Scalable Sampling of Highly-Configurable Systems: Generating
Random Instances of the Linux Kernel

David Fernandez-Amoros
david@issi.uned.es
Universidad Nacional de Educacién a Distancia
Madrid, Spain

Christoph Mayr-Dorn
christoph.mayr-dorn@jku.at
Johannes Kepler University

Linz, Austria

ABSTRACT

Software systems are becoming increasingly configurable. A
paradigmatic example is the Linux kernel, which can be adjusted for
a tremendous variety of hardware devices, from mobile phones to
supercomputers, thanks to the thousands of configurable features
it supports. In principle, many relevant problems on configurable
systems, such as completing a partial configuration to get the sys-
tem instance that consumes the least energy or optimizes any other
quality attribute, could be solved through exhaustive analysis of all
configurations. However, configuration spaces are typically colossal
and cannot be entirely computed in practice. Alternatively, con-
figuration samples can be analyzed to approximate the answers.
Generating those samples is not trivial since features usually have
inter-dependencies that constrain the configuration space. There-
fore, getting a single valid configuration by chance is extremely
unlikely. As a result, advanced samplers are being proposed to gen-
erate random samples at a reasonable computational cost. However,
to date, no sampler can deal with highly configurable complex sys-
tems, such as the Linux kernel. This paper proposes a new sampler
that does scale for those systems, based on an original theoretical
approach called extensible logic groups. The sampler is compared
against five other approaches. Results show our tool to be the fastest
and most scalable one.

CCS CONCEPTS

« Software and its engineering — Software product lines.

KEYWORDS

random sampling, configurable systems, variability modeling, soft-
ware product lines, SAT, binary decision diagrams, Kconfig

ACM Reference Format:
David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn,
and Alexander Egyed. 2022. Scalable Sampling of Highly-Configurable

Ruben Heradio
rheradio@issi.uned.es
Universidad Nacional de Educacién a Distancia
Madrid, Spain

Alexander Egyed
alexander.egyed@jku.at
Johannes Kepler University
Linz, Austria

Systems: Generating Random Instances of the Linux Kernel. In 37th
IEEE/ACM International Conference on Automated Software Engineering
(ASE °22), October 10-14, 2022, Rochester, MI, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3551349.3556899

1 INTRODUCTION

The configuration space of most configurable systems is so vast that
cannot be computed. For instance, a system from the automotive
industry widely studied in the Software Product Line (SPL) litera-
ture encompasses 5.260 - 105441 configurations [15]. Due to this
limitation, the only way to solve many relevant problems related
to those systems is by processing a configuration sample that is
tractable and representative of the whole population of configu-
rations [22, 28, 37]. Indeed, the random sampling of constrained
solution spaces is not only critical for highly-configurable systems
[16, 27, 30, 32-34, 42], but also for many other domains, such as
software testing [11, 14, 24, 31] decision-making [17], artificial intel-
ligence [18, 35], SPLs [16, 27, 30, 32-34, 42], hardware verification
[20, 43-45] and optimization [28, 32]. However, generating such
random samples is challenging, due to logical constraints between
the features, which means that only a small fraction of the possible
configurations are valid. For this reason, existing methods do not
scale for many important highly-configurable systems, such as the
Linux kernel. This paper presents a new approach that does, by
breaking a complex exponential problem into a sequence of simpler,
still exponential, ones.

The configurability of a system is generally specified with some
type of variability model through a graphical or a textual notation.
For example, the Feature Model (FM) [19] in Figure 1 visually repre-
sents the configurability of a video renderer module, which is able
to provide software implementations adapted to different hardware
capabilities. The parentheses indicate abbreviated feature names.
The root feature is R, and a choice must be made between hardware
rendering, HW, or generic software rendering, SW. If the latter is
chosen, there are five optional features which may or may not be
present in the final configuration. There are also two integer-valued
features which will sometimes be omitted for clarity of exposition, a
situation we will refer to as the simplified renderer. The hierarchical
structure of FMs typically denotes that features near the top are
more important than the ones at the bottom. Also, FMs often include
additional cross-tree constraints, in this case, related to the amount
of memory: 0 < Framebuffer_ Memory< Graphics_Memory. This
model showcases some of the problems that typically arise when

ASE ’22, October 10-14, 2022, Rochester, M1, USA

performing automatic analysis of FMs, so we use it as a running
example.

Figure 1: Renderer FM

Renderer
R) Legend

‘ Mandatory
(B Optional

Full Generic
Xor
Hardware Software /‘\
Rendering | |Rendering
(HW) (SW)

O
ImageBlit

(IB) Memory
Integer Integer
(GM) (FM)

0 < Framebuffer_Memory< Graphics_Memory

Variability model analysis has evolved to the point where it is
now common to also include features which allow discrete val-
ues, such as strings and numerical attributes, as opposed to simple
yes/no features. Automatic analyses usually entail translating the
models to Boolean logic and then analyzing the resulting formula,
which is not always feasible. While Boolean features produce rela-
tively simple formulas, discrete and numeric values result in more
complicated translations. For example, in response to the SPLC’19
scalability challenge [33], Thiim et al. [39] studied sampling over
KconriG-based models. KCONFIG is the textual variability notation
used in the Linux kernel and other open-source projects [12]. Ac-
cording to Thiim et al’s empirical results, only the smallest models
could be sampled due to scalability limitations.

Part of the problem lies on uniformity. Uniform Random Sam-
pling (URS) produces each of the possible configurations with equal
probability [16], i.e., every member of the configuration population
is equally likely to be included in a sample. Knuth, Heradio et al.
[15, 21] showed that, satisfying uniformity is related to the #SAT
problem, which is known to be harder than SAT [5]. Therefore,
uniformity should not be taken for granted: the higher the stan-
dard for uniformity, the poorer the scalability and running time
performance.

Moreover, uniform sampling is often inadequate to analyze hi-
erarchical variability models, which are the most widely used in
practice [2-4]. For example, imagine we are interested in testing the
renderer system in Figure 1. The Full Hardware Rendering (HW)
feature plays an important role, is likely to contain bugs, and it
influences the performance of the resulting configuration. As only
one configuration out of the 33 possible ones includes HW, the
odds of finding this feature in a configuration sampled uniformly
are 1/33 for the simplified renderer, and negligible if the numerical
attributes are used (e.g., considering 32-bit integers, the probability
is ﬁ < 10_10). For this reason, HW would not be found even in a
big uniform sample. As a result, alternative non-uniform sampling
methods are often preferred, such as t-wise testing [13, 14, 23-26]
in which a configuration sample is produced to try covering in-
stances of all the valid combinations of a number ¢ of features (e.g.

David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

pairs, triplets, etc.). However, even these non-uniform methods
have serious scalability limitations [24].

This paper proposes a hierarchical approach to random sampling,
which drops uniformity claims to achieve scalability while preserv-
ing fairness in the sense that generating a sample involves making
choices, and these choices are grouped in such a way that each
group gives equal weight to each possible outcome. For example,
in the simplified renderer, the first choice is between HW and SW.
Our fair hierarchical sampler would choose HW half of the time
instead of 1/33 for a uniform sampler.

We present a formalism, called Extensible Logic Groups (ELGs),
to decompose a big sampling problem into several smaller ones
and sample them in sequence in such a way that each group is
sampled uniformly. An implementation of the approach, named
KcONFIGSAMPLER is used to sample over KconFiG models. Kcon-
FIGSAMPLER performance is compared against five other state-of-
the-art samplers, showing that it is the only one capable of dealing
with large models, including the Linux kernel, while being faster
across the board.

The remainder of this paper is organized as follows: Section 2
discusses related work about random sampling in the context of
configurable systems. Section 3 introduces the theoretical concept
of ELGs. Section 4 shows how to express a collection of Kconrig
files as a sequence of ELGs. The results of the empirical evaluation
of KCONFIGSAMPLER are presented in Section 5, followed by a dis-
cussion of threats to validity in Section 6, after which we finish
with our conclusions in Section 7.

