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ABSTRACT / SUMMARY 
 

 The estimate of loss of cargo in a pipeline with a discreet cost distribution, 
a permanent and uniform regimen, a constant flow by derivation and equidistant 
outlets (conduction under pressure with service in route), was approached and 
resolved by Christiansen in 1942, in which case the first derivation is situated at 
the farthest distance upstream of the pipeline equal to the existing space between 
derivations. Later, in 1957, Jensen and Fratini introduced the corresponding 
modification in the value of the coefficient by Christiansen, in which case the 
first outlet of the branch is found at a distance (sprinkling or spray line) equal to 
half of its space. Such circumstances occur systematically, in the design of 
watering networks by spray and in those sites of high frequency (micro 
sprinkling, exudation and dripping). The original study of an academic and 
engineering nature, which is developed subsequently deals with Christiansen's 
mathematical justification, and constitutes a theme of notable theoretical interest 
with little or no diffusion in the existent specialized bibliography in this material. 

 
Key words: pipeline, irrigation, sprinkling, dripping, approach, flow, 

exits, en-route service, pressure drop, formula. 
 

 
RESUMEN 

 
El cálculo de las pérdidas de carga en una tubería con distribución 

discreta del gasto, régimen permanente y uniforme, caudal constante por 
derivación y salidas equidistantes (conducción a presión con servicio en ruta), 
fue abordado y resuelto por Christiansen en el año 1942, para el caso en que la 
primera derivación estuviera situada a una distancia del extremo aguas arriba 
de la tubería igual al espaciamiento existente entre todas las derivaciones. 
Posteriormente, en 1957, Jensen y Fratini introdujeron la correspondiente 
modificación en el valor del coeficiente de Christiansen para el caso de que la 
primera salida se hallara a una distancia del comienzo del ramal (línea 
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portagoteros o portaaspersores) igual a la mitad de su espaciamiento. Dichas 
circunstancias se vienen presentando, sistemáticamente, en el diseño de las redes 
de riego por aspersión y en los localizados de alta frecuencia (microaspersión, 
exudación y goteo). El ensayo original, de tipo académico e ingenieril, que se 
desarrolla a continuación, trata de la justificación matemática de la función 
aproximada de Christiansen, que constituye un tema de notable interés teórico y 
de escasa o nula difusión en la bibliografía especializada existente al respecto.  

 
Palabras clave: tubería, riego, aspersión, goteo, aproximación, caudal, 

salidas, servicio en ruta, pérdida de carga, fórmula.          
 
 

RESUM 
 

El càlcul de les pèrdues de càrrega en una canonada amb distribució 
discreta de l’aigua, règim permanent i uniforme, cabal constant per derivació i 
sortides equidistants (conducció a pressió amb servei en ruta), fou estudiat i 
resolt per Christiansen l’any 1942, per al cas que la primera derivació es situés 
a una distància de l’extrem aigües amunt de la canonada igual a l’interval 
existent entre les mateixes derivacions. Posteriorment, al 1957, Jensen i Fratini 
introduïren la corresponent modificació en el valor del coeficient de 
Christiansen per al cas que la primera sortida es trobi a una distància de l’inici 
de la canonada (línia portagoters o portaaspersors) igual a la meitat d’aquell 
interval. Les esmentades circumstàncies es presenten, sistemàticament, en el 
disseny de les xarxes de reg per aspersió i en els localitzats d’alta freqüència 
(microaspersió, exsudació i degoteig). L’assaig original, de tipus acadèmic i 
enginyeril, que es desenvolupa a continuació, tracta de la justificació 
matemàtica de la funció aproximada de Christiansen, la qual cosa constitueix un 
tema de notable interès teòric i d’escassa o nul·la difusió en la bibliografia 
especialitzada existent al respecte. 

