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A B S T R A C T

Wikipedia is a free encyclopedia created as an international collaborative project. One of its peculiarities is
that any user can edit its contents almost without restrictions, what has given rise to a phenomenon known as
vandalism. Vandalism is any attempt that seeks to damage the integrity of the encyclopedia deliberately. To
address this problem, in recent years several automatic detection systems and associated features have been
developed. This work implements one of these systems, which uses three sets of new features based on different
techniques. Specifically we study the applicability of a leading technology as deep learning to the problem
of vandalism detection. The first set is obtained by expanding a list of vandal terms taking advantage of the
existing semantic-similarity relations in word embeddings and deep neural networks. Deep learning techniques
are applied to the second set of features, specifically Stacked Denoising Autoencoders (SDA), in order to reduce
the dimensionality of a bag of words model obtained from a set of edits taken from Wikipedia. The last set
uses graph-based ranking algorithms to generate a list of vandal terms from a vandalism corpus extracted
from Wikipedia. These three sets of new features are evaluated separately as well as together to study their
complementarity, improving the results in the state of the art. The system evaluation has been carried out on a
corpus extracted from Wikipedia (WP_Vandal) as well as on another called PAN-WVC-2010 that was used in a
vandalism detection competition held at CLEF conference.

1. Introduction

Wikipedia is an international project with a collaborative nature that
aims to maintain an encyclopedia thanks to the generous contribution of
thousands of volunteers. At the moment of writing this research work,
Wikipedia had more than 35 million articles in 288 languages, the sixth
overall web site for daily visits and page views according to Alexa.1
For this reason, it has become a major source of on-line information
used by both end-users and third-party applications. Users can edit any
encyclopedia article anonymously and virtually without restrictions and
changes are published immediately. This freedom of action, which has
encouraged its rapid growth in recent years, is also the cause of one of
its main problems: vandalism. According to the definition of Wikipedia,
vandalism is any addition, deletion or change of content made de-
liberately to compromise the integrity of the encyclopedia. Common
forms of vandalism are the insertion of obscenities or rude humour,
removal of content, introduction of absurd fragments in articles, or the
modification of articles so that favour certain points of view or interests.
Contributions made in good faith to improve the encyclopedia, even if
they are wrong or harmful, are not considered vandalism.

Although the percentage of the total vandalism edits is low (4.64%
according to the only study carried out and completed by Wikipedia2 in
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1 http://www.alexa.com/topsites at Feb 2017.
2 http://en.wikipedia.org/wiki/Wikipedia:Counter-Vandalism_Unit/

Vandalism_studies/Study1.

2007, or 7% achieved when the corpus PAN-WVC-10 (Potthast, 2010)
was built in 2010) and the most flagrant cases are reversed in a matter
of minutes, the mere fact of their existence can undermine its reputation
and the trust that users can have in the information it provides. To
mitigate this problem, there are a number of automatic systems3 and
filters4 that detect and correct the most obvious vandalism edits or
directly prevent them. However, human intervention to detect the rest
of cases is necessary, which is an effort and dedication that could be
used in other more constructive tasks.

The main objective of this work is the study of new features and
its combination with state-of-the-art features that a machine learning
system can use to detect the presence of vandalism on Wikipedia and
implementing them in a vandalism detection system. Another challenge
is the application of deep neural networks for the construction of
features from a bag of words model, obtained from the set of words
inserted and removed in an edit of Wikipedia. The main contributions
of this work are the following:

3 http://en.wikipedia.org/wiki/User:ClueBot_NG
4 http://en.wikipedia.org/wiki/Wikipedia:Edit_filter.
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• We have proposed a new method based on word embeddings to
automatically extract terminology used by classifiers to identify
vandalism and not-vandalism editions.

• We have applied a deep learning technique to automatically
obtain features to characterize the vandalism editions reducing the
dimensionality of the input data.

• We have also designed new features based on different ranking
algorithms applied to a co-occurrence graph. It is constructed by
connected terms appearing in the same windows of terms from the
considered kind of document (vandalism or not).

• We have constructed a new corpus to be able to compare our work
with a recent work in the state of the art that extracts features
based on edits and revisions not present in PAN corpus.

• We have checked that the combination of the different sets is able
to get significant improvements in the performance.

• We have been able to improve the state of the art results for the
problem, even when the level of previous results was very high.

The remainder of the paper proceeds as follows: Section 2 defines the
problem of vandalism detection and offers a summary of the approaches
that have been explored so far to solve it; Section 3 presents the proposed
system and the two strategies used to address this task: techniques based
on graphs and semantic similarity for building lists of vandalism terms,
and the use of deep neural networks for feature extraction; Section 4 is
devoted to describe the evaluation corpus and the methodology adopted
for evaluation; Section 5 describes the experiments proposed as well as
the results obtained on a public dataset; Finally, Section 6 draws the
main conclusions and future work.

2. Problem definition and previous work

Vandalism is any addition, deletion, or change in the content made
deliberately to compromise the integrity of the encyclopedia. However
these actions can be performed in different ways: inclusion of vulgar
words or jargon, easily detectable using regular expressions or a list
containing these kind of terms, substitution within an article of certain
terms for other similar but with a different meaning, deletion of parts
of an article, etc.

Fig. 1 shows an example of vandalism in which much of the page
corresponding to an American city has been replaced by an offensive
phrase. The previous text offered details about the location, but the
phrase ‘‘Santa Clarita is a toilet!’’ has replaced that information.

As it can be seen in Fig. 2, Wikipedia provides a service to show all
the edits on an article where the text appears in a special format that
highlights the differences between two consecutive changes (an edit).
The left side contains various paragraphs of the article before the edit,
and the right side shows the new text. In this case, numerous paragraphs
have been replaced by an offensive phrase in line 77.

