
0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A Scalable Approach to Exact Model and

Commonality Counting for Extended Feature

Models

David Fernandez-Amoros, Ruben Heradio, Jose A. Cerrada, Carlos Cerrada

Abstract

A software product line is an engineering approach to efficient development of software product

portfolios. Key to the success of the approach is to identify the common and variable features of the

products and the interdependencies between them, which are usually modeled using feature models.

Implicitly, such models also include valuable information that can be used by economic models to

estimate the payoffs of a product line. Unfortunately, as product lines grow, analyzing large feature

models manually becomes impracticable. This paper proposes an algorithm to compute the total number

of products that a feature model represents and, for each feature, the number of products that implement

it. The inference of both parameters is helpful to describe the standarization/parameterization balance

of a product line, detect scope flaws, assess the product line incremental development, and improve the

accuracy of economic models. The paper reports experimental evidence that our algorithm has better

runtime performance than existing alternative approaches.

Index Terms

Feature Models, Formal Methods, Economic Models, Software Product Lines.

David Fernandez-Amoros is with the Department of Languages and Computer Systems, Spanish Open University (UNED),

Madrid, Spain. E-mail:david@lsi.uned.es

Ruben Heradio, Jose A. Cerrada and Carlos Cerrada are with the Department of Software Engineering and Computer Systems,

Spanish Open University (UNED), Madrid, Spain. E-mail: {rheradio, jcerrada, ccerrada}@issi.uned.es

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

I. INTRODUCTION

A Software Product Line (SPL)[1], [2] is an engineering approach to efficient development

of whole portfolios of software products. The basis of the approach is that products are built

from a core asset base: a collection of artifacts that have been designed specifically for use

across the portfolio. To account for differences among the products, some adaptations of the

core assets are usually required. These adaptations should both be planned before development

and made easy for the product developers to use. In SPLs with large numbers of products and

core assets, as well as requirements to make fine-grained adjustments, managing variability can

become problematic very quickly. Mismanagement may result in adding unnecessary variability,

implementing variation mechanisms more than once, selecting incompatible or awkward variation

mechanisms, and missing required variations. As the product line grows and evolves, the need

for variability increases, and managing the variability grows increasingly difficult [3].

To support the variability management of a SPL, the product similarities and differences are

usually modeled by a Feature Model (FM) [4]. Implicitly, FMs include valuable information

that can be used in economic models to estimate the payoffs of a SPL. This paper proposes an

algorithm to compute the total number of products that a FM represents and, for each feature,

the number of products that implement it. As it will be shown, the inference of both magnitudes

is helpful to describe the standarization/parameterization balance of SPL, detect scope flaws,

assess the SPL incremental development, and improve the accuracy of economic models.

Several techniques have been proposed to compute the total number of products of a FM.

They follow the general schema of translating the FM into a Boolean logic formula Φ, which is

then processed using an off-the-self tool t, such as a SAT-solver or a Binary Decision Diagram

(BDD) engine. Moreover, the number of products that implement a feature f can be computed by

calling t with Φ∧f as input [5]. Unfortunately, this approach is computationally very expensive

since it requires as many calls to t as features the FM has. The approach proposed in this paper

has better runtime performance because it just requires one call to our algorithm to compute

both the total number of products of a FM and, for all the features, the number of products that

implement them.

Research and industry have developed different FM languages. Despite the apparent language

heterogeneity, Schobbens et al. [6], [7] have formally demonstrated that most FM notations can

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

be generalized thanks to the group cardinality construct1 and the use of textual constraints (i.e.,

additional constraints among features specified in propositional logic). To make our approach

valid for most FM languages, it deals with both group cardinality and textual constraints.

The target audience of this paper is:

1) SPL tool developers, who are interested in improving their support to decision makers.

For instance, Gears2 is a prominent software tool to develop SPLs. It includes a statistics

reporting tool that collects data from a SPL and then formulates vital statistics to report on

the state, growth, and health of the SPL. One of those statistics is an upper approximation

of total number of products modeled by a FM, which does not take into account textual

constraints.

2) Researchers in the field of automated analysis of FMs. Benavides et al. [10] have surveyed

53 papers focused on computing 30 analyses from FMs. Our proposal supports the compu-

tation of 8 of them: (i) dead features (those that, because of their excluding dependencies

on other features, cannot be included in any product), (ii) void models (FMs that are

inconsistent and thus do not model any valid product), (iii) the total number of products

modeled by a FM, (iv) feature commonality (defined in Section III), (v) core features (those

that are part of all the products), (vi) variant features (those that do not appear in all the

products), (vii) SPL homegeneity (defined in Section III), and (viii) variability factor (the

ratio between the number of products and 2n, where n is the number of features).

3) Researchers in SPL economic models, who are interested in the information that can be

retrieved automatically from a FM to improve their estimations.

4) Domain analysts who are interested in scoping a SPL adequately and estimating its payoffs.

The remainder of the paper is structured as follows: Section II introduces FMs. Section

III motivates our work. Section IV reviews in detail several approaches to the product and

commonality counting problem. Section V presents our algorithm. Next, Section VI describes the

computational complexity of our approach and experimentally compares its runtime performance

with several other algorithms. Finally, some concluding remarks are provided in Section VII.

1group cardinality should not be confused with the concept of feature cardinality proposed by Czarnecki et al. [8], [9];

whereas the former describes for a group of features how many of them have to be included in a product, the latter specifies

how many instances of a particular feature has to be included in a product. Our algorithm just supports group cardinality

2http://www.biglever.com/

May 29, 2014 DRAFT

http://www.biglever.com/

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

II. FEATURE MODELS

Since the first FM notation was proposed by the FODA methodology in 1990 [4], a number

of extensions and alternative languages have been devised to model variability in families of

related systems. Fortunately, Schobbens et al. [6], [7] have demonstrated that most of the FM

notations can be easily and efficiently translated into a pivot language called Varied Feature

Diagram+ (VFD+). Schobbens et al. also showed that the automated analysis of a VFD+ model

can be optimized whenever the model is structured as a tree. Since VFD+ models are, in general,

single-rooted Directed Acyclic Graphs (DAGs), we restrict the input of our algorithm to a VFD+

subset named Neutral Feature Tree (NFT) [11], where models are required to be trees.

From now on, the hypothetical FM in Figure 1 will be used as a running example. It may be

part of a larger model about mobile phones. A NFT model is a hierarchically arranged set of

features depicted by a tree. Each non-leaf feature has a group cardinality label [low..high] that

indicates that every product includes at least low and at most high of its children. For instance,

feature bluetooth is labeled with [2..3]. So, any product that includes bluetooth has to include

one of the following combinations of features: {headset, hands free}, {headset, remote control},

{hands free, remote control} or {headset, hands free, remote control}. In addition, the scope of

a FM can be narrowed by adding textual constraints written in propositional logic. For instance,

Figure 1 has two textual constraints: 802.11n → HSDPA and 802.11n → HSDPU. Although

a product with features {connectivity, bluetooth, headset, remote control, wifi, 802.11n} would

satisfy the tree structure, it is not valid because it violates the textual constraints.

Fig. 1. NFT representation of a FM for a mobile phone product line

It should be noted that NFT and VFD+ are fully equivalent, i.e., any VFD+ model can be

converted into a NFT one by using the following transformation: whenever a VFD+ model has

a feature f with parents f1, f2, ..., fn, its NFT representation just keeps the edge f1 → f and

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

encodes the remaining ones (f2 → f , ..., fn → f) as textual constraints (see Section VI-B1 for

an explanation on how to encode edges to propositional logic). Hence NFT is a generalization

of most FM notations that supports:

1) The group cardinality label, which generalizes the FODA cardinalities (i.e., mandatory =

[1..1], optional = [0..1], and = [n..n], or = [1..n] and xor = [1..1]). For simplicity, the term

group cardinality will be reserved to those cases not covered by standard FODA.

2) The textual constraints, which can be any propositional logic formula and thus generalize

the require and exclude dependencies proposed by Pohl [1].

Be warned that, in the appropriate context, the software characteristics in a SPL are often

called features or nodes (when referring to the FM tree structure) or variables (for the textual

constraints or if the FM has been translated to Boolean logic).

III. MOTIVATION

From here on, the following notational conventions will be used:

• (i) F , (ii) P and (iii) Pf denote respectively the sets of (i) features, (ii) products and (iii)

products that include a particular feature f .

• #S is the cardinal of a set S. So, #P is the total number of products represented by a FM

and #Pf is the number of products that implement a feature f . In the literature, #Pf is

often used in relative terms under the name of commonality [12], [13]; i.e., the commonality

of a feature f is #Pf

#P .

From an input FM written in NFT, our algorithm computes #P and #Pf . This section

summarizes the usefulness of #P and #Pf to properly scope a SPL and estimate its payoffs.

A. Descriptive statistics to account for the standarization/parameterization balance of a FM

Domain analysis consists largely in exploring the decisions in a domain to determine which

features should be common to all products and which ones variable. As Cleaveland points out in

[14], this determination is not a scientific process of discovery but one of design and engineering,

and it involves trade–offs among many objectives. Assigning high commonality to features means

standarizing, which increases the common code, reduces the family size and simplifies the SPL

architecture. Assigning low commonality to features means parameterizing, which reduces the

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

common code, increases the family size and increases the SPL complexity. Domain analysis

attempts to achieve a good balance between these two objectives3.

Since a FM models the common and variable features in a SPL, it also models the standard-

ization and parametrization levels. However, getting such levels directly from the FM is not

trivial. A naive approach to calculate them might be comparing the number of terminal features4

that are mandatory and variable (i.e., #features with cardinality label [n..n] versus #features

with any other cardinality label). For instance, let us consider the “electronic shopping” FM5,

proposed in [15] to model a SPL of e–commerce systems. It has 192 terminal features: 10 are

mandatory and 182 are variable. As 94.79% of the features are variable, we might conclude that

the SPL is highly skewed to parametrization. However, this is not the case. The causes of such

an erroneous conclusion are: (i) the FM has 21 textual constraints that have been ignored, and

(ii) using just a binary distinction between mandatory and variable is too simplistic.