 
Paraules clau: canonada, reg, aspersió, degoteig, aproximació, cabal, 

sortides, servei en ruta, pèrdua de càrrega, fórmula. 
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1. INTRODUCTION 
 

In the first issue of the magazine AGRÓNOMOS of the Official College of 
Agricultural Engineers of Levante (corresponding to the summer of 1989), a 
brilliant collaboration of Teodoro Montalvo López, PhD, Professor of General 
and Agricultural Hydraulics (Department of Agroforestry Engineering of the 
Polytechnic University of Valencia) and at that time Director of the Higher 
Technical School of Agricultural Engineers of the capital of Turia. It addressed 
there, with commendable clarity and depth, the problem of the generalization of 
the Christiansen coefficient - used for calculating hydraulic head losses in a 
pipeline with discrete distribution of expenditure, constant flow rate by bypass 
and equidistant outlets - for any value of the relationship: 
 

l

  l  
r o  

 
and of the parameters n0 and m, as well as the direct calculation of the pressure 
losses in a pipe with a unique characteristic formed by an initial section of any 
length, in a permanent and uniform regime, and a final section with discrete flow 
distribution and route service. These circumstances have been systematically 
presented in the design of sprinkler irrigation networks and in high-frequency 
localized networks (HFLI, micro-sprinkling, exudation and dripping). 

 
I had the opportunity to contact, more recently, Dr. Montalvo, who 

proposed to me the study or mathematical deduction of the approximate function 
of Christiansen, since it is a topic of notable theoretical interest and, apparently, 
of little or no interest dissemination in the existing specialized bibliography in 
this regard. In fact, according to Professor Montalvo, the Department of 
Mathematics of that University had been trying unsuccessfully to date. 

 
The essay or paper that is developed here constitutes, therefore, the 

mathematical justification (obtained by the subscriber) of the approach of 
Christiansen's formulation of fruitful applications in the design of modern 
pressure irrigation systems. It can be considered as a continuation of the articles 
published by this author in the same magazine AGRÓNOMOS (nº: 2, Autumn-
Winter 1989/90) and in ENGINYERIA AGRONÒMICA (nº: 1, June 1990, of the 
Official College and the Association of Agricultural Engineers of Catalonia, 
Spain). 
 
 
2. JUSTIFICATION OF THE APPROXIMATE FUNCTION 
 

Thus, we have the general case of a pipeline with service in route, with n0 
derivations of constant flow, with a distance between outlets l and the first 
derivation being at a distance l0 from the origin of the conduction, as can be seen 
in Figure 1: 
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Fig. 1. Pipeline with service in route and equidistant derivations of constant flow q. 
 

In which to be fulfilled  l / l1 = l2 = ... = li = ... = l. 
 
Well, the output flow of T, which runs out at T’, will be: 

 
Q = n0 · q  , 

 
and the total length of the pipe, taking into account that: l0 = r · l, is:  

 
L = l0 + (n0 –1) · l = (r + n0 -1)·l 

 
Theoretically, in a pipe of the expressed characteristics, the reduction 

coefficient for outlets, applicable to the head losses experienced by a single 
service pipe at its end, would respond to the expression: 
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for which Christiansen (1942) obtained the following approximate function: 
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 , meaning: 

 
n0 = number of derivations or outputs. 
m = exponent of the formula used in the hydraulic calculation of 
the head losses. 

  
 The problem presented here constitutes a generalization of the classic 
problem of a simple pipeline with several intermediate intakes (of non-excessive 



5 
 

number) and constant diameter, the resolution of which is usually presented by 
application of the well-known Darcy formula and the prior determination of the 
line of piezo metric levels. 
 
 In the case of equidistant leads and constant flow q for each one, the 
determination of said piezo metric line would be obtained by dividing the total 
load h into parts proportional to the sequence of real numbers: n0

2, (n0 - 1)2, ..., 1. 
 

Well, we are going to try, here, to explain or justify mathematically what 
we will call "Christiansen's approach", basing ourselves, initially, on the classic 
concept of "integral sum". 

