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Background and Objectives: Named Entity Recognition (NER) and Relation Extraction (RE) are two of the
most studied tasks in biomedical Natural Language Processing (NLP). The detection of specific terms and
entities and the relationships between them are key aspects for the development of more complex automatic
systems in the biomedical field. In this work, we explore transfer learning techniques for incorporating
information about negation into systems performing NER and RE. The main purpose of this research is to
analyse to what extent the successful detection of negated entities in separate tasks helps in the detection of
biomedical entities and their relationships.

Methods: Three neural architectures are proposed in this work, all of them mainly based on Bidirectional Long
Short-Term Memory (Bi-LSTM) networks and Conditional Random Fields (CRFs). While the first architecture is
devoted to detecting triggers and scopes of negated entities in any domain, two specific models are developed
for performing isolated NER tasks and joint NER and RE tasks in the biomedical domain. Then, weights related
to negation detection learned by the first architecture are incorporated into those last models. Two different
languages, Spanish and English, are taken into account in the experiments.

Results: Performance of the biomedical models is analysed both when the weights of the neural networks
are randomly initialized, and when weights from the negation detection model are incorporated into them.
Improvements of around 3.5% of F-Measure in the English language and more than 7% in the Spanish language
are achieved in the NER task, while the NER+RE task increases F-Measure scores by more than 13% for the
NER submodel and around 2% for the RE submodel.

Conclusions: The obtained results allow us to conclude that negation-based transfer learning techniques are
appropriate for performing biomedical NER and RE tasks. These results highlight the importance of detecting
negation for improving the identification of biomedical entities and their relationships. The explored techniques
show robustness by maintaining consistent results and improvements across different tasks and languages.

1. Introduction

Named Entity Recognition (NER) and Relation Extraction (RE) are
two Natural Language Processing (NLP) tasks especially related to the
biomedical domain. However, a somehow fixed collection of types of
entities usually studied and considered within these tasks can be found
in the literature. For instance, drugs and disorders (and their potential
relationships as adverse drug effects), or genes and their influence in
causing specific diseases. In this research, we aim to move away from
those entities that are normally dealt with in biomedical NLP research,
and focus on two specific types of entities and the relationships that

can be found among them: disabilities and rare diseases. These enti-
ties represent very important aspects of the biomedical research: for
instance, it is estimated that 15% of the world’s population suffers from
some form of disability.! On the other hand, an estimated 300-400
million people worldwide are living with a rare disease. Despite these
high incidence rates in disabilities and rare diseases, the detection of
these kind of entities is not usually considered within classical NER
or RE tasks in biomedical research. In order to cover the automatic
detection of disabilities in scientific-medical texts and the identification
of relationships between disabilities and rare diseases, two different
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corpora were created in previous works: RDD (Rare Diseases and
Disabilities) and DIANN (DIsability ANNotation on documents from
the biomedical domain) corpus. Each collection tries to cover specific
aspects of information extraction in biomedical documents, and will be
used in this research. As it will be detailed in subsequent sections of this
work, while the RDD corpus is entirely written in English, the DIANN
corpus presents documents in both English and Spanish. This allows us
to expand our research for also analysing the differences that can be
found between both languages when it comes to NER and RE tasks.

In the context of detecting disabilities and rare diseases, and rela-
tionships between them, the main objective of this work is studying the
possible effects that negation detection might have in these biomed-
ical tasks. Negation is an aspect of great interest in several domains
and NLP tasks due to its implications on the speech. This linguistic
element performs important functions of discourse polarization, being
this aspect especially relevant in sentiment analysis and relationship
extraction [1,2]. In this work, we explore techniques for performing
a more targeted negation detection, and the effects this previous step
may have in the above-mentioned tasks: NER and RE.

For this purpose, a deep learning architecture is built and trained for
automatic detection of negation triggers and scopes, and subsequently,
transfer learning techniques are explored for integrating this previously
acquired knowledge into a different deep learning architecture devoted
to performing NER and RE. Through this pipeline, we are able to
extract useful information regarding the influence and impact of incor-
porating this negation-related knowledge on the recognition of named
entities and the extraction of relationships between them. In particular,
negation detection is an NLP task usually divided into two subtasks:
detection of negation cues or triggers, i.e. words indicating the presence
of negation within a sentence, and detection of the scope or part of the
text affected by the negation cues. The main intuition behind the use of
negation for improving NER and RE tasks is that a successful detection
of the scopes involved in the negation detection task can be reflected
in how the final system deals with the scopes of the entities. This can
lead to the detection of longer and more complex entities, as well as
to a better management of longer sentences for finding relationships
between entities that are far apart from each other in the text.

The main contributions of this work are the following:

» We present specific neural architectures for addressing NER and
RE tasks in the biomedical domain, as well as a separate neural
model for detecting negation triggers and scopes.

Different techniques are explored for transferring the knowledge
acquired by training negation models into models performing
biomedical NER and RE, and the results of this transfer learning
are analysed.

Experiments are developed for two different languages (English
and Spanish).

Two biomedical corpora devoted to the detection of disabilities
and rare diseases and the relationships between those entities are
employed for the development of this work.

We show how successful negation detection leads to significant
improvements on important tasks in biomedical NLP such as
Named Entity Recognition and Relation Extraction.

The rest of the paper is structured as follows: Section 2 summarizes
previous research and general background regarding negation detec-
tion, named entity recognition and relation extraction in the biomedical
domain. Information regarding the different corpora used in this work,
their relationships with the addressed tasks, and the main architectures
developed is presented in Section 3. Results are shown in Section 4,
separated according to the considered corpora and tasks. Finally, the
main conclusions and future lines of work are depicted in Section 5.

Journal of Biomedical Informatics 138 (2023) 104279
2. Related work

Due to their importance within biomedical NLP, many different
works can be found in the literature addressing named entity recogni-
tion and relation extraction in this specific domain. Both unsupervised
and supervised techniques are usually developed for both tasks, de-
pending on the availability of annotated data, which is one of the main
challenges for developing successful systems in biomedical NLP. The
generation of annotated document collections implies the consump-
tion of large amounts of human and material resources. Considering
biomedical NER, the existence of few annotated collections is mainly
due to the need of relying on experts to perform this annotation,
covering all the considered entities for a task and attending to their
high degree of specificity. However, automatic systems can benefit from
resources such as SNOMED CT [3] or the UMLS (Unified Medical Lan-
guage System) metathesaurus [4], and associated tools for the semantic
annotation of biomedical texts such as MetaMap [5], cTakes [6] or
NCBO [7]. However, most of those resources are developed for the
English language. Resources for other languages such as Spanish are
much less common, although efforts are being made for their develop-
ment [8], with tools such as FreelingMed [9]. In addition, quite a large
collection of shared tasks and competitions related to biomedical NER
in languages other than English are being carried out in the last few
years, such as the CLEF eHealth [10] or the IberLEF eHealth-KD [11]
initiatives.

Among supervised techniques for performing biomedical NER, deep
learning methods such as Long Short-Term Memory (LSTMs) net-
works [12] and variants of these networks are normally considered to
be state-of-the-art in the field, since these algorithms usually improve
other techniques due to the sequential nature of the task. Vectorial rep-
resentations of the input features are normally used in these works [13],
and different types of embedding methods and models are analysed
and compared [14]. In general, works combining Bi-LSTM [15] and
Conditional Random Fields (CRF) layers are normally located among
the best participating systems in sequence tagging tasks in general [16],
and in biomedical NER competitions in particular [17-19].

On the other hand, relationship extraction is also a challenging task
in the biomedical domain, involving both domain-specific knowledge
and language-related aspects. As we mentioned for the NER task,
resources such as corpora are easily found for the English language. The
ADE corpus [20] for extracting relations between drugs and adverse
events, or the DDI corpus [21] with annotations on drug-drug interac-
tions are well known examples. In a similar way to NER tasks, deep
learning methods achieve the state-of-the-art in relation extraction.
Word embeddings on convolutional architectures of different sizes [22]
and LSTM-based architectures [23] are normally used for modelling
dependencies between entities or terms. Moreover, approaches based
on CRF with complex representations and incorporating information
about linguistic phenomena such as negation also offer interesting
results [24]. This indicates that the use of Bi-LSTM and CRF layers
may also lead to achieving competitive results in the RE task, as in the
case of NER tasks. Methods of jointly modelling NER and RE have been
proposed for exploring both tasks at the same time [23]. In this neural
joint model, character embeddings and auxiliary representations for
analysing out-of-vocabulary words are explored within a LSTM-based
approach.

Combining deep learning stacks with CRF can be also found among
state-of-the-art systems when it comes to negation triggers and scopes
recognition. Bi-LSTM based systems usually achieve good performance
in comparison to other simpler feed-forward neural networks [25,26],
especially considering the exact matching, and in different datasets
such as the SFU Review corpus [27] or the ConanDoyle-NEG cor-
pus [28]. Moreover, the study is extended [29] to other domains and
languages (Chinese), presenting, among others, results for the BioScope
corpus [30]. Other types of architectures and deep learning stacks
have been also explored. For instance, the use of Convolutional Neural



H. Fabregat et al.

Networks is studied for detecting negation and speculation within the
BioScope corpus, obtaining very competitive results, and highlighting
the difficulties presented by long-distance syntactic dependencies [31].

