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Abstract: In cutting operations of titanium alloys, most of the problems are related to the high consumption
of cutting tools due to excessive wear. An improvement of metalworking fluid (MWF) technology would
increase the productivity, sustainability, and quality of machining processes by lubricating and cooling.
In this research article, the authors varied the surfactant’s charge, the hydrocarbon chain length, and the
ethoxylation degree. Surfactants were dispersed at 1.2 mM in water and trimethylolpropane oleate to
produce water-based MWF. Infrared reflection absorption spectroscopy and total organic carbon analysis
were used to study the influence of surfactant structure on the film forming ability of the emulsion and
performance was studied on Ti6Al4V using tapping torque test. The results showed that by changing the
molecular structure of the surfactant, it is possible to vary the affinity between the ester and the substrate
and reach an optimal combination, which improves the formation of a tribofilm. The mixture with anionic
surfactants has good tribology performance, while non-ionic surfactants shorten the tool’s life. Moreover,
the increase in the hydrocarbon chain length and the number of ethoxylations of surfactants promotes
the adhesion of ester onto the metal surface, improving the lubricity properties of environmentally
friendly MWF.

Keywords: metalworking fluid; tool wear; tool life; Ti6Al4V; surfactant

1. Introduction

Titanium and its alloys are considered difficult-to-cut materials due to their low thermal
conductivity, high hardness, and high chemical reactivity at elevated temperatures. Most of the
problems related to conventional machining of titanium alloys are associated with the high consumption
of cutting tools due to excessive wear caused by the high temperature reached during the cutting
process as well as the tendency of the chip to weld to the tool. Unfortunately, the lack of BUE
(Built-up edge) also increases abrasion and chip welding. The combination of these characteristics
and the relatively poor thermal conductivity of titanium causes unusually high temperatures at the
tool’s edge [1], causing premature tool failure and promoting corrosion, residual stress formation,
and micro-cracks [2].

Wear mechanisms depend on the tool material type. Tungsten carbide (WC) cutting tools are
the most suitable tool materials commercially available in almost all machining processes [3] due to
their low cost and availability [4]. However, coating on carbide tools has no beneficial effect on their
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performance. Chemical vapor deposition (CVD) coated carbides and ceramic tools are not generally
used in titanium machining due to their higher reactivity with titanium and their relatively low fracture
toughness as well as the poor thermal conductivity of most ceramics [5].

In general, low machining speeds are used to lengthen the tool life. At increased cutting speeds,
high compressive stresses and high temperatures are generated near the cutting edge [6]. Under these
conditions, the dominant wear mechanisms are plastic deformation and crack development because
of thermal shock. The variation of feed, cutting depth, or cutting speed modifies the degree of wear,
but also it is greatly affected by the type of metalworking fluid (MWF) used [7]. Depending on the
fluid type, tool life may be prolonged up to 30% [8]. MWF must be both a coolant and a lubricant to
decrease the cutting forces and avoid chip welding. However, most formulations are developed for
ferrous metals and aluminum alloys, and few efforts have been made to design an effective MWF for
machining titanium alloys [9].

Conventional MWFs are, in general, derived from petroleum, which is heavily toxic and can
have negative effects on the environment and especially on human health. New technologies that
include dry machining, minimum quantity lubrication (MQL) [10], cryogenic and gaseous cooling,
incorporation of nanofluids into polymer matrix [11] or in MWF [12], environmentally friendly
lubricants [13], and combinations of them [14] have gained increasing interest within the sector and
led to the exploration of even broader opportunities to reduce or to completely eliminate conventional
MWFs [15]. As such, new sustainable MWFs from vegetable oil or raw material from renewable sources
have been seriously considered [16] in the manufacturing industry as an alternative to petroleum-based
oils [17]. Ester-based fluids have gained interest from both the research community and industrial
users [18] because of their excellent lubricity over a wide temperature range in the boundary lubrication
zone [19]. In addition, synthetic esters provide corrosion protection and, in contrast to neat vegetable
oils, they have high oxidative stability [20].