 

Indeed, let's see that the expression: m
0

mmm
n

1i

m n...321i
0




, 

 
represents the sum or addition of the areas of the juxtaposed rectangles of 
heights: 1, 2m, 3m, 4m, 5m, ..., and of base equal to the unit. See Figure 2: 
 

 
Fig. 2. Graphical representation for m = 2.00. 
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As can be seen in Figure 2 (performed for m = 2.00), the curve or potential 
function y = xm, comprises, between it and the axis of abscissa OX, an area that 
differs from the searched in approximately half the area of the largest rectangle, 
since, effectively, the area represented in the previous figure by           , can be 
considered equivalent to half the surface of this rectangle. 

 
Likewise, a good approximation to this determination will be obtained 

taking for the expression: 


0n

1i

mi , the area under the curve and on the abscissa 

axis, but between the limits or extreme ordinates: 
 

x = 0    and    x = n0 + ½ 
 
by the application of the very concept of definite integral. The upper limit will be 
increased by ½ to obtain precisely half the surface of the larger rectangle, thus: 
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Now, it is true that: 
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by the classical formula of the development of the Newton-Tartaglia binomial. 

The terms that do not appear are third degree and successive in 0n
1

 and can be 

neglected, for practical purposes, taking into account their very low magnitude 
when the number of derivations or outputs n0 is sufficiently high, as it usually 
happens in reality. 
 

Thus, the experimental coefficient of reduction for outputs, previously 
defined, will take the value: 
 

   

  2
00

1
0

2
00

1
0

1
1
0 82

1

1

1

1·

4

1
·

2

·1

2

1
·11·

·
1 0

n

m

nmmn

n

mm

n
mn

i
n

F
m

m

n

i

m
m














 








   

 
With all this, we have already obtained the first two terms or fractional 

addends of the approximate formula, the deduction of which is the object of our 
study, namely: 
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Now, the third of them: 2
0n8

m
 does not coincide with 2

0n6

1m 
, that we will 

find in this formula. Undoubtedly, this is because this third term has been 
expressly changed or altered (which would be lawful since, ultimately, we are 
facing a process of approximation) with the sole objective that the formula be 
valid for particular cases. : m = 1, 2, 3. 
 

Let's see, next, what happens in each of them: 
 
For m = 1, we will have the numerical series: 
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it is the sum of the first non-consecutive terms of an arithmetic progression of 
ratio equal to unity. So: 
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At this level, the term 2
0n8

m
must be changed to another such as, for 

example, 2
0n8
1m 

, so that 0 is obtained when m = 1. 

 
For m = 2, we will have the numerical series: 
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Indeed, this can be demonstrated by induction, since the above equality is 

obviously true for n0 = 1, since: 
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Suppose, also, that it is true for n0. Then, we will have: 

 
12 + 22 + 32 + ... + n0

2 = n0 · (n0 + 1)·(2n0 + 1) / 6, and adding (n0 + 1)2 to the two 
members of the previous expression, the following will result: 
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Thus, equality is true for (n0 + 1), as we intended to demonstrate. Then, 

the reduction coefficient for outputs will adopt the value: 
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At this level, the term 2
0n8
1m 

must be changed to another, such as for 

example, so that it adopts the value 0 when m = 1, and also applies 2
0n6

1
, when 

m = 2. 
 
For m = 3, we will have the numerical series: 
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in fact, as in the previous case, let us see that this identity is true for: n0 = 1. 
Following the same induction method, let us also suppose it true for n0. Then, it 
will be fulfilled that: 
 
13 + 23 + 33 + ... + n0

3 = (1 + 2 + 3 + ... + n0)2, and adding (n0 + 1)3 to the two 
members of equality, so that it does not vary, will result: 
 

13 + 23 + 33 + ... + n0
3 + (n0 + 1)3 = (1 + 2 + 3 + ... + n0)2 + (n0 + 1)·(n0 + 1)2 = 

= (1 + 2 + 3 + ... + n0)2 + n0 (n0 + 1)2 + (n0 + 1)2. 
 