2 RELATED WORK

Random sampling techniques come from two different families:
those that rely on Binary Decision Diagrams (BDDs) and their ex-
tensions, and those relying on Davis-Putnam-Logemann-Loveland
(DPLL)-style model counters, which will be explained later. At first
glance, the scalability of the approaches seems very different across
these families. Some of the techniques also take advantage of inde-
pendent support sets [9]: “A subset of variables whose values uniquely
determine the values of the remaining variables in any satisfying as-
signment to the formula”. For tools relying on independent support,
the task is reduced to performing URS only on the independent
support and then merely determining the value of the rest of the
variables.

BDDs [6], as shown in Figure 2, are used to represent logic
values as an alternative to logical formulae. A BDD is a top-down
directed acyclic graph with one root. Each node has an associated
variable and two children: the low child, connected with a dotted
line, meaning that the corresponding Boolean variable is set to
false, and the high child, connected via a straight line, meaning
that the variable is set to true. It is similar to a binary decision tree
in which a graph is used, instead of a tree, to reduce the number
of nodes by merging any isomorphic subgraphs into one. There
are also two sink nodes, called 0 and 1, which represent the logical
values false and true, respectively. The variables are ordered, which
means that the variable of the parent precedes that of the child in
the ordering. If both children of a node are the same, the parent is
omitted, which means that the variables of a parent and child need
not be consecutive. The input formula to build a BDD is not required

Scalable Sampling of Highly-Configurable Systems: Generating Random Instances of the Linux Kernel

Level 0

1/33 | HW
. Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Figure 2: BDD of the simplified renderer FM

to be in any logical form, which is an advantage over DPLL methods.
On the other hand, the number of nodes in a BDD is very sensitive
to the variable ordering, to the point that an adequate ordering can
often mean the difference between being able to build the BDD or
not, and for that they have been progressively abandoned by some
of the research community in favor of other structures that extend
BDDs. As a conclusion, a random configuration can be found simply
by traversing the graph from the root to node 1. When we follow
the high child, the corresponding variable will be set to true and
when the low child is followed, the variable is set to false.

DPLL [10] is the basis of a number of SAT solvers and model
counters. It is customary for those to require the input to be in CNF,
which often requires the use of techniques such as the Tseitin trans-
formation [41] which adds up to one new artificial variable for
each connective in a logical formula, plus a number of additional
constraints. In its basic form, DPLL model counting consists of
partially building and traversing a binary search tree, tossing vari-
able values and simplifying the clauses with the decisions taken,

!Conjunctive Normal Form, a conjunction of clauses. A clause is a disjunction of
literals. A literal is a variable or its negation.

ASE 22, October 1014, 2022, Rochester, MI, USA

and then counting the number of solutions in each branch. The
whole search tree is not created because at some point in each
branch either a) the remaining clauses are simple enough that the
number of solutions can be counted directly or b) a conflict has
been discovered and there are no solutions in the branch, which is
often not detected immediately after the wrong decision has been
made. The basic algorithm has been improved, among other things,
with multilevel backtracking and conflict-driven clause learning, in
which new clauses are learned from conflicts to speed up detecting
conflicts.

We start our review of random sampling approaches with Yuan
et al. [45], who used BDDs to encode circuits into logical constraints.
These BDDs were then used to generate random test instances using
two procedures: The WEIGHT procedure, in which probabilities are
computed for each node, and the waLk procedure, in which the
BDD is randomly traversed from the root to the true node according
to the node probabilities computed before to generate a random test
instance. The WEIGHT procedure relies on a set of prior probabilities
for input variables, called biases, so the generation is not uniform.
The approach was tested on a benchmark ranging from 76 to 1,396
variables.

The first URS algorithm for logical formulae was presented by
Donald Knuth in Section 7.1.4 of [21]. Knuth described the algo-
rithms in passing, but since they have been so influential, it is
convenient to show them explicitly. The algorithms use a BDD
as input. First, some properties of the BDD are computed before
the generation takes place: The nodes in the BDD are traversed in
reverse topological order, that is, from bottom to top, and for each
node, the number of valid configurations deriving from the node
is computed using that same information from its children. This
information is then used to decorate each node with the probabil-
ity, p, of reaching the 1 node through the high child in a random
walk, as described in Algorithm 1. Figure 2 shows a BDD for the
simplified renderer and the probability for each node. Generating a
random configuration is as simple as traversing the BDD from the
root to node 1; in each node with probability p, the next node is
chosen as a Bernouilli(p) trial (i.e., the next node is the high child
with probability p or the low child with probability 1 — p). If the
levels of the node and the selected child are not contiguous, the
corresponding variables are assigned as Bernouilli(1/2) trials (i.e.,
they have the same probability of being assigned true or false) a sit-
uation described in Algorithm 2 with a function called randomBool.
This algorithm is the same as Yuan et al’s WALK procedure[45].

Chakraborty et al. [8] presented a tool called UNIWIT that used
universal hashing functions to partition the search space into
roughly equivalent cells. Once a cell has been decided upon, Cryp-
TOMINISAT? is called to get witnesses (i.e., solutions). UNIWIT was
evaluated against a circuit benchmark ranging from 214 to 7,624
variables. The authors mention that the benchmarks, when viewed
as circuits, had up to 695 inputs, and 21 of them had more than
95 inputs each. Interestingly, they report trying to build BDDs for
those 21 instances, but failed for 18 of them.

A later iteration of the tool was renamed UNIGEN [9] and was
tested again on a hardware benchmark between 515 and 486,193
variables. The independent support ranged from 31 to 72 variables,

Zhitps://www.msoos.org/cryptominisat2

ASE ’22, October 10-14, 2022, Rochester, M1, USA

Algorithm 1 Node probability computation in Knuth’s algorithm

1: function ANNOTATE(bdd)

2 for t € ReverseLevelOrder(bdd) do

3 if t = 0 then

4: count(t) « 0

5 else if t = 1 then

6 count(t) « 1

7 else

8 thenPart «— count(t.high)2le”el(t'high)_lwel(t)
9: elsePart «— count(t.low)2level(t.low)-level(r)
10: count(t) « thenPart + elsePart

11: Pr(t) « thenPart/count(t)

12: return bdd

Algorithm 2 Knuth’s random sampling algorithm

1: function GENERATE(bdd)

2 conf « sequence of size level(1) initialized to false
3: pos «— 0

4: trav « root(bdd)
5 if trav = 0 then
6 return conf

> bdd represents false

7: while trav # 1 do

8: while pos < level(trav) do > Manage jumps
9: conf[pos] < randomBoolean() > true or false
10: pos < pos + 1

11: if random() < Pr(trav) then > 0 < random() < 1
12: trav < trav.high

13: conf[pos] « true

14: else

15: trav « trav.low

16: pos = pos + 1

17: while pos < level(1) do > Manage jumps

18: conf[pos] « randomBoolean() > true or false
19: pos < pos + 1
20: return conf

however, which means that sampling was performed only between
31 and 72 variables. Finally, another iteration called UNIGEN2, was
described in [7] and testing reached up to 777,009 variables, al-
though the independent sets ranged from 32 to 45. The benchmark
includes many instances from proprietary sources, ISCAS® circuits,
simplified KcoNF1G models and bit-blasted integer (i.e., a represen-
tation of an integer using a vector of Boolean variables representing
the bits) manipulation formulas from the SMTLIB. The variable
sizes should be taken with a grain of salt, especially since it is cus-
tomary to employ the Tseitin algorithm to obtain the CNF (which
can multiply the number of variables by adding artificial variables).
Consider, for instance, test example tutorial3: It is the biggest
publicly available instance with 486,193 variables, but the minimal
independent support is claimed to only have 30 variables, which
means the whole model is a Boolean function of just 30 variables.

