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Abstract 

Background:  Association Rules are one of the main ways to represent structural patterns underlying raw data. They 
represent dependencies between sets of observations contained in the data. The associations established by these 
rules are very useful in the medical domain, for example in the predictive health field. Classic algorithms for associa‑
tion rule mining give rise to huge amounts of possible rules that should be filtered in order to select those most likely 
to be true. Most of the proposed techniques for these tasks are unsupervised. However, the accuracy provided by 
unsupervised systems is limited. Conversely, resorting to annotated data for training supervised systems is expensive 
and time-consuming. The purpose of this research is to design a new semi-supervised algorithm that performs like 
supervised algorithms but uses an affordable amount of training data.

Methods:  In this work we propose a new semi-supervised data mining model that combines unsupervised tech‑
niques (Fisher’s exact test) with limited supervision. Starting with a small seed of annotated data, the model improves 
results (F-measure) obtained, using a fully supervised system (standard supervised ML algorithms). The idea is based 
on utilising the agreement between the predictions of the supervised system and those of the unsupervised tech‑
niques in a series of iterative steps.

Results:  The new semi-supervised ML algorithm improves the results of supervised algorithms computed using the 
F-measure in the task of mining medical association rules, but training with an affordable amount of manually anno‑
tated data.

Conclusions:  Using a small amount of annotated data (which is easily achievable) leads to results similar to those of 
a supervised system. The proposal may be an important step for the practical development of techniques for mining 
association rules and generating new valuable scientific medical knowledge.
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Background
Discovering the set of patterns or regularities that under-
lie raw data is the aim of Data Mining. One of the main 
ways to represent structural patterns underlying raw data 

is by Association Rules, which express dependencies or 
correlations between facts or observations in the data. 
Such dependency analysis is central to empirical science. 
Medical professionals want to identify factors or diseases 
that predispose to or prevent other diseases, and genetic 
researchers are interested in which gene groups correlate. 
For example, in the medical field, we can find an AR:
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which asserts that there is a positive dependency between 
high levels of polychlorinated dibenzofuran (PCDF) and 
the presence of arthralgia and acne eruptions in female 
patients. This was demonstrated in the oil poisoning 
environmental case that happened in Japan during the 
sixties [1]. Even if there are various reasons why such a 
dependency relationship exists between different symp-
toms, the very existence of the relationship provides val-
uable information. It can influence decisions on medical 
diagnosis or treatments [2]. ARs, comprised of a few ele-
ments with some relationship between them, are much 
easier to interpret than other methods for identifying 
correlations, such as those based on automatic learning 
(Bayesian Networks, Support Vector Machines or Neural 
Networks). For instance, a database of such ARs could be 
set the following query: “find all rules that have problem 
pharyngitis as consequent”, and these rules could iden-
tify which medical symptoms or problems should be 
treated or determined in order to prevent or to diagnose 
pharyngitis.

There are several algorithms based on heuristics sta-
tistical models [3] that provide the complete set of ARs 
compatible with a database of groups of elements (events, 
medical conditions, features, etc.) that have occurred at 
the same time. However, many of these rules are irrel-
evant and may have happened by chance. A solution to 
this problem could be to train a Machine Learning sys-
tem (ML) to identify relevant rules. However, this would 
require training data from which to learn. Due to the 
large amount of ARs generated from a database of coin-
ciding elements, such rules are rarely relevant or negli-
gible, since it is a costly and time-consuming process for 
medical experts.

The objective of this work is to design a new semi-
supervised iterative ML algorithm, i.e. an algorithm that 
minimizes the amount of tagged ARs to be supplied as 
input. It only needs a tiny initial seed of tagged ARs that 
self-trains the algorithm in an incremental and iterative 
way. This is called bootstrapping [4], and it means that 
the economic and time costs of discovering new valid 
ARs would diminish drastically, and it could make the 
task more practicable.

