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Abstract

In this paper we present an application of the groupoid theory to
the study of relevant case of material evolution phenomena, the process
of morphogenesis. Our theory is inspired by Walter Noll’s theories
of continuous distributions and provides a unifying and very simple
framework of these phenomena. We present the explicit equation,
the morphogenesis equation, to calculate the material distributions
associated to this phenomenon.
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1 Introduction

Our approach to the mechanics of continuous media follows Walter Noll’s
theory, in which a constitutive law determines the mechanical behavior of the
material under deformation [26, 27]. The notion of groupoid is intimately
linked to the study of materials, and in fact, in the works of Walter Noll
one can implicitly recognize the existence of this algebraic structure when
considering the collection of all material isomorphisms obtained through a
given constitutive law.

For a simple material B, the collection of the material isomorphisms
constitutes the so-called material groupoid, Ω (B), which is in fact a
subgroupoid of the Lie groupoid formed by all the linear isomorphisms
between the tangent spaces of all the pairs of points of the material body
[15, 20]. This is the so-called material groupoid and it is not necessarily a
Lie groupoid. This lack of differentiability measures the lack of differentiable
uniformity of the material (for explicit examples see [18, 21]).

On the other hand, a natural question is what infinitesimal properties of
the material groupoid reflect inhomogeneity. If it is a Lie subgroupoid,
we can associate with it the corresponding Lie algebroid and characterize
the homogeneity by its properties (in short, it is a global way of dealing
with material G-structures that had been considered in other approaches
[3, 4, 10, 11]). But even if the material groupoid is not Lie, we have been
able to construct a generalization of the associated Lie algebroid, which we
call characteristic distribution and which is still able to give answers to the
concepts of homogeneity and integrability [5].

This distribution is integrable (in the sense of Stefan and Sussmann [31, 32])
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and determines generalized foliations, one in the subgroupoid and the other in
the body manifold, so that, roughly speaking, differentiability is introduced
where there was none, and the leaves in the material groupoid become true
Lie groupoids on the leaves in the base on which they project.

We are now interested in a new concept, the possible evolution of the
material. To address this issue, we need to consider constitutive laws that
take into account time (or any other evolutionary parameter(s)), so that the
material body B is replaced by the space-time fibre bundle C = R×B −→ R,
and more specifically, by the vertical fibre of this fibration, which is a vector
subbundle of the tangent bundle TC. C is also called the body-time manifold.
So, we can introduce the notion of time-material isomorphism, and the
corresponding material groupoid Ω (C).

As opposed to the uniformity in the spatial case, new material properties
arise, associated with the evolution of the body. In particular, the temporal
counterpart of uniformity is a specific case of evolution of the material called
remodeling. Intuitively, a material evolution presents a remodeling when the
constitutive properties of the material does not change with the time. This
kind of evolution may be found in biological tissues [29]. Wolff’s law of
trabecular architecture of bones is another relevant example [35]. Growth
and resorption are given by a remodeling with volume increase or volume
decrease of the material body B.

We say that C is a process of aging if it is not a process of remodeling.
Clearly, if the material response is not preserved along the time via material
isomorphisms, then the constitutive properties are changing with the time.
In [17, 22], we use the corresponding characteristic distributions and their
foliations to present several results characterizing the different types of
remodeling and aging. Here, however, we are interested in a particular case
of evolution: morphogenesis.

In order to work with the concept of morphogenesis, we will need to
extend this notion to groupoids, introducing the notion of normalizoid of
a subgroupoid in a groupoid. This generalization may be found in [2] to
study uniformity and homogeneity in functional graded materials (FGM).

A material point X is said to undergo a process of evolution without
morphogenesis when its symmetry groups at all the instants are conjugated.
C is said to be a process of evolution without morphogenesis when all
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the points undergo a process of evolution without morphogenesis. Hence,
remodeling is an example of the process of evolution without morphogenesis.
In other words, as it is natural, any process of morphogenesis is a particular
case of aging. Thus, a process of morphogenesis entails a breakdown of
symmetry, a sudden change in the material symmetry type. Using the
technique of characteristic distributions, we have been able to express it in
terms of a differential equation, which we call the morphogenesis equation.

The paper is structured as follows. In section 2 we present an overview of
the definitions and results needed in groupoid theory and their associated
characteristic distributions. In section 3 we introduce the concept of
material evolution of simple bodies, while in section 4 we construct the
material groupoid associated with the vertical body-time manifold, next to
the associated material distributions. Section 5 is devoted to discuss the
phenomenon of morphogenesis. It is convenient to point out that the main
development of this paper is contained in this section. First, we start studying
a natural generalization of the notion “normalizer ” and “normal subgroup”
from groups to groupoids. Here, we prove some general results (Proposition 7,
Proposition 8 and Corollary 9), but we do not do a deep study of this theory,
because our interest is focused on its application to Continuum Mechanics.
Then, we use this notion to deal with the notion of morphogenesis. In fact,
not only theoretical constructions are made, but also the linear equations that
determine the morphogenesis are obtained. In particular, it is important to
highlight that, we give a specific way to construct the material distribution
which characterize the phenomenon of morphogenesis. Namely, the material
distribution is pointwise generated by the left-invariant vector fields Θ on
Φ (V), the space of linear isomorphisms between fibres of the vertical bundle
V of the body-time manifold, satisfying that

TW ([Θ,Λ]) = 0,

for any left invariant admissible vector field Λ for the couple (Φ (V) ,Ω (C))
which is tangent to the α−fibres. This fact permits us to introduce the
morphogenesis equations,

yil

(

Θl
rΛ

r
j +Θk

∂Λl
j

∂xk
+ λ

∂Λl
j

∂t
− Λl

rΘ
r
j

)

∂W

∂yij
= 0 (1)
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for all matrix function
(

Λi
j

)

fulfilling the equation,

yilΛ
l
j

∂W

∂yij
= 0

Here the solutions are the functions λ, Θi, and Θj
i . We present analogous

constructions for the evolution of a particle X. The above distribution,
and its associated equation, are used to characterize the processes of
morphogenesis in such a way that the dimension of the space of solutions will
provide us the information about the existence of processes of morphogenesis
in the evolution of the material.

2 An onverview on groupoids and distribution

We will give here a very brief introduction on (Lie) groupoids and the
relation with (smooth) distributions which is crucial to understand the
results proved in this paper. For a detailed study we refer to [5] (see also
[19, 18]).

On the one hand, groupoids may be though as a natural generalization of
the notion of group, and they were introduced in 1926 by Brandt [1]. Adding
differential structure, we have the notion of Lie groupoid which is due to
Ehresmann ([9, 6, 7, 8]) and Pradines ([28]). We will follow the reference on
groupoids [24] (see also [12], [38] or [36] for a more more intuitive view).

Definition 1. Let M be a set. A groupoid over M is given by a set
Γ equipped with the maps α, β : Γ → M (source map and target map
respectively), ǫ : M → Γ (section of identities), i : Γ → Γ (inversion
map) and · : Γ(2) → Γ (composition law). Here, Γ(k) denotes the k-tuplas

(g1, . . . , gk) ∈ Γ× k). . . ×Γ such that α (gi) = β (gi+1) for i = 1, . . . , k− 1. The
following properties are satisfied:

(1) α and β are surjective and for each (g, h) ∈ Γ(2),

α (g · h) = α (h) , β (g · h) = β (g) .

(2) Associativity of the composition law, i.e.,

g · (h · k) = (g · h) · k, ∀ (g, h, k) ∈ Γ(3).
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(3) For all g ∈ Γ,
g · ǫ (α (g)) = g = ǫ (β (g)) · g.

In particular,
α ◦ ǫ ◦ α = α, β ◦ ǫ ◦ β = β.

(4) For each g ∈ Γ,

i (g) · g = ǫ (α (g)) , g · i (g) = ǫ (β (g)) .

Then,
α ◦ i = β, β ◦ i = α.

These maps (α, β, ǫ, i, and ·) will be called the structure maps. We will
denote this groupoid by Γ ⇒ M .

Observe that, since α and β are surjective we get

α ◦ ǫ = IdM , β ◦ ǫ = IdM ,

where IdM is the identity at M .
Sometimes M is denoted by Γ(0) and it is identified with the set ǫ (M) of
identities of Γ. Γ is also denoted by Γ(1). The elements of M are called objects
and the elements of Γ are called morphishms. The map (α, β) : Γ →M ×M
is called the anchor map and the space of sections of the anchor map is
denoted by Γ(α,β) (Γ). Finally, for each g ∈ Γ the element i (g) is denoted by
g−1.
One may think that the definition of groupoid looks too “abstract”. However,
roughly speaking, a groupoid may be depicted as a set of “arrows” (Γ) joining
points (M), in such a way that any two arrows may composed if the ending
point of one coincides with the starting point of the other. Then, assuming
natural conditions derived of the properties of a composition in a group, we
get the definition of groupoid.