But, as we have seen in the first case (for m = 1), it is true that: 
 

n0(n0 + 1) = 2 · (1 + 2 + 3 + ... + n0), 
 
with which, we will also have to: 
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n0 (n0 + 1)2 = 2·(1 + 2 + 3 + ... + n0)·(n0 + 1), and therefore: 
 

13 + 23 + 33 + ... + n0 + (n0 + 1)3 = (1 + 2 + 3 + ... + n0)2 + 2 (1+ 2 + 3 + ... + n0) · 
(n0 + 1) + (n0

 + 1)2 = 1 + 2 + 3 + ... + n0 + (n0 + 1)2, 
 

which proves that equality is true for (n0 +1), as we intended to demonstrate. 
Thus, the reduction coefficient for departures will adopt the value: 
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At this level, the term 2
0n6
1m

must be changed for another that continues to 

be 0 for m = 1, that is worth 2
0n6

1
, for m = 2, and that is worth 2

0n4
1

, when it is 

m = 3. In the same order of ideas, let us see that its substitution is useful for the 

term 2
0n6

1m 
, since this last expression is valid 0 for m = 1, it is valid 2

0n6
1

when 

m = 2, and, for m = 3 it is not valid 2
0n4

1
in the strict sense, but it does take a 

close value that is:  it is approximately equal to: 1/4 = 

=0.2500000 (specifically, the first value is 94.28% of the second), which fully 
satisfies, in fact, our practical requirements. 

 
Since the previously obtained formula is valid for the values of the 

exponent m = 1, m = 2, m = 3, that is: m  (1, 2, 3), it will also be valid for non-
integer real numbers of the type: m  1, 4, that is: 1. ..., 2. ..., 3. ..., and also, 
although with less degree of approximation, for the assumed values: 4. ..., 5. ..., 
etc., that could adopt the coefficient used in the formula used in the calculation of 
the losses of load of the conduction, according to the different cases. 

 
Let us see, with respect to the different values that the coefficient m can 

take, that, in general, the unit pressure losses of a pipe under pressure or forced 
conduction, depending on the flow through it, respond to a potential expression 
of the type: 

J = n · Qm 
 
which, in the case of Darcy's simplified expression, adopts the value: m = 2.00, 
as well as those of Lèvy, Gaukler, Weisbach, Kütter, Mougnie, Chèzy, Sonier, 
Manning-Strickler or Catani. In those of the SOGREAH society (1962), Flamant 
or Blasius is m = 1.75, as well as in those of Saph and Schoder; in that of 
Scimemi-Veronese, it is m = 1.78571, in that of Hazen-Williams it is m = 1.852, 
in those of Biegeleisen and Boukowsky it is m = 1.90, as well as in that of 
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Meyer-Peter, while in the various formulations proposed for Scobey we find the 
values: m = 1.80, 1.90, etc., but always within the range of existence to which we 
have referred, and expressing them, all of them, as monomial potential formulas. 
    
 The versatility of such a broad formulation leads us to conclude that such 
information includes the different styles of work successively employed over 
almost two centuries and, basically, representative of an evolution of knowledge 
that tends to generalize and unify, each once again, his affirmations, in the 
pursuit of a final synthesis not yet reached. In this same sense, we have made an 
effort in the calculation of free conductions, which can be found in other works 
(Franquet, 2005). 
 
 It is unavoidable, nowadays, to distinguish, according to the 
experimentation of Von Kàrmàn-Nikuradse and Colebrook-White, the smooth, 
rough and intermediate pipes, these names established not according to the 
texture of the wall, but according to the hydraulic behavior, by virtue of the 
configuration of the boundary layer that is perfectly defined in each case. In this 
way, it happens that the law of resistance in smooth pipes is unique, independent 
of its constituent material and expressible by an analytical law of which the 
Blasius formula is a first approximation that has been prolonged by other 
researchers. 
 
 Thus, it will turn out, in short: 
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as it was intended to demonstrate, which is the approximate expression 
adopted by Christiansen in his study on hydraulic pipes with en-route 
service. 

 
It should also be borne in mind that this formula will only be valid for the 

specific case in which the first exit is from the beginning of the conduction at a 
distance l0 = l (r = 1). 