The commonality computation proposed in this paper supports getting a reliable quantifi-

cation of the FM standarization/parametrization balance since (i) it takes into account textual

constraints, and (ii) it measures commonality using a continuous range that goes from 0 (i.e.,

dead features) to 1 (i.e., features common to all products). Furthermore, it also supports the

usage of descriptive statistics to analyze FMs. For instance, Figure 2.a is a histogram6 that

represents how commonality is distributed in the “electronic shopping” example. The histogram,

as opposed to the naive approach results, shows that the standarization/parametrization levels are

quite balanced: 42 terminal features have commonality between [0.4–0.5), 98 between [0.5–0.6),

and 19 between [0.6–0.7), i.e., 82.8% of the features have commonality between [0.4–0.7).

In the SPL literature, we can also find FMs which commonality is not distributed around a

middle value. For example, Figures 2.b and 2.c show the commonality histograms of the FMs

“Graph Product Line” [16] and “Home Integration System (HIS)” [17], which are skewed to

3this also applies when feature binding is delayed to runtime and, instead of a family of programs, there is a single program

whose features can be changed during its execution. In such case, high parametrization level means high runtime configurability

4since the configuration of non-terminal features is entirely determined by the configuration of the terminal ones, they do not

influence the number of products and as such can be ignored for model counting

5all the FMs referred in this paper are freely available at SPLOT website: http://www.splot-research.org/

6the left-end inclusion convention has been adopted in the histograms in Figure 2, which stipulates that a class interval contains

its left-end but not its right-end boundary point

May 29, 2014 DRAFT

http://www.splot-research.org/

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

parametrization and standardization, respectively.

(a) Electronic Shopping (b) Graph Product Line (c) HIS

Fig. 2. Examples of commonality histograms

The Structured Intuitive Model for Product Line Economics (SIMPLE) [18], [19] defines a

measure, named homogeneity, that characterizes how similar the products are. Its aim is detecting

domains where products are prohibitively dissimilar from each other and thus the SPL approach

does not pay off. The metric varies from 0 to 1, where 0 indicates that the products are all totally

unique and 1 indicates that there is only one product. SIMPLE proposes Equation 1 to compute

homogeneity, where #UF is the number of unique features (i.e., features implemented by only

one product). Unfortunately, this measure may produce erroneous results in some scenarios. For

example, consider a SPL with 200 products and 50 features, where every feature is included in

just 2 products; although the SPL is clearly quite heterogeneous, Equation 1 says that the SPL is

totally homogeneous (i.e., Homogeneity(#P) = 1− 0
50

= 1). Alternatively, SIMPLE proposes the

more reliable Equation 2 that requires to know #Pf and #P . Using it for the former scenario,

we check that the SPL is certainly heterogeneous (i.e., Homogeneity(#P) =
∑50

i=1
2

200

50
= 0.01).

Homogeneity(#P) = 1− #UF
#F (1) Homogeneity(#P) =

∑
f∈F

#Pf

#P
#F (2)

Looking carefully at Equation 2, we realize that, in fact, SIMPLE computes homogeneity

as the commonality mean (i.e.,
∑

f∈F
#Pf
#P

#F =
∑

f∈F Commonalityf
#F = Commonality). Thanks to

our proposal and developing such an idea, other measures of central tendency, such as the

commonality median and mode, can be used to estimate the SPL homogeneity. Moreover,

dispersion statistics, such as commonality standard deviation, can be used to understand the

standarization/parametrization balance.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

B. Detection of problematic features

According to Czarnecki et al. [20], feature modeling helps to avoid two serious problems: (i)

relevant features and variation points are not included in the reusable software, and (ii) many

features and variation points are included but never used and thus cause unnecessary complexity

and increase development and maintenance costs. Commonality helps identifying low reusable

features by looking at #Pf in relative terms. For instance, in the “electronic shopping” example

there is a feature named “enable profile update on checkout” with #Pf = 3.93×1048. It seems a

core feature that will be reused throughout most of the domain products. Nevertheless, computing

its commonality 3.93×1048

2.26×1049
= 0.17 we realize its reusability is actually low.

In addition, it is possible to detect scope flaws in the early stages of the SPL development

by enriching #Pf with economic information. Economic models proposed in [21], [22], [23],

[24], [25] use two abstractions, called the Relative Cost of Reuse (RCR) and the Relative Cost

of Writing for Reuse (RCWR). RCR represents the proportion of the effort that it takes to reuse

software compared to the cost normally incurred to develop it for one-time use. For instance, a

feature has RCR = 0.2 if it can be reused for only 20% of the cost of implementing it. Of course,

we need to pay that extra 20% every time we reuse it. On the other hand, RCWR represents the

proportion of the effort that it takes to develop reusable software compared to the cost of writing

it for one-time use. For instance, if it costs an additional 50% effort to create a feature for reuse

(i.e., it is necessary to have a more generic design, additional documentation...) then RCWR =

1.5. Note that RCWR is always greater or equal to 1. Poulin [24] defines a metric called payoff

threshold, which shows how many times a feature has to be reused before the investment made

to develop the feature is recovered. The payoff threshold of a feature f is calculated by Equation

3. Therefore, a feature f causes a scope problem whenever Inequality 4 is satisfied.

Payoff Thresholdf =
RCWRf

1− RCRf
(3) #Pf < Payoff Thresholdf (4)

C. Assessment for SPL incremental development

Many managers favor an incremental approach to product line adoption, one that first tackles

areas of highest and most readily available commonality, earning payback early in the adoption

cycle. Under this approach, the organization plans from the beginning to develop a SPL. It devel-

ops part of the Core Asset Base (CAB), including the architecture, and then builds one or more

products. In the next increment, it develops a portion of the rest of the CAB and builds additional

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

products. Over time, it evolves more of the CAB in parallel with new product development. In

order to quantify the reuse improvement achieved in each development increment, Cohen [26]

proposes a measure called Degree of Reuse (DOR), which is the portion of a complete product

that is made reusing the CAB; e.g., a DOR of 0.25 means that the core assets are used in the

development of 25% of the software of a typical product. Although Cohen “just expresses DOR

in English”, such concept can be formalized with Equation 5, that requires to know #Pf , where:

1) Size(f) is the size of the software that implements the feature f (a number of techniques

to estimate software size are presented in [27]).

2) The dividend is the size of all the software encompassed by the SPL, i.e., the size of all

the products. Such size is calculated indirectly multiplying the size of the software that

implements every feature (Size(f)) by the number of times that software is reused (#Pf).

3) The numerator is the size of the all the software that is made by reusing core assets.

DOR(#P) =

∑
f∈CAB

(
Size(f)×#Pf

)
∑

f∈F
(
Size(f)×#Pf

) (5)

D. Improving the accuracy of ROI estimations

The computation of #Pf may also support increasing the accuracy of existing economic

models for SPLs, such as the COnstructive Product Line Investment MOdel (COPLIMO) [21],

[28], which estimates the SPL Return On Investment (ROI) by analogy. That is, COPLIMO

starts estimating the development costs of a particular product, i.e., a domain stereotype. Then,

supposing that all products in the scope of a SPL are quite similar, it extrapolates the costs of

the stereotype to compare the costs of building all the products under a SPL approach versus

building them one by one. Unfortunately, whenever the products are not extremely homoge-

neous, COPLIMO’s simplifying assumptions produce problematic distortions in the estimates.

As Appendix B shows, such assumptions are unnecessary when #Pf is known. In that case,

ROI can be more accurately estimated by composition, i.e., estimating the costs for each feature

and then calculating the costs of each product by adding the costs of the features that it includes.

IV. RELATED WORK ON PRODUCT COUNTING

There are two main approaches to perform automatic analysis of FMs:

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

1) A purely logic approach, where the whole FM is translated to Boolean logic and then some

standard procedure is applied, such as a SAT solver or a Constraint Satisfaction Problem

(CSP) solver.

A SAT solver is a program that tries to determine if a Boolean formula is satisfiable.

A #SAT model counter is a program that tries to determine how many models (i.e. how

many satisfying assignments) a formula has7. While the SAT problem is known to be NP-

complete [29], it is widely believed that the #SAT problem is even harder [30]. Section VI

experimentally compares our approach versus two prominent #SAT counters: relsat [31]

and cachet8 [33], [34]. It is worth mentioning that although [35] claims that SAT-based

analysis of FMs is easy, #SAT-based analysis of FMs is much harder and commonality-

based analysis of FMs forcing features one by one is highly impractical as will be shown

in the experimental evaluation section.

CSP solvers are also commonly used for FM analysis [36], [37]. The CSP problem involves

a set of variables over a domain and a set of constraints over these variables. CSPs work

by searching the solution space performing constraint satisfaction and backtracking. There

is no advantage to using a CSP solver for a #SAT problem since the CSP techniques

restricted to the Boolean case are equivalent to those in SAT and there is an obvious

performance overhead for CSP solvers. For that reason they will not be considered for

comparison purposes.

2) A hybrid approach, which manipulates the textual constraints and then runs some ad-hoc

treatment for the tree structure of the FM. These systems rely on the tree structure for good

performance, so they are not usually designed to gracefully handle the textual constraints.

Some preprocessing may help though. Czarnecki & Wasowski [38] propose to follow the

path of translation in the opposite direction, that is, to integrate the textual constraints into

7a simple SAT solver can be easily modified to act as a model counter, and even as an explicit model generator. Nevertheless,

as SAT solver techniques grow increasingly specialized, they become useless for these other problems, which demand their own

techniques. For instance, it is now customary for solvers to implement timed restarts; if no answer to the SAT problem is found,

then the search is interrupted and continued elsewhere. For satisfiable cases, it suffices to find one model, so the technique seems

to speed up the process. However, it does not carry over to efficient counting or enumerating of the models

8there is also a variation of cachet called sharpSAT [32], but since the changes affect only cache management and not the

search process it will not be addressed in this paper

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

the tree. The algorithm is not always able to integrate all the constraints, but a partial result

may be of help to a hybrid system in some cases. Another remedy is proposed in [39],

where it is proven that all textual constraints can be eliminated at the price of building a

new set of features. The approach is theoretical, but the bases for an implementation are

laid out. In [13], Mendonça presents a system named Feature Model Reasoning System

(FMRS) that depends on a reasoning engine to solve the textual constraints while another

module works on the FM. There are several similarities between our proposal and FMRS,

since we also apply a reasoning engine and separately process the feature tree. There

are also several differences. Our prototype, which we have named treecount, uses DPLL

[40] as a reasoning engine, while FMRS relies on a general constraint solver. FMRS

performs constraint propagation inside the tree and also relies on a system of saving and

restoring states to help with the backtracking. Our treatment of the FM is more akin to a

tree traversal whilst an efficient cache system exploits the bigger size of the model w.r.t.

the textual constraints to avoid repeating the same computations over and over as will

be explained in the next section. We also perform Unit Propagation (UP9) [30] over a

translation of the FM, so that treecount can finish the search faster. Also, FMRS does

not support commonality calculations. The analysis tool in the SPLOT [41] portal uses

Reduced Ordered Binary Decision Diagrams (ROBDDs) [42], which are just a special

case of Binary Decision Diagrams (BDDs), to compile information about the FM. These

decision diagrams hinge on a fixed order in which the variables can be inspected. The BDD

represents both the tree and the textual constraints, following an ordering of the variables

that has been previously determined by a complex heuristic [43]. Ordering heuristics can

take remarkably long, and it is known that finding an ordering that produces an optimal

BDD (i.e. a BDD with the minimal number of nodes) is an NP-complete problem [44].

