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Abstract
Cognitive diagnosis models (CDMs) are used in educational, clinical, or personnel selection settings to classify respondents 
with respect to discrete attributes, identifying strengths and needs, and thus allowing to provide tailored training/treatment. 
As in any assessment, an accurate reliability estimation is crucial for valid score interpretations. In this sense, most CDM 
reliability indices are based on the posterior probabilities of the estimated attribute profiles. These posteriors are traditionally 
computed using point estimates for the model parameters as approximations to their populational values. If the uncertainty 
around these parameters is unaccounted for, the posteriors may be overly peaked, deriving into overestimated reliabilities. 
This article presents a multiple imputation (MI) procedure to integrate out the model parameters in the estimation of the pos-
terior distributions, thus correcting the reliability estimation. A simulation study was conducted to compare the MI procedure 
with the traditional reliability estimation. Five factors were manipulated: the attribute structure, the CDM model (DINA and 
G-DINA), test length, sample size, and item quality. Additionally, an illustration using the Examination for the Certificate 
of Proficiency in English data was analyzed. The effect of sample size was studied by sampling subsets of subjects from 
the complete data. In both studies, the traditional reliability estimation systematically provided overestimated reliabilities, 
whereas the MI procedure offered more accurate results. Accordingly, practitioners in small educational or clinical settings 
should be aware that the reliability estimation using model parameter point estimates may be positively biased. R codes for 
the MI procedure are made available
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Cognitive diagnosis models (CDMs) have recently gained 
popularity as an efficient tool for diagnostic assessment (e.g., 
de la Torre & Minchen, 2014; von Davier & Lee, 2019). 
CDMs can be viewed as a family of constrained latent class 
models for classifying subjects with respect to discrete, usu-
ally binary, attributes (e.g., mastery or non-mastery of a set 
of skills) underlying structured assessment data (de la Torre 
& Douglas, 2004; Templin & Henson, 2006), hence group-
ing them into different latent classes (i.e., attribute profiles).

Although primarily developed for evaluating student mas-
tery and non-mastery of cognitive skills (and hence the name 
cognitive diagnosis models), CDM use has gone beyond edu-
cational settings, being applied in various domains (Sessoms 
& Henson, 2018). Specifically, current literature includes 
CDM applications not only in mathematics (e.g., Y.-H. Chen 
et al., 2019; Tang & Zhan, 2020), reading (e.g., George & 
Robitzsch, 2021), or foreign language evaluation (e.g., Dong 
et al., 2021; Du & Ma, 2021), but also for assessing personal-
ity (e.g., Huang, 2022; Revuelta et al., 2018), psychological 
disorders (e.g., de la Torre et al., 2018; Xi et al., 2020) or 
work and study attitudes (e.g., García et al., 2014; Sorrel et al., 
2016). Additionally, CDMs are currently being implemented 
across heterogeneous conditions (Sessoms & Henson, 2018), 
with sample sizes as small as 44 (Jang et al., 2015) and up 
to 71,000 respondents (George & Robitzsch, 2014) , with 
recent simulation studies supporting the use of parametric 
CDM methods for sample sizes as small as 100 (e.g., Ma 
et al., 2022; Ma & Jiang, 2021). In fact, there is a growing 
trend towards implementation of CDMs with small samples 
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(e.g., Fan et al., 2021; Tang & Zhan, 2021), as they constitute 
a common context for diagnostic assessment in which tailored 
feedback and remediation can be easily provided.

As in any other assessment type, making correct diagnos-
tic classifications is crucial, as it can have important conse-
quences for the respondents. For instance, in the context of 
educational assessment, the use of diagnostic information 
about the students’ strengths and weaknesses can be helpful 
in guiding teaching efforts and tailoring remedial instruc-
tions both at the student and classroom levels (de la Torre 
& Minchen, 2014; Swan & Foster, 2018; Tang & Zhan, 
2021). Similarly, in clinical settings, CDMs may facilitate 
practitioners to refer patients to the most adequate treatment, 
potentially increasing its effectiveness (e.g., Xi et al., 2020). 
However, beyond the classification accuracy itself, obtain-
ing precise reliability estimates is crucial for proper deci-
sion-making (American Educational Research Association 
[AERA] et al., 2014). In this sense, overestimated reliabilities 
may lead to overly confident decision-making about uncer-
tain classifications. This, for instance, may lead to failing to 
provide educational support for students in need, or to refuse 
treatment to patients that need to be treated. In this sense, 
the study of the reliability estimators in CDMs is recent but 
extensive. For instance, Sinharay and Johnson (2019) provide 
a list of 21 classification precision indices at the attribute 
and attribute profile levels. Broadly, these estimators can be 
categorized as measuring: (a) the classification accuracy, or 
the likelihood that the estimated classification is equal to the 
true classification (e.g., Cui et al., 2012; Wang et al., 2015), 
and (b) the classification consistency, or the likelihood that 
two parallel forms would yield the same estimated classifica-
tions (e.g., Cui et al., 2012; Wang et al., 2015).

Purpose of the current article

As it will be further detailed, CDM classification accuracy 
and consistency estimators generally rely on the posterior 
probability distribution of the attribute profiles, which can 
be obtained using the likelihood of the observed responses 
for each possible attribute profile, and the attribute profile 
distribution. Specifically, the likelihood of the data under 
each attribute profile is generally computed assuming the 
estimated model parameters as true known quantities. In 
this sense, CDM reliability traditionally disregards the 
uncertainty around these model parameter estimates. From 
a frequentist perspective, the estimated model parameters 
may diverge from the true quantities due to the sampling 
error, which is reflected in the sampling distribution of 
these parameters. From a Bayesian point of view, for finite 
samples, the use of parameter point estimates will produce 
an underestimation of the width of the posterior distribu-
tions (Tsutakawa & Johnson, 1990; Yang et al., 2012) and, 

consequently, an overestimation of the reliability. Beyond 
that, CDM item parameter estimates (i.e., correct response 
probability) obtained with traditional estimation (i.e., mar-
ginal maximum likelihood estimation) have been found to 
be biased towards the boundaries (i.e., 0 or 1) when sample 
sizes are small (e.g., W. Ma & Guo, 2019; W. Ma & Jiang, 
2021; Vermunt & Magidson, 2004), which may be an indi-
cator of local maximum solution or identification problems 
(Uebersax, 2000). The extreme estimates, in turn, will pro-
duce even more peaked posterior distributions, which will 
derive into overestimated reliabilities.