Based on the guidelines used in the CLEF conference (Potthast and
Holfeld, 2011), an edit 𝑒 = (𝑟𝑡−1, 𝑟𝑡) is defined as the transition between
two consecutive revisions 𝑟𝑡−1, 𝑟𝑡 of a Wikipedia article. Let 𝐸 be the
set of all available edits in Wikipedia, the task of vandalism detection
consists in determining whether an edit 𝑒 has been made in bad faith
or not. In order to materialize this idea by means of a machine learning
system the following is necessary: a corpus 𝐸𝑐 ⊂ 𝐸 of edits previously
labelled with a class value 𝐾 ⊂ {0, 1}, an edit model 𝛼 ∶ 𝐸 → 𝐸 that
corresponds to each edit 𝑒, a vector 𝜖 of numerical values called features,
in which each value identifies certain feature which is indicative of
vandalism, and a classifier 𝐾 ∶ 𝐸 → {0, 1} that assigns to each feature
vector a class value within the set {0, 1} where 0 represents a regular
edit and 1 represents a vandalism edit.

2.1. Background

The first tools developed to fight vandalism in Wikipedia used
regular expressions to detect offensive terms, heuristics that combined
these regular expressions with metadata and statistics extracted from the
edits to determine whether they were of vandalism nature. It is not until
2006 when the first machine learning based systems appear, focused on
vandalism detection and other closely related tasks such as determining
the quality of an edit or assigning a reputation score to an author. The
main contributions made in this area of research are reviewed below.

Currently there are three different approaches for the detection of
vandalism in Wikipedia: based on the author’s reputation, based on the
analysis of the metadata edits, and based on text features.

2.1.1. Preservation of contributions and reputation
Within this group, there are proposals that try to identify signs of

vandalism from the lifecycle of the fragments of an article, and assign
different levels of reputation to authors based on the preservation of
their contributions.

Zeng et al. (2006) calculated the certainty of an article using the
history of their revisions. This can be extended to the calculation
of the certainty of fragments of the article and the trust in their
authors. Revisions are viewed as a set of insertions and deletions.
Javanmardi et al. (2010) studied the problem of reputation assignment
to authors. They only analyse the reputation of administrators and
vandals, not from common users, in order to build the authors’ models.
The reputation is estimated according to the stability (surviving time)
of insertions made by users. Contrary to what happened in previous
works, in detecting the authorship of a revision, rearrangements of
tokens are also considered. Adler et al. (2010) proposed a vandalism
detection system based on WikiTrust, a previous work by the same
authors. They distinguish two aspects of the problem: the historical
vandalism detection and instantaneous vandalism detection. WikiTrust
calculates the quality of each revision based on the persistence of this
revision, the author’s reputation and the reputation of the reviewers. Wu
et al. (2010) addressed the problem of elusive vandalism. In this type of
vandalism, less obvious than usually seen, very specific changes that are
difficult to detect are carried out, such as the change of numerical values
by others similar. To detect these changes they use a measure based
on the stability of the text. Suzuki and Yoshikawa (2013) developed a
system for determining the quality of an article by means of the survival
of edits method, iteratively until convergence, and taking into account
the editor quality according to the quality of articles he edited (link
analysis). The system is able to discriminate vandals edits that remove
quality text. Segall and Greenstadt (2013) built a set of features that help
to detect reversed edits based on the user history and metadata from
those edits. Features from users, articles and edits are used. The final
classification is performed using a support vector machine approach.

2.1.2. Spatio-temporal models
Some studies have mainly used the spatio-temporal information

present in metadata or infoboxes to detect the presence of certain types
of vandalism.

West et al. (2010) used the spatio-temporal information present in
the metadata of a revision to detect vandalism. They labelled the corpus
consulting the roll-backs that were produced and a light classifier that
can be used as an initial detector for other anti-vandalism tools. The
results were similar to those obtained by other authors that used natural
language processing techniques. Alfonseca et al. (2013) proposed a
vandalism detection system that used only the information in infoboxes
and its temporal evolution. They took advantage of the infoboxes, which
typically have a more structured information that the body of the article,
in order to extract temporal information from the evolution of the
attributes of an article and build a set of features from it that was used
to detect vandalism.
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Fig. 1. Example of vandalism: modified text at November 29th, 2009.

Fig. 2. Example of vandalism: previous paragraph and added vandalized phrase.
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2.1.3. Text-based features and combinations
Finally, previous works more similar to the one presented in this

article are exposed. First, systems based on features extracted from the
text are stated. Then, those systems that have combined features from
different nature to build a more efficient classifier are described.

Itakura and Clarke (2009) dealt with vandalism detection using a
machine learning approach, based on Markov dynamic compression.
To do this, they only consider two types of vandalism: insertion and
change. The basic idea is to concatenate regular editions on one hand,
and vandalism edits on the other hand, in two separate files. The one
with higher compression ratio indicates the nature of the edit to be
tested. Wu et al. (2012) developed a system for determining the quality
of an article or frequency features based on graphic elements such as
the motives. A motive is a graphical representation of patterns that can
occur in author–article relationships. They used four machine learning
algorithms: random forest, logistic regression, support vector machine
and k-neighbours. Tran and Christen (2013) proposed a new set of
text-based features. To do this, they analysed the differences between
revisions marked as corrections by vandalism and the revisions asso-
ciated with vandalism. The authors also use a multi-language strategy
to analyse how bots and humans detect vandalism, and confirm that a
classifier trained on a particular language can have a good performance
when used with a different language.

Works that present a system based on a single set of features are
very interesting to advance in the problem of vandalism detection.
However, systems with a better performance usually combine several
sets of features to improve the state of the art. Some of such systems are
presented below.