The BDD is then traversed to compute the number of products. As far as efficiency is

concerned, Mendonça et al. make a big selling point of the space gains of the BDD vs.

DPLL. However, DPLL being a backtracking search, it only keeps in memory the current

9UP can be applied to an unsatisfied clause in which there is exactly one unassigned literal, to derive a satisfying assignment

for the variable involved. For instance, if there is a partial truth assignment α where x =true, and y =false, and a clause

¬x ∨ y ∨ ¬z, then UP applied to the clause yield z =false, thus satisfying the clause. UP is a relatively inexpensive way of

saving branching decisions during DPLL search and so both techniques are often employed together

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

stack of search nodes. The main reason for efficiency of BDD counting is not only that

exploration starts from the true node (and thus avoid exploring unsatisfiable branches), but

also and importantly so, the efficiency comes from use of dynamic programming, which

exploits the sharing of nodes, so that the search paths are not explored separately. As

far as commonality is concerned, SPLOT does not support its computation, although it is

certainly possible to adapt the traverse algorithm in [42] to do so.

In previous work [11], we presented an algorithm to calculate #P and #Pf . It is note-

worthy that the algorithm is always exponential in the number of clauses of the textual

constraints, not just in the worst case. So, the treatment of the textual constraints renders

the algorithm impractical for all but laboratory-sized FMs.

As far as the strengths and weaknesses of the approaches are concerned, component-based

model counters such as cachet and relsat are expected to be very efficient when the textual

constraints present independent clauses (clauses with no variables in common) since DPLL

can efficiently cut the translated formula into many different connected components, and very

inefficient when the FM heavily exploits proper group cardinality, since the translation to Boolean

logic suffers from a combinatorial explosion. This may also be true for SPLOT, since these

independent clauses should produce an additive-like growth in the number of nodes rather than

an exponential one. The concept of branch width [45], introduced by Bacchus et al., accurately

captures this behavior since they proved that there exists a model counting algorithm which

runs in time exponential to the branch width. Comparatively, the rest of the hybrid approaches

(FMRS and treecount) are expected to perform poorly in relative terms when textual constraints

are mostly independent (i.e. the formula has a low branch-width). In our case, it is because the

DPLL search will produce the same subsequences of branching variables over and over. The

same problem is expected to happen to FRMS since enumerating the solution sets can effectively

cancel out the benefits of a compact BDD.

As a quick recap, there are several working approaches to perform model counting, but

commonality computing has been more of a theoretical issue so far. Any model counting scheme

can be used to compute commonalities by forcing the presence of a particular feature. This can

be an effective approach for a lonely feature, but when all the individual commonalities are

needed, this naive approach can impose a considerable overhead.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

V. FAST COMMONALITY COUNTING

This section presents our algorithm, treecount, which takes a FM as input and computes the

number of products and the commonality of each feature as output. A pseudocode description

of the algorithm is included in Appendix A.

A. Solving the textual constraints

The first step of our algorithm is solving the textual constraints of the FM, which must be

written in Conjunctive Normal Form (CNF10), that is, a conjunction of disjunctions of literals (a

literal is a proposition or its negation). Such disjunctions are called clauses, so a CNF formula

is a conjunction of clauses. We use a variation of the standard DPLL procedure as depicted in

Algorithm 1 (Appendix A). The core of our contribution is the Function computeProducts that

will be described in Table I (Appendix A) and presented in a top-down fashion throughout

this Section. DPLL has been thoroughly researched by the SAT-solver and model-counting

community [47], [48], [49], [50], [51], [33], [34], [31], so we have adopted it as is. Our heuristic

in choosing the next variable to be conditioned (i.e. to continue the backtracking) is to take the

feature appearing most often in the residual formula, with a preference for smaller clauses to

break ties. This is known as Mom’s heuristic (Maximum Occurrences in clauses of Minimal

Size)[52]. This heuristic has proven to be very effective among the different alternatives [53].

It is noteworthy that slight changes in this heuristic may dramatically affect the number of

solution sets produced. Of course, efficiency-wise, the least solutions sets, the better. Unlike

SPLOT, which first computes the whole BDD, we build the solution sets iteratively.

Both cachet and relsat also employ a typical SAT solver technique called conflict-driven clause

learning. Whenever a conflict is detected and before backtracking is performed, a new clause is

added to the original formula. Since UP is not resolution-complete, it is possible that a series

of decisions about branching variables produce a conflict much later in the DPLL search. This

series of decisions may be repeated over and over during the search. To avoid this, a new clause

that captures the essence of the conflict is added to the original formula so that if the series of

decisions that led to the conflict are taken again, the conflict is immediately discovered. We have

10CNF is the standard form that Boolean formulas must follow to be processed by SAT-solvers. It is always possible, though

not necessarily efficient, to translate a formula into CNF [46]

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

decided not to include clause learning in our algorithm proposal, due to the fact that in real FMs

(as opposed to randomly generated) there are hardly any conflicts. The reason is that the tree

structure of a FM is always satisfiable, so any conflict must come from the textual constraints,

of which there are usually too few to cause it. This is in stark contrast with SAT-solver test-beds,

which are often orders of magnitude larger than FMs, where conflicts are commonplace.

First we will see how to compute #P to show some common problems and their possible

solutions. Let us consider the example in Figure 1. The two textual constraints translate into

CNF as (¬802.11n∨HSDPA)∧ (¬802.11n∨HSDPU). DPLL is used to build a set of solutions.

Since 802.11n is the most common feature in the textual constraints, it is chosen to start out

backtracking. We assign 802.11n the value false. Now, since both constraints are satisfied, we

backtrack and flip the value of 802.11n, which is now true. Then, by UP in the first clause, HSDPA

must be true, and by UP in the second clause, HSDPU must also be true. All the clauses are

satisfied. So, the solution sets for this example are {¬802.11n} and {802.11n,HSDPA,HSDPU}.

To summarize the solution sets the following notation is used: a literal with a negation sign in

front of it represents a feature whose truth value is false, the ones without it are assigned true

and the rest of the features, not shown, are unassigned. The unassigned value means that either

true or false comply with the constraints.

B. Classifying the nodes

The structure of the tree plus a particular solution set may impose that a particular node (i) be

present in all the corresponding products (present), (ii) be absent from all the products (absent),

(iii) be in some products and not in others (potential) or (iv) be and not be in all the products at

the same time (contradicting). The type of a node can be defined in terms of two other concepts:

selected and deselected. A node will be selected if it is necessary that the node is present in

all the products to comply with the solution set plus textual constraints and it will deselected

if it is necessary that the node is absent from all the products. Combining these values all four

possibilities are covered. Let us focus mostly on present and potential nodes, since absent and

contradicting nodes play a small part. Provided that there are no contradicting children, the Inner

Variability (IV) of a node (i.e. the different number of valid configurations for its subtree) will

depend on the present and potential nodes. The present nodes will provide a present factor and

the potential nodes a potential factor. The product of both factors will yield the IV of the node.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

Formally, the solution set can be considered as a function α : A → {true, false, unassigned}, where

A is the set of nodes. So, consider a node n, with s (possibly zero) children: n1, n2, . . . , ns and a

cardinality relation [low..high] meaning that at least low children and at most high children must

belong to a product. Suppose the children have already been classified and thus the number

of present, potential and contradicting nodes, which are denoted respectively by | pre(n, α) |,
| pot(n, α) | and | con(n, α) |, are available. Then, sel(n, α) ≡ (α(n) = true

) ∨∨s
i=1 sel(ni, α) and

desel(n, α) ≡ (α(n) = false
) ∨ (| pre(n, α) | + | pot(n, α) |< low

) ∨ (| pre(n, α) |> high
) ∨ (| con(n, α) |) > 0

It is worth noting that the definition is not circular; the type of node can be determined by

Algorithm 2 (Appendix A), and the needed attributes are computed in a bottom-up fashion. In

the NFT syntax (which was introduced in Section II), the sel property has a strictly logical inter-

pretation; if sel(n, α), then n is logically implied by the solution set and the tree structure (since

the children imply the parent). For desel, the question is more complex, since the cardinalities

are also involved. Essentially, desel(n, α) means that the node cannot be present in this solution

set, be it because it is explicitly negated or because it is impossible for it to comply with the

cardinality restrictions. For each node n, an attribute m will be used, and set to true iff the node

is a mandatory feature w.r.t its parent. The reason is that mandatory nodes are always selected.

Let us consider now the computeType function in Algorithm 2. The way to call it for a node n

would be ComputeType(n.sel ∨ n.m, n.desel).

Back to the example, in the first solution set, 802.11n is absent and everything else is potential.

In the second set, 802.11n, HSDPA and HSDPU are directly present, wifi, modem and connectivity

are also present given that the sel attribute is synthesized upwards. The rest are still potential.

C. Computing variability

The IV of a node n (under a solution set), denoted as IV (n), is the number of different valid

configurations in the subtree rooted at n, according to the tree structure. Thus, the total number

of products represented by a FM for a particular solution set is IV(r), where r is the root. For

a leaf node l, IV (l) = 1, as long as the node is not negated in the solution set. For a non-leaf

node n with s children, n1, n2, . . . ns, the formulas to compute IV (n) for the FODA type of

features are:

1) mandatory/optional: IV (n) =
∏

ni is optional
(IV (ni) + 1) ·∏nj is mandatory IV (nj)

2) or (i.e., cards[1..s]): IV (n) = (
∏s

i=1 (IV (ni) + 1))− 1

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

3) xor (i.e., cards[1..1]): IV (n) =
∑s

i=1 IV (ni)

In general, when a node n has s children and has [low..high] cardinality, IV (n) is given by

Equation 6, where Sk is the variability in choosing any combination of k children from s. For the

sake of clarity, let us denote IV (n1), IV (n2), . . . IV (ns) as iv1, iv2, . . . , ivs. In a straightforward

approach, Sk can be calculated by summing the variabilities of all possible k-combinations (see

Equation 7). Unfortunately, this calculation has exponential complexity.

