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Abstract 
Wall periodic response factors are a very usual calculation method of transient heat transfer 
through building envelope elements (walls, roofs…) in steady periodic conditions, used in 
popular heat load calculation procedures as ASHRAE’s RTS method [1]. This response 
factors, time sampled heat flux responses of a multi-layer wall to a 24h-periodic unit 
triangle function, can be obtained by means of multiple methods: Laplace’s method, state 
space method, frequency domain methods, etc. These methods are numerical, since there is 
no analytical way of obtaining these response factors. 

The aim of this work is, taking advantage of the periodic nature of excitations, use Fourier 
series to represent boundary conditions, and this way find an easier and less 
computationally demanding procedure to calculate these response factors. Additionally, 
convergence of these Fourier series will be analyzed to determine the minimum set of 
frequencies needed to ensure a fixed admissible error for wall periodic response factors. 
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Symbols 

𝐴𝐴 generic bound. 

𝐴𝐴𝑔𝑔  (1,1) term of characteristic matrix of the wall. 

𝑎𝑎𝑛𝑛  n-th cosine Fourier coefficient. 

𝑎𝑎𝑛𝑛′   n-th cosine Fourier coefficient. 

𝑏𝑏𝑛𝑛  n-th sine Fourier coefficient. Real form. 

𝑏𝑏𝑛𝑛′   n-th sine Fourier coefficient. Real form. 

𝐵𝐵𝑔𝑔 (1,2) term of characteristic matrix of the wall. 

𝐶𝐶𝑦𝑦  bound for cross transfer function modulus. 

mailto:fvarela@ind.uned.es
mailto:fvarela@ind.uned.es
mailto:cggaya@ind.uned.es
mailto:fvarela@ind.uned.es


 2 

𝑐𝑐𝑘𝑘  specific heat capacity og layer k. 

𝐶𝐶𝑔𝑔  (2,1) term of characteristic matrix of the wall. 

𝐷𝐷𝑔𝑔  (2,2) term of characteristic matrix of the wall. 

𝐸𝐸(𝑠𝑠)  excitation function in Laplace’s space. 

𝑓𝑓  generic function. 

𝑓𝑓𝑛𝑛  n-th sine Fourier coefficient. Complex form. 

𝑓𝑓𝑚𝑚  m-th Fourier approximation of function 𝑓𝑓. 

𝑔𝑔  generic function. 

𝐻𝐻(𝑠𝑠)  System transfer function. 

𝐻𝐻𝛾𝛾  cross transfer function. 

𝑖𝑖  index. 

𝑘𝑘  layer index. 

𝐾𝐾𝑗𝑗  number of layers of   j-th massive sheet.   

𝐾𝐾′ number of non-consecutive massless layers considered in the wall. 

ℓ  Laplace transform. 

ℓ−1  inverse Laplace transform. 

𝐿𝐿𝑘𝑘  k-th layer width. 

𝐿𝐿𝑘𝑘𝑘𝑘  k-th wythe, j-th layer width. 

𝑚𝑚  frequency index. 

𝑀𝑀𝑔𝑔  characteristic matrix of the wall. 

𝑀𝑀𝑘𝑘  characteristic matrix of layer k. 

𝑀𝑀𝑓𝑓  bound constant for complex form of sine Fourier coefficient. 

𝑛𝑛  frequency index. 

𝑞𝑞𝑒𝑒 exterior heat flux function. 

𝑞𝑞𝑖𝑖 interior heat flux function. 

𝑅𝑅(𝑠𝑠) generic response function in Laplace’s space. 

Rk  Thermal resistance of layer k  

Rk  thermal resistance of massless layer k. 
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𝑅𝑅i  interior film resistance. 

𝑅𝑅e  exterior film resistance. 

𝑠𝑠  frequency, Laplace transform of variable time. 

𝑡𝑡   time. 

𝑇𝑇  temperature. 

𝑇𝑇e  exterior temperature. 

𝑇𝑇i  interior temperature. 

𝑇𝑇k  temperature of layer k. 

𝑈𝑈  overall heat transfer coefficient. 

𝑤𝑤  frequency. 

𝑤𝑤n  n-th frequency of Fourier series. 

𝑋𝑋Δ(t)  exterior heat flux response to an exterior triangular pulse. 

XΔk k-th exterior periodic response factor.  

𝑌𝑌Δ(t)  interior response heat flux to an exterior triangular pulse. 

𝑌𝑌Δk k-th cross periodic response factor.  

𝑌𝑌m  m-th Fourier approximation of function 𝑌𝑌. 

𝑍𝑍Δ  interior response heat flux to an interior triangular pulse. 

𝑍𝑍Δk k-th interior periodic response factor.  

𝛼𝛼k  thermal diffusivity of layer k. 

𝛼𝛼kj  thermal diffusivity of layer j wythe k.  

𝜆𝜆k  thermal conductivity of layer k. 

𝜌𝜌k  density of layer k. 

∆  triangular pulse function. 

𝛥𝛥k  triangular pulse function displaced k hours. 