Regarding the biomedical domain, some previous works using trans-
fer learning techniques can be mentioned. In the context of biomedical
NER, instance-based transfer learning can be performed by automat-
ically developing big silver standard corpora and training models on
those corpora in order to improve results achieved by only train-
ing the models on available gold standard corpora [32]. The use of
pre-trained language representations, and more particularly contextual
language models such as BERT [33] or ELMo [34] is often consid-
ered to be a network-based transfer learning technique. Biomedical
versions of these language models, like BioBERT [35] or BioELMo [36]
can then be used for input representation in many different biomed-
ical NLP tasks [37]. State-of-the-art results are achieved using BERT
or some of its variants for the NLP tasks addressed in this work:
named entity recognition [38-40], relationship extraction [41] and
negation [42]. When it comes to NER, researchers employ differ-
ent biomedical corpora for these works: Sun and Yang [38] use the
PharmaCoNER corpus [43] with substances, compounds and proteins
and entities, while Chai et al. [39] make use of datasets oriented to
the detection of chemicals, diseases, genes and proteins and species.
Finally, Agrawal et al. [40] employ both biomedical datasets with
cell-related entities (DNA, RNA, protein, cell-line and cell-type) and
a non-biomedical dataset [44]. Works such as [41] address biomed-
ical relation extraction using datasets containing relations between
chemicals and diseases (BioCreative V CDR dataset [45]) or between
different chemicals (CHR dataset [46]). Nevertheless, we have not
found previous works offering results on the particular corpora used in
this work, related to more specific and not usually considered entities
such as disabilities and rare diseases.

Regarding negation detection, Gubelmann and Handschuh [42]
study whether the functioning of the Transformer-based pre-trained
language models is driven by simple shallow heuristics or by any real
understanding of the languages that they are processing for the case
of negation. They construct specific datasets using highly controlled,
synthetic, and relatively simple sentences to guide the models, and find
that most of the tested models are clearly sensitive to negation for the
considered datasets. However, as far as we know, there are no previous
works on studying direct transfer learning methods incorporating net-
work information (more particularly, information about negation) from
previously trained systems into deep learning models for performing
biomedical NER and RE.

3. Materials and methods

The different corpora employed in this research are presented in this
section and their main characteristics are described, in order to high-
light their relation with the proposed experiments. Neural architectures
developed for each of the experiments are also shown and detailed.

3.1. Corpora

As mentioned in Section 1, the research presented in this work
requires the use of two different types of corpora: first, corpora that
allows us to train the initial neural network devoted to identifying
negation triggers and scopes. In particular, the SFU Review SP-NEG
corpus [47] will be used for the Spanish language, and the BioScope
corpus [30] for the English language. Second, we need specific cor-
pora for performing Named Entity Recognition and Relation Extraction
tasks, in order to assess the influence of negation-based transfer learn-
ing on them. In this case, the DIANN corpus [48], will be employed
for the NER task and the RDD corpus [49] for the RE task. The par-
ticular characteristics of each corpus will be depicted in the following
subsections.
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Table 1
Statistics of the negation corpora used in this research (extracted from [30] and [47]).

Source # Documents # Sentences # Negations
BioScope Biomedical abstracts 1273 11872 1597
SFU Review  Product reviews 400 9455 3022

3.1.1. Corpora for detecting negation

The influence of negation detection in NER and RE tasks is studied
in this work in two different languages: English and Spanish. For this
reason, two different negation detection models are trained, each of
them devoted to one of the considered languages. Hence, two different
corpora are used for detecting negation: the SFU Review SP-NEG cor-
pus [47] consists of 400 reviews related to 8 different domains (cars,
hotels, washing machines, books, cell phones, music, computers and
movies), written in Spanish. According to the information provided
by the organizers, the corpus was randomly divided into training,
development and test; ensuring 33 reviews per domain in training,
7 per domain in development and 10 per domain in test. On the
other hand, the corpus employed for the negation detection phase in
the English language is the BioScope corpus [30]. It consists of three
parts: electronic health records (EHRs) presented in free text format,
full biological articles, and biological paper abstracts. The discourse
structure under each domain in the BioScope corpus is complex, with
EHRs being the most different domain, due to the use of a free writing
style. The subset of abstracts, which is the largest subset and contains
more negations than the remaining domains (negations being marked
all over the corpus, and not only around entities), stands out among
the different domains. We use this subset given its careful formatting
and its resemblance to the data we need to process.

Both corpora were annotated at token level with labels related to
negation triggers and their linguistic scope. In addition, both collec-
tions used a similar annotation style and incorporated documents from
different scenarios or domains. In short, these similarities allow us to
build, from the same architecture, different models for the detection of
different negation elements, covering different scenarios and domains,
in Spanish and English documents. Table 1 shows some statistics of the
two corpora devoted to negation detection employed in this work.

3.1.2. Corpora for performing NER and RE

In order to cover the automatic detection of disabilities and rare dis-
eases in scientific-medical texts and the identification of relationships
between these entities, two different collections of documents are used
in this research: the DIANN (DIsability ANNotation on documents from
the biomedical domain) corpus and the RDD (Rare Diseases and Dis-
abilities) corpus. Each collection covers specific aspects of information
extraction in biomedical documents.

The DIANN corpus [48] was developed under the umbrella of the
IberEval (Evaluation of Human Language Technologies for Iberian Lan-
guages) 2018 conference [50]. The corpus was presented as a common
evaluation framework of tools and approaches for the detection of
disability mentions in documents written in Spanish and English. It was
used as a benchmark for a homonymous task collocated in IberEval
conference. The DIANN corpus is exclusively oriented to the study of
named disabilities.

The DIANN corpus includes 1000 annotated documents, 500 pub-
lished in English and 500 in Spanish. Only abstracts presenting at least
a mention of a disability in both languages were gathered. Although
the Spanish documents share the same contents as the English docu-
ments, they do not correspond to literal translations, i.e. the collected
documents are abstracts of research articles distributed in both En-
glish and Spanish. As a consequence, it is possible that the number
of annotations in the Spanish version of an abstract differs from the
number of annotations in the English version. The DIANN corpus also
presents annotated negations. In particular, a total of 1555 mentions to
disabilities (564 unique mentions) were found for the Spanish language
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Table 2
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Statistics of the corpora used in this research for performing NER and RE tasks (extracted from [51] and [49]).

Source # Documents # Entities # Negations
DIANN (English) Biomedical abstracts 500 1656 (disabilities) 63
DIANN (Spanish) Biomedical abstracts 500 1555 (disabilities) 62
RDD (NER) Biomedical abstracts 1000 3678 (disabilities) 90
RDD (RE) Biomedical abstracts 1000 1957 (relationships) N/A

and 1656 mentions (583 unique mentions) for the English language.
Regarding negation, 63 instances were annotated for English and 62
for Spanish.

The RDD corpus [49] was developed with the aim of studying
named entity recognition and relation extraction within scientific pa-
pers. It gathers a collection of abstracts of scientific articles concerning
rare diseases. This corpus was annotated by three different annotators
under the supervision of expert medical staff and presents annotations
on different disabilities found in the text and hence potentially related
to specific rare diseases. Given the importance of different linguistic
phenomena in the area of information extraction, it also present an-
notated negations and speculations that affect one or more disabilities
mentioned in each document. In addition, the corpus also contains
a file with the relationships between rare diseases and disabilities
stated within the documents, following a similar format to the ADE
corpus [20] which illustrates relationships between drugs and adverse
effects.

The RDD corpus is composed of 1000 abstracts in English, in
contrast to the DIANN corpus, which collected documents in both
English and Spanish, with an average of approximately 200 words per
document and a total of 9657 sentences. The collected documents cover
578 rare diseases, and present 3678 annotations expressing a disability:
2792 are expressed as the impairment of a human function and 886 are
stated using some disability term. Hearing, sight and motor skills are
the physical functions most often affected by some kind of impairment,
while the most frequently mentioned disability is ataxia, related to
motor skills, followed by deafness and dementia. The corpus includes
90 negated disabilities and 194 speculation annotations affecting 264
disabilities.

Regarding relationships, a total of 1251 positive and 706 negative
relationships between disabilities and rare diseases are identified within
the corpus. A total of 362 different rare diseases are covered by the
identified relationships. Finally, 186 disability tags were found to be
expressed through an acronym.

Table 2 shows some statistics of the two corpora devoted to Named
Entity Recognition and Relation Extraction employed in this work.

3.2. Neural models

In this section we present the different neural architectures de-
veloped for the different tasks involved in this research: detection
of negation scopes and triggers, detection of disabilities and joint
detection of named entities and relationships.

3.2.1. Negation detection

The deep learning model developed for the detection of negation
scopes and triggers follows the approach proposed in [52] and can
be seen in Fig. 1. This model is composed of a Bi-LSTM network
which receives an input of different linguistic features in order to
sequentially process all terms in a sentence. This first layer is followed
by a Conditional Random Field (CRF) which labels each term according
to its role as a negation trigger and part of the negation scope.

In order to simplify the study of a transfer learning process that
makes use of knowledge obtained from the training of a negation detec-
tion system, the same configurations in terms of number of neurons per
layer to be transferred have been explored for the different tasks (NER
and joint NER and RE) and languages (English and Spanish). As main
processing element, we explored the use of a Bi-LSTM with 150 neurons

per layer in the negation detection architecture. In addition, each term
was processed using an auxiliary character-level representation based
on a Bi-LSTM of 50 neurons per layer. Finally, although corpora of
different sizes and languages with different numbers of annotations
have been studied, a uniform training has been performed using a batch
size of 16 in all scenarios.