 
On the other hand, it is obvious that when the number of bypasses or 

outlets increases indefinitely (that is, when the flow is distributed throughout the 
entire forced conduction, as in the case of irrigation by exudative or underground 
tape), the expression above will become: 
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which constitutes, in these circumstances, the minimum value to which the 
experimental reduction coefficient in question tends. If the residual or extremal 
flow of the conduction is null, and considering the normal case m = 2.00, let us 
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see that this indicates that the head loss that takes place is one third of that which 
would occur if the initial flow or expense traveled the entire pipeline and come 
out freely at the end of it (and considering that the pipeline in question distributes 
a uniformly distributed expense that is obtained by adding all the expenses of the 
branches and dividing this sum by the total length of the pipe). 

 
Normally, in HFLI it will be true that m = 1.75, while when the regimen is 

laminar, this situation is frequent in exudation irrigation in which the head loss is 
practically continuous and not discrete, we will have that with: m = 1.00 and also 
F = 0.500 and with m = 2.00 we have F = 0.333. 

 
The most precise study of this case is developed in the following section. 
 
 

3. EXUDATION PIPING THAT DISTRIBUTES AN UNIFORMLY 
SPREADED EXPENDITURE OR FLOW 
 

Either a pipeline OB of length l and diameter D, which originates from a 
pumping group or from a raised water tank like the one in Figure 3, with several 
uniformly spaced lateral taps, from which identical expenses are derived. 
Namely: 

 
 
 
                                                     
           z                   h   
                               
                  0         
                                       x                             B    
                                                  A 
 

Fig. 3. Outgoing pipe of a tank with intakes of the same flow. 

 
 When in a conduction of these characteristics, the number of branches is 
sufficiently large (typical in sprinkler irrigation systems and localized of high 
frequency, such as micro sprinkling, exudation and dripping in its different 
modalities), the calculation is made, with great approximation, assuming that an 
expense is distributed evenly distributed along the path, which is obtained by 
adding all the expenses of the derivations and dividing this sum by the total 
length of the pipe or distance: l = OB. This expense thus obtained is called the 
expense per unit length of pipe. 
 
 In these cases, the movement of the water through the pipe can be 
assimilated to a succession of infinitesimal uniform movements of variable law 
with the flow -or with the section of the line if it is not constant- due to the 
proximity of the changes and the small variation of the flow that takes place as a 
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consequence of them. Although it would be necessary, for the faultless resolution 
of the problem, the exact knowledge of said law of flow variation, we could 
admit, with a good approximation, that the service on the route is uniformly 
distributed throughout the length of the pipe, reducing the flow by a certain 
quantity q per unit length of pipe. In other words, a flow q per unit of pipe 
length is spent or consumed (Torres, 1970). 

 
Now using the following notation: 

 
    Q0 = expenditure in the origin 0 of the pipe. 

q = derived expense per unit length of pipe. 
Q = available expenditure at a generic point A, located at a distance from 
the origin OA = x 

 
obviously it will be verified that: 

 
Q = Q0 – q · x (1) 

 
where q·x is the cost distributed in the OA path. 
  

If we express the loss of load due to friction in the OA section, using the 
formula: 

 
 
 
 
 
 
 

The integration constant is null, since for x = 0, also: z = 0  c = 0; that 
is: 

 
 
 
 
 
which is the equation of a cubic parabola or representative function of the line of 
piezo metric levels. 
 
 If we call Qe to the residual or extremal flow that comes out of end B of 
the pipe, we will have, according to equation (2): 
 
 

 
Now, if the end B of the pipe is a dead point, that is, if all the flow is 

derived along the line without any residual flow reaching point B, it will 
obviously be that: 


 




x

0

22
0

2
0

x

0

x

0

2
0

2

dx)·xqq·x·Q2Q(n       

dxq·x)(QndxQnz

) 2 (                    )x··q
3

1
x·q·Qx·n(Qz            

)x·q·
3

1
q·x)xq(Q-x·)q·x(Qn)x··q

3

1
·xq·Q-x·n(Qz

3222

3222322
0

2
0







 

(3)          )l··q
3

1
q·l·Ql·n(Qh 322

e
2
e 



13 
 

 
 
 Qe = 0  and, therefore, in (1) we will have: Q0 = q · l , 
 
and substituting these values in equation (3), we will obtain: 
 
   
 
expression that tells us that the head loss is the third part of what would occur if 
the cost Q0 traveled all the pipeline and left freely at the end B of the same, as it 
has already been stated in the previous section. 
 
