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Abstract

In this paper, we study internal properties of a Cosserat media.
In fact, by using groupoids and smooth distributions, we obtain a
three canonical equations. The non-holonomic material equation for

Cosserat media characterizes the uniformity of the material. The
holonomic material equation for Cosserat media permits us to study
when a Cosserat material is a second-grade material. It is remarkable
that these two equations also provide us a unique and maximal
division of the Cosserat medium into uniform and second-grade parts,
respectively. Finally, we present a proper definition of homogeneity
of the Cosserat medium, without assuming uniformity. Thus, the
homogeneity equation for Cosserat media characterizes this notion of
homogeneity.
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1 Introduction

In Continuum Mechanics a body is represented by a three-dimensional
manifold B which can be covered with just one chart. A configuration ψ
is an embedding of B in R

3, and it is usual to identify the body with one of
its configurations ψ0, which is called a reference configuration. A change of
configuration ψ ◦ ψ−1

0 is said to be a deformation.

A relevant problem is the following: given a mechanical response as a function
of the positions on the body and the 1−jets of the local diffeomorphisms of
the body, how to decide if the body is uniform, namely, all the points of
the body are made of the same material. A second crucial question is about
the homogeneity of the body, which expresses the absence of defects of the
material body.

W. Noll developed a geometric theory to deal with the properties of uniform
bodies in his thesis [32] (see also [33, 37]) as well as its homogeneity. In
that theory, he studies the model of simple materials in which the properties
of the body are encoded in the constitutive law, a function depending on
the gradient of the deformation. This allows us to introduce the concept
of material isomorphisms and re-interpret the uniformity in terms of the
existence of a parallelism of such material isomorphisms. In addition,
the homogeneity is characterized by the integrability of such parallelisms.
Moreover, the use of G−structures has redefined the formulation and facilited
the derivation of specific results (see for example [11, 13, 14, 17, 19]). In fact,
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the lack of integrability of the associated G−structure manifests the presence
of inhomogeneities (such as dislocations). Thus, we may say that the theory
of inhomogeneities of smoothly uniform simple materials is well established
in terms of differential geometric structures. Nevertheless, in the absence of
uniformity, these G−structures do not exist.

As a further step in the study of uniformity and homogeneity, one can use
the notion of groupoid; indeed, the collection of all the possible material
isomorphisms on a body B has the structure of subgroupoid of the Lie
groupoid of all 1−jets of local diffeomorphisms from B into itself, Π1 (B,B).
As a difference with the G−structures, the existence of this groupoid, called
material groupoid, does not depend on the uniformity of the material. In fact,
the material groupoid may always be constructed for any material body.

However, the material groupoid is not necessarily differentiable. Indeed,
the property of differentiability of this groupoid works to characterize some
material property, as for example the smooth uniformity. In a series of
papers [20, 22, 23, 25], we have developed a new theory of uniformity
and homogeneity without the necessity of smoothness. Indeed, even if a
subgroupoid of a Lie groupoid is not a Lie subgroupoid itself, one can
generalize the construction of the asociated Lie algebroid, obtaining the
so-called characteristic distributions. This result permits us to extend the
concept of uniformity as well as consider homogeneity even if we are not in
presence of uniformity.

However, there are many non-simple materials. In fact, materials like
granular solids, rocks or bones cannot be modelled without extra kinematic
variables [2]. The theory of generalized media was introduced by Eugène and
François Cosserat between 1905 and 1910. The Cosserats associated to each
point of the body a family of vector (directors). In a more mathematical
way, a Cosserat continuum can be described as a manifold of dimension m
and a family of n vector fields on the manifold. Some of the developments of
the theory can be found in Maugin [30, 31] or in Kröner [27]; we also remit
to the work by Eringen [21]. A particular case of Cosserat material are the
second-grade materials. According with the article [18], B is a second-grade
material, if all the material isomorphisms are natural prolongations to
the frame bundle of the induced diffeomorphisms on the basis. In other
words, all the material isomorphisms are 1−jets j1X,Y Fψ, where ψ is a local
diffeomorphism on the body B.
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The geometrical structures which are necessary to develop a rigorous theory
have been available for some time. Actually, the notion of director given by
Cosserats is closely related with frame bundles. In 1950 C. Ehresmann (see [7,
8, 9, 10]) formalized the notion of principal bundles and studied many frame
bundles associated in a natural way to an arbitrary manifold: non-holonomic
and holonomic frame bundles. Thus, we can intepret a Cosserat medium as
a linear frame bundle FB of a manifold B, the macromedium, which can
be covered with just one chart (see [15]). Then, a configuration of FB is
an embedding Ψ : FB → FR3 of principal bundles such that the induced
Lie group morphism is the identity map. We fix a configuration Ψ0, as
the reference configuration, and a deformation is a change of configurations,
χ = Ψ ◦Ψ−1

0 .

The constitutive elastic law is now written as

W = W (X,F ) ,

where X is a point of the macromedium and F is the gradient of a
deformation χ at a point X. Since χ is a morphism of principal bundles,
F depends only on the base points. This constitutive equation permits us to
associate to each two points X, Y of B the family of material isomorphisms
from X to Y (which could be empty), i.e., the 1−jets G at X of the local
principal bundle isomorphisms from X to Y which satisfy that

W (X,F ·G) = W (Y, F ) ,

for all deformation gradients F at Y .

The present paper is devoted to extend the construction of the characteristic
distribution for Cosserat media. In particular, we have proved that,
associated to any Cosserat media there are two well-defined characteristic
distributions, the non-holonomic material distribution of second order and
the holonomic material distribution of second order, respectively.

These distributions are generated by the left-invariant vector fields which
are in the kernel of TW (Eq. (17)) and the complete lift of vector fields on
the macromedium B which are in the kernel of TW , respectively. These
facts induce two distinct equations which permit us to construct these
characteristic distribution,
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• Non-holonomic material equation for Cosserat media (18)
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• Holonomic material equation for Cosserat media (19)
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Furthermore, we have proved that the Cosserat media may be canonically
divided into smoothly uniform parts, and second-grade parts. The spaces of
solutions of these equations characterizes these two properties (Theorems 9,
11, 13, and 14).

Finally, we have studied the property of homogeneity. In particular, we
defined, by first time, a notion of homogeneity which is valid for non-uniform
Cosserat materials and generalizes the well-known notion of homogeneity.
Roughly speaking, a Cosserat material will be homogeneous, when each
smoothly uniform material part is homogeneous and all the uniform material
submanifolds can be “straightened at the same time”. Thus, we found another
differential equation,

• Homogeneity equation for Cosserat media (25)
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∂W
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which characterizes this intuitive notion of homogeneity.

The paper is structured as follows. Section 2 is devoted to present a brief
introduction to frame bundles and groupoids, focusing on the properties and
examples which are necessary for the development of the paper. Here, we
recall the notion of characteristic distribution associated to an arbitrary
subgroupoid of a Lie groupoid. Section 3 is devoted to present Cosserat
materials, next to the relevant definitions associated to this model. It is
important to recall that these two sections are introductory. In fact, the
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novelty results start with section 4. Here, we present a detailed construction
of the non-holonomic material distribution of second order, the holonomic
material distribution of second order, the non-holonomic material equation
for Cosserat media (18), and the holonomic material equation for Cosserat
media (19). We prove here that the Cosserat media is uniquely divided
into smoothly uniform parts, and second-grade parts. Furthermore, we the
solutions of these equations permits us to calculate these divisions of the
material body in a precise way.

Finally, section 5 is devoted to define and study the homogeneity of a
(non necessarily) uniform Cosserat body. In particular, the solutions of the
homogeneity equation for Cosserat media (25) permits us to characterize this
new notion of homogeneity.

2 On frame bundles and groupoids

Let us start with the notion of principal bundle (see [26]) and, as relevant
cases, we will introduce the concept of frame bundle of a manifold. This will
permit us to work with Cosserat materials.

Definition 1. Let P be a manifold and G be a Lie group which acts over P
by the right satisfying:

(i) The action of G is free, i.e.,

xg = x⇔ g = e,

where e ∈ G is the identity of G.

(ii) The canonical projection π : P → M = P/G, where P/G is the space
of orbits, is a surjective submersion.

(iii) P is locally trivial, i.e., for each point x ∈M there is a neighborhood U
of x such that P is locally a product U×G. More precisely, there exists a
diffeomorphism Φ : π−1 (U) → U ×G, such that Φ (u) = (π (u) , φ (u)),
where the map φ : π−1 (U) → G satisfies that

φ (ua) = φ (u) a, ∀u ∈ U, ∀a ∈ G.

Φ is called a trivialization on U .
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A principal bundle will be denoted by P (M,G), or simply π : P → M if
there is no ambiguity about to the structure group G. P is called the total
space, M is the base space, G is the structure group and π is the projection.
The closed submanifold π−1 (x), x ∈ M will be called the fibre over x. For
each point u ∈ P , we have π−1 (x) = uG, where π (u) = x, and uG will
be called the fibre through u. Every fibre is diffeomorphic to G, but this
diffeomorphism depends on the choice of the trivialization.

Definition 2. Given P (M,G) and P ′ (M ′, G′) principal bundles, a principal
bundle morphism from P (M,G) to P ′ (M ′, G′) consists of a differentiable
map Φ : P → P ′ and a Lie group homomorphism ϕ : G→ G′ such that

Φ (ua) = Φ (u)ϕ (a) , ∀u ∈ P, ∀a ∈ G.

Notice that, in this case, Φ maps fibres into fibres and it induces a
differentiable map φ : M → M ′ by the equality φ (x) = π (Φ (u)), where
u ∈ π−1 (x).
P (M,G) is said to be a subbundle of P ′ (M ′, G′) in case that the maps
characterizing the principal bundle morphism are embeddings. In such a
case, we can identify P with Φ (P ), G with ϕ (G) and M with φ (M).
Finally, a principal bundle morphism is called isomorphism if it can be
inverted by another principal bundle morphism.

Example 1. Given a manifold M and G a Lie group, we can consider M×G
as a principal bundle over M with projection pr1 :M×G→ M and structure
group G. The action is given by,

(x, a) b = (x, ab) , ∀x ∈M, ∀a, b ∈ G.

This principal bundle is called a trivial principal bundle.

Now, we will introduce an important example of principal bundle, the frame
bundle of a manifold. In order to do that, we will start with the following
definition.

Definition 3. Let M be a manifold. A linear frame at the point x ∈ M is
an ordered basis of TxM .
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Remark 1. Alternatively, a linear frame at x can be viewed as a linear
isomorphism z : Rn → TxM identifying a basis on TxM as the image of the
canonical basis of Rn by z.
There is a third way to interpret a linear frame by using the theory of jets.
Indeed, a linear frame z at x ∈ M may be considered as the 1-jet j10,xφ of
a local diffeomorphism φ from an open neighbourhood of 0 in R

n onto an
open neighbourhood of x in M such that φ (0) = x. So, z = T0φ.