IV (n) =

high∑
k=low

Sk (6) Sk =
∑

1≤i1<i2<i3...<ik≤s

ivi1 ivi2 . . . ivik (7)

A better complexity can be achieved making use of recurrent relations. The base case is S0 = 1.

According to Equation 7, S1 =
∑s

i=1 ivi. Calculating S2, the variability for combinations of 2

siblings that include n1 is iv1iv2 + iv1iv3...+ iv1ivs = iv1(iv2 + iv3 + ...+ ivs) = iv1(S1 − iv1).

Likewise, the variability of 2-combinations that include n2 is iv2(S1− iv2) and so on. Adding up

all these 2-combinations, we get
∑s

i=1 ivi(S1 − ivi). However, in the sum each term ivkivl has

been counted twice; once in the addend in which i = k and then again in the i = l addend. Thus, if

we adjust for this duplication: S2 = 1
2

∑s
i=1 ivi(S1 − ivi) =

1
2 (S1

∑s
i=1 ivi−

∑s
i=1 iv

2
i) =

1
2 (S

2
1−
∑s

i=1 iv
2
i)

Computing S3, the variability for combinations of 3 siblings that include n1 is iv1 multiplied

by the variability for 2-combinations that do not contain n1, i.e., iv1(S2− v1(S1− iv1)). Adding

up every 3-combinations:
∑s

i=1 ivi(S2 − ivi(S1 − ivi)) = S2S1 − S1

∑s
i=1 iv

2
i +

∑s
i=1 iv

3
i

This time, every triple ivkivlivm is being counted three times. Hence, removing the redundant

computations: S3 = 1
3

(
S2S1 − S1

∑s
i=1 iv

2
i +

∑s
i=1 iv

3
i

)
Equation 8 shows the general formula for Sk. Though it is not trivial just by looking at the

formulas, we will prove in Section VI that IV (n) can be computed in time quadratic to the

number of children of n, which constitutes a considerable improvement from exponential to

very low polynomial complexity. Algorithms 3, 4, and 5 (Appendix A) implement Equation 8.

S0 = 1; Sk =
1

k

k−1∑
i=0

((−1)iSk−i−1

s∑
j=1

ivi+1
j) for 1 ≤ k ≤ s (8)

Let us consider again the simple FM in Figure 1. As an example, let us compute the variability

for connectivity using Equation 8 for the first solution set {¬802.11n}. This can be done because

all the children of connectivity in this solution set are potential, so present factor has value 1.

To do that, it is needed to know in advance the variabilities of bluetooth, modem and wifi.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

Feature Admissible children combinations

for non-leaf nodes

connectivity {bluetooth, modem}, {bluetooth, wifi},

{modem, wifi}, {bluetooth, modem, wifi}
bluetooth {headset, hands free}, {headset, remote control},

{hands free, remote control},

{headset, hands free, remote control}
modem {GPRS}, {HSDPA}, {HSDPU},

{GPRS, HSDPA}, {GPRS, HSDPU},

{HSDPA, HSDPU}, {GPRS, HSDPA, HSDPU}
wifi {802.11g}, {802.11n}, {802.11g, 802.11n}

TABLE I

CARDINALITY RESTRICTIONS FOR THE MOBILE PHONE EXAMPLE

power bluetooth modem wifi sum

1 4 7 1 12

2 16 49 1 66

3 64 343 1 408

TABLE II

VARIABILITY POWERS FROM connectivity

CHILDREN AND THEIR SUM

Equation 8 could be used again, but instead and to see how much effort it takes, we will do it

in the inefficient way. Table I summarizes the possibilities to choose children for each node: 4

for bluetooth, 7 for modem and 1 for wifi (since 802.11n is false). It is easy to see that if the

number of children is big, the equivalent to Table I can get really long.

We now compute the powers of the number of products from the children of connectivity

and their sum (see Table II). Now, S0 = 1 by definition, S1 = 12, as it is the sum of the

children variabilities, S2 = 1/2(12 · 12 − 66) = 39, following the general formula 8 and S3 =

1/3(39 · 12− 12 · 66 + 408) = 28. Adding up S2 and S3, we get 67.

In the second solution set, nothing has changed in the bluetooth subtree, so the old variability

values could be used again. modem and wifi are now present nodes, each with variability 2 and

1 respectively, so the present factor is 2 and the potential factor consists of taking bluetooth

[0..1] times, which gives us 5. The product of both factors yields the variability of connectivity

for this set, 10. Adding up both sets, there are 77 products in this product line.

D. Propagating contextual variability

IV is enough to compute #P since #P = IV(r), where r is the root feature. To compute #Pf

it is necessary to introduce the concept of Contextual Variability (CV). Back to the FM in Figure

1, suppose that #P and #Pf have already been computed. Now imagine a new root node called

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

mobile phone with connectivity as a mandatory child and another optional child called USB are

added. Since the new nodes do not occur in the textual constraints, it is obvious that the new

FM has 77 × 2 = 154 products. That is because for each product in the original FM, there is a

new one with mobile phone added, and another one with mobile phone and USB added. The CV

of connectivity is precisely 2, because each product in the connectivity subtree is expanded into

2 different products in the bigger FM. Even more, the number of products each feature appears

in, which we keep to compute the commonality of each feature, has also doubled. Intuitively,

the CV of connectivity propagates down its whole subtree. One way to compute this CV is to

mentally delete connectivity and compute what the IV of its parent would be. In general, it is a

process that has to be performed at the solution set level.

Given a solution set, the CV for a particular node n, is the number of different configurations

for the SPL ignoring the subtree rooted in n. Clearly, every product can be decomposed as the

part that depends on the features in the subtree of n and the part that depends on the rest of the

features. So, the number of products that n appears in for a particular solution set is the product

of its IV and its CV. CV is a global attribute that depends on the whole outside context of the

node. Obviously, CV for the root feature is 1, since there is no context. In the general case, we

take advantage of the fact that CV propagates downwards rather easily. For a non-root node n

with parent p, given a solution set, CV(n) = CV(p) × IV(p′), where p′ is a copy of p where

the subtree under n has been deleted. We could also say that IV(p′) is the Sibling Variability

(SV) of n, SV(n), as we call it in Algorithm 6 (Appendix A). Instead of computing IV(p′) from

scratch, which would take time quadratic to the number of siblings, some previous results are

reused to obtain it in linear time.

Let n be a node, with s children whose inner variabilities are respectively iv1, iv2, . . . , ivs,

and let us suppose IV (n) has been already computed using Equation 8. This calculation would

provide us with vector S. What would happen if we should add a new child ns+1 with variability

ivs+1? a new vector S′ may be computed using the general Equation 8, but it is possible to derive

S ′
i from Si directly, for any suitable i. Obviously, S ′

i will contain all the possibilities in Si, since

all of them are valid combinations of i children of n. These are the combinations in S ′
i which

do not include the new node. The combinations including the new child amount to iv s+1 · Si−1.

So, S ′
i = Si + ivs+1 · Si−1.

To calculate the CV of a child m of n, what we really want to do is exactly the opposite, i.e.,

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

having computed Si, take out m and compute the vector S ′
i, i.e., S′

0 = 1 and S′
i = Si − ivm · Si−1

Going back to our previous example, say we want to take out feature wifi in order to compute its

CV. Now S ′
0 = 1 by definition, S ′

1 = 12−1·1 = 11, S ′
2 = 39−1·11 = 28 and S ′

3 = 28−1·28 = 0

(as expected, since there are only two siblings left). Connectivity is the root node, so its CV is

1. This means that wifi appears in 39·1 = 39 products in this solution set. As 802.11n is false

and 802.11g is a leaf node, initially IV(802.11g) = 1. If the CV for wifi is propagated, then

CV(802.11g) is 39, so, 802.11g appears in 39 products in this solution set.

E. Processing a solution set

Let us discuss the algorithm formally. The attribute grammar formalism will be used to avoid

the control-flow overhead of traditional pseudocode (i.e., to keep the algorithm clear of code

regarding the FM tree traversal). Table I in Appendix A summarizes the productions of the

context-free grammar, together with the semantic rules. The terminal symbols are presented in

boldface. A syntactic tree of this grammar corresponds exactly to a FM, and each node has a

set of attributes, whose values produce the needed information. But before we explain how to

get it, let us briefly discuss how to encode FMs in the different syntactic alternatives to suit the

grammar.

In NFT there are two types of nodes: group nodes and leaf nodes. Encoding a NFT FM

into a string produced by this grammar is straightforward, all that is necessary is to ignore

the mandatory construction. Regular FODA does not use group cardinality. Suppose there is

a node n with s children, of the optional/mandatory type, it can be encoded as a group node

with cardinality [0..s] and then use the mandatory attribute appropriately for the children. If n

is an or node, then it would be a group node with cardinality [1..s] and no mandatory children.

Likewise, a xor node would require cardinality [1..1] and no mandatory children. The SPLOT

metamodel uses group cardinality and the optional/mandatory construction, so it also follows

the former encoding.

The first thing to notice when using the grammar is the traversal order for the nodes. Although

most attributes are synthesized, which implies that a bottom-up traversal of the syntactic tree

is necessary, there are also some inherited attributes, so another top-down traversal will also be

necessary. The good thing is that there is no circularity in the definitions. For the sake of clarity,

before each definition of the attributes, we have appended an upwards arrow for synthesized

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

attributes, and a downwards arrow for inherited ones.

Let us describe how the evaluation would take place. In the first, ascending phase, the IV is

computed for every node. In attribute grammars, the notation for an attribute a of a node n is

n.a, so IV(n) would be written as n.iv. So, we count how many children of each type a node has

with the c attribute. Then sel and desel attributes are computed. With these values, together with

the mandatory attribute, the node type is computed out of the four possibilities. All the present

children variabilities are integrated in the present factor (pref) and the variability of potential

children are added in the list attribute pot. Then, its potential factor is computed via gCard,

which also provides vector S. An attribute called extra is used to hold the values of the number

of products of F , the cardinality bounds and also the vector S, since all these may be used as

input parameters for Algorithm 6. Finally, the IV is computed. This is done for each node in a

bottom-up fashion.