3https:/ /ieee-cas.org/international-symposium-circuits-and-systems-iscas
“http://smtlib.cs.uiowa.edu

David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

The implementation of UNIGEN2 complains that, if no independent
support is provided, the process will be very slow.

Oh et al. [28] used counting BDDs to generate random samples
to guide the search for near-optimal configurations. The feature
models ranged from 38 to 62 features, which are already bigger than
the support sets reported for UNIGEN2. The authors later mentioned
that the use of counting BDDs was a limiting experimental factor.
Another tool named SMARCH [29], built on top of sHARPSAT [40],
counts the number of solutions and then a random number is gen-
erated to select one of those solutions. A binary search is applied
to get the solution in question by determining the value of each
variable successively with the aid of more calls to sHARPSAT. There
is no caching of calls to SHARPSAT some of which must repeat very
often. Five models derived by approximating the KCONFIG seman-
tics of the smaller KconFiG-based projects were analyzed. The size
of the models ranged from 94 to 998 variables. The tool was used
later [31] to measure t-wise testing coverage on a model with 771
variables.

QUICKSAMPLER is another sampling tool due to Dutra et al. [11].
It works by first generating a candidate solution randomly, and
then applying a MAX-SAT solver to find a solution similar to the
candidate. From there, a series of mutations are applied (i.e., flipping
the value of some variables) to generate some more candidates until
the next call to the MAX-SAT solver. QUICKSAMPLER is intended for
fuzz testing, so it does not matter if some candidates are not real
solutions to the constraints. QUICKSAMPLER was evaluated against
the same benchmark as UNIGEN2 and it also takes advantage of
independent support sets, whose reported sizes range from 17 to
481 variables.

Achlioptas et al. [1] introduced SPUR, a modification of sHARP-
SAT. SPUR performs a DPLL counting search like sHARPSAT,
caching components for efficiency. It also stores partial solutions
to produce combined solutions to the global problem, a technique
called reservoir sampling. It is tested against several benchmarks
varying from 14 to over 375,000 variables, but the biggest test in-
stances are not publicly available.

The last sampling tool in this review, named KUS, was presented
by Sharma et al. [36]. KUS uses a variant of BDDs, called Deter-
ministic Decomposable Negation Normal Form (d-DNNF), which is
a strict superset of BDDs, to perform URS. A d-DNNF is a graph
consisting of AND nodes and OR nodes. Knuth’s algorithms are
generalized for this structure. The OR nodes represent disjunctions
over disjoint variables, so the probabilities of the children can be
added after some adjustment to get the probability of the parent.
AND nodes also feature disjoint variable sets, so probabilities can be
computed by multiplying the adjusted probabilities of the children.
KUS relies on p4, a d-DNNF compiler. An advantage of KUS is that
the whole sample is generated with a single traversal of the graph.
KUS is evaluated successfully on a set of problems ranging from
100 to 3,979 variables, being faster than SPUR and UN1GeN2. It is a
very fast algorithm, provided building the d-DNNF is viable.

We will perform a comparison of SMARCH, UNIGEN2, QUICK-
SAMPLER, SPUR and KUS with our own approach, KCONFIGSAMPLER,
to asses their scalability and performance in Section 5. SMARCH
is useful mainly as a baseline. UNIGEN2 and QUICKSAMPLER are
supposed to struggle without a support set. SPUR will show the
limits of optimized DPLL search and we will push the ability of

Scalable Sampling of Highly-Configurable Systems: Generating Random Instances of the Linux Kernel

the p4 compiler, which KUS depends upon, to obtain the d-DNNF
graphs.

3 EXTENSIBLE LOGIC GROUPS

All of the approaches discussed in Section 2 share the same draw-
back: Scalability. The problem is that the number of nodes can grow
exponentially with the number of variables, meaning that it is often
not possible to build the graph, for BDDs and d-DNNFs [38], or to
explore the search tree for DPLL samplers. Our approach to random
sampling revolves around decomposing the problem into smaller
subproblems and then solving them sequentially. In particular, we
will translate the FM to a conjunction of propositional formulae
which we break into smaller groups.

In the following, X will be used to denote a set of variables,
F(X) will be the set of Boolean formulae over X and o will be an
assignment of variables to the values T and L.

Let (G1, G2, ..., Gn) be a sequence of groups, such that each
group Gi is a pair (O;, C;) where {Oi};c(1,2,...,n) s a partition
of X, thatis, O; C X, U?zl()i = Xand O; N Oj =0ifi # j,
and C; € 7:(U§:1 Oj). For each group G; we call 7; = U;;} Oj its
input variables and O; its output variables. With this definition,
each C; € F(I; U 0;), that is, the constraint of each group is a
formula over the input and output variables in its group.

DEFINITION 1. A sequence of groups is called extensible, if and
only if for any assignment o; over the variables in 1; UO; that satisfies
Ci, there is a 0j41 assignment over I;11 U Oj41 that extends o; and
is a satisfying assignment of Cj1.

The usefulness of ELGs is that if we have a method to perform
URS on constraints, then we could sample each group in an ELG
consecutively and obtain a random sample of the whole problem.
This sampling method would be locally uniform, but not necessarily
globally uniform. Building ELGs seems easy in general, we will
show how to do it for translations of Kconfig files in Section 4. In the
case of the renderer feature model in Figure 1, we can decompose
the problem into several groups, which we have represented in
tabular fashion in Table 1. Each row of the table represents one
group, explicitly showing the relevant input variables, the output
variables and the constraint.

Table 1: ELGs of the Renderer FM in tabular form

Input Output
Variables Variables Constraint
Contain
R R
HW, SW (HW Vv SW) A (=HW Vv =SW)
SW TXT TXT —» SW
SW VP VP - SW
SW CA CA - SW
SW 1B IB - SW
SW FR FR — SW
SW GM 0<GMA (GM > 0 — SW)
SW, GM FM 0<FMAFM < GM

ASE 22, October 1014, 2022, Rochester, MI, USA

In an ELG sequence, for each group G;, we can choose any
variable in O; as a representative of the group, which we will call
the head of the group.

As noted earlier, we need a way to perform URS on each group
in order to get a random sample. In this example, we can see that
Ris always true. Next we would need to choose between HW and
SW. If HW is true, then TXT, VP, CA and IB are false, and GM
and FM are set to zero. If SW is true, then we can choose values
for all variables, provided that FM < GM. When evaluating each
constraint, the input variables already have a value.

We have chosen BDDs to implement URS on each group because
it is a concept with solid theoretical foundations and good tool
support. A forest of BDDs needs a shared variable ordering, but
that comes naturally for an ELG; any ordering that places first the
output variables of the first group, then the output variables of the
second group and so on will do. We choose the first output variable
of a group as the group head.

In this way, the input variables of a group are all the variables
in the ordering preceding the head, and the output variables are
the variables in the ordering from the head until the next head (not
included).

We will show that scalability issues are mitigated by using groups
with a small number of output variables.

Figure 3: BDD forest of the simplified Renderer FM

The idea is to generate a solution o for the first group and then
extend each such solution to the next group until we finish with all
the groups. Note that when a certain group is considered, we already
know the values for all its input variables. A naive approach would
simplify the formulas in a group, substituting the input variables
with their values, and then build a BDD and perform URS on it
using Knuth’s algorithms. This would be rather slow because new
BDDs should be created and annotated for each group for each new
solution.