♦

Thus, we denote by FM the set of all linear frames at all the points of M .
We can view FM as a principal bundle over M with the structure group
Gl (n,R) and projection πM : FM →M given by

πM
(

j10,xφ
)

= x, ∀j10,xφ ∈ FM.

This principal bundle is called the frame bundle on M . Let (xi) be a local
coordinate system on an open set U ⊆ M . Then we can introduce local
coordinates

(

xi, xij
)

over FU ⊆ FM such that

xij
(

j10,xφ
)

=
∂ (xi ◦ φ)

∂xj|0
. (1)

If ψ : N →M is a local diffeomorphism, we denote by Fψ : FN → FM the
local isomorphism induced from φ, and defined by

Fψ
(

j10,xφ
)

= j10,ψ(x) (ψ ◦ φ) .

We will denote by e1 the frame j10,0IdRn ∈ FRn, where IdRn is the identity
map on R

n. Let Ψ : FRn → FM be a local isomorphism of principal
bundles such that its domain contains e1, and whose induced isomorphism
on Lie groups is the identity, i.e.,

Ψ (z · g) = Ψ (z) · g, ∀z ∈ Dom (Ψ) ⊆ FRn, ∀g ∈ Gl (n,Rn) .

We denote by ψ : Rn → M the local diffeomorphism induced by Ψ, i.e.,

ψ ◦ πRn = πM ◦Ψ.

Notice that, j1e1,Ψ(e1)
Ψ can be identified with a linear frame at the point

Ψ (e1) since Te1Ψ : Te1 (FR
n) ∼= R

n+n2

→ TΨ(e1)FM is a linear isomorphism,
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and, therefore, the collection of all 1−jets j1e1,Ψ(e1)
Ψ, denoted by F

2
M , is

a submanifold of F (FM). Associated to this manifold, we may construct
three canonical projections π2

1, π̃
2
1 : F

2
M → FM and π2 : F

2
M → M given

by:

• π2
1

(

j1e1,Ψ(e1)
Ψ
)

= Ψ (e1)

• π̃2
1

(

j1e1,Ψ(e1)
Ψ
)

= j10,zψ.

• π2
(

j1e1,Ψ(e1)
Ψ
)

= ψ (0)

These projections are related as the following commutative diagram shows

FM
πM ✲

π2

❅
❅
❅
❅
❅
❅
❅❘

M

π2
1

❄

πM
❄

F
2
M

π̃2
1 ✲ FM

A direct computation shows that F
2
M is a principal bundle over FM with

canonical projection π2
1 and structure group,

G
2

1 (n) := {j1e1,e1Ψ ∈ F
2
R
n/ Ψ (e1) = e1} = π2

1

−1
(e1) .

Notice that G
2

1 (n) is a Lie subgroup of Gl (n + n2,R) acting on F
2
M by

composition of jets. We also have that F
2
M is a principal bundle over M

with canonical projection π2 and structure group

G
2
(n) := {j1e1,Ψ(e1)Ψ ∈ F

2
R
n/ ψ (0) = 0} = π2−1

(0) ,

which, again, acts on F
2
M by composition of jets. The principal bundle

F
2
M will be called the non-holonomic frame bundle of second order and

its elements will be called non-holonomic frames of second order. There
are more principal bundles defined over the 1−jets of local isomorphisms
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j1e1,Ψ(e1)
Ψ on FM (holonomic and semi-holonomic). To know about the

relations between them see [6].

By taking into account the coordinates defined on FM , given
a local coordinate system (xi) on an open set U ⊆ M ,
we can introduce local coordinates

(

xi, xij
)

over FU ⊆
FM and, hence, we can also introduce local coordinates
((

xi, xij
)

, xi,j, x
i
,jk, x

i
j,k, x

i
j,kl

)

over F (FU) such that

• xi,j
(

j1e1,ZΨ
)

=
∂ (xi ◦Ψ)

∂xj|e1

• xi,jk
(

j1e1,ZΨ
)

=
∂ (xi ◦Ψ)

∂xjk |e1

• xij,k
(

j1e1,ZΨ
)

=
∂
(

xij ◦Ψ
)

∂xk |e1

• xij,kl
(

j1e1,ZΨ
)

=
∂
(

xij ◦Ψ
)

∂xkl |e1

Thus, restricting to F
2
U we have that

• xi,jk = 0

• xij,kl = xikδ
j
l

Then, the induced coordinates on F
2
U are given by

((

xi, xij
)

, xi,j, x
i
j,k

)

(2)

in such a way that

• πM
(

xi, xij
)

= xi

• πFM
((

xi, xij
)

, xi,j, x
i
,jk, x

i
j,k, x

i
j,kl

)

=
(

xi, xij
)

• π2
1

((

xi, xij
)

, xi,j , x
i
j,k

)

=
(

xi, xij
)

• π2
((

xi, xij
)

, xi,j , x
i
j,k

)

= xi

• π̃2
1

((

xi, xij
)

, xi,j , x
i
j,k

)

=
(

xi, xi,j
)
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We will give here a very brief introduction on (Lie) groupoids and the relation
with (smooth) distributions which is crucial to understand the results proved
in this paper. For a detailed study we refer to [4] (see also [23, 22]). For
groupoids we recommend [29].

Definition 4. Let M be a set. A groupoid over M is given by a set
Γ equipped with the maps α, β : Γ → M (source map and target map
respectively), ǫ : M → Γ (section of identities), i : Γ → Γ (inversion
map) and · : Γ(2) → Γ (composition law). Here, Γ(k) denotes the k-tuplas
(g1, . . . , gk) ∈ Γ× k). . . ×Γ such that α (gi) = β (gi+1) for i = 1, . . . , k− 1. The
following properties are satisfied:

(1) α and β are surjective and for each (g, h) ∈ Γ(2),

α (g · h) = α (h) , β (g · h) = β (g) .

(2) Associativity of the composition law, i.e.,

g · (h · k) = (g · h) · k, ∀ (g, h, k) ∈ Γ(3).

(3) For all g ∈ Γ,
g · ǫ (α (g)) = g = ǫ (β (g)) · g.

In particular,
α ◦ ǫ ◦ α = α, β ◦ ǫ ◦ β = β.

(4) For each g ∈ Γ,

i (g) · g = ǫ (α (g)) , g · i (g) = ǫ (β (g)) .

Then,
α ◦ i = β, β ◦ i = α.

These maps (α, β, ǫ, i, and ·) will be called the structure maps. We will
denote this groupoid by Γ ⇒ M .

Observe that, since α and β are surjective we get

α ◦ ǫ = IdM , β ◦ ǫ = IdM ,
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where IdM is the identity at M .
Sometimes M is denoted by Γ(0) and it is identified with the set ǫ (M) of
identities of Γ. Γ is also denoted by Γ(1). The elements of M are called objects
and the elements of Γ are called morphishms. The map (α, β) : Γ →M ×M
is called the anchor map and the space of sections of the anchor map is
denoted by Γ(α,β) (Γ). Finally, for each g ∈ Γ the element i (g) is denoted by
g−1.
Roughly speaking, a groupoid may be depicted as a set of “arrows” (Γ) joining
points (M), in such a way that any two arrows may composed if the ending
point of one coincides with the starting point of the other. Then, assuming
natural conditions derived of the properties of a composition in a group, we
get the definition of groupoid.

Example 2. A group G is a groupoid over a point and the operation law of
the groupoid, ·, is the operation in G.

Next, let us describe the crucial example of groupoid for the purpose of this
paper.

Example 3. Let A be a vector bundle on a manifold M . Denote by Az,
the fibre of A over a z ∈ M . Then, the set Φ (A), consisting of all linear
isomorphisms Lx,y : Ax → Ay for any x, y ∈ M , may be endowed with the
structure of groupoid with structure maps,

(i) α (Lx,y) = x

(ii) β (Lx,y) = y

(iii) Ly,z ·Gx,y = Ly,z ◦Gx,y, Ly,z : Ay → Az, Gx,y : Ax → Ay

We will call this groupoid as the frame groupoid on A.
A relevant case is the 1-jets groupoid on M and it arises when A is the
tangent bundle TM of M . This groupoid is denoted by Π1 (M,M). Notice
that any isomorphism Lx,y : TxM → TyM may be written as a 1−jet j1x,yψ
of a local diffeomorphism ψ from M to M . Recall that the 1−jet j1x,yψ may
be identified with the tangent map Txψ : TxM → TyM (see [34] for details).

Definition 5. A subgroupoid of a groupoid Γ ⇒ M is a groupoid Γ′ ⇒

M ′ such that M ′ ⊆ M , Γ′ ⊆ Γ and the the structure maps of Γ′ are the
restrictions of the structure maps of Γ.

Notice that the composition law of a subgroupoid is the same as that of the

12



correspondent groupoid.

Definition 6. Let Γ ⇒M be a groupoid with α and β the source map and
target map, respectively. For each x ∈M , the set

Γxx = β−1 (x) ∩ α−1 (x) ,

is called the isotropy group of Γ at x. The set

O (x) = β
(

α−1 (x)
)

= α
(

β−1 (x)
)

,

is called the orbit of x, or the orbit of Γ through x.

Observe that the isotropy groups inherit a bona fide group structure.

Definition 7. If O (x) = M for all x ∈ M (or equivalently (α, β) : Γ →
M ×M is a surjective map) the groupoid Γ ⇒ M is called transitive. The
sets,

α−1 (x) = Γx, β−1 (x) = Γx,

are called α−fibre at x and β−fibre at x, respectively. We will denote

Γyx = Γx ∩ Γy,

for all x, y ∈M .

Definition 8. Let Γ ⇒M be a groupoid. We may define the left translation
by g ∈ Γ as the map Lg : Γα(g) → Γβ(g), given by

h 7→ g · h.

We may define the right translation by g, Rg : Γβ(g) → Γα(g), analogously.

Note that, the identity map on Γx may be written as the following translation
map,

IdΓx = Lǫ(x). (3)

For any g ∈ Γ, the left (resp. right) translation on g, Lg (resp. Rg), is a
bijective map with inverse Lg−1 (resp. Rg−1).
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Definition 9. A Lie groupoid is a groupoid Γ ⇒M such that Γ is a smooth
manifold, M is a smooth manifold and the structure maps are smooth.
Furthermore, the source and the target map are submersions.
A Lie subgroupoid of Γ ⇒ M is a Lie groupoid Γ′ ⇒ M ′ such that it is a
subgroupoid of Γ satisfying that Γ′ and M ′ are submanifolds of Γ and M
respectively.

