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Abstract

Bayesian Neural Networks have been getting a lot of attention from the research

community because they show promise on better handling uncertainty. This is

specially relevant in applications where a false positive or negative can have a big

impact such as in self-driving cars or medical diagnosis. However, they do not typ-

ically achieve the performance metrics of traditional Neural Networks as they still

have many problems. Some of these problems are the issues that arise with the

extra complexity of training a network that has extra parameters to model uncer-

tainty. In this Master Thesis, we design, implement and validate a new algorithm

called Bayesian-NEAT to both evolve architecture and parameters for feed-forward

Bayesian Neural Networks. The algorithm is based on a previous evolutionary algo-

rithm called NEAT (Neuroevolution of Augmenting Topologies) that is successfully

applied to standard Neural Networks. The main contributions of this work are:

(1) design and validation of Bayesian-NEAT as an approach for solving Supervised

Learning problems of medium dimensionality and providing uncertainty estimates

for individual predictions; (2) validate Bayesian-NEAT as highly robust algorithm

against mislabeled data; and (3) design and implement first NEAT-based implemen-

tation of a feed-forward network in a Deep Learning framework.

Keywords

NEAT, Neural Architecture Search, Bayesian Neural Networks, Supervised Learning



Resumen

Las Redes Neuronales Bayesianas han atraído mucha atención últimamente por

parte de la comunidad investigadora porque muestran resultados prometedores en

la gestión de la incertidumbre en modelos predictivos. Esta gestión es especialmente

relevante en aplicaciones donde un falso positivo o negativo pueda tener un gran

impacto como en el caso de los vehículos autónomos o en la diagnosis médica. Sin

embargo, este tipo de redes todavía no alcanzan el nivel de las métricas de las Re-

des Neuronales tradicionales. Alguna de las causas es la complejidad añadida al

entrenar redes que tienen parámetros extra para modelar la incertidumbre. En esta

Tesina, diseñamos, implementamos y validamos un nuevo algoritmo llamado NEAT

Bayesiano para evolucionar tanto la arquitectura como los pesos en Redes Neu-

ronales Bayesianas "de propogación hacia delante". El algoritmo está basado en un

algoritmo evolutivo previo llamado NEAT (por sus siglas en Inglés, Neuroevolución

de topologías en constante aumento) que ha sido aplicado con éxito a Redes Neu-

ronales más tradicionales. Las contribuciones principales de este trabajo son: (1) el

diseño y validación del NEAT Bayesiano como una aproximación para resolver prob-

lemas de Aprendizaje Supervisado en problemas de media dimensionalidad al mismo

tiempo que se proporciona una estimación de la incertidumbre para cada ejemplo;

(2) la validación del NEAT Bayesiano como un algoritmo altamente robusto contra

conjuntos de datos con muchos ejemplos mal etiquetados; y (3) el diseño e imple-

mentación del primer algoritmo basado en NEAT para redes "de propogación hacia

delante" en una librería especializada de Aprendizaje Profundo.

Palabras Clave

NEAT, Búsqueda de Arquitecturas de Neuronas, Redes Neuronales Bayesianas,

Aprendizaje Supervisado



Chapter 1

Introduction

1.1 Context

Neural Networks have been achieving State-of-the-Art results for a decade now at a

variety of problems, ranging from computer vision, text and speech processing (13).

However, they still have some issues that do not allow its usage for all the use-cases

where they could be applied. Some of the main issues related to Neural Networks

are:

1. They need a large amount of data or examples to perform well. This requires

a big effort to label every example, typically requiring an expert human to do

it.

2. They are usually consumed as black-box models. This means that we cannot

understand how the model generated a prediction or result. Furthermore, users

do not know if they can trust the model for a specific input (15). That is, we

do not know the uncertainty behind a prediction or result. In applications

such as medical diagnosis or autonomous driving is important to understand

when we can trust the autonomous system.

3. Architectures need to be manually crafted. Most interesting architectures

(AlexNet, ResNet, etc.) have been manually crafted, creating a big overhead

1



during model training.

In this regard, Bayesian Neural Networks models are proposed in the literature

as an alternative to standard Neural Networks to deal with the two first issues (17).

First, standard Bayesian Models do not need a large amount of data to perform well.

Second, instead of only having a point-estimate, Bayesian Models actually provide

a probability distribution as result. This allows for further interpretability of the

model as well as uncertainty estimation. However, they still have the problem that

the model’s architecture has to still be manually crafted.

Regarding the third issue mentioned above there is a long series of literature that

addresses the topic of Neural Architecture Search (NAS), using approaches random

from Bayesian Optimization, Random Search, and population-based Evolutionary

Algorithms (8). However, most of those methods are applied to traditional neural

networks. In this work, we propose an Evolutionary Algorithm, based in Neuroevo-

lution of Augmenting Topologies (NEAT) (30), to address the issue of generating

Bayesian Neural Networks that can solve Supervised Learning tasks.

1.2 Hypothesis and Objectives

In the previous section we discuss the importance of Bayesian Neural Networks and

the problem of architecture search. In this section, we explain the hypothesis that

motivates this work as well as we set research objectives that allow us to accept the

hypothesis.

The hypothesis that motivates this work is: "We can apply Evolutionary Algo-

rithms to generate architectures for Bayesian Neural Networks that obtain compet-

itive results in Supervised Learning tasks in a consistent manner while providing a

measure of uncertainty about each prediction.".

Based on this hypothesis we define the next objectives:

2



1. Design and implement a version of NEAT that can evolve Bayesian Neural

Networks.

2. Design and implement a software system that facilitates research and experi-

mentation.

3. Define supervised learning tasks and datasets to be used in experiments.

4. Design and implement benchmark methods for the proposed solution.

5. Validate the proposed algorithm in different datasets against benchmark meth-

ods.

6. Study an application where the proposed approach is obtains better results

than benchmarks.

Finally, it is also worth discussing the limitations of this work. Despite Deep

Neural Networks are the ones achieving State-of-the-Art results in many tasks, the

study is limited to small and medium size neural networks due to the amount of

computing available.

1.3 Structure

In this chapter we have provided context that motivates this work, stated the main

hypothesis and define the objectives set to validate the hypothesis. Now we discuss

how the rest of the document is structured.

Chapter 2 provides the background on the main concepts discussed in this work.

The main topics in this chapter are background on Neural Networks, Bayesian Mod-

els, Neural Architecture search as well as Evolutionary Algorithms.

Chapter 3 discusses the proposed solution. This chapter is divided into two

main subsections. While the first one deals with the software solution, the second

one discusses the actual algorithm.

3



Chapter 4 contains the experiments, their most interesting results and a discus-

sion on them. In this section, we discuss the algorithm’s parametrization, bench-

marking methods, datasets and how experiments were designed to validate the re-

search hypothesis.

Chapter 5 discusses the conclusions and possible future research lines.
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Chapter 2

Background

2.1 Neural Networks

A Neural Network is a graphical model build by composing different functions across

different layers. These models, specifically, the deepest ones have revolutionized the

research community and industry by being able to obtain great results in different

domains such as Computer Vision, Natural Language Processing or Speech Recog-

nition, among others. However, they still have some issues:

1. They tend to overfit the data. The research community has introduced several

techniques to increase generalization such as Dropout, Stochastic Gradient

Descent.

2. They need a lot of data in order to get high performance.

3. They are not interpretable nor explainable. It is not possible to know when

they are sure about some prediction or when they are not.

The graphical structure of a neuron is shown in Figure 2.1 while the function

mapping of a neuron is given by Equation 2.1. Some nomenclature:

1. xk,i: It is the output of Neuron k at Layer i.

5



2. Act(x): It is the activation function in a Neuron. Typical activation functions

are: Sigmoid(x), Tanh(x), RELU , etc.

3. wij,k: It is the connection weight between Neuron j of Layer i− 1 and Neuron

k of Layer i.

4. bk,i: It is bias associated with Neuron k of Layer i.

Figure 2.1: Node in Neural Network.

xk,i = Act(
n∑
j

xj,i+1 · wij,k + bk,i)

wj,i ∈ <

bk,i ∈ <

(2.1)

Then, when a set of Neurons is connected, they form a Neural Network as shown

in Figure 2.2. By composing each neuron’s Equation 2.1, we can map each input

X = (x1, ..., xn) to an output Y = (y1, ..., ym).

Typical applications where Neural Networks are used imply learning some data

representation so that, when new data is presented to the input X, we can predict

an output Y . In these cases, considering that the network structure or architecture

is fixed and that we have selected an Activation function, we only need to know

the Network’s Weights and the Neuron Biases. These are the parameters that are

learned during the training process of a Neural Network and they are real-valued

numbers.
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Figure 2.2: Feed Forward Neural Network.

2.2 Background on Bayesian Methods

In this section, we give a general overview of Bayesian Methods discussing how they

work and how models learn. At the end, we provide an introduction to the specific

learning strategy that is used in this work.

2.2.1 Introduction

Bayesian methods are called that way because they are based in Bayes Rule (see

Equation 1).

p(θ|D) =
p(D|θ) · p(θ)

p(D)
=

p(D|θ) · p(θ)∫
p(D|θ) · p(θ) · dθ (1)

In such equation, θ refers to the model’s parameters, while D refers to the ob-

served variables or data. For instance, in a supervised learning problem, D relates

to both the independent variable x and the dependent variable y. It is interesting

to discuss what these terms mean (2):
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1. p(θ|D): usually known as the Posterior, it is the conditional probability dis-

tribution of the parameters given what we know or observe, the data D.

2. p(D|θ): this component is known as the Likelihood probability distribution

and is the conditional probability distribution of the data given the parameters.

3. p(θ): commonly known as model Priors. This probability distributions allow

to inject expert knowledge into the model.

4. p(D) =
∫
p(D|θ) ·p(θ) ·dθ: this probability distribution is commonly known as

Evidence and is the probability of observing all combinations of input/output

data (D) for all parameter configuration of θ. This term is typically intractable

for problems of medium or large size and is the main obstacle towards being

able to correctly apply Bayesian methods.

Then, Bayesian methods have four steps:

1. Modeling each term of the equation. Following Equation 1, we only need to

define the Likelihood and the Priors because the denominator or Evidence can

be extracted from those.

(a) Modeling Likelihood (p(D|θ)). The Likelihood can be any known dis-

tribution (Poisson, Binomial, etc.) with parameters θ that is acting as

the generative process of our data. The Likelihood is not only linked to

defined probability distributions and it can be as complex as we want.