The number of variables required to formulate a water-based MWF (e.g., workpiece material,
cutting operation, and cutting parameters) is too large to describe all possible formulations. MWFs are
most often sold as concentrates that are diluted between 3 and 20% in water. This MWF type can be
classified according to DIN 51385 [21] concerning their oil content in emulsions and solutions. Due to
its growing demand, the present work is focused on the study of emulsions, particularly oil in water
(O/W) emulsions, which are widely used in cutting processes. The oil (dispersed phase) functions as a
lubricant, reducing friction between the contact surfaces, while the water (continuous phase) helps to
evacuate the heat generated, thanks to its greater heat capacity [22]. For the emulsion to help improve
lubrication, the oil must reach the substrate and replace water. The oil droplet is attracted to the metal
surface by Van der Waals forces, while the electrostatic interaction between the oil and the negatively
charged surfaces is repulsive [23].

Surfactants are used to stabilize the oil drops in the water phase by their amphiphilic molecular
structure [24]. Their adsorption at the solid–liquid interface is strongly dependent on [25] the nature of
the solid substrate and the molecular structure of the surfactant and the aqueous phase properties—for
example, pH, electrolyte content, and temperature. Surfactants modify surface properties, influencing
the lubrication performance [26]. They can be classified according to their dissociation power in the
presence of an electrolyte as ionic or non-ionic. Within the ions as a function of charge, they are
classified as anionic, cationic, and amphoteric [27]. Cationic surfactants, such as quaternary ammonium
salts, have anti-corrosive and bactericidal properties and can significantly improve water lubricity [28]
by reducing surface tension and forming a durable lubricating film [29]. However, they are not
typically used in MWF formulations as they are more expensive and non-compatible with anionic [30].
Non-ionic surfactants do not bear an electrical charge and therefore have the advantage that they
do not interact with calcium and magnesium ions in the water used for dilution. Surface activity
depends primarily on the hydrophilic and hydrophobic part [31]. Even though anionic surfactants are,
in general, much more sensitive to water hardness, they improve the wettability of the cutting fluid on
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the metal surface due to the adsorption of surfactant monomers onto the surface [32] and they are
considerably less expensive than non-ionic surfactants [33].

Previous work has shown that there are many phenomena involved in lubrication with O/W
emulsions. It is a complex system in which the physicochemical interactions between oil, water, and the
surface control the lubrication mechanisms [34]. Recently, new studies have been published confirming
that more knowledge of the MWF composition is needed [35], that emulsion lubrication is still not
fully understood [36], and that there is still no agreement on the influence of various parameters such
as stability or droplet size of emulsions on tribological behavior [37].

The aim of this study is to provide valuable information relating to the formulation of a sustainable
and effective MWF by assessing the lubricity performance on Ti6Al4V. It aims to formulate a new
MWF formulation including a renewable ester as the base oil and a mixture of two surfactants.
Previous studies have demonstrated that mixed surfactants are synergistic [24]; they have a greater
solubilization capacity and higher emulsion stability by increasing the packing density of the surfactant
around the oil droplet. Although mixtures of anionic and non-ionic surfactants are commonly used
in the metallurgical industry, they are not well known at the molecular level [38]. Surfactants with
different charge, hydrocarbon chain length, and ethoxylation degree were used to identify the optimum
surfactant that promotes the adhesion of the ester onto the Ti6Al4V surface. Moreover, this study reports
the performance of the MWF by tapping torque tests against the surfactants used in the emulsion.

2. Materials and Methods

To develop a sustainable and effective MWF that provides improved Ti6Al4V machining,
the surfactant molecular structure was modified to study its interaction with the ester oil when
building up a lubricant film on the titanium surface. Using water-based lubricant improves heat
removal due to its very high thermal conductivity. However, it is also necessary to use other substances
to reduce the friction coefficient, such as a biodegradable and renewable fatty acid ester.