As first example, any Lie group G is a Lie groupoid (see example 2).

Example 4. The frame groupoid Φ (A) on a vector bundle A (see example
3) is a Lie groupoid . Let us consider two local coordinates, (xi) and (yj),
on open neighbourhoods U, V ⊆ M , respectively, and two local basis of
sections of AU and AV , {αp} and {βq}, respectively. The correspondent local
coordinates (xi ◦ π, αp) and (yj ◦ π, βq) on AU and AV are given by

• For any a ∈ AU ,
a = αp (a)αp

(

xi (π (a))
)

.

• For any a ∈ AV ,
a = βq (a) βq

(

yj (π (a))
)

.

Then, we can construct a local coordinate system on Φ (A)

Φ (AU,V ) :
(

xi, yji , y
j
i

)

,

where, AU,V = α−1 (U) ∩ β−1 (V ) and for each Lx,y ∈ α−1 (x) ∩ β−1 (y) ⊆
α−1 (U) ∩ β−1 (V ), we have

• xi (Lx,y) = xi (x).

• yj (Lx,y) = yj (y).

• yji (Lx,y) = ALx,y
, where ALx,y

is the associated matrix to the induced
map of Lx,y using the local coordinates (xi ◦ π, αp) and (yj ◦ π, βq).

In the particular case of the 1−jets groupoid on M , Π1 (M,M), the local
coordinates will be denoted as follows

Π1 (U, V ) :
(

xi, yj, yji
)

, (4)

where, for each j1x,yψ ∈ Π1 (U, V )
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• xi
(

j1x,yψ
)

= xi (x).

• yj
(

j1x,yψ
)

= yj (y).

• yji
(

j1x,yψ
)

=
∂ (yj ◦ ψ)

∂xi|x
.

Example 5. Let π : P →M be a principal bundle with structure group G.
Denote by φ : P ×G→ P the action of G on P .
Now, suppose that Γ ⇒ P is a Lie groupoid, with φ : Γ×G→ Γ a free and
proper action of G on Γ such that, for each h ∈ G, the pair

(

φh, φh
)

is an
isomorphism of Lie groupoids, i.e.,

αΓ

(

φh (g)
)

= φh (αΓ (g)) , βΓ
(

φh (g)
)

= φh (βΓ (g)) ,

where αΓ and βΓ are the source and the target map of Γ ⇒ P , and preserves
the composition, i.e.,

φh (g1 · g2) = φh (g1) · φh (g2) , ∀ (g1, g2) ∈ Γ(2).

Then, we can construct a Lie groupoid Γ/G⇒M such that the source map,
α, and the target map, β, are given by

β ([g]) = π (βΓ (g)) , α ([g]) = π (αΓ (g)) ,

for all g ∈ Γ, and [·] denotes the equivalence class in the quotient space Γ/G.
These kind of Lie groupoids are called quotient Lie groupoids by the action
of a Lie group.

Next, as an important example, we will introduce the second-order
non-holonomic groupoid.

Let M be a manifold and FM the frame bundle over M . So, we can
consider the 1−jets groupoid on FM , Π1 (FM,FM) ⇒ FM .
Thus, we denote by J1 (FM) the subset of Π1 (FM,FM) given by the
1−jets j1

X,Y
Ψ of local automorphism Ψ of FM such that

Ψ (v · g) = Ψ (v) · g, ∀v ∈ Dom (Ψ) , ∀g ∈ Gl (n,R) .

Let (xi) and (yj) be local coordinate systems over two open sets U, V ⊆ M ,
the induced coordinate systems over FM are denoted by

FU :
(

xi, xij
)

15



FV :
(

yj, yji
)

.

Hence, we can construct induced coordinates over Π1 (FM,FM)

Π1 (FU, FV ) = (α, β)−1 (U, V ) :
((

xi, xij
)

,
(

yj, yji
)

, yj,i, y
j
,ik, y

j
i,k, y

j
i,kl

)

,

where for each j1
X,Y

Ψ ∈ Π1 (FU, FV ), we have

• xi
(

j1
X,Y

Ψ
)

= xi
(

X
)

• xij

(

j1
X,Y

Ψ
)

= xij
(

X
)

• yj
(

j1
X,Y

Ψ
)

= yj
(

Ψ
(

X
))

• yji

(

j1
X,Y

Ψ
)

= yji
(

Ψ
(

X
))

• yj,i

(

j1
X,Y

Ψ
)

=
∂ (yj ◦Ψ)

∂xi
|X

• yj,ik

(

j1
X,Y

Ψ
)

=
∂ (yj ◦Ψ)

∂xik |X

• yji,k

(

j1
X,Y

Ψ
)

=
∂
(

yji ◦Ψ
)

∂xk |X

• yji,kl

(

j1
X,Y

Ψ
)

=
∂
(

yji ◦Ψ
)

∂xkl |X

Then, using these coordinates, J1 (FM) can be described as follows:

J1 (FU, FV ) = J1 (FM) ∩ (α, β)
−1

(U, V ) :
(

(

xi, xi
j

)

,
(

yj , y
j
i

)

, y
j
,i, 0, y

j
i,k, y

j
i,kl

)

,

where

yji,kl =

(

∑

m

yjm
(

x−1
)m

k

)

δil .

Thus, J1 (FM) is a submanifold of Π1 (FM,FM) and its induced local
coordinates will be denoted by

J1 (FU, FV ) :
((

xi, xij
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

. (5)
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Finally, restricting the structure maps we can ensure that J1 (FM) ⇒ FM
is a Lie subgroupoid of the 1−jets groupoid over FM .
We may now construct j1 (FM) as the set of the 1−jets of the form j1X,Y Fψ,
where ψ : M → M is a local diffeomorphism. Let (xi) be a local coordinate
system on M ; then, restricting the induced local coordinates given in Eq. (5)
to j1 (FM) we have that

yji = yj,lx
l
i ; yji,k = yjk,i.

We deduce that j1 (FM) ⇒ FM is a reduced Lie subgroupoid of the 1−jets
groupoid over FM and we denoted the coordinates on j1 (FM) by

j1 (FU, FV ) :
((

xi, xij
)

,
(

yj, yji
)

, yji,k
)

, yji,k = yjk,i. (6)

Now, we will work with a quotient space of J1 (FM) (resp. j1 (FM))
which will be our non-holonomic groupoid of second order (resp. holonomic
groupoid of second order).

We consider the following right action of Gl (n,R) over J1 (FM),

Φ : J1 (FM)×Gl (n,R) → J1 (FM)
(

j1
X,Y

Ψ, g
)

7→ j1
X ·g,Y ·g

Ψ.
(7)

Thus, for each g ∈ Gl (n,R) the pair (Φg, Rg) (where R is the natural right
action of Gl (n,R) over FM) is a Lie groupoid automorphism. Therefore, we
can consider the quotient Lie groupoid by this action J̃1 (FM) ⇒ M which
is called second-order non-holonomic groupoid over M .
We will denote the structure maps of J̃1 (FM) by α and β (source and target
maps respectively), ǫ (identities map) and i (inversion map). The elements
of J̃1 (FM) are denoted by j1x,yΨ with x, y ∈ M and α

(

j1x,yΨ
)

= x and
β
(

j1x,yΨ
)

= y.
Then, the induced local coordinates are given by

J̃1 (FU, FV ) =
(

α, β
)−1

(U, V ) :
((

xi
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

. (8)

Considering e1x as the 1−jet through x ∈ M which satisfies that xij (e1x) = δij
for all i, j, for each j1x,yΨ ∈ J̃1 (FM) we have

• xi
(

j1x,yΨ
)

= xi (x)
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• yj
(

j1x,yΨ
)

= yj (y)

• yji
(

j1x,yΨ
)

= yji (Ψ (e1x)).

• yj,i
(

j1x,yΨ
)

=
∂ (yj ◦Ψ)

∂xi|x

• yji,k
(

j1x,yΨ
)

=
∂
(

yji ◦Ψ
)

∂xk |e1x

Observe that we can restrict the action Φ to an action of Gl (n,R) over
j1 (FM). So, by quotienting, we can build a reduced subgroupoid of
J̃1 (FM) ⇒M which is denoted by j̃1 (FM) ⇒ M and is called second-order
holonomic groupoid over M . Finally, by restriction, the local coordinates on
j1 (FM) are given by

j̃1 (FU, FV ) :
((

xi
)

,
(

yj, yji
)

, yji,k
)

, yji,k = yjk,i. (9)

Denote the structure maps of the holonomic groupoid over M j̃1 (FM) by
α̃, β̃, ǫ̃ and ĩ.
Finally, let us define two projections Π

2

1 and Π̃2
1 from the non-holonomic

groupoid J̃1 (FM) of second order, to the 1−jets groupoid Π1 (M,M), as
follows,

Π
2

1 : J̃1 (FM) → Π1 (M,M)

j1x,yΨ 7→ Ψ
(

X
)

[X
−1
]

where X ∈ FM is a frame at x. It is easy to show that Π
2

1 is well-defined
and, locally,

Π
2

1

((

xi
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

=
(

xi, yj, yji
)

.

On the other hand we consider

Π̃2
1 : J̃1 (FM) → Π1 (M,M)

j1x,yΨ 7→ j1x,yψ

where ψ is the induced map of Ψ over M . Then, locally

Π̃2
1

((

xi
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

=
(

xi, yj, yj,i
)

.

Notice that Π
2

1 and Π̃2
1 are, indeed, Lie groupoid morphims over the identity

map on M (see [29]).
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Let us consider,

g =
((

zi
)

,
(

yj, gji
)

, gj,i, g
j
i,k

)

, F =
((

xi
)

,
(

zj , F j
i

)

, F j
,i, F

j
i,k

)

∈ J̃1 (FB)

Then,

g · F =
((

xi
)

,
(

yj, gjmF
m
i

)

, gj,mF
m
,i , g

j
r,mF

r
i F

m
,k + gjmF

m
i,k

)

Hence, the left-translation by g is given by,

((

xi
)

,
(

yj, gjmy
m
i

)

, gj,my
m
,i , g

j
r,my

r
i y

m
,k + gjmy

m
i,k

)

(10)

Thus, the induced tangent map is characterized by the following equilities:

i)

TLg

(

∂

∂xi

)

=
∂

∂xi

ii)

TLg

(

∂

∂yji

)

= gmj
∂

∂ymi
+ glj,my

m
,r

∂

∂yli,r

iii)

TLg

(

∂

∂yj,i

)

= gm,j
∂

∂ym,i
+ gln,jy

n
r

∂

∂ylr,i

iii)

TLg

(

∂

∂yji,k

)

= gmj
∂

∂ymi,k

These equalities will be useful in what follows.