For instance, it could be modeled as a Probabilistic Neural Network with

some weights and biases parameters.

(b) Modeling Priors (p(θ)). The Prior can be as well any kind of probability

distribution, representing our initial belief on the values of θ. Typical

distributions used are Gaussian, Exponential, etc.

2. Inference. This is the process of finding the Posterior p(θ|D). In order to solve

this, we need to find the intractable denominator in Equation 1. Knowing

the posterior means knowing the parameters of our model that will allow

8



us to make predictions on unseen data. Therefore, the Inference problem is

equivalent to the Training problem in standard Machine Learning or Data

Mining algorithms.

3. Validation of the model. That is making sure the model is accurate in terms

of its posterior distribution.

4. Prediction. This is the final process when we are trying to use the inferred

model to provide predictive distributions of the dependent variable y∗ for a

new unseen example with independent variables x∗, given old data and the

model parameters. This is commonly known as the Predictive Distribution or

p(y ∗ |x∗, D, θ).

The second step of the process is typically the hardest and most time-consuming

in Bayesian methods. In literature, we typically find three main approaches to solve

the Inference Problem:

1. Directly solve the equation. Sometimes this is possible when the probability

distributions used to model the problem have good mathematical properties.

For instance, a Gaussian likelihood with Gaussian prior will return a Gaussian

Posterior, simplifying the problem to just finding the two parameters that

define a Gaussian distribution. Another occasion to directly calculate the

posterior is when we have a very small search space where you can evaluate

all the possible combinations of parameters.

2. Markov-Chain Monte-Carlo (MCMC) or Exact Inference methods (25). MCMC-

based methods try to find the Posterior by defining a Markov-Chain of the

generative process and sampling from it. The main advantage of this method

is that if sampled enough times, it will converge to actual Posterior distribu-

tion. The problem is that sampling is slow, and because it relays on a Markov

Chain, the process cannot be parallelized.

3. Variational Inference (VI) or Approximate Inference (4). VI methods treat

inference as an optimization problem. The advantage of this method is that it

9



is much more scalable than MCMC and can train with much more data in a

distributed fashion. The downside comes that we are actually approximating

the posterior, not getting the exact one.

2.2.2 Variational Inference as Optimization

Variational Inference (VI) is an approximate bayesian inference technique (3; 4).

Opposite to Monte-Carlo sampling techniques, VI treats the problem of inference as

an optimization problem. That is, given a candidate Approximate Posterior Distri-

bution qφ(θ) (often called Variational Distribution), its parameters φ are modified so

that a divergence measure between both probability distributions (the real posterior

and the approximation) is minimized as shown in Equation 2.2.

min
φ

D(qφ(θ)||p(θ|D)) (2.2)

To make this problem tractable there are two important considerations: the equa-

tion used to measure divergence between both distributions and how complex is

the defined Variational Distribution (qφ(θ)). Regarding the selection of the diver-

gence, the Kullback-Leibler (KL) Divergence is the one applied with most success

because of its adequate mathematical properties. Equation 2.3 shows the KL Diver-

gence definition. The KL divergence is an information theory measure of proximity

between two distributions that is minimized when both distributions are equal. De-

spite being non-negative, it cannot be called a metric because it is asymmetric

(DKL(q||p) 6= DKL(p||q)).

DKL(qφ(θ)||p(θ|D)) =

∫
qφ(θ) · log

qφ(θ)

p(θ|D)
· dθ (2.3)

If we pay close attention to Equation 2.2, we can see that we are trying to find

the parameters φ for which the KL Divergence is minimized. However, the whole

purpose of the VI problem is to find the Posterior Distribution p(θ|D)). How can we

optimize φ if we cannot compute part of the cost function (p(θ|D)))? This problem

is solved by the definition of the KL Divergence. Bishop showed, applying Bayes
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Rule to Equation 2.3, that the KL Divergence between these two distributions can be

calculated in terms of the prior p(θ) and the log-likelihood log(p(D|θ)), completely

avoiding the intractable computation of the Evidence component (p(D)). This is

shown in Equation 2.4.

DKL(qφ(θ)||p(θ|D)) ∝
∫
qφ(θ) · log

qφ(θ)

p(θ) · p(D|θ)
· dθ =

DKL(qφ(θ)||p(θ))− Eqφ(θ)[log(p(D|θ)])
(2.4)

2.3 Bayesian Neural Networks

In this section, we introduce Bayesian Neural Networks and derive the cost functions

that are used later in the proposed algorithm.

2.3.1 Introduction

Bayesian Neural Networks (BNN) are a special case of standard Neural Networks

where each parameter follows a probability distribution (5; 22; 24). BNNs typi-

cally assume a Gaussian distribution for its parameters because great mathematical

properties. In our study, we do it as well, because, as we discuss later, it allow us

to increase the algorithm performance. Therefore, Equation 2.1 is transformed into

Equation 2.5.

xk,i = Act(
n∑
j

xj,i+1 · wij,k + bk,i)

wij,k ∼ N (µij,k, (σ
i
j,k)

2)

bk,i ∼ N (µk,i, σ
2
k,i)

(2.5)

Bayesian Neural Networks have been receiving a lot of attention recently because

they get the expressiveness of standard Neural Networks, allowing them to model

more complex phenomena while bringing some of the features of traditional Bayesian

methods. However, they still have some known problems (6; 11; 18):
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1. BNN typically underperform on classification/regression metrics, especially in

deeper models.

2. Most of the practitioner’s tricks that are available for standard Deep Learning

have not been clearly defined for BNNs.

3. Defining good priors is not solved. Bayesian methods highly relied on prior

beliefs but there is not a clear strategy on how to define those priors in BNN

yet. The typical approach is to just use a normal distribution.

4. How to define stochasticity level. There is not a clearly strategy on how to do

this either despite there are some typical approaches:

(a) Use a single σ or standard deviation for each parameter. This solution

doubles the number of parameters of our model, and, therefore, it in-

creases the complexity of the training process. This is the approach used

in this work because of the nature of the proposed approach.

(b) Consider the same σ for all the neurons in the same layer (5).

(c) Hybrid networks. Assume that the layers closest to the input are deter-

ministic while the ones closest to the output are stochastic (parameters

follow a probability distribution). In this regard, some authors place a

Gaussian Process at the end of the model to account for the uncertainty.

2.3.2 Variational Inference in BNN

Recalling from Equation 2.4, the KL Divergence between the Variation Distribution

and the Posterior is composed of two terms:

1. The expected log-likelihood Eqφ(θ)[log(p(D|θ)].

2. The KL Divergence between the Variational Distribution and the PriorsDKL(qφ(θ)||p(θ))

While the first term depends on the problem at hand, the second term only

depends on the structure of the network and how many parameters it has. That
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is why the second term is usually called the Complexity Cost of the model. The

complexity cost for a Bayesian Neural Network is shown in Equation 2.6 as the

sum of each KL Divergence between each weight or bias i (N (µi, σ
2
i )) and its prior

distribution belief (N (µP , σ
2
P )).

DKL(qφ(θ)||p(θ)) =
N∑
i=1

DKL(N (µi, σ
2
i )||N (µP , σ

2
P )) (2.6)

On the other hand, the log-likelihood term depends on the problem at hand. As

in this work, we handle both Classification and Regression tasks, we derive a cost

function for each of these problems.

In the case of a classification problem, we can assume that the likelihood of ex-

pecting a Label follows a Bernoulli probability distribution, p(D|θ) ∼ Bernouilli(p).

Then, through a series of transformations, it can be derived that minimizing the

log-likelihood is equivalent to minimizing the sum of the Cross-Entropy for all the

possible labels. Equation 2.7 shows the Cross Entropy for a single label given the

output of the Neural Network f(Xi, θ) for a single data point i.

CrossEntropy(yci |Xi, θ) = −(yi · log(f(Xi, θ)) + (1− yi) · log(1− f(Xi, θ))) (2.7)

Then the log-likelihood for a classification problem can be expressed as in Equa-

tion 2.8, where C is the number of classes and N is the number of data points.

Eqφ(θ)[log(p(D|θ)]) ∝
1

N

N∑
i=1

C∑
c=1

CrossEntropy(yci |Xi, θ) (2.8)

In the case of regression, we can assume that the likelihood P (D|θ) follows a

Gaussian distribution. If that is the case, then, the log-likelihood is proportional to
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the Mean Square Error as shown in Equation 2.9

Eqφ(θ)[log(p(D|θ)]) ∝
1

N

N∑
i=1

(Yi − f(Xi, θ))
2 (2.9)

2.4 Background on Neuro-Evolution

This section starts with a general description on Neural Architecture Search meth-

ods, then a discussion on how evolutionary algorithms work and, finally, an overview

on NEAT.

2.4.1 Background on Neural Architecture Search

Neural Architecture Search (NAS) is the process of automating Neural Networks’

architecture design (8) and it is required stepping stone in the path to AutoML (16).

AutoML looks for full automation of the Machine Learning process, from feature

engineering to architecture design. In NAS, three attributes that allow classifying

different algorithms:

1. Search space. The search space defines the set of networks that can be repre-

sented. While some approaches allow a level of granularity that goes to each

connection, other approaches use higher level abstractions (building-blocks).

2. Search strategy. The search strategy defines how the search space is explored.

In the literature, it is common to see four types of approaches:

(a) Evolutionary Algorithms (30). This approach relies on evolving individ-

uals of a population across generations. Each individual represents a

network and they can reproduce and mutate as in nature.

(b) Bayesian Optimization (1). In this problem, architecture search is con-

sidered as hyper-parameter optimization process where the sequence of
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parameters studied are defined in a bayesian manner. That is, previous

executions are used as prior belief that help define a new search direction.

(c) Reinforcement Learning (8). In this case, the agent action is to generate

neural networks getting rewards proportionally to the performance of the

network in validation set.

3. Performance estimation strategy. This refers to the strategy used to measure

the potential of each architecture. A Naive approach is typically to train and

validate each of the architectures. However, this is computationally very ex-

pensive. Gaier et al (10) question the importance of the actual weight values

compared to the architecture. For that they introduced Weight Agnostic Neu-

ral Networks (WANN), a search method based on NEAT that can perform

some tasks without learning the weight and biases of the Neural Network.

That is, is able to estimate performance without training the network.

