
MASTER THESIS

Lane Detection based on Multiple Frames
Information

Author:
Diego TURRADO BLANCO

Supervisor:
Dr. Ján KOLODA

Dr. Mariano RINCÓN ZAMORANO

Master in Advanced Artificial Intelligence

Higher Technical School of Computer Engineering

National University of Distance Education (UNED)

September, 2021



ii

Declaration of Authorship

I, Diego TURRADO BLANCO, declare that this thesis titled, “Lane Detection based on
Multiple Frames Information” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:



iii

Acknowledgements
Firstly, I want to thank my thesis advisor Dr. Ján Koloda and Dr. Mariano Rincón for
their advice, contribution and support in the development of this thesis. I also wish to
acknowledge the help of AVL Software and Functions, providing the necessary equip-
ment to develop this work. And last, but not least, I would like to thank my family for
their support during all my studies.



iv

NATIONAL UNIVERSITY OF DISTANCE EDUCATION (UNED)

Abstract

Master Thesis

Lane Detection based on Multiple Frames Information

by Diego TURRADO BLANCO

Keywords: lane detection, autonomous driving, convolutional neuronal networks,
recurrent neuronal networks

One of the fundamental challenges in the field of autonomous driving is the ability to
detect dynamic objects, such as vehicles or pedestrians, and statics ones, such as lanes, in
the surroundings of the vehicle. The accurate perception of the environment is crucial for
a safe decision making and motion planning. In recent years, advanced driver-assistance
systems (ADAS) are getting more important, incorporating new features that a few years
ago were limited to luxury cars or even not technically possible. In particular, one of this
features is the lane keeping assist system which keeps the car centered in the lane. This
system is not just a relevant part of actual driving support features, but it is a crucial
function of future fully autonomous vehicles (AD). A few years ago, many of these sys-
tems relied on traditional computer vision algorithms, based on computational expensive
manually calibrated methods. Their lack of robustness under the long tale of driving sce-
narios makes them not very suitable for scalability. Moreover the limited computational
resources of embedded system puts additional requirements on the design of real time
capable algorithms.

Nowadays, the state-of-the-art object and structure detectors for advanced driver-
assistance systems are based on machine learning and, in particular, deep learning ap-
proaches. However, such approaches still mainly function on single-frame basis and do
not exploit the (high) temporal correlation of the signals representing the perceived envi-
ronment. Single-frame detection networks might work well under circumstances where
the lanes are perfectly visible, but show a lack of performance under certain situations,
like occlusions, shadows, rain, snow, lane degradation, etc. To address the aforemen-
tioned problem, this thesis introduces temporal information for lane binary segmenta-
tion, applying convolutional long short-term memory (ConvLSTM) and convolutional
neural networks (CNN) to improve substantially the performance of single-frame archi-
tecture under challenging and adverse situations.



v

Contents

Declaration of Authorship ii

Acknowledgements iii

Abstract iv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Objectives and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature review and related work 5
2.1 Classical computer vision methods . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Proposed method and implementation 9
3.1 Basic network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Encoder/Decoder selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Experimental results 14
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 When is the network really over-fitting? . . . . . . . . . . . . . . . . . . . . 21
4.7 Comparison with state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7.1 Quantitative performance: pixel level . . . . . . . . . . . . . . . . . 23
4.7.2 Quantitative performance: lane level . . . . . . . . . . . . . . . . . . 25
4.7.3 Qualitative performance . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7.4 Running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Discussion 30



vi

6 Conclusion 32

Bibliography 33

Appendix A Student’s t-test 37

Appendix B Challenging conditions on the TuSimple dataset 39



vii

List of Figures

1.1 Lane detection using LaneNet [43] under driving scenarios with shadows,
light reflections and lane occlusions from the TuSimple dataset. Green
lanes represent the ground truth and red, the one inferred by the CNN. . . 2