In the descending phase, the CV is computed for each node using the CV of the parent and

taking the node out. If the node was present, the process is as simple as dividing the variability

of the parent by the variability of the child. If the node was potential, we employ the vector

S and the node variability to call Algorithm 6. Either way, we can compute now the number

of products the node appears in, and this amount is added to an external array adding up the

subtotals along the solution sets. The CV attribute is also used in a slightly subtle way: when

a node is deselected, none of its descendants participates in any products, so we set the CV to

zero and just let it propagate downhill, so all the descendants end up with zero products.

Finally, a small optimization has been added consisting of caching the results of the compu-

tation for each node, so that a node whose attributes are already cached is just visited once. For

each node n that is visited, a key is hashed consisting of the name of the node plus the values of

the variables in the textual constraints that are also descendants of n. Typically the key is very

small since the ratio of variables in the textual constraint versus the total number of variables in

the FM is usually low, as we will discuss in Section VI, so this allows us to reduce the runtime

of treecount.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

VI. COMPUTATIONAL COMPLEXITY AND EXPERIMENTAL EVALUATION

A. Computational complexity

This section shows that Algorithm 1 is quadratic in the number of features and exponential

in the number of variables in the textual constraints. So, if N is the number of features in the

tree and M is the number of features in the textual constraints, the complexity is in O(N 22M).

For practical purposes it is convenient to introduce the concepts of Extra Constraint Represen-

tativeness (ECR) and Clause Density (CD), introduced in [13]. ECR is the number of variables

in the textual constraints divided by the total number of features. In the mobile phone example,

this would be 3
12

= 0.25. CD is the number of clauses in the textual constraints divided by the

number of variables in the textual constraints. For the mobile phone example, it is 2
3
= 0.67.

The DPLL process is exponential by nature, so in the worst case it may have to choose and flip

almost every variable in the textual constraints to get all the solution sets.

DPLL backtracking search can be seen as a binary tree, with 2M leaf nodes and 2M−1 internal

nodes. Following Algorithm 1, the leaf nodes correspond to the case where the textual constraints

are satisfied and computeProducts is called (Table I in Appendix A). The internal nodes generally

need to perform UP and then choose a new variable to keep the backtracking. Of these elements,

it is clear that UP and branch selection via Mom’s heuristic can be completed in quadratic time.

We now prove that processing each solution set, that is, running computeProducts, takes only

O(N2) (in fact, O(N) if only standard FODA models are allowed). For clarity’s sake, it may

help to consider the operations step-by-step. For a call to #gCard (Algorithm 3) with a node n

with s children, the result is in O(s2), since there are two nested loops upper bounded by s.

When #gCard is called for all the nodes, as it is done in computeProducts, it takes O(N 2), where

N is the total number of nodes. This can easily be proven by means of structural induction:

the leaf-nodes of the FM are the base case of the induction and they take constant time to

be processed, so the condition holds trivially. Let now n be the root of the tree with children

n1, n2, . . . ns with N1, N2, . . . , Ns nodes in their respective subtrees (excluding the root). Now,

N = (
∑s

i=1Ni) + s + 1. Trivially,
∑s

i=1 x
2
i ≤ (

∑s
i=1 xi)

2 for any natural number xi. The

induction hypothesis is that #gCard(ni) ∈ O(N2
i). So, the time spent computing #gCard for

all the nodes is delimited by Equation 9.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

(
s∑

i=1

N2
i

)
+ s2 ≤

((s∑
i=1

Ni

)
+ s
)2

≤ N2 ∈ O(N2) (9)

The rest of the computations (sel, desel, . . .) are linear. Therefore, the bottom-up sequence

of computeProducts is quadratic. Finally, Let us consider the top-down sequence. The call to

TakeOneOut for some node ni takes time in O(N 2
i) (O(Ni) for regular FODA). Applying again

the argument expressed in Equation 9, this top-down sequence is O(N 2). Therefore, the sequence

of the operations in computeProducts is O(N 2).

The total cost of Algorithm 1 includes calling computeProducts (O(N 2)) once for each DPLL

search leaf node, of which there are 2M and performing in sequence UP (O(N 2)) and branch

selection (also O(N 2)) for each of the 2M−1 internal nodes. That is O(2MN2 + (2M−1)(N2 +

N2)) = O(N22M). Calculation of the commonalities just takes computing the products for each

feature and then traversing all the features to perform a division by the total number of products,

so the complexity for commonality computing is the same as in Algorithm 1.

Model counting via strict DPLL as performed by cachet and relsat belongs to the complexity

class NO(1)O(2N). The reason is that every feature appears as a variable in the corresponding

formula, regardless of the ECR, so every variable counts for the exponential part. The branching

heuristics can also be computationally expensive. The complexities for the forcing versions would

be the same since basically they consist in calling again the tool N times, once for each feature to

force it to be present. SPLOT’s complexity is in the class O(2N), because the branching strategy

is defined by the ordering constraints instead of being reconsidered at each new step as cachet

and relsat do. For commonality counting, it is O(N · 2N) because the BDD is traversed once for

each feature, and the BDD may have as many as 2N nodes. So, as far as worst-case complexity

is concerned, our approach moves a great deal of the complexity from the exponential side to

the quadratic one. The different complexities are summarized in Table III.

B. Experimental evaluation

In addition to the theoretical evaluation that computational complexity provides, five experi-

ments have been devised to evaluate the validity and scalability of the different approaches on

datasets with varying characteristics; with and without group cardinality, real academic models

and computer-generated ones, with and without textual constraints and some others with different

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

Product counting Commonality counting

cachet NO(1)O(2N) NO(1)O(2N)

relsat NO(1)O(2N) NO(1)O(2N)

treecount O(N2 · 2M) O(N2 · 2M)

SPLOT O(2N) O(N · 2N)

TABLE III

COMPLEXITY CLASSES FOR A FM WITH N FEATURES M OF WHICH APPEAR IN THE TEXTUAL CONSTRAINTS (M < N)

clause density values. These experiments will show how treecount11 behaves w.r.t to the other

baselines: the propositional-logic exact model counters cachet [33] and relsat [31], and the open-

source version of SPLOT [41]. It is important to note that cachet, relsat and SPLOT needed some

tweaking in order to perform commonality counting, since only treecount does so natively: For

cachet and relsat, commonality computing requires one run for each feature with an additional

constraint to force the presence of that feature. The number of products containing the feature is

then divided by the number of products containing the root feature to obtain the commonality.

Cachet [54] presents a pseudocode to compute the marginals, but the memory requirements

multiply those of the counting version, which were already exponential. Where the counting

version caches a floating point number, the marginality computing one stores a whole vector

of those. The authors claim computing marginals is 10-40% slower than counting, when the

problem fits in memory. Lacking evidence to the contrary, it is reasonable to assume that only

small models do fit in memory (and those that do not fit in memory quickly degrade into good-

old DPLL search). This version of cachet is not available, so, as with relsat, cachet was used

as a black-box to force each feature in turn. With SPLOT, the original steps of computing a

variable order and building the BDD were followed. After that, the BDD graph was traversed

once for each feature to force its presence and thus compute its commonality.

The test machine was an Intel core i7 @3.5Ghz with 16GB of RAM running Mac OS X.

11the prototype implementation of our algorithm, the experiments described in this section and a number of case studies are

available on https://sourceforge.net/projects/commonality-spl

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

Fig. 3. Hard group cardinality model

1) First experiment. Group cardinality #1: The first experi-

ment seeks to test the ability of the different approaches to deal

with a sample of group cardinality FMs. The FM scheme is

summarized in Figure 3. The FMs consist of a root node n, with s

terminal children and cardinality [h..h+1], where h is the integer

division of s by 2. The results of the experiment are summarized

by Table IV.

terminal clauses cachet relsat treecount SPLOT

nodes time dec time dec time dec time BDD size

1 4 9.49 0 0.59 2 0.01 0 48.69 2

2 6 12.27 0 0.63 6 0.01 0 51.99 3

3 8 15.38 2 0.86 16 0.01 0 55.16 6

4 12 18.75 10 1.15 38 0.01 0 58.31 9

5 18 22.06 27 1.63 83 0.01 0 62.93 13

6 30 24.68 54 2.55 182 0.01 0 72.04 17

7 52 28.70 89 5.05 376 0.01 0 82.60 22

8 95 33.64 138 12.12 802 0.01 0 107.38 27

9 180 38.25 197 38.15 1627 0.01 0 143.61 33

10 343 44.65 274 132.13 3432 0.01 0 231.03 39

11 674 55.10 363 507.20 6917 0.01 0 448.66 46

12 1302 78.20 474 2115.55 14506 0.01 0 693 53

13 2590 124.67 599 8740.52 29157 0.01 0 811.45 61

14 5022 217.41 750 37934.01 60902 0.01 0 865.53 69

15 10028 456.22 917 — — 0.02 0 1041.23 78

16 19467 1003.94 1114 — — 0.02 0 1685.67 87

17 38916 2376.30 1329 — — 0.01 0 2452.95 97

18 75603 5645.29 1578 — — 0.02 0 4114.78 107

19 151186 14596.77 1847 — — 0.02 0 6618.15 118

20 293953 39313.78 2154 — — 0.02 0 15847.63 129

TABLE IV

GROUP CARDINALITY TEST. TIMES IN MILLISECONDS.

Since the input to cachet and relsat are logic formulas in CNF, the FM translation to CNF is

now sketched, following the directions in [55]. The tree structure is dealt with s + 1 clauses:

there is a clause to express that node n is true. Also, each child ni implies the parent node n.