As this work focus on the first of the discussed search strategies, below we discuss

the principles used in Evolutionary Algorithms.

2.4.2 Background on Evolutionary Algorithms

Evolutionary Algorithms (EAs) are called that way because they are inspired by

biology and, especially, by Darwinian evolution. As today’s species evolved from

very simple organisms, this branch of Artificial Intelligence leverage similar concepts

to evolve individuals so that they are able to solve a problem (7). In EAs, solving a

problem means finding the fittest individual. That is, the individual that has better

adapted to its environment (problem) and has more chances to survive. The fitness

can be modeled mathematically as the function that needs to be maximized. The

evolutionary process is an iterative process and the one of generating individuals

with better fitness. It usually depends on the following concepts:

1. Representation. It defines the search space or the set of possible individuals.
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Moreover, EAs take nomenclature from biology as well. In this regard, it is

worth to define several concepts that are used in this work:

(a) Genome. It is the set of possible genes that are allowed by the selected

representation.

(b) Genotype or Chromosome. It is an instantiation of the genome. That is,

an individual with specific genes’ values.

(c) Phenotype. It is an object in the context of the problem at hand (for

instance, a Neural Network) and its complete definition is encoded in a

Genotype. While the problem deals with Phenotypes, the EAs work with

its Genotype counterpart. Therefore, a mapping between these two needs

to be defined.

2. Fitness Function. It the maximization objective of the evolutionary search.

The fittest individual is the one with the highest fitness value.

3. Population. It is the set of individuals alive at a specific generation or iteration.

4. Initialization. It is the process of randomly initializing a population at the

beginning of the evolutionary process.

5. Recombination. It is the process of merging attributes or genes from parents.

In this regard, there are many strategies on how to select parents to breed and

on how to recombined those parents to create a new individual.

6. Mutation. It consists on randomly modifying some genes to create a new

altered individual.

7. Survivor selection. At the end of each iteration, the algorithm decides what

are the individuals that survive to the next generation or iteration.

In summary, there are two main processes in most EAs:

1. Generate candidate solutions. This stage focus on evolving new individuals

through recombination or mutation.
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2. Evaluate the fitness of each candidate. The fitness of each individual is calcu-

lated depending on the task at hand. For instance, it could be the accuracy in

Supervised Learning problem or the rewards obtain performing a Reinforce-

ment Learning task.

2.4.3 Neuro-Evolution of Augmenting Topologies

One of the main contributions to the field of Neuroevolution, which also serves as

a starting point for the research in this work, comes from the Neuroevolution of

Augmenting Topologies (NEAT) by Stanley et al (27; 30). NEAT introduces some

innovative concepts to the search problem of finding both the right structure and

weights for a Neural Network for a specific task. NEAT is able to solve problems

by starting with a very simple structure and increasing complexity as needed. This

process is known as complexification and it allows to reduce the dimensionality of

the search space of the networks’ weights. Previous solutions were not able to do

both things at the same time. Either they optimized the weights of a given network

or they created new structures whose optimal weights were found later on. So this

became the most innovative contribution of NEAT. Despite almost two decades

have already passed since the invention of NEAT, it is still an algorithm that is used

currently as a Neuro-Evolution benchmark.

How does it work?

As any EA, NEAT also can be divided into two main phases: individuals’ generation

and individuals’ fitness assessment. While the second phase depends more on the

task at hand and its cost function, the first phase is worth explaining more in detail.

NEAT uses Direct Encoding to map individuals’ genotype to the actual pheno-

type. The genotype of NEAT is shown in Figure 2.3. NEAT distinguishes two types

of Genes:
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1. Nodes: they can be input, hidden or output. Input and output nodes always

exist in all networks and cannot be removed. Hidden and Output nodes contain

parameters that can be evolved. In the original NEAT, the Nodes do not have

any learned parameter.

2. Connections: they are defined by the Source and Destination Node. They only

contain one evolving parameter, the weight of that connection. Furthermore,

they can also be disabled so it is not considered in the actual network and

have some Innovation Number that allows to correlate genes.

Figure 2.3: NEAT Genotype

While the generative phase of NEAT operates with the Genotype, the evalua-

tion phase works with the actual Neural Network that is produced, the Phenotype.

Figure 2.4 shows the structure produced by the previous Genotype.

Figure 2.4: NEAT Phenotype

One of the most important evolution operators used in NEAT is mutation and

it affects both genes’ parameters (e.g.: weights) and structure. The mutation on

numerical or categorical parameters is done as in any other evolutionary system:
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1. Numerical parameters are modified using a random sample from a probability

distribution.

2. Categorical parameters mutate by random selection from a pool of values.

Regarding structure mutation, the original NEAT work only proposes the use of

mutation that adds complexity to the network: either add a new node or add a new

connection.

While mutating only genes’ parameters is straightforward as in any EA, mutating

structure creates some extra problems when performing crossover among individuals.

This is because different individuals can have very different structures and creating

a new individual from two completely different structures typically translates into a

new individual of poor quality or fitness. One of these problems that is well-known

in the literature is the competing conventions problem. In order to solve this issue is

why NEAT introduces Historical Markings or Innovation Numbers: to track genes

through history and infer if individuals with similar genes can breed or not.

Even though NEAT provides a mechanism for crossover between individuals with

different structure, there is another problem. More complex networks when mating

will generate a network that is not completely fine-tuned for the problem. That is,

it will start with a low fitness that in some cases will be lower than the fitness of

less complex networks that have already evolved. As in evolution, only the strongest

individuals survive, this means that the new networks will not be able to develop

its full potential. In order to fix this issue, NEAT introduces another interesting

mechanism called Speciation. This refers to grouping individuals into species based

on how similar their genomes are. When a new specie is detected, it is allowed

to evolve for some generations to see if their fitness increases. After those initial

generations, it will compete against the others for survival.

Finally, future versions of NEAT (Hyper-NEAT) use Indirect Encoding to create

bigger networks (28; 29). However, they are not addressed in this work.
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Chapter 3

Proposed Solution

3.1 Software Solution

Given the research nature of this project, the software system built has that into

consideration. Therefore, we set the following requirement: The system should allow

for fast prototyping and experimentation. All software decisions were made taking

this into account.

3.1.1 Software Development Patterns

In any software project it is important to follow good software development patterns

because as the complexity grows, the project can become difficult to handle (20).

In our case, the project takes advantage of the following:

1. Automatic Tests. Automatic tests are important because they programmati-

cally define the behavior of a specific software module or submodule. There-

fore, when something changes checking that system still works does not have

any extra overhead for the developer. This is definitely a pattern that helps

achieve faster experimentation as we can quickly see how changing a small

piece affects the system. In this regard, this project implemented more than
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100 automatic tests to ensure the algorithm’s quality and robustness. More-

over, we can differentiate between two types of automatic tests in this project:

(a) Unit Tests: used for validating the behavior of certain individual compo-

nents of the system.

(b) Integration Tests: used for validating the interaction between several

components of the system.

2. Versioning Control. Being able to store the state of the code at some point

allows to experiment faster as, in case of introducing any error, we can quickly

go back to a previous stable version.

3. Modularity. Following the design principle of "Divide and Conquer", creat-

ing well isolated modules with individual responsibilities helps breakdown the

complexity and ensure a robust software system.

4. Logging. Logs are an important part of any software system as they help to

know what happened at some point.

3.1.2 Software Architecture

Despite Section 3.2 thoroughly explains the algorithm behind this work, there are

a lot of other modules and components that were either developed or integrated to

allow for fast prototyping and testing of the solution. Figure 3.1 shows a high level

System’s Diagram with the algorithm solution at the core of the system.
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Figure 3.1: System Architecture’s Diagram.

It is worth mentioning that all developments in this work were done in Python1.

The reason is because of its library ecosystem (Numpy, Pandas, Pytorch, Numba,

etc.) and because it is a language that is fast to write. The downside of this is that

Python is a slow programming language even though. Starting from the bottom up

of this diagram, next, we describe each of these subcomponents in detail.

1Python: https://www.python.org/
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Docker Docker-Compose Orchestration

Docker2 and Docker-Compose3 are used to orchestrate the Bayesian-NEAT Research

System. Docker is a technology that allows to create isolated environments (called

containers) to run applications without interference from the underlying Operat-

ing System or other software dependencies installed on a computer. By defining

a Dockerfile or specification of software dependencies to install, Docker ensures

reproducibility of anything that runs inside of this container. Therefore, it is highly

used for deploying applications to the cloud. In this project, there are two contain-

ers: the Bayesian-NEAT container that includes the code used to run the algorithm

and the Minio container that is used as storage for experiment results. Since there

are two containers, we use Docker-Compose to define how those two containers in-

teract with each other and with the outside world. The diagram of how the system is

orchestrated is shown in Figure 3.2. The shared volume block indicates that storage

is shared between the host operating system and the Docker containers.

Figure 3.2: Bayesian-NEAT Research System.

In the main block, we see the orchestration previously discussed with two con-

2Docker: https://docs.docker.com/
3Docker: https://docs.docker.com/compose/
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tainers. Finally, the two arrows pointing to the right are networking ports enabled

outside the containers to interact with both containers:

1. Minio Browser (available at localhost : 9000) offers a window to navigate

between the objects.

2. Jupyter Lab (available at localhost : 8888) offers access to a Jupyter Lab that

contains the software installed. This service is primarily used for study the

results of the algorithm.

Experiment Management System

Given the research nature of this project, it is important to correctly handle ex-

periments data and metadata so that results can be interpreted correctly. This is

especially important in this case as code keeps evolving after new issues or opportu-

nities are discovered through the research process. Considering this, the Experiment

Management System handles the following information:

1. Reports. Each execution is different, to be able to analyze it, it is important

to save as much data as possible. It is worth mentioning, that all reports are

stored in JSON format. Therefore, all classes need to implement a serialization

process to dump its data to a file but also they need to implement a de-

serialization process to recover an object from its JSON definition. This is

some the data and metadata saved in each report:

(a) Execution Metadata.

(b) Best genotypes.

(c) Classification Metrics.

(d) Evolution Metadata.

(e) Start and Finish Time.

(f) Parameters Configuration.
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2. Logs. For each execution, the logs are also saved. This allows to have trace-

ability for each execution.