In summary, assuming the point estimates of the model 
parameters as true values for computing classification accu-
racy or consistency indices may provide overestimated 
reliability, which can lead to incorrect decisions with 
overconfidence. Accordingly, the purpose of this study is 
to provide a way to account for the uncertainty around the 
model parameters in CDM reliability estimation. A multiple 
imputation procedure is proposed to estimate the reliability 
indices with corrected posterior distributions by integrating 
out these parameters. First, a brief overview of CDMs will 
be made, then the main CDM reliability estimators will be 
presented, and finally, the multiple imputation procedure 
will be explained in more detail and tested in both a simula-
tion and real data studies.

Overview of cognitive diagnosis models

As previously mentioned, CDMs serve as an efficient tool 
for assessing discrete latent variables (i.e., attributes) from 
structured assessment data. In this sense, CDMs allow clas-
sifying respondents according to their discrete levels in each 
attribute, hence grouping them into different latent classes 
or attribute profiles. For the usual case of binary attributes, 
there are a total of 2K possible attribute profiles, where K 
denotes the number of attributes measured by a test (for 
polytomous attributes, see J. Chen & de la Torre, 2013).

To reach this output, CDMs require three main inputs. 
First, the response data to the assessment items. Second, 
a content-specification matrix reflecting which attributes 
measure each item. In this matrix, referred to as Q-matrix 
(Tatsuoka, 1983), each q-entry (qjk) will receive a value of 1 
or 0 depending on whether item j measures attribute k or not, 
respectively. The Q-matrix construction process is usually 
supervised by domain experts (e.g., Li & Suen, 2013; Sorrel 
et al., 2016), although several empirical Q-matrix estima-
tion and validation methods have been proposed in the last 
years with the aim of reducing the degree of subjectivity 
involved in the task (e.g., de la Torre & Chiu, 2016; Nájera, 
Sorrel et al., 2021). The correct specification of the Q-matrix 
is of major importance since the presence of misspecifica-
tions can greatly disrupt the accuracy of attribute profile 
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classifications (Gao et al., 2017; Rupp & Templin, 2008). 
Finally, the third key element of CDMs is the definition of 
the response processes or item response functions, which 
refers to the specific formulation of how the attributes are 
associated with the item responses.

A wide variety of CDMs exist, accounting for the different 
nature of the attributes (e.g., J. Chen & de la Torre, 2013; de 
la Torre, 2011) and response data (e.g., de la Torre, 2009; 
W. Ma & de la Torre, 2016), as well as outlining different 
response processes. For simplicity, this article will focus 
only on CDMs for binary attributes (e.g., mastery or non-
mastery) and dichotomous responses. This case can be easily 
generalized to other contexts. CDMs can be broadly divided 
into general and reduced models. General models allow the 
estimation of all main and interaction effects between the 
attributes over the responses, thus allowing for a different 
probability of success for every latent group. The generalized 
deterministic input, noisy and gate model (G-DINA; de la 
Torre, 2011) is a commonly used general CDM in which the 
success probability (i.e., scoring 1) of item j for respondent i 
with attribute pattern αl is defined by Eq. (1).

where �∗
lj
 is the reduced attribute profile l whose elements 

are relevant to solve item j (i.e., with Q-matrix entries of 1) 
and K∗

j
 is the number of attributes required to solve item j. 

Additionally, δj represents the jth item parameter vector, 
where δj0 denotes the baseline probability of item j, δjk is the 
main effect due to αlk; �jkk′ is the interaction effect due to αlk 
and �lk′ , and �j12…K∗

j
 is the interaction effect due to 

�l1,… , �lk� . Note that αlk is a binary variable indicating 
whether the respondent masters attribute k (αlk = 1) or not 
(αlk = 0).

General CDMs subsume most reduced CDMs, which are 
more parsimonious models that restrict the attribute interac-
tions space. Popular reduced CDMs are the conjunctive, non-
compensatory deterministic input, noisy and gate model 
(DINA; Junker & Sijtsma, 2001), the disjunctive, compensa-
tory deterministic input, noisy or gate model (DINO; Templin 
& Henson, 2006), or the additive cognitive diagnosis model 
(A-CDM; de la Torre, 2011). Among the reduced CDMs, the 
DINA model has received the most attention in both simula-
tion and applied studies (Sessoms & Henson, 2018). In this 
model, only two parameters are estimated per item, regardless 
of the number of attributes measured by the item. The success 
probability is computed as in Eq. (2), where a success proba-
bility of δj0 is expected if respondent i doesn’t master at least 
one of the attributes required by item j (i.e., �∗

lj
≠ � ). On the 

contrary, if the respondent masters all the attributes required 
by the item, the success probability will be �j0 + �j12…K∗

j
 . Prob-

(1)

P
(
xij = 1|�∗

lj
, �j

)
= �j0 +

K∗
j∑

k=1

�jk�lk +

K∗
j∑

k�=k+1

K∗
j
−1∑

k=1

�jkk��lk�lk�⋯ + �j12…K∗
j

K∗
j∏

k=1

�lk ,

abilities δj0 and 1 − �j0 + �j12…K∗
j
 are also known as guessing 

(gj) and slip (sj) parameters, respectively. The first denotes the 
success probability of item j for the examinees that lack at least 
one of the attributes involved in this item, i.e., 
gj = P

(
xij = 1|�∗

lj
≠ �, �j

)
 . The second defines to the proba-

bility of incorrectly answering item j for the respondents that 
master all the attributes involved in this item, i.e., 
sj = P

(
xij = 0|�∗

lj
= �, �j

)
.

Outlining the appropriate response process (i.e., selecting 
the correct CDM) is crucial to obtain accurate attribute pro-
file classifications (Gao et al., 2017; Sorrel et al., 2021). 
General CDMs are flexible, saturated models (i.e., they esti-
mate a success probability for all the 2K

∗
j  reduced attribute 

profiles for each item) that show better model fit than 
reduced CDMs. However, the exponential growth of the 
number of item parameters as a function of the complexity 
of the Q-matrix might pose estimation challenges whenever 
the sample size is not large (Oka & Okada, 2021; Sen & 
Cohen, 2021). This should be a lesser problem for the 
reduced CDMs, such as the DINA model, which only esti-
mate two parameters per item regardless of K∗

j
.