However, it is better to build a BDD for each group beforehand
and use them throughout the sampling process: We only need to
start from the root of a BDD and traverse the graph according to the
values of the input variables, which go before the output variables
in the BDD ordering. When we get to the nodes corresponding to
output variables, we can follow Knuth’s algorithm and decide the

ASE ’22, October 10-14, 2022, Rochester, M1, USA

value according to the probability. Because the annotation algorithm
works bottom-up, the probabilities are the same, regardless of the
value of the input variables. In this way, we only need to annotate
the forest of BDDs once, and the process should be rather efficient.
As an added bonus, some of the nodes may be shared between
different BDDs, reducing the overall size of the graph.

The first step, then, to perform random sampling using ELGs is
to annotate the nodes with probabilities. We have carefully worded
Algorithm 1 so that it can be used as is to decorate the nodes of a
forest of BDDs instead of a single BDD. Figure 3 shows the result
of annotating the forest of BDDs with the node probabilities for
the simplified example. Input nodes (i.e., nodes corresponding to
input variables) are shown in white, while output nodes are shown
in gray. Input nodes have no probabilities associated because their
values are already known at the time of traversal. The root nodes of
the forest of BDDs to traverse sequentially are R, HW, SW5, SW3,
SWy4, SW5 and SWy and the heads are the corresponding variables.

After that, we can call Algorithm 3 to generate as many random
configurations as we need. R can only be true, the probability for
HW is one half and if HW is true, all the options TXT, VP, CA, IB
and FR are false, otherwise, each option can be taken or not with
equal probability. The difference with this approach as opposed to
using only one BDD, is that all configurations are not equally likely.

Algorithm 3 Random sampling over ELGs

1: function GENERATE(forest, heads)

2: > heads is a vector of the position of the first

3: > output variable for each group

4 conf « boolean sequence initialized to false
5 for i « 0to size(heads) — 1 do
6 trav < roots(forest)[i]

7: pos «— heads]i]

8 while level(trav) < pos do
9 if conf[level(trav)] then

> Read input variables

10: trav « high(trav)

11: else

12: trav < low(trav)

13: while trav # 1 do > Generate output variables

14: while pos < level(trav) do > Manage jumps
15: confpos] « randomBool()

16: pos «— pos +1

17: if random() < Pr(trav) then

18: conf[pos] = true

19: trav < high(trav)

20: else

21: trav < low(trav)

22 while pos < level(1) do > Manage jumps
23: conf[pos] « randomBool()

24: pos < pos +1

25: return conf

An interesting property of the sampling algorithm is that the
probability of each generated configuration can be computed multi-
plying the probabilities of the output nodes traversed in Algorithm
3: For a node with probability p, if the high child is chosen, we
multiply by p, if the low child is followed, we multiply by 1 — p.

David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

Figure 4: Sample KCONFIG snippet

config SERIAL_CORE
tristate

config SERIAL_8250
tristate "8250/16550 and compatible serial support"
SERIAL_CORE
---help---
This selects whether you want to include the driver
for the standard serial ports.

| config SERIAL_8250_NR_UARTS
int "Maximum number of 8250/16550 serial ports"
depends on SERIAL_8250
default "4"
help
Set this to the number of serial ports you want the
driver to support.

71 config SERIAL_8250_RUNTIME_UARTS

int "Number of serial ports to register at runtime"
depends on SERIAL_8250

range @ SERIAL_8250_NR_UARTS

default "4"

help

Set this to the maximum number of serial ports you
want the kernel to register at boot time.

This sampling method is not straightforward: Each particular
problem has to be tailored to build groups conforming to the ELG
definition, as we will do for the KconriG language in the next
section in order to sample the Linux kernel, but we believe it is
general enough to be useful in many situations. Digital circuits, for
instance, is another prospective application field because there are
clear definitions for each gate. The key is to group together the
constraints in which a variable is an output value, which is why it
is easier to work with intermediate level languages to delimit the
groups than with the logic translations directly.

4 IMPLEMENTING ELGS FOR KCONFIG

So far, we have explained how to perform random sampling for
a sequence of ELGs, but the applicability of the approach hinges
on creating suitable ELGs for a particular problem. In this section,
we will show how to build the logic groups for KcoNFig code.
KcoNFiG is a domain specific language used to configure software
projects, the Linux kernel being the original and most prominent
representative. The usual workflow to get a valid configuration
involves using a Kconfig interpreter application to present the user,
an application engineer, with a series of questions about the values
of the features. The final product is a configuration file which is
then used as a roadmap to compile the project.

Figure 4 shows a snippet of KcoNFIG code from the LiNux ker-
nel. While we will not delve into KCONFIG’s particularsS, a few
details are relevant. KconFIG revolves around configs, a sort of
typed variables, whose values are determined by interpreting the
code and asking the user for the value of each config, possibly with
some values ruled out by constraints imposed by the Kconfig code.
If only one value is possible, the user is not bothered. There are
five types: bool, tristate, string, hex and int. A typical usage
of bool configs is to determine if a specific C source file is to be
compiled or not. Tristate configs extend this concept allowing

5 A more detailed explanation can be found in [12].

Scalable Sampling of Highly-Configurable Systems: Generating Random Instances of the Linux Kernel

Figure 5: A KcoNFIG choice structure

choice
prompt "Platform"
default PLATFORM_LINUX

| config PLATFORM_LINUX
bool "Linux"

config PLATFORM_CYGWIN
bool "Cygwin"

config PLATFORM_WIN32
12) bool "Win32"
13)

11| endchoice

a source file to be compiled as a loadable module. The remaining
config types are mostly used to define preprocessor macros for
source files. The numeric types int and hex may sporadically be in-
volved in ordering comparisons. In the example code, it is required
that the value of SERIAL_8250_RUNTIME_UARTS ranges from 0 to
SERIAL_8250_NR_UARTS. Evaluating a config, ¢, will typically re-
quire knowing the value of other configs, which means its groups
have to precede the group(s)® for c. It is similar, but not the same sit-
uation as the support set for UNIGEN2 and QUICKSAMPLER, because
most configs have a prompt, meaning that the user will be asked
to input the value if there is more than one acceptable value. For
this reason, the input variables can restrict the admissible values
for output variables, but usually not determine them. Another im-
portant construction of the KcoNFIG language is a choice between
configs, which are called members, an example of which is shown
in Figure 5. While there are several types of choices, the key is that
members are mutually exclusive, i.e., only one member can be true
at the same time. All the language constructions, such as depends
and selects, are covered in the translation to logic.

Before we continue with the group ordering algorithm, it is
convenient to explain the encoding scheme. Table 2 shows how the
different types can be encoded in Boolean logic. Bool configs are
the easiest, with one variable of the same name. Tristate configs
require two mutually exclusive Boolean variables’ to represent the
values yes, no and module. Strings require one variable for each
possible value mentioned in the Kconfig code (e.g., as a suggestion
to the user or used in a comparison). A special value OTHERVAL is
considered for strings when the user can input any value, and should
be interpreted as “a value different from all the others”. For int and
hex values, there are two possibilities: If no ordering is involved,
they are treated like strings. Otherwise, they are bit-blasted as
32-bit integers, to mimic the KCONFIG interpreter’s behavior, with
one variable for sign and a master variable indicating whether the
config is enabled or not. Sometimes the master or the sign are not
needed, also the range of an integer is sometimes constrained so
that fewer bits are necessary, which is why all the bits are marked
as optional.