Because the experiments’ data is going to be used later to analyze results it is

important to discuss how executions are saved. Each execution has the following

metadata that allows to group interesting executions together to facilitate analysis:

1. Execution ID: a unique identifier for each execution.

2. Correlation ID: string ID that helps group together executions that are similar.

For instance, we typically run the same experiment with the same parameters

several times. Assigning the same correlation ID to those executions helps us

to better retrieve later that information to be analyzed.

3. Dataset: the name of the dataset used for the execution. It has a role similar

to the Correlation ID but while the previous one is used to group executions

with the same configuration, this one is used to group executions using the

same dataset.

Finally, the Experiment Management System is implemented on top of Minio4 as

a persistance layer. Minio is an Object Store designed for scalable cloud applications

and it implements the same interface as Amazon Web Services (AWS) S3 service5.

Because they share the same interface, it is easy to deploy Bayesian NEAT Research

System in AWS’s cloud if more computational resources are needed.

Logging

As discussed before, logging is important in any software system to add traceability

of what happens. In this system we implemented a logging system of four levels:

1. Error. Logs that register an error in the system.
4Minio: https://min.io/
5AWS S3: https://aws.amazon.com/s3/
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2. Info. Logs that register typical behavior of the system.

3. Debug. Logs that register extra data to debug the system.

4. Time. Logs that register the time a function takes to run.

Slack Notifier

Because experiments can take a few hours, in order to be able see results from

anywhere at any time, an integration with Slack6 was added. Slack is a workspace

typically use by teams to collaborate. It has both a mobile phone app and a web

app. This integration takes the results of recently finished experiments and sends

them to a channel in a workspace where they can be observed by the users of that

workspace.

Pytorch

Pytorch7 is an open-source Deep Learning framework used to perform training and

inference in neural networks. It is one of the two main frameworks together with

TensorFlow. Despite both frameworks are similarly fast and both provide bindings

to Python, the main reason why we select Pytorch over Tensorflow for this project

is because there is no need to compile the networks before doing inference. While

Pytorch is able to directly perform inference on a defined network, Tensorflow adds

a compiling step where the network is optimized8. This would be okay if we were to

used the same network over and over again. However, in our problem, networks are

constantly changing and this compiling time would create a sensible overhead.

It is worth mentioning that there are other implementations of NEAT in a Deep

Learning Framework such as Pytorch-NEAT9 but not for Feed-forward Neural Net-
6Slack: https://slack.com/
7Pytorch: https://pytorch.org/
8Tensorflow 2.0 recently introduced the dynamic graphs features that does not require to compile

the networks’ graph. However, this wasn’t available at the start of the project.
9Pytorch-NEAT: https://github.com/uber-research/PyTorch-NEAT
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works with direct encoding.

Analysis Module

The analysis module consist of a series of procedures to easily read the reports

generated by a set of correlated executions, extract interesting data and calculate

the most important metrics statistics. They also have specific plotting functions

that can be reused for different experiments.

Jupyter Lab

Jupyter Lab10 is a web interface with Jupyter Notebooks. In this project, Jupyter

Lab is used to both launch experiments and, especially, analyzing them. The in-

teractive philosophy of notebooks allow to analyze results quickly and also generate

graphs and plots to visually study results.

3.2 Algorithmic Solution: Bayesian NEAT

The approach described in this section consist on automatically growing Bayesian

Neural Networks for Supervised Machine Learning tasks. As discussed before, infer-

ence in BNN can be transformed into an optimization problem through Variational

Inference. Together with the ability of NEAT to grow increasingly complex topolo-

gies, we have developed a new approach to grow Bayesian Neural Networks. In

the following sections, we break down the three fundamental problems in EAs and

explain in detail how the algorithm works: Encoding, Evolution and Evaluation of

BNN.

10Jupyter Lab: https://jupyterlab.readthedocs.io/
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3.2.1 Encoding of Bayesian Neural Networks

As described in section 2.3, BNNs are defined by some structure of nodes and con-

nections that is equivalent to normal Neural Networks. However, the weights and bi-

ases, in connections and nodes respectively, are not point-estimates but distribution-

estimates. That is, parameters follow a probability distribution. Furthermore, a

Gaussian Distribution is typically used (4) as the probability distribution because

of its well known mathematical properties and because they are defined uniquely by

its two main parameters: the mean and the variance. Therefore, in our work, we

use Gaussians to model both the probability distributions representing weights and

biases (Equation 3.1).

wi,j ∼ N (µi,j, (σi,j)
2)

bi ∼ N (µi, σ
2
i )

(3.1)

The genotype of the proposed solution composed of two types of genes as in

NEAT.

1. Node Genes. These genes contain the information associated with the nodes

of the BNN.

(a) Node Key: an integer that uniquely identifies the node.

i. Input nodes use negative integers from −1 to ninput.

ii. Output nodes use non-negative integers from 0 to noutput − 1.

iii. Hidden nodes use positive integers from noutput to noutput+nhidden−1.

(b) Bias Mean (µi): the mean for Neuron i.

(c) Bias Standard Deviation (σi): the standard deviation for Neuron i.

(d) Activation Function: the function that is applied to the linear combina-

tion of the node’s input.

2. Connection Genes. These genes contain the information associated with the

links of the BNN.
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(a) Connection Key: a pair of integers that defines the link between two

neurons or nodes. First, item of the pair contains the key of the origin

node while the second item contains the key of the destination node.

(b) Weight Mean (µi,j): the mean for the connection weight between neuron

i and j.

(c) Weight Standard Deviation (σi,j)): the standard deviation for the con-

nection weight between neuron i and j.

In order to better understand the encoding used, we discuss the simple example

shown in Figures 3.3 and 3.4. The Genotype in Figure 3.3 consist on a list of 3

nodes (one output node and two hidden nodes) and 6 connections. In the genotype,

the input nodes do not need to be specified because they don’t have associated

parameters nor apply a function to the input. The connections, apart from the

weight parameters, also know the source and destination node. The network that

results from that encoding is shown in Figure 3.4.

Figure 3.3: Genotype of a example Bayesian Neural Network.
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Figure 3.4: Phenotype of a example Bayesian Neural Network.

Despite bias and weight associated parameters are the ones that are typically

learned during Neural Network training, there are other factors that define the

behavior of the model such as the Activation Function used at each node. However,

for sake of simplicity, in this work, we consider the Activation Function to be a given

parameter and is not allowed to be optimized.

Finally, despite the direct encoding strategy explained above allows to define

any kind of graph structure for the network, the generative operators restrict the

graph to be a Direct Acyclic Graph (DAG) or a Bayesian Feed-Forward Neural

Network. Therefore, Bayesian Recurrent Neural Networks cannot be generated by

the proposed solution.

3.2.2 Evaluation of Bayesian Neural Networks

While the generative phase of the algorithmic solution is in charge of creating new

BNNs that are able to solve the task, the evaluation aims at measuring the fitness

of each of the BNN of the population at the problem at hand. In this section, we

discuss the most important details of our evaluation phase. First, we discuss the

fitness functions used for different types of problems. Then, we discuss how we build

a BNN that can be evaluated using our software solution.
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Fitness Function for Classification and Regression Problems

Section 2.3.2 defines different cost functions depending on the problem. That is,

whether it is a Classification or Regression problem. On the other hand, they are

measuring the loss of fitness so in order to translate to a framework where we want

to maximize the BNN’s fitness, we apply a sign mutation. Equations 3.2 and 3.3

show the fitness functions for Classification and Regression problems, respectively,

used in this work. In these equations, N is the number of examples in the dataset

that are being evaluated and M is the number of biases or connection weights of

the network. Furthermore, f(Xi, θ) is the output of the network given an input Xi

and parameters θ.

FitnessC = −( 1
N

N∑
i=1

CrossEntropy(yci |f(Xi, θ))−

β ·
M∑
j=1

DKL(N (µj, σ
2
j )||N (µP , σ

2
P )))

(3.2)

FitnessR = −( 1
N

N∑
i=1

(Yi − f(Xi, θ))
2−

β ·
M∑
j=1

DKL(N (µj, σ
2
j )||N (µP , σ

2
P )))

(3.3)

Furthermore, both equations contain the parameter β which defines how much

the second term of the equations weights. Finding the right β parameter can be a

substitute of finding the right prior. Basically, if we fix the prior of all the parameters

to N (0.0, 1.0), we only need to play with the β parameter to find a good balance

between the log-likelihood on the dataset and the complexity cost of the network.

Genotype to Phenotype mapping

In the proposed solution, a genotype is an object that stores its connections and

nodes in hash tables. However, in order to evaluate the genotype, we need to create

the equivalent Bayesian Neural Network. That is, we need to build a computation
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graph that allows us to get a stochastic output Y based on some input X and some

parameters θ, Y = f(X, θ). Then, for each example xi the output of the network

is going to provide a list of n_samples yi that will allow us to characterize the

predictive distribution. The output network is a model that can be evaluated using

a Deep Learning framework (Pytorch). This Genotype-to-Network mapping process

is not a straight forward process due to the requirement that there can be multi-

hop connections. That is, connections can jump through layers. This is the main

difference with standard fully connected networks.

With that in mind, we have designed a network built by layers that can handle

those requirements. Figure 3.5 shows the diagram of a stochastic network with 1

hidden layer that is being generated, where SLL stands for Stochastic Linear Layer

and Act refers to a layer that applies an Activation Function to each of its inputs

and it can be considered as the Activation Layer.

Figure 3.5: Stochastic Network with 1 hidden layer.

Furthermore, we have created a series of abstractions that help to encapsulate

the different procedures required to map the genotype to a network as well as the

behavior of the network itself. Figure 3.6 shows a diagram with all the components

required to map a genotype to a network. Basically, there are two main components:

the Genotype-to-Layers and the Stochastic-Network-Builder.
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Figure 3.6: Genotype to Network Diagram.

For sake of understanding, we explain how these components work starting from

the output and describing the system backwards. As said before, the output of this

mapping is a Stochastic Network that we can use, together with a fitness function,

to evaluate an individual.