This work aims to point out the benefits of using sustainable water-based lubricants as an alternative
to mineral oil and to report the preliminary experimental investigations for a future comparison with
other lubrication and cooling systems. The procedure includes two main phases: the ability of the
MWF to form a tribofilm and the lubricity performance (Figure 1). Several emulsions were prepared
(Section 2.1). With these MWFs, a surface analysis was conducted according to the method presented
by Benedicto et al. [39] to quantify the amount of organic matter, specifically trimethylolpropane
trioleate (TMP oleate) (Section 2.2). The film forming ability of the emulsion considering surfactant
structure is then related to the lubricity performance by tapping torque test (Section 2.3).

1 
 

 

Figure 1. Test set-up diagram to study the role of surfactant structure on the ability to build up a
lubricating film.
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2.1. Materials and Mix Proportions: Preparation of Emulsion

Numerous specialty additives can be found in MWF formulations, such as anti-corrosive agents,
foam stabilizers, bactericides, and fungicides. The products formulated in this work are simplified
systems compared to commercial concentrates. Nevertheless, they contain the main raw materials: oil,
water, pH buffer, and surfactants. The concentrations of the ingredients were selected based on the
common MWF formulation used in Zhao et al.’s [40] previous study (Table 2):

• The oil phase: this is a fatty acid ester trimethylolpropane trioleate or TMP oleate, Weichol 3/134W
from Industrial Química Lasem (IQL, Castellgalí, Spain), commercially used as environmentally
adapted lubricant [41].

• The aqueous phase: this is a solution of 2-aminoethanol (MEA) (supplied by Across, Noisy Le
Grans, France) in distilled deionized water to reach and maintain a pH above 9. The ideal pH of
water-based MWF is within the range 8.5 to 9.5. At this condition, it prevents corrosion on ferrous
metals, minimizes the potential for contact dermatitis, and controls biological growth [42,43].

• The surfactant blend: this is a mixture of a non-ionic surfactant oleyl/cetyl propoxylated alcohol
with the trade name Dehypon OCP502 (BASF, Ludwigshafen, Germany) and the different
surfactants under study (Kao Chemicals GmbH, Emmerich, Germany) (Table 1) with a 2:3
ratio. Adding a non-ionic surfactant allows closer packing at the interface and it contributes
to stabilizing the emulsion. The oleyl/cetyl propoxylated alcohol was selected according to
guidelines for formulating microemulsions from the experimental results of the study conducted
by Zhao et al. [40], where the hydrocarbon chain length of the non-ionic surfactant should be
equal to or greater than the hydrocarbon chain length of the oil fatty acids.

Table 1. Properties of surfactants under study from Kao Chemicals GmbH.

Charge Abbreviation Chain Ethoxylation Degree (EO) Chemical Name

Anionic

AC8E8 C8 8 EO Capryleth-9 carboxylic acid
AC12E4.5 C12 4.5 EO Laureth-6 carboxylic acid
AC12E10 C12 10 EO Laureth-11 carboxylic acid
AC18E2 C18 2 EO Oleth-3 carboxylic acid
AC18E5 C18 5 EO Oleth-6 carboxylic acid
AC18E9 C18 9 EO Oleth-10 carboxylic acid

Non-ionic

NC8E8 C8 8 EO Octyl alcohol, ethoxylated
NC12E4.5 C12 4.5 EO Lauryl alcohol, ethoxylated
NC12E10 C12 10 EO Lauryl alcohol, ethoxylated
NC18E2 C18 2 EO Oleyl alcohol, ethoxylated
NC18E5 C18 5 EO Oleyl alcohol, ethoxylated

NC18E10 C18 9 EO Oleyl alcohol, ethoxylated

Table 2. Chemical composition of emulsions, in molar concentration.