To obtain the variable and group ordering, we map each config
to its required groups and use Algorithm 4. The idea is that the
configs that do not depend on other configs values in any way (i.e.,

%A complex config may be encoded using several Boolean variables and several groups
"Meaning that both cannot be true at the same time

ASE 22, October 1014, 2022, Rochester, MI, USA

Table 2: KcoNFIG translation encoding

Type Name Encoding variables

boolean_X

tristate_X

tristate_X_M

for each value Sy, So, ..., S,
mentioned in KCONFIG code,
string_S_EQ_S;
string_S_EQ_S,

boolean X
tristate X

string S

string_S_EQ_S,
string_S_EQ_OTHERVAL (optional)
Same as string if no

ordering is involved,

Bit-blasted otherwise:
int_N_MASTER (optional)
int_N_SIGN (optional)
int_N_BIT_0

int _N_BIT_1 (optional)

int N

int_N_BIT_31 (optional)
hex Same as int

they have no input variables) should go first. Then, as their values
become available, they are removed from the required groups of
the other configs and new configs with an empty requirements
can be added the ordering and so on. Each group is represented
by a group head (one of the output variables). The result of the
algorithm is a group and variable order which is used for all the
BDDs in the forest so that Definition 1 holds by construction. If the
groups have circular requirements, the algorithm will fail. To see
why, consider three groups, A, B and C, such that B needs values
output in A, C needs values output in B, and A needs values output
in C. There is no possible ordering of the groups. This problem
can be avoided joining the three groups: the output variables are
joined and the constraint is the conjunction of the constraints. The
KconriG interpreter follows a similar algorithm to derive an evalu-
ation ordering, since the subtleties of the language often prevent
evaluating configs in order of appearance: In the example, the first
config, SERIAL_CORE, has SERTAL_8250 in its required groups. If
the user answers yes to SERIAL_8250, then SERIAL_CORE becomes
true (it is selected by SERIAL_8250). For this reason, SERIAL_8250
has to precede SERIAL_CORE in the ordering.

For the ELGs approach to succeed, choosing the right granularity
is essential. Having a large number of small groups is ideal to
prevent an explosion of nodes, but that might violate the ELG
property. Our initial aim was to create one logic group for each
config declaration in the Kconfig code and one group per choice
construction.

The original setup did not work. Building a BDD with several
bit-blasted integers can explode easily in the presence of ordering
constraints. The reason is that BDDs have bad memory: Whilst
the nodes in a binary search tree always remember the explicit
value of the preceding variables, BDDs do not have that ability

ASE ’22, October 10-14, 2022, Rochester, M1, USA

Algorithm 4 Determining the group and variable order

1: function oRDERGROUPS(groups, requiredGroups)

2: » requiredGroups maps group heads with other groups heads
3: whose output variables it depends upon

4 ordering < 0

5 orderedHeads < 0

6 changes <« T

7 while —empty(requiredGroups) A changes do

8 changes «— L

9: for each groupHead € groups do
10: if empty(requiredGroups(groupHead)) then

11: changes «— T

12: add(outputVariables(groupHead), ordering)

13: add(groupHead, orderedHeads)

14: > delete groupHead from all requiredGroups
15: for each otherHead € groups(forest) do

16: delete groupHead from

17: requiredGroups(groups, otherHead)

18: if —empty(requiredGroups(group) then

19: No suitable order found

20 return ordering and orderedHeads

because a node may have several parents, which saves nodes but
loses information. If a new constraint is added to an existing BDD,
such as a — b, with a preceding b in the variable ordering, this
requires remembering if a is true until the level of b. To recover
the explicit value of a particular variable may require adding more
nodes, and the further away the variable needs to be remembered,
the more nodes may be added. A look at the formula for comparing
two bit-blasted integers, x and y of length m, shows where the
problem lies. The relation x < y can be expressed as:

(Xxm = ym) V (Xm © Ym A Xm—1 = Ym-1) V...V
V(Xm © Ym AXm-1 © Ym-1 A ... AXo < Yo)

Each bit is always compared with its equally significant coun-
terpart. That is why it is very convenient to have the inte-
gers aligned, so that all the master variables are consecutive,
all the sign variables are together and every ith bit are also
grouped together in the variable ordering. In the KCONFIG snip-
pet, we can see that SERIAL_8250_RUNTIME_UARTS depends on
SERIAL_8250_NR_UARTS, so all the variables of SERIAL_8250_NR_
UARTS precede those of SERIAL_8250_RUNTIME_UARTS. The sepa-
ration between concerned bits is 32 variables long. Since it is not
possible to build the BDD for SERIAL_8250_RUNTIME_UARTS under
these conditions, our first reaction was to separate each bit variable
in its own group, so that each bit of SERIAL_8250_RUNTIME_UARTS
could use its counterpart in SERIAL_8250_NR_UARTS as an input
variable. Sadly, we discovered that, in the general case, circular
requirements can appear if there are other config declarations in
between the numeric configs being compared. In that case, Algo-
rithm 4 would never end because no suitable ordering can be found.
Finally, we resorted to joining groups involved in ordering con-
straints and the groups in between into only one group, with the
bits aligned.

David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

We got a little further building the BDDs in this way, but this
strategy also failed. Some config definitions of type string (also
int and hex when encoded as strings) are too complicated and the
BDDs still blow up. When there is no prompt for the user to input
a value (i.e., the output variables are fully determined by the input
variables), it is possible to split the original groups so that each
individual string value is the output variable of its own group. We
tried to build the forest of BDDs with this finer-grained setup, only
to find it still blew up.

The solution was to add some constraints already present in
other groups. If two mutually exclusive input variables appear in a
group, it is very convenient to include that information in the group,
even if it is already present in their defining groups, to keep the
BDD size under control. There are two important sources of such
exclusive variables: string values are mutually exclusive (i.e., a
string cannot have two different values) as well as choice members.
Enriching the groups with this information reduced the number of
nodes to a manageable degree, as we will show in Section 5.

5 EXPERIMENTAL RESULTS
5.1 Research questions

We have structured the evaluation around two Research Questions:

e RQ1:Feasibility and scalability of encoding configura-
tion models as ELGs. Is it possible to synthesize ELGs for
real problems in a scalable way, e.g., for the Linux kernel?

e RQ2: Sampling performance comparison. How well
does ELG-based sampling compare to other existing sam-
plers?

5.2 Experimental setup

To evaluate the competing approaches, we have created a new
translation of KCONFIG projects to Boolean logic. While the details
are outside the scope of this paper, the translation is available
at the following public repository, which also includes all the
information and tools necessary to replicate our experiments:

https://github.com/davidfa71/Sampling-the-Linux-kernel

To the best of our knowledge, our translation is the first one that
is complete: All language constructions have been translated for
all variable types, including environment variables and numerical
ordering constraints, with an emphasis on simplifying the formulas
as much as possible. The translated systems are summarised in
Table 3. These projects are Kconfig veterans and thus commonly
used in the literature. Toybox and BusyBox are implementations
of common UNIX commands in a single executable, meant for
embedded systems, axTLS is an open source implementation of the
TLS protocol, uClibc is an minimal implementation of the C library,
EmbToolKit is a toolkit for embedded systems, which includes
BusyBox. Coreboot is an alternative to BIOS and deals mainly with
motherboards. Fiasco is a real-time microkernel. Freetz is a toolbox
for router firmware. BuildRoot is a cross-compilation tool to create
embedded Linux kernels.

The LiNnux kernel makes heavy use of tristate configs, which
explains the big difference between the number of configs (i.e.,
features) and the number of Boolean variables in the translation.

Scalable Sampling of Highly-Configurable Systems: Generating Random Instances of the Linux Kernel

Table 3: Tested systems

Model Version #Features #Variables
Fiasco 2021.04.30 78 98
AXTLS 2.1.15 94 119
TovBox 2021.08.21 340 342
p#CLIBC 0.9.33 342 386
BusyBox 1.33.0 1,050 1,370
EmBToorLKiT 1.9.0 2,824 3,392
CoreBoor 4.13 4,460 5,604
FREETZ 2021.06.15 4,870 6,172
Bum.bRooTt 2021.02.01 7,213 8,106
LiNnux x86 394 8,670 15,362

The experiments were carried out on a HP Proliant server with
two Xeon E5-2660v4 processors with 28 cores each and 224 Gb of
memory. To manage the BDDs, we used the CUDD? library, which
has built-in support for BDD forests.