 Equation (4) can also be expressed like this: 
 

      , from where it results: 
 
 
 
 
which means that the head loss is equivalent to that which would occur if a 
constant flow through the pipeline equals: 
 
 
 

Next, we will study the procedure used to determine the suitable diameter, 
so that the pipeline can distribute the cost evenly distributed in the way indicated 
above. 

 
Equation (3) is equivalent to the formulation: 

 
 
 
introducing a dummy flow Q1 that when circulating through the pipe in a 
constant way produces a pressure drop h. 
 
 
       
but if we consider that: 
 
 
 
 
 
Q1 value bounded between the limits results: 
 
 , or what is the same: 
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Qe + 0.5 · q · l  < Q1 < Qe + 0.577 · q · l , 

 
then it can be taken with enough approximation, as Q1 value, to calculate the 
internal diameter of the pipe: 
 
    Q1 = Qe + 0.55 q · l 
 
which is the formula usually used for the design of agricultural, industrial and 
domestic water supply networks. 
 
 Knowing the values of Q1 and J = h/l, the value of D and S is easily found. 
If no flow reaches point B (whereby: Qe = 0), it will be taken, as we have shown, 
as the value from Q1 (out of 6): 

 
or what is the same: 

 
 

    Q1 = 0.577 · q · l  58% of Q0 
 
 
4. FUNCTION APPROXIMATION  
 
 The theoretical general expression that Christiansen tried to simplify, 
corresponding to the reduction coefficient for n0 outputs or derivations, as seen in 
the previous exhibitions, is given by the following formulation, for an exponent 
of the water velocity m given: 

)( ·
1

0
1

1
0

0

nfi
n

F
n

i

m
m

 


  

 
for which Christiansen (1942), as we have seen, obtained the following 
approximate function: 

)(
6

1
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1

1

1
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00

ng
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








 , 

 
where: m  1.75, 2.00 for the different formulations usually used in calculating 
the hydraulic head losses of a pressure pipeline with in-route service, discrete 
distribution of the flow by equidistant outlets and a permanent and uniform 
regime. 
 
 In short, the problem that Christiansen undoubtedly posed was obtaining 
the approximation of the function g(x) to the function f(x) with the least possible 
error, in an environment of the abscissa point: x = n0, or put another way, that 
given the real function of real variable: F = f(x), defined in x = n0, it was intended 
to find another real function of real variable: F = g(x) as "simple" as possible and 
that it "approximates" sufficiently f(x) in a sufficiently small radius environment 

;  l·q·
3

1
Q 1 
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from the considered point, to the point that at x = n0, it also holds that: f(n0) = 
=g(n0). In this case, the error made in an environment of the point x = n0, when 
the function g(x) is taken instead of f(x), will be given by the expression: 
 

E = f(n0 + dx) – g(n0 + dx) 
 

On the other hand, the measure of the approximation of g(x) to f(x) is a 
certain number r, such that the next limit exists, it is finite and not equal to 0: 

 

r

00

0dxr0dx dx

dx)g(n-dx)f(n
lím

dx

E
lím





 

 
Somehow the functions that we call "elementals" such as sin x, cos x, log 

x, ex, ..., etc., are not really elementary at all; for example, if we want to calculate 
without x, we find that, except for a few values: x = 0, x = /4, x = /2, ..., etc., 
the direct calculation of sin x is impossible. However, this is not the case with 
polynomial functions: 
 

f(x) = a0 + a1x + ... + anxn 
 
where the operations to be performed are simply arithmetic. Therefore, it is of 
great interest to obtain formulas that allow the irrational or transcendent 
functions to be approximated by polynomials, in order to calculate their values 
approximately. Naturally, in every approach, it is necessary to obtain reliable 
estimates of the error made. Obviously, we cannot expect an exact knowledge of 
the error, since this would also suppose a precise knowledge of the magnitude 
that we approximate and would make the approximation unnecessary. What we 
want, in any case, is to limit, so that when making the approach we are sure that 
the error made does not exceed a certain amount. 
 