𝛺𝛺   characteristic exponent of the wall 

𝛩𝛩  characteristic factor of the wall 

𝛩𝛩k   characteristic factor of layer k 

Acronyms 
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PRF Periodic Response Factors  

ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers 

RTS Radiant Time Series method 

RF Response Factor method  

PDE Partial Differential Equation 

FDR Frequency Domain Response method 

 

1. Introduction.  

In the present energy and environmental context, the consideration of buildings as 
significant energy consumers becomes imperative, owing to their substantial contribution 
of approximately 33% to the global energy consumption. Of this 33%, about 38% is due to 
cooling and heating systems [2]. 

In light of the need to decrease energy usage in buildings, it is essential to prioritize 
energetically efficient design and efficient management of energy consumption. To achieve 
this objective, the utilization of building energy simulation tools is crucial. 

Within this tools, wall heat conduction through massive building elements (walls and roofs, 
essentially) is one of the problems to be solved. Owing to the inherent transitory nature of 
this thermal conduction problem, it necessitates the resolution of a set of coupled partial 
differential equations (one per each layer of the slab). 

When studying systems of the size of a building during a long period of time (a whole year), 
numerical methods like finite elements or finite differences must be generally discarded 
because of their computational cost, except for specific issues like thermal bridge effect 
calculation. 

In the middle sixties, Mitalas and Stephenson [3] developed a calculation method called 
Response Factor Method (RF). This method assumes one-dimensional heat transfer and 
constant thermal properties of the construction materials, and performs the Laplace 
transform to the PDEs, solving the problem in Laplace’s domain analytically, and going 
backwards to time domain. This last step is where all the difficulty of the method lies and 
was solved by Mitalas with the aid of complex residual theory. 

 

 This method yields as a result a set of values (response factors) which relate the past 
exterior wall temperatures (or air temperature, depending on if extreme surface radiation-
convection problem is included or not) with the heat flux through the extreme lab surfaces. 

 This set of response factors is made only once for each different slab, and computation of 
heat flux from them is computationally cheap, which is a clear advantage for long time 
calculations. 
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In Mitalas’ original method [3], the inversion of the Laplace transform was performed by 
searching for a series of roots of the denominator of the wall's transfer function. However, 
this approach led to computationally expensive and delicate iterative methods. Recently, 
new alternatives have been sought to avoid such computationally expensive iterative 
procedures [4-15], which shows that this issue continues to generate interest. 

A particular case of this problem is when steady periodic external conditions are 
considered, giving rise to the so-called periodic response factors (PRF). This case is 
relevant when heat load calculation is considered using ASHRAE Radiant Time Series [16] 
load calculation method, widely recognized and used. 

The aim of this work is to develop a new calculation method for these PRFs, based on the 
response in linear differential equations to periodic steady state excitations, which has 
three main advantages over the previously used methods: PRFs can be calculated directly, 
the algorithm is much simpler, and requires much lower computational cost for the same 
accuracy than other methods. 

2 Methodology 

2.1 Definition of the problem 

The problem of periodic transient heat conduction through a multi-layer wall (Figure 1) 
consists in finding out the conduction heat fluxes in the extreme surfaces of the wall ( )eq t , 

( )iq t  knowing the two periodic temperature excitation functions ( )eT t , ( )iT t as boundary 

conditions. 

 

Figure 1. Heat conduction problem in a multi-layer wall. 

For the kth layer, heat conduction process is described by the one-dimensional heat 
equation: 
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where ( )/ ·k k k kcα λ ρ=  is the thermal diffusivity of material k, kλ , kρ , kc  its thermal 

conductivity, density and specific heat, respectively, and Lk  its thickness. The problem is 
complete considering that temperatures and heat fluxes in interfaces must coincide: 

( ) ( )

( ) ( )

1 1

1
1 1
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, 2, ...,

0, ,

k k k

k k
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 (2) 

2.2 Laplace’s method and periodic Wall Response Factors 

To solve the problem (1,2) defined in last section, a common method is the use of Laplace’s 
transform [4,5]. 

 After some transformations, and applying condition (2), the Laplace transforms of the 
responses of the wall can be written in terms of the Laplace transforms of the excitations in 
the following way [4,5]: 
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is the characteristic matrix of layer k, function solely of the thermal properties of the 
layer. 

Thus, the problem is solved in Laplace’s space, remaining the issue of inverting the Laplace’s 
transforms of the desired heat fluxes. 

To perform this inversion, it is usual to discretize the time in intervals, most of the times 
hourly, due to availability of excitation temperature data (in climatic records, for example). 
In this context, our boundary data is a set of hourly periodic time samples of temperature 
( )eT k  , ( )iT k , k=1, 2,…,24. 