The proposed algorithm is based on a combination 
of supervised and unsupervised techniques which can 
detect the most reliable information which is then used 
to improve the incremental training of the system. The 
supervised system is based on a number of relevant AR 
features. We have evaluated the system using real data 
from different sections of a hospital, and such data being 
homogenized, anonymized and standardized into EHR 
extracts. The data refers to real problems of hospital 

arthralgia, femalegender, achneformeruptions → PCDF patients. We performed an exhaustive evaluation of 
the proposal, comparing the results of an unsupervised 
approach (0.63 F-measure), with a fully supervised one 
(0.71 F-measure) and also with the proposed semi-super-
vised system (0.75 F-measure).

The new semi-supervised algorithm performs in a sim-
ilar way to fully supervised ML algorithms on the same 
corpus, but uses a much smaller amount of manually 
tagged ARs, thus making the discovery of new medical 
knowledge easier to achieve.

The formal definitions of ARs and the concept of good-
ness measure, related to an AR can be found in Addi-
tional file 1: Supplementary Material, section 1. Different 
goodness measures are available, the most widely used 
are the χ2-measure [5], for high absolute frequencies, and 
Fisher’s exact test [6] when these frequencies are low in 
general.

Given a set of data, several algorithms may be used to 
generate ARs implied by the data. However, a brute force 
search algorithm may generate such a high number of 
ARs that the problem is often called the curse of dimen-
sionality. Some algorithms, such as FP-growth [7], use 
a number techniques to limit the number of rules pro-
duced. These include a minimum frequency threshold, 
also called support of the rule; or a minimum confidence 
of the rule.

However, none of these two requirements guarantees 
the existence of a positive dependence between the ante-
cedent and the consequent of the rule, and indeed the 
rule might have been generated by chance. Even after 
selecting those rules included in the goodness measure 
there may be two kinds of errors. Type 1 errors (false 
positives) refer to rules that pass the validation test 
but are false, and type 2 errors (false negatives) refer to 
invalidated but true rules [8]. These two types of errors 
are usually complementary. Accordingly, the discovered 
ARs should always be pruned in a post-processing phase 
using a statistical test (goodness measure) such as the χ2 
test or Fisher’s exact test.

Selection of significant patterns
In order to alleviate the false-positive problem in the 
discovery of association rules several testing correction 
techniques have been proposed [9]. Most of them are 
based on the use of p values. The p value of an association 
rule R is the probability of observing R, or one rule which 
is stricter than R, when the two sides of R are independ-
ent. A low p value rule is unlikely to occur if its two sides 
are independent. Accordingly, since the rule has been 
found in the data, it is unlikely that its two sides are inde-
pendent, and the association is likely to be true. By way 
of contrast, a high p value does not provide information 
about the independence of the two sides of the rule, and 
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such rules can be discarded. A commonly used p value 
threshold [10] is 0.05. Some of the most frequently used 
statistical tests for computing p values are Pearson chi-
square test of independence [5, 11] and Fisher’s exact test 
[6]. These tests compute the p value from the discrepan-
cies between observed and expected values. Whereas 
chi-square is an approximation for large sample sizes, 
Fisher’s exact test, provides an exact p value for any sam-
ple size.

A technique for reducing the number of false posi-
tives proposed by Webb [12], is based on separating the 
available data into exploratory and holdout sets. The 
exploratory set is used to discover rules using standard 
algorithms for association rules, such as FPGrowth [7]. 
The holdout set is then used to compute the statisti-
cal significance of the discovered rules using a standard 
test. Finally, by setting an appropriate threshold for the 
required statistical significance, the most promising rules 
are selected.

Fisher’s test provides the significance of the association 
(contingency) between the two ways of classifying data. 
The computation of the test is usually based on the con-
tingency table which records the different classes. The p 
value is computed as the hypergeometric distribution of 
the numbers contained in the cells of the table.

