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Abstract: In order to obtain the thermodynamic properties of compressed liquids, it is usual to
consider them as incompressible systems, since liquids and solids are well represented by this
thermodynamic model. Within this model, there are two usual hypotheses that can be derived in
two different submodels: the strictly incompressible (SI) model, which supposes a constant specific
volume v = vy, and a more general model, called temperature-dependent incompressible (TDI)
model, which relates a specific volume to temperature, v = v(T). But, usually, this difference ends
here in the thermal equation of state, and only the SI model was developed for caloric and entropic
equations. The aim of this work is to provide a complete formulation for the TDI model and show
where it can be advantageously used rather than the SI model. The study concludes that the proposed
model outperforms the traditional model in the study of subcritical liquid. One conceivable utilization
of this model is its integration into certain thermodynamic calculation software packages (e.g., EES),
which integrate the more elementary SI model into its code for certain incompressible substances.

Keywords: classical thermodynamics; incompressible substance models

1. Introduction

It is a frequent occurrence for substances in a liquid or solid state to manifest in the
analysis of energy systems, such as thermal oils, molten salts, and liquid refrigerants. In
this regard, it is noteworthy to mention that molten salts and thermal oil are used as media
for thermal energy storage and cycle fluid in solar power plants [1-4].

In order to perform energy and entropy/exergy balances for systems involving these
particular media, it becomes imperative to ascertain their thermodynamic properties,
notably encompassing internal energy, enthalpy, and entropy.

A commonly employed approach for such substances involves the utilization of a
straightforward, yet satisfactory, thermodynamic model known as the incompressible
substance model [5-7]. Within this framework, either a constant specific volume (SI
model) or a dependence solely on temperature (TDI model) is assumed, which significantly
simplifies the formulation process and facilitates the derivation of these properties by
leveraging saturation data, which are typically more readily available, or a specific heat
capacity along with corresponding pressure and temperature values.

The thermal equation of state relates volume to temperature and pressure.

v=19(T,P)

or, in differential form,

dv = vBdT — vkrdP
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where B is the coefficient of volume expansion, and kr is the isothermal compressibility
coefficient,

1 dv
P=2atl,
__lov
T= "vop|,

So far, the general form of an equation of state, understanding that their precision
and validity range will depend on the quantum mechanical model, has been applied to
describe the behavior of substances at the microscopic level and that will be reflected in the
parameters or coefficients of the equations of state.

In this point, nearly every consulted paper on engineering thermodynamics [5-7] make
an aside commenting on some particular substances whose volume does not essentially
depend on pressure and depends a very little bit on temperature. Those substances are
called incompressible substances. Their description combines the behaviors of liquids and
solids; however, this article is only concerned with liquids.

If precision is needed for the calculation of properties of liquid substances (pure or
mixtures), general equations of state are used that incorporate semi-empirical models in
the calculation of the characteristic parameters of the equation.

The modified Rakket equation [8] has been mostly used to calculate the volume of
liquids, but nowadays, cubic equations, especially Soave and Peng Robinson ones, are
preferred. Peneloux [9] used the latter to publish a volume of 233 substances with a global
deviation of 5.2%. Improvements in the accuracy of the cubic equations of state have
continued to be made, resulting in very small overall errors in the calculation of the volume
because they introduce two or more parameters characteristic of the substances, which
complicates the calculation considerably.

There are many cases in which additional hypotheses can be made for the formulation
of the general equations of state, kT = 0 (null dependence of volume with pressure) and,
sometimes, f = 0 (no dependence of volume on temperature).

Depending on whether only the first hypothesis is applied, or both, the thermal
equation of state remains, respectively:

dv = vBdT

or
do=0

This is, v = v(T) for the first model named the temperature-dependent incompressible
substance model (TDI) and v = const. for the second model called strictly incompressible
substance model (SI).

In most of the energy installations in which pumps are used, the most used model for
the working fluid is the SI model [10,11]; this model is also incorporated into the widely
used software, Engineering Equation Solver (EES).