Stochastic-Network-Builder Component

This component builds a Stochastic Network given the information for each layer

that is built in the previous stage. The following is a capture of the Python code

used to implement the forward pass of the Stochastic Network. Here we can see two

parts that are not typical of standard Neural Networks. The first one is the use of

cache in the middle of the forward pass and the second one is the Stochastic Linear

Layer. We describe those two pieces below.

def forward(self, x):

kl_qw_pw = 0.0

start_index = self.n_layers - 1

for i in range(start_index, -1, -1):

# cache needed values from past layers

for index_to_cache in self.layers[i].indices_of_nodes_to_cache:

self._cache[(i, index_to_cache)] = \

x.index_select(1, torch.LongTensor((index_to_cache,)))

# append needed values for next layers
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chunks = [x]

for index_needed in self.layers[i].indices_of_needed_nodes:

chunks.append(self._cache[index_needed])

x = torch.cat(chunks, 1)

# apply Stochastic Linear Layer

x, kl_qw_pw_layer = getattr(self, f'layer_{i}')(x)

kl_qw_pw += kl_qw_pw_layer

# apply Activation Layer

if i > 0:

x = getattr(self, f'activation_{i}')(x)

return x, kl_qw_pw

Stochastic Linear Layer

This subcomponent is the one that performs all the sampling and where the stochas-

ticity of the network comes from. In standard Neural Networks, there is what is

called a Linear Layer. That is a fully connected layer that applies the algebraic

Equation 3.4.

Xout = W T ·Xin +B (3.4)

In the Bayesian case, we can derive a similar equation. However, in our case,

the matrices will be sparse, depending on the number of connections. This is not

a problem as there is research for efficient sparce matrix multiplication for deep

learning (14). As discussed before, we are sampling from the weights and biases

distributions. However, this is highly inefficient. By applying Equation 3.5 we are

able to optimize the sample efficiency of the system since we can create a single

matrix that sample from N (0, 1) more efficiently than sampling each parameter

individually. Such transformation is possible because of the good mathematical

properties of Gaussian distributions. This equation is the transformation that is
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applied at a Stochastic Linear Layer.

Xout = W T
µ ·Xin + (W T

σ ·Xin) · N (0, 1)+

Bµ +Bσ · N (0, 1)
(3.5)

Cache System

As discussed before, our generative part of the algorithm allows to create individuals

with connections that jump through layers. Let’s consider the example in Figure

3.4, we have a multi-hop connection from Node -1 to Node 0. While Node 0 belongs

to Layer 0 (output layer), Node -1 belongs to Layer 2 (input layer). The caching

system in the Stochastic Network allows us to save the output of Node -1, while

computing the forward pass on the hidden layer, so it can be used again in the

forward pass of the output layer.

Genotype-To-Layer Component

This component uses the genotype to build the parameters of each layer. First, we

start by assigning each node to a layer. Then, once we have our layers defined, we

the parameters for each of the layers.

Node-to-Layer-Assignment

The output of this procedure is to uniquely map each node to a layer. It works as

follows:

1. Build the output layer (layer(i)). Given the number of outputs we can look-up

the bias distributions associated with the output layer.

2. Recursively build the other Layer(i-1):

(a) Find the nodes in Layer(i-1). This is done by examining the connections

between nodes that go to the Layer(i).

(b) Get bias distribution for Layer(i-1).

(c) Get weight distributions for connections between Layer(i-1) to Layer(i).

(d) Check whether we are at the Input Layer. We can check this by looking
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at the sign of the nodes’ keys. If they are negative, that means that they

are input nodes. Therefore, we stop the recursion.

The bias and weights parameters are given in matrices. In the case that the

parameter for a position in the matrix does not exist, then it is a zero. Working

with matrices makes the computation easier as there is specialized hardware (GPU)

that can accelerate operations.

3.2.3 Evolution of Bayesian Neural Networks

As said before, this work is based on the NEAT algorithm (30). In terms of soft-

ware, we also relied on some initial implementation of the evolutionary part of NEAT

(NEAT-Python11). However, there are some fundamental changes that were intro-

duced to allow encoding BNN as well as other algorithmic details that are different

from original NEAT. Figure 3.7 shows a high level diagram of the evolutionary pro-

cess that populations undergo through many generations. Since genotype evaluation

is already explained in Section 3.2.2, in this section, we explain the Initialization,

Speciation and Reproduction of populations of BNN.

11NEAT-Python: https://neat-python.readthedocs.io/
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Figure 3.7: Flowchart of Bayesian-NEAT.

Population Initialization

Given the size of the population as a parameter (pop_size), the algorithm automat-

ically generates an initial set of genotypes using a random initialization approach.

For each genotype, first, it generates the output nodes based on the number of out-
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puts (n_output). Then, it generates hidden nodes, if configured using the parameter

n_initial_hidden_neurons. Finally, it generates the connections.

Generating the connections is the more complex part of each genotype initial-

ization and depends on the following configuration parameters,

is_initial_fully_connected, initial_nodes_sample and

n_initial_hidden_neurons. Now let’s review how the different combination of

parameters affect the initial connections:

1. Fully Connected and some Hidden Neurons. In this case, the algorithm cre-

ates all possible connections between the Input Layer and the Hidden Layer

and between the Hidden Layer and the Output Layer. Therefore the number

of initial connections is n_input · n_initial_hidden_neurons + n_output ·

n_initial_hidden_neurons.

2. Fully Connected and no Hidden Neurons. In this case, the algorithm creates

all possible connections between the Input Layer the Output Layer. Therefore

the number of initial connections is n_input · n_output.

3. Not Fully Connected and Hidden Neurons. In this case, the algorithm creates

initial_nodes_sample random connections between the Input Layer the Hid-

den Layer and all possible connections between the Hidden Layer and the Out-

put Layer. Therefore the number of initial connections is initial_nodes_sample·

n_initial_hidden_neurons+ n_output · n_initial_hidden_neurons.

4. Not Fully Connected and no Hidden Neurons. In this case, the algorithm cre-

ates initial_nodes_sample random connections between the Input Layer the

Output Layer. Therefore the number of initial connections is initial_nodes_sample·

n_output.

The connection generation approach aims at ensuring that we have at least one

path from input to all outputs. That is, all outputs will have an associated value

that is a function of the input, although not necessarily all the input dimensions will

affect each output. This is especially important in high dimensional problems, where
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if one connection is deleted soon, it might turn out in not being able to generate a

signal for one of the outputs.

Speciation

The speciation mechanism allows to segmentate genotypes based on a distance mea-

sure between genotypes, so that different species are given the opportunity to develop

themselves for some generations before they die. The ad-hoc distance measure used

in the solution takes into account both the topology differences as well as the weight

and biases differences.

A special distinction between original NEAT and the one used in this work is

how the number of species is decided. While in the original NEAT, the number of

species depends on the actual distances between genotypes, in this work we have

implemented a new method to keep the number of species stable. That is, given

a fix number of species (n_species), it always keeps a constant number of species.

In our tests we found the original approach to be quite unstable and dependent on

some distance thresholds defined.

Reproduction

In the case of NEAT, Reproduction step includes both Recombination and Mutation.

At the beginning, of each generation, the number of desired off-springs per specie is

estimated considering the overall fitness of each specie. Then, reproduction happens

independently for each specie.

In order to breed, first, parents need to be selected. NEAT implements a ran-

dom tournament between the best parents (those with higher fitness value). Then,

parents are chosen randomly from that pool and breed to generate a new off-spring.

Here is where recombination or crossover happens. This process consists on inher-

iting connections and nodes that can also be crossed-over between parents. After

this process, a new phenotype is created.
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Now, this newborn phenotype is mutated. First, an architectural mutation is

applied with a certain probability. Architectural mutation consist on either adding

or removing genes (connections or nodes). Given the constraints that we impose

in the networks, when mutating architecture a feasibility check is implemented.

Architectural mutation depends on several parameters that define the probability

of one of the following events happening:

1. Create a new node (add_node_prob). This mutation works as selecting a

connection and breaking into a new connection and a new node.

2. Delete a node (delete_node_prob). First, the mutation operator needs to find

a set of candidate nodes that can be removed without affecting the network

constraints. Then, it randomly selects one.

3. Create a new connection (add_node_prob). This operator creates a valid

pool of possible origin and destination nodes. Then, it needs to verify that a

connection to them is not adding a cycle into the graph (this would make the

network recurrent).

4. Delete a connection (delete_connection_prob). Select a random connection

and delete it, guaranteeing that we still have a path from input to each output.

Finally, the parameter values of each gene are also mutated with a certain prob-

ability (mutate_rate) and intensity (mutate_power).

3.2.4 Fine Tuning

Based on initial experiments, we detect that the algorithm is not competitive in

some datasets with Backpropagation-based methods. In order to improve on these

results, we add a final fine-tuning stage to further optimize the fitness while fixing the

architecture. Given that the fitness function and the architecture is differentiable,

we leverage Pytorch’s Autograd12 module to calculate gradients of the parameters
12https://pytorch.org/docs/stable/autograd.html
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and apply Stochastic Gradient Descent (13) on them. Furthermore, Early-Stopping

technique is used while training each network to obtain the best network on the

validation set.

The fine-tuning stage works as follows:

1. Select the fittest genotype per specie.

2. Train each of these genotypes for epochs_fine_tuning epochs:

(a) Each epoch updates parameters using the training set and calculates the

loss using the validation set. If the validation loss improves, the network

parameters are saved.

(b) Training continues until all epochs_fine_tuning are done or the network

has not found a better network in 200 epochs.

(c) The network with the best validation loss is returned.

3. The best network is the one with the best validation loss from all the species.

3.2.5 Algorithm Parametrization

Appendix B describes the possible parametrization of Bayesian-NEAT algorithm as

well as gives some good default values. Experiments are run with this parameters

unless specified otherwise.
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Chapter 4

Experiments and Results

In this chapter, we describe the experiments carried out, as well as discuss the most

important results obtained.

4.1 Experiments Design

The objective of these experiments is to quantitative and qualitative validate the

proposed solution in Supervised Classification Learning tasks. Despite that the

proposed solution can also be used in regression tasks, for simplicity, in these exper-

iments we focus only on classification tasks. In order to do so, we ask the following

questions:

1. Is Bayesian-NEAT able to solve Supervised Classification Learning tasks?

2. How does Bayesian-NEAT perform in terms of classification metrics with re-

spect to benchmarks?

3. Is there an use-case where Bayesian-NEAT can beat benchmarks?

4. Is Bayesian-NEAT able to estimate the uncertainty in the prediction of indi-

vidual data-points?
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4.1.1 Datasets

We used several datasets, shown in Table 4.1, to demonstrate the use of the pro-

posed approach. The reason for using several datasets is to be able to assess more

confidently how the algorithm’s behavior could translate to new unseen datasets.

In order to select datasets, we focused on having diversity based on three criteria:

number of examples, input dimension’s size and output dimension’s size.