The intermediate values of temperature are estimated by linear interpolation, and this leads 
to excitation functions written as linear combination of certain basis functions.  In the case 
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of usual periodic response factors, unit 24-h periodic triangular functions ( ){ }24

1k k
t

=
∆  are 

used, writing then any sampled excitation function as 

( ) ( ) ( )
24

1
· k

k
T t T k t

=

= ∆∑  

 

Figure 2. Linear combination of triangular functions. Source: [12] 

This basis can be written so that all basis functions ( )k t∆ are hourly translations of one 

elementary function ( )t∆ , ( ) ( )k t t k∆ = ∆ − , which we will call hereafter  elemental periodic 

triangular pulse (Figure 3): 

 

Figure 3. Elemental periodic triangular pulse 

Thus, for the boundary conditions, it can be written 

( ) ( ) ( )
24

1
·

k
T t T k t k

=

= ∆ −∑ . 

Taking into account the linearity and independence of time of the problem, it is enough to 
find the flux responses of the wall to the excitation ( )t∆  in the two extreme surfaces of the 
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wall.  From equation (3), it is clear that the final response of the wall to any excitation will 
be then a linear combination of three elementary flux response functions: 

• ( ) ( )eeX t q t∆ ∆=  exterior heat flux response to an exterior pulse ( )t∆  

• ( ) ( )ieY t q t∆ ∆=  interior heat flux response to an exterior pulse ( )t∆  

• ( ) ( )iiZ t q t∆ ∆=  interior heat flux response to an interior pulse ( )t∆  

The general problem has been then reduced to three elemental problems. 

Following equation (3), the transforms of the elemental heat fluxes will be 

• ( ) ( )
( ) ( )g

g

D s
X s s

B s∆ = ∆   

• ( ) ( ) ( )1

g

Y s s
B s∆ = ∆   

• ( ) ( )
( ) ( )g

g

A s
Z s s

B s∆ = − ∆   

 

Figure 4. Elementary flux response functions. 

Any interior or exterior heat flux  ( )iq t  or exterior ( )eq t  response to any excitation 

boundary temperature functions  ( )eT t  , ( )iT t , the conduction heat fluxes in the extreme 

surfaces can be written as 

( ) ( ) ( ) ( ) ( )
24 24

1 1
· ·e e i

k k
q t T k X t k T k Y t k∆ ∆

= =

= − − −∑ ∑  

( ) ( ) ( ) ( ) ( )
24 24

1 1
· ·i e i
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q t T k Y t k T k Z t k∆ ∆

= =

= − + −∑ ∑  

The lasting issue is to find the inverse Laplace transforms of the elementary heat fluxes: 

( ) ( )( ) ( )
( ) ( )1 1 g

g

D s
X t X s s

B s
− −

∆ ∆

 
= = ∆  

 
   

( ) ( )( ) ( ) ( )1 1 1

g

Y t Y s s
B s

− −
∆ ∆

 
= = ∆  

 
   (4) 
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( ) ( )( ) ( )
( ) ( )1 1 g

g

A s
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B s
− −

∆ ∆

 
= = − ∆  

 
   

The hourly sampled elementary responses ( ) ( ) ( ), ,k k kX k X Y k Y Z k Z∆ ∆ ∆
∆ ∆ ∆= = =  are called 

periodic wall response factors and the hourly heat fluxes can finally be written as: 

( ) ( ) ( )
24 24

1 1
· ·k k

e e i
k k

q n T n k X T n k Y∆ ∆
= =

= − − −∑ ∑  

( ) ( ) ( )
24 24

1 1
· ·k k

i e i
k k

q n T n k Y T n k Z∆ ∆
= =

= − + −∑ ∑  

ASHRAE’s RTS method [1] uses only crossed periodic response factors ∆
kY to calculate 

hourly internal heat flux ( )iq n , provided that it assumes constant indoor temperature iT : 

( ) ( ) ( )∆ ∆ ∆
= = =

= − + = − −∑ ∑ ∑
24 24 24

1 1 1
· · · ·k k k

i e i e i
k k k

q n T n k Y T Z T n k Y T U  

where U is the overall heat transmission coefficient of the slab. 

2.3. Using Fourier series to calculate periodic response factors.  

The complexity of performing the inversion (4) drove the authors in a previous work [12] 
to avoid the classical method of inversion involving a numerical root finding procedure of 
the function ( )gB s  [17,18], complex and time-consuming in spite of later improvements 

[5,6], taking advantage of the periodic character of excitations. The developed method also 
allowed the direct calculation of periodic response factors instead of calculating ordinary 
response factors and then summing them up periodically [19], or calculated from 
conduction transfer function coefficients [20,21]. 