It could rise the situation in which we need to work with a (non necessarily
Lie) subgroupoid of a Lie groupoid. To deal with this case, we have the
so-called characteristic distribution [4, 23].
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Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid of Γ (not necessarily
a Lie subgroupoid of Γ) over the same manifold M . We will denote by α, β,
ǫ and i the restrictions of the structure maps α, β, ǫ and i of Γ to Γ (see the
diagram below)

Γ Γ

M

j

where j is the inclusion map. Now, we can construct a distribution AΓ
T

over
the manifold Γ in the following way,

g ∈ Γ 7→ AΓ
T

g ≤ TgΓ,

such that AΓ
T

g is the fibre of AΓ
T

at g and it is generated by the (local)
left-invariant vector fields Θ ∈ Xloc (Γ) whose flow at the identities is totally
contained in Γ, i.e.,

(i) Θ is tangent to the β−fibres,

Θ (g) ∈ Tgβ
−1 (β (g)) ,

for all g in the domain of Θ.

(ii) Θ is invariant by left translations,

Θ (g) = Tǫ(α(g))Lg (Θ (ǫ (α (g)))) ,

for all g in the domain of Θ.

(iii) The (local) flow ϕΘ
t of Θ satisfies

ϕΘ
t (ǫ (x)) ∈ Γ,

for all x ∈M .

Notice that, for each g ∈ Γ, the zero vector 0g ∈ TgΓ is contained in the fibre

of the distribution at g, namely AΓ
T

g . On the other hand, it is easy to prove
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that a vector field Θ satisfies conditions (i) and (ii) if, and only if, its local
flow ϕΘ

t is left-invariant or, equivalently,

Lg ◦ ϕ
Θ
t = ϕΘ

t ◦ Lg, ∀g, t.

Then, taking into account that all the identities are in Γ (because it is a
subgroupoid of Γ), condition (iii) is equivalent to the following,

(iii)’ The (local) flow ϕΘ
t of Θ at g is totally contained in Γ, for all g ∈ Γ.

Thus, we are considering the left-invariant vector fields on Γ whose integral
curves are confined inside or outside Γ. It is also remarkable that, by
construction, this distribution is differentiable, i.e., for each point x and
for any vector vx of the distribution at x there exists a (local) vector field Θ
tangent to the distribution such that,

Θ (x) = vx.

The distribution AΓ
T

is called the characteristic distribution of Γ. For the
sake of simplicity, we will denote the family of the vector fields which satisfy
conditions (i), (ii) and (iii) by C. The local vector fields of C will be called
admissible vector fields for the couple

(

Γ,Γ
)

.
The structure of groupoid permits us to construct two more new objects
associated to the distribution AΓ

T
. The first one is a smooth distribution

over the base M denoted by AΓ
♯
, called base-characteristic distribution.

The second one is a “differentiable” correspondence AΓ which associates
to any point x of M a vector subspace of Tǫ(x)Γ. Both constructions are
characterized by the commutativity of the following diagram

Γ P (TΓ)

M P (TM)

AΓ
T

Tαǫ

AΓ
♯

AΓ

where P (E) defines the power set of E. Therefore, for each x ∈ M , the
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fibres satisfy that

AΓx = AΓ
T

ǫ(x)

AΓ
♯

x = Tǫ(x)α
(

AΓx
)

It is remarkable that all the distributions introduced are not, necessarily,
regular.
Notice that, taking into account that AΓ

T
is locally generated by

left-invariant vector field, we have that for each g ∈ Γ,

AΓ
T

g = Tǫ(α(g))Lg

(

AΓ
T

ǫ(α(g))

)

,

i.e., the characteristic distribution is left-invariant.

To summarize, associated to Γ we have three differentiable objects AΓ,
AΓ

T
and AΓ

♯
. Now, we will study how these objects endow Γ with a sort

of “differentiable” structure. In particular, by using the Stefan-Sussman’s
theorem [36, 35] which deals with the integrability of singular distributions,
we may prove the following result:

Theorem 1. Let Γ ⇒M be a Lie groupoid and Γ be a subgroupoid of Γ (not
necessarily a Lie groupoid) over M . Then, the characteristic distribution and
the base characteristic distribution are integrable by the foliations F and F ,
respectively. Furthermore, Γ is a union of leaves of F .

F and F are called characteristic foliation and base-characteristic foliation,
respectively. Observe that,

(i) For each g ∈ Γ,
F (g) ⊆ Γβ(g).

Indeed, if g ∈ Γ, then

F (g) ⊆ Γ
β(g)

.

(ii) For each g, h ∈ Γ such that α (g) = β (h), we have

F (g · h) = g · F (h) .
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It is remarkable that property (i) means that each leaf of the foliation F

which integrates AΓ
T

is contained in just one β−fibre, i.e., for each g ∈ Γ
the leaf F (g) satisfies that

β (h) = β (g) ,

for all h ∈ F (g). Notice also that, one could expect that F (g) = Γ
β(g)

but
this is not true in general.
Observe that, any vector field Θ on Γ, may be projected onto a vector field
Θ♯ on M by the following identity:

Θ♯ (x) = Tǫ(X)α (Θ (ǫ (X))) , ∀x ∈M

In fact, any admissible vector field Θ for the couple
(

Γ,Γ
)

projects into a
vector field Θ♯ tangent to base-characteristic foliation F .
As a complementary result, we may prove the following condition of
maximality [4, 23].

Proposition 2. Let G be a foliation of Γ such that Γ is a union of leaves of
G and

G (g) ⊆ Γβ(g), ∀g ∈ Γ.

Then, the characteristic foliation F is coarser that G, i.e.,

G (g) ⊆ F (g) , ∀g ∈ Γ.

Observe that, without assuming that Γ is a manifold, Theorem 1 and
Proposition 2 prove that Γ may be divided into a maximal union of leaves
of a foliation of Γ, i.e., Γ may be divided into “differentiable” parts in a
maximal way. This gives us some kind of “differentiable” structure over Γ.

Let us now construct an algebraic structure of a groupoid over the leaves
of F . We will consider the minimal transitive groupoid Γ (F (x)) generated
by F (ǫ (x)). This groupoid is, in fact, generated by imposing that for all
g, h ∈ F (ǫ (x)) [4],

g, g−1, h
−1

· g ∈ Γ (F (x)) .

Indeed, it is satisfies that,

Γ (F (x)) = ⊔g∈F(ǫ(x))F (ǫ (α (g))) , (11)
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i.e., Γ (F (x)) can be depicted as a disjoint union of fibres at the identities.
Observe that the β−fibre of this groupoid at a point y ∈ F (x) is given by
F (ǫ (y)). Hence, the α−fibre at y is

F
−1

(ǫ (y)) = i ◦ F (ǫ (y)) .

Furthermore, the Lie groups F (ǫ (y))∩Γy are exactly the isotropy groups of
Γ (F (x)). All these results imply the following one ([23]):

Theorem 3. For each x ∈ M there exists a transitive Lie subgroupoid
Γ (F (x)) of Γ with base F (x).

Thus, in fact, we have divided the manifold M into leaves F (x) which have
a maximal structure of transitive Lie subgroupoids of Γ.

As a particular consequence we have that: Γ is a transitive Lie subgroupoid
of Γ if, and only if, M = F (x) and Γ = Γ (F (x)) for some x ∈M .

3 Cosserat Media

Here, we will give a very brief introduction of a model for materials with
internal structure called Cosserat media ([3, 15]).
Let us start with the so-called simple materials. A body B is modelized as
a three-dimensional differentiable manifold and each point X ∈ B is called
material particle or material point. The material points will be written using
capital letters (X, Y, Z, . . . ).
An embedding φ : B → R

3 is called a configuration of B. The 1−jet j1X,φ(X)φ
of a configuration φ at X ∈ B is called an infinitesimal configuration at X.
The points x ∈ φ (B) ⊆ R

3 are called spatial particles or spatial points and
they will be denoted by lowercase letters (x, y, z, . . . ).
We usually assume the existence of one of its configurations, say φ0,
called reference configuration, which is used to identify the body with an
open subset of R

3. Given any arbitrary configuration φ, the change of
configurations κ = φ ◦ φ−1

0 is called a deformation, and its 1−jet j1φ0(X),φ(X)κ

is called an infinitesimal deformation at φ0 (X). Coordinates generated by
the reference configuration will be denoted by capital letters XI , while any
other coordinates will be denoted by lowercase letters xi.
For elastic simple bodies, the material is completely characterized by one
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function W which depends, at each material particle X ∈ B, on the gradient
of the deformation evaluated at the point. Thus, W is defined (see [11]) as a
differentiable map

W : B ×Gl (3,R) → V, (12)

where V is a real vector space. In general, V will be the space of stress tensors
[28]. In fact, the contact forces at a particle X, in a given configuration φ, are
characterized by a symmetric second-order tensor TX,φ on R

3, which is called
the stress tensor. Then, the mechanical response is given by the following
equation:

W (X,F ) = TX,φ,

where F is the 1−jet at φ0 (X) of φ ◦ φ−1
0 . Another equivalent way of

considering W is as a differentiable map

W : Π1 (B,B) → V,

by taking the associated matrix of the 1−jets j1φ0(X),φ0(Y )

(

φ0 ◦ φ ◦ φ−1
0

)

for
each j1X,Y φ ∈ Π1 (B,B).

The picture describing the internal structure if a Cosserat medium is a little
bit more complicated. In particular, the continuum will be endowed with the
extra kinematic degrees of freedom provided by three independent deformable
vectors attached at each material particle. So, a Cosserat medium will be
modelized by the linear frame bundle FB of a body B. B is usually called
the macromedium or underlying body. With some abuse of notation, we shall
call B the Cosserat continuum. Elements of FB will be denoted by overlined
capital letters (X, Y , Z, . . . ) and the elements of FR3 will be denoted by
overlined lowercase letters (x, y, z, . . . ).
A configuration of a Cosserat medium FB is an embedding Ψ : FB → FR3 of
principal bundles such that the induced Lie group morphism ψ̃ : Gl (3,R) →
Gl (3,R) is the identity map. Hence Ψ satisfies

Ψ
(

X · g
)

= Ψ
(

X
)

· g, ∀X ∈ FB, ∀g ∈ Gl (3,R) .

Notice that, Ψ induces an embedding ψ : B → R
3 verifying

πR3 ◦Ψ = ψ ◦ πB.
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In particular, ψ is an embedding of the macromedium B in R
3. Furthermore,

it satisfies that the subbundle Ψ (FB) of FR3 is just the frame bundle of
ψ (B), i.e.,

Ψ (FB) = Fψ (B) .