5.3 ELGs feasibility and scalability (RQ1)

As explained in Section 3, our goal is to perform random sampling
using a previously synthesized BDD forest for the feature model in
question. In Section 4 we explained how to apply the ELGs approach
to a translation of KcoNFIG projects. Table 4 shows the results of
building these forests.

Table 4: Synthesis of the BDD forests

Model #Nodes #Groups Time (sec)
Fiasco 188 77 0.07
AXTLS 238 80 0.08
ToyBox 118 338 0.31
uCLIBC 799 251 0.37
BusyBox 2,260 1,034 2.70
EmBTooLKIT 37,091 2,839 17.15
CoreBoort 236,248 3,696 88.77
FREETZ 137,241 5,036 130.62
BurLpRooTt 416,987 7,042 106.02
Linux x86 422,109 8,864 229.29

We managed to successfully build the forest of BDDs for all the
evaluated projects in a reasonable amount of time. The tuning of
the ELGs has paid off to the point where even the LiNux kernel
fits in less than half a million nodes, which is surprising given the
complexity of this model. All the information is there, so it can be
considered as a precursor to a knowledge compilation representation
of the kernel. Of course, building one single BDD for the whole
kernel still seems a distant possibility, but it is just a matter of
performing an AND operation on the forest roots.

All the information about a forest can be adequately stored in
a file format called DDDMP, which interoperates with CUDD and
has fields to store the variable and root names in order, so that the

8https://github.com/ivmai/cudd

ASE 22, October 1014, 2022, Rochester, MI, USA

sampling algorithm can determine which are the input and output
variables for each BDD. The files are included in the repository.

Table 5 shows the top config contributors (with names abbre-
viated) to the number of nodes in the BDD forest. It is interesting
to note that the distribution of node numbers per config is heavily
skewed. The vast majority of features translate to a very simple
BDD. There are notable exceptions, though: a single config in Core-
BooT accounts for 78% of the nodes. Three configs account for 76%
of the nodes in FREETZ and 83% of the nodes in BuiLbRooT. For
Linux, two configs make up 73% of the nodes and removing just
four configs would leave the BDD forest with less than 100,000
nodes. These hot spots give clear indications of where to look to
improve the translation and the building of the BDDs in future
work.

5.4 Sampling performance comparison (RQ2)

In Experiment 1, we set up a number of competing samplers
[1,7,11, 29, 36] and our own KCONFIGSAMPLER to produce a sample
with 1,000 configurations within a timeout of 24 hours. Our ELG-
based sampler and encoder, KCONFIGSAMPLER, not only samples
the variables, but also decodes the Boolean variables into the corre-
sponding KcoNFIG types (string, int and so on), so that the result
is a sample of legal configurations, as far as KCONFIG is concerned,
ready to compile. To level the playing field, we instructed our ap-
proach to merely sample the Boolean variables and skip decoding.
Table 6 summarizes the results. The last column shows the results
of KconNF1GSAMPLER. We show total running times. No averages or
box-plots were deemed necessary because the sample size is big
enough. SMARCH’s less-than-stellar performance was predictable,
since it issues a call to SHARPSAT for each variable. Starting from
BusyBox, sHARPSAT is unable to even count the number of solu-
tions, the first step of the algorithm. QUICKSAMPLER is indeed faster
than UNIGENZ, but both suffer greatly from the change of context
and the lack of support sets. In KCONFIG systems, the vast majority
of configs include a prompt, i.e., a way to ask the user for the value
of a feature with some values possibly excluded (which makes sense
since the whole intent is to help the application engineer configure
the system). For this reason, the independent support would be
almost as big as the whole set of variables. This is in stark contrast
to circuits, where a few inputs are incorporated into a much bigger
number of logic gates. In any case, UNIGEN2 quickly shows its scal-
ability issues, with QuickSAMPLER following a couple of tests later.
SPUR and KUS do the best work among the alternative approaches,
with SPUR scaling up even to CoreBooT. KUS fails when the p4
d-DNNF compiler does. Building a single d-DNNF graph of the
bigger systems is somewhat similar to building a single BDD for
them, a feat that keeps eluding the SPL community. Our approach
is the only one to scale up to all the systems and it beats every other
except for ToyBox, in which SPUR was slightly faster.

We felt that Experiment 1 showed our approach in an unfavor-
able light. Because the first step is computing the node probabilities,
which does not depend on sample size, a small size makes the
approach look slower. The sample size was dictated by the short-
comings of the other approaches rather than the merits of ours,
so we tested it again to build a sample of size one million. The
results in Table 7 show that the approach has a strong performance

ASE ’22, October 10-14, 2022, Rochester, M1, USA

Model Config #Nodes %
Frasco SCHED_PIT 22 11.70
MP_MAX_CPUS 19 10.10
PF_PC 8§ 4.25
SCHED_FIXED_PRIO 7 373
PERF_CNT 6 3.19
AXTLS SSL_SERVER_ONLY 9 378
JAVA_HOME 7 294
HTTP_WEBROOT 7 294
X509_MAX_CA_CERTS 7 294
VISUAL_STUDIO_7_0 7 294
TovBox LSM_NONE 5 4.23
TEST_GLUE 4 338
MKNOD_Z 4 338
MKFIFO_Z 4 338
MKDIR_Z 4 338
pCLIBC TARGET _alpha 55 6.88
TARGET_ARCH_EQ_OTHERVAL 55 6.88
DEPRECATED_SYSCALLS 27 330
UCLIBC_FORMAT_FDPIC_ELF 22 275
UCLIBC_PWD_BUFFER_SIZE 20 250
BusyBox LAST_ID 371 1641
VI_UNDO_QUEUE_MAX 48 212
BEEP_FREQ 48 212
SYSLOGD_READ_BUFFER_SIZE 40 1.76
VI_MAX_LEN 39 172
EmBTooL ARCH_ARM_FPU_VFP 24,588 66.29
Kir BUSYB_PLATFORM_LINUX 267 0.71
NLS_STRING_EQ_zh_TW 103 0.27
NLS_STRING_EQ_zh_HK 102 0.27
NLS_STRING_EQ_zh_CN 101 0.27
CoreBoor SMBIOS_EQ_986LCD-M 185,953 78.71
VGA_EQ_1002,1304 6,926 2.90
CBFS_SIZE_EQ_0x00040000 6,500 2.75
VGA_EQ_PicassoVbios.bin 4,327 1.83
SMBIOS_EQ_51NB 4,073 1.70
FREETZ DL_SOURCE 38,707 28.20
DL_SOURCE_MD5 38,621 28.14
DL_SITE 27,839 20.28
TYPE_FIRMWARE_Q4_XX 3,072 223
DL_KERNEL_SOURCE_MD5 2,814 2.05
Buirp ARCH_SUPPORTS 171,519 41.13
Root BLEEDING_EDGE 128,769 30.88
PACKAGE _OPENSSL 46,970 11.26
PACKAGE_ZLIB 13,448 3.22
PACKAGE_LIBGLIB2 9,875 2.36
LiNnux INPUT_FF_MEMLESS 249,951 59.21
x86 FB_DDC 59,385 14.06
USB_ZERO 10,458 247
FW_LOADER 3,930 0.93
SND_PCM 2,667 0.63

Table 5: Biggest contributors to forest of BDDs

David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

and can deliver one million configurations in less than an hour,
even for the LINux FM. The other systems are too slow to repeat
Experiment 1 for one million configurations but we did it only for
ToyBox with SPUR, and it took 162 seconds, i.e., four times longer
than our approach, thus confirming our suspicion.