This new method was based on finding a function basis whose functions as excitations made 
the equation easily invertible. It was found that for the case of periodic continuous 

excitation functions, a suitable basis was π π
∞

=

    
    

     0

2 2cos , sin
k

k t k t
T T

, since trigonometric 

excitations ( ) ( )cosE t tω=  in problems of the type 

( ) ( ) ( )R s H s E s=  

where 

• ( )R s  is the response function, 

• ( )H s  is the system transfer function and 

• ( )E s  is the excitation function. 

have a response 
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( ) ( ) ( )( )( )·cos argR t H i t H iω ω ω= + . (5) 

As the elementary pulse ( )t∆  is continuous and 24h-periodic, it can be written in terms of 

its Fourier series, since it is a well-known fact [22] that the Fourier Series of any continuous 

T- periodic function f in an interval ,
2 2
T T −  

 converges uniformly to the original function, 

this is, 

( ) 0

1 1

2 2·cos · ·sin ·
2 n n

n n

a n nf t a t b t
T T
π π∞ ∞
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   = + +   
   

∑ ∑  

for each ,
2 2
T Tt  ∈ −  
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( )

0

0
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T
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T

n
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∫

∫
 

As ( )t∆  is an even function, 0nb =  for every n: 

( ) ( )2
2 2

1

1 48 1 2sin ·cos ·2424 24n

nnt t
n

ππ
π

∞

=

 ∆ = +  
 

∑
 

( )2
2 2

48 1sin 24n
na

n
π

π
=  

In figure 5 the successive Fourier approximations of triangular pulse can be seen. 

 

Figure 5: Approximation of a triangle function using Fourier series 

 

Following equation (5), heat flux response can be written as 
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( ) 0

1

2 2 2· · ·cos · arg ·
2 n

n

a n n nR t U a H i t H i
T T T
π π π∞

=

     = + +     
     

∑   

Rearranging and using trigonometric properties and definitions, 

( ) 0

1 1

2 2 2 2·Re ·cos ·Im ·sin
2 n n

n n

a n n n nR t U a H i t a H i t
T T T T
π π π π∞ ∞

= =

          = + −          
          

∑ ∑
  

Changing to exponential form: 

( ) 0

1

2 2· ·exp
2 n

n

a n nR t U a H i i t
T T
π π∞

=

   = +    
   

∑  (6) 

Then, the Fourier coefficients of the flux response in the real form of the series are 

2' ·Ren n
na a H i

T
π  =   

  
 

2' ·Imn n
nb a H i

T
π  =   

  
 

and in the complex form 

2·n n
nf a H i

T
π =  

 
. (7) 

Implementation of the method 

An example of implementation of this method in the software scilab [23] is offered here 
below: 

Main function 

function Ydelta=facresptriangfourier(layers, m) 
    //”layers” is a matrix with layer properties in each row: L,k,rho,cp,R 
    //m es the frequency number except w=0 
// call function to build characteristic matrix of the wall 
exec('C:\Dropbox\scilab\factores de respuesta\caracmat.sci', -1); 
  //variable inicialization 
  Rglobal=sum(layers(:,5)); 
  B=[1/Rglobal]; 
  psi=[0]; 
  w=%pi/12*[0:m]; 
   // wall characteristic matrix per frequency  
  for k=2:m+1 
     Mglobal=eye(2); 
    [nlayers,nprop]=size(layers); 
    for indexlayer=1:nlayers 
      proplayer=layers(indexlayer,:); 
      Mglobal=Mglobal*caracmat(%i*w(k)/3600,proplayer); 
    end 
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    // damping and phase shift storage per frequency 
    B=[B abs(1/Mglobal(1,2))]; 
    psi=[psi atan(imag(1/Mglobal(1,2)),real(1/Mglobal(1,2)))]; 
  end 
   coef_fou=[1/(24)]; 
   for k=1:m 
       coef_fou=[coef_fou 1/12*(sinc(%pi*k/24))^2]; 
   end 
    // construction of periodic cross  response factors 
for n=0:23 
    Ydelta(n+1)=sum(B.*coef_fou.*cos(w*(n)+psi)); 
end 
endfunction 
 

Auxiliary function 

function M=caracmat(s, properties) 
  L=properties(1); 
  k=properties(2); 
  rho=properties(3); 
  cp=properties(4); 
  R=properties(5); 
  if (cp==0)|(s==0) //massless layers or steady state 
    M=[1 R 
    0 1]; 
  else 
    alpha=k/(rho*cp); 
    factor1=L*sqrt(s/alpha); 
    factor2=k*sqrt(s/alpha); 
    M=[cosh(factor1) sinh(factor1)/factor2 
    sinh(factor1)*factor2 cosh(factor1)]; 
  end 
endfunction 
 

As can be seen and was previously mentioned, the code is simple, short, and easy to 
implement. Additionally, its structure is linear, lacking iterative search processes (like those 
present in traditional direct root finding method), making it computationally very efficient. 

2.4 Truncation error 

As we cannot evaluate completely the series (6) and we must truncate to find the desired 
values, we must estimate the error owing to this truncation: 

( ) ( )
1

2 2· ·expm
n

n m

n nR t R t a H i i t
T T
π π∞

= +

   − =    
   

∑  

We find that bounding the Fourier coefficients of the series we can obtain an error 
convergence order: 

For k>1 the Integral Convergence Criteria shows that 
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1

1

1 1 1
1

k
k k

n m m

dx m
kn x

∞∞
−

= +

≤ =
−∑ ∫

 (8)
 

Thus, a Fourier coefficient bounding of 

1
n kf A

n
≤  

will lead to an error bound for the mth Fourier summation of  

1
1 1

1 1
1

m
n k k

n m n m

Af f f A
kn m

∞ ∞

−
= + = +

− ≤ ≤ ≤
−∑ ∑ (k-1th order of convergence). 