When the first principle is analyzed, caloric equations u = u(T,v) and h = h(T, P)
arise, and when incompressible substance models were applied to these equations, only
the SI model was developed [12], resulting in

du = cdT

and
dh = ¢dT + vdP

where ¢(T) = ¢,(T) = c,(T) is the specific thermal capacity of the substance, which is
dependent only on the temperature.
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The second principle for incompressible substances is also described only through the
SI model, leading us to the expression for entropy.

c
ds = de

This paper proposes a new model called TDI for the calculation of thermodynamic proper-
ties: specific internal energy (u), specific enthalpy (h) and specific entropy (s), of liquids in
a simple way. The results were analyzed by comparing them with the ones of the strictly
incompressible substance model (SI) model, which is widely used, calculating the errors of
both with respect to a chosen equation of state. For this purpose, three different fluids were
studied, for which the aim was to find areas where the new model was applicable and
whether improvements could be obtained using the SI model.

It is shown that this model presents some advantages over the commonly used SI
model for subcritical liquids: better accuracy, simplicity, and low-cost implementation
using thermodynamical software tools.

2. Materials and Methods
2.1. Development of the Model

The starting point of the model is the thermal equation of state, where the specific
volume is independent of the pressure:

v=o(T),
Or, in terms of differentials,
dv =9'(T)dT = v-B(T)dT

2.1.1. Caloric Equations

As v, T are dependent properties, we must choose (T, P) as variables of state. So, the
proper caloric equation of state is i = h(T, P), for which the differential form is

dh = cpdT + 2

5p dap

T

With the aid of the second principle and some thermodynamic relations [6], it finally
can be written as
)ar
P

Jv
dh = c,dT + (v—TaT

and using the thermal equation of state,

v ,
3T , =9 (T) = pv
which leads to
dh = c,dT +v(1 — TB)dP 1)
and since
du = dh — Pdv — vdP
du = c,dT — T-0'(T)dP — Pv'(T)dT = (cp — PBv)dT — TPvdP ()

The first thing that can be observed is that, in contrast with the SI model, specific
internal energy, u, is a function of pressure, u = u(T, P).
Enthalpy Equation (1) is a corrected version of strictly incompressible equation,
which is
dh = cdT + vdP
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The pressure dependence of enthalpy is modified by subtracting a term, T3v, over the
specific volume, v. The specific volume usually increases with temperature, f > 0, and
dependence of enthalpy on pressure diminishes in this model with respect to that of the SI
model.

2.1.2. Constant Pressure Specific Thermal Capacity
The state function c, (T, P) fulfills the following equation for any system [6]:

dep| 0%
oP |; aT? | p
In particular, for our model,
ac
p Z
Pl — _T(T
3| = —T(T)

Which allows us to compute ¢, (T, P) for any pressure, P, when we know the function
for a determined reference pressure, Py

P ac
_ it
Cp(T,P) = Cp (T,Pref) + /me FY)

In the case of incompressible fluids, liquids, and solids, it is common to have the
tabulated density and ¢y, data for P,y = 1 atm for the function of temperature.

=g, (T, Pref) — T-0(T) (P - P,ef) 3)

2.1.3. Entropy Equations

Again, and for the previously given reasons, we chose (T, P) as the variables of state.
The second Tds equation
Tds = dh — vdP

along with some generalized thermodynamic relationships [6] lead to

_Cpyp_ 90
ds = TdT aTPdP

In our concrete case, as v = v(T),
c c
ds = ?Pd:r —o/(T)dP = %’dT — BodP (4)

Which also adds some dependency of the entropy, which pressure respect to the SI model,
which is c
= —dT
ds Td

Again, the dependence of entropy on pressure diminishes in this model.

2.2. Calculation of Properties According to the Model

At this point, equations of state in differential forms have been given. However, to
obtain values of Au, Ah and As, Equations (1), (2) and (4) must be integrated.

It is not difficult to perform these integrations, but at the same time, they are not
straightforward since they cannot be conducted using separate variables. As we observed,
potential functions in (v, P) of the differential forms must be calculated first.