Belani (2010) focused on using a standard bag-of-words in which the
vocabulary is built on the set of inserted and removed words in different
edits. In addition, features based on metadata (for instance, whether the
author is anonymous or not) are added to the vectors of this model.
In his work this model is evaluated with a logistic regression classifier.
Mola-Velasco (2011) developed a vandalism detection system based on a
set of new features and others previously implemented by other authors.
Some of the new features take into account statistical data and metadata
from edits, while others are based on counts by type of words used for
that predefined lists of words (vandalism, bias, jargon, etc.). This system
won the vandalism detection competition held during the 2010 PAN
conference. West and Lee (2011) developed a multilingual vandalism
detection system using immediate features (zero delay) being language-
independent (some reused from previous works by other authors), and
ex post facto features, i.e. that use known information after the article
edit was done as Adler et al. (2010) did (historical detection). Harpalani
et al. (2011) proposed a system based on stylometric features. The
authors use probabilistic context-free grammars (PCFG) to capture deep
syntactic regularities in different edits of an article. Then, a system
is built in which these features are combined with others based on
metadata, lexical clues (offensive vocabulary terms, etc.), and feelings
(using subjective terms rather than neutral). Javanmardi et al. (2011)
selected a minimal set of features for the detection of vandalism divided
into four groups: user, text, metadata, and language models, using
a MapReduce (Dean and Ghemawat, 2008) scheme and a Random
Forest classifier. Sumbana et al. (2012) proposed an active sampling
method that allows reducing the training corpus gathering examples
with values of redundant features and thus reducing the effort to be
made by annotators. In addition, the authors use a LAC (Lazy Associative
Classification) classifier to build a vandalism detection system. This kind
of classifier is based on the premise that if there are strong relationships
between feature values and classes, these relationships can be used
to predict the class. Shulhan and Widyantoro (2016) apply machine
learning techniques by training Cascaded Random Forest classifier on a
corpus that has been re-sampled using Local Neighbourhood Synthetic
Minority Oversampling Technique (LNSMOTE). Deep Learning has also
been used for vandalism detection on Wikipedia as in the work of Kumar
et al. (2015). The authors use a set of user editing patterns as features

to classify some users as vandals. Their approach uses a set of features
derived from a transition probability matrix and then reduces it via
a neural net auto-encoder to classify some users as vandals. For this
task the authors have built a new dataset consisting of about 33K
Wikipedia users (including both a black list and a white list of editors)
and containing 770K edits. Adler et al. (2011) integrated three of
the approaches to Wikipedia vandalism detection: a spatio-temporal
analysis of metadata, a reputation-based system, and natural language
processing features. The authors examined in detail the contribution of
the three approaches, both for the task of discovering fresh vandalism,
and for the task of locating vandalism in the complete set of Wikipedia
revisions. Lately there have appeared works like the one of Heindorf
et al. (2016) that is based on another platform like Wikidata using some
features of previous works. The authors present a new machine learning-
based approach to detect vandalism in Wikidata. They propose a set
of 47 features that exploit both content and context information, and
report on 4 classifiers of increasing effectiveness tailored to this learning
task. Recently new works have appeared with an across languages
approach as the work of Tran et al. (2015). It proposes a cross-
language vandalism detection technique that scales to the size of the
full Wikipedia and extends the types of vandalism detectable beyond
past feature-based approaches. The authors use word dependencies to
identify vandal words in sentences by combining part-of-speech tagging
with a conditional random fields classifier. Also the work of Susuri et al.
(2016) applies machine learning algorithms for detecting vandalism in
two languages as English and Albanian. The authors propose using a list
of classifiers in one language, and then evaluate them across languages
in two datasets: the hourly count of views of each Wikipedia article, and
the used edit history of articles.

3. Vandalism detection system

The main objective of this work is to propose new features, that
combined with some previously introduced by other authors, are able
to improve the state of the art. In particular, we have applied deep
learning techniques to obtain these features, given the potential of these
methods and the recent interest showed by the scientific community. For
that, three sets of features have been designed which individually focus
on different problems of vandalism, and together have a competitive
performance.

The extracted features come from three different approaches:

• The first one, is based on the generation of vandalism term lists. It
provides 4 features; two of them focus on frequency and impact,
and the other two focus on the words that are found in a vandal
cluster.

• The second set of features comes from the deep neural network
and generates 25 features. These 25 features are obtained from the
different combinations used when selecting the number of neurons
in the three input layers (X, Y and Z).

• Finally, the set of features from graph-based ranking algorithms
generates 8 features. To do this, four different social media
measures are used that focus on different aspects in a graph
(PageRank, Degree centrality, Eigenvector centrality, and Hits).
Over the output of these measures, frequency and impact methods
are applied for each of them, generating the final 8 features.

Fig. 3 shows the general scheme of system functioning. First, the
system loads the corpus information into a SQL database in which
intermediate representations are also stored once generated. From these
text representations, and from the metadata present in the editions, the
different obtained features are calculated and stored in the database
too. Finally, the predictions are performed through a machine learning
software. As for the colour coding, the yellow elements represent the
processes, the blue ones are the system I/O and databases, and the green
ones are the sets of extracted features.
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Fig. 3. General scheme of system functioning for the PAN-WCV-10 corpus. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

The evaluation of the system has been done with a corpus extracted
from Wikipedia (WP_Vandal) and with the corpus PAN-WVC-10, since
it is the reference collection in the field of vandalism detection in
Wikipedia. Some previous works in the state of the art extract features
that cannot be obtained from the PAN-WVC-10 corpus, so a corpus
extracted from Wikipedia has also been used for the evaluation in
order to obtain these features. We have built the vandalism corpus
WP_Vandal5 extracted from Wikipedia and constructed according to the
methodology followed for the construction of the corpus PAN-WVC-
10 (Potthast, 2010), since it is the reference collection in the field of
vandalism detection in Wikipedia. This corpus is described in more
detail below.

3.1. Automatic extraction of vandalism terms based on word embeddings

In language models based on word or semantic vectors, each word
is represented by a vector of real values, unlike traditional vector space
models where one word is represented atomically within a document
vector. One drawback of the classical model is that two document
vectors containing words with close meanings as ‘‘car’’ and ‘‘vehicle’’
will not have any element in common and therefore a relationship
between them cannot be easily established based on these two terms.

In this work we will use a representation model of word embeddings
that is generated by artificial neural networks. These representation
models are usually linked to the generation of a language model.
A language model or n-gram model is any probabilistic model that
predicts the next word according to the 𝑡 − 1 previous ones. There
exist several works that use this model of word embeddings as the
one of Bengio (2009). However, a simpler variant of this model is the
proposal by Mikolov et al. (2013a) that has been used in this work.