The input representation is conducted by using the following fea-
tures: words, characters, Part-of-Speech (PoS) labels and casing in-
formation. Two different pre-trained Word Embedding models have
been used for representing words, while a separate deep learning sub-
architecture [53] is considered for character-level term processing. This
way, 50-dimensional character embeddings are previously calculated
using different sources of information from the biomedical domain. The
use of character embeddings allows us to potentially deal with out-of-
vocabulary words and hence improve the whole coverage of the system.
This character processing technique has been exhaustively validated in
previous works [54] and also successfully employed by some systems
participating in the IberEval 2018 DIANN shared task [55] and in
further experiments on the negation-based corpora employed in this
work [56], as well as on the DIANN corpus [51].

On the other hand, both Part-of-Speech and casing information are
represented through one-hot vectors. The use of one-hot vectors for
representing casing and PoS information aims to reduce the number
of trainable layers. PoS tags are extracted using the Python NLP pack-
age “Stanza” [57], which provides models for both the English and
Spanish languages. In addition, the main intuition behind the use of
the casing one-hot vector is to maintain some useful information that
is usually lost when lowercasing all the words within a sentence, which
is a common practice during the pre-processing step of these kind
of tasks [58]. Through the use of the casing vector, we are able to
format and model information that would be otherwise omitted, such
as expressions starting with a capital letter or containing letters and
numbers, which may be indicators of entities.

As previously mentioned, in this study we worked on the SFU
Review SP-NEG corpus (Spanish) and the BioScope corpus (English).
Then, two different models of Word Embeddings based on Word2Vec
[59] were employed: for the Spanish language we used the Spanish
Billion Word Corpus and Embeddings [60], built with 300-dimensional
embeddings, while words for the English model were represented by
biomedical 200-dimensional vectors [61].

We transformed the different datasets into the BILOU labelling
scheme [62] (I: In - For tokens within the annotation; O: Out - For
tokens outside the annotation; B: Begin - For the first token of each
annotation; L: Last - For the last token of each annotation; U: Unique
- Annotations composed of a single token). This annotation scheme
allows the representation of partial overlapping and nested entities. We
used this labelling scheme to represent both the scope and the negation
triggers separately. Then, these two codifications were combined into
a single one by means of concatenating the labels. For instance, if a
token represents the beginning of a negation scope and the beginning
of a negation trigger, its label in this scheme will be “BB”. A total of
17 different labels were generated, given that there exist combinations
of labels that cannot occur since a negated expression must always
have an associated scope. As an example, Table 3 shows the instance
“No tendré jamds que aceptar un trabajo que no me gusta por el dinero.”,
annotated following the BILOU format, where the first column contains
the word and the second column contains the label after joining the
scope label and the trigger associated label.
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Fig. 1. Deep learning model for negation trigger and scope detection. Casing information and PoS-tagging are encoded using One-hot vectors. Bi-LSTM inputs are the concatenated
features of each word. The model output covers the labelling of triggers and scopes simultaneously.

Table 3

Example of an instance (sequence of tokens) and its associated labels. Column “Word”
contains each token and column “Label” presents the associated combination of labels
for scope (first letter) and trigger (second letter) detection following the BILOU format.

Word Label Word Label
no BU no BU
tendré 10 me 10
jamaés U gusta LO
que 10 por 10
aceptar 10 el 10
un 10 dinero LO
trabajo 10 . 00
que 10

This example shows the annotation of two negations: the first one
spans from the first term “no” up to the term “dinero”, while the second
one is nested and spans from the second term “no” up to the term
“gusta’”.

3.2.2. Named entity recognition

The first main task we want to assess the effect of negation detection
on is the named entity recognition task that can be performed on the
DIANN corpus. As it was stated before, both the Spanish and English
languages are taken into account within this corpus. Fig. 2 shows the
neural architecture proposed for this task.

In line with some works presented to the DIANN [48] competi-
tion [55,63], a model mainly based on Bi-LSTM and CRF is developed.
As it can be seen in the figure, the proposed model presents a Bi-
LSTM layer followed by a CRF performing the final classification. The
input representation is similar to the one explained in the previous
section, this is, it contains word and character embeddings, and one-
hot vectors for representing Part-of-Speech and casing information.
The word and character embedding models remain the same as for
the negation detection task. As previously mentioned, the final size of
the Bi-LSTM, configured jointly with the negation models developed
for this task, has been 150 neurons for both the Spanish and English
versions of the DIANN corpus.

Two different experiments are conducted for assessing the influence
of negation detection on the Named Entity Recognition task: in the

first one, all weights in the deep learning architecture are randomly
initialized, while in the second experiment, the initial weights of the
Bi-LSTM layer and the character processing sub-model are extracted
from the corresponding negation detection model, trained with the SFU
Review SP-NEG corpus for Spanish and with the BioScope corpus for
English.

Considering training, and given the small size of the DIANN corpus,
in both cases (with and without previous negation detection) the model
is trained during 50 epochs using small batches of size 16. Regarding
the learning rate, we explored an initial learning rate of 0.01 and a
reduction of 10% of this rate after each epoch. An early stop criterion
is applied which implies stopping the training if the F1 score of the
validation set does not improve after three consecutive epochs. Finally,
in order to avoid over-fitting, dropout layers of 0.25 were introduced
between processing layers. The loss function employed for training the
NER system is a Sparse Categorical Cross-Entropy function, considering
that the system has to deal with multiple labels.

A final rule-based post-processing step is performed for improving
the global coverage of the system. This step is devoted to the detection
of abbreviations within the text, and is inspired by previous works
that illustrate the usefulness of combining machine learning and deep
learning systems with other modules more based on manual rules [63].
More specifically, the post-processing rule focuses on the detection of
abbreviations in brackets, located within three words of a disability
label in the text. All abbreviations detected following this rule are
subsequently located in the text, and labelled as disabilities.

Regarding two different transfer learning classifications that can
be found in the literature [64,65], the proposed transfer learning
technique would be inductive transfer learning, since two domain-
related although different tasks are involved (negation detection and
NER), with available data for both. Moreover, this setting can also be
considered as network-based deep transfer learning, since it is based on
sharing complete parts of a previously trained neural network (in this
case, the weights from the Bi-LSTM in the negation detection model).

3.2.3. Joint named entity recognition and relation extraction
A second task is proposed in this research for studying the impact
of negation detection transfer learning on different biomedical tasks:
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Fig. 2. DIANN Corpus: Deep learning architecture including its inputs and layers. Casing information and PoS-tagging are encoded using One-hot vectors. Bi-LSTM inputs are the
concatenated features of each word. The post-processing rules are applied to the output of the deep learning model.

for this purpose, the RDD corpus allows us to explore a similar Named
Entity Recognition task as the one explained in the previous section,
combined with a Relation Extraction task. In particular, once the
disabilities present in the documents of the RDD corpus have been
detected, the extraction of relationships can be modelled as a binary
classification task, by discriminating whether the tuple (Disability, Rare
Disease) within a sentence is related or not, regardless of the relation
labels.

Considering that we already studied a named entity recognition
scenario in the previous section, and also considering the setting of
the RDD corpus, which offers the possibility of studying NER and RE
jointly, this particular task of named entity recognition and relation-
ship extraction has been tackled from a multi-task approach. With
this approach, we intend to explore the interconnection of both tasks
using a weight-sharing technique between different models [66]. In
this context, the concatenation of intermediate representation spaces
obtained by a NER system is studied, which represent an enrichment
of the features used to perform relationship detection. Fig. 3 illustrates
this behaviour. The union of two explored subsystems is presented in
the figure.

First, for the NER model (left) the architecture based on Bi-LSTM
and CRF already explained in the previous section is employed. On the
other hand, the architecture for the RE subtask (right) consists of a Bi-
LSTM layer followed by a convolutional neural network (CNN), and
finally a dense layer followed by a last dense network for performing
the final binary classification. The input of the convolutional neural
network is the concatenation of weights from both Bi-LSTMs, in the

NER submodel and in the RE submodel. This way, we intend to share
the latent space generated by the Bi-LSTM network of the NER model
with the RE model.

Regarding the considered input features, the NER submodel presents
the same collection of features already described in the previous sec-
tion: word and character embeddings and one-hot vectors for repre-
senting PoS and casing. For the RE submodel, the input features are
represented by the sentence level information provided by the position
of the entities (disabilities and diseases) within the sentence. For each
entity involved in the relationship to be classified, a feature represent-
ing the absolute distance of each term to the corresponding entity is
generated. Fig. 4 represents these features. Then, this information is
encoded using embeddings calculated during training.

Finally, an additional vector is added as a feature to the RE sub-
model, representing the average value of the word embeddings that
can be found between the two studied entities. This vector is denoted
“Context embedding”. Regarding other types of lexical features such
as those represented by word or character embeddings, PoS tagging
or casing information, this input is incorporated to the joint model
through the use of Bi-LSTM weights from the NER submodel. The
concatenation of both types of features is processed using the afore-
mentioned convolutional architecture, while the context embedding is
added into the final dense network. A size of 50 neurons is used for both
Bi-LSTMs, while the dense network of the NER submodel contains 25
neurons. On the other hand, the convolutional layer of the RE submodel
contains a total of 16 filters with a kernel size of 3, and the final dense
network presents 50 neurons. The learning rate of this model is set to
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stack to process the concatenation of the inputs (words and characters embeddings, and one-hot vectors representing PoS and casing information). RE submodel: (1) two Bi-LSTMs
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Fig. 4. Generation of vectors capturing the information related to the position of each entity being part of a relationship. In the example, Disability: “Severe mental disorders” and

Rare Disease: “Angelman Syndrome”.