Semi‑supervised learning
Standard supervised ML algorithms trying to discover 
new good (true) rules (i.e. new medical knowledge) 
have a severe problem namely the excessive amount 
of necessary training. The amount of data used to train 
a model has a direct impact on its performance. Super-
vised systems trained on large amounts of annotated 
data outperform unsupervised systems, as they rely on 
more information related to the problem in question. 
However, human-annotated data is expensive and often 
difficult to obtain. This is because of the inherent com-
plexity of knowledge-codifying rules and also the very 
high number of them being produced. Semi-supervised 
learning techniques can be an alternative when only 
limited amounts of annotated data are available. These 
techniques enhance a small amount of annotated data 
with a large amount of unlabeled data [4, 13]. This idea is 
related to other forms of semi-supervised learning, such 
as co-learning and mutual bootstrapping. The co-training 
approach [14] looks at multiple representations of the 
same data. During the co-training process, two classifiers 
are trained on the same data using different feature sets. 
These two classifiers then bootstrap each other and make 
predictions on unseen examples thereby feeding each 
other. Data labeled with high confidence by one classifier 
is given the other as training data. Another approach is 
mutual bootstrapping [15] which aims to learn different 

types of knowledge simultaneously by alternatively lev-
eraging one type of knowledge to learn the other. Our 
proposal differs from these other approaches, since we 
do not combine two classifiers, but a supervised method 
with a non-supervised one. However, these provide dif-
ferent types of knowledge and are also applied alterna-
tively (in a series of iterations) as they are in the mutual 
bootstrapping approach.

Algorithms for association rule mining
Association rule mining (ARM) is one of the most popu-
lar methods used to extract knowledge from large data-
bases [3] . In 1993 Agrawal et  al. proposed the Apriori 
algorithm to extract frequent rules and patterns from 
databases [16]. Many researchers have tried to improve 
this process, including trying to generate ARs using faster 
algorithms such as FPGrowth or reducing the large num-
ber of rules generated [7, 17–23].

Examples of practical use of standard AR mining in the 
medical field include the identification of clinically accu-
rate association between medications, laboratory results 
and diseases [24, 25] and clinical findings and chronic 
diseases [26]. Networks of such disease relationships 
are also visualized [27]. AR generation algorithms such 
as A-priori [16] or FPGrowth [7] have also been used to 
establish relationships between healthcare parameters 
and specific problems, such as heart disease [28], brain 
tumours [29], HIV [30], oral cancer [31], type 2 diabe-
tes [32] or Alzheimer’s disease [33]. The difficulty of 
controlling the proliferation of type 1 errors (false posi-
tives) is closely related to the subject of this paper and is 
addressed in [34] with non-definitive results (i.e. this is 
an active research topic). In [35] it is applied to the spe-
cific problem of mining a medical image dataset. Guo 
et  al.  [36] address the relationship between readmission 
and other features in diabetics’ patient data, reducing the 
readmission of such patients. In [37] the best AR mining 
algorithm is tested and chosen using a number of differ-
ent criteria.

Methods
The EXTRAE algorithm presented in this paper is a semi-
supervised system comprised of two modules: one that 
implements an unsupervised method and another that 
implements a supervised method. First we will see first 
the unsupervised module, then the supervised module 
and finally the global system that we have called EXTRAE 
algorithm. Figure  1 shows a flow diagram with inter-
action between the dataset and the unsupervised and 
supervised modules.

Although use of the dataset is explained in detail in the 
following sections, a brief description of its use by the 
different modules of the system is included below. The 
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dataset is initially divided into training (80%) and test 
(20%). As usual, the test set will be used to evaluate the 
performance of the system. The training set is in turn 
divided into seed and development, which will be used 
by the supervised module. The unsupervised module 
will only use the seed set. This seed set will be divided 
in equal parts by the unsupervised system as described 
in the following section. Seed and development sets are 
of variable size depending on the output of the matching 
approach, that combines the output of the unsupervised 
and supervised modules.

Unsupervised module
In this work we have implemented an unsupervised mod-
ule (Fisher’s exact test) in order to calculate the p value 
on a set of rules. Specifically, we have decided to use 
this p value to rank a set of association rules. We rank in 
ascending order and establish a threshold, and we decide 
to consider the n rules above that threshold (lower value) 
as true, and the n rules below that threshold (higher 
value) as false.