Definition 2. A subgroupoid of a groupoid Γ ⇒ M is a groupoid Γ′ ⇒

M ′ such that M ′ ⊆ M , Γ′ ⊆ Γ and the the structure maps of Γ′ are the
restrictions of the structure maps of Γ.

In particular, a subgroupoid has the same composition law of the
correspondent groupoid.
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Example 1. A group G is a groupoid over a point and the operation law of
the groupoid, ·, is the operation in G.

Example 2. For any set X, the product space X ×X is a groupoid over X,
called the pair groupoid, in such a way that,

α (a, b) = a, β (a, b) = b, ∀ (a, b) ∈ X ×X

(c, b) · (a, c) = (a, b) , ∀ (c, b) , (a, c) ∈ X ×X

Example 3. Let X be a set and G be a group. Then we can construct a
groupoid X × X × G ⇒ X where the source map is the second projection,
the target map is the third projection and the composition law is given by
the composition in G, i.e.,

(t, y, g) · (x, t, h) = (x, y, g · h) ,

for all (t, y, g) , (x, t, h) ∈ X×X×G. This groupoid is called trivial groupoid
on X with group G.

Next, let us describe the crucial example of groupoid for the purpose of this
paper.

Example 4. Let A be a vector bundle on a manifold M . Denote by Az,
the fibre of A over a z ∈ M . Then, the set Φ (A), consisting of all linear
isomorphisms Lx,y : Ax → Ay for any x, y ∈ M , may be endowed with the
structure of groupoid with structure maps,

(i) α (Lx,y) = x

(ii) β (Lx,y) = y

(iii) Ly,z ·Gx,y = Ly,z ◦Gx,y, Ly,z : Ay → Az, Gx,y : Ax → Ay

We will call this groupoid as the frame groupoid on A.
A particular relevant case is the 1-jets groupoid on M and it arises when A
is the tangent bundle TM of M . This groupoid is denoted by Π1 (M,M).
Notice that any isomorphism Lx,y : TxM → TyM may be written as a 1−jet
j1x,yψ of a local diffeomorphism ψ from M to M . Notice that the 1−jet j1x,yψ
may be identified with the tangent map Txψ : TxM → TyM (see [30] for
details).
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Definition 3. Let Γ ⇒M be a groupoid with α and β the source map and
target map, respectively. For each x ∈M , the set

Γx
x = β−1 (x) ∩ α−1 (x) ,

is called the isotropy group of Γ at x. The set

O (x) = β
(

α−1 (x)
)

= α
(

β−1 (x)
)

,

is called the orbit of x, or the orbit of Γ through x.

Observe that the isotropy groups inherits a bona fide group structure.

Definition 4. If O (x) = M for all x ∈ M (or equivalently (α, β) : Γ →
M ×M is a surjective map) the groupoid Γ ⇒ M is called transitive. The
sets,

α−1 (x) = Γx, β−1 (x) = Γx,

are called α−fibre at x and β−fibre at x, respectively. We will denote

Γy
x = Γx ∩ Γy,

for all x, y ∈M .

Definition 5. Let Γ ⇒M be a groupoid. We may define the left translation
by g ∈ Γ as the map Lg : Γ

α(g) → Γβ(g), given by

h 7→ g · h.

We may define the right translation by g, Rg : Γβ(g) → Γα(g), analogously.

Note that, the identity map on Γx may be written as the following translation
map,

IdΓx = Lǫ(x). (2)

For any g ∈ Γ, the left (resp. right) translation on g, Lg (resp. Rg), is a
bijective map with inverse Lg−1 (resp. Rg−1).

Definition 6. A Lie groupoid is a groupoid Γ ⇒M such that Γ is a smooth
manifold, M is a smooth manifold and the structure maps are smooth.
Furthermore, the source and the target map are submersions.
A Lie subgroupoid of Γ ⇒ M is a Lie groupoid Γ′ ⇒ M ′ such that it is a
subgroupoid of Γ satisfying that Γ′ and M ′ are submanifolds of Γ and M
respectively.
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Notice that the following statements are immediate:

• ǫ is an injective immersion.

• For each g ∈ Γ, the left translation Lg (resp. right translation Rg) is a
diffeomorphism, for all g ∈ Γ.

• For each k ∈ N, Γ(k) is a smooth manifold, for all k ∈ N.

• The β−fibres and the α−fibres are closed submanifolds of Γ.

As firt examples, any Lie group G (example 1), the pair groupoid of a
manifold M (example 2), and any trivial groupoid on a manifold M with
a Lie group G (example 3) are Lie groupoids.

Example 5. The frame groupoid Φ (A) on a vector bundle A (example 4) is
a Lie groupoid . Let us consider two local coordinates, (xi) and (yj), on open
neighbourhoods U, V ⊆M , respectively, and two local basis of sections of AU

and AV , {αp} and {βq}, respectively. The correspondent local coordinates
(xi ◦ π, αp) and (yj ◦ π, βq) on AU and AV are given by

• For any a ∈ AU ,
a = αp (a)αp

(

xi (π (a))
)

.

• For any a ∈ AV ,
a = βq (a) βq

(

yj (π (a))
)

.

Then, we can construct a local coordinate system on Φ (A)

Φ (AU,V ) :
(

xi, yji , y
j
i

)

,

where, AU,V = α−1 (U) ∩ β−1 (V ) and for each Lx,y ∈ α−1 (x) ∩ β−1 (y) ⊆
α−1 (U) ∩ β−1 (V ), we have

• xi (Lx,y) = xi (x).

• yj (Lx,y) = yj (y).

• yji (Lx,y) = ALx,y , where ALx,y is the associated matrix to the induced
map of Lx,y using the local coordinates (xi ◦ π, αp) and (yj ◦ π, βq).
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In the particular case of the 1−jets groupoid on M , Π1 (M,M), the local
coordinates will be denoted as follows

Π1 (U, V ) :
(

xi, yj, yji
)

, (3)

where, for each j1x,yψ ∈ Π1 (U, V )

• xi
(

j1x,yψ
)

= xi (x).

• yj
(

j1x,yψ
)

= yj (y).

• yji
(

j1x,yψ
)

=
∂ (yj ◦ ψ)

∂xi|x
.

In the application to continuum mechanics, we will introduce the material
groupoid, which will be defined as a subgroupoid of special cases of the frame
groupoid. In particular, we will deal with the 1−jets groupoid Π1 (B,B) on
a manifold B (body) and a frame groupoid Φ (V) of the vertical bundle V of
a given vector bundle C (material evolution).

From now on, we will deal with a (not necessarily a Lie) subgroupoid Γ ⇒M
of a Lie groupoid Γ ⇒M ,

Γ Γ

M

j

where j is the inclusion map. We will also denote by α, β, ǫ and i the
restrictions of the structure maps α, β, ǫ and i of Γ to Γ.

In what follows, we will construct of the so-called characteristic distribution

AΓ
T

(see [5, 19]).

Definition 7. An admissible (local) vector field Θ ∈ Xloc (Γ) on Γ for the
couple

(

Γ,Γ
)

is a (local) vector field on Γ satisfying that,
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(i) Θ is tangent to the β−fibres,

Θ (g) ∈ Tgβ
−1 (β (g)) ,

for all g in the domain of Θ.

(ii) Θ is invariant by left translations,

Θ (g) = Tǫ(α(g))Lg (Θ (ǫ (α (g)))) ,

for all g in the domain of Θ.

(iii) The (local) flow ϕΘ
t of Θ satisfies

ϕΘ
t (ǫ (x)) ∈ Γ,

for all x ∈M .

In other words, an admissible vector field is a left invariant vector field on Γ
whose flow at the identities is totally contained in Γ.
Moreover, a vector field Θ of Γ satisfies conditions (i) and (ii) if, and only if,
its local flow ϕΘ

t is left-invariant or, equivalently,

Lg ◦ ϕ
Θ
t = ϕΘ

t ◦ Lg, ∀g, t.

Therefore, condition (iii) is equivalent to the following one,

(iii)’ The (local) flow ϕΘ
t of Θ at g is totally contained in Γ, for all g ∈ Γ.

Hence, the admissible vector fields are the left-invariant vector fields on Γ
whose integral curves are confined inside or outside Γ.
The family of admissible vector fields for the couple

(

Γ,Γ
)

is denoted by
C(Γ,Γ), or simply, C if there is no danger of confusion.

Definition 8. The characteristic distribution of Γ, dentoted by AΓ
T

is the
smooth distribution on Γ linearly generated by the admissible (local) vector
fields.