0.01, with a batch size of 16 and 50 training epochs. The early stopping
criteria is the same used in the previous experiment: the training stops
if there exists no improvement on the F1 score of the validation set
during at least 3 consecutive epochs.

For this joint model, we propose a two-stage training pipeline: in a
first phase, only the NER submodel is trained, in a similar way to that
described in the previous section. In a second step, the whole model
is trained jointly, this is, for every sentence to be processed, its lexical
features are processed by the NER model for their subsequent use by the

RE model through weight sharing, and the sentence level information
is processed by the RE model. The initial “only NER” training allows us
to study the differences introduced in the system that can be attributed
to the use of the joint model, when compared to the results obtained
by the NER model on its own. The loss function employed in the NER
subsystem is also a Sparse Categorical Cross-Entropy, while the RE
subsystem employs a Binary Cross-Entropy loss function, given that it is
designed as a binary classification task. The update of the loss function
is straightforward when it comes to the first training stage (only NER
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Table 4

Results for the two subtasks of the negation detection system: scope recognition and
trigger detection for both the English language (BioScope corpus) and the Spanish
language (SFU corpus).

Scope recognition Trigger detection

PCS Fls F1t Precision Recall  F-measure
English (BioScope) 0.8852 0.8854 0.8005 0.9740 0.9428 0.9575
Spanish (SFU) 0.7429 0.8525 0.7200 0.9969 0.9185 0.9560

training). Regarding weight updates along the network in the second
step (joint training), both losses are combined in an unweighted manner
for performing this stage.

Finally, in a similar way to the experiment described in
Section 3.2.2, the influence of previously acquired negation-based
knowledge on the joint NER and RE task is studied by introducing
this knowledge in the model. Hence, we compare the performance of
the joint NER and RE model in two different scenarios: First, all the
weights in the deep learning stack are randomly initialized. In the
second scenario, the initial weights of the Bi-LSTM layer of the NER
submodel are initialized using the trained weights from the negation
detection model, in this case trained only with the BioScope corpus,
since this task is only conducted in the English language. As previously
mentioned, this is a type of inductive, network-based deep transfer
learning.

4. Results

In this section we gather the main results that correspond to the
experiments described in previous sections, particularly those tasks
for which the influence of negation-based transfer learning is being
analysed. Results regarding the negation detection system described in
Section 3.2.1 are also shown in this section as a reference for better
understanding, however, the main purpose of this research is to study
their impact on the two proposed downstream tasks: Named Entity
Recognition and Relation Extraction. Hence, the detailed behaviour of
the systems designed for performing named entity recognition, on the
one hand, and joint named entity recognition and relation extraction,
on the other hand, will be shown thereafter. For all the performed
experiments in the downstream tasks, we consider the usual metrics
in the field: precision, recall and F-Measure as the harmonic mean of
precision and recall. The aspects related to the evaluation of each task
will be described in their specific subsections.

4.1. Negation detection

Table 4 shows results obtained by the architecture proposed in
Section 3.2.1 for the two subtasks considered in the negation detec-
tion problem: scope recognition and negation trigger identification.
Evaluation of trigger detection is conducted using standard precision,
recall and F1 metrics. On the other hand, and due to the nature of the
subtask itself, scope recognition is evaluated through the Percentage
of Correctly identified Scopes (PCS), as well as the F1 measure at
scope level (F1s) and the F1 measure at token level (F1t). A 10-fold
cross-validation strategy is followed for model evaluation.

As previously mentioned, the analysis of the results achieved by the
negation detection model is out of the scope of this research. However,
we can observe how the proposed model is able to obtain satisfactory
results, especially in terms of trigger detection. Regarding the different
languages considered, the system performs better on the BioScope
corpus (English language) when it comes to scope recognition, while
results on the trigger detection subtask are similar for both languages.
In general, these results lead us to hypothesize that applying transfer
learning techniques between this negation detection model and the
considered downstream tasks could be beneficial for the latter.
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4.2. Named entity recognition: DIANN corpus

The first named entity recognition task is performed on the DIANN
corpus, using the system described in Section 3.2.2. As we already
mentioned, the influence of the negation detection system, trained for
both the English and Spanish language, is analysed by initializing the
weights in the Bi-LSTM layer with values obtained from this training
of the negation detection system. Two different evaluation schemes are
considered for this task: exact and partial matches. The exact matching
criterion checks if every proposed annotation matches exactly with the
ground truth. On the other hand, due to the freedom with which an
entity (in this case, a disability) can be expressed, a second evaluation
criterion called partial matched is also employed. This criterion is based
on the concept of core-term match [67], and considers a label to be
correct if at least the minimum unit or core contained in the ground
truth is identified. This collection of core annotations is also provided
within the DIANN corpus.

Tables 5 and 6 summarize the main results obtained with the
proposed system for the NER task performed on the DIANN corpus.
The different languages, evaluation criteria and models considered are
shown in the tables. In order to determine whether the differences
between the various configurations of our system are statistically sig-
nificant, each experiment is repeated 10 times using different seeds
for the initialization values of the employed networks. Tables show
both the average and standard deviation for each proposed metric, in
each experiment. Detailed results for each of the 10 repetitions of each
experiment are provided in A.

Results clearly show how, both in English and Spanish, introducing
information about negation using the described transfer learning tech-
nique leads to an overall improvement of global results, considering
the achieved F-measures. When it comes to English, the main improve-
ment can be seen in recall, while precision is the metric that presents
the highest enhancement in the Spanish language. This improvements
result, in both cases, in a higher F-measure when considering the
influence of negation, over the base model. Regarding exact and partial
matching criteria, logically the best results are always achieved by
the less restrictive partial evaluation, however, the addition of infor-
mation on negation is always beneficial. An interesting result is that
the influence of the previous negation detection system is much more
noticeable in the Spanish language: English results are quite higher than
Spanish results using the base model (with rules), presenting around
4 percentage points more in the exact metric and around 8 points in
the partial metric. However, after the boosting produced by negation
information, and always considering the use of post-processing rules,
the differences almost disappear: the English model is still better by
around 1.5 points in the partial metric, but the Spanish model is able
to present similar results to the English model when it comes to the
exact metric. This is, negation-based transfer learning improves around
3.5 points the exact metric and barely 0.84 points the partial metric
for the English language, but the improvement rises up to more than
7 points for the exact metric and around 7 points for the partial
metric in the Spanish language. This could be due to the nature of the
corpus employed for training the negation detection model in Spanish,
which might present more similarities with the Spanish version of the
DIANN corpus, and hence provide better assistance for refining entity
detection. The density of negations within the different corpora used for
performing the negation detection step could also influence these final
results: the SFU corpus presents around 1 negation per 3.1 sentences,
while the ratio in the BioScope corpus is 1 negation per 7.4 sentences.
Moreover, the room for improvement is higher in Spanish case, since
the performance of the base model is quite lower than that of the
English base model. Finally, it becomes clear that the use of post-
processing rules related to the detection of abbreviations is always
beneficial for improving the F-measure of the systems, normally due
to a significant improvement on recall scores. The table also shows
the results of the Wilcoxon signed rank test for statistical significance
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Table 5

DIANN Corpus: Results obtained by the proposed model for named entity recognition. “Base Model” shows results for the model with randomly
initialized weights and “Negation” shows results when the Bi-LSTM initial weights come from the negation detection model. English experiments
are shown, with negation model trained with the BioScope corpus. Rows “No rules” indicate results when post-processing rules are not taking
into account, while rows “Rules” take those rules into consideration. Exact and partial results are also shown. Bold indicates the best results
for each metric among the four studied configurations (base/negation model, rules/no rules), for each language and type of metric (exact or
partial). Star (*) indicates statistically significant differences with respect to the base model, for the same experiment, metric and language
(Wilcoxon Signed Rank Test).

English (BioScope)

Precision Recall F-measure
No rules Exact 0.7366 +0.0207 0.6353 +0.0193 0.6820 +0.0154
Partial 0.8345 +0.0216 0.7197 +0.0210 0.7726 +0.0158
Base model

Rules Exact 0.7280 +0.0176 0.7450 +0.0142 0.7362 +0.0108

Partial 0.8434 +0.0200 0.8630 +0.0146 0.8529 +0.0111
No rules Exact 0.7989 +0.0409(*) 0.6887 +0.0198(*) 0.7385 +0.0093(*)
. Partial 0.8674 +0.0453(*) 0.7479 +0.0234 0.8020 +0.0074(*)

Negation

Rules Exact 0.7676 +0.0440(*) 0.7723 +0.0163(*) 0.7689 +0.0154(*)

Partial 0.8597 +0.0469 0.8651 +0.0202 0.8613 +0.0155

Table 6

DIANN Corpus: Results obtained by the proposed model for named entity recognition. “Base Model” shows results for the model with randomly
initialized weights and “Negation” shows results when the Bi-LSTM initial weights come from the negation detection model. Spanish experiments
are shown, with negation models trained with the SFU Review SP-NEG corpus. Rows “No rules” indicate results when post-processing rules
are not taking into account, while rows “Rules” take those rules into consideration. Exact and partial results are also shown. Bold indicates
the best results for each metric among the four studied configurations (base/negation model, rules/no rules), for each language and type of
metric (exact or partial). Star (*) indicates statistically significant differences with respect to the base model, for the same experiment, metric
and language (Wilcoxon Signed Rank Test).