For instance, if s = 4, the tree structure is encoded by:

n ∧ (n1 → n) ∧ (n2 → n) ∧ (n3 → n) ∧ (n4 → n) ≡ n ∧ (¬n1 ∨ n) ∧ (¬n2 ∨ n) ∧ (¬n3 ∨ n) ∧ (¬n4 ∨ n)

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

For the cardinality restriction, the low and high restrictions are treated separately. Saying that

at least low children have to be present in a product is equivalent to say that at most s − low

children can be excluded (i.e., in the logical formula no more than s − low children can be

false). Which means that as soon as s− low+1 children are selected, at least one of them must

be true (this constraint is a clause). So, the low restriction is equivalent to the conjunction of all

possible clauses obtained by choosing s− low + 1 children of n. In the example with s=4, the

low limit is encoded by: (n1 ∨ n2 ∨ n3) ∧ (n1 ∨ n2 ∨ n4) ∧ (n1 ∨ n3 ∨ n4) ∧ (n2 ∨ n3 ∨ n4)

This mechanism produces
(

2h
h+1

)
clauses. The high restriction is somewhat easier. Since in a

set of high+ 1 children at least one of them has to be false, one may just compute all the sets

of children of size high+1 and add a clause with all the set members negated. For the example,

this gives: ¬(n1 ∧ n2 ∧ n3 ∧ n4) ≡ ¬n1 ∨ ¬n2 ∨ ¬n3 ∨ ¬n4

Which produces
(

2h
h+2

)
clauses. To sum up, the s = 4 example is encoded by the following

formula with 10 clauses: n ∧ (¬n1 ∨ n) ∧ (¬n2 ∨ n) ∧ (¬n3 ∨ n) ∧ (¬n4 ∨ n) ∧ (n1 ∨ n2 ∨ n3) ∧ (n1 ∨ n2 ∨
n4) ∧ (n1 ∨ n3 ∨ n4) ∧ (n2 ∨ n3 ∨ n4) ∧ (¬n1 ∨ ¬n2 ∨ ¬n3 ∨ ¬n4)

Since
(

2h
h+1

) ≥ (2h
h

) ≥ 2h for any h, the number of clauses roughly doubles when going from

s nodes to s+ 2. The intent is to test the ability of logic model counters to cope with this kind

of input. As showed by Table IV, treecount completes each test case in 0.02 milliseconds or less

with a modest rate of growth. SPLOT comes in second, between 2 and 3 orders of magnitude

slower than treecount. Cachet takes twice as long as SPLOT for the bigger models and finally

relsat times out at size 15 (the timeout was set at 1 minute).

Using purely logic tools such as cachet and relsat does not provide a scalable solution for the

problem of commonality counting in the presence of group cardinality because of their reliance

on DPLL. In this experiment, the number of clauses grows exponentially with the number of

nodes in the input FM. The number of branching decisions taken for DPLL search is included as

an alternative informative measure, as well as the size of the BDD for SPLOT. The differences

between relsat and cachet are interesting. Cachet’s caching strategy imposes a time overhead

w.r.t to relsat but it really pays off in terms of branching decisions, considering that the input

(number of clauses) grows exponentially. Relsat, being relatively simpler, performs faster in the

first exemplars, but at size 10 is already lagging behing cachet and the number of decisions

doubles with each new model. For treecount, the quadratic time growth of the algorithm is

negligible for these input sizes.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

For SPLOT, the size of the resulting BDD is included in the dec column. It turns out that

building the BDD takes up a lot of time as expected by the exponentially growing number of

clauses, but the resulting graph is in fact quite compact. Moreover, there is a clear pattern of

growth: 1, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7. . . . It stands to reason that there should be a relation between

the DAGs, maybe a recurrence relation similar to the ones described in Section V. If there is a

fast way to compute the graph for the proper group cardinality nodes, it should be reasonably

easy to apply it to the rest of the BDD, especially since such cardinality graph should be agnostic

as to the ordering of the variables (i.e. the nodes can be renamed in any way). So, with some

effort, BDD could be an adequate tool for managing group cardinality in FMs.

Admittedly, real FMs are not likely to display such a complex structure, but then again,

extended cardinality could not be efficiently processed hitherto. Even a slight use of group

cardinality may slow down the response of a design framework relying on model counters.

2) Second experiment. Real Models: In the second experiment, the same four approaches are

tested on real-world FMs, as collected in the SPLOT repository. The 30 biggest models were

chosen, excluding repetitions. Interestingly, none of these models makes use of group cardinality,

so the outcome will help establish if treecount, group cardinality-capable, is penalized in its

absence. As before, the number of branching decisions/BDD size is included where applicable.

BDD size is an average of the different runs which explains why it is sometimes a fractional

number, since the ordering heuristic is not deterministic and so different runs of the same test

may produce differently-sized BDDs.

The results are shown in Table V. As before, running times should not fool us. Cachet’s

infrastructure makes it slower than relsat in most exemplars. However, the number of branching

decisions is consistently below that of relsat, and eventually cachet takes over on the biggest

exemplar. Treecount is the fastest system in all cases, again by several orders of magnitude. It

always makes less branching decisions than relsat and, in the vast majority of cases, less than

cachet. The difference is particularly striking in those exemplars without textual constraints.

For those, treecount makes no branching decisions, but cachet and relsat still have to embark in

DPLL search to decompose the connected components of the FM. SPLOT does a good job when

the BDD is small but struggles to complete the traversals otherwise. Results seem to confirm

that treecount is a good choice when ECR is low. The Electronic Shopping exemplar deserves

particular treatment. For all four systems, it marks the peak of both branching decisions and

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

Name #F ECR CD
cachet relsat treecount SPLOT

time dec time dec time dec time BDD

Web Portal 49 0.24 0.50 180.60 2171 49.22 10124 0.21 31 118.66 191.03

Thread 51 0 — 167.92 571 27.61 1010 0.03 0 110.18 88

Doc Generation 53 0.25 0.62 184.62 1344 68.62 19416 0.28 31 123.84 340

Android SPL 54 0.17 0.56 177.34 689 31.51 1705 0.08 5 115.80 81

DELL 54 0.69 2.97 182.46 976 57.64 1924 0.49 27 168.62 275.04

Experimentation PL 56 0.16 0.44 178.34 0 26.87 1100 0.11 9 115.61 32

Letovanje 56 0.05 0.67 190.90 1205 38.91 2101 0.05 1 114.18 99.08

Face Animator 59 0.20 1.42 195.22 820 38.04 2967 0.10 4 122.70 90.34

Hotel PL 62 0 — 200.93 589 34.60 2539 0.03 0 115.14 44

Electronic Drum 63 0 — 212.04 1488 42.91 1488 0.03 0 118.45 77

Product Family Test 64 1 1.41 207.35 150 54.69 378 0.71 70 171 180.05

OW2 FraSCAti 65 0.68 1.05 219 1019 56.51 7954 1.95 257 192.15 1196.83

Phone Meeting 66 0 — 215.85 809 43.39 3610 0.03 0 121.48 66

Smart Home 66 0.06 0.50 217.84 854 41.27 3862 0.06 3 129.39 96

Arcade Game 70 0.57 0.85 238.14 1093 119.15 34334 0.25 7 166.23 483.81

HIS 73 0.11 0.50 232.95 753 46.26 1173 0.12 11 147.34 157.63

SimulES 73 0 — 240.62 1130 48.30 2534 0.04 0 126.30 71

Car Crisis Mgmt 74 0.04 0.67 240.75 903 50.26 2434 0.05 1 144.44 86

Video Player 76 0 — 244.01 282 64.11 11359 0.03 0 151.65 79

Database Tools 77 0.08 0.33 252.19 769 70.39 13308 0.06 4 151.70 103.75

E-Science 77 0 — 278.35 2935 73.68 6174 0.04 0 135.86 181

Eclipse Extensions 79 0.03 0.50 271.11 2327 59.22 4456 0.05 1 154.98 120

Web architectures 88 0 — 293.79 1855 67.23 3934 0.04 0 156.97 109

Billing 90 0.76 0.87 287.28 348 67.18 3907 48.73 5735 205.03 185.46

Car Selection 91 0.30 0.78 313.53 2829 87.50 4773 4.14 767 174.40 137.65

Ecologic Car 110 0.04 0.50 373.82 2816 112.44 4113 0.08 3 174.70 138

Model Transf 113 0 — 395.17 3144 124.09 7613 0.05 0 167.13 146

xtext 137 0.01 0.50 470.30 4401 159.55 17001 0.05 1 204.10 205

Printers 200 0 — 687.80 5259 443.07 63826 0.05 0 256.19 228

Electronic Shopping 326 0.11 0.60 1350.38 24900 1382.11 262389 65.22 6527 1479.53 23344.18

TABLE V

SPLOT REPOSITORY SAMPLE RESULTS. TIMES IN MILLISECONDS.

time. At a first glance, it does not seem a very hard test. With 326 features, it is the biggest

model. However, the ECR is 0.11, not particularly high (the DELL model has 0.69) and the

number of features present in the textual constraints is 35, less than the 40 features sported by

an easy model like Arcade Game. The average number of literals in a clause is barely 2.05. The

problem is that 27 features occur only once in the textual constraints and 9 clauses in textual

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

constraints are formed from these variables and so are independent –the worst-case scenario for

the hybrid systems. For SPLOT, BDD size increases by two orders of magnitude. While SPLOT’s

ordering heuristic (Pre-CL-MinSpan) is specifically tuned for use with FMs, BDD construction

techniques are generic, so there is probably space for improvement. This exemplar is difficult

for the logic systems and for SPLOT because it is the biggest, and it is difficult for treecount

because the textual constraints are largely independent of one another.

3) Third experiment. Computer-generated models without textual constraints: The four ap-

proaches have been measured against computer generated random models. Figure 4 displays the

results of running the four programs with random FMs with no textual constraints ranging from

50 to 5000 features, with a branching factor of 6. Running times for cachet and relsat grow

exponentially, although both hit the 1 minute timeout rather quickly, at sizes 3400 and 1300

respectively. Treecount (hardly visible in the graphic) is the clear winner, with 1.43 milliseconds

at size 5000 against 23790 for SPLOT. The forcing procedure clearly does not scale for cachet

and relsat. It does for SPLOT, although the absolute timings are much worse than those of

treecount.

Fig. 4. Performance without textual constraints

4) Fourth experiment. Computer-generated mod-

els with textual constraints: The next experiment

tests satisfiable exemplars (ten of each) of sizes

between 50 and 1000, ECR = 0.2, and clause

density values ranging from 0.1, to 0.5, created

using SPLOT generator with a branching factor

of 6. We have set a timeout of 60 seconds for

each test in this run of experiments and only show

results when all 10 exemplars have been processed

in time. Table VI show the results.