Product Molar

TMP Oleate 0.0010
Dehypon OCP 502 0.0008

Surfactant under study 0.0012

From a fundamental research point of view, pure substances should be used as surfactants.
Considering the final use of the results obtained, the authors tried to ensure that the lubricating substance
had adequate performance characteristics and was commercially available. Therefore, the surfactants
under investigation have some polydispersity in the ethoxylation degree (EO) and the hydrocarbon
chain distribution.



Metals 2020, 10, 1388 5 of 14

2.2. Determination of Fatty Acid Ester Content on Ti6Al4V Surface

In these experiments, it is important to know the composition at the metal surface, as it could differ
from the composition in the bulk, i.e., the original composition of the emulsion. The ester adhered on
the Ti6Al4V surface was quantified according to Benedicto et al. [39] by the use of infrared reflection
absorption spectroscopy (IRRAS) with Vertex 70 (Bruker, Ettlingen, Germany) and total organic carbon
(TOC) quantification with Leco RC612 (Leco, St Joseph, MI, US).

Following the method, calibration curves were built for each surfactant, varying the concentration
of TMP oleate in the surfactant blend and using a Fourier transform infrared spectrophotometer
Iraffinity-1S (Shimadzu, Nagoya, Japan). The ratio between the integrated absorbance under C=O
peak and under CH2 stretching vibration peaks (REO) was calculated for each mixture using OPUS
software. The equation from each regression line allowed us to determine the percentage of ester (w/w)
given a REO value from a spectrum (Figure 2).
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Figure 2. Determination of fatty acid ester on metal surface: (a) spectrum of an emulsion with the C=O
characteristic peak of an esters; (b) Iraffinity-1S (Shimadzu, Nagoya, Japan); (c) calibration curve.

Ti6Al4V strips are pretreated with hexane to clean the surface and, after, they are dipped in the
MWF formulation for 10 min at room temperature. On the one hand, TOC was measured to quantify
the amount of organic matter on the strip surface, calculated according to the molecular weight and
the number of carbon atoms. On the other hand, strips were evaluated with IRRAS and spectra were
analyzed to calculate the REO and determine the percentage of ester adhered on the metal through the
calibration curves. From both analytical techniques, the amount of ester and the total organic matter of
the lubrication layer were determined.

2.3. Tapping Torque Test for Tribological Study

The tapping torque test was used to determine the role of the surfactant’s molecular structure in
MWFs as it is very sensitive to lubrication condition [44,45]. Formulations were evaluated based on the
standard ASTM D5619 for comparing metal removal fluids [46]. Tribological test was conducted using the
taping torque test Labtap G8 (Microtap, Munich, Germany) (Figure 3) and Ti6Al4V workpiece material.
Cutting parameters were mostly determined by the material that was being machined. Spindle speed and
depth of cut were selected at 300 rpm and 6 mm, respectively, as presented in Table 3.

In the tapping process, taps were filled with the test formulation. A rotating torque (cutting torque)
was produced, and the performance was reported as tapping torque (N·cm) mean value, as an average
of the generated work performance. Tapping torque lower values indicate better MWF performance.
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In Figure 4, during the tapping process, a graphical measurement of the torque is shown: beginning of
cut to full contact of all chamfer teeth (tap entrance) and cutting torque of the tap that is now cutting
with all its chamfer teeth [47]. Due to due to the high tool wear when machining titanium alloys, a new
tool was used for each product under study. As the tool wear rate progresses in each tapping process,
the microtap mean value increases. The taps were made until the tool broke or reached a maximum of
15 cuttings.
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3. Results and Discussion

3.1. Effect of Surfactant Charge on the Lubricity Performance of Emulsions

To study the impact of anionic and non-ionic surfactant molecular structure on the lubricity
performance of MWF products, a surfactant system was generated for each substance listed in Table 1.
An amine balance was added to maintain the pH at 9.2. Moreover, the total molar concentration of
fatty acid ester and surfactant was kept constant.