A final reflection concerns the use of CNF. Our translation is
not in CNF and the competing tools need it, so we had to con-
vert it. We tried the direct approach, but the transformation grew
exponentially for the bigger models, leaving us with the Tseitin
transformation [41] to contain such growth. Table 8 shows the
difference in variables before and after the transformation, and also
the growth from formula fragments into clauses. CNF is a de facto
standard in the SAT community, but it clearly affects the perfor-
mance of the tools. We tried to minimize the number of artificial
variables added but the table shows that the effect is very noticeable
in the largest systems, precisely those for which the alternative ap-
proaches failed. The relation between these two facts is intriguing
and deserves more research as it may test the limits of what can be
achieved with state-of-the-art SAT technology.

6 THREATS TO VALIDITY

The main threat to validity concerns the practical applicability
and scalability of the approach. As we have shown, groups with
a small number of variables will produce smaller BDDs, but if the
groups are too small, Algorithm 4 may fail to produce a group
ordering because of circular requirements. This problem showed up
with the range construction in Kconfig which translates to integer
ordering constraints, and we solved it automatically by joining all
the intervening groups, a simple but effective strategy. In some
cases, a group may be created that is too big for the BDD building
to succeed. Splitting a group into several ones is also possible in
some cases to keep the BDDs at bay. Supplementing the group
constraints with additional constraints between the input variables
also helped keeping the BDDs from growing too much. We feel
confident that KconFiGSAmMPLER will easily handle Kconfig projects
for the foreseeable future. In the general domain, crafting the groups
with the right granularity (i.e., big enough to avoid circularity but
small enough to be able to build BDDs) might be hard, which is
why some knowledge of the underlying semantics is so useful: One
group per definition is a good starting point.

Another aspect of the approach is the use of BDDs. ELGs can
be used with any sampling procedure, so if building BDDs should
become a limiting factor, they might be exchanged for any other
sampling method, including those evaluated in Section 5.

7 CONCLUSIONS

In this paper, we have shown how traditional approaches to random
sampling of constrained configuration spaces fail to scale to large
highly-configurable systems, specifically in the case of Kconrig
variability models, and have provided a new approach based on
extensible logic groups, which are better suited for sampling hier-
archical models, in which the upper levels are more important than
the lower ones. While deriving these groups from a problem is not
straightforward, we believe that the approach is general enough to
cover many interesting problems in other domains, including the
hardware testing problems upon which URS is usually tested.

Scalable Sampling of Highly-Configurable Systems: Generating Random Instances of the Linux Kernel

Table 6: Experiment 1:

ASE 22, October 1014, 2022, Rochester, MI, USA

Sampling time in seconds for one thousand configurations

Model SmaRrcH [29] UNIGEN2 [7] Quick SPUR [1] KUS[36] KconrFic

SAMPLER [11] SAMPLER
F1asco 6,699 7.94 0.377 0.104 0.315 0.039
AXTLS 7,268 45.89 0.421 0.205 0.450 0.054
TovBox 7,366 185.62 0.103 0.059 0.158 0.082
uCLIBC 52,740 <timeout> 3.007 7.866 1.079 0.167
BusyBox <timeout> <timeout> 13.07 365.56 6.158 0.305
EmBToOLKIT <timeout> <timeout> <timeout> <timeout> <D4 timeout> 1.322
CoreBoort <timeout> <timeout> <timeout> 2164.9 <p4 timeout> 2.650
FREETZ <timeout> <timeout> <timeout> <timeoul> <D4 timeout> 2.389
BuiLbRooT <timeout> <timeout> <timeout> <timeout> <D4 timeout> 4.264
LiNnux x86 <timeout> <timeout> <timeout> <timeout> <D4 timeout> 7.797

Table 7: Experiment 2: Time KCONFIGSAMPLER took to gen-

erate one million configurations

Model Time (sec)
Fiasco 17.079
AXTLS 19.801
ToyBox 40.853
puCLisc 60.688
BusyBox 200.520
EmBToOLKIT 703.514
CoreBoor 1,332.406
FREETZ 1,305.746
BuiLbpRooTt 1,965.860
LiNnux x86 3,447.617

Table 8: Growth due to Tseitin transformation

Model #Vars. #Vars. #Frags. #Clauses
Bef After

F1asco 98 306 x3.12 135 710 x5.25
AXTLS 119 374 x3.14 207 920 x4.44
ToyBox 342 411 X1.20 85 282 x3.31

pCLIBC 386 1,214 x3.14 1,378 3,687 x2.67
BusyBox 1,370 4,153 X3.03 795 8,579 x10.79
EmBTooLKiT 3,392 31,181 X9.19 6,430 78,545 x12.21
CoreBoort 5,604 69,836 x12.38 165,609 345,749 x2.08
FREETZ 6,172 67,546 x10.94 63,394 240,767 x3.79
BuiLpRoor 8,106 54,080 x6.67 62,290 194,017 x3.11
Linux x86 15,362 186,059 x12.11 35,919 527,240 xX14.67

We supported this claim by customizing the technique to the
variability models created from KcoNFiG files for ten open-source
projects, including the Linux kernel, and gathered important in-
sights in the process:

o As the approach hinges on the synthesis of a BDD for each
extensible group, the granularity of the groups is of para-
mount importance.

o Bit-blasted integers involved in ordering comparisons are
best managed when they belong to a single group and vari-
able ordering keeps the bits aligned by their level of signifi-
cance.

The more complex config types (strings and numbers with-
out a prompt), which translated into several Boolean vari-
ables, needed breaking down into one group for each discrete
value.

All groups were reinforced when possible with constraints
regarding mutually exclusive input variables to avoid BDD
building from blowing up.

We managed to create a forest of BDDs for each tested project
with a very manageable footprint of less than half a million nodes
in all cases, including the LiNnux kernel. The experimental section
pointed out some possible areas of improvement with respect to
BDD size. We also compared the performance of the approach to
five other alternative tools [1, 7, 11, 29, 36], with our approach being
faster and more scalable than all the competitors, often by several
orders of magnitude. The approach can generate a million sample
configurations for the LiNux kernel in less than an hour.

A closer examination of the test cases revealed a consistent trend
regarding the use of the Tseitin construction to deliver the CNF
format required for the other approaches, namely that it produces
an explosive growth in the number of both variables and clauses
which severely affects their scalability.

Finally, all the logical models and our sampling tool, Kcon-
FIGSAMPLER, have been made publicly available to the community
for further research.

ACKNOWLEDGMENTS

This work has been supported by the Universidad Nacional de
Educacion a Distancia (project references 2021V/PUNED/008 and
2022V/PUNED/007).

REFERENCES

[1] Dimitris Achlioptas, Zayd S. Hammoudeh, and Panos Theodoropoulos. 2018.
Fast Sampling of Perfectly Uniform Satisfying Assignments. In 21st International
Conference on Theory and Applications of Satisfiability Testing (SAT). Oxford, UK,
135-147.

[2] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof Czarnecki,
and Andrzej Wasowski. 2014. Three Cases of Feature-Based Variability Modeling

—

[l

=

[

=

[

ASE ’22, October 10-14, 2022, Rochester, M1, USA

in Industry. In Model-Driven Engineering Languages and Systems International
Conference (MODELS). Valencia, Spain, 302-319.

Thorsten Berger, Steven She, R. Lotufo, Andrzej Wasowski, and Krzysztof Czar-
necki. 2013. A Study of Variability Models and Languages in the Systems Software
Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611-1640.
Thorsten Berger, Jan-Philipp Steghofer, Tewfik Ziadi, Jacques Robin, and Jabier
Martinez. 2020. The state of adoption and the challenges of systematic variability
management in industry. Empirical Software Engineering 25, 3 (2020), 1755-1797.
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. 2009. Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications.
10S Press.

Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Comput. C-35, 8 (1986), 677-691.

Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and
Moshe Y. Vardi. 2015. On Parallel Scalable Uniform SAT Witness Generation. In
21st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). London, UK, 304-319.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2013. A Scalable and
Nearly Uniform Generator of SAT Witnesses. In 25th International Conference on
Computer Aided Verification (CAV). Saint Petersburg, Russia, 608-623.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2014. Balancing
Scalability and Uniformity in SAT Witness Generator. In 51st Annual Design
Automation Conference (DAC). San Francisco, CA, USA, 1-6.