Model parameters estimation

Under the assumption of conditional independence between 
the items, the likelihood function of CDMs for binary attrib-
utes and dichotomous responses is given by Eq. (3) (de la 
Torre, 2011).

where xi is the response vector of examinee i, αl is the lth 
attribute profile among the L = 2K latent classes, and δ is the 
complete set of item parameters in the test. Using marginal 
maximum likelihood estimation (MMLE), the fittest item 
parameter estimates are the ones that maximize the complete 
data likelihood, i.e., lik(X) as in Eq. (4) (de la Torre, 2011).

where P(αl) denotes the prior probability of attribute profile αl.
The MMLE is commonly implemented through the 

Expectation-Maximization (EM) algorithm (Dempster et al., 
1977), which consists of an iterative two-step procedure. 
First, step E consists of updating the expectations for all 
P(αl), i.e., the multinomial posterior distribution of the latent 

(2)P
(
xij = 1|�∗

lj
, �j

)
= �j0 + �j12…K∗

j

K∗
j∏

k=1

�lk

(3)

lik
(
�i|�l, �

)
=

J∏

j=1

P
(
xij = 1|�l, �j

)xij[1 − P
(
xij = 1|�l, �j

)]1−xij ,

(4)lik(�) =

I∏

i=1

L∑

l=1

lik
(
�i|�l, �

)
P
(
�l

)
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profiles (also represented as π), based on the empirical data 
and assuming a set of values for �̂ . Second, step M, consists 
of estimating the new δ parameters that maximize lik(X) 
given the new P(αl) values. These steps are repeated until 
the changes in lik(X) or in the model parameter estimates 
are negligible. The final set of model parameters includes 
the values of �̂ and P̂

(
�l

)
 upon convergence.

Attribute profile estimation

The attribute profile estimation generally consists of the 
following step, once obtained the marginal maximum 
likelihood estimates of the model parameters, i.e., �̂ and 
P̂
(
�l

)
 . The maximum likelihood estimate (MLE) of �̂ for 

respondent i will be of class l for which lik(xi| αl, δ) is high-
est, assuming the MMLE estimates of δ as correct. Under 
a Bayesian approach, the estimated classification for each 
examinee is based on the expected or maximum posterior 
probability of each attribute profile, refer to as expected-
a-posterior (EAP) or maximum-a-posterior (MAP) estima-
tions, respectively. The posterior probability of attribute 
profile αl for examinee i is numerically approximated as in 
Eq. (5). As a form of empirical Bayes, the MMLE estimates 
of all P(αl) computed in the E-step (i.e., π), are assumed as 
prior distribution of αl.

Whereas the MAP estimator classifies each examinee to 
its most probable attribute profile, the EAP estimator com-
putes the marginal probability of mastering each attribute 
separately, and then determines the discrete levels of mas-
tery and non-mastery of each attribute based on a threshold 
(e.g., 0.5). For simplicity, this article will only focus on the 
EAP estimator, although the results should be comparable 
with the MAP estimator. It should be noted also that MLE 
is equivalent to MAP with a uniform prior.

Reliability estimation in cognitive diagnosis 
modeling

Either by using MLE, EAP, or MAP attribute profile estima-
tion, CDM scores should be complemented with an estimation 
of the degree of certainty around those classifications. That is, 
the reliability of the scores should always be reported (Ameri-
can Educational Research Association [AERA] et al., 2014). 
As previously indicated, several reliability estimators exist 
within the CDM framework (Sinharay & Johnson, 2019). Gen-
erally, the reliability (accuracy and consistency) of CDM clas-
sifications may be quantified in two major metrics: 1) in cor-
relation metric, as in traditional psychometrics with continuous 

(5)P
�
�l��i, �,�

�
=

lik
�
�i��l, �

�
P
�
�l

�

∑L

l=1
lik

�
�i��l, �

�
P
�
�l

� .

latent variables (e.g., Johnson & Sinharay, 2020; Templin & 
Bradshaw, 2013), or 2) proportion metric, which fits the dis-
crete nature of CDMs (e.g., Wang et al., 2015). Regarding the 
later, most of these indicators provide a way to quantify the 
precision of the classifications based on approximations to the 
cross-classification contingency table of true and estimated 
attributes or attribute profiles. For instance, Table 1 illustrates 
the cross-classification table for the mastery of the kth attribute 
measured by the test, where the proportion of correct attribute 
classification (i.e., τk) is defined as P

{
�̂k(�) = �k

}
 can be 

broken down to τk = p00 + p11. A similar table could be con-
structed for the classification consistency, where rows would 
represent estimated 𝛼̂k in a parallel assessment. As an illustra-
tion, this article will limit to the estimation of the classification 
accuracy in the proportion metric, although the implications 
of this study should be largely generalizable to classification 
consistency estimators and to the correlation metric.

As stated, the classification accuracy can be defined as the 
proportion of correct classifications, either at the attribute level 
(PCA) or the attribute vector level (PCV). If the true clas-
sifications were known, the computation of PCA and PCV 
would be straightforward just by comparing the true and esti-
mated attribute profiles. However, since the true α vectors are 
unknown in applied settings, PCA and PCV values must be 
approximated using empirical estimates. In this sense, Wang 
et al. (2015) proposed the τk and τ indices as estimators of 
the PCA and PCV, respectively. The τk index for attribute k is 
calculated as in Eq. (6).

where α̂ik denotes the estimated discrete classification of 
respondent i in attribute k and P

(
α̂ik|�i, �,�

)
 represents the 

marginal posterior probability for that estimated α̂ik clas-
sification given the response vector xi, item parameters 
δ, and latent class distribution π. In turn, the marginal 
P
(
α̂ik|�i, �,�

)
 is calculated as the sum of P(αl| xi, δ, π) for 

every αl in which 𝛼lk = 𝛼̂ik . The τ index can be calculated 
as the average of the posterior probability of the attribute 
profiles, as in Eq. (7).