Namely, for each g ∈ Γ, the fibre at g is given by

AΓ
T

g = Span{Θ (g) : Θ is an admissible vector field}
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Observe that, for all g ∈ Γ, the zero vector 0g ∈ TgΓ is contained in the fibre

AΓ
T

g of the distribution at g (we remit to [19, 21] for non trivial examples).

Then, the distribution AΓ
T

generated by the vector spaces AΓ
T

g is the

characteristic distribution of Γ.

Remark 1. This construction of the characteristic distribution associated to
a subgroupoid Γ of a Lie groupoid Γ may be thought as a generalization of
the construction of the associated Lie algebroid to a given Lie groupoid (see
[24]).

♦

The algebraic structure associated to a groupoid allows us to define more
objects. Particularly, one of them is a smooth distribution over the base

M denoted by AΓ
♯
. The one is a “differentiable" correspondence AΓ which

associates to any point x ofM a vector subspace of Tǫ(x)Γ. Both constructions
are characterized by the following diagram

Γ P (TΓ)

M P (TM)

AΓ
T

Tαǫ

AΓ
♯

AΓ

where P (E) defines the power set of E. Therefore, for any x ∈M , the fibres
are given by,

AΓx = AΓ
T

ǫ(x)

AΓ
♯

x = Tǫ(x)α
(

AΓx

)

The distribution AΓ
♯

is called base-characteristic distribution of Γ. Observe
that, those distributions are possibly singular.

Notice that, taking into account that AΓ
T

is locally generated by
left-invariant vector field, we have that for each g ∈ Γ,

AΓ
T

g = Tǫ(α(g))Lg

(

AΓ
T

ǫ(α(g))

)

,

12



i.e., the characteristic distribution is left-invariant.

Theorem 1 ([5, 19]). Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid
of Γ (not necessarily a Lie groupoid) over M . Then, the characteristic

distribution AΓ
T

is integrable and its associated foliation F of Γ satisfies
that Γ is a union of leaves of F .

This result is a consequence of the celebrated Stefan-Sussman’s theorem [31,
32] which deals with the integrability of singular distributions. Each leaf at
a point g ∈ Γ will be denoted by F (g) and the characteristic foliation of Γ
will be given by the family of the leaves of F at points of Γ. The foliation F
satisfies that

(i) For any g ∈ Γ,
F (g) ⊆ Γβ(g).

Indeed, if g ∈ Γ, then

F (g) ⊆ Γ
β(g)

.

(ii) Left-invariance: for any g, h ∈ Γ such that α (g) = β (h), we have

F (g · h) = g · F (h) .

It is important to point out that the leaves of the characteristic foliation
covers Γ but, however, it is not exactly a foliation of Γ (because Γ is not
necessarily a manifold).
As a summary, without any assumption of differentiability over Γ, we have
that Γ is union of leaves of a foliation of Γ. This provides some kind of
“differentiable" structure over Γ.

Notice that, analogously to theorem 1, we may prove that the

base-characteristic distribution AΓ
♯

is integrable. Thus, we will denote the
foliation which integrates the base-characteristic distribution over the base
M by F . For each point x ∈ M , the leaf of F containing x will be denoted
by F (x). F will be called the base-characteristic foliation of Γ.

13



Example 6. Let ∼ be an equivalence relation on a manifold M , i.e., a binary
relation that is reflexive, symmetric and transitive. Then, define the subset
O of M ×M given by

O := {(x, y) : x ∼ y}. (4)

Hence, O is a subgroupoid of M × M over M . In fact, this is equivalent
to the properties reflexive, symmetric and transitive. For each x ∈ M , we
denote by Ox to the orbit around x,

Ox := {y : x ∼ y}.

Notice that the orbits divide M into a disjoint union of subsets. However,
these are not (necessarily) submanifolds.
On the other hand, the base-characteristic foliation gives us a foliation F of
M such that

F (x) ⊆ Ox, ∀x ∈ M.

So, consider any arbitrary equivalence relation on a manifold M . Maybe
the orbits are not manifolds but we have proved that we may divide M in a
maximal foliation such that any orbit is a union of leaves. This foliation is
maximal in the sense that there is no any other coarser foliation of M whose
leaves are contained in the orbits (see theorem 2 and corollary 3).

Next, we will show that the leaves of F may be endowed with even more
geometric structure. Indeed, we will construct a Lie groupoid structure over
each leaf of F .
For each x ∈ M , let us consider the minimal transitive groupoid Γ (F (x))
generated by the elements of F (ǫ (x)). In fact, we may prove that

Γ (F (x)) = ⊔g∈F(ǫ(x))F (ǫ (α (g))) , (5)

i.e., Γ (F (x)) can be described as a disjoint union of fibres at the identities.

Theorem 2 ([5, 19]). For each x ∈ M there exists a transitive Lie
subgroupoid Γ (F (x)) of Γ with base F (x).

Thus, we have divided the manifold M into leaves F (x) which have a
maximal structure of transitive Lie subgroupoids of Γ. The following result
provides us an intuition about the maximality condition which satisfies the
characteristic foliation and the base-characteristic foliation.

14



Corollary 3 ([5]). Let H be a foliation of M such that for each x ∈M there
exists a transitive Lie subgroupoid Γ (x) of Γ over the leaf H (x) contained in Γ
whose family of leaves defines a foliation on Γ. Then, the base-characteristic
foliation F is coarser than H, i.e.,

H (x) ⊆ F (x) , ∀x ∈M.

Futhermore, it satisfies that

Γ (x) ⊆ Γ (F (x)) .

As a consequence we have that Γ is a transitive Lie subgroupoid of Γ if, and
only if, M = F (x) and Γ = Γ (F (x)) for some x ∈M .

Thus, summarizing, for a fixed subgroupoid Γ of a Lie groupoid Γ we have
available two canonical foliations, F and F which endow to Γ of some
kind of maximal differentiable structure. To study more properties of the
characteristic distribution, we recommend [5].
Apart from example 6, we may study several relevant applications of the
characteristic distribution. In [5] we may find some of them. Here we are
mainly interested in one of them, the so-called material distributions, which
will be presented in what follows.

3 Material evolution of simple bodies

We will now present the notion of simple material mainly the references
[33, 37].

Definition 9. A (deformable) body is given by an oriented manifold B of
dimension 3 which can be covered by just one chart. The points of B will be
called body points or material particles and will be denoted by using capital
letters (X, Y, Z ∈ B). A sub-body of B is an open subset U of the manifold
B.

A configuration of the body B is an embedding φ : B → R
3 and an

infinitesimal configuration at a particle X is given by the 1−jet j1X,φ(X)φ

where φ is a configuration of B. The image φ (B) is called the region occupied
by the body B in the configuration φ. The points on the Euclidean space
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R
3 will be called spatial points and will be denoted by lower case letters

(x, y, z ∈ R
3).

We will now fix a configuration, denoted by φ0, called reference configuration.
The image will be denoted by B0 = φ0 (B). Coordinates in the reference
configuration will be denoted by XI , while any other coordinates will be
denoted by xi.
Notice that, in [33] a body is defined simply as a three-dimensional manifold.
Nevertheless, without loss of generality, we will adopt the above definition
of body 9 which is used in [37]. On the other hand, in [25] a body is simple
defined as an open subset of R3, so the body is identified with its image in
R

3 via a reference configuration.
Any change of configurations κ = φ1 ◦ φ

−1
0 or, equivalently a diffeomorphism

from B0 to any other open subset B1 of R
3, is called a deformation.

Analogously, an infinitesimal deformation at φ0 (X) is given by a 1−jet
j1φ0(X),φ(X)κ, where κ is a deformation.
The change of the body in time will be modelized by the body-time manifold,
which is defined as the fibre bundle C = R × B over R. Then, a history is
given by a fibre bundle embedding Φ : C → R× R

3 over the identity.
Notice that Φ can be seen as a differentiable family of configurations φt :
B → R

3 such that

φt (x) = prR3 ◦ Φ (t, x) , ∀t ∈ R, ∀x ∈ B, (6)

where prR3 : R × R
3 → R

3 is the projection on R
3. Thus, Φ represent the

evolution of the body in time t in such a way that the configuration of
B at time t is φt. Then, at each instant of time t, one may consider the
infinitesimal configuration at time t, 1−jet j1X,φt(X)φt.

Of course, the instrinsic properties of the body will play an important role
in continuum mechanics. One of the most characteristic contributions of
the work of W. Noll [26], was the introduction of the mechanical response; a
differentiable map characterizing the internal properties of the material. In
the case of elastic simple bodies, or simply simple bodies, [37] we will assume
that the mechanical response depends on a particle only on the infinitesimal
deformation at the same particle. Then, following [33, 13, 16], we will
assume that, for a fixed reference configuration φ0, the constitutive response
at each material particle X and at each instant of time t, the mechanical
response may be characterized by one (or more) functions depending on
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the associated matrices F to the infinitesimal configurations j1X,φt(X)φt at
particle X and time t.