Spanish (SFU)

Precision Recall F-measure
No rules Exact 0.7640 +0.0218 0.5085 +0.0354 0.6100 +0.0285
Partial 0.8382 +0.0196 0.5576 +0.0335 0.6691 +0.0245
Base model

Rules Exact 0.7465 +0.0174 0.6455 +0.0305 0.6919 +0.0191

Partial 0.8382 +0.0184 0.7246 +0.0267 0.7768 +0.0125
No rules Exact 0.8079 +0.0267(*) 0.6839 +0.0134(*) 0.7404 +0.0064(*)
. Partial 0.8710 +0.0256(*) 0.7375 +0.0193(*) 0.7983 +0.0094(*)

Negation
Rules Exact 0.7721 +0.0242(*) 0.7589 +0.0233(*) 0.7649 +0.0101(*)
Partial 0.8537 +0.0249 0.8393 +0.0282(*) 0.8458 +0.0124(*)
Table 7

Ablation test on the negation detection model. Results obtained by the proposed model for named entity recognition (DIANN corpus), training
the negation detection model only for trigger detection (upper rows) or for scope detection (lower rows). Rows “No rules” indicate results
when post-processing rules are not taking into account, while rows “Rules” take those rules into consideration. Exact and partial results are
also shown.

English (BioScope) Spanish (SFU)

Precision Recall F-measure Precision Recall F-measure

No rules Exact 0.8163 0.6723 0.7373 0.7990 0.6920 0.7416
. Partial 0.8980 0.7395 0.8111 0.8763 0.7589 0.8134

Only triggers
Rules Exact 0.7991 0.7689 0.7837 0.7566 0.7634 0.7600
Partial 0.9039 0.8697 0.8865 0.8496 0.8571 0.8533
No rules Exact 0.8254 0.6555 0.7307 0.8162 0.6741 0.7383
Partial 0.8942 0.7101 0.7916 0.8703 0.7188 0.7873

Only scopes

Rules Exact 0.8000 0.7563 0.7775 0.7650 0.7411 0.7528
Partial 0.8933 0.8445 0.8683 0.8387 0.8125 0.8254

between the base and negation models for each of the considered lan-
guages and metrics. As it can be observed, the negation-based transfer
learning model achieves better results in terms of statistical significance
with respect to the base model for most of the considered experiments.

With the aim of providing further information about the behaviour
of the developed system, additional experiments have been carried out
in order to run an ablation test on the negation detection model. In
this test we separate the two features detected by the model (negation
triggers and scopes), and analyse the results obtained on the DIANN
corpus when the negation model is trained only for negation trigger
detection, and when it is trained only for negation scope detection.
Table 7 shows the main results of this ablation test.

Results from the ablation test indicate that in most cases, training
the negation model only for trigger detection incorporates enough

information to the model to obtain similar results to those achieved
by the system when the negation model has been fully trained. On the
other hand, results on scope detection are slightly worse. However, dif-
ferences between the different training regimes (only trigger detection,
only scope detection, or trigger and scope detection) are not statistically
significant. This might indicate that trigger and scope detection are
quite similar subtasks, and no significant complementary information
is extracted from any of the subtasks with respect to the other.

For better understanding the performance of the proposed system,
Tables 8 and 9 show results achieved on the DIANN corpus by systems
participating in the IberEval 2018 DIANN shared task, for the Span-
ish and English languages, respectively. Results obtained by the best
configuration of the proposed system (negation-based transfer learning
with post-processing rules) are also included at the bottom of both
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DIANN corpus: Comparative between systems participating in the IberEval 2018 DIANN shared task, Spanish language. Last row contains results
obtained by the best configuration of the system presented in this work. Bold indicates the best result and the overall ranking is indicated in
brackets, for each metric (Precision, Recall and F-Measure) and for each evaluation criteria (exact and partial matching).

Spanish language

Exact matching

Partial matching

Precision Recall F-measure Precision Recall F-measure
IxaMed 0.757 (5) 0.817 (1) 0.786 (1) 0.822 (6) 0.886 (1) 0.853 (1)
UC3M 0.818 (1) 0.646 (3) 0.722 (3) 0.882 (3) 0.716 (4) 0.79 (3)
UPC 0.807 (3) 0.603 (5) 0.69 (4) 0.889 (2) 0.664 (5) 0.76 (4
IXA 0.65 (6) 0.642 (4) 0.646 (5) 0.712 (7) 0.734 (3) 0.723 (5)
SINAI 0.459 (7) 0.345 (6) 0.394 (6) 0.512 (8) 0.384 (7) 0.439 (6)
LSI_UNED 0.41 (8) 0.249 (7) 0.31 (7) 0.847 (5) 0.533 (6) 0.654 (7)
GPLSIUA 0.813 (2) 0.17 (8) 0.282 (8) 0.959 (1) 0.205 (8) 0.338 (8)
Ours 0.772 (4) 0.759 (2) 0.765 (2) 0.854 (4) 0.839 (2) 0.846 (2)
Table 9

DIANN corpus: Comparative between systems participating in the IberEval 2018 DIANN shared task, English language. Last row contains results
obtained by the best configuration of the system presented in this work. Bold indicates the best result and the overall ranking is indicated in
brackets, for each metric (Precision, Recall and F-Measure) and for each evaluation criteria (exact and partial matching).

English language

Exact matching

Partial matching

Precision Recall F-measure Precision Recall F-measure
IxaMed 0.786 (3) 0.86 (1) 0.821 (1) 0.842 (4) 0.922 (1) 0.88 (1)
UC3M 0.778 (4) 0.72 (3) 0.748 (3) 0.822 (5) 0.761 (3) 0.791 (3)
UPC 0.799 (2) 0.605 (4) 0.689 (4) 0.875 (2) 0.663 (5) 0.754 (5)
IXA 0.701 (6) 0.531 (6) 0.604 (6) 0.761 (7) 0.576 (6) 0.656 (6)
SINAI 0.625 (8) 0.37 (7) 0.465 (7) 0.688 (8) 0.407 (7) 0.512 (7)
LSI_UNED 0.671 (7) 0.597 (5) 0.632 (5) 0.815 (6) 0.761 (3) 0.787 (4)
GPLSIUA 0.884 (1) 0.251 (8) 0.391 (8) 0.94 (1) 0.259 (8) 0.406 (8)
Ours 0.768 (5) 0.772 (2) 0.769 (2) 0.860 (3) 0.865 (2) 0.861 (2)

tables for contextualizing them in the scope of the shared task. These
results achieved by our system are extracted from Tables 5 and 6, in
particular from the last two rows of the tables (“Negation” model with
“Rules”, “Exact” and “Partial” metrics), for both languages.

For the Spanish language, our system achieves the second best place
in the overall ranking only overcome by the IxaMed system [63]. This
team proposed a hybrid system based on deep learning architectures
similar to those employed in this work, together with a couple of rule-
based modules, one of them devoted to detecting disability-associated
triggers, and a second module for identifying abbreviations. This team
also presents slightly better results with respect to ours when it comes
to the English language. Although the ranking of our system worsens
in this language for some of the metrics such as precision of the exact
matching criteria, we are able to obtain the second best results consid-
ering F-Measure for both exact and partial evaluation criteria. However,
and on top of these interesting results, it is important to remark that
the main purpose of the research presented in this work is not a
thorough comparison with other state-of-the-art systems, but to test
and validate the appropriateness of transfer learning techniques, and in
particular negation-based transfer learning, in biomedical tasks such as
those considered. Moreover, most of the hyperparameters involved in
the developed neural architectures have not been exhaustively tuned,
which indicates that the proposed system may still present room for
improvement.

Regarding the approaches submitted by the other participating
teams, different techniques for addressing the task were proposed. Both
the UC3M team [55] and the UPC team [68] present architectures
similar to ours, also based on LSTMs or Bi-LSTMs and CRF layers,
although considering different input features. The IXA team makes use
of an entity recognition system denoted “ixa-pipe-ner” [69], based on
morphological and typographic features of the text [70]. The SINAI
team presents two different approaches depending on the language: a
technique based on the Metamap system [5] for the English language,
and their own UMLS-based [71] entity recognition system for the
Spanish language [72]. The system presented by the LSI_UNED team

10

is an unsupervised approach that generates variants from an initial list
of disabilities and body functions for detecting those variants within the
text [73]. Finally, the GPLSIUA team presents their own general pur-
pose automatic learning system, which generates candidate expressions
and selects those that can be labelled as disabilities, through a Ran-
dom Forest-based technique that employs syntactic and distributional
features [74].