(6)
τk =

∑N

i=1
α̂ikP

�
α̂ik��i, �,�

�
+
�
1 − α̂ik

��
1 − P

�
α̂ik��i, �,�

��

N
,

Table 1   Cross-classification contingency table of true and estimated 
mastery of the kth attribute

True αk Estimated 𝛼̂
k

Total

0 1

0 p00 p01 p0·

1 p10 p11 p1·

Total p·0 p·1 1
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It can be inferred from Eqs. (6) and (7) that τk and τ 
estimators depend on the extent that the posterior probabil-
ity estimates are accurate, which, in turn, depends on the 
likelihood estimation (Eq. 3) and, ultimately, on the preci-
sion of the model parameter estimates (i.e., �̂ and �̂ ). Spe-
cifically, assuming the point estimates of the model param-
eters for computing P

(
�̂i|�i, �,�

)
 does not account for the 

uncertainty around δ and π caused by the sampling errors 
(Tsutakawa & Johnson, 1990; Yang et al., 2012). This will 
derive into overly peaked likelihood and posterior distribu-
tions, which will only approximate the true distributions if 
�̂ and �̂are precise estimates of δ and π, respectively (with 
sample sizes approaching infinity). Specifically, the estima-
tion of δ is expected mostly to depend on the sample size 
and model complexity (i.e., number of parameters), whereas 
the estimation of π should be affected by both sample size 
and test length. Additionally, if the item parameter estimates 
are biased towards the boundaries (as indicated by W. Ma 
& Guo, 2019; W. Ma & Jiang, 2021; Vermunt & Magidson, 
2004) due to local maxima or to identification problems 
(Uebersax, 2000), the likelihood and posterior distributions 
will be even more peaked. Accordingly, as can be inferred 
from Eqs. (6) and (7), if P

(
�̂i|�i, �,�

)
 , and consequently 

P
(
α̂ik|�i, �,�

)
 , are overly peaked, τk and τ will be positively 

biased. The same will occur for most, if not all, available 
classification accuracy indices. Although it may not affect 
the examinees’ classification, as it may not change the order-
ing of the probabilities associated with each classification 
profile, it generates a false confidence about the reliability of 
the resulting classifications. In other words, it is very likely 
that, in small sample settings, a practitioner might wrongly 
conclude that the classifications obtained with a CDM appli-
cation are accurate.

Correcting reliability estimation for model 
parameter uncertainty

Aiming to obtain more accurate reliability estimators, we pro-
pose a method to better estimate the posterior probabilities, 
P(αl| xi, δ, π) and P(αlk| xi, δ, π), by accounting for the uncer-
tainty around the estimation of δ and π. Let ϑ denote the com-
plete vector of model parameters, i.e., ϑ = (δ, π)T. Analytically, 
if the sampling distribution of ϑ is known, ϑ can be integrated 
out of the posteriors (Eq. 8), as outlined by Tsutakawa and 
Johnson (1990) in the context of IRT modeling.

(7)τ =

∑N

i=1
P
�
�̂i��i, �,�

�

N
.

(8)P
(
�l|�i

)
= ∫ P

(
�l|�i,�

)
P(�|�)d�

As proposed by Yang et al. (2012), a multiple imputa-
tion (MI) approximation can be used to integrate ϑ out of 
P(αl| xi, ϑ) by 1) calculating the likelihood of xi, P(xi| αl, δ) 
with R imputed �̂r vectors drawn from the sampling distribu-
tion of ϑ, 2) imputing R random �̂r vectors drawn from the 
sampling distribution of ϑ to calculate the posteriors, and 
3) marginalizing over both δ and π. Since the occurrence 
of boundary parameter estimates may generate numerical 
difficulties in the estimation of the parameter variance-
covariance matrix (Garre & Vermunt, 2006; Vermunt & 
Magidson, 2004), the sampling distribution of ϑ is approxi-
mated through nonparametric bootstrap (Efron & Tibshi-
rani, 1994). A schematic of the MI procedure is presented 
in Fig. 1. The proposed procedure is here applied to the τk 
and τ indices, although it should offer comparable results 
with other indicators of classification reliability. The mul-
tiple imputation procedure for correcting τk and τ can be 
readily implemented using the R codes available at https://​
osf.​io/​cwfqx. Additionally, these code will be included in 
the cdmTools (Nájera et al., 2022) R package version 1.0.3 
within the function named CA.MI().

Simulation study

A simulation study was conducted to compare the proposed 
multiple imputation procedure, accounting for the uncer-
tainty of the model parameters, with the traditional reli-
ability estimators computed using model parameters point 
estimates obtained with the EM algorithm.

Method

The simulation study design is summarized in Table 2. As it 
can be observed, five between-group factors were manipu-
lated (the attribute structure, the generating and fitted model, 
test length, sample size, and item quality). For K = 5 attrib-
utes with a uniform or higher-order structure, response 
data were generated and estimated using the reduced and 
saturated models, DINA and G-DINA, respectively, for J 
= 15 and 30 items. The CDM datasets were simulated and 
estimated using the simGDINA function from the GDINA 
package (W. Ma & de la Torre, 2020). Four sample sizes 
(N = 100, 200, 500, and 1000) and three item qualities (IQ 
= 1 – P(0) – P(1) = 0.4, 0.6, and 0.8) were considered, 
where P(0), i.e., the guessing parameter, and P(1), i.e., the 
slip parameter, were P(0) = P(1) = 0.1, 0.2, and 0.3, for 
IQ = 0.4, 0.6, and 0.8, respectively. The guessing and slip 
probabilities denote the success probabilities for examinees 
mastering none or all attributes required by the item, respec-
tively. For each of the 2 × 2 × 2 × 4 × 3 = 96 between group 
conditions, 100 replications were conducted. Both τk and τ 

https://osf.io/cwfqx
https://osf.io/cwfqx
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indices were considered, and two estimation methods (i.e., 
with posterior distributions computed using EM point esti-
mates, or with the MI procedure) were used with each simu-
lated dataset and treated as a within-group factor. Finally, the 
Q-matrices simulated in this study are presented in Table 3.

Whereas the success probabilities for examinees mas-
tering none or all attributes required by the items were 
defined by design (IQ), the remaining item parameters in 
the G-DINA model were drawn from a uniform distribution, 
constrained to monotonically increase with the number of 
attributes they are associated with, e.g., P(1,1) > P(1,0) > 

P(0,0). Additionally, under the higher-order attribute struc-
ture, N continuous latent factor scores, i.e., 

𝗂
 , were drawn 

from N(0, 1), and the probability of mastering each attrib-
ute was computed as a two-parameter logistic model (Eq. 9) 
with �

�
= 1.5 and �

�
= 0 for every attribute. These values 

imply an expected prevalence of 0.5 for each attribute and 
an expected attribute intercorrelation of approximately 0.3. 
The true discrete attribute classifications for each simulee i 
and attribute k were then drawn from a binomial distribution 
with P

(

𝗂𝗄
= 1|

𝗂
, 𝖺

𝗄
, 𝖻

𝗄

)
.