3.1.1. Generation of vandalism term lists
Given the observed features in the word embeddings, the possibility

of using them as a mechanism to expand lists of terms arises. In the
case of vandalism detection, language-dependent features commonly
are implemented as two measures (frequency and impact) calculated
on a list of words typically generated manually. Frequency (Adler et al.,
2011) considers the ratio of vandalism words relative to the size of the
edit. Impact (Adler et al., 2011) is the percentage increase that the edit
contributes to the overall article size. Both frequency and impact are
calculated on inserted words, not on words removed from an edition.
Therefore it can be useful to extend these vandalism term lists with
others similar obtained with a CBOW or Continuous Skip-gram model,
trained on a set of Wikipedia articles or any other similar source of
not annotated information. The models, lists and sets obtained in these
experiments have been obtained only from the training set.

5 https://github.com/juaner4corpora/WP_Vandal.

Table 1
Related words according to the Continuous Skip-gram model. Each column corresponds to
the term shown in the upper part, appearing their related terms below. The associated
score represents the cosine distance.
→ yeah → dumb
⟹ yeahs, score = 0.652 ⟹ stupid, score = 0.516
⟹ 5ksfe3tez, score = 0.573 ⟹ clumsy, score = 0.509

⟹ dumber, score = 0.501

In order to generate this list, inserted words (InsertedWords set) are
examined in each vandalism edit and in every regular edit of training
generating two separate lists 𝑉 (vandal) , 𝑅 (regular). A third list 𝐷 is
generated from them containing the words from 𝑉 that are not in 𝑅,
and appear at least twice.

With this root list 𝐷, a fourth list 𝐷𝑅 is generated,6 containing the
words included in 𝐷 and also the words that are similar to these ones
being in their word embeddings at a distance less or equal than a given
threshold 𝑑. This 𝐷𝑅 list is used as the basis for calculating the frequency
and impact measures, resulting two features identified as RelatedFre-
quency and RelatedImpact. Fig. 4 shows the process schematically.

For instance, in Table 1 some clearly vandalism terms appear in the
upper part of each column and their related terms appear below. The
score (score) is the cosine distance formed by the word embedding from
the analysed term regarding to each of the word embeddings associated
to the related terms. As it can be seen, both morpho-syntactically related
terms (dumber) and semantically (stupid) are inserted. The shown data
were taken from the set of training from the vandalism detection in
Wikipedia corpus (WP_Vandal), that will be described later.

In addition to the RelatedFrequency and RelatedImpact features, the
created infrastructure has been used to extract two new features also
based on the use of word embeddings.

The first of these new features, which has been called WordsInvandal-
Cluster1, represents the number of words that are close to a vandalism
cluster generated as it is explained below. Words inserted in edits are
group in clusters that are labelled as vandalism or not, as it is explained
in the following. In the detection phase, every word inserted in an edit
is evaluated, depending on the type of the closest cluster that it has. In
more detail, the clusters are generated by the following process (Fig. 5):

• The list of words inserted in each edit of the training set is
traversed. For every word we search for the cluster to the minimal

6 The corresponding part to the generation of the word embedding model and
the similarity calculation have been adapted from the implementation made in
Java by Siegfang (https://github.com/siegfang/word2vec). C.SkipGram is used
for the generation of the WordVector model with the following parameters:
frequencyThresold = 5, embeddedSize = 200, sentenceLenght = 1000, and
windowSize = 5.
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Fig. 4. Generation of related vandalism word lists.

cosine distance to the corresponding word embedding. The initial
minimum distance is 0.5.

• If it is found, the word is added to the cluster and the cluster vector
is recalculated by adding the word embedding. If a cluster at the
minimum distance is not found, a new one is created with the same
name as the word and with its word embedding as only member.

• Each cluster has two counters: one (𝑒𝑣) counting the vandalism
edits which have inserted some word and another (𝑒𝑟) counting
the non vandalism edits.

• A cluster is vandal if 𝑒𝑣−𝑒𝑟 ≥ 2 (this expression avoids recognizing
as vandal clusters, those with a single vandalism word, thus
preventing their proliferation).

In the evaluation phase on the test set, it is determined whether an
inserted word is vandal looking for the nearest cluster without setting
any minimum distance. If the cluster is vandal according to the above
expression then the counter WordsInvandalCluster1 is increased.

The second feature that has been created is called WordsInvandal-
Cluster2 and is based on the same idea as the previous one, but the
clusters are created in a different way. Vandal clusters are created by
taking the words from vandalism edits that are not in the list of exclusive
words from vandalism edits (Fig. 6). Thus, unlike WordsInvandalCluster1
feature, the first group of clusters only groups supposedly vandalism
words and the second one only groups regular words.

We have performed a set of experiments to fit the parameters of Word
Embeddings used in this work. A vector size of 200 and 400 has been
used, being the optimum size 200. Various window sizes (5, 10, and 20)
have been used, being the optimal size 5. This is also the configuration
that is used by default in many of the existing implementations in the
literature.

The word embeddings built in this section from the Wikipedia
vandalism edits could be used in a deep learning process like the one
described in the next section to obtain other features.

3.2. Deep artificial neural networks for new features

The application of neural network models has brought a new boom
in the field of neural networks resulting different architectures among
which stand: (1) Convolutional Neural Networks (CNN) inspired by the
visual cortex and suitable especially for tasks of visual and speech
recognition; (2) Deep Belief Networks (DBN) composed of several stacked
Restricted Boltzmann Machines (RBM) that use models based on energy
similar to those from classical statistical mechanics; and (3) Stacked
Denoising Autoencoders (SDA).

In this work we have evaluated the last two architectures DBN and
SDA, finally selecting SDA for its best performance. The first one (CNN)
has been discarded since, according to the literature (Britz, 2015) seem
less suitable for tasks of natural language processing where large corpus
such as vandalism detection are involved.

3.2.1. Feature extraction
The Stacked Denoising Autoencoders methods, in addition to classifi-

cation tasks can be useful as feature extractors since they are able to
generate a compact representation of the information that they receive
on their input, keeping part of the relevant information and discarding
the superfluous. One of the classic methods of document representation
widely used in the area of information retrieval is the vector space
model, in particular the bag of words.

In the task of vandalism detection in Wikipedia it is possible to take
advantage of this type of representation as input for a classifier (Belani,
2010), in this case identifying articles (revisions) with documents
and discarding both the representation of queries and the similarity
measures. Thus, each document vector (article) with dimension |𝑉 𝐶|

where 𝑉 𝐶 is the vocabulary associated with the set of articles from the
corpus, would be considered a feature vector containing information
about the presence or absence of certain vocabulary words.