For comparison between surfactant charges, equivalent anionic and non-ionic surfactants with
different hydrocarbon chain lengths and ethoxylation numbers were tested. Results are plotted in
Figure 5, where the bars represent the amount of ester adhered on the Ti6Al4V strips (in µmol) after
being treated with the several MWF emulsions containing the surfactant under study and points show
the tapping torque mean value (TTT) from each formulation.
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Results show that all the MWFs formulated with the non-ionic surfactants have similar amounts
of ester adhered on the metal surface, meaning that their structures have little impact on the adherence
of TMP oleate regardless of the hydrocarbon chain length and ethoxylation degree. Compared to
non-ionic surfactants, anionic surfactants promote the adhesion of ester on the Ti6Al4V strips. Data also
indicate that the molecular structure of anionic surfactants has an influence on the amount of ester on
the titanium alloy surface. Moreover, the ester adhered on the strip is plotted against the lubricity
performance (TTT). For MWFs containing anionic surfactants, the more ester is adhered to the metal
surface, lower the tapping torque values are.

To further explore the lubricity performance for each emulsion, tapping was run until 15 taps
were achieved or until the tool broke, meaning that the tool and the workpiece were welded (Figure 6).
After each tap, there was an increase in the tapping torque, due to tool wear. This increment depends
on the anti-wear properties of the MWF and its ability to form a tribofilm.
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It was observed that the tools used with the combination of non-ionic surfactants welded at the tenth
cut and, for one surfactant (NC18E5), before reaching the seventh cut. However, anionic surfactants
have greater anti-wear properties, prolonging the tool life (Figure 7). None of the tools used with
the negatively charged surfactants were broken during the study. This behavior could be explained
by the fact that the anionic surfactant tends to promote the ester adsorption onto sliding surfaces,
thus forming a lubricating film that prevents direct metal contact. Consequently, the increase in the
tapping torque values with each consecutive cut is lower compared to non-ionic surfactant.Metals 2020, 10, x FOR PEER REVIEW 9 of 14 
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3.2. Effect of Surfactant’s Hydrocarbon Chain Length on the Tribological Performance of Emulsions

In order to study the influence of surfactant’s hydrocarbon chain length on the emulsion system,
tests were performed for surfactants with similar numbers of ethoxylations and varying the number
of carbons of the lipophilic part from 8 to 18. The analysis of the Ti6Al4V surface, treated with
the different emulsions, is presented in Figure 8. Bars represent the total organic matter adhered
onto the titanium alloy surface. The upper part indicates the amount of ester (also noted with a
number), while the lower part shows the other organic compounds such as amine and the surfactant
mixture. Moreover, the tapping torque mean value (TTT) for each formulation is represented as points.
The distance between different markers denotes the tool wear after the first and fifth cut with the MWF;
lower distance means less tool wear.Metals 2020, 10, x FOR PEER REVIEW 10 of 14 
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Figure 8. Evolution of the tapping torque with machining of consecutive cuttings: anionic with
continuous line and non-ionic with dashed line.

Results pointed out that the concentration of ester increases with the length of the hydrocarbon
chain of the anionic surfactant, making it more lipophilic. As other researchers have also
demonstrated [48], the MWF with more lipophilic surfactant is found to form a stronger tribofilm,
reducing the tapping torque values. Shorter hydrocarbon chain length has greater distance between the
first and the fifth tap values, meaning higher tool wear. Similar trend in the anti-wear performance is
observed when increasing the lipophobicity of non-ionic surfactants. However, the amount of organic
matter is lower than the anionic surfactant and, thus, the highest TTT values are achieved.

The high amount of organic matter in the AC8E8 emulsion can be explained by its instability.
Surfactants with a hydrocarbon chain of eight carbons are very unstable, as the study by Zhao et al. [40]
predicted. This suggests that the difference between the chain lengths of the mixed surfactants should
be less than six to maximize the range of stable emulsions.

