenance scheduling and thus, averting 

unscheduled downtime. 

The research culminates with the recommendation for quarterly model updates to 

leverage accumulating data for enhanced accuracy. It highlights the necessity for advanced 

statistical expertise to interpret complex models and suggests integrating expert insights 

for outlier management. 

Finally, this study contributes to the ongoing research on rotating equipment failure 

prognosis, focusing on univariate models in this specific case. Future investigations will 

progress toward the implementation of multivariate models. 
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