All four systems fail to finish the tests, especially

with every increase in clause density. Relsat starts

out faster than cachet but the situation quickly reverses. In fact, relsat times out at size 300 even

for CD 0.1. Cachet lasts a bit longer but times out at size 600 for CD 0.1. Treecount is again

the clear winner, and even so, it does not scale gracefully. SPLOT comes in second place. It is

noteworthy that overconstraining the exemplars does not help any system, quite to the contrary,

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 29

Size
Clause density

0.1 0.2 0.3 0.4 0.5

100 399.56 419.18 479.04 440.12 437.32 cachet

182.12 312.40 677.27 343.80 553.62 relsat

0.12 0.18 0.35 0.52 0.81 treecount

182.11 185.78 190.11 191.97 199.08 SPLOT

200 1022.03 1253.37 2714.42 3212.03 3196.15 cachet

1486.73 7633.24 �timeout� �timeout� �timeout� relsat

0.33 1.64 6.62 25.25 67.10 treecount

325.84 376.18 445.28 568.00 744.36 SPLOT

300 2084.60 3775.07 9427.70 18874.79 �timeout� cachet

�timeout� �timeout� �timeout� �timeout� �timeout� relsat

1.73 43.53 523.72 1368.78 6806.57 treecount

473.95 779.60 1799.65 2548.33 �timeout� SPLOT

400 4247.83 14217.84 �timeout� �timeout� �timeout� cachet

�timeout� �timeout� �timeout� �timeout� �timeout� relsat

11.49 583.02 9165.96 �timeout� �timeout� treecount

793.49 2309.78 17081.91 �timeout� �timeout� SPLOT

500 9960.27 �timeout� �timeout� �timeout� �timeout� cachet

�timeout� �timeout� �timeout� �timeout� �timeout� relsat

24.26 7872.75 �timeout� �timeout� �timeout� treecount

1269.74 �timeout� �timeout� �timeout� �timeout� SPLOT

600 �timeout� �timeout� �timeout� �timeout� �timeout� cachet

�timeout� �timeout� �timeout� �timeout� �timeout� relsat

233.15 �timeout� �timeout� �timeout� �timeout� treecount

3004.35 �timeout� �timeout� �timeout� �timeout� SPLOT

700 �timeout� �timeout� �timeout� �timeout� �timeout� cachet

�timeout� �timeout� �timeout� �timeout� �timeout� relsat

1751.34 �timeout� �timeout� �timeout� �timeout� treecount

8051.32 �timeout� �timeout� �timeout� �timeout� SPLOT

800 �timeout� �timeout� �timeout� �timeout� �timeout� cachet

�timeout� �timeout� �timeout� �timeout� �timeout� relsat

6072.60 �timeout� �timeout� �timeout� �timeout� treecount

�timeout� �timeout� �timeout� �timeout� �timeout� SPLOT

TABLE VI

PERFORMANCE IN MILLISECONDS WITH ECR 0.2 AND VARIOUS CD VALUES

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 30

increasing the CD is a killer for all the approaches.

5) Fifth experiment. Computed generated models with textual constraints and group cardinal-

ity #2: The final experiment consisted in modifying the generated models in the last experiment

to include group cardinality. Whenever there was a group node, we changed it randomly to a

legal configuration (i.e. a [low, high] cardinality where low ≤ high and high ≤ the number of

children of the node), which could be either FODA or a proper group cardinality configuration.

Run time increased 61% for cachet, 118% for relsat , 0.32% for treecount and 0.5% for

SPLOT.

The experiments indicate that group cardinality is a burden for cachet and relsat, even though

the small branching factor limited the impact for these systems. SPLOT takes advantage of the

fact that building the BDD takes a little longer but the bulk of the work traversing the BDD is

very similar. Treecount performs well as expected.

C. Threats to Validity

Let us discuss threats to validity of the experimental evaluation:

1) Choice of examples. In the design of the experiments it was of paramount importance to

address the performance of our approach and the baselines on large FMs since any method

would do for small cases. As there are almost no publicly available industrial-sized FMs,

this led to the use of random computer-generated examples within certain parameters. With

these, the question is always whether the generated models can be considered realistic

or not. We concur at this point with Mendonça’s assertion: From our experience in

examining several FMs in the literature, we noticed that feature trees are frequently orders

of magnitude larger than the extra constraints in terms of number of relations [13]. For

this reason we generated examples with no textual constraints in experiment 3 and also

examples with ECR = 0.2 and CD between 0.1 and 0.5 in experiments 4 and 5.

In [56], Berger et al. study the configuration models for the Linux (6320 features) and

eCos (1244 features) kernels, which are examples of real big variability modeling systems,

claiming an ECR of 0.86 in both cases, somewhat contradicting Mendonça’s assumptions.

It is worth mentioning that said systems go well beyond the usual FODA notation and

its extensions, including feature attributes whose values may include a default and then

change conditionally or unconditionally of other features’ attribute values, including the use

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 31

of arithmetic expressions for numbers and equality for strings. Another point of interest is

that Kconfig (the Linux kernel configurator) allows illegal configurations to be selected and

CDL (the eCos configuration language) is supported by an inference engine that is correct

but not complete, that is, it proposes correct configurations to complete user selections, but

not all the compatible ones. The authors also report that the maximum number of siblings

is 158 and 29, respectively. These FMs resemble those described in [38] which integrate as

many of the textual constraints as possible into a tree structure. Considering the differences

and the fact that none of the algorithms used in this paper could process those FMs, we

will stick to FMs with low ECR in the experiments while duly acknowledging that future

work should address these bigger models.

To further question the results in experiments 3-5, we included experiment 2 in which the

FMs in the SPLOT repository, which are all real models (mostly from the academic world)

albeit usually small. Since the results in all those experiments point in the same direction

we consider the threat averted.

2) Accurate and fair timing of the approaches. In experiment 1, since some of the running

times are so small and obviously prone to measuring errors, we have averaged the times

over 10 runs. In experiment 2 and 3, we used 100 runs for each model. For experiments

4 and 5 we have averaged times over 10 exemplars for each combination of number of

features and CD. To level up the field, we have edited the source code to measure only

processing time, not I/O. Otherwise running times would exponentially rise when the input

grows exponentially, such as for cachet, relsat and SPLOT in experiment 1. Also, cachet

and relsat heavily used temporary files to force the presence of the individual features.

3) Comparison of C, C++ and Java implementations. Cachet, relsat and treecount are C++

programs, while SPLOT is written in Java. This suggests that SPLOT timings could not

be directly compared to those of the other approaches. The reality however, is complex.

Cachet is built on top of zchaff, so it contains quite a bit of C code wrapped up as C++.

Relsat and treecount are written in pure C++ while SPLOT makes heavy use of JavaBDD,

which in this case is linked to BuDDy, a pure C library with optional C++ wrappings.

Only the ordering heuristic (which takes up typically less than 1% of runtime) is written

in Java so language-wise all four approaches seem very comparable.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 32

VII. CONCLUSIONS

Effective deployment of large-scale software product lines demands efficient support for auto-

mated analysis of expressively-rich FMs. In particular, this paper has shown that the computation

of the number of products that implement each feature is helpful to describe the standariza-

tion/parameterization balance, detect flaws in the scope, assess the incremental development

and improve the accuracy of economic models for product lines. Whereas there are alternative

proposals for computing the total number of products, this paper contributes with an innovative

algorithm to compute the feature commonalities.

Our algorithm is applicable for most FM notations since it takes into account textual constraints

and the group cardinality construct. Theoretical considerations suggested that FM translation to

propositional logic would be ineffective against widespread use of group cardinality. These

considerations have been empirically tested and confirmed. As regards the group cardinality

computation, we have presented a quadratic algorithm for a naturally exponential problem in

Sections V-C and V-D. The same quadratic complexity applies to the case in which no textual

constraints are used. Furthermore, we have shown that commonality computation is possible

with just a small overhead after computing the total number of products.

We have reported experimental evidence that the forcing technique to compute commonalities

using models counters has serious scalability problems, especially for logic systems such as

cachet and relsat. BDD-based approaches such as SPLOT show a greater potential in that respect,

although far behind treecount. None of the approaches is well suited for models with high clause

density – a reminder of the difficulty of the task. Treecount’s performance was superior in all test

cases, often by several orders of magnitude over a variety of models, both real and computer-

generated, making it a sound tool for automated analysis of FMs.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for their insightful feedback. We also

thank Roberto López Herrejón and Alexander Egyed at the Institute for Software Engineering

and Automation (Johannes Kepler University of Linz, Austria) for their advice. This work has

been supported by the Comunidad de Madrid under the RoboCity2030-II excellence research

network S2009DPI-1559.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 33

REFERENCES

[1] K. Pohl, G. Bockle, and F. Linden, Software Product Line Engineering: Foundations, Principles and Techniques. Springer,

2005.

[2] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns. Addison-Wesley, 2001.

[3] F. Bachmann and P. C. Clements, “Variability in software product lines,” CMU/SEI-2005-TR-012, Tech. Rep., 2005.

[4] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-oriented domain analysis (foda) feasibility study,”

Software Engineering Institute, Tech. Rep. CMU/SEI-90-TR-21, 1990.

[5] A. Kübler, C. Zengler, and W. Küchlin, “Model counting in product configuration,” in 1st International Workshop on

Logics for Component Configuration, Edinburgh, UK., July 2010, pp. 44–53.

[6] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, “Generic semantics of feature diagrams,” Computer

Networks, vol. 51, no. 2, pp. 456–479, 2007.

[7] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and G. Saval, “Disambiguating the documentation of variability

in software product lines: A separation of concerns, formalization and automated analysis,” in 15th IEEE International

Requirements Engineering Conference, 2007, pp. 243–253.

[8] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing cardinality-based feature models and their specialization.”

Software Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[9] ——, “Staged configuration using feature models.” in Software Product Line Conference, ser. Lecture Notes in Computer

Science, R. L. Nord, Ed., vol. 3154. Springer, 2004, pp. 266–283.

[10] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature models 20 years later: a literature review,”

Information Systems, vol. 35, no. 6, 2010.

[11] D. Fernandez-Amoros, R. Heradio, and J. Cerrada, “Inferring information from feature diagrams to product line economic

models,” in Proceedings of the 13th International Conference on Software Product Lines, 2009, pp. 41–50.

[12] D. Benavides, “On the automated analysis of software product lines using feature models. a framework for developing

automated tool support,” Ph.D. dissertation, University of Seville, June 2007.