2.1 Encoder/decoder architecture. Left UNet and right SegNet. For simplicity
reason batch normalization and activation layers after convolutional layers
are not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Network architecture for the special case of 5 frames and ConvLSTM2D
with 2 layers. The basic idea of this architecture for lane detection was
proposed in [59], however the encoder/decoder can be adapted and fur-
ther changes can be done to improve not just performance but also other
aspects, like running time or size. . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Number of trainable parameters for the different architectures (encoder
and decoder variations) used during this work. It is just an indicative due
to the fact that small changes in the LaneNet-LSTM have been done to try
to improve its performance. As basic for this figure, a 2-layer and 32-filter
ConvLSTM is used. Another take away from this figure is that ConvLSTM
represents 39.3% of the trainable parameters in the LaneNet-LSTM, 71.6%
in the UNet-LSTM and 56.2% in the case of SegNet-LSTM. . . . . . . . . . 12

3.3 Loss and validation loss for LaneNet-LSTM. Fluctuations on the validation
loss could indicate over-fitting problems. To try to mitigate this changes in
the network size, regularization and batch size have been proposed. . . . 13

4.1 Example of TuSimple dataset [2]. Even distributed horizontal lines are
plotted in red and the intersection with each polyline with a green point. . 15

4.2 Ground truth lane is represented with the color white. Lanes with color
green and red are two possible predictions with the same binary cross en-
tropy error, although the green one has an smaller "error". . . . . . . . . . 18

4.3 Training and validation loss for the different proposed loss functions. Soft
binary cross entropy does not show any effect on convergence speed. . . . 19

4.4 During the training of some of the networks we have seen the following
phenomena: validation loss, validation accuracy, validation recall and val-
idation precision increase simultaneously. Intuitively the relationship be-
tween validation loss and the other three metrics should be inverse. . . . . 22



viii

4.5 Box plots for area under ROC (receiver operating characteristic curve), un-
der PRC (precision recall curve), maximum accuracy and its corresponding
F1 for the compared state-of-the-art networks. . . . . . . . . . . . . . . . . 24

4.6 Three examples of images in challenging situations. Top row: LaneNet.
Middle row: LaneNet-LSTM. Botton row: UNet-LSTM. Green lanes cor-
respond to ground truth and red lanes to predictions (yellow is just an
overlap of both of them). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Example result of the Hough transform applied to the segmentation map. 26
4.8 Example result for region growing. Top: raw image. Middle: output of the

clustering. Bottom: result after line fitting. . . . . . . . . . . . . . . . . . . . 26
4.9 The 20 predicted scenarios with the worst AUPRC calculated by LaneNet. 28
4.10 The 20 predicted scenarios with the worst AUPRC calculated by LaneNet-

LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.11 The 20 predicted scenarios with the worst AUPRC calculated by UNet-

LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

B.1 Some of the frames categorized as challenging in the TuSimple validation
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



ix

List of Tables

4.1 Characteristic of TuSimple dataset [2]. * just the frame 20th is labeled. . . . 14
4.2 Influence of the different loss functions on the area under ROC (receiver

operating characteristic curve), under PRC (precision recall curve), maxi-
mum accuracy and its corresponding F1. . . . . . . . . . . . . . . . . . . . 19

4.3 Area under ROC (receiver operating characteristic curve), area under PRC
(precision recall curve), maximum accuracy and its corresponding F1 for
the different combinations of LaneNet-LSTM. The results correspond to
the better results obtain for each architecture. . . . . . . . . . . . . . . . . . 21

4.4 Area under ROC (receiver operating characteristic curve), under PRC (pre-
cision recall curve), maximum accuracy and its corresponding F1 for the
compared state-of-the-art networks. * refers to LaneNet-LSTM with 32 fil-
ters ConvLSTM2D and dropout of 0.1. . . . . . . . . . . . . . . . . . . . . . 23