In order to bound our estimation error, we must then find the behavior of the modulus of 
Fourier coefficients of the solution  

2·n n
nf a H i

T
π =  

 
 

when n→∞ . 

The behavior of the modulus of the Fourier coefficients na  of the excitation pulse is defined 

by the smoothness of that excitation function. In general, the smoother the function, the 
faster its coefficients decrease when n→∞  [24] and the faster the Fourier series converges 
to the original function. It can be easily proved that if f is k-differentiable, and 1)kf +  is 
piecewise continuous, then its Fourier coefficients fulfill the condition: 

2
f

n k

M
f

n +≤  (9) 

for a certain constant fM . 

Following (7), once the excitation pulse is chosen, the coefficients na  are fixed and to define 
convergence speed of series (6), the behavior of the modulus of the transfer function  

2 nH i
T
π 

 
 

 

when n→∞  must be determined. 

This behavior is analyzed in the following section, focusing on the transfer function of cross 
periodic response factors ∆

kY , that are the only ones used in the so-called RTS method and 
that relate the internal heat flow to the outside temperature. 

3. Behavior of the multi-layer one-dimensional heat conduction transfer function. 
Characteristic exponent and factor of the wall and characteristic layer factors. 
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Let us define the following notation: we will say that the real function ( )g x  is equivalent to 

( )f x   when x →∞  , and write ( ) ( )g x f x∝  if  

( )
( )

lim 1
x

g x
f x→∞

=
.
 

In a massive layer, the characteristic matrix of the kth  wall layer kM evaluated in the nth 
frequency  ns iω=  can be written as 

( )

sinh
12

cosh
12

12

cosh cosh
12 12 12

k
k

k
k

kk n
k

k k k
k k k

i nL
i nL

i n
M i

i n i n i nL L

π
απ

α πλω α

π π πλ
α α α

  
         

  =
 
 

    
       
    

 

while in a massless layer it can be written as 

( ) 1
0 1

k
k n

R
M iω  

=  
  .

 

The characteristic matrix of the entire wall will be the product of the characteristic matrices 
of the wall: 

( ) ( ) ( ) ( )
( ) ( )1

K
g n g n

g n k n
k g n g n

A i B i
M i M i

C i D i
ω ω

ω ω
ω ω=

 
= =  

  
∏

.
 

We are interested in the behavior of the moduli of the transfer functions corresponding to 
cross periodic response factors ∆

kY : 

( )
( )
1

Y n
n

H i
B i

ω
ω

=  

We can differentiate three cases: walls composed only by massive layers (not including 
interior and exterior surface resistances for convection-radiation exchange), walls with one 
or more non-consecutive massless layers (if two massless layers are consecutive, it is 
treated as one single massless layer with thermal resistance the sum of both resistances), 
and the case of extra surface resistances. 

We will analyze each case separately in the next sections. 

3.1 Massive layers and no interior or exterior resistance 

It can be proved (see Annex, Theorem 1) that for a wall composed by K massive layers and 
no massless layers: 
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( ) ( )
( ) ( )

1
12

1
1 1

1 11
1 · ·

2
ng n g n K

K
g n g n

K

A i B i n
e

C i D i n

ωω ω ω

ω ω ω

Ω

 
   Ψ   ∝ Θ
   Ψ  Ψ 

Ψ  

 (10) 

 where  

• 1
2
T
πω = , 

• 
2

1

K
k

k k

L
α=

Ω =∑  is a parameter of the wall which we have called characteristic 

exponent of the wall, 

• 
1

1

1
1

K
k

k k

−
+

=

 Ψ
Θ = + Ψ 
∏  is a parameter of the wall which we have called characteristic 

factor of the wall, and 

• 
2

· · k
k k k k

k

c λ
λ ρ

α
Ψ = =   is a parameter of the layer k called the characteristic factor 

of layer k. 

Thus, Y factors have a transfer function modulus  

( )
( )

1 /21 · · n
Y n Y

n

H i C n e
B i

ωω
ω

−Ω= ∝  

where 1·
2 KK

YC
ωΨ

=
Θ

 is a known constant. 

3.2 Embedded massless layers and no surface resistances 

We define a massive sheet of a wall as the sub-wall consisting of the set of massive layers 
between two consecutive massless layers.  

Defined this way, a wall of this type is made of two or more massive sheets separated one 
another by a massless layer (Figure 6). 
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Figure 6. Wall with two massless layers 

To obtain a general expression for (10) taking into account embedded massless layers (e.g. 
air spaces or thin metal layers) it is possible to prove (see Annex, theorem 2) that  

( ) ( ) ( )
1

' 1
' 1

1

1

' 1

' 1 ' ' ' 1, 12
11

1 1 11
11 1

' 1

1 11
1 · · ·

2

K
K

j
j

K

K K Kn K K
g n j k k

K j k

K K

n
M i e R n

n

ω ω
ω ω

ω

+

+

=

+

+Ω +

+
= =

+

 
 Ψ ∝ Θ Ψ  Ψ∑  Ψ

Ψ  

∏ ∏

where  

• K’ is the number of non-consecutive massless layers considered in the wall 
• jK  is the number of layers of  jth massive sheet, , j=1,…,K’+1. 