Since we are dealing with equivariants embedding, we can consider
equivalence classes of the 1−jets j1

X,Ψ(X)
Ψ according to the action (7). So,

the equivalence class of an 1−jet j1
X,Ψ(X)

Ψ, which is denoted by j1X,ψ(X)Ψ

like in the non-holonomic groupoid of second order, is called an infinitesimal
configuration at X. We usually identify the Cosserat medium with a
configuration, say Ψ0 : FB → FR3, and we denote by ψ0 the induced map
of Ψ0. Ψ0 is called reference configuration. Given any configuration Ψ, the
change of configuration κ̃ = Ψ ◦Ψ−1

0 is called a deformation, and its class of
1−jets j1ψ0(X),ψ(X)κ̃ is called an infinitesimal deformation at ψ0 (X). Notice
that the induced map of κ̃, is given by κ = ψ ◦ ψ−1

0 .
From now on we make the following identification: FB ∼= Fψ0 (B).
Our assumption is that the material is completely characterized by one
differentiable function W : J̃1 (FB) → V over a vector space V . This map
measures, for instance, the stored energy per unit mass and, again, we will
call this function response functional or mechanical response. Notice that,
by trivializing with the reference configuration, this map may be written

as a differentiable map W
(

X, F̃
)

depending on the particles X on the

macromedium and the Jacobian matrix F̃ of the (local) isomorphisms from
FR3 to FR3.

Now, suppose that an infinitesimal neighbourhood of the material around
the point Y can be turned into a neighbourhood of X such that the
transformation cannot be detected by any mechanical experiment. If this
condition is satisfied with every material particle X of B, the body is said
uniform. We may express this physical property in a geometric way as
follows.

Definition 10. A Cosserat continuum B is said to be uniform if for each two
points X, Y ∈ B there exists a local principal bundle isomorphism over the
identity map on Gl (3,R), Ψ, from FU ⊆ FB with X ∈ U to FV ⊆ FB with
Y ∈ V , where U and V are open neighbourhood of M , such that ψ (X) = Y
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and
W
(

j1Y,φ(Y )Φ ◦ j1X,YΨ
)

=W
(

j1Y,φ(Y )Φ
)

, (13)

for all infinitesimal configuration j1Y,φ(Y )Φ.

1−jets j1X,YΨ satisfying Eq. (13) will be called material isomorphisms from
X to Y and will be relevant for the sequel. Two material points X, Y will be
called materially isomorphic if there exists a material isomorphism from X
to Y . Notice that the relation of “materially isomorphic” is an equivalence
relation.
By composing the reference configuration with the material isomorphism, we
may prove the following result:

Proposition 4. Let FB be a Cosserat material. Two body particles X and Y
are materially isomorphic if, and only if, there exist two (local) configurations
Ψ1 and Ψ2 such that

W1

(

X, F̃
)

= W2

(

Y, F̃
)

, ∀F̃ ,

where Wi is the mechanical response associated to Ψi for i = 1, 2, and

This result provides us an intuition behind the notion of material
isomorphism. In fact, two particles will be made of the same material if the
mechanical response is the same under the action of two (possibly different)
reference configurations.
For any two particles X and Y , we will denote by G (X, Y ) the collection of
all 1−jets j1X,YΨ which satisfy Eq. (13). So, the set Ω (B) = ∪X,Y ∈BG (X, Y )
can be considered as a groupoid over B which is, indeed, a subgroupoid
of the second-order non-holonomic groupoid J̃1 (FB). So, as an abuse of
notation, we will denote the structure maps of Ω (B) using the same symbols
used for the structure maps of J̃1 (FB). We will also denote α−1 (X) (resp.

β
−1

(X)) by ΩX (B) (resp. Ω
X
(B)). Ω (B) is said to be the second-order

non-holonomic material groupoid of B.

Definition 11. Given a material point X ∈ B a material symmetry at X
is a class of 1−jets j1X,XΨ, where Ψ is a local automorphism at X over the
identity map on Gl (3,R), which satisfies Eq. (13).

We denote by G (X) the set of all material symmetries which is, indeed, the
isotropy group of Ω (B) at X (see Definition 5). So, the following result is
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obvious.

Proposition 5. Let B be a Cosserat continuum. B is uniform if, and only
if, Ω (B) is a transitive subgroupoid of J̃1 (FB).

Observe that the Ω (B) does not necessarily have a stucture of Lie groupoid.
Indeed, notice that the definition of uniformity is a pointwise property. In
fact, consider a uniform Cosserat body FB and a fixed particle X0, for any
other particle Y we may choose a material isomorphism from Y to X0, say
P (Y ). So, we can construct a map P : B → J̃1 (FB) consisting of material
isomorphisms. Nevertheless, P does not have to be differentiable. In other
words, even when the Cosserat manifold is uniform, the choice of the material
isomorphisms is not, necessarily, smooth.

Definition 12. A body B is said to be smoothly uniform if for each material
point X ∈ B there is a neighbourhood U around X and a smooth map
P : U → J̃1 (FB) such that for all Y ∈ U it satisfies that P (Y ) is a material
isomorphism from Y to X. The map P is called a left (local) smooth field
of material isomorphisms at X. A right (local) smooth field of material
isomorphisms at X will be a smooth map P : U → J̃1 (FB) such that for all
Y ∈ U it satisfies that P (Y ) is a material isomorphism from X to Y .

Assume that P is a right (local) smooth field of material isomorphisms at a
material point T . Then, P generates a smooth section P of the anchor map
(

α, β
)

of Ω (B) in the following way,

P (X, Y ) = P (Y )
[

P (X)−1] (14)

The converse is also true. In other words, any smooth section P of the anchor
map

(

α, β
)

of Ω (B), generates a right smooth field of material isomorphisms
(and a left smooth field of material isomorphisms) satisfying Eq. (14). Notice
that, here, the word section has a categorical meaning ; in fact, these sections
should satisfy that

P (Z, Y ) · P (X,Z) = P (X, Y ) , ∀X, Y, Z ∈ B.

The smooth sections P of the anchor map
(

α, β
)

will be called smooth field
of material isomorphisms.
On the other hand, we may define a map

W
(

j1T,φ(T )Φ
)

=W
(

j1T,φ(T )Φ
)

,
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on the space of the 1−jets of local diffeomorphisms Φ at a fixed material
point T . We have that, for any 1−jet j1Y,ψ(Y )Ψ

W
(

j1Y,ψ(Y )Ψ
)

=W
(

j1Y,ψ(Y )Ψ ◦ ·P (Y )
)

= W
(

j1Y,ψ(Y )Ψ · P (Y )
)

(15)

The meaning of Eq. (15) is that the dependence of the mechanical
response (near to a material particle) of the body coordinates is given by
a multiplication of j1Y,ψ(Y )Ψ to the right by a right smooth field of material
isomorphisms.

So, we may prove the following result,

Proposition 6. Let B be a Cosserat continuum. B is smoothly uniform if,
and only if, Ω (B) is a transitive Lie subgroupoid of J̃1 (FB).

In [24], authors assume that Ω (B) is in fact a Lie subgroupoid to
characterized properties like uniformity and homogeneity. Here, we will not
assume this fact and, to deal with this problem, we refer to the characteristic
distributions [23, 4].

Let us present a particular case of this model, the so-called second-grade
elastic materials [5]. In this case, it is assumed that the material response
of the body B (see Eq. (12)) not only depend on the first derivative of
the configuration, but on both the first and the second gradient of the
deformation. In other words, the mechanical response of a second-grade
material is given by a differentiable map

W : j̃1 (FB) → V

over a vector space V , where j̃1 (FB) is the second-order holonomic groupoid
over B (see Eq. (9)).

Remark 2. Let FB be a Cosserat medium, whose mechanical response is given
by W : J̃1 (FB) → V . Then, taking into account that, the second-order
holonomic groupoid j̃1 (FB) is a Lie subgroupoid of the second-order
non-holonomic groupoid J̃1 (FB), we may restrict W into a differentiable
map W : j̃1 (FB) → V .
Thus, one could think that any Cosserat material may be studied as a
second-grade material. However, due to the map W encoded all the internal
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properties of the material, we may lose information with the restriction. So,
the following question arise: How to ensure that the restriction does not
induce a “loss of information”. To answer this question, we refere to [18]. ♦

Let B be a Cosserat medium, with W as mechanical response. According
with the article [18], we will say that B is a second-grade material, if all the
material isomorphisms are natural prolongations to the frame bundle of the
induced diffeomorphisms on the basis, i.e., all the material isomorphisms are
1−jets j1X,Y Fψ, where ψ is a local diffeomorphism on the body B.

Let us consider the set Ω (B) of 1−jets j1X,Y Fψ satisfying Eq. (13), for a local
diffeomorphism ψ : B → B. In other words, Ω (B) is the set of all material
isomorphisms which are natural prolongations of local diffeomorphisms. It
satisfies that Ω (B) has the structure of subgroupoid of the second-order
holonomic groupoid over B, j̃1 (FB). It is also true that Ω (B) is a
subgroupoid of the second-order non-holonomic material groupoid, Ω (B).
In fact,

Ω (B) = Ω (B) ∩ j̃1 (FB) (16)

Ω (B) is called second-order holonomic material groupoid. Therefore, for
any Cosserat material, there always are two canonically defined groupoids,
Ω (B) and Ω (B), which are useful to study the constitutive properties of the
material. In fact, we may use them to differenciate between second-grade
material and bona-fide Cosserat materials.

Proposition 7. Let B be a Cosserat medium, with W as mechanical
response. Then, B is a second-grade material if, and only if,

Ω (B) = Ω (B)

4 Cosserat characteristic distributions

Let FB be a Cosserat medium, whose mechanical response is given by
W : J̃1 (FB) → V . Then, we have constructed two canonically defined
groupoids, Ω (B) and Ω (B), which are subgroupoids of the Lie groupoid
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J̃1 (FB). However, these two groupoids do not have to be Lie subgroupoids of
J̃1 (FB) and, therefore, we are facing a framework in which the characteristic
distributions may be constructed.

The characteristic distribution AΩ (B)T of the non-holonomic material
groupoid of second order will be called the non-holonomic material
distribution of second-order. On the other hand, the base-characteristic
distribution AΩ (B)♯ will be called the non-holonomic body-material
distribution of second order.

Let Θ be an admissible vector field for the couple
(

J̃1 (FB) ,Ω (B)
)

, i.e., its

(local) flow ΨΘ
t (ǫ (X)) at the identity ǫ (X) = j1X,XIdFB, where IdFB is the

identity over FB, satisfies that

ΨΘ
t (ǫ (X)) ⊆ Ω (B)

for all X ∈ B and t in the domain of the flow at ǫ (X). Therefore, for any
g ∈ J̃1 (FB) s, we have

TW (Θ (g)) =
∂

∂t|0

(

W
(

ΨΘ
t (g)

))

=
∂

∂t|0

(

W
(

g ·ΨΘ
t (ǫ (α (g)))

))

=
∂

∂t|0
(W (g)) = 0.