It should be noted that the assessment conditions associ-
ated with greater sampling errors (e.g., smaller sample sizes, 
lower item quality, more complex models) should imply a 
greater variability in the model parameter estimates from 
one bootstrap resample to another. Therefore, these condi-
tions may require a larger number of resamples to provide 
stable MI reliability estimates. To address this, a preliminary 
simulation study was done to determine the acceptable num-
ber of resamples to use in the bootstrapping. This simula-
tion was conducted by estimating τ with the MI procedure 
(τMI) 50 times for one generated dataset under each assess-
ment condition while manipulating the number of resamples 
within the bootstrap (R = 100, 200, 500, and 1000). As a 

(9)P
(
�ik = 1|�i, ak, bk

)
=

1

1 + exp
[
−ak

(
�i − bk

)]

Fig. 1   Schematic description of the multiple imputation procedure

Table 2   Summary of the simulation design

* IQ = 1 – P(0) – P(1), where P(0) and P(1) denote the success prob-
abilities for examinees mastering none or all attributes required by the 
item, respectively

Between-group factor Levels

Attribute structure Uniform, higher-order
Generated and fitted model DINA, G-DINA
Test length (J) 15, 30
Sample size (N) 100, 200, 500, 1000
Item quality (IQ)* 0.4, 0.6, 0.8
Within-group factor Levels
Method τ (τk) with MI, τ 

(τk) with EM point 
estimates
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criterion, the standard deviations (SD) of the τMI estimates 
for each dataset and R condition were analyzed. The overall 
results of this simulation can be found in Figure S1 (in the 
online supplementary material available at https://​osf.​io/​
cwfqx). In general, all the simulated R conditions provided 
sufficiently stable τMI estimates even in the most challeng-
ing assessment conditions. For instance, the largest SD (i.e., 
0.01, for sample size of 100, bad item quality, with uniform 
attribute structure, and using the G-DINA model) indicates 
a narrow 95% confidence interval, between approximately 
0.02 below and 0.02 above the average τMI estimate. In this 
article, nonetheless, a conservative R of 500 was used to 
reduce the effect of these estimation errors in the comparison 
between the different τ estimation methods. If needed, prac-
titioners might use smaller number of resamples (e.g., R = 
100) without a big loss of precision in the estimation of τMI.

Data analysis

Under each condition, the simulees’ attribute profiles were 
estimated using EAP with the MMLE of the model param-
eters from the corresponding sample. The accuracy indices 
τEM
k

 and τEM of these attribute profiles were calculated as 
in Eqs. (6) and (7) with P

(
α̂ik|�n, �,�

)
 computed using the 

point estimates of �̂ and �̂ obtained with the EM algorithm. 
Alternatively, τMI

k
 and τMI refer to the reliability indices cal-

culated with the proposed multiple-imputation procedure (as 
outlined in Fig. 1), integrating �̂ and �̂ out through multiple-
imputation. As a benchmark, the average true classification 
accuracy values (i.e., PCA and PCV) were calculated using 
the proportion of correct classification for the attribute pro-
files in each sample, given the known generated profiles. The 

average PCA and PCV consist of the expected true accu-
racy for the estimated attribute profiles under each condition. 
Additionally, to summarize the results, the generalized eta-
square ( �2

G
 ) effect sizes of each manipulated factor over the 

absolute difference of τ (τk) with respect to the average PCV 
(PCA) were computed through in mixed-effects ANOVAs. 
Finally, the root-mean-square error (RMSE; Eq. 10) was cal-
culated between each τ (τk) estimate and the average PCV 
(PCA) in every condition (and averaged across K for τk).

Results

Due to space limitations, only the results concerning the 
accuracy estimates at the attribute profile level (τ) and the 
uniform attribute structure conditions are presented in this 
document. In this regard, as will be detailed further, the effects 
of the manipulated factors over τ were largely generalizable 
to τk. Similarly, the higher-order attribute structure condition, 
despite providing overall better results, did not substantially 
differ from the uniform attribute structure regarding the abso-
lute error of τ and τk. Therefore, the results for τk estimation 
and higher-order attribute structure are presented in the online 
supplementary material available at https://​osf.​io/​cwfqx.

Table 4 presents the mean τ̂ estimates along with the mean 
PCV for each condition. As could be expected, under each 
IQ and J condition, the PCV generally increased with sample 
size. This indicates that, regardless of the true test quality 
(i.e., given the true item parameters), classifications may be 

(10)RMSE(τ̂) =

�∑R

r=1

�
τ̂r − PCV

�2

R

Table 3   Q-matrix for the simulation study with 30 items

 Asterisks indicate the items in the J = 15 condition

Item # α1 α2 α3 α4 α5 Item # α1 α2 α3 α4 α5

1 1 0 0 0 0 16 0 1 0 1 0
2 0 1 0 0 0 17 0 1 0 0 1
3 0 0 1 0 0 18* 0 0 1 1 0
4 0 0 0 1 0 19 0 0 1 0 1
5 0 0 0 0 1 20* 0 0 0 1 1
6* 1 0 0 0 0 21* 1 1 1 0 0
7* 0 1 0 0 0 22 1 1 0 1 0
8* 0 0 1 0 0 23* 1 1 0 0 1
9* 0 0 0 1 0 24 1 0 1 1 0
10* 0 0 0 0 1 25 1 0 1 0 1
11* 1 1 0 0 0 26* 1 0 0 1 1
12 1 0 1 0 0 27* 0 1 1 1 0
13 1 0 0 1 0 28 0 1 1 0 1
14* 1 0 0 0 1 29 0 1 0 1 1
15* 0 1 1 0 0 30* 0 0 1 1 1

https://osf.io/cwfqx
https://osf.io/cwfqx
https://osf.io/cwfqx
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less accurate with smaller samples due to the inaccuracy of 
the model parameter estimates. As sample size increases, 
the PCV (and PCA) tends towards its highest value, which 
would be obtained if the true model parameters were known. 
Additionally, it can be observed that the τ̂MI estimates were 
consistently closer to the PCV in most conditions, whereas 
τ̂EM systematically overestimated it. In particular, the advan-
tage of the proposed multiple-imputation method was evi-
dent under the most challenging estimation conditions (i.e., 
smaller sample size, saturated model, and low item quality). 
A slight overestimation was found for τ̂MI when the true reli-
abilities were very low (e.g., PCV = 0.13 and τ̂MI = 0.30 for 
IQ = 0.4, N = 100, J = 15, and G-DINA model). Nonethe-
less, from the author’s perspective, this overestimation was 
not sufficient to wrongly assume that the reliability was good 
for decision-making, as it generally occurred with τ̂EM (i.e., 
τ̂EM was equal to 0.87 in that specific condition).