Definition 10. Let B be a simple body with C = R×B as the associated body
time manifold. Then, for a fixed reference configuration φ0, the mechanical
response will be a differentiable map,

W : C ×Gl (3,R) → V,

where V is again a real vector space.

Generally, in continuum mechanics, the contact forces at a particle X at
an instant t in a given configuration φ are characterized by a symmetric
second-order tensor Tt,X,φ on R

3, which is called the stress tensor. Then, the
mechanical response is given by the following equation:

W (t, X, F ) = Tt,X,φ,

where F is the 1−jet at φ0 (X) of φ ◦ φ−1
0 . Namely, in general, V will be

the space of stress tensors [23] although, in this paper, we will only be
interested in the structure of vector space of V . Notice that, the definition
of the mechanical response permits us to compare material responses at
different particles at different instants of time. Relevant examples are given
by the volumetric growth and remodeling of biological tissues, such as bone
and muscle [29].

Observe that, the construction of the mechanical response seems to be
constrained to the fixed reference configuration. To clarify this dependence
we have the rule of change of reference configuration.
Consider a different configuration φ1 and W1 its associated mechanical
response. Then, it will be imposed that

W1 (t, X, F ) =W (t, X, F · C01) , (7)

for all regular matrix F where C01 is the associated matrix to the 1−jet at
φ0 (X) of φ1 ◦ φ

−1
0 . Equivalently,

W (t, X, F0) = W1 (t, X, F1) , (8)
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where Fi, i = 0, 1, is the associated matrix to the 1−jet at φi (X) of φ ◦ φ−1
i

with φ a configuration. Therefore, Eq. (7) permits us to define W over
the space of (local) histories which is independent on the chosen reference
configuration. In particular, for all history Φ = φt, we will define

W (t, X,Φ) =W
(

t, j1X,xφt

)

=W (t, X, Ft) , (9)

where Ft is the associated matrix to the 1−jet j1φ0(X),x

(

φt ◦ φ
−1
0

)

at φ0 (X).

Observe that, for all t the manifold {t} × B inherits the structure of simple
body by restricting the mechanical response W to the history of deformations
at the same instant t (see [5]), i.e.,

Wt : {t} × B ×Gl (3,R) → V.

This body will be called state t of the body B. Thus, we may think about W
as a differentiable curve of mechanical responses, each one of these over the
corresponding state of the body. As long as it invites no confusion, we will
refer to the simple body {0} × B as the material body B.
On the other hand, it is also important to say that the mechanical response
defines a structure of material evolution on any sub-body U of the body B
by restriction. Nevertheless, we will need to relax the definition of “material
evolution” to permit variation of material submanifolds along time.

Definition 11. An evolution material for a submanifold (or body-time
generalized sub-body) of C is a submanifold M of C.

Thus, let us consider an instant t. Then, we have that the state t of the
material submanifold is

({t} × B) ∩M = {t} ×Mt,

for a submanifold Mt of B. Hence, varying t, the model permits variations
in the “shape” of Mt.
Maybe the cornerstone of the thesis of W. Noll [26] is the use of the so-called
material isomorphisms. This notion arises from the need to respond the
following question: when are two material points made of the same material?
Obviously, we could say that two points are made of the same material if the
constitutive response is exactly the same at both points. However, this is
not enough general to answer the question.
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Definition 12. Let C be a body-time manifold. Two pairs (t, X) , (s, Y ) ∈ C
are said to be materially isomorphic if there exists a local diffeomorphism ψ
from an open neighbourhood U ⊆ B of X to an open neighbourhood V ⊆ B
of Y such that ψ (X) = Y and

W (t, X, F · P ) = W (s, Y, F ) , (10)

for all infinitesimal deformation F where P is given by the Jacobian matrix
of φ0 ◦ψ ◦φ−1

0 at φ0 (X). The triples given by
(

t, s, j1X,Y ψ
)

, with ψ satisfying
Eq. (10) are called time-material isomorphisms (or material isomorphisms if
there is no danger of confusion) from (t, X) to (s, Y ). A material isomorphism
from (t, X) to itself is called a time-material symmetry or material symmetry.

Let us denote by G (t, X) to the group of all material symmetries at
(t, X). Thus, the notion of being “material isomorphic” is the mathematical
formulation of the intuitive idea of being made of the same of the material, in
such a way that two material points (at maybe different instants) are made
of the same material if, and only if, they are materially isomorphic.

Proposition 4. Let C be a body-time manifold. Two body pairs (t, X)
and (s, Y ) are materially isomorphic if, and only if, there exist two (local)
configurations φ1 and φ2 such that

W1 (t, X, F ) = W2 (s, Y, F ) , ∀F, (11)

where Wi is the mechanical response associated to φi for i = 1, 2.

Proof. Consider j1X,Y ψ a material isomorphism from (t, X) to (s, Y ). We
only have to choose φ1 = φ0 and

φ2 = φ1 ◦ ψ

So, this result shows the reason why the mathematical notion of material
isomorphism answers to the question posed at the beginning of the section
3. In particular, two points are materially isomorphic if their constitutive
properties are equal (up to the choice of the reference configuration). Roughly
speaking, we may turns neighbourhoods of a material particle X at an
instant t into neighbourhoods of the material particle Y at the other instant
s, such that the stress required to effect any given deformation of those
neighborhoods is the same for each.
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Remark 2. It is important to note that, in [33], authors define the notion
of materially isomorphic by using equation (11), next to an added condition
refered to the mass density.
A non-negative scalar measure, m defined on the body manifold B is called
the mass distribution of the body. Then, m induces a measure over each
image φ (B) of B via a configuration φ denoted by mφ which is assumed to be
absolutely continuous with respect to the Lebesgue measure in Euclidean
space R

3. Therefore, by using the Radon-Nikodym theorem, we may
construct a density ρφ, called mass density associated to φ. In fact, the
relation between the mass and the density is the following,

m (P) =

∫

φ(P)

ρφ dv,

for each every measurable subset P of B. Here, the integral is defined in
terms of Lebesgue measure in Euclidean space.
Finally, let us consider a suitable measurable subsets Pk having only the
particle X in common and satisfying that

lim
k→∞

v (Pk) = 0,

where v defines the volume map respect to Lebesgue measure. Then, we
define

ρφ (X) = lim
k→∞

mφ (Pk)

v (Pk)

Thus, in [33], it is imposed that two material particles X and Y are materially
isomorphic if, and only if, it satisfies Eq. (11) and

ρφ1
= ρφ2

= constant.

Namely, roughly speaking, material isomorphisms preserves the stress and
the density. However, for the notion of material isomorphism, we will follows
the philosophy of the book [37], where the authors state that, in static
problems, since the inertia vanishes, this condition serves no purpose.

♦
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4 Evolution material geometry

Let V be the vertical subbundle associated to the body-time manifold C.
Namely, V is the subbundle of the tangent bundle TC whose fibres are given
by

V(t,X) = {0} × TXB,

for all (t, X) ∈ C. Then, we may consider the associated frame groupoid
Φ (V) ⇒ C introduced in example 4. In fact, the elements of Φ (V) are the
linear isomorphisms between fibres of V. We may represents the elements of
Φ (V) in two different ways:

1.- Let Φ : C → C be a (local) embedding of fibre bundles. Then, the triple
(

(t, X) ,Φ (t, X) , j1X,φt(X)φt

)

, with φt : B → B the associated family of

configurations given in Eq. (6), characterizes a linear isomorphism

L(t,X),Φ(t,X) : V(t,X) → VΦ(t,X)

Reciprocally, any linear isomorphism between fibres of V may be
represented as a triple generated by a (local) embedding of fibre bundles
Φ : C → C.

2.- Another, less intuitive but easier, way to represent an element of
Φ (V) is a triple

(

t, s, j1X,Y φ
)

with s, t ∈ R, X ∈ B and φ a local
diffeomorphism from B to B such that φ (X) = Y .

To define the structure of differentiable manifold on Φ (V), we will use the
second representation of the elements of Φ (V). So, the local coordinates of
Φ (V) (see example (5)) are given by

Φ (VU) :
(

t, s, xi, yj, yji
)

, (12)

where, for each
(

t, s, j1X,Y φ
)

∈ Φ (VU)

• t
(

t, s, j1X,Y φ
)

= t.

• s
(

t, s, j1X,Y φ
)

= s.

• xi
(

t, s, j1X,Y φ
)

= xi (X).