Table 4.1: Classification Datasets

Name Number Examples Number Attributes Number Classes

Iris (23) 150 4 3

Wine (31) 178 13 3

Breast Cancer (21) 569 30 2

Titanic (9) 1045 6 2

SpamBase (19) 4601 57 2

MNIST (32) 70000 64 10

It is worth mentioning that datasets are split into train and test sets with pro-

portions 75 % and 25 % respectively. Furthermore, for training networks using

Backpropagation, we also use 20 % of the training set as validation set. Further-

more, MNIST images were downsampled from 32x32 pixels to 8x8 for the sake of

computation performance.

4.1.2 Algorithm Parametrization

For all the experiments we used the default values in Table B.1 unless specified oth-

erwise. It is worth mentioning, how we select the β. This is an important parameter

as it defines the weighting factor between the log-likelihood and complexity cost in

the multi-objective fitness function expressed in Equation 2.4. In order to define a

proper value, we need to consider how both components of the fitness function work:
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1. The log-likelihood is an estimate of getting the output right. That is, it helps

to get better results in terms of classification metrics.

2. The complexity cost is a penalty on the parameters being different from their

prior belief and it tends to grow with the number of parameters or size of the

network.

Therefore, if β is too high the Bayesian-NEAT is not incentivized to grow its

architecture. On the other hand, if too small there is not any penalty on the ar-

chitecture. Because the complexity cost term grows with the network and the log-

likelihood tends to decrease as weights are optimized, we decide to select a β such

that the complexity cost represents around 5 % of the total cost function. Despite

defining this parameter could be further investigated, we found that this criteria has

worked well in practice. The final values for each dataset are shown in Table 4.2.

Table 4.2: β by Dataset.

Name β

Iris 0.0001

Wine 0.00008

Breast Cancer 0.00005

Titanic 0.0001

SpamBase 0.00001

MNIST 0.000005

4.1.3 Benchmarks

In order to validate Bayesian-NEAT, we compare it with more traditional methods,

that serve as benchmarks. We also add a naive benchmark that is used in the first

experiment. The benchmarking methods are:

1. Random-Guessing (RG).
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2. Multi-Layer Perceptron (MLP).

3. Bayesian Multi-Layer Perceptron (B-MLP).

4. NEAT.

The reason for using those methods is to be able to compare two effects:

1. Standard vs. Bayesian networks. In this case, we compare how standard

networks (MLP and NEAT) compare with Bayesian NEAT. In this regard,

we do not expect Bayesian methods to over-perform standard networks (6).

However, it is interesting to see how far they are from them.

2. Traditional search vs. Evolutionary search. While in traditional search ar-

chitecture and weights learning is decoupled, in Neuro-Evolution both archi-

tecture and weights can be evolved together. In this comparison, we wish

to establish some relationship between architecture and classification perfor-

mance.

Multi-Layer Perceptron

The MLP is trained using Back-Propagation to train the weights and a naive Grid

Search approach to find the best architecture. The method searches for the best

combination of architecture parameters:

1. Number of Hidden Layers.

2. Number of Nodes per Layer.

Each execution in that search trains the network with those hyperparameters

using both train and validation sets. The search method keeps the network that

performs better in the validation set. Finally, metrics are calculated using the test

set.
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Bayesian Multi-Layer Perceptron

In this case, the weights’ training and the architecture’s search follows the same

approach as in the MLP method. The only difference is that, in this case, the

network is using the Stochastic-Layer that we built for Bayesian-NEAT. Therefore,

it is also able to provide a stochastic output. It’s worth mentioning that training

this network with BackPropagation is possible due to using Variational Inference

because both loss and network can be differentiated.

NEAT

This algorithm consist on NEAT for standard neural networks. In terms of im-

plementation is the same as Bayesian-NEAT but with some tweaks. First, the

complexity cost is fixed to zero (β = 0.0). This makes the network optimize for just

the log-likelihood, or Cross-Entropy loss in classification problems. Second, we fix

the Standard Deviation of the biases and connections to be zero (fix_std = True).

That is, standard deviation is always zero and, therefore, the Stochastic Layer be-

comes a deterministic one. This allows us to make the comparison of Standard vs.

Bayesian networks using the same evolutionary search approach and without the

need of further development. In terms of implementation, it required additional

work so that both backpropagation and mutation does not update the standard

deviation parameters.

Random Guessing

Random Guessing (RG) consist on predicting a class by just sampling from the

distribution of classes. To calculate classification metrics for the RG method for

each dataset, we directly take the ratio given by the number of classes. Despite this

method can be inaccurate (due to class imbalance), we think that is close enough for

our comparison purpose, especially after seen that Bayesian-NEAT performs clearly

better than them. We use this benchmark to prove that our proposed algorithm is
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actually able to learn.

4.1.4 Data Processing

Both benchmarks and our proposed solution require some minimal data pre-processing

and post-processing in order to work. Regarding pre-processing, we applied the fol-

lowing transformations as recommended by (12):

1. Attribute Encoding. Some of datasets have some categorical attributes that

need to be transformed to numeric values. For that, we have applied One-Hot

Encoding method.

2. Attribute Normalization. In neural networks it is needed to remove scale of

the input data and normalized around zero.

3. Data Repetition. This transformation only applies to Bayesian methods (B-

MLP and B-NEAT). In order to generate a robust probability distribution

at the end of the softmax layer, many samples are needed. In order to get

many samples, both input tensor X and output tensor Y need to be repeated

n_samples times.

Because Bayesian methods require data repetition at the input, at the output

they require a post-processing step to convert the output distribution into a pre-

diction. In order to give a prediction, a BNN relies on the expected value of such

distribution. That is, the mean.

4.1.5 Metrics

In order to measure how the algorithms perform in the classification tasks we use

the following metrics:
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1. Classification Accuracy. It is the proportion of correct predictions with respect

to the total number of cases. It is typically shown as a percentage.

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions
· 100% (4.1)

2. Precision. Intuitively, it can be thought as how good is the classifier at reducing

False Positives. That is, classifying as positive a negative example. In the case

of multi-class problems, the Precision is calculated as the weighted sum of each

class’s precision. Furthermore, each class is calculated following the One-vs-

Rest approach.

Precisionc =
TruePositive

TruePositive+ FalsePositive

Precision =
1

N
·

C∑
c=1

Nc · Precisionc
(4.2)

3. Recall. Recall is a complementary metric to Precision and it can be thought

as how good is the classifier at reducing False Negatives. That is, classifying

as negative a positive example. In multi-class, it follows the same philosophy

as

Recallc =
TruePositive

TruePositive+ FalseNegative

Recall =
1

N
·

C∑
c=1

Nc ·Recallc
(4.3)

4. F1 Score. It combines both Precision and Recall into a single scalar metric

by calculating their harmonic mean. In the case of multi-class problem, it

computes the metric individually for each class and, then, weighted them based

on the of instances of each class as shown in Equation 4.4.

F1c = 2 · Precisionc ·Recallc
Precisionc +Recallc

F1 =
1

N
·

C∑
c=1

Nc · F1c
(4.4)
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As F1 score considers both Precision and Recall, we use that one to better

capture successful classification.

4.2 Experiment I. Solving Classification Tasks

The objective of this experiment is to validate if the proposed approach is actually

able to solve Supervised Classification Learning problems in a consistent manner.

4.2.1 Design of Experiment I

We can say that Bayesian-NEAT is able to solve a classification problem if the

classification metrics results are higher than what it would be obtained by just

random chance or Random-Guessing.

In order to satisfy the requirements above, this experiment consists on running

k = 5 executions on Bayesian-NEAT for each of the considered datasets and calculate

the classification metrics discussed before on the testing set.

Finally, we also add a comparison between two variants of the Bayesian-NEAT

algorithm as we have seen that there is a boost on performance from one to another

variant. These two variants consist on the proposed solution with and without the

final stage of parameters’ fine-tuning.

4.2.2 Results and Discussion of Experiment I

Table 4.3 shows the mean value of the metrics for all the executions for each dataset

for both versions of Bayesian-NEAT. Then, Figure 4.1 shows several boxplots com-

paring both methods and the RG value (horizontal blue line) for each dataset. Based

on the results, we can confidently claim that the proposed solution is able to solve

Supervised Classification problems consistently as it obtains classification metrics

that are always better than simply random guessing.
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Table 4.3: Bayesian-NEAT Mean Classification Metrics.

Dataset Accuracy F1 AccuracyFT F1FT RG Accuracy (%)

Iris 67.36 % 0.6011 95.26 % 0.9528 33.33 %

Wine 97.33 % 0.9735 96.88 % 0.9690 33.33 %

Breast Cancer 96.08 % 0.9608 96.36 % 0.9636 50 %

Titanic 78.39 % 0.7786 78.62 % 0.7808 50 %

SpamBase 84.81 % 0.8460 88.13 % 0.8798 50 %

MNIST 38.52 % 0.3233 63.20 % 0.6084 10 %

On the other hand, Fine-Tuning clearly helps improve performance in three of

the datasets studied (Iris, SpamBase and MNIST) while not hurting the performance

in the other ones. There is one dataset (Wine) where the classification metrics are

actually worst in mean but the difference is not significant. In fact, the actual

validation loss is better after Fine-Tuning as Table 4.4 shows.

Table 4.4: Bayesian-NEAT Mean Validation Fitness.

Dataset Without Fine-Tuning With Fine-Tuning

Iris 0.885162 0.599088

Wine 0.676358 0.642262

Breast Cancer 0.386794 0.369603

Titanic 0.530425 0.499358

Spambase 0.496322 0.488217

MNIST 2.181421 1.908603

Since the fitness function is just a proxy of the actual classification metrics, it

can happen that the metrics are slightly worse, especially in small datasets like

Wine where results can have greater variability. That is, the smaller the dataset,

the higher the impact that one mis-classified example has in the calculated met-

rics. Finally, looking at the validation loss, it also seems that for datasets Breast
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Cancer, Wine, Titanic and SpamBase the approach without fine-tuning is already

optimizing the fitness correctly because adding the fine-tuning does not provide a

great improvement to the optimization. Therefore, it makes sense that we do not

see a large improvement in the classification metrics for those datasets.
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Figure 4.1: Boxplot with Experiment I Metrics.
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4.3 Experiment II. Comparison against Benchmarks

The objective of this experiment is to compare how Bayesian-NEAT compares

against the defined benchmark methods. The comparison is made at two levels:

in terms of classification performance, and model’s complexity and architecture.