Specifically, we carried out an initial study of the results 
that we could obtain where there was no annotated data 
available and accordingly, we had to resort to unsuper-
vised methods.

We apply the holdout technique proposed by 
Webb  [12], splitting the dataset into exploratory and 
holdout parts, and applying the p value threshold on the 
holdout set in order to filter the rules extracted from the 
exploratory set.

Specifically, the following steps are performed:

•	 The dataset is divided in exploratory (50%) and hold-
out (50%).

•	 The FP-Growth algorithm is applied to extract the 
association rules in both sets. The use of this algo-
rithm is that available in the SPMF software1. FP-
Growth is an efficient algorithm for calculating fre-
quently co-occurring items in a dataset.

•	 These two sets of rules allow us to apply the Fisher 
test to obtain the p values for the rules in the holdout 
set. Details about the computation of the test can be 
found in Additional file  1: Supplementary Material, 
section 2.

•	 Finally, the rules are sorted in the holdout set accord-
ing to their p value. Then, a threshold for the p value 
is set in order to select the rules with higher signifi-
cance in the holdout set, assuming that those selected 
rules are true and the rest are false. Here, the tricky 
point is the selection of an appropriate threshold.

In order to illustrate the performance of the p value and 
its effect on system performance, an experiment with a 
sample labeled dataset is carried out. The threshold indi-
cates the split between rules considered true and false. 
A rule with a p value lower than the threshold is consid-
ered as true, whereas a rule with a p value higher than the 
threshold is considered as false. Figure 2 shows the evolu-
tion of the p value and the performance (F-measure) of 
the system depending on the threshold used. It is clear 
from the optimal threshold value that a higher threshold 
has a negative impact on the performance of the system 
by reducing its f-measure. According to this experiment, 
the best threshold is 232 rules and this threshold corre-
sponds to a p value of 1.42E-9. This setting achieves an 
evaluation score of 0.66.

Supervised module
We have data which is annotated by doctors with true 
and false labels, and therefore we can implement a super-
vised approach. The objective of the EXTRAE algorithm 
is to start from a small set of manually annotated rules 
to increase their size in an unsupervised way and thus 
have a large set of rules automatically annotated as true 
or false. This supervised module (as we will see later) has 
two functions. On the one hand, it is used on the training 
set, along with another method, to predict the rules that 
can be added reliably to the seed set. It is also used on 
the whole test set for evaluation purposes by comparing 
the set of rules automatically annotated, with those anno-
tated by a doctor.

We apply a Random Forest algorithm (see “Results” 
section), using the following set of features obtained from 
the fp-growth algorithm:

Fig. 1  Interaction between the dataset and the unsupervised and 
supervised modules

1  http://​www.​phili​ppe-​fourn​ier-​viger.​com/​spmf/

http://www.philippe-fournier-viger.com/spmf/
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•	 Support. The support of an association rule “A and 
B → C” is the support of the set S = { A, B, C }. So 
the support of the rule is the (absolute or relative) 
number of cases in which the rule is correct (i.e. 
in which the presence of item C follows from the 
presence of items A and B).

•	 Confidence. The confidence of an association rule 
R = “X → Y” (with item sets X and Y) is the sup-
port of the set of all items that appear in the rule 
(the support of S = X ∪ Y) divided by the support 
of the antecedent (also called “if-part” or “body”) 
of the rule (here X).

•	 Lift. The lift value is the quotient of the posterior 
and the prior confidence of an association rule. 
That is, if “ ∅ → flu” has a confidence of 60% and 
“cough → flu” has a confidence of 72%, then the lift 
value (of the second rule) is 72/60 = 1.2.

•	 Number of antecedents. The number of anteced-
ents of an association rule “A and B → C” is the 
number of elements of the set S ={ A, B }.

•	 Number of consequents. The number of conse-
quents of an association rule “A and B → C” is the 
number of elements of the set S ={ C }.