The problem with this approach is that the size of the vocabulary
to be handled in a corpus as the two used in this work involves input
vectors of high dimensionality, with the addition that these vectors are
sparse, i.e., they are mainly composed of zeros and the information
associated to each vector is small relative to its size. The consequence of
this is the low efficiency in using the memory and long times of training
that are required. It is therefore necessary to use some method to reduce
this high dimensionality extracting the most relevant information and,
SDA are initially suitable for this task. To check this, several processes
have been implemented in the developed system as it is schematically
shown in Fig. 7.

Using this procedure, first, vocabularies belonging to the set of
inserted words InsertedWords and the set of removed words DeletedWords
are generated, defining the document vector as the concatenation of
these two vocabularies. This makes that some terms appear twice in the
document vector, both as added terms and deleted terms. This duplicity
is justified by the additional information provided by the appearance
of these terms at one or another section of the document vector (a
vandalism term in the section of inserted words of the document vector
may suggest a vandalism edit, while the same term in the section of
deleted words is more likely to appear in a regular edit).

In the construction of these two vocabularies a reduction is per-
formed avoiding the insertion of terms that appear less than 𝑛 times
and have a size smaller than 𝑡, using by default a minimum number of
appearances of 10 and a minimum length of 3. Requiring this minimum
number of appearances, a more generic vocabulary is obtained that can
be applied to edits and revisions that were not in the corpus that was
used for making this vocabulary. Another form of vocabulary reduction
that has been used in any of the tested configurations, is the elimination
of stop words.
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Fig. 5. WordsInvandalCluster1 calculation.

Fig. 6. WordsInvandalCluster2 calculation.

Fig. 7. Features generation by SDA.

The next step is the generation of the representations of the bag-
of-words model from the edits and revisions in the training and test
sets. Given that SDA inputs (used in the implementation in this work)
only support binary values, document vectors only show the presence or
absence of a term in the InsertedWords and DeletedWords sets associated
with each edit.

The Stacked Denoising Autoencoder has been adapted from the avail-
able implementation7 using the Theano library (Bergstra et al., 2010;

7 http://deeplearning.net/.

Bastien et al., 2012) written in Python language. With the above
mentioned vocabulary restrictions, the input of SDA consists of 10,050
units, from which about half belong to the vocabulary of InsertedWords
set and the rest to the DeletedWords set.

We have performed a set of experiments to fit the number of neurons
in each layer of a deep network during learning. 875 and 2000 neurons
have been used for layer X, 175 and 500 for layer Y, and 2, 10, 20, and
30 for layer Z. Being 875, 175 and 10 the optimum number of neurons
for layers X, Y, and Z.
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Each of the layers 𝑓𝑖, is actually composed of a Denoising Autoencoder
(DA) layer and a perceptron layer, both with an activation function of
sigmoid type.

In the unsupervised training phase only the DA components of the
layers update the network parameters. After this phase, the supervised
learning is performed by the perceptron components of each layer
starting from the existing weights in the matrices and bias vectors.

This would be the typical configuration of a classifier with two
output classes but, given that the objective is to reduce the input
dimensionality, what is done is to extract the input of the last layer
and treat these 25 values as the features that gather the codification
of the 10,050 inputs in the network. Regarding the number of training
iterations, better representations have been obtained when this number
is small. In fact, the usual configuration with 20 pre-training iterations
and a variable number of iterations of supervised training has been
reduced to five pre-training iterations and a single training iteration.

The values present at the input of the last layer are transformed
to Weka (Witten et al., 2016) format and imported back into the SQL
database thereby generating 25 new features to evaluate. It should be
noted that unlike the SDA inputs, that have a clear meaning being based
on a vector space model, the representation obtained in these 25 output
features is an abstract coding of the inputs without this correspondence
one by one with the vocabulary terms.

3.3. Graph-based ranking algorithms

Given the corpora used in this work where we have a number of
revisions, some identified as vandalism and others as regular, the basic
idea behind this new set of features is that if we take on the one hand the
vandalism revisions and on the other hand the regular revisions, there
should be a set of terms that characterize the vandalism edits that are
not present in regular edits.

In order to extract these terms, one option is to use strategies based
on graphs. The first step is to represent these sets of revisions as a
graph and one of the most appropriate graph types for this task is
the co-occurrence graph. In this type of undirected graph each vertex
identifies a term present in the text and each edge connects two terms
that appear in a window of n terms within the same paragraph, in the
same document, etc.

In the implementation of the co-occurrence relationship that has
been done in this paper, the InsertedWords set of each edit without
repetition of terms has been used for efficiency reasons and because
it contains a more significant information that the full revision. It was
considered that two terms co-occur if they appear in a window of 10
consecutive edits of the training set and they are in the InsertedWords
set.

For efficiency issues due to the size of the resulting graph, the training
set has been further divided randomly into 4 groups of instances with
about 4,000 instances per group in order to generate the co-occurrence
graphs from the regular edits. Each of these graphs has approximately
35,000 vertices and 8,000,000 of edges.

Over the graphs of regular edits a ranking algorithm is applied to
select the r first terms. Then a vocabulary with these four lists of terms
is built (joining the four lists with unique terms), and a list of regular
terms from it.

The next step is to generate the co-occurrence graph from the
vandalism edits. Since in this case the number of instances is much
smaller, a division of the training set is not performed. The generation
of this graph has the particularity that if a word is on the list generated
above (regular edits), this is not included in the graph.

Four types of measures have been applied in order to obtain the
ranking on the generated vandal graph:

• Degree centrality
• Eigenvector centrality
• PageRank

• Authority (HITS)

Once applied the ranking algorithm to the vandal edits graph accord-
ing to the measures described above, the first v terms are selected, and
the obtained list is used as the basis for calculating frequency and impact
measures. In this way, 8 features are obtained, applying frequency and
impact measures to the lists of terms obtained from the four measures
based on graphs (i.e. pagerank frequency and pagerank impact).

For the calculation of the ranking was used the Jung library (Java
Universal Network/Graph Framework)8 and the graphical analysis en-
vironment Gephi.9 Both tools are interchangeable and produce similar
results.