Martin Davis, George Logemann, and Donald Loveland. 1962. A Machine Program
for Theorem-proving. Commun. ACM 5, 7 (1962), 394-397.

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2018. Effi-
cient Sampling of SAT Solutions for Testing. In 40th International Conference on
Software Engineering (ICSE). Gothenburg, Sweden, 549-559.

David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander
Egyed. 2019. A Kconfig translation to logic with one-way validation system. In
23rd International Systems and Software Product Line Conference (SPLC). Paris,
France, 303-308.

Michael Forbes, James Lawrence, Yu Lei, Raghu Kacker, and D. Kuhn. 2008.
Refining the In-Parameter-Order Strategy for Constructing Covering Arrays.
Journal of Research of the National Institute of Standards and Technology 113, 5
(2008), 287-297.

Axel Halin, Alexandre Nuttinck. Mathieu Acher. Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2019. Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack. Empirical Software Engineering
24,2 (2019), 674-717.

Ruben Heradio, David Fernandez-Amoros, JoséA. Galindo, David Benavides, and
Don Batory. 2022. Uniform and scalable sampling of highly configurable systems.
Empirical Software Engineering 27, 2 (2022), 44.

Ruben Heradio, David Fernandez-Amoros, Jose A. Galindo, and David Benavides.
2020. Uniform and scalable SAT-sampling for configurable systems. In 24th
Systems and Software Product Line Conference (SPLC). Montréal, Canada, 1-11.

[17] Jose Miguel Horcas, José A. Galindo, Ruben Heradio, David Fernandez-Amoros,

and David Benavides. 2021. Monte Carlo tree search for feature model analyses:
a general framework for decision-making. In 25th ACM International Systems and
Software Product Line Conference, Vol. A. Leicester, UK, 190-201.

Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y. Vardi. 2016. On
computing minimal independent support and its applications to sampling and
counting. Constraints 21, 1 (2016), 41-58.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Tech-
nical Report CMU/SEI-90-TR-021. Software Engineering Institute.

Nathan Kitchen and Andreas Kuehlmann. 2007. Stimulus generation for con-
strained random simulation. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). San Jose, CA, USA, 258-265.

Donald E. Knuth. 2009. The Art of Computer Programming, Volume 4, Fasci-
cle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley
Professional.

Sergiy Kolesnikov, Norbert Siegmund, Christian Késtner, Alexander Grebhahn,
and Sven Apel. 2019. Tradeoffs in modeling performance of highly configurable
software systems. Software & Systems Modeling 18, 3 (2019). 2265-2283.
Sebastian Krieter. 2019. Enabling Efficient Automated Configuration Genera-
tion and Management. In 23rd International Systems and Software Product Line
Conference (SPLC). Paris, France, 215-221.

Sebastian Krieter, Thomas Thiim, Sandro Schulze, Gunter Saake, and Thomas
Leich. 2020. YASA: Yet Another Sampling Algorithm. In 14th International Work-
ing Conference on Variability Modelling of Software-Intensive System (VaMoS).
Magdeburg, Germany, 1-10.

David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

[25] Yu Lei, Raghu Kacker, D. Kuhn, Vadim Okun, and James Lawrence. 2008.

IPOG/IPOG-D: Efficient Test Generation for Multi-way Combinatorial Testing.
Software Testing Verification & Reliability 18, 3 (2008), 125-148.

Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. 2007.
IPOG: A General Strategy for T-Way Software Testing. In 14th Annual IEEE

International Conference and Workshops on the Engineering of Computer-Based
Systems (ECBS’07). 549-556.

Daniel-Jesus Muiioz, Jeho Oh, Ménica Pinto, Lidia Fuentes, and Don Batory.
2019. Uniform Random Sampling Product Configurations of Feature Models That
Have Numerical Features. In 23rd International Systems and Software Product Line
Conference (SPLC). Paris, France, 289-301.

Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding
Near-optimal Configurations in Product Lines by Random Sampling. In 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). Paderborn, Germany,
61-71.

Jeho Oh, Don S. Batory, Marijn J. H. Heule, Margaret Myers, and Paul Gazzillo.
2019. Uniform Sampling from Kconfig Feature Models. Technical Report TR-19-02.
Department of Computer Science. The University of Texas at Austin.

Jeho Oh, Paul Gazillo, Don Batory, Marijn J. H. Huele, and Margaret Meyers.
2020. Scalable Uniform Sampling for Real-World Software Product Lines. Technical
Report TR-20-01. University of Texas at Austin.

Jeho Oh, Paul Gazzillo, and Don Batory. 2019. f-wise Coverage by Uniform
Sampling. In 23rd International Systems and Software Product Line Conference
(SPLC). Paris, France, 84-87.

Jeho Oh, Margaret Myers, and Don Batory. 2016. Finding Product Line Configura-
tions with High Performance by Random Sampling. Technical Report TR-16-22.
Department of Computer Science, University of Texas at Austin.

Tobias Pett, Thomas Thiim, Tobias Runge, Sebastian Krieter, Malte Lochau, and
Ina Schaefer. 2019. Product Sampling for Product Lines: The Scalability Challenge.
In 23rd International Systems and Software Product Line Conference (SPLC). Paris,
France, 78-83.

Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime
Cordy. 2019. Uniform Sampling of SAT Solutions for Configurable Systems:
Are We There Yet?. In 12th IEEE Conference on Software Testing, Validation and
Verification (ICST). Xian, China, China, 240-251.

Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018. Bug
Synthesis: Challenging Bug-Finding Tools with Deep Faults. In 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). Lake Buena Vista, Florida, USA,
224-234.

Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S. Meel. 2018. Knowl-
edge Compilation meets Uniform Sampling. In 22nd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR). Awassa,
Ethiopia, 620-636.

Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kastner. 2015.
Performance-influence Models for Highly Configurable Systems. In 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). Bergamo, Italy, 284~
294.

Chico Sundermann, Thomas Thiim, and Ina Schaefer. 2020. Evaluating #SAT
Solvers on Industrial Feature Models. In 14th International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS). Magdeburg, Ger-
many.

Thomas Thiim. 2020. A BDD for Linux? The Knowledge Compilation Challenge
for Variability. In 24th ACM Conference on Systems and Software Product Lines
(SPLC) (SPLC ’°20). Montreal, Quebec, Canada, 1-6.

Marc Thurley. 2006. sharpSAT - Counting Models with Advanced Component
Caching and Implicit BCP. In 9th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT). Seattle, WA, USA, 424-429.

Gregory S. Tseitin. 1983. On the Complexity of Derivation in Propositional Calculus.
Springer Berlin Heidelberg, 466-483.

Mabhsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thiim, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. 2018. A Classification of Product Sampling
for Software Product Lines. In 22md International Systems and Software Product
Line Conference (SPLC). Gothenburg, Sweden, 1-13.

Jun Yuan, Ken Albin, Adnan Aziz, and Carl Pixley. 2002. Simplifying Boolean
Constraint Solving for Random Simulation-Vector Generation. In IEEE/ACM
International Conference on Computer Aided Design (ICCAD). San Jose, CA, USA,
123-127.

Jun Yuan, Ken Albin, Adnan Aziz, and Carl Pixley. 2002. Simplifying Constraint
Solving in Random Simulation Generation. In 11th IEEE/ACM International Work-
shop on Logic & Synthesis (IWLS). New Orleans, Louisiana, USA, 185-190.

Jun Yuan, Kurt Shultz, and Carl Pixley. 1999. Modeling Design Constraints and
Biasing in Simulation Using BDDs. In International Conference on Computer-Aided
Design (ICCAD). San Jose, CA, USA, 584-589.