Semi‑supervised approach
Since manually classifying ARs as true or false by a health 
professional is an expensive and time-consuming task, 
we have resorted to a new semi-supervised approach that 
reduces the amount of annotated data needed. The idea 
is to use a small set of annotated rules to train a classifier 
and combine its predictions with those obtained using 
the p value method. Our hypothesis is that the cases in 
which both predictions coincide have a greater reliability 
and provide a new set of rules that can be used in turn 
to train the system. Figure 3 shows a flow diagram of the 
semi-supervised incremental learning approach.

Specifically, our semi-supervised approach involves the 
following steps:

•	 First, we have divided the annotated corpus (by doc-
tors) into two different sets: training and test. Train-
ing set is 80% of the corpus while the test set is 20%. 
The training set is in turn divided into two sets: seed 
and development.

•	 We randomly select a small set of S rules from the 
training set, which is used as seed. This seed set is 
used to train the supervised module resulting in an 

Fig. 2  Evolution of the p value and the performance (F-measure) of the system depending on the threshold used
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ML model. The results will obviously be lower than 
those provided by a system trained with a larger 
set.

•	 The ML model (i.e. the machine learning system 
developed from seed rules) is then applied to predict 
the class (i.e. the True or False assignment) for each 
rule in the development set.

•	 First, the p value threshold is calculated based on 
the rules of the last computed seed set. This p value 
threshold is used for selecting the rules that are con-
sidered to be true or false. After sorting S according 
to their p value, we choose the p value as the thresh-
old that maximizes the hits for the seed set (i.e. it 
divides the set into true and false rules with as many 
good predictions as possible).

•	 After that, the unsupervised module applies the p 
value filter to the predictions from the development 
set, as follows:

	 We then select the cases from the development set 
in which the predictions of the supervised module 
and those of the unsupervised module, based on the 
p value filter, match: both are true or both are false. 
These coinciding rules are then added to the seed set 
and removed from the development set.

•	 The new seed set (previous seed set and coincident 
rules from development set) is used to train the 
supervised module again.

•	 The described process is repeated until the coinci-
dent set of rules obtained from the development set 
is empty (i.e. the seed set cannot grow anymore).

Each model trained with the incremental seed set is eval-
uated with the test set in order to have a reference to the 
performance improvement.

Experimental framework
Dataset
In order to implement and test our semi-supervised ML 
algorithm we have used a standardized medical data cor-
pus from the Fuenlabrada University Hospital (HUF) in 
Madrid, Spain. This corpus was constructed in a previous 
research project [38]. Electronic Health Records (EHR) 
from the HUF corpus are written in Spanish and normal-
ized using the ISO/EN 13606 standard [39]. This standard 
follows a so-called dual model [40] that separates two lev-
els of abstraction: one level of information, called Refer-
ence Model (RM) [41] and one level of knowledge, using 
archetypes [42]. The EHRs in this corpus correspond to 

Fig. 3  Flow diagram of incremental learning. Rounded rectangles show the beginning and the end of the iterations, rectangles are the rule sets, 
the broken line rectangle represents the seed set performance, ovals are processes, and the diamond represents a condition
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primary attention, several specialized attention services 
and the pharmacy department of the hospital. The EHR 
extract files of the HUF corpus are XML files correspond-
ing to one patient. Each patient may in fact have several 
EHR extracts containing his or her medical information, 
and thus each XML file holds the medical problems suf-
fered by the patient to whom it belongs. We have used 
information from each medical problem (i.e. the name of 
the problem) to represent one different feature in our AR 
knowledge representation. This means that our medical 
data input to the FP-Growth algorithm generating the 
ARs is comprised of rows representing each patient and 
columns representing the name of each medical problem. 
In our ARs representation of the form

the symbols A · · ·D correspond to the names of medical 
problems of one patient.