Table 5 presents the effect sizes of the manipulated fac-
tors in a mixed-effects ANOVAs. The interactions with small 
or medium effects ( �2

G
 < 0.14) were omitted, and the com-

plete table can be found in the online supplementary mate-
rial (https://​osf.​io/​cwfqx). As previously mentioned, no large 
effect sizes were observed for the attribute structure factor.

Figure 2 accounts for the major interaction effects found 
in Table 5 (i.e., with Method, Model, IQ, and N). It presents 
the means absolute errors of τ̂EM and τ̂MI for the different 
sample sizes, item qualities, and generating and fitted mod-
els. As can be observed, the differences between the two τ 
estimation methods were largely due to the variability of the 
absolute errors of τ̂EM in the simulated conditions, whereas 
the absolute errors of τ̂MI were only slightly affected by the 
manipulated factors. Specifically, the appropriateness of τ̂EM 

was largely affected by both sample size and item quality, 
and these effects were even greater when the generating and 
fitted model was the G-DINA. In this sense, the accuracy 
of the model parameter estimates is expectedly lower with 

Table 4   Average classification accuracy estimates at the profile level with uniform attribute structure

IQ item quality, N sample size, J test length, PCV true classification accuracy, τ̂MI multiple imputation-based τ estimator, τ̂EM EM point esti-
mates-based τ estimator

G-DINA DINA

J = 15 J = 30 J = 15 J = 30

IQ N PCV τ̂EM τ̂MI PCV τ̂EM τ̂MI PCV τ̂EM τ̂MI PCV τ̂EM τ̂MI

0.4 (Low) 100 0.13 0.87 0.30 0.20 0.92 0.28 0.15 0.69 0.29 0.26 0.72 0.33
200 0.12 0.75 0.24 0.19 0.81 0.23 0.16 0.59 0.28 0.28 0.59 0.34
500 0.12 0.59 0.19 0.21 0.62 0.23 0.17 0.42 0.27 0.33 0.46 0.37
1000 0.13 0.47 0.19 0.25 0.49 0.26 0.19 0.33 0.27 0.35 0.41 0.39

0.6 (Medium) 100 0.28 0.86 0.39 0.49 0.92 0.48 0.37 0.71 0.48 0.62 0.81 0.62
200 0.28 0.75 0.34 0.52 0.82 0.50 0.39 0.60 0.47 0.65 0.74 0.65
500 0.31 0.59 0.34 0.60 0.70 0.58 0.42 0.52 0.47 0.68 0.70 0.68
1000 0.34 0.50 0.37 0.62 0.67 0.63 0.44 0.48 0.46 0.68 0.70 0.69

0.8 (High) 100 0.58 0.90 0.59 0.85 0.97 0.76 0.69 0.83 0.70 0.90 0.94 0.84
200 0.60 0.82 0.60 0.87 0.93 0.83 0.71 0.78 0.72 0.91 0.93 0.89
500 0.64 0.73 0.65 0.89 0.91 0.89 0.72 0.75 0.73 0.91 0.92 0.91
1000 0.67 0.71 0.68 0.90 0.90 0.90 0.72 0.74 0.73 0.91 0.92 0.91

Table 5   Generalized Eta-squared for mixed-effects ANOVA of abso-
lute reliability estimation error at the profile and attribute levels (τ 
and τk, respectively)

 Method = reliability estimation method (MI or EM-based); Model = 
generated/fitted model (DINA and G-DINA); Att. Struct = attribute 
structure; IQ = item quality; N = sample size; J = test length; * p < 
0.05. Interactions with small or medium effects ( 𝜂2

G
< 0.14 ) for both τ̂ 

and τ̂
k
 are omitted

τ̂ τ̂
k

Within-group effects
  Method 0.90* 0.84*

  Method × Model 0.65* 0.47*

  Method × J 0.22* 0.18*

  Method × N 0.70* 0.58*

  Method × IQ 0.78* 0.78*

  Method × Model × IQ 0.34* 0.31*

  Method × N × IQ 0.34* 0.36*

Between-group effects
  Model 0.65* 0.56*

  Att. Struct. 0.06* 0.13*

  J 0.54* 0.65*

  N 0.83* 0.80*

  IQ 0.86* 0.91*

  Model × N 0.19* 0.06*

  Model × IQ 0.27* 0.20*

  J × IQ 0.08* 0.23*

  N × IQ 0.40* 0.52*

https://osf.io/cwfqx
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smaller sample sizes, the G-DINA model (i.e., with higher 
number of parameters), and lower item qualities. Accord-
ingly, ignoring the model parameter uncertainty with τ̂EM in 
these conditions provided overestimated reliabilities.

Table 6 presents the RMSE of τ̂MI and τ̂EM with respect 
to the PCV. Consistent with the results in Table 4, using 
τ̂EM provided inaccurate results, especially for the G-DINA 
model, with tests of lower item qualities, smaller samples, 
and lesser items.

As a general summary of the simulation results, the reli-
ability estimates using the MI procedure to account for the 
uncertainty of the model parameters were almost always 
more accurate than their counterpart using EM-based 
model parameter point estimates. Specifically, the reli-
ability estimation using point estimates was often overly 
positive, especially with low sample sizes and worse 
assessment conditions (i.e., lower-quality items, shorter 
tests). This can be alarming, since this overconfidence 
provided by τ̂EM can lead to making incautious decisions 
in especially delicate settings (with low true reliability). 
For instance, in the results for N = 100, IQ = 0.4, G-DINA 
model, and J = 30, presented in Table 4 an average τ̂EM of 

0.92, indicating that 92% of respondents are expected to be 
correctly classified, when the actual correct classification 
was around 20%.

Real data illustration

A study was conducted to compare τ̂EM and τ̂MI with a real 
dataset. The effects of sample size were studied by resam-
pling subsets of response vectors from the complete data.