4.3.1 Design of Experiment II

In this experiment, we compare the Bayesian-NEAT algorithm with the benchmark

methods described before. As in the previous experiments, each method is executed

k = 5 times for each dataset in order to get robust performance metrics.

4.3.2 Results and Discussion of Experiment II

First, we evaluate the results based on the results in terms of classification perfor-

mance showed in Tables 4.5 and 4.6.

Table 4.5: Test F1 Score by Method.

Dataset MLP Bayesian-MLP NEAT Bayesian-NEAT

Iris 0.947235 0.952652 0.968563 0.947556

Wine 0.955357 0.933477 0.968971 0.969041

Breast Cancer 0.976140 0.987396 0.971846 0.966448

Titanic 0.780609 0.780333 0.818103 0.781404

Spambase 0.929950 0.908552 0.922762 0.881245

MNIST 0.957968 0.755776 0.683181 0.622393
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Table 4.6: Test Accuracy (%) Score by Method.

Dataset MLP Bayesian-MLP NEAT Bayesian-NEAT

Iris 94.736842 95.263158 96.842105 94.736842

Wine 95.555556 93.333333 96.888889 96.888889

Breast Cancer 97.622378 98.741259 97.202797 96.643357

Titanic 78.511450 78.473282 82.137405 78.702290

Spambase 92.988705 90.929626 92.289314 88.256588

MNIST 95.800000 76.208000 70.512000 64.656000

With a quick look, we can see that Bayesian-NEAT is competitive with bench-

marks in five out of six datasets (Iris, Wine, Breast Cancer, Titanic and Spambase)

as they get very similar results. Now let’s compare Bayesian-NEAT individually

with each benchmark:

1. Bayesian-NEAT vs. B-MLP. Comparing with its Bayesian counterpart we ob-

serve they get very similar results in all datasets but are clearly worse in those

with higher dimensionality (Breast Cancer, Spambase and MNIST). Further-

more, despite Spambase have similar input dimensionality, Bayesian-NEAT

performs much worst (12 %) in the MNIST dataset which has a higher output

dimensionality (10 classes). As we see below, this is a current limitation of the

proposed approach.

2. Bayesian-NEAT vs. NEAT. In this case, the methods use the same algorithm

for evolving and searching architecture. The only differences are that NEAT

does not impose a complexity cost and the output is deterministic. Looking at

classification metrics we see that NEAT slightly outperforms Bayesian-NEAT

in five out six datasets. This phenomenon is also observed when compar-

ing MLP against Bayesian-MLP. This is not surprising as, as we said before,

Bayesian Neural Networks typically perform worse in terms of classification

metrics than the standard networks (6).
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3. Bayesian-NEAT vs. MLP. In this case, we observe higher differences in the

datasets with higher dimensionality and more data availability (Spambase and

MNIST). In fact, in these two datasets, a traditional MLP performs better than

any other method. These are not strange results as those are the datasets that

have higher amount of data and dimensionality. MLPs behave well on high

dimension because they do not have an extra parameter to optimize (σ), and

the more data is given, the better they get.

It is worth discussing the case of MNIST. In this dataset, Bayesian NEAT is

very far from the Bayesian-MLP’s performance. At the same time, NEAT is also far

away from MLP’s performance. This leads us to think that we have encountered a

scalability limitation of the algorithm since Spambase has a similar input dimension

and performance is not degraded, we establish the hypothesis that the scalability

problem comes from the output dimension. What happens if we reduce the output

dimensionality of MNIST? To answer this question we run an additional experiment

with five classes. That is taking as classes the digits 0, 1, 2, 3 and 4. The results of

this experiment are in Tables 4.7 and 4.8.

Table 4.7: Test F1 Score for MNIST-5.

Dataset MLP Bayesian-MLP NEAT Bayesian-NEAT

MNIST-5 0.983851 0.94216 0.939491 0.900692

Table 4.8: Test Accuracy for MNIST-5.

Dataset MLP Bayesian-MLP NEAT Bayesian-NEAT

MNIST-5 98.384 94.224 93.968 90.128

As we can see the gap between methods is much lower. This indicates that

our approach has some limitations with the output dimension size. Actually, this

makes sense because as we increase the output dimension we are also increasing the
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complexity of the search space. One possible solution could be to run the algorithm

for many more generations. However, it becomes unfeasible with the resources

available.

Regarding models’s architecture and complexity, Tables 4.9, 4.10 and 4.11 show

the number of parameters, the number of network elements (sum of nodes and

connections in a network) and the number of layers, respectively, for each of the

methods.

Table 4.9: Mean Number of Model’s Parameters.

Dataset MLP Bayesian-MLP NEAT Bayesian-NEAT

Iris 241.0 402.0 50.40 61.2

Wine 301.5 600.0 123.60 198.0

Breast Cancer 551.5 1204.0 93.40 144.8

Titanic 233.0 310.0 83.60 96.4

Spambase 1042.0 780.0 185.75 369.0

MNIST 1762.0 3470.0 335.20 637.2

Table 4.10: Mean Number of Network Elements.

Dataset MLP Bayesian-MLP NEAT Bayesian-NEAT

Iris 241.0 201.0 50.40 30.6

Wine 301.5 300.0 123.60 99.0

Breast Cancer 551.5 602.0 93.40 72.4

Titanic 233.0 155.0 83.60 48.2

Spambase 1042.0 390.0 185.75 184.5

MNIST 1762.0 1735.0 335.20 318.6
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Table 4.11: Mean Number of Network’s Layers.

Dataset MLP Bayesian-MLP NEAT Bayesian-NEAT

Iris 2.6 2.4 5.6 4.0

Wine 2.5 2.6 8.4 12.4

Breast Cancer 2.7 2.6 7.6 11.8

Titanic 2.5 2.0 12.6 10.4

Spambase 2.7 2.4 8.5 13.8

MNIST 2.6 2.8 3.6 4.4

From those tables, we can observe several patterns across different datasets:

1. Both NEAT and Bayesian-NEAT require far less parameters and need smaller

graphs than MLP networks.

2. Despite having less parameters, Bayesian-NEAT and NEAT generate deeper

networks than both fully-connected MLP approaches. That is, they have more

layers.

3. Bayesian-NEAT typically generates smaller networks than NEAT. That is,

the total number of nodes and connections is smaller than in NEAT. However,

Bayesian-NEAT usually has the same or more parameters than NEAT. This

is explained by the fact that the BNNs, for the same network structure, they

double the amount of parameters as they also have a standard deviation pa-

rameter. Of course, this increases the complexity of the training process and

results obtained could be local optimums.

From these results is obvious than typical MLP approaches have typically con-

tain many nodes and connections that do not contribute to optimize the model’s

classification metrics. In this regard, a Neuro-Evolution approach is able to generate

more efficient networks than traditional Neural Architecture Search methods.
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4.4 Experiment III. Comparison against Benchmarks

in presence of Mislabeled Data

Based on the previous results where Bayesian-NEAT is able to reach competitive

results with most benchmarks, we look for an application where Bayesian-NEAT

can standout. As discussed before, Bayesian-NEAT has, typically, a lower amount

of parameters and smaller architectures. Therefore, we think that it could generalize

better and be more robust in noisy environments. In order to study this hypothesis,

Bayesian NEAT is tested in datasets with mislabeled data and compared against

the defined benchmarks.

4.4.1 Design of Experiment III

The experiment consist on increasingly modifying the amount of mislabeled exam-

ples in the datasets and measure the classification metrics for each execution. Mis-

labeled examples, in the context of Classification problems, are those whose class

is incorrectly assigned. For that purpose, we use the parameter label_noise that

represents the probability of a training example is wrong. In case of being wrong,

a random label is picked uniformly from the rest of the classes. In this experiment,

we only add noise to the training and validation set while the testing set is always

correct. As with the previous experiments, we run each experiment k = 5 times to

ensure robust results.

4.4.2 Results of Experiment III

Figure 4.2 shows how the classification metrics evolve as we increase the rate of

mislabeled data. The y-axis in the graphs on the left shown the F1 score while

the y-axis in the graphs on the right show the Accuracy. Each graph shows the

performance for Bayesian-NEAT and the benchmarks discussed before. For each

model, each graph displays both the mean and the variability for each experiment
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as one standard deviation above and below the mean.

Figure 4.2: Classification Metrics based on Mislabeled Data Rate.

4.4.3 Discussion of Experiment III

Figure 4.2 shows how the classification metrics evolve as we increase the rate of

mislabeled data. As we can see, the MLP model is the one has a clearly different

behavior than the others. The MLP model seems to reduce performance linearly as

we increase the noise ratio. This holds for all datasets but for MNIST, where after

label_noise > 0.7, the model performance dramatically drops.

On the other hand, the other models are more robust to mislabeled data as

label_noise starts to increase. However, we can see that there is some point after

the performance degrades faster than for MLP. In practice, we think that is not

important as real datasets tend towards a small percentage of error. In this regard,
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it is worth discussing where that inversion of behavior tends to happen. Recalling the

experiment design, if a label is mislabeled that means that the wrong label assigned

is randomly picked from the other set of labels following a uniform distribution.

That is, if we are in a binary classification problem, the mislabeled example will

always pick the other class. However, if we are in MNIST (with 10 classes) the label

selected will be picked from the other nine labels. Therefore, the impact of an error

in MNIST makes sense that it is smaller than in a dataset with fewer classes and it

makes sense that models keep performance until close to label_noise 0.9.

As we observe, all Bayesian methods and NEAT are more robust to this noise

than the traditional MLP model. Looking at these results as well as the results

regarding models’ architecture, we think that robustness against label noise comes

from:

1. Bayesian methods (Bayesian-NEAT and Bayesian-MLP) typically act as model

regularizers, helping to better generalize to unseen data. Gat et al (11) proved

that the Dropout method (26) used to train Neural Networks has a bayesian

interpretation where weights follow a Bernoulli distribution.

2. Simpler models are more robust to noise. Models with fewer parameters have

the drawback that are less expressive and, therefore, cannot model complex

functions. However, they are also more robust to noise.

Based on this, we would expect to see Bayesian-NEAT performing better because

it has both the Bayesian nature and it generates smaller models. However, based

on the evidence we have, we cannot conclude that.