Hence, we have that
TW (Θ) = 0 (17)

The converse is proved in a similar way. Therefore, although the construction
of the characteristic distribution is quite abstract, in the case of a Cosserat
material this distribution may be completely described and calculated
following Eq. (17). In fact, let us consider a (local) left-invariant vector
field Θ on J̃1 (FB). Therefore, we have

Θ = Θi ∂

∂xi
+Θj

i

∂

∂yji
+Θj

,i

∂

∂yj,i
+Θj

i,k

∂

∂yji,k

Then, by using that Θ is left-invariant and Eq. (10), the local expression of
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Θ may be written as,

Θ = Θi ∂

∂xi
+ yjlΘ

l
i

∂

∂yji
+ yj,lΘ

l
,i

∂

∂yj,i
+
[

yjl,kΘ
l
i + yji,lΘ

l
,k + yjlΘ

l
i,k

] ∂

∂yji,k

where all the functions Θi, Θi
j, Θ

i
,j, and Θi

j,k depend on the material points
of the body manifold B (which are given by α (g), when the vector field
is evaluated on g). Thus, Θ is an admissible vector field for the couple
(

J̃1 (FB) ,Ω (B)
)

if, and only if,

−Θi∂W

∂xi
+Θl

i

[

y
j
l

∂W

∂y
j
i

+ y
j
l,k

∂W

∂y
j
i,k

]

+Θl
,i

[

y
j
,l

∂W

∂y
j
,i

+ y
j
m,l

∂W

∂y
j
m,i

]

+Θl
i,ky

j
l

∂W

∂y
j
i,k

= 0.

(18)

In other words, to construct the non-holonomic material distribution of
second-order we have to find (local) functions on the body B, Θi, Θi

j , Θ
i
,j

and Θi
j,k solving the linear equation (18). In this way, the local functions Θi

generate non-holonomic body-material distribution of second order AΩ (B)♯.
This equation will be called non-holonomic material equation for

Cosserat media.

Let us now work with the holonomic material groupoid Ω (B). First, the
characteristic distribution AΩ (B)T of the holonomic material groupoid
of second order will be called the holonomic material distribution of
second-order. On the other hand, the base-characteristic distribution
AΩ (B)♯ will be called the holonomic body-material distribution of second
order.

Next, let Θ be an admissible vector field for the couple
(

J̃1 (FB) ,Ω (B)
)

.

Then, its (local) flow ΨΘ
t (ǫ (X)) at the identity ǫ (X) = j1X,XIdFB is totally

contained in Ω (B) ⊆ j̃1 (FB). Therefore, this flow should be given by

ΨΘ
t (ǫ (X)) = j1

ψΘ
−t

(X),XFψ
Θ
t

i.e., the flow of Θ is totally characterized by the flow of the projected vector
field Θ♯ = Tα ◦ Θ ◦ ǫ (ψΘ

t ). This kind of vector fields are sometimes called
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complete lift of Θ♯. So,

Θ = −Θi ∂

∂xi
+ y

j
l

∂Θl

∂xi
∂

∂y
j
i

+ y
j
,l

∂Θl

∂xi
∂

∂y
j
,i

+

[

y
j
l,k

∂Θl

∂xi
+ y

j
i,l

∂Θl

∂xk
+ y

j
l

∂2Θl

∂xi∂xk

]

∂

∂y
j
i,k

,

where the functions Θi depends on the material points of the body manifold

B. Thus, Θ is an admissible vector field for the couple
(

J̃1 (FB) ,Ω (B)
)

if,

and only if,

−Θi∂W

∂xi
+

∂Θl

∂xi

[

y
j
l

∂W

∂y
j
i

+ y
j
,l

∂W

∂y
j
,i

+ y
j
l,k

∂W

∂y
j
i,k

+ y
j
m,l

∂W

∂y
j
m,i

]

+
∂2Θl

∂xi∂xk
y
j
l

∂W

∂y
j
i,k

= 0.

(19)

Therefore, to construct the holonomic material distribution of second
order, we have to solve a second order partial differential equation (19). In
particular, the functions Θi solving the PDE (19) generate the holonomic
body-material distribution of second order. This equation will be called
holonomic material equation for Cosserat media.

The foliations associated with the (non-)holonomic material distribution of
second order and the (non-)holonomic body-material distribution of second
order will be called (non-)holonomic material foliation of second order and
(non-)holonomic body-material foliation of second order, and denoted by
(

NF
)

F , (NF) F , respectively.
For each X ∈ B, we will denote the Lie groupoids Ω (B) (NF (X)) and
Ω (B) (F (X)) by Ω (NF (X)) and Ω (F (X)), respectively (see Theorem 3).
Recall that Ω (B) (NF (X)) is a subgroupoid of Ω (B) (F (X)).
Observe that in continuum mechanics a sub-body of a body B is given by an
open submanifold of B. Here, however, the foliation F gives us submanifolds
of different dimensions (not only dimension 3). Thus, we will follow [23, 25]
for a more general definition:

Definition 13. Let us consider a submanifold P of B. Then, a Cosserat
submanifold of FB is given by all the elements of FB at points of P, which
is denoted by FP. In cases where it causes no confusion we will refer to the
Cosserat material as the submanifold P.
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It is important to note that any Cosserat submanifold P inherits certain
material structure from B. In particular, the material response of a
material submanifold P is measured by restricting W to the 1−jets of local
isomorphisms Ψ on FB from FP to FP. However, it is easy to observe
that a material submanifold of a Cosserat medium is not exactly a Cosserat
material (dimension of P is not restricted to be three).

Related with [18], we will say that a Cosserat submanifold P is a second-grade
material submanifold, if all the material isomorphisms from points on P to
points on P are natural prolongations to the frame bundle of the induced
diffeomorphisms on B. In other words, all the material isomorphisms from
P to P are 1−jets j1X,Y Fψ, where ψ is a local diffeomorphism on the body
B.

As a corollary of Theorem 1 and Proposition 2, we have the following result.

Theorem 8. The non-holonomic body-material foliation NF (resp.
holonomic body-material foliation F) divides the body B into maximal
smoothly uniform Cosserat submanifolds (resp. second-grade material
submanifolds).

It should be also observed that, in this case, “maximal” means that any other
foliation H by smoothly uniform material submanifolds (resp. second-grade
material submanifolds) is thinner than NF (resp. F), i.e.,

H (X) ⊆ NF (X) (resp. F (X)) , ∀X ∈ B.

We should notice that this result provides us two different and intuitive
divisions of the Cosserat material. First, a Cosserat material could be strictly
non-uniform. However, it may be maximally decomposed into “(smoothly)
uniform parts” and this decomposition is, in fact, a foliation NF of the
macromedium.

Theorem 9. Let FB be a Cosserat material whose mechanical response
is denoted by W . Then, B is smoothly uniform if, and only if, the
non-holonomic material equation for Cosserat media (18)

Θi∂W

∂xi
+Θl

i

[

yjl
∂W

∂yji
+ yjl,k

∂W

∂yji,k

]

+Θl
,i

[

yj,l
∂W

∂yj,i
+ yjm,l

∂W

∂yjm,i

]

+Θl
i,ky

j
l

∂W

∂yji,k
= 0.
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may be solved for any initial condition for the triple
(Θ1 (X) ,Θ2 (X) ,Θ3 (X)), for all X ∈ B.

Notice that, for any (local) admissible vector field

Θ = Θi ∂

∂xi
+Θj

i

∂

∂yji
+Θj

,i

∂

∂yj,i
+Θj

i,k

∂

∂yji,k

it satisfies that, locally

Θ♯ = Θi ∂

∂xi

Therefore, the functions Θi solving Eq. (18) correspond with the coordinates
of the projection Θ♯ of the admissible vector fields Θ for the couple
(

J̃1 (FB) ,Ω (B)
)

. So, for each material particle X ∈ B, we may consider

the space

C♯X := {Θ♯ (X) : Θ is an admissible vector field}

Observe that the equation (18) is linear with respect to the solutions
(

Θi,Θj
i

)

.
Therefore, C♯X is a vector subspace of TXB and it is equal to the fibre of the
non-holonomic material distribution of second-order at X, i.e.,

C♯X = AΩ (B)♯X

Hence, we may reformulate Theorem 9 in the following way:

Theorem 10. Let FB be a Cosserat material whose mechanical response is
denoted by W . Then, B is smoothly uniform if, and only if, AΩ (B)♯X has
dimension 3 for all particle X ∈ B.

Thus, among other conclusions, we only have to solve Eq. (18) for initial
conditions on a basis of R3.
In this way, as a summary, Eq. (18) works to study the uniformity property
of the material. On the other hand, the holonomic material equation for
Cosserat media (19) will be useful to study both, the uniformity and the
property of “being a second-grade material ”, at the same time.
So, as a second division of the material B provided by Theorem 8, the
Cosserat material may be maximally decomposed into “(smoothly) uniform
second-grade submanifolds” and this decomposition is, again, a foliation F
of the macromedium. So, a smoothly uniform material is a second grade
material if, and only if, the foliation F consists of only one leaf (equal to B).
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Theorem 11. Let FB be a Cosserat material whose mechanical response is
denoted by W . Then, B is a smoothly uniform second-grade material if, and
only if, the holonomic material equation for Cosserat media (19)

−Θi∂W

∂xi
+
∂Θl

∂xi

[

yjl
∂W

∂yji
+ yj,l

∂W

∂yj,i
+ yjl,k

∂W

∂yji,k
+ yjm,l

∂W

∂yjm,i

]

+
∂2Θl

∂xi∂xk
yjl
∂W

∂yji,k
= 0.

may be solved for any initial condition for the triple
(Θ1 (X) ,Θ2 (X) ,Θ3 (X)), for all X ∈ B.

Again, the functions Θi solving Eq. (19) correspond with the coordinates
of the projection Θ♯ of the admissible vector fields Θ for the couple
(

J̃1 (FB) ,Ω (B)
)

and the space of the evaluations of these vector fields onto

a particle X ∈ B is the fibre AΩ (B)♯X . Therefore, we may reformulate
Theorem 11 in the following way:

Theorem 12. Let FB be a Cosserat material whose mechanical response is
denoted by W . Then, B is a smoothly uniform second-grade material if, and
only if, AΩ (B)♯X has dimension 3 for all particle X ∈ B.

In particular, a smoothly uniform Cosserat material is a second-grade
material if, and only if, the space of solution of Eq. (19) has dimension
3 at all the points. However, this result is not enough to characterize the
second-grade character of arbitrary (uniform or not) Cosserat medium.