 Recall that in mathematical analysis, the concept of differential supposes a 
linear approximation of the function in an environment of the point under 
consideration. We would say that if f (x) is a differentiable function at point n0, 
the affine function g(x) is such that: 
 

g(x) = f(n0) + f’(n0) · (x – n0) 
 
and approximates the values of f(x) in an environment of n0. This can be seen 
graphically in Figure 4. 
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Fig. 4. Approximation between the functions f(x) and g(x) at the point: x = n0. 

 
 However, the meaning of the word "approximates", used in the previous 
statement, is, in our opinion, excessively vague. We can make it more precise if 
we say that: 

  0f(x)-g(x)lim
0nx




 (7) 

 
but, although this equality suggests that f(x) and its approximation g(x) are more 
and more similar the closer x is to n0, it does not give us a precise idea of the 
magnitude of the error made by substituting f(x) for g(x) for a particular value of 
x. 
 
 Following this path we can affirm, even more, that: 
 

 0)(nf')(nf')(nf'
n-x

)f(n-f(x)
lím

n-x

g(x)-f(x)
lím 000

0

0

nx
0

nx 00












  (8) 

 
This statement contained in expression (8), although still imprecise, is 

stronger than the previous one (7), and guarantees us, not only that the error 
g(x) -f(x) becomes more and more small when approaching n0, but also that 
this quantity compared to (x-n0), which is a magnitude that decreases towards 
zero, also tends to zero; We will summarize this by saying that g(x)-f(x) tends 
to zero faster than (x-n0). With symbols, the above statements are expressed by 
writing: 

)n-o(xf(x)-g(x) 0  
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which reads "g(x)-f(x) is an infinitesimal (an infinitely small quantity) compared 
to (x-n0)". This notation, which corresponds to Landau's1 "o", is very useful in 
calculating limits and for describing terms whose exact expression can be 
complicated, but whose behavior in the limit is not known to us. To make it more 
precise, we give the following definition: 
 
 “We say that the function h(x) is o((x-a)n), h(x) = ((x-a)n), if it is true that: 
 

0
a)-(x

h(x)
lím

nax



” 

 
 Thus, the infinitesimal notation: o((x-a)n) allows us to offer qualitative 
rather than quantitative information about the error made in the functional 
approach. 
 
 On the other hand, we can expect that if a function has several derivatives 
at one point, it is possible to approximate the values of the function in an 
environment of that point by functions, rather than linear, polynomial. 
 
 At some points on the real line, the approximation of both functions can 
be total and even coincident with the value taken by f(n0) and g(n0). And so, let's 
see that if we had assumed, for example, an exponent of the velocity of water of 
m = 2 (if we had used Strickler-Manning's formulation to calculate the head loss 
of the drip-holder line), with n0 = 54 equidistant outputs, we would have obtained 
a theoretical reduction coefficient for outputs of: 
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and, also, the strict application of Christiansen's approximate formula would lead 
to obtaining the exact same result, since: 
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whereby the error made in the approximation would be null (E = 0). 

 
Recall that, at the beginning of this section, it was said that the intention 

was to find a certain function g(x) "as simple" as possible and to approach 

 
1 Given a certain function f(x), with the notation o(f), any function (x) is designated such that it is true 

that: 0
(x)f

)x(
lím

ax





. The previous condition can be replaced by the following:  > 0, corresponds to an 

environment: *(a) where: (x)  f(x) . An equation of the form:  = o(f) is therefore equivalent to 
the previous relation. 
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"sufficiently" the problem function. Previously, we have already indicated how to 
measure the degree of approximation in question; now, in order not to lose 
ourselves in subjectivism, what should we understand by the expression "as 
simple as possible"? 

 
In general, we will take as such the polynomial or parabolic functions 

(from the 2nd degree), that is, those of analytical configuration of the type: 
 

g(x) = a + b·x + c·x2 + d·x3 + ... 
 
whose degree will be determined by the approximation that we wish to obtain 
and where the constants (a, b, c, d, ...) will be found with the condition that the 
new function g(x) approximates as closely as possible to f(x). 
 