Method

Data description

This study includes response data of 2922 examinees to the 
grammar section of the Examination for the Certificate of 
Proficiency in English (ECPE), as in Templin and Hoffman 
(2013). The ECPE was developed by the English Language 
Institute of the University of Michigan to assess a set of 
language skills for speakers of English as a non-primary 
language. The ECPE data have been already investigated 

Fig. 2   Means absolute errors of �̂�� and �̂�� for different sample sizes, item qualities, and generating and fitted models.  �̂�� = absolute error of 
the multiple imputation-based τ estimator; �̂�� = absolute error of the EM point estimates-based τ estimator
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from a diagnostic perspective in several studies (e.g., Akbay 
& de la Torre, 2020; Feng et al., 2014; Templin & Bradshaw, 
2014). The grammar section of the test is composed of 28 
multiple-choice items in which examinees are instructed to 
select the word, among four alternatives, that correctly fills 
the blank in a sentence. The grammar section of the ECPE 
measures three attributes, being the knowledge of (1) mor-
phosyntactic rules, (2) cohesive rules, and (3) lexical rules 
(Buck & Tatsuoka, 1998). The Q-matrix for the 28 items, 
as defined in Templin and Hoffman (2013), are presented 
in Table 7. Also, accordingly with Templin and Hoffman 
(2013) and Akbay and de la Torre (2020) a saturated model 
(i.e., G-DINA) was fitted in this study. The ECPE response 
data and Q-matrix are available in the GDINA package (W. 
Ma & de la Torre, 2020) in R software environment.

Procedures

In accordance with the previous simulation study, four sam-
ple size conditions (N = 100, 200, 500, and 1000) were 
manipulated. One hundred reduced samples for each size N 
were created by resampling N response vectors without 
replacement from the complete sample. The G-DINA model 
was fitted in each resampled dataset and the attribute profiles 
of the N respondents were estimated using EAP. The accu-
racy of these attribute profiles was computed using both τ̂MI 
and τ̂EM and the scatterplots between τ̂MI and τ̂EM in each 
condition are presented. As benchmark (dashed lines in the 
scatterplots), an approximation to the average true accuracy 
of the estimated attribute profiles (i.e., �̂ ) was done by aver-
aging across the 100 replications the τ̂ computed with the 
posterior probabilities obtained with the model parameter 

estimates from the complete dataset, i.e., P
(
�̂i|�i, �̂, �̂

)
 , 

where �̂ and �̂ were estimated with the 2922 examinees. In 
this sense, these model parameters obtained with the com-
plete sample may be assumed to be largely precise, as τ̂MI 
and τ̂EM largely coincide in this condition ( ̂τMI = 0.742 and 
τ̂EM = 0.743 ). The same procedure was conducted for τ̂MI

k
 

and τ̂EM
k

 , and the results are presented in the online supple-
mentary material.

Results

The G-DINA model provided generally good absolute fit 
with the complete data (M2 = 507.1459 with df = 325, 
RMSEA2 = 0.014, and SRMSR = 0.032). Figure 3 pre-
sents the dispersion between τ̂MI (x-axis) and τ̂EM (y-axis) 
estimates over 100 replications as a function of the size of 
the subsamples extracted from the ECPE dataset (panels). 
For instance, the top-left panel in Fig. 3 represents the dis-
persion between τ̂MI and τ̂EM computed using the model 
parameters estimated with the 100-examinee subsample. 
Due to the wide variance of the model parameter estima-
tors in this condition, assuming the point estimates as true 
values in τ̂EM led to a large overestimation of the reliability. 
As the calibration sample size increases, the errors in the 
model parameter estimates tend to reduce, as does the effect 
of assuming point estimates as true in τ̂EM . Therefore, in 
agreement with the simulation results, τ̂EM was especially 
overestimated for the smaller sample sizes, with N of 100 
and 200. With higher sample sizes (i.e., 1000), both τ̂EM and 
τ̂MI tended towards the accuracy computed with the model 

Table 6   Root-mean-square error of MI and EM-based classification accuracy estimators at the profile level with uniform attribute structure

IQ item quality, N sample size, J test length, τ̂MI multiple imputation-based τ estimator, τ̂EM EM point estimates-based τ estimator

G-DINA DINA

J = 15 J = 30 J = 15 J = 30

IQ N τ̂EM τ̂MI τ̂EM τ̂MI τ̂EM τ̂MI τ̂EM τ̂MI

0.4 (Low) 100 0.73 0.17 0.72 0.10 0.54 0.15 0.46 0.09
200 0.63 0.12 0.62 0.06 0.43 0.14 0.31 0.08
500 0.47 0.08 0.40 0.03 0.25 0.11 0.13 0.05
1000 0.34 0.07 0.25 0.03 0.15 0.09 0.07 0.04

0.6 (Medium) 100 0.58 0.11 0.43 0.05 0.34 0.12 0.19 0.04
200 0.47 0.08 0.30 0.04 0.21 0.09 0.10 0.03
500 0.29 0.05 0.10 0.03 0.10 0.06 0.03 0.02
1000 0.16 0.04 0.05 0.02 0.05 0.03 0.02 0.01

0.8 (High) 100 0.32 0.06 0.11 0.10 0.14 0.04 0.05 0.06
200 0.22 0.05 0.07 0.04 0.08 0.03 0.02 0.02
500 0.09 0.03 0.02 0.01 0.04 0.02 0.01 0.01
1000 0.05 0.03 0.01 0.01 0.02 0.02 0.01 0.01
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parameters from the complete sample. Similar results have 
been found for the classification accuracy at the attribute 
level (i.e., τ̂k ), which are presented in the online supplemen-
tary material (https://​osf.​io/​cwfqx). Additionally, as in the 
simulation study, the average true accuracy approximations 
(dashed lines) were lower for the attribute profiles estimated 
from smaller samples. Specifically, the values of the dashed 
lines suggest that the attribute profiles estimated with the 
model parameters calibrated with small samples (e.g., 100) 
have low posterior probabilities (e.g., approximately 0.55) 
when using the model parameter estimates from the com-
plete 2992-examinee sample. As sample size increases, the 
benchmark indicator converges towards the classification 
accuracy obtained with the complete dataset (approximately 
0.74). As a summary, all the results with real data were con-
sistent with the simulation study, where the classification 
accuracy computed with the MI procedure systematically 
provided the best estimates.

General discussion

This article aimed to present a multiple imputation procedure 
to account for the uncertainty of the model parameters in CDM 
reliability estimation. As a general summary in both simula-
tion and real data studies, the proposed method provided more 
accurate, less biased, reliability estimates than its traditional 
counterpart, using model parameter point estimates.