Theorem 13. Let FB be a Cosserat material whose mechanical response
is denoted by W . Then, all the material submanifolds of B given by its
maximal division in smoothly uniform materials are second-grade material
submanifolds, if and only if, at each particle X, all the (local) solutions Θi

for Eq. (19) generate all the solutions of Eq. (18) by the following equalities

Θj
i =

∂Θj

∂xi
, Θj

,i =
∂Θj

∂xi
and Θj

i,k =
∂2Θj

∂xi∂xk
.

Proof. Assume that, for each particle X, all the (local) solutions Θi for Eq.
(19) generate all the solutions of Eq. (18). Then, equivalently,

AΩ (B)Tǫ(X) = AΩ (B)Tǫ(X) ,

for all X ∈ B. Thus,
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NF (ǫ (X)) = F (ǫ (X)) , ∀X ∈ B

Therefore, by construction we have

Ω (NF (X)) = Ω (F (X)) ,

for all X ∈ B. The converse is is proved following a similar argument.

In particular, assume that the non-holonomic material groupoid of second
order Ω (B) is a Lie groupoid. Then, for all particle X ∈ B,

β
−1

(X) = NF (ǫ (X))

Thus, in the conditions of Theorem 13, one deduces,

β
−1

(X) = F (ǫ̃ (X))

Therefore, Ω (B) = Ω (B).

Theorem 14. Let FB be a Cosserat material whose mechanical response is
denoted by W in such a way that the non-holonomic material groupoid of
second order Ω (B) is a Lie groupoid. Then, B is a second-grade material,
if and only if, at each particle X, all the (local) solutions Θi for Eq. (19)

generate all the solutions of Eq. (18) by the following equalities Θj
i =

∂Θj

∂xi
,

Θj
,i =

∂Θj

∂xi
and Θj

i,k =
∂2Θj

∂xi∂xk
.

Thus, the equations (18) and (19) are also useful to investigate when a
Cosserat material (smoothly uniform or not) is, in fact, a second-grade
material by comparing the solutions of both equations.

5 Homogeneity

As we already know, a Cosserat medium is (smoothly) uniform if the function
W does depend on the point X in a multiplicative way (Eq. (15)). In
addition, a Cosserat continuum is said to be homogeneous if we can choose a
global section of the non-holonomic material groupoid of second order which
is constant on the body, more precisely:
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Definition 14. A Cosserat medium B is said to be homogeneous if it admits
a global configuration Ψ which induces a global section of

(

α, β
)

in Ω (B),
P, i.e., for each X, Y ∈ B

P (X, Y ) = j1X,Y
(

Ψ−1 ◦ Fτψ(Y )−ψ(X) ◦Ψ
)

, (20)

where τψ(Y )−ψ(X) : R3 → R
3 denotes the translation on R

3 by the vector
ψ (Y )−ψ (X), and ψ is the induced map of Ψ over the macromedium B. B is
said to be locally homogeneous if there exists a covering of B by homogeneous
open sets. From now on, in cases where it causes no confusion we will refer
to local homogeneity as homogeneity.

Proposition 15. Let FB be a Cosserat medium. Then, FB is (locally)
homogeneous if, and only if, there exist (local) reference configurations such
that for the associated constitutive laws W does not depend on the base points,
i.e.

W
(

j1X,YΦ1

)

= W
(

j1Z,TΦ2

)

,

whenever it satisfies the associated Jacobian matrix of Φ1 and Φ2 at X and
Z, respectively, are equal.

Therefore, a material body is homogeneous if there exists a configuration
such that the material response does not depend on the body points.

Notice that local homogeneity is obviously more restrictive than smooth
uniformity. In fact, a homogeneous Cosserat body is a smoothly uniform
body in which the (local) smooth fields of material isomorphisms (see
Definition 12) may be chosen to be induced by configurations in the sense
of Eq. (20). Sections of

(

α, β
)

in Ω (B) given by Eq. (20) will be called
homogeneous sections.
However, in a purely intuitive picture, homogeneity can be interpreted as the
absence of defects. Thus, it would make sense to have a proper definition
of homogeneity for non-uniform Cosserat media. In the literature we can
already find some partial answer of this question ([1, 16] for FGM’s, [12, 20]
for laminated and bundle materials and [25] for simple materials).

Definition 15. Let FB be a Cosserat material and P be a submanifold of B.
P is said to be homogeneous if, and only if, for all point X ∈ P there exists
a local configuration Ψ of FB on an open subset FU ⊆ FB, with P ⊆ U ,
which satisfies that
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j1Y,Z
(

Ψ−1 ◦ τψ(Z)−ψ(Y ) ◦Ψ
)

,

is a material isomorphism for all Y, Z ∈ P. We will say that P is locally
homogeneous if there exists a covering of P by open subsets Ua of B such
that Ua ∩ P are homogeneous submanifolds of B.

As we have proved previously, the non-holonomic body-material foliation
NF divides the body into smoothly uniform components (see theorem 8).
We will rely on this result to provide the intuition behind the definition
of homogeneity of a non-uniform body. Roughly speaking, a non-uniform
Cosserat medium will be (locally) homogeneous when each smoothly uniform
material submanifold NF (X) is (locally) homogeneous and all the uniform
material submanifolds can be “straightened at the same time”.

Remark 3. Now, suppose that FB is (locally) homogeneous. Then, if we
take the coordinates (xi) on B given by the induced diffeomorphism ψ of the
definition 14, we deduce that the section P of Eq. (20) is expressed by

P
(

xi, yj
)

=

(

(

xi, yj, P j
i

)

, δji ,
∂P j

i

∂xk
+
∂P j

i

∂yk

)

(21)

In fact, taking into account the expression of the coordinates (8), we have
that

P j
i (X, Y ) = yji (P (X, Y )) (e1x)

Hence, for a fixed two particles X0, Y0 ∈ B,

P j
i,k (X0, Y0) =

∂
(

yji (P (X0, Y0)) (e1x)
)

∂xk

=
∂
(

yji (P (X,ψX0,Y0 (X))) (e1x)
)

∂xk

=
∂P j

i

∂xk
+
∂P j

i

∂yk

where,
ψX0,Y0 = ψ−1 (ψ (X)− ψ (X0) + ψ (Y0))

So, FB is homogeneous if we can cover B by local coordinate systems (xi)
which generate (local) fields of material isomorphisms satisfying Eq. (21). ♦
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Let us consider a smooth section P of the anchor map
(

α, β
)

of J̃1 (FB).
Then, P generates a left-invariant vector field ΘP

k on J̃1 (FB) in the following
way,

ΘP
k (ǫ (X)) = TXP

X

(

∂

∂xk|X

)

(22)

Here, for each two material points X, Y ∈ B, PY (X) = P (X, Y ). If P is an
homogeneous section, in coordinates, we have that,

ΘP
k =

∂

∂xk
+
∂P j

i

∂xk
∂

∂yji
+

[

∂2P j
i

∂xkxl
+
∂2P j

i

∂xkyl

]

∂

∂yji,l
, (23)

at the identities. So, smoothly uniform bodies are homogeneous if, and

only if, the space of admissible vector fields for the couple
(

J̃1 (FB) ,Ω (B)
)

may be generated by local vector fields given by Eq. (23), for all k or, in
other words, we may find coordinates (xi) and local functions P j

i on the
macromedium B satisfying the equation,

∂W

∂xk
+ yjl

∂P l
i

∂xk
∂W

∂yji
+ yjl

[

∂2P l
i

∂xkxm
+

∂2P l
i

∂xkym

]

∂W

∂yji,m
= 0, k = 1, 2, 3. (24)

Eq. (24) is, again, second order partial differential equation and, it will be
called homogeneity equation for Cosserat media. Notice that, Eq. (24)
makes sense even without the uniformity condition. So, we will use this to
present our definition.

Definition 16. A Cosserat medium B will be said to be homogeneous if
it admits coordinates (xi), and functions P j

i , globally defined on the body,
satisfying the equation,

∂W

∂xk
+ yjl

∂P l
i

∂xk
∂W

∂yji
+

(

yjl

[

∂2P l
i

∂xkxm
+

∂2P l
i

∂xkym

]

+ yjl,mΘ
l
i

)

∂W

∂yji,m
= 0. (25)

for all k = 1, . . . , dim
(

AΩ (B)
)

. B is said to be locally homogeneous if there
exists a covering of B by homogeneous open sets.
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Theorem 16. Let FB be a Cosserat body. B will be locally homogeneous if,
and only if, for all point X ∈ B there exists a local configuration Ψ of B,
defined on FU with X ∈ U , which satisfies that

j1Y,Z
(

Ψ−1 ◦ τψ(Z)−ψ(Y ) ◦Ψ
)

,

is a material isomorphism for all Z ∈ U ∩ NF (Y ).

Proof. Let us assume that FB is (locally) homogeneous. Then, it admits
coordinates (xi), and functions P j

i , globally defined on the body, satisfying
Equation (25),

∂W

∂xk
+ yjl

∂P l
i

∂xk
∂W

∂yji
+

(

yjl

[

∂2P l
i

∂xkxm
+

∂2P l
i

∂xkym

]

+ yjl,mΘ
l
i

)

∂W

∂yji,m
= 0.

for all k = 1, . . . , dim
(

AΩ (B)
)

. Thus, the local section given by

P
(

xi, yj
)

=

(

(

xi, yj, P j
i

)

, δji ,
∂P j

i

∂xk
+
∂P j

i

∂yk

)

satisfies that, its induced left-invariant vector field ΘP
k on J̃1 (FB) is

an admissible vector field for the couple
(

J̃1 (FB) ,Ω(B)
)

, for all k =

1, . . . , dim
(

AΩ (B)
)

. In other words, the vector fields ΘP
k are tangent to

the non-holonomic material distribution of second order AΩ (B)T . Then, by
Eq. (22), we may assume that P satisfies that

P (Y,X) ∈ NF (ǫ (X)) ,

for any two material particlesX and Y , at the domain U×U of P, at the same
fibre (Y ∈ NF (X)), i.e., P is a smooth field of material isomorphisms when
it is restricted to the leaves of the non-holonomic body-material foliation
of second order (recall that the non-holonomic body-material foliation NF
divides the body B into maximal smoothly uniform Cosserat submanifolds).
Let us now fix Z0 ∈ F

2
B such that π2

(

Z0

)

= Z0 ∈ B. Then, we may define
a section PZ0

of π2 given by

PZ0
(X) = P (Z0, X) · Z0
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Observe that, for any two particles X, Y ∈ U ,

P (X, Y ) = PZ0
(Y ) ·

[

PZ0
(X)

]−1
(26)

On the other hand, by taking into account the projections π̃2
1 and π2

1, we may
projects PZ0

into two sections of FB as follows,

• QZ0
= π̃2

1 ◦ PZ0

• PZ0
= π̃2

1 ◦ PZ0

Notice that, by the local coordinates of P , we have that, there are local
coordinates ψ of B in such a way that,

QZ0
(X) = j10,X

(

ψ−1 ◦ τψ(X)

)

Thus, we construct the following map

Ψ : FV → FU
j10,Zf 7→ PZ0

(ψ−1 (Z)) · j10,0 (τ−Z ◦ f)

Ψ is a local principal bundle isomorphism over ψ−1 with inverse given by

j10,Zg ∈ FU 7→ j10,ψ(Z)τψ(Z) · [PZ0
(Z)]−1 · j10,Zg.