• yj
(

t, s, j1X,Y φ
)

= yj (Y ).
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• yji
(

t, s, j1X,Y φ
)

=
∂ (yj ◦ φ)

∂xi|X
.

being (xi) and (yi) local charts defined on the open subsets of B, U and
W, respectively, and Φ (VU ,W) is given by the triples

(

t, s, j1X,Y φ
)

such that
X ∈ U and Y ∈ W.

The importance of Φ (V) lies in the fact that all the material isomorphisms
(see definition 10) are elements of Φ (V). On the other hand, the mechanical
response may be defined on this groupoid. Indeed, by using Eq. (9), we may
define W on the frame groupoid of V,

W : Φ (V) → V,

as follows,
W
(

t, s, j1X,Y φ
)

=W (t, X,Φ) ,

such that
Φ (s, Y ) = (s, φ0 ◦ φ (Y )) , ∀ (s, Y ) ∈ C,

where φ0 is the reference configuration. Notice that, in consequence, W does
not depend on the final point, i.e., for all (t, X) , (s, Y ) , (r, Z) ∈ C

W
(

t, s, j1X,Y φ
)

= W
(

t, r, j1X,Z

(

φ−1
0 ◦ τZ−Y ◦ φ0 ◦ φ

))

, (13)

for all
(

t, s, j1X,Y φ
)

∈ Φ (V) where τv is the translation map on R
3 by the

vector v. This point of view will be useful for our purpose.

On the other hand, we may define the material groupoid of a body-time
manifold with mechanical response W as the largest subgroupoid Ω (C) ⇒ C
of Φ (V) such that leaves W invariant. More explicitly, an element of Φ (V)
(

t, s, j1X,Y φ
)

is in the material groupoid, if and only, if

W
(

t, r, j1X,Z (ψ · φ)
)

=W
(

s, r, j1Y,Zψ
)

,

for all
(

s, r, j1Y,Zψ
)

∈ Φ (V). In other words, Ω (C) is the space of all
(time-)material isomorphisms (see definition 12). This groupoid was first
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presented in [14].
The isotropy group at each (t, X) ∈ C will be denoted by G (t, X) and
its elements are the material symmetries at (t, X). Observe that, as in
the spatial case [5, 19], the resulting groupoid does not have to be a Lie
subgroupoid.

We will also define the (X, Y )−material groupoid ΩX,Y (R) as the set
of all material isomorphisms from the particle X to the particle Y varying
the time variable. Observe that, when X = Y , the (X,X)−material
groupoid ΩX,X (R) is a subgroupoid of the material groupoid Ω (C). For each
material point X, ΩX,X (R) is called X−material groupoid and denoted by
ΩX (R).
On the other hand, ΩX (R) may be consider as a subgroupoid of
(R× R) × Π1 (B,B)XX on R, where we are identifying R with R × {X}.

Furthermore, the structure of Lie groupoid of (R× R)×Π1 (B,B)XX is given
by

(

s, t, j1X,Xφ
)

·
(

r, s, j1X,Xψ
)

=
(

r, t, j1X,X (φ ◦ ψ)
)

,

for all
(

s, t, j1X,Xφ
)

,
(

r, s, j1X,Xψ
)

∈ R×R×Π1 (B,B)XX (see example 3). Again,
we will use both interpretations of ΩX (R) along the paper.

Proposition 5. Let Ω (C) be the material groupoid. If Ω (C) is a Lie
subgroupoid of Φ (V), then for all material point X we have that ΩX (R)
is a Lie subgroupoid of Φ (V).

Proof. Assume that Ω (C) is a Lie subgroupoid of Φ (V). Let us consider the
following submersions

π1 : Ω (C) → B × B,

given by
π1
(

t, s, j1X,Y φ
)

= (X, Y ) ,

for all
(

t, s, j1X,Y φ
)

∈ Ω (C). Then

ΩX (R) = π−1
1 (X,X) .

So, the imposition of “being a lie groupoid” is stronger over the material
groupoid than over the X−material groupoids. Notice the material groupoid
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Ω (C) encompasses the whole evolution of the body B and the X−material
groupoid ΩX (R) codifies the evolution of the particle X.
Therefore, as a summary, we have some canonical subgroupoids (Ω (C)
and ΩX (R)) of a particular Lie groupoid (Φ (V)), i.e., we are facing a
situation which fits in the framework of the construction of the characteristic
distribution (see section 2).

In [17, 22], the authors provides a specific representation of the correspondent
characteristic distributions. In fact, the associated characteristic distribution
AΩ (C)T to the material groupoid, which will be called material distribution
of the body-time manifold C is generated by the (left-invariant) vector fields
Θ on Φ (V) which are in the kernel of TW , i.e.,

TW (Θ) = 0. (14)

Namely, let Θ be a left-invariant vector field on Φ (V). Then,

Θ
(

t, s, xi, yj, yij
)

= λ
∂

∂t
+Θi ∂

∂xi
+ yilΘ

l
j

∂

∂yij
(15)

respect to a local system of coordinates
(

t, s, xi, yj, yij
)

on Φ (VU ,V) with U

and V two open subsets of B and Φ (VU ,V) is given by the triples
(

t, s, j1X,Y φ
)

in Φ (V) such that X ∈ U and Y ∈ V. Then, Θ is an admissible vector field
for the couple (Φ (V) ,Ω (C)) if, and only if,the following equations hold,

λ
∂W

∂t
+ Θi∂W

∂xi
+ yilΘ

l
j

∂W

∂yij
= 0. (16)

Notice that, here λ, Θi and Θi
j are function depending on t and X. Eq. (16)

is the so-called evolution equation, which is a tool to characterize remodeling
and aging [22].
Thus, to construct the material distribution, we have to solve the evolution
equation (16). The base-characteristic distribution AΩ (C)♯ will be called
body-material distribution.
The foliations associated to the material distribution and the body-material
distribution is called material foliation and body-material foliation and they
will be denoted by F and F , respectively.
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The characteristic distribution associated to the X−material groupoid
AΩX (R)T is called X−material distribution. Analogously, AΩX (R)T is
generated by the (left-invariant) vector fields on (R× R)×Π1 (B,B)XX which
are in the kernel of TWX , where WX is given by the restriction of W to
R× R×Π1 (B,B)XX ,

WX : R× R× Π1 (B,B)XX → V

In other words, the X−material distribution of C is generated by the
left-invariant vector fields Θ on R× R×Π1 (B,B)XX such that

TWX (Θ) = 0. (17)

Let Θ be a left-invariant vector field on R× R×Π1 (B,B)XX . Then,

Θ
(

t, s, yij
)

= λ
∂

∂t
+ yilΘ

l
j

∂

∂yij
, (18)

respect to a local system of coordinates
(

t, s, yij
)

on R×R×Π1 (U ,U)XX with
U an open subset of B with X ∈ U . Then, Θ is an admissible vector field for
the couple (Φ (V) ,ΩX (R)) if, and only if, the following equations hold,

λ
∂WX

∂t
+ yilΘ

l
j

∂WX

∂yij
= 0 (19)

Observe that, here λ and Θi
j are function depending on t. This equation is

called the evolution equation at X [17].
The base-characteristic distribution AΩX (R)♯ (see theorem 1) will be
called X−body-material distribution. The foliations associated to the
X−material distribution and the X−body-material distribution will be
called X−material foliation and X−body-material foliation, and they will be
denoted by FX , respectively. It is important do not confuse FX (resp. FX),
the X−material foliation (resp. X−body-material foliation), with F (ǫ (X))
(resp. F (X)), the leaf at ǫ (X) (resp. the leaf at X) of the foliation F (res.
F).

5 Morphogenesis

As opposed to the uniformity in the spatial case [5], arise new material
properties associated to the evolution of the body. In particular, the temporal
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counterpart of uniformity is a specific case of evolution of the material called
remodeling.

Definition 13. Let C be a body-time manifold. A material particle X ∈ B
is presenting a remodeling when it is connected with all the instants by
a material isomorphism, i.e., all the points at R × {X} are connected by
material isomorphisms. C is presenting a remodeling when all the material
points are presenting a remodeling. Growth and resorption are given by a
remodeling with volume increase or volume decrease of the material body B.

Intuitively, a material evolution presents a remodeling when the constitutive
properties of the material does not change with the time. This kind of
evolution may be found in biological tissues [29]. Wolff’s law of trabecular
architecture of bones (see for instance [35]) is a relevant example. Here,
trabeculae are assumed to change their orientation following the principal
direction of stress. It is important to note that the fact of that the material
body remains materially isomorphic with the time does not preclude the
possibility of adding (growth) or removing (resorption) material, as long as
the material added is of the same type. It is easy to realize that a particle
X is presenting a remodeling if, and only if, the X−material groupoid is
transitive [17]. On the other hand, C is presenting a remodeling if, and only
if, the material groupoid is transitive [22].