4.5 Area under ROC (receiver operating characteristic curve), under PRC (pre-
cision recall curve), maximum accuracy and its corresponding F1 for the
compared state-of-the-art networks for only the challenging situations con-
tained in the TuSimple validation set. * refers to LaneNet-LSTM with 32
filters ConvLSTM2D and dropout of 0.1. . . . . . . . . . . . . . . . . . . . . 24

4.6 Average inference time. * refers to LaneNet-LSTM with 32 filters ConvL-
STM2D and dropout of 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.1 Results of Student’s t-test for the comparison between LaneNet, LaneNet-
LSTM and UNet-LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



1

Chapter 1

Introduction

In recent years, the development of computer vision (i.e. new deep learning architec-
tures), sensor technology (i.e. LIDAR) and processors units (i.e. GPU) has made big ad-
vances in the field of autonomous driving possible. If fact, Scopus database confirms that
it has become a prominent topic of investigation for researchers, not just in the academia
but also in the industry [42], where great amount of effort and money has been invested
in. The ultimate goal of many of these researches is to have a full picture of the envi-
ronment around the vehicle, detecting dynamic objects such as vehicles or pedestrians,
and statics ones such as lanes, and having a semantic understanding of the surroundings
which allows a proper movement planning. One of the key and at the same time basic
features needed to enable autonomous driving is camera based lane detection. Once the
lanes are detected, the vehicle can have a reference to position itself in the surrounding
world, so the trajectory planning can calculate where to go, reducing the possibility of
collision with vehicles driving in other lanes [53]. Therefore designing a robust camera
based real time capable lane detection is a key milestone for AD/ADAS systems.

Different approaches have been explored for lane detection. They can be classified
into two different groups: traditional computer vision algorithms and, specially in recent
years, deep learning based methods. Theses different approaches will be presented and
investigated in further detail during chapter 2.

Although the architecture of both approaches is totally different, most of these sys-
tems are based on the information contained in one single frame, and just a few of them
take advantage of the information contained in previous frames [59]. This, of course,
is not like human drivers work, being able to extrapolate and inference the position of
the lanes under challenging situations, like shadows, light reflections, lane occlusion, etc.
referring to the information of the past. This can be done because lanes are static, con-
tinuous objects on the street, with a huge overlapping between frames, meaning a highly
related and temporal correlation of the signals. So the lanes in the actual frame could be
partially inferred from the information in the n-last frames, even though the lanes might
not be totally visible anymore.

Under those circumstances the performance of the state of-the-art methods decreases,
detecting the lanes erroneously, in another direction, or even not detecting it at all like in



2 Chapter 1. Introduction

FIGURE 1.1: Lane detection using LaneNet [43] under driving scenarios
with shadows, light reflections and lane occlusions from the TuSimple
dataset. Green lanes represent the ground truth and red, the one inferred

by the CNN.

figure 1.1. The reason might be that with the information contained in the actual frame,
is very difficult or even impossible to completely inference the position of all lanes. Due
to the fact that modern systems have to work under really variable driving scenarios,
working under all possible conditions is crucial to develop robust algorithms.

1.1 Motivation

The general motivation of this thesis is to contribute to the research of a reliable solu-
tion towards a robust lane detection algorithm, combining the already available architec-
tures to improve, or at least equalize, the state-of-the-art result in terms of:

1. Performance (specially focus in challenging situations like shadows, light reflec-
tions, lane occlusion, etc.).

2. Neuronal network size, which influences the needed computational resources to
run the algorithm.

3. Running time, which is a key factor in embedded systems aiming real time perfor-
mance.

1.2 Problem statement

This work focuses on the lane binary segmentation problem. “An image segmenta-
tion is the partition of an image into a set of non overlapping regions whose union is the
entire image. The purpose of segmentation is to decompose the image into parts that
are meaningful with respect to a particular application” [24]. So ultimately the output
segmentation map indicates which pixels belong to a lane and which not. At this point it
should be mentioned that during this thesis we work at pixel level, and that this problem
definition should not be mixed with the instance segmentation problem, which takes care



1.3. Hypothesis 3

of disentangling the pixels identified as lanes and clustering them into the different lanes
themselves.