• jΘ is the characteristic factor of jth massive sheet j, j=1,…,K’+1. 

• kR is the thermal resistance of massless layer k, k=1,…,K’ and  
• Ω   is obtained only from the massive layers: 

2' 1

1 1

jKK
kj

j k kj

L
α

+

= =

Ω = ∑∑
 

Thus, Y factors have a transfer function modulus  

( )
( ) ( ) 1

1 ' /21 · ·
K n

Y n Y
n

H i C n e
B i

ωω
ω

− −Ω= ∝  

where 
( )

( )

' 1

' 11

1

1 '

' 1, 1

' 1 '

1
1 1

·
2 ·

·

K

j
Kj

K
K K K

Y K K

j k k
j k

C
R

ω
+

+=

−

+

+

+
= =

Ψ∑
=

Θ Ψ∏ ∏
 is a known constant. 

         Massive wythes 

           Massless layers 
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3.3 Embedded massless layers and boundary surface resistances 

In addition, the expression taking into account inside-outside resistance, which can be 
modeled as fictitious inside and outside massless layers, is (see Annex, theorem 3): 

( ) ( ) ( )
1

' 1
1

1

' 1 ' ' 1
2

11
1 0

1
1 · · · 1

2

K

j
j

iK K Kn

g n j k ik
K j k

e e

R
M i e R n R

R R

ω

ω ω−

=

+ +Ω

+
= =

 
 ∝ Θ Ψ  ∑   

∏ ∏  

with 0 eR R=  the exterior resistance of the wall and 

• K’ is the number of non-consecutive massless layers considered in the wall. 
• jK  is the number of layers of  jth massive sheet, , j=1,…,K’+1. 

• jΘ is the characteristic factor of jth massive sheet , j=1,…,K’+1. 

• kR is the thermal resistance of massless layer k, k=1,…,K’ and  
• Ω   is obtained only from the massive layers: 

2' 1

1 1

jKK
kj

j k kj

L
α

+

= =

Ω = ∑∑
 

Thus, Y factors have a transfer function modulus  

( )
( ) ( ) 1

1 ' /21 · ·
K n

Y n Y
n

H i C n e
B i

ωω
ω

− − −Ω= ∝  

where 
( )

( )

' 1

' 11

1

1 '

' 1, 1

' 1 '

1
1 1

·
2 ·

· ·

K

j
Kj

K
K K K

Y K K

i j k k
j k

C
R R

ω
+

+=

− −

+

+

+
= =

Ψ∑
=

Θ Ψ∏ ∏
 is a known constant. 

4. Error bound and order of convergence. 

Let ( )tΛ  be the excitation pulse function, k-differentiable and ( )1)k t+Λ piecewise 

continuous, 0k ≥ .   

It has been proved that   

( )

( ) 1
1 ' /2·

Y n
YK n

H i
C

n e ω

ω
− −Ω

∝  

where the definitions of YC and Ω depend on the wall type (see sections 3.1,3.2 and 3.3) and 
K’ here accounts for the number of massless layers including boundary surface resistances. 

Applying the result (9), it is clear that the Fourier coefficients ny  of the Y heat flux, 

( ) 1 /2
( ' 3)/2

1· · · n
n n Y n Y Y k Ky H i C e

n
ωω ε −Ω

+ += Λ ≤  
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with Yε as near 1 as desired. 

As a consequence, 

( ) ( ) ( )
1 /2

' 3 /2
1

1nm
Y Y k K

n m
Y t Y t C e

n
ωε

∞
−Ω

+ +
= +

− ≤ ∑  

and using (8) this can be bounded as following: 

( ) ( ) ( ) ( )
1 /2 1

' 1 /2

2 1·
2 ' 1

mm Y Y
k K

CY t Y t e
k K m

ωε −Ω +

+ +
− ≤

+ +
 

Thus, for all wall types, the convergence for Y factors using Fourier summations is potential-
exponential, with potential order at least ( )' 1 /2k K+ + , and exponential order at least 

1 /2ωΩ . 

In tables 1 and 2 a summary of the error bounds can be found. 

Table 1. Convergence and error bound details for multi-layer walls. No surface resistances considered. 

Factor 
type Error bound Convergence 

type Minimum order 

Y ( ) ( )
1 /2 1

' 1 /2

2 1·
2 ' 1

mY Y
k K

C e
k K m

ωε −Ω +

+ ++ +
 Potential- 

exponential 
Pot. 
( )' 1 /2k K+ +  

Exp. 

1 /2ωΩ  
 

Table 2. Convergence and error bound details for multi-layer walls. Surface resistances considered. 

Factor 
type Error bound Convergence 

type Minimum order 

Y ( ) ( )
1 /2 1

' 1 /2

2 1·
2 ' 1

mY Y
k K

C e
k K m

ωε −Ω +

+ ++ +
 Potential- 

exponential 
Pot. 
( )' 1 /2k K+ +  

Exp. 