In fact, we may prove that

PZ0
(X) = j1

e1,X

(

Ψ ◦ Fτψ(X)

)

Therefore, by using Eq. (26), we have that

P (X, Y ) = j1X,Y
(

Ψ ◦ Fτψ(Y )−ψ(X) ◦Ψ
−1
)

, ∀X, Y ∈ U .

Consequently, P is a homogeneous sections for all the leaves of the
non-holonomic body-material foliation of second order with non-empty
intersection with the domain of P .
The converse is analagous.

It is remarkable that, this theorem provides an intuitive view of the definition
of homogeneity for non-uniform Cosserat bodies. In fact, roughly speaking,
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a Cosserat medium will be homogeneous, if all the leaves NF (X) of the
unique division of the material into smoothly uniform Cosserat submanifolds
are homogeneous (in the sense of Definition 15). Notice also that, the
condition that all the leaves NF (X) are homogeneous is not enough in
order to have the homogeneity of the body B because there is also a condition
of compatibility with the foliation structure of NF given by the fact of that
for all the leaves there are configuration which are homogeneous for all the
leaves at the same time. In mathematical terminology, this fact means that
the homogeneous sections are induced by foliated charts for the foliation NF .

Thus, the definition of homogeneity for a smoothly uniform Cosserat
medium coincides with Definition 15.

6 Conclusions

In this paper we have dealt with a model for media with microstructure,
called Cosserat material. Here, we have used the so-called characteristic
distributions.

Thus, for the case of Cosserat material, we have considered two different,
but canonically defined, characteristic distribution, called non-holonomic
material distribution of second order and holonomic material distribution
of second order, respectively. Denoting by W to the mechanical response, we
have proved that both distributions are characterized by the left-invariant
vector fields which are in the kernel of TW (Eq. (17)) and the complete
lift of vector fields on the macromedium B which are in the kernel of
TW , respectively. Therefore, we have found two different equations to
construct these characteristic distributions without integrating vector fields
(see definition of the characteristic distribution in section 2),

• Non-holonomic material equation for Cosserat media (18)

−Θi∂W

∂xi
+Θl

i

[

yjl
∂W

∂yji
+ yjl,k

∂W

∂yji,k

]

+Θl
,i

[

yj,l
∂W

∂yj,i
+ yjm,l

∂W

∂yjm,i

]

+Θl
i,ky

j
l

∂W

∂yji,k
= 0

• Holonomic material equation for Cosserat media (19)
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−Θi∂W

∂xi
+

∂Θl

∂xi

[

y
j
l

∂W

∂y
j
i

+ y
j
,l

∂W

∂y
j
,i

+ y
j
l,k

∂W

∂y
j
i,k

+ y
j
m,l

∂W

∂y
j
m,i

]

+
∂2Θl

∂xi∂xk
y
j
l

∂W

∂y
j
i,k

= 0.

We have also proved that the Cosserat material is uniquely divided into
smoothly uniform submanifolds and second-grade material submanifolds,
respectively. Furhtermore, the space of solutions of these equations
characterizes these two properties (Theorems 9, 11, 13, and 14).

Finally, by using these results, we have dealt we another property,
homogeneity. In particular, we have been able to define, by first time,
a notion of homogeneity which is valid for non-uniform materials and
generalizes the known notion of homogeneity. Roughly speaking, a Cosserat
material will be homogeneous, when each smoothly uniform material
submanifold is homogeneous and all the uniform material submanifolds can
be “straightened at the same time”.
Next, we found another differential equation,

• Homogeneity equation for Cosserat media (25)

∂W

∂xk
+ yjl

∂P l
i

∂xk
∂W

∂yji
+

(

yjl

[

∂2P l
i

∂xkxm
+

∂2P l
i

∂xkym

]

+ yjl,mΘ
l
i

)

∂W

∂yji,m
= 0,

which characterizes this intuitive notion of homogeneity.

Acknowledgments

M. de Leon and V. M. Jiménez acknowledge the partial finantial support
from MICINN Grant PID2019-106715GB-C21 and the ICMAT Severo Ochoa
project CEX2019-000904-S.

References

[1] C. M. Cámpos, M. Epstein, and M. de León. Functionally graded
madia. International Journal of Geometric Methods in Modern Physics,
05(03):431–455, 2008.

44



[2] G. Capriz. Continua with microstructure, volume 35 of Springer Tracts
in Natural Philosophy. Springer-Verlag, New York, 1989.

[3] E. Cosserat and F. Cosserat. Théorie des corps déformables. Nature,
81(67), 1909.

[4] M. de León, M. Epstein, and V. M. Jiménez. Material Geometry:
Groupoids in Continuum Mechanics. World Scientific, Singapore, 2021.

[5] M. de León and M. Esptein. The geometry of uniformity in second-grade
elasticity. Acta Mechanica, 114:217–224, 1996.

[6] M. de León and A. Martín Méndez. Principal bundle structures among
second order frame bundles. Differential Geom. Appl., 47:202–211, 2016.

[7] C. Ehresmann. Les prolongements d’une variété différentiable. V.
Covariants différentiels et prolongements d’une structure infinitésimale.
C. R. Acad. Sci. Paris, 234:1424–1425, 1952.

[8] C. Ehresmann. Introduction à la théorie des structures infinitésimales
et des pseudogroupes de Lie. In Colloque de topologie et géométrie
différentielle, Strasbourg, 1952, no. 11, page 16. La Bibliothèque
Nationale et Universitaire de Strasbourg, 1953.

[9] C. Ehresmann. Extension du calcul des jets aux jets non holonomes. C.
R. Acad. Sci. Paris, 239:1762–1764, 1954.

[10] C. Ehresmann. Applications de la notion de jet non holonome. C. R.
Acad. Sci. Paris, 240:397–399, 1955.

[11] M. Elżanowski, M. Epstein, and J. Śniatycki. G-structures and material
homogeneity. J. Elasticity, 23(2-3):167–180, 1990.

[12] M. Epstein. Laminated uniformity and homogeneity. Mechanics
Research Communications, 2017.

[13] M. Epstein and M. de León. Homogeneity conditions for generalized
Cosserat media. J. Elasticity, 43(3):189–201, 1996.

[14] M. Epstein and M. de León. Uniformity and homogeneity of elastic
rods, shells and Cosserat three-dimensional bodies. Arch. Math. (Brno),
32(4):267–280, 1996.

45



[15] M. Epstein and M. de Leon. Geometrical theory of uniform cosserat
media. Journal of Geometry and Physics, 26(1):127–170, 1998.

[16] M. Epstein and M. de León. Homogeneity without uniformity: towards
a mathematical theory of functionally graded materials. International
Journal of Solids and Structures, 37(51):7577 – 7591, 2000.

[17] M. Epstein and de M. León. The differential geometry of Cosserat media.
350:143–164, 1996.

[18] M. Epstein and de M. León. Geometrical theory of uniform cosserat
media. J. Geom. Phys., 26(1-2):127–170, 1998.

[19] M. Epstein and M. Elzanowski. Material Inhomogeneities and their
Evolution: A Geometric Approach. Interaction of Mechanics and
Mathematics. Springer Berlin Heidelberg, 2007.

[20] M. Epstein, V. M. Jiménez, and M. de León. Material geometry. Journal
of Elasticity, 135(1):237–260, Apr 2019.

[21] A. C. Eringen. Nonlocal continuum field theories. Springer-Verlag, New
York, 2002.

[22] V. M. Jiménez, M. de León, and M. Epstein. Material distributions.
Mathematics and Mechanics of Solids, 25(7):1450–1458, 2017.

[23] V. M. Jiménez, M. de León, and M. Epstein. Characteristic distribution:
An application to material bodies. Journal of Geometry and Physics,
127:19 – 31, 2018.

[24] V. M. Jiménez, M. de León, and M. Epstein. Lie groupoids and
algebroids applied to the study of uniformity and homogeneity of
cosserat media. International Journal of Geometric Methods in Modern
Physics, 15(08):1830003, 2018.

[25] V. M. Jiménez, M. de León, and M. Epstein. On the homogeneity
of non-uniform material bodies, pages 381–416. Springer International
Publishing, Berlin, 2020.

[26] S. I. Kobayashi and K. Nomizu. Foundations of differential geometry.
Vol. I. Wiley Classics Library. John Wiley & Sons, Inc., New York,
1996. Reprint of the 1963 original, A Wiley-Interscience Publication.

46



[27] E. Kröner. Mechanics of Generalized Continua. Springer, Heidelberg,
1968.

[28] R. Kupferman, E. Olami, and R. Segev. Stress theory for classical fields.
Mathematics and Mechanics of Solids, 25(7):1472–1503, 2020.

[29] K. C. H. Mackenzie. General theory of Lie groupoids and Lie algebroids,
volume 213 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2005.

[30] G. A. Maugin. The method of virtual power in continuum mechanics:
application to coupled fields. Acta Mech., 35(1-2):1–70, 1980.

[31] G. A. Maugin. On the structure of the theory of polar elasticity.
R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.,
356(1741):1367–1395, 1998.

[32] W. Noll. On the continuity of the solid and fluid states. ProQuest LLC,
Ann Arbor, MI, 1954. Thesis (Ph.D.)–Indiana University.

[33] W. Noll. Materially uniform simple bodies with inhomogeneities. Arch.
Rational Mech. Anal., 27:1–32, 1967.

[34] D. J. Saunders. The Geometry of Jet Bundles. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1989.

[35] P. Stefan. Accessible sets, orbits, and foliations with singularities. Proc.
London Math. Soc. (3), 29:699–713, 1974.

[36] H. J. Sussmann. Orbits of families of vector fields and integrability of
distributions. Trans. Amer. Math. Soc., 180:171–188, 1973.

[37] C. Truesdell and W. Noll. The non-linear field theories of mechanics.
Springer-Verlag, Berlin, third edition, 2004. Edited and with a preface
by Stuart S. Antman.

47


	Introduction
	On frame bundles and groupoids
	Cosserat Media
	Cosserat characteristic distributions
	Homogeneity
	Conclusions