4.3. Joint named entity recognition and relation extraction: RDD corpus

As previously mentioned, the RDD corpus is employed for perform-
ing a more complex task: joint named entity recognition and relation
extraction in the English Language. The two different steps of the
proposed pipeline for this tasks are described in Section 3.2.3: in the
first step, only the NER submodel is trained, while the second step
involves the joint training of the NER submodel and the RE submodel.
In this step, weights from the Bi-LSTM of the NER submodel are
shared within the RE submodel. Table 10 contains the main results
for this Named Entity Recognition and Relation Extraction Tasks. The
employed metrics are Precision, Recall and F-Measure, and results are
shown both after the first training step involving the NER submodel,
and after the second step (NER and RE training). As in the previous
experiment, two different configurations are compared: randomly ini-
tialized weights (base model), and negation-based transfer learning, in
which the initial weights of the Bi-LSTM layer in the NER submodel are
transferred from the negation detection task performed on the BioScope
corpus for the English language.

The impact derived from transferring negation-based information
into the proposed model is also quite clear in this case. Regarding
the first step, involving the training of the NER subsystem, all the
considered metrics improve, leading to an overall increase in F-Measure
of around 13%. This is in line with the observations made in the
previous experiment. Moreover, considering that we are working with
the English language, the influence of negation knowledge appears to
be more powerful in this experiment, which could indicate that the
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Table 10
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RDD Corpus: Results obtained by the proposed joint model for relationship extraction (RE) and entity
recognition (NER). We report the results obtained using the base model with randomly initialized weights
(row “Base Model”) and the model using negation-based weights in the NER submodel (row “Negation”).
The table shows the results obtained in both training phases: NER sub-model training (Step 1) and full system
training (Step 2). Bold indicates the best results for each metric among the two studied configurations at the
different steps of the joint model. The (+) symbol represents statistically significant differences with respect
to the base model, while the (=) symbol represents lack of statistically significant differences (Wilcoxon

Signed Rank Test).

Step 1: NER training

Step 2: Joint training

Precision Recall F-measure Precision Recall F-measure
Base model NER  0.6529 0.6048 0.6279 0.741 0.7587 0.7498
RE 0.752 0.7282 0.7399
Neation NER 0.7815(+) 0.7365(+) 0.7583(+) 0.7596(=) 0.7661(=) 0.7628(=)
g RE 0.7637(=) 0.746(=) 0.7547 (=)

RDD corpus is more affected by negation than the English part of the
DIANN corpus. When it comes to the second step, the influence of
negation is quite less remarkable in the second training of the NER
subsystem. However, both the NER and the RE model benefit from
negation-based transfer learning in Step 2, with an improvement of
around 1.5% in F-Measure for both models. This could mean that
the previous improvement provided by negation information in the
initial NER training (Step 1) is propagated along the joint system,
eventually affecting the RE submodel. Finally, if we consider the first
and second training steps involving the NER subsystem, results clearly
show how F-Measure is always improved: around 7% in the system not
using negation information, and around 0.4% in the system involving
negation-based transfer learning. However, the main objective of this
experiment is not evaluating the performance of the joint model, but
the influence of negation-based transfer learning, which proves to be
useful in the two studied tasks.

Nevertheless, there is no statistically significant differences between
using the Base Model or the Negation Model when it comes to the
joint training depicted in Step 2, while the differences in Step 1 are
indeed statistically significant, as well as the differences between the
NER subsystem in Step 1 and Step 2 of the Base Model. This might
indicate that the boosting observed after the inclusion of negation-
based transfer learning in Step 1 is already achieved in the NER subtask
by considering the joint learning scenario, even when negation has not
been considered (Base Model). Hence, negation-based transfer learning
and joint learning appear to be two equivalent techniques in this
case, although their combination does not seem to offer any additional
improvement.

4.4. Case analysis

An analysis of examples in which entity and relationship detection
is improved when negation-based transfer learning is applied has been
carried out, in order to extract some clues on how this pre-training is
helping to improve the final results. We have performed this analysis on
instances from the RDD corpus, since this corpus presents the two tasks
of interest in this research: Named Entity Recognition and Relation
Extraction.

Below we show two examples for which the NER task has been
improved through the use of negation-based transfer learning?:

» “We describe a girl with motor and mental retardation, macro-
cephaly, a ‘coarse’ face, choanal atresia, postnatal feeding diffi-
culty, redundant skin with deep palmar and plantar crease, and
histopathological evidence of altered elastic fibre, who died at the
age of 11 months”.

2 Although the term “mental retardation” may be considered offensive and
has sometimes been replaced by terms such as “intellectual disability” in the
biomedical literature, it has been maintained in the examples since they are
directly extracted from abstracts of already published scientific papers, which
belong to the corpora used in the experiments of this research.
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+ “We report a patient with non-Down syndrome AML, also known
as AMKL, with monosomy 7, who was also obese and had a
hearing impairment and mental retardation”.

In both examples, we indicate the entities of interest in boldface.
In the first example, the base system detected the term “retardation”
to be the complete entity, while the system improved with negation-
based transfer learning is able to capture the whole entity: “motor
and mental retardation”. On the other hand, the base model captured
the entity “hearing impairment and mental retardation” as a single
entity in the second example, while the negation-improved model
correctly separates those entities as “hearing impairment” and “mental
retardation”.

Regarding the nature of the DIANN and RDD corpus, it is quite
difficult to find examples to directly analyse how the system deals
with negated entities. However, we consider that the pre-training stage
performed on negation as a linguistic phenomenon provides the final
system with more linguistic knowledge, eventually allowing it to detect
more complex entities and relationships. In the shown examples, we
observe how long entities are better detected (“motor and mental
retardation”), and how different entities can be detected separately
(“hearing impairment” and “mental retardation”). In general, incor-
porating knowledge on negation to the final system tends to modify
the general trend on long annotations: the number of false positives is
reduced, hence increasing the overall precision of the system.

In the following two examples, we can also observe how the system
behaves in terms of the Relation Extraction subtask on the RDD corpus:

» “Costello syndrome was delineated based on its distinctive
phenotype including severe failure-to-thrive with macrocephaly,
characteristic facial features, hypertrophic cardiomyopathy, pa-
pillomata, malignant tumours, and cognitive impairment”.

» “Leber congenital amaurosis (LCA) is the most severe reti-
nal dystrophy causing blindness or severe visual impairment
before the age of 1 year”.

In the first example, the relationship between the entities “Costello
syndrome” (rare disease) and ‘“‘cognitive impairment” (disability) is
not detected by the base model but is detected by the negation-based
model. In the second example, the negation-based transfer learning step
allows the model to correctly detect the relationship between “Leber
congenital amaurosis” (rare disease), and the two entities representing
disabilities: “blindness” and “severe visual impairment”, while the base
model was not able to detect those relationships.

In a similar way to that mentioned when it comes to entity detec-
tion, the relation extraction model seems to be improved by negation-
based transfer learning in terms of detecting distant relationships
within the text, as well as correctly locating relationships between one
rare disease and multiple disabilities.

In addition to this analysis, a manual study of the BioScope corpus
indicates that those scopes associated to negation actually reflect ex-
pressions similar to the entities of interest in this case (e.g., disabilities),
despite dealing with different topics.
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Table 11
Examples of negation triggers and scopes within the BioScope corpus.

<xcope><cue>without< /cue> antigenic stimulation</xcope>
(without/IN antigenic/JJ stimulation/NN)

<xcope><cue>no</cue> detectable DPD activity</xcope>
(no/DT detectable/JJ DPD/NNP activity/NN)

<xcope><cue>no</cue> Spl binding sites</xcope>
(no/DT Sp1/NNP binding/NN sites/VBZ)

<xcope><cue>no</cue> enhancer activity of its own</xcope>
(no/DT enhancer/NN activity/NN of/IN its/PRP$ own/JJ)

In the following examples, depicted in Table 11, the beginning and
end of a scope is marked with the “xcope” and “‘/xcope” tags respec-
tively, while the negations cues or triggers are represented between the
“cue” and “/cue” tags. Part of Speech tags are also shown for each word
in the sentence, using standard English PoS tags, as employed in the
Penn Treebank POS tagset [75].

In these examples, POS patterns such as (JJ, NN), (JJ, NNP, NN),
(NNP, NN, VBZ) or (NN, NN, IN, PRP, JJ) present in the detected scopes
might represent an accurate source of information for detecting the
scopes of the disabilities.

4.5. Contextual models

As mentioned in Section 2, pre-trained contextual models based
on the Transformer architecture [76] have been used for performing
similar tasks involving NER and RE in the last few years. More particu-
larly, models such as BERT (Bidirectional Encoder Representations from
Transformers) have shown to perform particularly well in many differ-
ent NLP tasks, including those under study in this research. Therefore,
additional experiments have been conducted in order to test whether
pre-trained models are able to match or even overcome the results
obtained by our proposed model.

In these experiments, we have employed BERT-based models for
addressing Named Entity Recognition (NER) on the DIANN corpus and
also on the RDD corpus. Although NER is just a subsystem of the
whole system employed for our own experiments on the RDD corpus
(Section 3.2.3), we consider that the results obtained by a BERT-based
model on the NER subsystem might represent useful information for a
potential comparison against our proposed model.

In particular, we have explored the use of the PubMedBERT model
[77] for the English language. This biomedical model is pre-trained
from scratch using abstracts from PubMed. For the Spanish language,
the selected model is the RoBERTa-based biomedical model described
in [78]. As the authors state in their paper, the pre-training of the
Spanish model is performed using several biomedical corpora in the
Spanish language. Default parameters of the selected models have
been maintained, and a fine-tuning process has been performed on the
selected corpora, also maintaining the main training parameters de-
scribed in Sections 3.2.2 and 3.2.3, such as the early stopping scheme,
maximum number of epochs or optimizers.