3.4. Other implemented features

As a complement to the features described in the previous sections,
another set of 41 features have been implemented that correspond to
those described in the works by Potthast et al. (2008), Mola-Velasco
(2011), and Tran and Christen (2013). It is necessary to take into
account that from these three works, the most recent ones include some
features of the previous works and therefore there is an overlap.

These features can be grouped into three categories: based on
metadata, textual and language-dependent. Since there is not much
information about the implementation of these features, the results ob-
tained for the same features do not exactly match the authors published
results but represent a reasonable approximation.

We have implemented several features from previous works in
vandalism detection on Wikipedia since we expect that an appropriate
combination of them and the ones we have proposed are able to
overcome the current state of the art. Some of these known features are
language-dependent and others not. Thus, given the good performance
of these measures and their simple calculation, we decided to implement
them in order to compare the system performance using all the features
or only those language-independent.

4. Evaluation corpus and methodology

Previous works Tran and Christen (2013) in the state of the art
extract some features from edits and reviews that cannot be obtained
from the PAN-WVC-10 corpus and for this reason these authors have
decided to generate a new corpus from Wikipedia (WP_Vandal) but with
more information than the original corpus.

In this work we have decided to use both corpus to evaluate our
system against all the works of the state of the art. Using a corpus
extracted from Wikipedia (WP_Vandal) like the previous work we have
been able to extract more features and evaluate our system compared
to the previously published works. We will also use the PAN-WVC-10
corpus in order to evaluate our work with the unique reference corpus
in this area. It is necessary to mention that in the experiments carried
out on the PAN-WVC-10 corpus no information of the other corpus was
used and therefore the conditions in which we worked were the same
as those of the participants in the competition.

4.1. WP_Vandal corpus

This section details the process followed to generate the WP_Vandal10

corpus, used later in the evaluation of our vandalism detection system.
We have used the first five xml files from the full history of revisions
of the English version of Wikipedia present in the dump made in May
2016.11 These files also contain in addition to encyclopedic articles
(namespace 0), another type of information12 that is not relevant for

8 http://jung.sourceforge.net/.
9 http://gephi.github.io.

10 https://github.com/juaner4corpora/WP_Vandal.
11 https://dumps.wikimedia.org/enwiki/20160501/.
12 https://en.wikipedia.org/wiki/Wikipedia:Namespace.
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this work, so it has been ignored in the construction of the dataset. From
these files a total of 7,460 articles and 8,662,332 revisions have been
extracted.

Once these revisions have been uploaded, we have marked those that
have been identified as vandalism by bots or by human reviewers. To
do this, the ‘‘comment’’ field has been queried for any of the following
substrings: ‘‘vandal’’, ‘‘rv’’, ‘‘rev’’ or ‘‘revert’’, usually used to indicate
this circumstance, marking as vandalism the immediately previous
revision which belongs to the same article. Following this method,
1,190,649 vandal revisions have been identified, that is a 13.74% of
the total revisions.

The next objective in this construction process has been to balance
the dataset, that is, to get the number of regular and vandal revisions to
be approximately the same. This goal has been achieved by marking the
vandal revisions whose immediately previous revision is regular, and
the regular revisions whose immediately posterior revision is vandal-
ism, obtaining in this way 2,309,296 revisions (1,154,649 vandalism).
Finally, all the revisions prior to the year 2016 have been filtered,
obtaining 36,315 revisions of which 18,506 were marked as vandalism.
This latter dataset has been split in two parts in order to create the
training and test sets used in the evaluation of the system. The first
one contains the edits whose ‘‘revision_timestamp’’ corresponds to the
months of January, February and March 2016 (27,724 revisions), and
the test set contains the revisions made in April 2016 (8,591 revisions).
The content of the article, except metadata, present in the ‘‘text’’ field
of these revisions has been tokenized and converted into plain text in
order to be used in the calculation of any of the features developed in
this work.

4.2. PAN-WVC-10 corpus

PAN-WVC-10 corpus was the corpus used in the vandalism detection
competition held in CLEF 2010 conference. The main difference of this
corpus with WP_Vandal is that this corpus do not use information after
the modification of an article.

This corpus was created in 2010 under the direction of Potthast
(2010) and with the collaboration of 753 annotators that using the
Amazon’s Mechanical Turk13 tool, examined 32,452 edits from 28,468
articles on the English version of Wikipedia of which 2,391 were
annotated as vandalism. The corpus consists of revisions and edits. The
former are full versions of Wikipedia articles while edits represent the
transition from one revision to the next. In the edits, the number of the
original review and the revision number which replaces it, are identified
together with other associated metadata (author, size, date–time, etc.).

The result are two evaluation collections distributed in separate
comprised archives. The first contains the training corpus composed of
15,000 edits of which 921 are identified as vandalism. In total there are
29,922 reviews on this training corpus. The second collection contains
the test corpus with 317,443 edits over a total of 595,082 reviews.
17,443 were annotated and 1,481 identified as vandalism.

The evaluation of the learning schemes used in all the predictions
of this paper was performed by a training–test evaluation. The corpus
is split into two sets, the first used for training and second used as
test for getting the results of the system. We have adopted a set of
well-known (Potthast et al., 2010) performance measures in Vandalism
Detection: F-Measure, area under the ROC curve (AUC-ROC) and area
under the Precision–Recall Curve (AU-PRC).

4.3. Classification algorithms

Table 2 shows the results of the classification process using all
the features introduced in this work on WP_Vandal and using several
classification algorithms included in the Weka data mining tool. Results
for the PAN-WVC-10 corpus are similar, being Random Forest the

13 https://www.mturk.com/.

Table 2
Results using different classification algorithms, based on their F-Measure, AUC-ROC, and
AU-PRC. Best results appear in boldface.