 The simplest approximation, that is, the first degree, is the linear one 
offered by the equation of the tangent line to the given curve f(x) at the abscissa 
point x = n0. The higher order approximations can be obtained by applying the 
well-known Taylor theorem for the development of the function f(x) at that point. 
In any case, the problem effectively solved by Christiansen became more 
complex, without, for unknown reasons by the subscriber, said author wanting to 
publicize, in his day, the mathematical deduction of his famous formula, a 
question that constitutes, precisely, the fundamental object of this article. 

  
 
5. GENERALIZED CHRISTIANSEN’S COEFFICIENT  
 

Finally, some other consideration is required. In the particular case that it 
is true that: l0 = ½ (first outlet located at a distance from the start of the 
conduction equal to half the space between the other outlets of the pipe), the 

theoretical general expression: 
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 
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this expression is due to Jensen and Fratini, which, as already mentioned, will be 
fulfilled exclusively for the relationship: 
 
               r = l0 / l = 1/2. 

 
The continuous losses of load in the generic section i of the hydraulic axis 

of the conduction, included between the derivations (i-1)-th and i-th, are the 
following: 

     hi = n · l · Qi
m 
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and since the circulating flow through section i is: 
 
     Qi = (n0 – i + 1)·q  , 
 
load losses in section i may also be expressed as: 
 
    hi = n · l · (n0 – i + 1)m· qm  . 
 

In this way, the continuous pressure losses throughout the conduction will 
be: 
 
  
 
 
and how, at the same time, it is true that: 
 
 
  
 
the following expression will remain for the head losses: 
 
 

 
 

Now, taking into account the various relationships above, we obtain: 
 
 
 
 
from where: 

 
whereby solving for the reduction coefficient F (which we will represent by Fr, 
for any value that the relation r may adopt), we have: 
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which is the generalized expression of the reduction coefficient for outputs, for 
any of the values of the parameters r, n0 and m. 

 
The values of F1(r = 1) and F1/2(r = 1/2) have been expressly tabulated 

below, for different values of n0 and m, namely: 
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Table 1. Reduction coefficient for outputs F (r = ½). 
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Table 2. Reduction coefficient for outputs F (r = 1). 

 

 
 
 
 



22 
 

6. PRACTICAL CALCULATION OF THE CHRISTIANSEN’S 
UNIVERSAL COEFFICIENT 
 

However, taking into account the infinite number of possible values of r, 
it will be more practical than tabulating the previous equation (9) based on the 
corresponding values for r = 1 for the calculation of the rest of the values of F. 
Indeed, given that equality is fulfilled: 
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and in addition to the equation: 
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Equality will also have to be satisfied: 
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which introduced in the expression: 
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that allows obtaining the value of Fr for any value of r, depending on the one 
corresponding to F1 (r = 1), for the same values of the remaining parameters n0 
and m. Obviously, for n0 = 1, also Fr = 1.00, and this regardless of the 
relationship values: r = 10/l. 

 
In short, it should be noted that, in practice, with any value of the 

parameter r, this generalized coefficient allows the direct calculation of load 
losses in a forced driving with a unique characteristic, variable by an initial 
section of any length in permanent and uniform or stationary regime and of a 
final section with discrete distribution of flow and service in route. 
 
 
 
 



23 
 

7. CONCLUSIONS 
 
 The calculation of the losses of load of a conduction of unique 
characteristic, with service in route and discreet distribution of the expense, 
permanent and uniform regime, constant flow by derivation and equidistant exits, 
of great practical interest for the dimensioning of sprinkler irrigation facilities. 
and localized of high frequency (micro-sprinkling, exudation, dripping) was 
solved by Christiansen (1942) by means of an approximate formulation whose 
mathematical justification, which was never exposed by its author, is made in 
this article, which constitutes a topic of notable interest theoretical and of little or 
no diffusion in the specialized bibliography existing in this regard. 
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