Tables 12-14 show the comparison between the best results regard-
ing NER tasks obtained by the model proposed in this work, before
and after applying negation-based transfer learning, and the results
obtained by the BERT-based models on the same tasks. Tables 12 and
13 show results on the DIANN corpus (English and Spanish languages,
respectively), while Table 14 refers to the NER subtask of the RDD cor-
pus. Similarly to the experiments shown in Section 4.2, each experiment
on the DIANN corpus is repeated 10 times using different seeds for the
initialization values of the employed configurations for addressing the
computation of statistical significance of the differences between them.
Tables 12 and 13 show both the average and standard deviation for
each proposed metric, in each experiment. Detailed results for each of
the 10 repetitions of each experiment is provided in Appendix B.

12

Journal of Biomedical Informatics 138 (2023) 104279

Table 12

Comparison of results obtained by the proposed model, before and after the application
of negation-based transfer learning (rows “Base Model” and ‘“Negation”, respectively),
and by the BERT-based model (last row), on the DIANN dataset for the Exact metric
in the English language. Bold indicates the best result for each metric. Star (*)
indicates statistically significant differences with respect to the base model, for the
same experiment, metric and language (Wilcoxon Signed Rank Test)..

DIANN Corpus

English (BioScope)

Precision Recall F-measure
Base model 0.7280 +0.0176 0.7450 +0.0142 0.7362 +0.0108
Negation 0.7676 +0.0440(*) 0.7723 +0.0163(*) 0.7689 +0.0154(*)
BERT Model 0.7102 +0.0213 0.7673 +0.0258 0.7368 +0.0090
Table 13

Comparison of results obtained by the proposed model, before and after the application
of negation-based transfer learning (rows “Base Model” and ‘“Negation”, respectively),
and by the BERT-based model (last row), on the DIANN dataset for the Exact metric
in the Spanish language. Bold indicates the best result for each metric. Star (*)
indicates statistically significant differences with respect to the base model, for the
same experiment, metric and language (Wilcoxon Signed Rank Test)..

DIANN Corpus

Spanish (SFU)

Precision Recall F-measure
Base model 0.7465 +0.0174 0.6455 +0.0305 0.6919 +0.0191
Negation 0.7721 +0.0242(*) 0.7589 +0.0233(*) 0.7649 +0.0101(*)
BERT Model 0.7186 +0.0312 0.7356 +0.0440 0.7254 +0.0231
Table 14

Comparison of results obtained by the proposed model, before and after the application
of negation-based transfer learning (rows “Base Model” and “Negation”, respectively),
and by the BERT-based model (last row), on the NER subtask of the RDD dataset. Bold
indicates the best result for each metric.

RDD Corpus (NER task)

Precision Recall F-measure
Base model 0.7410 0.7587 0.7498
Negation 0.7596 0.7661 0.7628
BERT model 0.7343 0.7993 0.7654

Results clearly show how, when it comes to the DIANN corpus,
the employed BERT-based model is not able to overcome the results
obtained by applying negation-based transfer learning on the proposed
model. It can be seen how results offered by BERT are not too far from
those reported in this work, which indicates that the transfer learning
represented by the use of the pre-trained contextual model is also
able to capture some of the information that is needed for performing
accurate NER in this context. However, our model is still able to offer
the best overall results both in the English and the Spanish language,
which indicates that negation-based transfer learning represents a more
adequate approach for the addressed task. The table also indicates
that the results obtained by the negation-based model are significantly
better according to the Wilcoxon signed rank test, with respect to both
the base model and the BERT-based model.

Regarding the NER subtask of the RDD corpus, results show how
the transfer learning techniques represented by the use of the BERT-
based model are able to produce results comparable to those obtained
by the proposed negation-based transfer learning technique. The differ-
ences between results achieved by the negation-based transfer learning
technique and by the BERT-based model are actually not statistically
significant (Wilcoxon signed rank test). However, considering the time
and resource consumption derived from the use (pre-training and fine-
tuning) of pre-trained contextual models, the proposed model could
still be preferred in particular scenarios where these resources were
not so readily available and where some negation-annotated corpus is
available. As we have observed in the different experiments conducted,
corpora used for performing negation detection need not necessarily
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be specific to the domain of the data on which knowledge transfer is
intended. In particular, in this work previously existing corpora have
been employed, and, as in the case of SFU, some of those corpora
belong to a different domain.

In addition, this study, by considering specific phenomena such as
negation, separately from the tasks addressed (NER and RE), provides
some intuitions about the type of information that could be handled by
other models such as those based on Transformer architectures, which
address the problems in a global way.

5. Conclusions and future work

In this paper we have presented a novel research on the influence
that the acquisition of knowledge about negation detection may have in
different tasks of Biomedical Natural Language Processing, in particular
Named Entity Recognition and Relation Extraction. A specific deep
learning architecture have been proposed and adapted in order to
perform detection of negation triggers and scopes in two different
languages: English and Spanish. This previously trained neural model
has been then used for studying the impact of transferring this type of
knowledge into other different neural network architectures, developed
for named entity recognition and relation extraction tasks. In particular,
the transfer learning is performed on the initial weights of the Bi-LSTM
layers used for performing named entity recognition. The main purpose
is to share the representation space generated during the training of
the negation model with those models performing more complex tasks.
Different corpora written in the two proposed languages have been
employed: BioScope in English and SFU Review SP-NEG corpus in
Spanish, both for training the negation detection model, the DIANN
corpus in English and Spanish for named entity recognition, and the
RDD corpus in English for joint named entity recognition and relation
extraction. Through the use of different languages, corpora and tasks,
we intend to cover a wide range of possibilities, in order to present the
most robust and extrapolable possible results.

The achieved results are quite satisfactory and positive, since we
have obtained significant improvements in the two main tasks that
have been tackled within this research: Named Entity Recognition and
Relation Extraction. In the first task, negation detection has an overall
positive impact in all the studied cases, either due to improvements
in precision or in recall, which unfailingly lead to enhance the final F-
Measures. When it comes to relation extraction, which has been studied
jointly with named entity recognition, the improvements introduced
by negation-based transfer learning in NER rapidly spread along the
joint model and have an impact on the results of the relation extraction
subtask.

Future lines of work include the study of additional tasks related
to biomedical and general domain natural language processing, which
are normally influenced by negated entities and hence could potentially
benefit from performing previous negation detection. This particular
characteristic can be applied to many different NLP tasks and more
complex pipelines which usually include named entity recognition,
such as online content discovery (information extraction), efficient
search algorithms, recommender systems or patient support. A different
line of research would focus on modifying the neural models developed
for this work, not only their main characteristics and parameters, but
also the specific parts of the models in which the transfer learning
could be performed. For instance, a named entity recognition model
could present two different Bi-LSTM layers that could be combined
later on. One of the layers could incorporate weights from previous
negation detection tasks, while the other would be always randomly
initialized. This way, negation information would be introduced in the
model as an independent input feature represented in a complex way
instead of within a shared representation space which may conflict with
the representation of other input features. The representation schemes
used in this work can also be effectively improved, for instance by
incorporating different embedding models or studying the potential
influence of contextual models for representing the input information.
A systematic study on the impact that different linguistic characteristics
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Table A.15

Statistical significance analysis for the differences between two pairs of experiments
on the DIANN corpus: final results with the base model and with the negation-based
transfer learning model, for both the English and Spanish language in the exact metric
without using post-processing rules. Last row indicates whether the differences are
statistically significant for all the considered metrics, according to the Wilcoxon Signed
Rank Test.

Exact match, no rules

English Spanish
Precision Recall F-measure Precision Recall F-measure
Seed 0 0.7488  0.6639 0.7038 0.7895  0.5357 0.6383
Seed 1 0.7028  0.6261 0.6622 0.7537  0.4509 0.5642
Seed 2 0.7573 0.6555 0.7027 0.7682 0.5179 0.6187
Seed 3 0.7286  0.6429 0.6830 0.7534  0.4911 0.5946
Seed 4 0.7692  0.6303 0.6928 0.8000  0.5179 0.6287
Base model
Seed 5 0.7423  0.6050 0.6667 0.7467  0.5000 0.5989
Seed 6 0.7475 0.6218 0.6789 0.7310 0.4732 0.5745
Seed 7 0.7327  0.6218 0.6727 0.7665  0.5714 0.6547
Seed 8 0.7095  0.6261 0.6652 0.7469  0.5402 0.6269
Seed 9 0.7269 0.6597 0.6916 0.7842 0.4866 0.6006
Seed 0 0.7746  0.6933 0.7317 0.8251  0.6741 0.7420
Seed 1 0.7696  0.7017 0.7341 0.7772  0.7009 0.7371
Seed 2 0.7951 0.6849 0.7359 0.7979 0.6875 0.7386
Seed 3 0.7545  0.7101 0.7316 0.8483  0.6741 0.7512
Negation Seed 4 0.8785  0.6681 0.7589 0.7861  0.7054 0.7435
Seed 5 0.7902 0.6807 0.7314 0.8352 0.6786 0.7488
Seed 6 0.7425  0.7269 0.7346 0.8409  0.6607 0.7400
Seed 7 0.7913  0.6849 0.7342 0.7778  0.6875 0.7299
Seed 8 0.8634 0.6639 0.7506 0.8000 0.6786 0.7343
Seed 9 0.8290  0.6723 0.7425 0.7908  0.6920 0.7381
p-value < 0.05 YES YES YES YES YES YES

such as parsing might have on the NER and RE tasks is also an intended
future line of work. Finally, regarding the NER+RE joint model, another
possible improvement would be the analysis of more sophisticated
ways of combining the loss functions from both subsystems for their
propagation through the network.
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Appendix A. Detailed results: NER experiments (DIANN corpus)

See Tables A.15-A.18.