Features F-measure AUC-ROC AU-PRC

RandomForest 0.791 0.960 0.859
ClassificationViaRegression 0.786 0.951 0.847
Bagging + RandomForest 0.780 0.953 0.856
Bagging + REPTree 0.774 0.947 0.850
AdaBoostM1 0.770 0.948 0.829
IBK 0.702 0.808 0.650
SimpleLogistic 0.779 0.941 0.846
MultilayerPerceptron 0.775 0.940 0.842
Logistic 0.773 0.939 0.838
NaiveBayesMultinomial 0.390 0.612 0.521
VotedPerceptron 0.389 0.614 0.522
J48 0.755 0.857 0.713
DecisionStump 0.766 0.861 0.702
MLP 0.785 0.920 0.816
SVM 0.754 0.836 0.785
EXTRA Tree 0.731 0.812 0.695

Table 3
Results in WP_Vandal corpus using Random Forest on the different sets of features
implemented in this work. Set A corresponds to features extracted from vandalism terms
based on vandalism word lists, Set B to Deep Artificial Neural Networks features, Set C to
features extracted from Graph-based ranking algorithms, and Set P to features proposed
in previous works.

WP_Vandal corpus

Features F-Measure AUC-ROC AU-PRC

Set A 0.512 0.718 0.601
Set B 0.549 0.761 0.635
Set C 0.425 0.605 0.542
Set P (previous works) 0.764 0.935 0.818
A + B 0.590 0.792 0.684
A + C 0.571 0.769 0.652
B + C 0.579 0.778 0.682
A + B + C 0.623 0.839 0.722
A + B + C + P 0.791 0.960 0.859

algorithm with a best performance. Thus Random Forest (Breiman,
2001) will be used in the following experiments. A large number of
classification algorithms from different families have been analysed
being ‘‘RandomForest’’ the algorithm that works best. However, other
algorithms such as ‘‘ClassificationViaRegression’’ and the ‘‘MultiLayer
Perceptron’’ have obtained a similar performance.

5. Results

In this section the results obtained by the system developed in this
work are shown for the different sets of implemented features. First,
each group of features is analysed separately. Then, the aggregated
performance of the three groups of features is checked. The results
obtained by the features from the works of other authors are displayed
later and the system performance using these features together with
the others presented in this paper are also illustrated. Finally, the
performance of this system is compared to results from other previous
published works.

Tables 3 and 4 illustrate the different combinations of features
tested in Wikipedia and PAN-WVC-10 corpora using the Random Forest
classifier, trained on the training set and evaluated on the set test based
on their F-Measure, AUC-ROC, and AU-PRC. In these Tables 3 and 4
results identified as A + B + C + ... represent a configuration of the
developed system in which the sets of features A,B, and C are used
simultaneously, where A are based on word embeddings, B are drawn
with SDA, C are based on ranking on graphs, and P are the implemented
features from other authors.

First, it is important to note in Table 3 that the set B, relative to the
deep learning features, is the one that obtains the best performance.
It can be seen that combining any two sets of features presented in
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Table 4
Results in PAN-WVC-10 corpus using Random Forest on the different sets of features
implemented in this work. Set A corresponds to features extracted from vandalism terms
based on vandalism word lists, Set B to Deep Artificial Neural Networks features, Set C to
features extracted from Graph-based ranking algorithms, and Set P to features proposed
in previous works.

PAN-WVC-10 Corpus

Features F-Measure AUC-ROC AU-PRC

Set A 0.519 0.686 0.489
Set B 0.553 0.865 0.696
Set C 0.396 0.632 0.345
Set P (previous works) 0.612 0.931 0.755
A + B 0.681 0.882 0.738
A + C 0.569 0.726 0.566
B + C 0.622 0.858 0.689
A + B + C 0.702 0.903 0.766
A + B + C + P 0.725 0.959 0.804

this work (A, B or C), the values obtained are higher respectively than
the maximum values obtained separately for any set. In addition, the
combination of the three sets of features (A + B + C) is better than
any combination of just two sets (A + B, A + C, or B + C). Within the
combination of two sets, the set A + B is the one that obtains the best
results, showing in this way that features based on deep learning have
a great influence on the final result.

In addition to these three groups of new features, features described
in previous works as Potthast et al. (2008), Mola-Velasco (2011),
and Tran and Christen (2013) have also been implemented (Set P).
Although the results obtained with this set of features (P) are high
in relation to the sets proposed in this work, it is necessary to take
into account that these features are a selection of the best features
proposed in the state of the art. Moreover, what is more important is that
the combination of these features of previous works with the features
proposed in this work obtain a higher performance when combined
than being used in isolation. Therefore answering the question of the
title of this work, deep learning techniques can improve classification
performance of vandalism detection in Wikipedia.

Regarding Table 4, results show a similar behaviour for the different
sets of features. Set B, relative to the deep learning features, obtains
the best performance. In addition, the best combination of features is
the one that joins the A, B and C sets. However, sets A and B, both
relative to deep learning techniques, get a performance close to the best
combination. In the same way, it is also concluded that the combination
of all the features provides the best result, therefore it is a set of features
that focus on different aspects of vandalism. In the case of this corpus,
the results are slightly lower, probably due to the fact that it contains
less information than the WP_Vandal corpus.

5.1. State-of-art comparison

In this section we analyse whether the new features developed in
this work can complement those developed by other authors comparing
the values obtained with different combinations of features for measures
F-Measure (Not Available in PAN), AUC-ROC, and AUC-PRC.

For that, we take the results obtained by different vandalism detec-
tion systems presented in the competition held at CLEF 2010 (Potthast
et al., 2010) as reference, training on the training set and evaluating on
the test set. These results are shown in Table 5 (obtained from Potthast
et al. (2010)). As can be seen, the system proposed in this work overcome
the results obtained by any participating system. However, our system
did not participate in the competition.

For that, we have implemented the features described in the two of
best works in the state of the art to the best of our knowledge as well as
those proposed in this work. For the implementation of each feature we
have followed every one of the steps provided by the authors in their
works. Once these features have been implemented, each set of features
has been applied an evaluation process on the PAN and WP_Vandal

Table 5
Final ranking of systems presented in CLEF 2010 (Potthast et al., 2010). Best results
corresponding to the proposed system appear in boldface.