Definition 14. Let C be a body-time manifold. A material particle X ∈ B
is presenting a aging when it is not presenting a remodeling, i.e., not all the
instants are connected by a material isomorphism. C is a process of aging if
it is not a process of remodeling.

Clearly, if the material response is not preserved along the time via material
isomorphism, the constitutive properties are changing with the time. Altough
it is something natural, a proper definition of smooth aging was not obtained
until now [17, 22].

Proposition 6 ([17]). Let C be a body-time manifold. A material particle
X ∈ B is presenting an aging if, and only if, the X−material groupoid ΩX (R)
is not transitive. C is presenting an aging if, and only if, for some material
point X, the X−material groupoid ΩX (R) is not transitive.

In [17, 22], the authors use the corresponding material distributions and
foliations to presents several results characterizing the different types of
remodeling and aging. Here, however, we are interested in a particular case
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of evolution: morphogenesis.

Let us start remembering a classical notion in theory of groups. Let
G be a group. A subgroup N of G is said to be normal, and denoted by
N E G, if it is invariant under conjugation, i.e.,

N = g ·N · g−1, (20)

for all g ∈ G. Let us consider a general subgroup H of G. Then, the
normalizer of H in G, denoted by N (H), is defined as the family of elements
of G in such a way that H is invariant under their conjugations, i.e.,

N (H) := {g ∈ G / H = g ·H · g−1} (21)

In fact, N (H) is the largest subgroup of G in which H is a normal subgroup.
In order to work deal with the concept of morphogenesis, we will need to
extent this notion to groupoids. This generalization may be found in [2] to
study uniformity and homogeneity in functional graded materials (FGM).
Here, we will develop a previous mathematical study of this extension, which
is necessary for our research.

Definition 15. Let Γ ⇒ M be a groupoid. A subgroupoid Γ ⇒ N of Γ is
said to be normal in Γ if it is invariant under conjugation, i.e.,

g · h · g−1 ∈ Γ,

for all g ∈ Γ and h ∈ Γ such that β (h) = α (g) = α (h).

Notice that, in the case of groupoid, an equation like Eq. (20) does not
make sense because, in general, we cannot compose an element of Γ with
all the elements at Γ. In general, one could think that the imposition
of being a normal subgroupoid may be reduced to the isotropy groups in
such a way that a subgroupoid of a groupoid is normal if, and only if, all
the isotropy groups are normal in the correspondent isotropy groups of the
groupoid. Nevertheless, in general, condition of being a normal subgroupoid
is more restrictive than the property of that all the isotropy groups are normal
subgroups of the correspondent isotropy groups.
An easy counterexample is the following: consider the groupoid Γ ⇒M such
that Γ =M ×M ×Gl (3,R) and M := {x, y} (see example 3). Here, we may
consider the subgroupoid Γ ⇒M characterized by:
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• Γ
x

x = {x} × {x} ×Gl (3,R)

• Γ
y

y = {y} × {y} × {Id}

• Γ
y

x = ∅

Then, obviously, all the isotropy groups of Γ are normal in the correspondent
isotropy groups of Γ. However, in general, for an element F of Γ

x

x = {x} ×
{x} ×Gl (3,R) and an element H of Γy

x = {y} × {y} ×Gl (3,R), it does not
satisfy that

H · F ·H−1 ∈ Γ
y

y = {y} × {y} × {Id}.

So, Γ is not a normal subgroupoid of Γ.

Proposition 7. Let Γ ⇒M be a groupoid. A transitive subgroupoid Γ ⇒ N
of Γ is normal in Γ if, and only if, all the isotropy groups are normal in the
correspondent isotropy groups of Γ.

Proof. Assume that all isotropy groups of Γ are normal in the correspondent
isotropy groups of Γ. Then, for all x ∈M we have

Γ
x

x E Γx
x, ∀x ∈ N.

Let g ∈ Γ and h ∈ Γ such that, β (h) = α (g) = α (h). Then, by transitivity,
consider l ∈ Γ such that α (l) = α (h) = β (h) = α (g) y β (l) = β (g). Then,

g · l−1 ∈ Γ
β(g)
β(g) , l · h · l−1 ∈ Γ

β(g)

β(g)

Therefore,

g · h · g−1 =
(

g · l−1
)

·
(

l · h · l−1
)

·
(

g · l−1
)−1

∈ Γ
β(g)

β(g)

So, we have a wide family of subgroupoids in which the imposition of being
normal may be reduced to the corresponding imposition on the isotropy
groups.

Definition 16. Let Γ ⇒M be a groupoid and Γ ⇒ N be a subgroupoid of
Γ. The normalizoid of Γ in Γ is given by

N
(

Γ
)

:= {g ∈ Γ /g · h · g−1 ∈ Γ, ∀h ∈ Γ, β (h) = α (g) = α (h)} (22)
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Proposition 8. Let Γ ⇒ M be a groupoid and Γ ⇒ N be a subgroupoid
of Γ. The normalizoid N

(

Γ
)

of Γ in Γ has a structure of subgroupoid of Γ

over N . In fact, N
(

Γ
)

is the largest subgroupoid of Γ satisfying that Γ is a

normal subgroupoid of N
(

Γ
)

.

Proof. We only have to check that the composition is closed in N
(

Γ
)

. N
(

Γ
)

is the largest subgroupoid of Γ satisfying that Γ is a normal subgroupoid of
N
(

Γ
)

by construction.

Corollary 9. Let Γ ⇒ M be a groupoid and Γ ⇒ N be a subgroupoid of Γ.
The isotropy groups of the normalizoid of Γ in Γ are the normalizers of the
isotropy groups of Γ in the correspondent isotropy groups of Γ, i.e.,

N
(

Γ
)x

x
= N

(

Γ
x

x

)

,

for all x ∈ N .

Proof.

N
(

Γ
)x

x
= {g ∈ Γ /g · h · g−1 ∈ Γ, ∀h ∈ Γ, β (h) = α (g) = α (h) = x = β (g)}

= {g ∈ Γx
x /g · h · g−1 ∈ Γ, ∀h ∈ Γ, β (h) = α (g) = α (h) , }

= {g ∈ Γx
x /g · h · g−1 ∈ Γ, ∀h ∈ Γ

x
x, }

= N
(

Γ
x
x

)

Of course, a deeper study of the normalizoid as an abstract structure in the
theory of groupoid has a great interest from a mathematical point of view.
Nevertheless, this could distract the reader from the main goal of this paper.
So, we will leave the mathematical study of this notion here and, from now
on, we will be focused on its application to materials.

The extended material groupoid of C, denoted by N (C), is defined as the
normalizoid of the material groupoid of C as a subgroupoid of Φ (V), i.e.,

N (C) = N (Ω (C)) .
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Thus, more explicitly,

The elements of N (C) are the triples
(

t, s, j1X,Y ψ
)

, with ψ a local

automorphism on B, such that,
(

s, s, j1Y,Y (ψ ◦ φ ◦ ψ−1)
)

is a material

isomorphism, for all material symmetry
(

t, t, j1X,Xφ
)

on (t, X).

Notice that, by proposition 8, all the material isomorphisms are contained
in N (C). In fact, N (C) is the largest subgroupoid of Φ (V) satisfying that
Ω (C) is a normal subgroupoid of N (C).
Analogously we define the X-extended material groupoid of C, denoted by
NX (R), as the normalizoid of the X−material groupoid of C. Thus, in
general, we have the following short exact sequences,

Ω (C) ≤ N (C) ≤ Φ (V)

ΩX (R) ≤ NX (R) ≤ R× R× Π1 (B,B)XX

Let us now come back to material evolution. An example of aging process
may be the weakening of the stiffness of a mineralized bone due to hormonal
deficiencies. However, the resulting bone could still be isotropic. Then, there
has not been a qualitative change of the constitutive properties. This fact,
leads to identify a particular kind of aging: morphogenesis.

Definition 17. Let C be a body-time manifold. A material point X is
said to be undergone a process of evolution without morphogenesis when
its symmetry groups at all the instants are conjugated. C is said to be
undergone a process of evolution without morphogenesis when all the points
are undergone process of evolution without morphogenesis.