The difference between the first and the fifth tapping torque mean value (∆) was adopted as the
measure of tool wear. The results presented in Figure 9 show that as the surfactant’s hydrocarbon
length chain increases (more lipophilic) as it forms a more robust tribofilm that allows for decreasing
the wear, regardless of whether it is anionic or non-ionic.
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3.3. Effect of Anionic Surfactant’s Ethoxylation Degree on the Tribological Performance of Emulsions

The influence of the number of ethoxylations (EO) in the surfactant has been studied with
surfactants of 12 and 18 carbons in their lipophilic chain. Although the charge and hydrocarbon chain
length of the surfactant have significant effects, the number of ethoxylations also plays an important
role. On the one hand, with increasing ethoxylation degree within the same hydrocarbon chain length,
a smaller amount of organic matter is adhered on the surface. MWF is more soluble due to the number
of EO groups increasing the hydrophilic/lipophilic balance (HLB).

On the other hand, Figure 10 shows that even though there is less surfactant on the surface,
the amount of ester increases, forming a more resistant layer and therefore improving the lubricity
performance. This is in line with another study that revealed that higher ethoxy group content was
found to improve anti-wear properties [49]. As a result, a surfactant with a higher number of ethoxylate
groups is preferred.Metals 2020, 10, x FOR PEER REVIEW 11 of 14 
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Figure 10. Organic matter adhered on Ti4Al4V strips treated with formulations containing different
anionic surfactants with different ethoxylations against its lubricity performance.
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4. Conclusions

The surfactant used to disperse the oil in water and stabilize the emulsion controlled the ester
adhered onto the metal substrate. By changing the molecular structure of the surfactant, it is then
possible to vary the affinity between the ester and the substrate and to reach an optimal combination,
which enables easy adherence onto the contact zone and improves the formation of a tribofilm. In this
paper, the authors varied the surfactant’s charge (anionic and non-ionic), the hydrocarbon chain length,
and the ethoxylation degree. The surfactants were dispersed at 1.2 mM molar concentration in water
to study the emulsion behavior with the Ti6Al4V surface. Moreover, tribological experiments with
tapping torque machine were conducted in O/W emulsion. The main conclusions drawn from this
study are listed below:

• It was found that, from the surfactants tested, non-ionic surfactants are less promising and their
structures have little impact on the adherence of TMP oleate. The application of surfactants
bearing an anionic group can be successful, as they not only promote TMP oleate adhesion,
but also, they improve the anti-wear.

• The data also indicate that the molecular structure of anionic surfactants has a high impact
on the amount of ester adhered on the titanium alloy surface, forming a lubricating film that
prevents direct metal contact. The more ester is adhered, the lower the tapping torque values are,
indicating less wear.

• The concentration of ester increases with the hydrocarbon chain length of the anionic surfactant,
as it becomes more lipophilic. However, surfactants with a hydrocarbon chain below eight carbons
show high emulsion instability.

• It was apparent that the longer the hydrocarbon chain of the surfactant is, the higher the wear
reduction is, regardless of surfactant type, whether it is anionic or non-ionic.

• In the tested anionic surfactants, the higher the number of ethoxylations, the more significant the
increase in lubricity observed. Even though there is less surfactant on the surface, due to higher
solubility increases, the amount of ester increases, forming a more resistant layer.

The obtained results showed the suitability of a water-based MWF of fatty acid ester for titanium
alloy machining. The interactions among the surfactant molecules, the ester, and metal surface play a
key role in the lubricity and tool wear protection. Using an anionic surfactant with oleic hydrocarbon
chain and a high number of ethoxy groups, such as AC18E9, can lead to better lubricity and tool
protection as well as to environmental advantages of ester-based cutting fluids over mineral-based
fluids. The research group has also been exploring other fatty acid esters to be used in machining
processes with titanium alloys, which are typically applied in the aerospace industry. For further
technology evaluation analysis, a comparison of a sustainable water-based MWFs with other lubrication
and cooling systems for machining titanium and its alloys is needed.
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