1 /2ωΩ  
 

5. Results and discussion 

For the verification of the method, a set of 41 walls obtained from the categorization study 
conducted by Harris and McQuiston [25] has been considered. This study encompasses a 
wide range of construction solutions that cover almost the entire spectrum of inertias and 
typical insulation levels found in building enclosures. 

The accompanying table 3 presents the results of the number of frequencies (m) required 
to achieve a precision of 10-5 and 10-6 in response factors (Y). 

Table 3: Minimum required frequencies (m) based on precision for Y response factors . 

 m  m 
Wall  10-5 10-6 Wall  10-5 10-6 

1 24 47 22 11 13 
2 21 23 23 9 13 
3 24 46 24 12 16 
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4 23 25 25 10 13 
5 20 23 26 11 15 
6 21 24 27 9 12 
7 22 24 28 9 13 
8 21 23 29 10 13 
9 15 19 30 9 12 

10 18 21 31 8 11 
11 17 21 32 9 12 
12 19 22 33 8 11 
13 19 22 34 9 13 
14 16 20 35 7 10 
15 14 18 36 8 11 
16 15 19 37 7 10 
17 12 17 38 7 10 
18 13 16 39 7 10 
19 13 18 40 7 10 
20 15 19 41 7 9 
21 12 16    

  

It can be observed that for this type of response factors and these levels of precision, the 
number of times the characteristic matrix needs to be evaluated ranges from 7 to 47 times, 
decreasing with the thermal mass of the wall. This number of evaluations is considerably 
lower than in other methods (RF) and comparable to more recent ones such as FDR (around 
50 evaluations [26]). 

The method was originally developed to harness the simplicity of solving linear PDEs with 
periodic excitations. This obviates the need for a numerical method to solve the problem 
through an infinite superposition (a summation of Fourier harmonics) of simple analytical 
solutions. 

When examining the truncation error of the solution series, the specific nature of this 
problem (heat conduction equation in multilayer walls) leads to a strong attenuation of 
high-frequency excitation responses, rendering these harmonics negligible with minimal 
error. Consequently, the developed method proves to be intriguing due to its remarkable 
simplicity and low computational overhead, all while maintaining comparable accuracy to 
other methods for obtaining response factors. 

It is essential to note that this method is inherently confined to the acquisition of periodic 
response factors, constituting a significant limitation and precluding its universal 
applicability. Nevertheless, we contend that the broader adoption of the RTS method for 
thermal load calculations (or any other method utilizing periodic exterior temperature 
excitations) sufficiently justifies its exploration. 

5. Conclusions 
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The developed methodology facilitates the derivation of periodic response factors for 
multilayer slabs, utilized in the computation of thermal loads in building structures 
employing the widely adopted RTS method. 

This approach obviates the necessity of determining the roots of the denominator in the 
wall's transfer function, a requisite in the conventional RF method. Instead, it relies on 
Fourier series and a previously established harmonic method. 

The proposed technique is straightforward in its implementation and avoids the use of 
approximations or iterative root-finding procedures. Additionally, it is analytical (exact), 
except for the Fourier series truncation within the response analysis. 

This method demonstrates rapid convergence for the response factors, with increased 
speed corresponding to the thermal mass of the wall, resulting in minimal computational 
expense. 

 

As previously evidenced in [12], this method directly derives periodic response factors 
without the intermediate step of calculating conventional response factors and subsequent 
periodic summations. This not only saves computational time but also enhances accuracy. 

Another noteworthy advantage is that, by design, the summation of the factors consistently 
aligns with U (thermal transmittance), regardless of the selected precision. This ensures the 
preservation of energy conservation in the computation of heat flow. 

Data availability statement 

No data available. 
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Annex 

Theorem 1. For a characteristic matrix of a multi-layer massive wall, its behavior in infinity 
is defined by the following expression: 

( ) ( )
( ) ( )

1
12

1
1 1

1 11
1 · ·

2
ng n g n K

K
g n g n

K

A i B i n
e

C i D i n

ωω ω ω

ω ω ω

Ω

 
   Ψ   ∝ Θ
   Ψ  Ψ 

Ψ    

Proof: 

To prove the theorem, first recall that  

( ) ( )
( ) ( ) 1

sinh
12

cosh
12

12

cosh cosh
12 12 12

k
k

kK
kg n g n

k
kkg n g n
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It is immediate to show that  
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12 1 12exp ·12 2 24
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Then, applying the definition of Ω and kΨ , 
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∏  

we can immediately apply lemma 1 considering 1
1

11, ,k k k k
k

a b c n
n

ω
ω

= = =Ψ
Ψ

 and the 

definition of Θ to reach the desired result. 