H. Fabregat et al.

Table A.16

Statistical significance analysis for the differences between two pairs of experiments
on the DIANN corpus: final results with the base model and with the negation-based
transfer learning model, for both the English and Spanish language in the partial metric
without using post-processing rules. Last row indicates whether the differences are
statistically significant for all the considered metrics, according to the Wilcoxon Signed
Rank Test.

Partial match, no rules

English Spanish
Precision Recall F-measure Precision Recall F-measure
Seed 0 0.8483  0.7521 0.7973 0.8618  0.5848 0.6968
Seed 1 0.7877  0.7017 0.7422 0.8358  0.5000 0.6257
Seed 2 0.8447 0.7311 0.7838 0.8411 0.5670 0.6773
Seed 3 0.8143  0.7185 0.7634 0.8356  0.5446 0.6595
Seed 4 0.8615  0.7059 0.7760 0.8552  0.5536 0.6721
Base model
Seed 5 0.8402  0.6849 0.7546 0.8200  0.5491 0.6578
Seed 6 0.8535  0.7101 0.7752 0.8207  0.5313 0.6450
Seed 7 0.8416  0.7143 0.7727 0.8323  0.6205 0.7110
Seed 8 0.8286  0.7311 0.7768 0.8086  0.5848 0.6788
Seed 9 0.8241 0.7479 0.7841 0.8705 0.5402 0.6667
Seed 0 0.8451  0.7563 0.7982 0.8907  0.7277 0.8010
Seed 1 0.8387  0.7647 0.8000 0.8366  0.7545 0.7934
Seed 2 0.8634  0.7437 0.7991 0.8756  0.7545 0.8106
Seed 3 0.8170  0.7689 0.7922 0.9045  0.7188 0.8010
Negation Seed 4 0.9448  0.7185 0.8162 0.8458  0.7589 0.8000
Seed 5 0.8732 0.7521 0.8081 0.9011 0.7321 0.8079
Seed 6 0.8026  0.7857 0.7941 0.8864  0.6964 0.7800
Seed 7 0.8689  0.7521 0.8063 0.8434  0.7455 0.7915
Seed 8 0.9290 0.7143 0.8076 0.8789 0.7455 0.8068
Seed 9 0.8912  0.7227 0.7981 0.8469  0.7411 0.7905
p-value < 0.05 YES NO YES YES YES YES

Table A.17

Statistical significance analysis for the differences between two pairs of experiments
on the DIANN corpus: final results with the base model and with the negation-based
transfer learning model, for both the English and Spanish language in the exact metric
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Table A.18

Statistical significance analysis for the differences between two pairs of experiments
on the DIANN corpus: final results with the base model and with the negation-based
transfer learning model, for both the English and Spanish language in the partial metric
using post-processing rules. Last row indicates whether the differences are statistically
significant for all the considered metrics, according to the Wilcoxon Signed Rank Test.

Partial match, with rules

English Spanish
Precision Recall F-measure Precision Recall F-measure
Seed 0 0.8642  0.8824 0.8732 0.8520  0.7455 0.7952
Seed 1 0.7977 0.8613 0.8283 0.8453 0.6830 0.7556
Seed 2 0.8443  0.8655 0.8548 0.8384  0.7411 0.7867
Seed 3 0.8374  0.8655 0.8512 0.8446  0.7277 0.7818
Seed 4 0.8602 0.8529 0.8565 0.8556 0.7143 0.7786
Base model
Seed 5 0.8578  0.8361 0.8468 0.8283  0.7321 0.7773
Seed 6 0.8596  0.8487 0.8541 0.8307  0.7009 0.7603
Seed 7 0.8436  0.8613 0.8524 0.8113  0.7679 0.7890
Seed 8 0.8421  0.8739 0.8577 0.8098  0.7411 0.7739
Seed 9 0.8268  0.8824 0.8537 0.8659  0.6920 0.7692
Seed 0 0.8306 0.8655 0.8477 0.8732 0.8304 0.8513
Seed 1 0.8353  0.8739 0.8542 0.8257  0.8884 0.8559
Seed 2 0.8755  0.8571 0.8662 0.8522  0.8750 0.8634
Seed 3 0.7895  0.8824 0.8333 0.8829  0.8080 0.8438
Negation Seed 4 0.9259  0.8403 0.8811 0.8166  0.8348 0.8256
Seed 5 0.8667  0.8739 0.8703 0.8894  0.8259 0.8565
Seed 6 0.7955  0.8992 0.8442 0.8641  0.7946 0.8279
Seed 7 0.8636 0.8782 0.8708 0.8326 0.8438 0.8381
Seed 8 0.9132  0.8403 0.8753 0.8624  0.8393 0.8507
Seed 9 0.9009  0.8403 0.8696 0.8377  0.8527 0.8451
p-value < 0.05 NO NO NO NO YES YES

Table B.19

Statistical significance analysis for the differences between two pairs of experiments on
the DIANN corpus: final results with negation-based transfer learning (with rules) and
with the BERT-based model, for both the English and Spanish language in the exact
metric. Last row indicates whether the differences are statistically significant for all the
considered metrics, according to the Wilcoxon Signed Rank Test.

using post-processing rules. Last row indicates whether the differences are statistically English Spanish
significant for all the considered metrics, according to the Wilcoxon Signed Rank Test. Precision Recall F-measure Precision Recall F-measure
Exact match, with rules Seed 0 0.7379 0.7689 0.7531 0.7887 0.7500 0.7689
English Spanish Seed 1 07430 07773 07598  0.7510  0.8080 0.7785
Seed 2 0.7811 0.7647 0.7728 0.7609 0.7813 0.7709
Precision Recall F-measure Precision Recall F-measure Seed 3 0.7068  0.7899 0.7460 0.8049  0.7366 0.7692
Seed 0 0.7449 0.7605 0.7526 0.7653 0.6696 0.7143 Negation Seed 4 0.8333 0.7563 0.7930 0.7380 0.7545 0.7461
Seed 1 0.6965 0.7521 0.7232 0.7403 0.5982 0.6617 Seed 5 0.7625  0.7689 0.7657 0.8029  0.7455 0.7731
Seed 2 0.7377 0.7563 0.7469 0.7525 0.6652 0.7062 Seed 6 0.7138 0.8067 0.7574 0.7961 0.7321 0.7628
Seed 3 0.7317 0.7563 0.7438 0.7409 0.6384 0.6859 Seed 7 0.7645 0.7773 0.7708 0.7489 0.7589 0.7539
Seed 4 0.7500 0.7437 0.7468 0.7807 0.6518 0.7105 Seed 8 0.8219  0.7563 0.7877 0.7661 0.7455 0.7557
Base model ¢ 15 07414 07227 07319 07323  0.6473 0.6872 Seed 9 0.8108 0.7563 0.7826  0.7632  0.7768 0.7699
Seed 6 07362 07269 07315 07302  0.6161 0.6683 Seed 0 07270 07770 07484 07491 07148 07315
Seed 7 07202 07353 07277 0.7311  0.6920 0.7110 Seed 1 07125 07677 0.7391  0.6903  0.7967 0.7397
Seed 8 0.7085 07353 07216 0.7317  0.6696 0.6093 Seed 2 07422 07172 07295 07183  0.7607 0.7389
Seed 9 07126 07605 0.7358  0.7598  0.6071 0.6749 Seed 3 07214 07845 07516  0.6601 07730 07121
Seed 0 0.7379 0.7689 0.7531 0.7887 0.7500 0.7689 BERT Model Seed 4 0.6886  0.7744 0.7290 0.7500  0.7574 0.7535
Seed 1 0.7430 0.7773 0.7598 0.7510 0.8080 0.7785 Seed 5 0.6695 0.8047 0.7309 0.7096 0.7049 0.7032
Seed 2 0.7811 0.7647 0.7728 0.7609 0.7813 0.7709 Seed 6 0.7051 0.7407 0.7225 0.7206 0.6426 0.6794
Seed 3 0.7068 0.7899 0.7460 0.8049 0.7366 0.7692 Seed 7 0.7294  0.7441 0.7367 0.7043 0.7599 0.7310
R Seed 4 0.8333 0.7563 0.7930 0.7380 0.7545 0.7461 Seed 8 0.7052  0.7811 0.7412 0.7671 0.7344 0.7504
Negation  geed5 07625 07689 07657  0.8020  0.7455 0.7731 Seed 9 07009 07811 07389 07162  0.7115 0.7138
Seed 6 07138  0.8067 0.7574 07961  0.7321 0.7628 pvalue < 0.05 YES YES  YES YES YES  YES
Seed 7 0.7645 0.7773 0.7708 0.7489 0.7589 0.7539
Seed 8 0.8219 0.7563 0.7877 0.7661 0.7455 0.7557
Seed 9 0.8108 0.7563 0.7826 0.7632 0.7768 0.7699
p-value < 0.05 YES YES YES YES YES YES References

Appendix B. Detailed results: NER experiments (DIANN and BERT
comparative)

See Table B.19.
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