We call HUF-AR dataset to our manual annotated AR 
dataset generated out of the initial HUF data described 
in “Dataset” section. This HUF-AR dataset is generated 
applying the FP-Growth algorithm to the HUF data. We 
have set the FP-Growth parameters of support and con-
fidence to 10% and 70%, respectively. Next, 1300 rules 
were randomly selected to be annotated by a doctor as 
true or false. Manual annotation was relatively simple as 
most ARs are composed of common diseases, typical of 
primary care. In addition, certain but trivial ARs were 
nevertheless classified as true, since they should contrib-
ute to the good behavior of the algorithm even though 
their intrinsic value was low.

The description of the medical problems are written 
in natural language which gives them great variability 
when referring to the same medical condition. In order 
to reduce this variability we have performed a preproc-
essing of the data, which is described in Additional file 1: 
Supplementary Material, section 3.

Results
In this section we present the experiments carried out 
on the HUF corpus as well as the results obtained. Since 
the EXTRAE algorithm is comprised of an unsupervised 
module and a supervised module, we consider that it 
would be interesting to evaluate the impact of each of 
the modules separately. That is, to evaluate the unsuper-
vised module as if it were an independent system and to 
do the same with the supervised module. In both cases 
(unsupervised and supervised module) a test set of 20% 
has been used. In this way, the following sections will 
show the results of this evaluation by modules and then 
the overall performance of the EXTRAE algorithm will 
be shown.

ABC → D

Evaluation of the unsupervised module as an independent 
system
As seen in the previous sections, the unsupervised mod-
ule uses implementation of the FP-Growth algorithm. 
This algorithm is an efficient and scalable method for 
mining the complete set of frequent patterns by pattern 
fragment growth. The parameters used for this algorithm 
are: Min. Support of 0.01; Min. confidence of 0.7; Mini-
mum lift of 1; Max. antecedent length of 4; Max. conse-
quent length of 1.

Table  1 shows results for the unsupervised method. 
Several p value thresholds have been analysed in order 
to prove the influence of this parameter. In the case of 
the unsupervised module, the threshold of the p value is 
applied directly on the test set (no training set is used).

As per Table 1, the best threshold for the unsupervised 
method is a p value of 1E − 11 , obtaining an F-measure 
of 0.63. This is a value consistent with the p value results 
shown in Fig.  2 for the whole corpus. Note that in this 
case, as it is an unsupervised method, the training set has 
not been used for any calculations. However, all opera-
tions have been carried out on the test set (20%). For this 
reason the results are slightly lower in this case.

Evaluation of the supervised module as an independent 
system
The supervised method uses the features described above 
in “Supervised Module" section and the training and 
test sets are used in the usual way in any machine learn-
ing system. Because the EXTRAE algorithm works with 

Table 1  F-measure using different thresholds for the p value and 
using a test set (20%) in order to evaluate

Best results appear in boldface

Unsupervised module

p Value F-Measure

5E-2 0.384

1E-2 0.396

1E-3 0.492

1E-4 0.526

1E-5 0.557

1E-6 0.611

1E-7 0.615

1E-8 0.615

1E-9 0.623

1E-10 0.626

1E-11 0.630
1E-12 0.623

1E-13 0.619

1E-14 0.611
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a small set of association rules manually labelled by a 
doctor, we have designed an experiment to prove that a 
supervised system obviously gets worse results when the 
training set is smaller. In this experiment it is not intend 
to prove this fact but instead to analyze the difference in 
system performance depending on the size of the train-
ing set used. Table 2 shows the results for the supervised 
method depending on the size of the training set used. 
The test set has the same size (20%) in all the cases.

In view of the results obtained by the supervised mod-
ule in Table 2 the best training size is 80% (obtaining an 
F-measure of 0.71). In the case of the supervised mod-
ule there is a meaningful difference between the training 
sizes used, and the performance grows as they do. Finally, 
by comparing the results of the unsupervised module, as 
expected, the supervised module obtains better results 
(0.71 vs 0.63). However, if we compare the performance 
of the unsupervised module with the supervised mod-
ule when using a training set of the same size (20%), the 
results of both are similar (0.66 vs 0.63).

One of the relevant aspects when using a supervised 
system is the selection of the classification algorithm. The 
following section presents an experiment to compare a 
set of classification algorithms representing each of the 
existing classification algorithm families.