Practical implications

The main practical implications of the two studies are presented. 
First, as an overall result, τ̂EM estimates were consistently 

positively biased, whereas τ̂MI was found to be closer to the 
true reliability. Second, especially with smaller samples, low 
item quality, more complex models (i.e., G-DINA), or lesser 
items, τ̂EM provided overly confident reliability estimates. Con-
sequently, using τ̂EM in these situations may lead to making 
wrong decisions inadvertently. For instance, when diagnosing 
respondents, using τ̂EM could lead to the conclusion that clas-
sifications are sufficiently accurate when they are not. In turn, 
this can lead to important implications for the examinees. As 
an example, practitioners may be led to decide not to provide 
educational training for students in need, or to refuse treatment 
to patients that need to be treated. In this scenario, using τ̂MI is 
likely to provide more realistic reliability estimates, indicating 
that longer or better tests should be required in order to make 
such important decisions with safety. Under good testing condi-
tions (i.e., large samples, high-quality items, simple models), 
however, both τ̂EM and τ̂MI were found to be largely precise, 
offering comparable results. In summary, practitioners in small 
educational or clinical settings should be aware that the reliabil-
ity estimation using model parameter point estimates may be 
positively biased. Therefore, it is strongly recommended to use 
the multiple imputation procedure to account for the uncertainty 
around the model parameters. To facilitate the use of the new 
procedure, the R codes for estimating τ̂MI and τ̂MI

k
 were made 

available at https://​osf.​io/​cwfqx and will be included in the cdm-
Tools (Nájera et al., 2022) R package version 1.0.3 within the 
function named CA.MI().

Limitations and future directions

Some limitations of this study are acknowledged. First, as 
previously mentioned and evidenced in the simulation study, 

Table 7   Q-matrix for the ECPE data (as in Templin & Hoffman, 2013)

Skill 1 = Morphosyntactic rules; Skill 2 = Cohesive rules; Skill 3 = Lexical rules

Item # Skill 1 Skill 2 Skill 3 Item # Skill 1 Skill 2 Skill 3

1 1 1 0 15 0 0 1
2 0 1 0 16 1 0 1
3 1 0 1 17 0 1 1
4 0 0 1 18 0 0 1
5 0 0 1 19 0 0 1
6 0 0 1 20 1 0 1
7 1 0 1 21 1 0 1
8 0 1 0 22 0 0 1
9 0 0 1 23 0 1 0
10 1 0 0 24 0 1 0
11 1 0 1 25 1 0 0
12 1 0 1 26 0 0 1
13 1 0 0 27 1 0 0
14 1 0 0 28 0 0 1

https://osf.io/cwfqx
https://osf.io/cwfqx
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the model complexity played an important role in the over-
estimation of τ̂EM . This may be explained by the fact that, 
opposed to reduced models that only account for the attrib-
ute main effects, more complex models (e.g., G-DINA), 
require the estimation of more item parameters (i.e., the 
attribute interaction effects) that are associated with more 
latent groups. Therefore, under the same sample size condi-
tions, more complex models have fewer examinees per latent 
group and parameter. Moreover, with saturated models, the 
complexity of the Q-matrix (i.e., the number of attributes 
per item and, consequently, the number of latent groups per 
item) may affect even more the precision of the item param-
eter, and thus the reliability estimation (Sorrel et al., 2021). 
This factor (i.e., Q-matrix complexity) was not accounted 

for in this study, although it may be expected that the MI 
procedure would be even more preferable to using point esti-
mates with more complex items. In this sense, considering 
the literature review conducted by Nájera et al. (2021a, b), 
the Q-matrices included in these studies were relatively sim-
ple (with mostly one-attribute items and up to K∗

j
 = 2 with 

the ECPE data) to average (with one-third of one-attribute 
items and up to K∗

j
 = 3 in the simulation study).

Second, as it has been thoroughly investigated in the 
recent literature (Gao et al., 2017; Rupp & Templin, 2008), 
model or Q-matrix misspecifications may largely affect the 
estimation classification accuracy. Consistently, although 
it was not addressed in this article, these misspecifications 
may also have an impact over the reliability estimation. In 

Fig. 3   Dispersion between 𝜏EM and 𝜏MI of subsamples from the ECPE 
dataset by sample size (N). The dashed lines approximate the true reli-
ability of the estimated attribute profiles in each sample size condition 

(using posteriors from the 2992-examinee sample). The triangle repre-
sents the average across the 100 replications in each condition
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this sense, the proposed MI procedure may also be expected 
to perform better than its counterpart using EM point esti-
mates, as the misspecifications may be partially captured by 
the standard errors of the item parameter estimates. There-
fore, accounting for the sampling distribution of the item 
parameters may correct in part the wrong model or Q-matrix 
assumptions, which could be investigated in future studies.

Third, despite generally providing better reliability estimates, 
τ̂MI and τ̂MI

k
 were found to be slightly overestimated with small 

samples. This may be an indicator of the occurrence of bound-
ary parameters within the bootstrapping procedure. As stated in 
the Introduction, these boundary parameters (i.e., 0 or 1 under 
identity link models) likely occur due to small sample sizes 
(Garre & Vermunt, 2006) or complex models leading to local 
maxima (Uebersax, 2000). Specifically, if models are complex 
and/or sample sizes are small, data are likely to be sparse (e.g., 
no observations in some latent groups, or only correct/incorrect 
responses for a given latent group), leading to boundary param-
eters. As stated by Garre and Vermunt (2006), using Bayesian 
estimation with non-informative priors may reduce such effect. 
Alternatively, other ad hoc approaches, such as fixing zero 
probabilities for unobserved latent groups in a sample may also 
reduce the boundary problem. This approach may be useful in 
case there are empirical zero counts for some latent groups, so 
that no inference should made around them in the sample. It 
would be interesting for future studies to empirically investigate 
this approach. On the contrary, if boundary parameters occur 
in the response probabilities (i.e., all the responses for a given 
latent group are the same), fixing these item parameters values 
would not be expected to reduce the reliability overestimation.

Fourth, although this article focused on two largely used 
CDM models, the effect of the MI over the reliability estima-
tion should be tested with other CDM models (e.g., accounting 
for polytomous responses or polytomous attributes). Similarly, it 
was the authors’ decision to focus on the classification accuracy 
indicated provided by τ and τk. Other classification accuracy 
and consistency may be investigated in the future. Nonetheless, 
most of the other indices also rely on the correctness of posterior 
probabilities, thus the MI procedure should also be expected to 
provide better results than using EM point estimates.
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