[13] M. Mendonça, “Efficient reasoning techniques for large scale feature models,” Ph.D. dissertation, School of Computer

Science, University of Waterloo, January 2009.

[14] J. C. Cleaveland, Program Generators with XML and Java. Prentice Hall, 2001.

[15] S. Q. Lau, “Domain analysis of e–commerce systems using feature–based model templates,” Master’s thesis, Dept. Electrical

and Computer Engineering, University of Waterloo, Canada, 2006.

[16] D. Batory, “Feature models, grammars, and propositional formulas,” in 9th international conference on Software Product

Lines. Rennes, France: Springer-Verlag, 2005, pp. 7–20. [Online]. Available: http://dx.doi.org/10.1007/11554844 3

[17] K. C. Kang, J. Lee, and P. Donohoe, “Feature–oriented product line engineering,” IEEE Software, vol. 19, no. 4, pp. 58–65,

2002.

[18] G. Bockle, P. Clements, J. McGregor, D. Muthig, and K. Schmid, “Calculating roi for software product lines,” IEEE

Software, vol. 21, no. 3, pp. 23–31, 2004.

[19] P. Clements, J. McGregor, and S. Cohen, “The structured intuitive model for product line economics,” CMU/SEI-2005-

TR-003, Tech. Rep., 2005.

[20] K. Czarnecki and U. Eisenecker, Generative Programming: Methods Tools and Applications. Addison-Wesley, 2000.

[21] B. Boehm, A. W. Brown, R. Madachy, and Y. Yang, “A software product line life cycle cost estimation model,” in

International Symposium on Empirical Software Engineering, 2004, pp. 156–164.

May 29, 2014 DRAFT

http://dx.doi.org/10.1007/11554844_3

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 34

[22] S. B. A. B. Lamine, L. L. Jilani, and H. H. B. Ghézala, “Cost estimation for product line engineering using cots components,”

in Software Product Line Conference, ser. Lecture Notes in Computer Science, J. H. Obbink and K. Pohl, Eds., vol. 3714.

Springer, 2005, pp. 113–123.

[23] J. P. Nobrega, E. S. de Almeida, and S. R. de Lemos Meira, “Income: Integrated cost model for product line engineering,”

in SEAA. IEEE, 2008, pp. 27–34.

[24] J. S. Poulin, “The economics of software product lines,” International Journal of Applied Software Technology, vol. 3,

no. 1, pp. 20–34, March 1997.

[25] J. H. Wesselius, Software Product Lines Research Issues in Engineering and Management. Springer Berlin Heidelberg,

2006, ch. Strategic Scenario-Based Valuation of Product Line Roadmaps, pp. 53–89.

[26] S. Cohen, “Predicting when product line investment pays,” Software Engineering Institute (CMU/SEI-2003-TN-017), Tech.

Rep., 2003.

[27] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and Risk Management: When Performance is Measured

Performance Improves. Auerbach Publications, 2006.

[28] H. P. In, J. Baik, S. Kim, Y. Yang, and B. Boehm, “A quality-based cost estimation model for the product line life cycle,”

Communications of the ACM, vol. 49, no. 12, pp. 85–88, 2006.

[29] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual ACM symposium on

Theory of computing, ser. STOC ’71. New York, NY, USA: ACM, 1971, pp. 151–158.

[30] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfiability: Volume 185 Frontiers in Artificial

Intelligence and Applications. Amsterdam, The Netherlands, The Netherlands: IOS Press, 2009.

[31] R. Bayardo and J. Pehoushek, “Counting models using connected components,” in Proceedings of the National Conference

on Artificial Intelligence. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2000, pp. 157–162.

[32] M. Thurley, “sharpSAT–Counting Models with Advanced Component Caching and Implicit BCP,” Theory and Applications

of Satisfiability Testing-SAT 2006, pp. 424–429, 2006.

[33] T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi, “Combining Component Caching and Clause Learning for Effective

Model Counting,” in 7th International Conference on Theory and Applications of Satisfiability Testing, 2004, pp. 20–28.

[34] T. Sang, P. Beame, and H. A. Kautz, “Heuristics for fast exact model counting,” in 8th International Conference on Theory

and Applications of Satisfiability Testing, 2005, pp. 226–240.

[35] M. Mendonca, A. Wasowski, and K. Czarnecki, “Sat-based analysis of feature models is easy,” in Proceedings of the 13th

International Software Product Line Conference. Carnegie Mellon University, 2009, pp. 231–240.

[36] D. Benavides, A. Ruiz-Cortes, and P. Trinidad, “Automatic reasoning on feature models,” in Advanced Information Systems

Engineering: 17th International Conference, CAiSE, 2005, pp. 491–503.

[37] D. Benavides, S. Segura, and P. Trinidad, “Using java csp solvers in the automated analyses of feature models,” Techniques

in Software, vol. 01, pp. 399–408, 2006.

[38] K. Czarnecki and A. Wasowski, “Feature diagrams and logics: There and back again,” in 11th International Software

Product Line Conference. Washington, USA: IEEE Computer Society, 2007, p. 23–34.

[39] Y. Gil and S. Kremer-Davidson, “Sans Constraints? Feature Diagrams vs. Feature Models,” Lecture Notes in Computer

Science, vol. I, no. 6287, pp. 271–285, 2010.

[40] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-proving,” Commun. ACM, vol. 5, pp. 394–397,

July 1962.

[41] M. Mendonça, M. Branco, and D. Cowan, “S.P.L.O.T. - Software Product Lines Online Tools,” in 24th ACM SIGPLAN

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 35

Conference on object oriented programming systems languages and applications - OOPSLA Companion, ACM Press.

Orlando, Florida, USA: ACM Press, 10/2009 2009, p. 761.

[42] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Transactions on Computers, vol. 8, no.

C-35, pp. 677–691, 1986.

[43] M. Mendonça, A. Wasowski, K. Czarnecki, and D. Cowan, “Efficient compilation techniques for large scale feature models,”

in Proceedings of the 7th international conference on Generative programming and component engineering, ser. GPCE

’08. New York, NY, USA: ACM, 2008, pp. 13–22.

[44] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs is NP-Complete,” IEEE Trans. Comput., vol. 45,

pp. 993–1002, September 1996.

[45] F. Bacchus, S. Dalmao, and T. Pitassi, “Algorithms and Complexity Results for # SAT and Bayesian Inference,” in

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003, pp. 340–351.

[46] G. Tseitin, Structures in Constructive Mathematics and Mathematical Logic, Part II, Seminars in Mathematics (translated

from Russian). Steklov Mathematical Institute, 1968, ch. On the complexity of derivation in propositional calculus, pp.

115–125.

[47] J. P. Marques-Silva and K. A. Sakallah, “Grasp - a new search algorithm for satisfiability,” in Proceedings of the 1996

IEEE/ACM international conference on Computer-aided design, ser. ICCAD ’96. Washington, DC, USA: IEEE Computer

Society, 1996, pp. 220–227.

[48] N. Sörensson and N. Een, “Minisat v1.13 - A SAT solver with conflict-clause minimization,” in System descriptions for

the SAT competition, vol. 2005, 2005, p. 53.

[49] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an efficient SAT solver,” in

Proceedings of the 38th annual Design Automation Conference, ser. DAC ’01. New York, NY, USA: ACM, 2001, pp.

530–535.

[50] K. Pipatsrisawat and A. Darwiche, “Rsat 1.03: Sat solver description,” Automated Reasoning Group, Computer Science

Department, UCLA, Tech. Rep. D–152, 2006.

[51] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a parallel SAT solver,” Journal on Satisfiability, Boolean Modeling and

Computation, vol. 6, pp. 245–262, 2009.

[52] D. Pretolani, “Satisfiability and hypergraphs,” Ph.D. dissertation, Universitá di Pisa, 1993.

[53] J. W. Freeman, “Improvements to Propositional Satisfiability Search Algorithms,” Ph.D. dissertation, University of

Pennsylvania, 1995.

[54] T. Sang, P. Beame, and H. A. Kautz, “Solving bayesian networks by weighted model counting,” in 20th National Conference

of Artificial Intelligence (AAAI-05), vol. 1, 2005, pp. 475–482.

[55] A. Biere, M. J. Heule, H. van Maaren, Toby, and Walsh, Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence

and Applications. IOS Press, February 2009, vol. 185.

[56] T. Berger, S. She, and R. Lotufo, “Variability modeling in the real : A perspective from the operating systems domain,”

Measurement, pp. 73–82, 2010.

May 29, 2014 DRAFT

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2331073, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 36

David Fernandez-Amoros received the M.S degree in mathematics and the M.S degree in Philology from

the Universidad Complutense de Madrid (Spain) in 1994 and 2009, respectively, and the Ph.D. degree

in Computer Science from the Universidad Nacional de Educación a Distancia (Spain) in 2004. Since

November, 2001 he has been an Assistant Professor at the Universidad Nacional de Educación a Distancia

(Spain). His research and teaching interests include Software Engineering, Natural Language Processing,

Compiler Design and Concurrent Programming.

Ruben Heradio received the M.S. degree in Computer Science from the Polytechnic University of Madrid

(Spain) in 2000 and the Ph.D. degree from the Universidad Nacional de Educación a Distancia (Spain) in

2007. Since 2001 he has been an Assistant Professor of Software Engineering in the Universidad Nacional

de Educación a Distancia (Spain). His research and teaching interests include Software Engineering,

Computational Logic and E-Learning.

Jose Cerrada received the M.S. degree in Industrial Engineering and the Ph.D. degree from the Polytechnic

University of Madrid (Spain) in 1979 and 1983, respectively. He is currently a Full Professor and Head of

Department in the Systems and Software Engineering Department, Universidad Nacional de Educación a

Distancia (Spain). His research interests are in Software Engineering, Robotics and RFID Technologies.

He is a member of IFAC.

Carlos Cerrada received the M.S. degree in industrial engineering and the Ph.D. degree from the

Polytechnic University of Madrid (Spain) in 1983 and 1987, respectively. He is currently a Full Professor

in the Systems and Software Engineering Department, Universidad Nacional de Educación a Distancia

(Spain). He was a Fulbright Scholar, from 1989 to 1990 at the Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, USA. His research interests are in Software Engineering, Robotics, Pattern

Recognition, 3D Object Representation and Ubiquitous Computing. He is a member of IFAC.

May 29, 2014 DRAFT