2.2.1. Specific Enthalpy
The differential form for enthalpy is

dh = c,dT + (v — T-0'(T))dP
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It is easy to check that the differential form is exact, i.e., it fulfills Schwartz’s relation-
ship for integrability, since

9

ac,,

—r — — .// —
ap |, T-0"(T)

(v — T-0/(T))

It is not difficult either to check that the difference of enthalpies, once the exact
differential form (1) has been integrated, can be calculated as

M= [ (T ag )T 4 (P Bg) o Tt (1] P o

-aena)re (r=r) o]

2.2.2. Specific Internal Energy
Since Au = Ah — A(Pv), the TDI model for internal energy is:

(TZrPZ)

— A(P
(Tlrpl) ( v)

= [y (T,up)dT + [(P = Pug) o~ /(D)

Au = [ CP(T,Pref)dT—AU.Pref_ [T-v (P Pref)](Tz )
(T P
(T

T1P1) (6)
= I ep (T2 Beg JAT = 8-y = [TBo (P = Prg) | >

2.2.3. Specific Entropy

Differential form for entropy in TDI model is:
c
ds = TpdT —o/(T)dP

which is exact since it comes from a state function and integration:

o =T (0 D
(To,Py) @)
=z, T(T Pref)dT KP_PM[)[SU](TLPQ

2.3. Applications of the Model

The TDI model can be used advantageously mainly in two situations:

1. For the approximation of compressed liquid property values when saturation values
are known.

2. For the calculation of the specific internal energy (u), specific enthalpy (/) and specific
entropy (s) of any incompressible system with data of specific volume and specific
thermal capacity at a reference pressure as a function of temperature.

2.3.1. Approximation of Compressed Liquid Properties from Saturation

We can approximate the compressed liquid property values from saturation values
at the same temperature by choosing two points that lay in the same isotherm, T, using

G-,
Ah = AP-v(1 — BT)
Au = —TPv-AP

As = —AP-Bv
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2.3.2. Calculation of u, h, s of an Incompressible System

Suppose we have some tabulated data of a specific volume and a specific thermal
capacity for a given pressure (Table 1).
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Table 1. Generic incompressible system data.

T v Cp
Ty (21 Cp1
T2 (%] sz
T3 U3 Cp3

Then, using Equations (5)—(7), either using interpolation functions or quadrature rules
for integration and numerical derivations and setting origins u(Ty, Py) =0, s(Ty, P;) =0
(origin for h must be derived from u(Ty, Pp) if we want compatibility in energy balances),
we can obtain

(T,P)

"> = /TZ cp (T, Pref)dT — (0(T) = ©(To))-Pres — [T.z/(T) (P - Pref)] )

(T,P)

I = Py-o(To, Po) + /TOT (T, Preg JAT -+ [ (P = Prey)- (0= T2'(T))| (To Po)

5= /TlT %” (T, Pref)dT - [(P - Pref)-(v’(T))] glplzl)

The integral terms

ren(T2ag)ats [ (1, )ar

1

can be calculated by using a quadrature rule (trapezoidal rule, Simpson rule, etc.) when
one has discrete values of ¢, ( T, P.r ) or directly integrating the expression if available

(fitting curve). The value of v/(T) can be calculated as shown in Equation (10).

3. Results and Discussion

To check the proposed model, some compressed liquid states were considered, and
we chose water, CO,, isobutane and R134A as test substances. The selection of these fluids
was made due to their common use in the industry, particularly in the fields of power
generation and refrigeration.

The relative errors of the TDI and SI models are shown for the state functions, u, h
and s, which are defined as:

eTDI = @.100

|ZSI - Z|
=122 21100
€51 2

where z is the real value of the property obtained using the thermodynamic property
calculation software Coolprop [13] and zrpj, zs; the TDI and SI approximations. Coolprop
equations for incompressible substances can be found in [14].

Test cases were chosen fixing a reduced temperature, T, = TZ;”, common for the

different substances, such that temperature in all the substances is above the triple point,
T3, and below the critical one:

T3/Tcrit <T, <1,

and pressures above saturation for that temperature, P > Py;(T), up to the critical
pressure, i.e.,
Psut(T) < P < Py
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TDI model has better accuracy than the SI model does (Figure 5).
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