Supervised classification algorithms
Table  3 shows the results of the classification pro-
cess using all the features introduced in this work and 
using several classification algorithms included in the 
Weka data mining tool [43]. A large number of clas-
sification algorithms from different families have been 
analyzed. The evaluation was carried out using the 
division training/test (80–20%) that achieved the best 

performance in Table  2 corresponding to the super-
vised system. Results show that Random Forest is the 
algorithm with the best performance. Thus Random 
Forest [44] is used in the following experiments where 
the supervised module is employed.

Table 2  Results for the Random Forest algorithm using different 
training set sizes and using the same test set (20%) for all the 
cases, based on their F-Measure, AUC-ROC, and AU-PRC 

Best results appear in boldface

Supervised module

Train/test % F-measure AUC-ROC AU-PRC

5/20 0.63 0.67 0.68

10/20 0.64 0.67 0.68

20/20 0.66 0.68 0.69

30/20 0.66 0.69 0.71

40/20 0.67 0.70 0.72

50/20 0.66 0.71 0.70

60/20 0.68 0.71 0.73

70/20 0.70 0.72 0.74
80/20 0.71 0.73 0.74

Table 3  Results using different classification algorithms on a 
split of 80–20% for training and test, based on their F-Measure, 
AUC-ROC, and AU-PRC 

Best results appear in boldface

Algorithm F-Measure AUC-ROC AU-PRC

NaiveBayesMultinomial 0.59 0.66 0.68

SimpleLogistic 0.57 0.62 0.63

MultilayerPerceptron 0.65 0.66 0.66

Logistic 0.62 0.67 0.69

VotedPerceptron 0.61 0.60 0.60

SVM 0.63 0.60 0.59

IBK 0.66 0.63 0.61

AdaBoostM1 0.58 0.65 0.63

ClassificationViaRegression 0.62 0.67 0.69

PART​ 0.66 0.67 0.65

Bagging+REPTree 0.70 0.69 0.69

RandomForest 0.71 0.73 0.74
J48 0.68 0.69 0.67

EXTRA Tree 0.69 0.66 0.63

Table 4  Results of EXTRAE Algorithm on HUF corpus using 
different seed sizes, based on their F-Measure, AUC-ROC, and 
AU-PRC 

Iterations is the max number of iterations reached and p value is obtained 
automatically using the filter approach on the seed set. Best results appear in 
boldface

HUF corpus

Seed size Iterations p Value F-Measure AUC-ROC AU-PRC

5 3 4.79E-13 0.73 0.80 0.81
10 7 4.79E-13 0.75 0.80 0.81
15 8 3.67E-13 0.72 0.79 0.80

20 14 3.67E-13 0.73 0.80 0.81
25 8 5.34E-10 0.74 0.79 0.80

35 6 3.3E-6 0.73 0.78 0.80

50 13 3.3E-6 0.74 0.78 0.80

75 4 3.35E-9 0.72 0.79 0.81
100 5 3.35E-9 0.69 0.79 0.81
125 5 3.35E-9 0.74 0.79 0.80

150 5 3.67E-13 0.72 0.79 0.80

175 4 3.67E-13 0.72 0.79 0.80

200 6 3.67E-13 0.74 0.80 0.81
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EXTRAE algorithm: semi‑supervised incremental learning 
method
Table 4 shows the results of the semi-supervised method 
based on Incremental Learning (EXTRAE Algorithm). 
Seed size is the original size of the training set from which 
the set is automatically increased. Iterations show the 
number of times that a new rule needs to be added to the 
seed set in order that a set is reached to which no new 
rule can be added. The p value is calculated from the seed 
set. The results show the performance of the system after 
n iterations.

From the results shown in Table  4, the best seed size 
is 10. A p value threshold of 4.79E-13 is calculated on 
this seed size and after 7 iterations an f-measure of 0.75 
is obtained. The best results achieved with the super-
vised module were 0.71. The potential of the semi-super-
vised method based on Incremental Learning is thereby 
demonstrated.