 

Theorem 2. For a characteristic matrix of a multilayer wall with K’ non-consecutive massive 
layers, its behavior in infinity is defined by the following expression: 
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Proof: 

A multi-layer wall with K’ massless layers can be seen as K’+1 massive walls separated one 
another by a massless layer. The result of Theorem 1 can be applied to each of the K’+1 
massive sheets: 
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Applying lemma 2 with 1
1

1 ,k k k
k

b c ω
ω

= =Ψ
Ψ

to the characteristic matrix of the whole 

wall, product of the characteristic matrices of massive sheets and massless layers,  

( ) ( ) ( ) ( )1 2 '1 2 ' 11 1 1
· ··· ·

0 1 0 1 0 1
K K

g n g n g n g n

R R R
M i M i M i M iω ω ω ω+     

=      
     

 

the result is straightforward. 

 

Theorem 3. For a characteristic matrix of a multilayer wall with K’ non-consecutive massive 
layers and extreme surfaces resistances considered, its behavior in infinity is defined by the 
following expression: 

( ) ( ) ( )
1

1

' 1 ' ' 1
2

11
1 0

11 · · ·
1/ /2

K K Kn i
g n j k k

j k e i e

R
M i e R n

R R R

ω

ω ω
+ +Ω

+
= =

 
∝ Θ Ψ  

 
∏ ∏  

Proof: 
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The result is straightforward from Theorem 2 and lemma 3, renaming 0 eR R= the exterior 

surface resistance of the wall. 

 

Let us prove the following lemmas in order to facilitate the proof of the previous theorems: 

Lemma 1: 

Let 
· ·
k k

k
k k k k

a b
M

c a c b
 

=  
 

 be a finite set of matrices, , , , 1,2,... .k k ka b c k K∈ =   Then,  

( )
1

1
1 1 1 1

K K
k k K K

k k k
k kk k k k K K

a b a b
a c b

c a c b c a c b

−

+
= =

   
= +   

   
∏ ∏  

Proof: We will proceed by induction technique. 

For k=1 is immediate since a product with no factors is unity. 

Let us consider it true for n,  

( )
1

1
1 1 1 1

n n
k k K K

k k k
k kk k k k K K

a b a b
a c b

c a c b c a c b

−

+
= =

   
= +   

   
∏ ∏  

and prove it for n+1: 

( )

( ) ( ) ( )

1
1 1

1 1 1 1 1 1

1
1 1

1
1 1 1 1 1 1 1

1
1 1 1 1

1
1 1 1

·

·

n n
k k k k n n

k kk k k k k k k k n n n n

n
n n n n

k k k
k n n n n n n

n
n n n n n n n n

k k k
k n n

a b a b a b
c a c b c a c b c a c b

a b a b
a c b

c a c b c a c b

a a b c b a b c
a c b

c a a

+
+ +

= = + + + +

−
+ +

+
= + + + +

−
+ + + +

+
= +

     
= =     

     
   

= + =   
   

+ +
= +

+

∏ ∏

∏

∏ ( ) ( )

( )

1 1 1 1

1 1
1

1 1 1 1 1

n n n n n n

n
n n

k k k
k n n

b c c b a b c

a b
a c b

c a c b

+ + +

+ +
+

= + +

 
= + 

 
= +  

 
∏

 

 

Lemma 2: 

Let
1 /

·
k

k k k

b n

c n c b

 
 
  

, , ,k kb c n∈ ∈  , k=1,2, and 
1
0 1

R 
 
 

, R∈ ,. Then,  

1 2 2
2

1 1 1 2 2 2 1 1 2

1 / 1 / 1 /1
0 1· · ·

b n b n b nR
Rc n

c n c b c n c b c n c b

      
∝      

            
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Proof: 

( ) ( )

( ) ( )( )
( )( ) ( )( )

( )( )

2 2 21 2 1

1 1 1 2 2 2 1 1 1 2 2 2

2 1 2 2 2 1 2

1 2 1 2 1 2 2 1 2

2
2 1 2

1 1 2

1 / 11 / 1 / 1 /1
·

0 1· · · ·

1 / 1

1 · 1

1 /
1

·

Rc n b n Rc nb n b n b nR

c n c b c n c b c n c b c n c b

Rc n b c b n Rc n b c

c Rc n b c c b Rc n b c

b n
Rc n b c

c n c b

       + +   = =                      
 + + + +
 = = 

+ + + +  

= + + 2
2

1 1 2

1 /

·

b n
Rc n

c n c b

   
∝   

      
 

Lemma 3. 

Let
1 /

·

b n

c n c b

 
 
  

, , ,b c n∈ ∈  , and 
1
0 1

kR 
 
 

, kR ∈ , k=1,2. Then,  

21 2
1

1 2 1

11 1 / 1
1/ /0 1 0 1·

RR b n R
cR n

R R Rc n c b

      
∝      

       
 

Proof: 

( )
( ) ( )( )

( )

21 2 1

2

1 1 2 2
1

1 2 12

1 /1 1 / 1 1
·

0 1 0 1 0 1 /·

1 1 / 1
1/ //

R b nR b n R R
c n c n R b nc n c b

R c n R c n R b n R
cR n

R R Rc n c n R b n

 +        = =        +         
 + + +   = ∝     +  

 

 
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