Let us clarify the definition. Fix a material particleX of the body. Remember
that, for each instant t, the symmetry group G (t, X) is given by all the
material isomorphisms from (t, X) to (t, X), i.e.,

G (t, X) = Ω (C)(t,X)
(t,X) = ΩX (R)tt
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Then, X is presenting a process of evolution without morphogenesis iff for
any two instant t and s, there exists a triple

(

s, t, j1X,Xφ
)

∈ Φ (V) such that

G (t, X) =
(

s, t, j1X,Xφ
)

·G (s,X) ·
(

t, s, j1X,Xφ
−1
)

(23)

Suppose that C is a remodeling process. Then, connecting via material
isomorphisms, all the symmetry groups are conjugated. Hence, remodeling
is an example of process of evolution without morphogenesis. In other words,
as it is natural, any process of morphogenesis is a particular case of aging.
Nevertheless, not all the processes of evolution without morphogenesis
are remodelings. In particular, we have a process of aging without
morphogenesis when not all the symmetry groups may be conjugated by
material isomorphisms, but for arbitrary elements of Φ (V).
Thus, a process of morphogenesis entails a breakdown of symmetry, a
sudden change in the material symmetry type. A state of instability could
provoke that the deviations from spherical symmetry of an embryo (in its
spherical blastula stage) tend to grow reaching a new equilibrium in which
the symmetries have changed (see [34]).
Many others king of morphogenesis may be happen in the realm of solids
bodies. In [13] the author study how could change the type of symmetry
from isotropy to transverse isotropy or orthotropy.

Proposition 10. Let C be a body-time manifold. A material point X is
undergone a process of evolution without morphogenesis if, and only if, the
X−extended material groupoid NX (R) is transitive. C is presenting a process
of evolution without morphogenesis if, and only if, the extended material
groupoid N (C) is transitive.

Proof. Notice that, in particular, a material point X presents a process of
evolution without morphogenesis if, and only if, for each two instants t and
s, there exists an element g =

(

s, t, j1X,Xφ
)

of Φ (V) from (s,X) to (t, X) such
that

ΩX (R)tt = g · ΩX (R)ss · g
−1, (24)

where ΩX (R)rr is the isotropy group at (r,X) for all s. In other words, X
presents a process of evolution without morphogenesis if, and only if, for
each two instants t and s, there exists an element g of the X−extended
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material groupoid NX (R) from (t, X) to (s,X) or, in other words, if and
only if NX (R) is transitive. The proof for N (C) is analogous.

So, the normalizoid of the X−material groupoids works as a tool to study
the morphogenesis of a particle, while the normalizoid of the material
groupoid works to study the morphogenesis of the whole body, both via
the property of transitivity. However, in general, it not easy to check the
transitivity of a groupoid. To solve this problem, we will use the associated
characteristic distribution.

Now, we will consider the associated characteristic distribution AN (C)T to
the extended material groupoid of C, which will be called extended material
distribution. The base-characteristic distribution AN (C)♯ will be called
extended body-material distribution.
The foliations associated to the extended material distribution and the
extended body-material distribution will be called extended material foliation
and extended body-material foliation and they will be denoted by NF and
NF , respectively.
Then, as a consequence of theorem 2 and corollary 3, we have that,

Theorem 11. For each (X, t) ∈ C, there exists a transitive Lie subgroupoid
N (X, t) of Φ (V) with base NF (X, t), which is totally contained in N (C).
Furthermore, NF is the coarsest foliation of C satisfying this property.

Notice that, over each leaf NF (X, t), there exists a transitive Lie
subgroupoid N (X, t) contained in N (C). This fact is interpreted as each
leaf is a differentiable process of morphogenesis. Thus, we would like to
highlight that this mathematical result has a very intuitive meaning:

The body-time manifold C may be canonically divided, in a maximal way,
into submanifolds (the foliation NF) in such a way that all the leaves are
differentiable processes of evolution without morphogenesis.

As we commented, to study the morphogenesis is not an easy problem using
unically the transitivity of the extended material groupoid. Then, following
result present a “computable” way to study morphogenesis via theorem 11.

Theorem 12. Let C be a body-time manifold and N (C) its extended material
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groupoid. The extended material distribution AN (C)T is pointwise generated
by the left-invariant vector fields Θ on Φ (V) satisfying that

TW ([Θ,Λ]) = 0, (25)

for all left invariant admissible vector field Λ for the couple (Φ (V) ,Ω (C))
which is tangent to the α−fibres.

Proof. Let Θ ∈ Xloc (Φ (V)) be a (local) left-invariant vector field on Φ (V)
whose (local) flow is denoted by ϕΘ

t . Let us also denote by Θ♯ ∈ Xloc (C) the
(local) the projection of Θ on the base-characteristic distribution of Φ (V),
i.e.,

Θ♯ = Tα ◦Θ ◦ ǫ

The local flow of Θ♯ will be denoted by ϕΘ♯

t . Notice that, we have
ϕΘ♯

t = α ◦ ϕΘ
t ◦ ǫ.

Then, by definition, Θ is admissible for the couple (Φ (V) ,N (C)) if, and only
if, ϕΘ

t is completely contained in N (C) at the identities. In other words,

W
(

F · ϕΘ
t (ǫ (r,X)) · h · ϕΘ

−t

(

ǫ
(

ϕΘ♯

t (r,X)
)))

=W (F ) , (26)

for all (r,X) ∈ C, F ∈ Φ (V) and h ∈ Ω (C) with α (F ) = (r,X) and
α (h) = β (h) = ϕΘ♯

t (r,X).
By simplicity, the identity at (r,X) in Φ (V),

(

r, r, j1X,XIdTXB

)

with IdTXB

the identity map on TXB, is denoted by ǫ (r,X).
Let us now consider a left invariant vector field Λ on Φ (V) tangent to the
α−fibres whose (local) flow is denoted by ϕΛ

t . Then, it satisfies that

W
(

F · ϕΘ
t (ǫ (r,X)) · ϕΛ

s

(

ǫ
(

ϕΘ♯

t (r,X)
))

· ϕΘ
−t

(

ǫ
(

ϕΘ♯

t (r,X)
)))

= W
(

ϕΘ
−t

(

ϕΛ
s

(

ϕΘ
t (F )

)))

= W (F )

Notice that, since it is tangent to the α−fibres, ϕΛ
t have the same projection

by β and α (so, the above composition makes sense). Then, derivating with
respect to the variable s at 0, we get

TFW
(

ϕΘ
−t∗

Λ (F )
)

= 0, (27)
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where ϕΘ
−t∗

Λ is the pushforward of Λ by φΘ
−t. Therefore, derivating with

respect to the variable t at 0, we have that

TFW ([Θ,Λ] (F )) = 0. (28)

Conversely, assume that Eq. (28) is satisfied for all left invariant admissible

vector field Λ, tangent to the α fibres, for the material distribution AΩ (C)T .
Using the same notation for the (local) flows, notice that, in general

0 =
∂

∂t|0

(

∂

∂s|0

(

W
(

ϕΘ
−t

(

ϕΛ
s

(

ϕΘ
t (F )

))))

)

= −
∂

∂t|0

(

∂

∂s|0

(

W
(

ϕΛ
−t

(

ϕΘ
s

(

ϕΛ
t (F )

))))

)

= −
∂

∂t|0

(

∂

∂s|0

(

W
(

F · ϕΛ
t (ǫ (r,X)) · ϕΘ

s (ǫ (r,X)) · ϕΛ
−t

(

ǫ
(

ϕΘ♯

s (r,X)
))))

)

= −
∂

∂t|0

(

∂

∂s|0

(

W
(

F · ϕΛ
t (ǫ (r,X)) · ϕΘ

s (ǫ (r,X))
))

)

for all F . Here, we are using that ϕΛ
t is totally contained in Ω (C). Then, by

changing F by G = F · ϕΛ
l (ǫ (r,X)) we have that

∂

∂t|l

(

∂

∂s|0

(

W
(

ϕΘ
−t

(

ϕΛ
s

(

ϕΘ
t (F )

))))

)

= −
∂

∂t|l

(

∂

∂s|0

(

W
(

F · ϕΛ
t (ǫ (r,X)) · ϕΘ

s (ǫ (r,X))
))

)

= −
∂

∂t|0

(

∂

∂s|0

(

W
(

G · ϕΛ
t (ǫ (r,X)) · ϕΘ

s (ǫ (r,X))
))

)

= 0

Therefore,

∂

∂s|0

(

W
(

ϕΘ
−t

(

ϕΛ
s

(

ϕΘ
t (F )

))))

= 0.

On the other hand,
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∂

∂s|l

(

W
(

ϕΘ
−t

(

ϕΛ
s

(

ϕΘ
t (F )

))))

=
∂

∂s|l

(

W
(

F · ϕΘ
t (ǫ (r,X)) · ϕΛ

s

(

ǫ
(

ϕΘ
♯

t (r,X)
))

· ϕΘ
−t

(

ǫ
(

ϕΘ
♯

t (r,X)
))))

=
∂

∂s|0

(

W
(

H · ϕΘ
t (ǫ (r,X)) · ϕΛ

s

(

ǫ
(

ϕΘ
♯

t (r,X)
))

· ϕΘ
−t

(

ǫ
(

ϕΘ
♯

t (r,X)
))))

=
∂

∂s|0

(

W
(

ϕΘ
−t

(

ϕΛ
s

(

ϕΘ
t (H)

))))

= 0

Where, by simplicity, we are considering the following change of notation,

H = F · ϕΘ
t (ǫ (r,X)) · ϕΛ

l

(

ǫ
(

ϕΘ♯

t (r,X)
))

· ϕΘ
−t

(

ǫ
(

ϕΘ♯

t (r,X)
))

There, we have already proved that,

W
(

ϕΘ
−t

(

ϕΛ
s

(

ϕΘ
t (F )

)))

≡ Cte.