The improvement in the results of the incremen-
tal-learning-based approach (EXTRAE Algorithm) in 
regards to the supervised module is remarkable, tak-
ing into account that in both cases the same features are 
used to train. The improvement is due to having used a 
method based on incremental learning, because the use 
of a p value threshold allows the selection of better rules 
for learning and therefore this trained model obtains bet-
ter results. This is very similar to what happens in the 
semi-supervised Yarowsky algorithm [4] where it is of 
vital importance that very good examples are learned 
from the beginning of the algorithm in order to bootstrap 
it correctly and then to obtain good performance results 
[45].

Table 5 shows the partial results of the EXTRAE Algo-
rithm in each iteration. In the first iteration 793 new rules 
are added and an F-measure of 0.70 is obtained. From the 
fourth iteration, the number of matching rules is greatly 

reduced and in this way the performance increases slowly 
until it reaches an F-measure of 0.75. Accuracy shows a 
great evolution from the original seed. In only one itera-
tion it increases its performance by 16%, which proves 
the high quality of the added rules. Finally, the algorithm 
obtains an accuracy of 79%, improving the original accu-
racy by 21%.

Conclusions
We propose a new semi-supervised system, called 
EXTRAE Algorithm, that requires a minimum amount 
of annotated data to obtain reliable association rules. 
This algorithm is comprised of two modules: a unsu-
pervised module and a supervised module. The output 
of both modules is combined in order to obtain the best 
performance.

The idea behind the system is to combine the informa-
tion provided by a supervised module trained with very 
few data and the information provided by an unsuper-
vised module. Selecting the predictions on which both 
models agree, we enlarge the training data for the next 
step of the algorithm. The process continues until no new 
rules are selected in an iterative process.

We provide comparisons between an unsupervised 
model, a fully supervised model and the semi-super-
vised model (EXTRAE Algorithm). We find that a small 
seed with a size of between 10 and 20 rules is enough to 
achieve best results. This is because the EXTRAE algo-
rithm only adds the best association rules to the set of 
rules that the supervised model learns about in order 
to make its predictions. From the results obtained, it is 
proven that the EXTRAE algorithm obtains better results 
as its initial set (seed set) of association rules grows.

This work marks an important breakthrough in the 
development of systems for mining association rules, 
since an extremely small amount of annotated data, 
which is easily achievable, leads to results similar to those 
of a supervised system.

It will be possible in the near future to design fast and 
cost-effective experiments to obtain and validate new 
medical knowledge (codified in the form of associa-
tion rules) from large standardized medical databases, 
thereby permitting the advance of scientific medicine in 
general and Personalized and Precision Medicine (PPM) 
in particular.

In the future we plan to extend the algorithms to 
work with other kinds of features extracted from stand-
ardized medical databases, such as initial and final 
dates of problems, their duration or their gravity. This 
can indeed be applied to any other relevant feature 
from the patient’s EHR. We also plan to include data 
from the exposome, such as drugs, contaminants or 
daily lifestyle habits. We will perform the experiments 

Table 5  Evolution of learning from a seed set with 10 rules, 
based on their F-Measure, AUC-ROC, AU-PRC, and Accuracy

Coincident rules are those from the development set that have the same 
prediction and label based on the p value filter. Best results appear in boldface

Iteration Coincident 
rules

F-Measure AUC-
ROC

AU-PRC Accuracy 
(%)

0 – 0.55 0.61 0.61 58

1 793 0.70 0.76 0.78 74

2 159 0.71 0.78 0.80 76

3 19 0.74 0.78 0.81 77

4 3 0.73 0.80 0.81 77

5 3 0.71 0.79 0.80 77

6 2 0.72 0.79 0.81 78

7 4 0.75 0.80 0.81 79
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on bigger and more specific databases, referring to a 
cohort especially selected to address a specific medical 
knowledge domain. We also plan to generate embed-
dings from medical reports. We will then explore any 
similarity between those embeddings according to the 
antecedents and consequents from the association 
rules as an alternative unsupervised method to that of 
the p value.
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