4.5 Experiment IV. Modeling Uncertainty

As discussed earlier, one of the most interesting characteristics of Bayesian Neural

Networks is their ability to provide a measure of uncertainty for individual examples.
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4.5.1 Design of Experiment IV

In this experiment, we analyze how well uncertainty is modeled in Bayesian NEAT

and how it compares with Bayesian-MLP. Other benchmark methods do not admit

this comparison as they are not stochastic models. In order to measure uncertainty,

we first carry out a qualitative study on individual examples and later offer a more

comprehensive study for all datasets considered. In the latter part, the dispersion

in the predictive distribution is considered as a proxy for uncertainty estimation.

4.5.2 Results of Experiment IV

Figures 4.3 and 4.4 show, respectively, an example of uncertain and certain output

of a stochastic network for an example in the Wine dataset, generated by Bayesian-

NEAT. While the first 3 plots on the left show the probability distribution for each

class (P (y = 0|x,w), P (y = 1|x,w) and P (y = 2|x,w)), the last plot shows a 2D

representation of the test set (built using Principal Component Analysis) with all

examples and their class. Furthermore, it shows in green, the 2D position of the

specific example that we are showing. It is worth mentioning that the estimator

was able to correctly predict both samples. However, with the first one, it was more

uncertain.

Figure 4.3: Uncertain Class Prediction Distributions for a Wine Example.
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Figure 4.4: Certain Class Prediction Distributions for a Wine Example.

Figure 4.5 shows how F1 Score changes as we remove more uncertain examples.

That is, as we move from left to right in the x-axis, the most uncertain examples

are removed. The most uncertain example is the one with the highest standard

deviation in the predictive probability distribution. While at the left of the x-axis,

all examples in the test set are used, the more we move towards the right, only

the most certain predictions are kept. Therefore, if the model is able to measure

uncertainty, F1 Score needs to monotonically increase.
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Figure 4.5: Prediction Distributions for a Wine Example.

4.5.3 Discussion of Experiment IV

Figures 4.3 and 4.4 show, respectively, an example of uncertain and certain output

of a stochastic network for an example in the Wine dataset, generated by Bayesian-

NEAT. While the first 3 plots on the left show the probability distribution for each
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class (P (y = 0|x,w), P (y = 1|x,w) and P (y = 2|x,w)), the last plot shows a 2D

representation of the test set (built using Principal Component Analysis) with all

examples and their class. Furthermore, the mean of each class’ distribution is shown

as the red vertical line. Finally, in green, these Figures show the 2D position of the

specific example. It is worth mentioning that the estimator was able to correctly

predict both samples. However, with the first one it was more uncertain.

As we can see in the PCA plot of Figure 4.3 the example is actually in the frontier

between class 0 and 1. That makes the estimation more uncertain between those 2

classes. As we can see, it assigns very low probability to class number 2 a very little

uncertainty. That is, is very certain that is not class 2. Looking at Figure 4.4 we

can still see that both classes 0 and 1 are possible but the estimator is much more

sure about being class 0.

Because the previous figures are just individual data examples, we study how we

can use this uncertainty measure to evaluate the model. In order to do that we have

created the graphs in Figure 4.5. As we can see, the F1 Score increases as we move

from left to right for all datasets besides Iris and MNIST. This indicates that the

model is actually modeling the uncertainty with some degree of correctness. That

is, ideally the curve would reach 1.0 quickly. However, despite the trend is actually

positive, there are actually some noise in those curves that indicate that is not able

to always model the uncertainty.

On the other hand, we barely see the positive trend in the Iris or MNIST dataset.

On reason to explain what happens in Iris is that we might not have enough data to

actually see this effect since the F1 score is already high (around 0.95). In the case

of MNIST, it has enough data. However, as shown in previous experiments, learning

in MNIST might not be good enough to provide good uncertainty estimates.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, we have introduced and validated the algorithm Bayesian-NEAT to

generate both architecture and weights in Bayesian Neural Networks in the context

of small and medium size Supervised Learning tasks. Moreover, we have proved that

it can actually provide a measure of uncertainty for each independent data example.

This is the main contribution of this work. However, there are others:

1. We have compared Bayesian-NEAT against proper benchmarks showing that

it achieves competitive performance in most datasets. In this regard, we have

seen that for high multi-class problems, the algorithm does not match tra-

ditional Neural Networks. We think that having more compute power and

running for longer generations could help.

2. We have provided a use-case, mislabeled data, where the proposed algorithm

is more robust than standard Neural Networks. We think that the fact that

Bayesian-NEAT creates simpler models and has stochastic nature, help to

better generalize in the presence of noise. That is, both characteristics act as

model regularization mechanisms.

3. We have designed and implemented a conversion or mapping between the
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Genotype and a feed-forward Bayesian Network in a Deep Learning framework

for the first time. This contribution has the following implications:

(a) The final Bayesian Neural Network can run in both CPU and GPU. While

being able to run on CPU allows us to parallelize fitness evaluation for

the population during the evolutionary search, being able to run on GPU

allow for faster predictions and fine-tuning.

(b) We were able to leverage Automatic Differentiation tools provided by the

Deep Learning framework to apply the final fine-tuning stage.

4. We have designed and implemented a software system that facilitates experi-

mentation and research on the topic.

Finally, based on the contributions explained above, we can claim that the ob-

jectives of the research are fulfilled in high degree. Issues encountered in higher

dimensional problems are discussed as future research directions.

5.2 Future Work

Despite the algorithm was validated for low dimension problems, we saw that it did

not perform well for classification problems with high number of classes. In order

to be able to extend the use of the algorithm to high dimensional problems, we

proposed several research directions:

1. Indirect Encoding. The current approach follows a direct encoding scheme

where each gene of the genotype represents a part of the network. However,

direct encoding does not scale well as the search space increases. For higher

search spaces, the literature recommends indirect encoding schemes.

2. Better search methods. In this work, we have not researched alternative search

methods. However, we think that further research on this could help improve

results.
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3. Scale computation resources. Having more computation resources or larger

running times could help obtain better results.

Regarding the regularization effect that we see with Bayesian Methods and

NEAT it would be interesting to compare them to common regularization mech-

anism such as drop-out and L1 and L2 regularization.
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Appendix A

Code Repository

The code for the entire project is hosted in GitHub at https://github.com/

AlbertoCastelo/Neuro-Evolution-BNN. In order to use it, it has to be cloned

to a computer or server. Then, the user can spin up a JupyterLab environment

typing the following command in the command line at the root of the project.

$ git clone https://github.com/AlbertoCastelo/Neuro-Evolution-BNN.git

$ make jupyter

This will automatically install all dependencies you need as long as the computer

has git, Docker and Docker-Compose installed. Then, it will offer a JupyterLab

server.
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Appendix B

Default Parameters

Table B.1: Bayesian-NEAT Parameters.

Parameter Name Value Description

parallel_evaluation True Fitness evaluation is parallelized

n_processes 6 How many cores should be used during fitness evaluation

is_fine_tuning True Apply final fine-tuning stage

epochs_fine_tuning 2000 Max number of epochs to run in fine-tuning

is_discrete False Type of parameter mutation

train_percentage 0.75 Ratio of dataset used for training

beta 0.0001 Multi-objective weighting factor

fix_std False Fix σ mutation and/or training

fix_architecture False Fix architecture mutation

is_initial_fully_connected False Initialization creates a fully connected network

initial_nodes_sample 50 Number of connections with input layer on initialization

dataset_random_state 42 Seed used to generate data
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Parameter Name Value Description

noise 0.0 Gaussian noise added to independent variables

label_noise 0.0 Probability of misclassified example

n_generations 150 Number of generations

generation_fix_architecture 150 Stop architecture mutation after it

pop_size 50 Population size

node_activation tanh Activation function

n_samples 100 Number of samples taken

n_species 5 Number of species

max_stagnation 30 Max generations without improvement

elitism 2 Elitism per specie

min_species_size 2 Minimum of individuals per specie

mutate_power 0.5 σ used in mutation

mutate_rate 0.8 Probability of mutating a parameter

architecture_mutation_power 1 Number of architecture mutations

node_addprob 0.9 Probability of adding a node

node_delete_prob 0.1 Probability of removing a node

connection_add_prob 0.9 Probability of adding a connection

connection_delete_prob 0.1 Probability of removing a connection

mean_init_mean 0.0 Parameter µ initialization µ

mean_init_std 1.0 Parameter µ initialization σ

mean_max_value 10.0 Parameter µ max value

mean_min_value -10.0 Parameter µ min value

mean_prior 0.0 Parameter µ prior

std_init_mean 0.001 Parameter σ initialization µ

std_init_std 0.0 Parameter σ initialization σ

std_max_value 2.0 Parameter σ max value

std_min_value 0.0 Parameter σ min value

std_prior 1.0 Parameter σ prior
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Appendix C

Other Things Tried

C.1 Pruning Networks

Start from a pre-trained network and use Bayesian-NEAT to prune the network.

This works by assigning greater probabilities to parameters delete_node_prob and

delete_connection_prob than to add_node_prob and add_connection_prob. The

algorithm was able to prune the network with some some loss in performance. How-

ever it is tricky to find the balance between Log-Likelihood and Complexity Cost.

C.2 Fine-Tuning using Evolutionary Methods

For the final Fine-Tuning stage, first we tried to solve it using a fully evolutionary

approach by:

1. Run Bayesian-NEAT for n generations. In this stage both architecture and

weights are evolved.

2. Activate fix_architecture flag so that architecture is not mutated.

3. Run Bayesian-NEAT for nft more generations. In this stage only weights are

evolved.
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Despite we did not see a huge performance increase, this could be a possible

future direction if we future iterations do not want to rely on having a differentiable

fitness function.

C.3 Mutation using Backpropagation

The typical mutation scheme for parameters consist on modifying the parameters

based on a sample from normal distribution. In order to update parameters in a

good direction, we tested using backpropagation to train the parameters for a few

epochs (typically 5) before continuing with the evolutionary phase. The issue with

this approach was that it became infeasible due to the time it take to run because

for each genome of the population it had to:

1. Convert genome to network.

2. Train network for 5 epochs.

3. Convert network back to genome.

All these steps added a lot of overhead.

C.4 Add Noise to Attributes

Before trying experiment III, we tried injecting noise to the attributes. In general,

Bayesian methods and NEAT behave better as they regularized better than the

standard MLP. We did not pursue further because the use-case in Experiment III

showed more potential.
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