So, evaluating at t = s = 0,

W
(

ϕΘ
−t

(

ϕΛ
s

(

ϕΘ
t (F )

)))

≡ W (F ) , ∀F.

Hence, Eq. (26) is satisfied.

As we promised, this result will give us a computational way of studying the
morphogenesis property. Let be a local system of coordinates

(

t, s, xi, yj, yij
)

on Φ (V). Consider a left-invariant vector field Θ on Φ (V) and a left-invariant
vector field Λ, tangent to the α fibres, on Φ (V),

Θ
(

t, s, xi, yj , yij
)

= λ
∂

∂t
+Θi ∂

∂xi
+ yilΘ

l
j

∂

∂yij
, Λ

(

t, s, xi, yj , yij
)

= yilΛ
l
j

∂

∂yij
(29)

Therefore,

[Θ,Λ] = yil

(

Θl
rΛ

r
j +−Λl

rΘ
r
j +Θk

∂Λl
j

∂xk
+ λ

∂Λl
j

∂t

)

∂

∂yij
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Then, by using the evolution equation (14), the equation to be satisfied is,

yil

(

Θl
rΛ

r
j +Θk

∂Λl
j

∂xk
+ λ

∂Λl
j

∂t
− Λl

rΘ
r
j

)

∂W

∂yij
= 0 (30)

for all matrix function
(

Λi
j

)

fulfilling the equation,

yilΛ
l
j

∂W

∂yij
= 0 (31)

Here the functions λ, Θi, Θj
i and Λj

i depends on the variables t and X. In practice,
it is enough to solve Eq. (30) for a basis of the space of solutions of Eq. (31).
Thus, the extended material distribution is pointwise generated by the (local)
functions λ, Θi and Θj

i satisfying the Eq. (30) for all functions Λj
i satisfying Eq.

(31). This equation will be called the morphogenesis equation by vitue of
proposition 17.

Analogously, we will consider the associated characteristic distribution ANX (R)T

to the extended material groupoid of C, which will be called X−extended
material distribution. The base-characteristic distribution ANX (R)♯ will be called
xextended body-material distribution. The foliations associated to the x−extended
material distribution and the x−extended body-material distribution will be
called extended material foliation and extended body-material foliation and they
will be denoted by NFX and NFX , respectively.

Theorem 13. For each material particle X ∈ B and each instant t, there exists a
transitive Lie subgroupoid NX (t) of R×R×Π1 (B,B)XX with base NFX (t), which
is totally contained in NX (R). Furthermore, NFX is the coarsest foliation of R
satisfying this property.

In other words, we have proved the following:

For each particle X, the time-line R may be canonically divided, in a maximal way,
into submanifolds (intervals or points given by the foliation NFX) in such a way
that all the leaves are differentiable processes of evolution without morphogenesis
of X.

Therefore, to calculate this foliation permits us to now, exactly, in what instants
of time differentiable process of morphogenesis are being produced.
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Analogously to theorem 12, we hve the following result:

Proposition 14. Let C be a body-time manifold and NX (R) the X−extended
material groupoid. The extended material distribution ANX (R)T is pointwise
generated by the left-invariant vector fields Θ on R × R × Π1 (B,B)XX satisfying
that

TWX ([Θ,Λ]) = 0, (32)

for all left invariant admissible vector field Λ for the couple
(

R× R×Π1 (B,B)XX ,ΩX (R)
)

which tangent to the α−fibres.

Proof. It may be proved analogously to proposition 12.

Let be a local system of coordinates
(

t, s, yij

)

on R× R× Π1 (B,B)XX . Consider a

left-invariant vector field Θ on R×R×Π1 (B,B)XX and a left-invariant vector field
Λ on R× R×Π1 (B,B)XX , that is

Θ
(

t, s, yij
)

= λ
∂

∂t
+Θi

j

∂

∂yij
, Λ

(

t, s, yij
)

= Λi
j

∂

∂yij
(33)

Therefore,

[Θ,Λ] = yil

(

Θl
rΛ

r
j + λ

∂Λl
j

∂t
− Λl

rΘ
r
j

)

∂

∂yij

Hence, by taking into account the evolution equation for X (17), the equation to
be satisfied is,

yil

(

Θl
rΛ

r
j ++λ

∂Λl
j

∂t
− Λl

rΘ
r
j

)

∂WX

∂yij
= 0 (34)

for all matrix function
(

Λi
j

)

which satisfies,

yilΛ
l
j

∂WX

∂yij
= 0 (35)

It is important to highlight that, in this case, the functions λ, Θi, Θj
i and Λj

i

depends on the variable t. Analogously to the previous case, in practice, we will
only have to check the Eq. (34), for a basis of the space of solutions of Eq. (35).
Again, the X−extended material distribution is pointwise generated by the (local)
functions λ, Θi and Θj

i satisfying the Eq. (34) for all functions Λj
i satisfying Eq.
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(35). Thus, this equation will be called the morphogenesis equation for X.

The base-characteristic distribution ANX (R)♯ will be called X−extended
body-material distribution. The foliations associated to the X−extended material
distribution and the X−extended body-material distribution will be called
X−extended material foliation and X−extended body-material foliation and they
will be denoted by NFX and NFX , respectively.

As last theoretical results of the paper, we will present explicitly how may we use
these morphogenesis equations to study the morhogenesis of the evolution.

Proposition 15 (Global morphogenesis at X). Let be a body-time manifold C and
a material point X. X presents a smooth process without morphogenesis if, and
only if,

dim
(

ANX (R)♯t

)

= 1.

for all instants t, with ANX (R)♯t the fibre of ANX (R)♯ at t.

Proof. We only have to observe that the imposed condition implies that NX (R) is
a transitive Lie subgroupoid of Φ (V).

In fact, we may generalize the result as follows:

Proposition 16 (Local morphogenesis at X). Let be a body-time manifold C,
a material point X and an instant t. X presents a smooth process without
morphogenesis on an interval of time around t if, and only if,

dim
(

ANX (R)♯t

)

= 1.

with ANX (R)♯t the fibre of ANX (R)♯ at t.

Thus, to study if the evolution of a particle X is not producing morphogenesis
(local or global), we will have to deal with the morphogenesis equation for X (34),

yil

(

Θl
rΛ

r
j ++λ

∂Λl
j

∂t
− Λl

rΘ
r
j

)

∂WX

∂yij
= 0

for all functions Λj
i satisfying Eq. (35), which is the equation whose solutions

generate the X−extended material distribution.
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In particular, X presents a (local) smooth process without morphogenesis if, and

only if, there exists a (local) solution
(

λ,Θi
j

)

of the morphogenesis equation fo X

with λ 6= 0, for all Λi
j satisfying Eq. (35).

Notice that, to prove that a process of aging is not producing morphogenesis, we
will need to deal with isomorphisms which are not in the material groupoid, i.e.,
isomorphisms satisfying Eq. (24). In particular, the differentiability of a process
of aging (ΩX (R) or Ω (C) Lie subgroupoids) does not have relation with the
differentiability of the elections of the implants g proving that the process is not a
morphogenesis, i.e., satistying Eq. (24).

Proposition 17 (Global morphogenesis). Let be a body-time manifold C. C
presents a smooth evolution process without morphogenesis if, and only if,

i) dim
(

AΩ (C)Tǫ((t,X))

)

is constant respect to (t,X)

ii) For some X, dim
(

AΩX (R)♯t

)

= 0, for some t.

iii) dim
(

ANX (R)♯t

)

= 1.

Here, AΩ (C)Tǫ((t,X)) (resp. AΩX (R)♯t and ANX (R)♯t) is the fibre of AΩ (C)T (resp.

AΩX (R)♯ and ANX (R)♯t) at ǫ ((t,X)) (resp. t).

In this way, to prove that a material evolution present a smooth aging without
morphogenesis, we will have to deal with Eq. (16), Eq. (19) and Eq. (30).

6 Conclusions and future work

Using the concept of groupoid, we have developed a simple and complete geometric
theory of the phenomenon of material evolution and, in particular, of the so-called
morphogenesis. We have also obtained the corresponding linear equations of
evolution, making our results computable.

In a future work we wish to deepen this theory, and also consider more complex
situations such as in media with microstructure or composite media.
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