System AUC- ROC AUC- PRC
ROC rank PRC rank

Mola Velasco 0,922 1 0,665 1
Adler et al. 0,903 2 0,492 3
Javanmardi 0,898 3 0,447 4
Chichkov 0,893 4 0,562 2
Seaward 0,879 5 0,413 7
Hegedus et al. 0,876 6 0,422 5
Harpalani et al. 0,858 7 0,414 6
White and Maessen 0,843 8 0,393 8
Iftene 0,654 9 0,122 9
Random detector 0,500 10 0,084 10

Our system 0,959 0.804

Table 6
Results in WP_Vandal corpus using Random Forest with the different sets of features
implemented in this work, based on their F-Measure, AUC-ROC, and AU-PRC. Best results
corresponding to the proposed system appear in boldface.

Features F-Measure AUC-ROC AU-PRC

Mola-Velasco (2011) 0.772 0.840 0.819
Tran and Christen (2013) 0.780 0.848 0.845

Our system 0.791 0.960 0.859

corpora presented in this paper, divided into a training and a test set.
These results are shown in Tables 5 and 6.

These results do not try to compare directly the system presented
in this work with the systems that participated in the competition, but
it is a sample of the advance that we try to propose with a new set of
features.

Results shown in 6 reflects that the features proposed in this work,
combined with some of the features proposed by other authors, improve
the results achieved in the state of the art independently of the evalu-
ation measure used. Thus, as in the work by Tran (Tran and Christen,
2013), where some of the features introduced by Mola-Velasco (Mola-
Velasco, 2011) are used to obtain an advance in the state of art, the
features proposed in this work may be used in the future to continue to
progress in an area where there is still room for improvement. There is a
significant improvement in the AUC-ROC evaluation measure, obtaining
a score of 0.96.

5.2. Statistical significance

We performed a simple two-tailed, paired sample t-test at signifi-
cance level p = 0.05 to determine whether the difference between the
evaluation measures from the previous works features and each of the
combination of our sets of features on the test corpus is statistically
significant. We found that at the 95% significance level (p = 0.05), 6
out of 9 combinations in Table 7 performed better than previous works
features AUC-ROC, other 2 combinations (A + C + P + B and B + P)
obtained a same score and only the A + B + C set and the single sets A,
B, and C got a worse score. Using the same significance level, 7 out of 9
combinations performed better than previous works features AUC-PRC,
the B + P set got a same score and the same 4 sets than in the AUC-ROC
case, got a worse score.

Our result is encouraging since it indicates that a deep learning
approach using relatively few features can achieve scores comparable
to those of systems built using a big amount of features.

6. Conclusions

In this paper, we have introduced new features able to overcome
some of the best works published in the state-of-art. New developed
features can be framed into three groups.
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Table 7
Paired sample t-test at significance level p = 0.05 for AUC-ROC and AUC-PRC measures
using set P as test base for different combinations of sets of features in Tables 3 and 4. B
indicates a better statistical score, w worse, and — the same score.

Set Table 3 Table 4

of Features AUC-ROC AUC-PRC AUC-ROC AUC-PRC

A w w w w
B w w w w
C w w w w
A + P B – B B
B + P B B B B
C + P – – – –
A + B + P B B B B
A + C + P B B – B
B + C + P B B B B
A + B + C + P B B B B

The first group of features takes advantage of the semantic similarity
relationships observed in dense representations of words, known as
word embeddings. Given that manual preparation of these lists of van-
dalism terms is costly, a mechanism to extend these lists automatically
may be useful to improve the performance of the features based on
these lists. For that, we have implemented a process that, from a
word embedding extracted from the set of both vandalism and regular
revisions of the corpus and a list of vandalism terms, extends this list
with other related terms.

The second group of features takes a different approach to the above.
Instead of trying to create or expand lists of terms to be used for
frequency or impact type features, the features developed in this group
are directly used by the classifiers. The classical vector space model is
not very appropriate for two corpora as the used in this work given
the vocabulary size that is handled. In this way we propose the use of
deep neural network architectures that have been recently developed
as a mechanism to reduce the dimensionality and build a compact
representation of the input. A network SDA is built with four layers and
a decreasing number of units as they approach the output, extracting
the 25 inputs in the last layer as features.

The last group is composed of the features created by ranking
algorithms on graphs. It has been proven that these algorithms, espe-
cially PageRank, are able to extract a list of relevant words from a co-
occurrence graph generated over the set of terms inserted into an edit,
using as document a window of 𝑛 edits.

The joint use of these three groups of features reveals that there
is an important complementarity among them, since a clear increase
was obtained in the area under the ROC curve and the area under
the precision–recall curve, in relation with results obtained with any
of these groups separately. In the case of the PAN-WVC-10 corpus, the
combination of the three sets of features presented in this paper improve
the results of the other features from previous works.

On the other hand, if we combine these new features with a set
of features that have been reproduced from gathered information in
previous works, the resulting system gets the best score compared with
the previous works, obtaining an area under the ROC curve of 0.960,
and an area under the precision–recall curve of 0.859 in the Wikipedia
corpus (WP_Vandal) and obtaining an area under the ROC curve of
0.959, and an area under the precision–recall curve of 0.804 in the PAN-
WVC-10 corpus.

6.1. Future work

First, in order to generate term rankings, the most of ranking
algorithms based on graphs suitable for this task have been explored, but
in the construction of co-occurrence graphs it is possible to vary both the
source of the information, for instance using the set of the inserted text
(InsertedText) instead of the set of the inserted words (InsertedWords),
and the window size of edits that determines the document boundaries.

Regarding the features based on semantic similarity of word em-
beddings, there are also parameters such as the minimum distance
between word embeddings that can be studied further. In addition,
we have experimented with a concrete implementation of distributed
representations of words (Mikolov et al., 2013b), but others are avail-
able (Pennington et al., 2014) that could provide better results.

Feature extraction or classification itself by deep networks is perhaps
the area where more research lines exist, in the use of different models
(CNN, DBN, SDA), in the architecture of the models varying the number
of layers and the size of each of them, thereby generating more or less
compact representations, in studying the numerous parameters with
which can be configured such networks, or in the application of different
types of inputs alternative to document vectors from the vector space
model. For instance, it is common to see this type of networks using word
embeddings as inputs so it would be interesting to study a vector space
model of a reduced vocabulary in which each term in the document
vector is not an atomic input but a word embedding.

Finally it might be useful to explore the generation of a set of features
based on user profiles.
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