The segmentation of an image I for a uniformity predicate P is a partition of I into
disjoint non-empty subsets I1, I2, I3, etc., In and can be defined mathematically as follows:

1.
n⋃

i=1
Ii = I

2. Ii is a connected region; i = 1, 2, 3, . . . , n

3. Ii
⋂

Ij = ∅ for all i and j: i 6= j

4. P(Ii) = True for i = 1, 2, 3, . . . , n

As already explained, in this case there are only two subsets, one for the pixels be-
longing to the lane and one for the pixels which not.

1.3 Hypothesis

As already demonstrated in [59], the use of recurrent neuronal networks on classical
CNN architectures like UNet and SegNet can achieve state-of-the-art performance. Our
hypothesis and the starting point of this work can be expressed as follow:

"The combination of more complex/specialized encoder/decoder architectures, rather than UNet
or SegNet, with recurrent neuronal networks achieves or improves state-of-the-art performance on
the problem statement formulated in section 1.2"

One of the architectures which we would like to try out is LaneNet [43] due to its clas-
sical encoder/decoder architecture and to its state-of-art performance (tested on TuSim-
ple dataset).

1.4 Objectives and methodology

Our overall objective is to justify and validate our hypothesis from section 1.3. In
order to reach such a goal, the following specific tasks have been defined:

1. Study current approaches on lane detection, specially the ones focusing on captur-
ing time information.

2. Design and select different deep learning architectures.

3. Evaluate and compare their performance using the proposed metrics.

1.5 Document structure

The remainder of this thesis is organized as follows. In chapter 2 we describe the
related work, not just focusing on deep learning, but also analyzing traditional computer
vision methods. In chapter 3 the proposed, investigated and implemented architecture



4 Chapter 1. Introduction

for semantic lane segmentation is presented. Experimental results are presented in chap-
ter 4. Finally, chapter 5 discusses the obtained results and chapter 6 concludes this thesis
and proposes further work.



5

Chapter 2

Literature review and related work

In the past decades quite a few number of researches have been done in the field of
lane detection. These methods can be split mainly into two categories: classical computer
vision methods and deep learning methods. Details of each architecture can be found
below.

2.1 Classical computer vision methods

Most traditional computer vision methods follow normally a two step architecture
consisting of: pre-processing/feature extraction and fitting/tracking modeling [55]. The
most common methods during pre-processing include region of interest (ROI) selection,
bird’s eye view, also known as inverse perspective mapping (IPM), or color domain con-
version. Once the images have been pre-processed, lane feature extraction, which is the
fundamental step of the process, can be done. Finally, after lanes have been successfully
detected, a model can be fit into the them and their position can be tracked with algo-
rithms such as Kalman or particle filter to refine the inference and increase performance.
Therefore, lane detection based on classical computer vision methods can be mainly orga-
nized by the pre-processing/feature extraction method and by the fitting/tracking model
used.

1. Pre-processing/feature extractions: this kind of methods rely on feature detection
based on color, texture or gradients. The idea of lane detection based on color is
that, as proposed in [56], white and yellow can be more easily detected in other
color domains because the contrast is increased. In [38] an extended edge linking
algorithm is used to produce more complete edge-links, and features like lane-mark
edge orientation and lane-mark width in YUV format are used to select candidate
lane-mark edge-link pairs. In [13] images were converted to HSV to increase the
contrast and an unsupervised and adaptive binary classifier based on the brightness
values was proposed. [51] uses adaptive threshold to detect lanes based on pixel
intensity and edge information. In general, color transformation is not robust and
has limited ability to deal with shadows and illumination variation as stated in [55].



6 Chapter 2. Literature review and related work

Another option is to detect lane features in the frequency domain [33]. Lane-finding
in another domain (LANA) algorithm was proposed in [34] which captures lane
strength and orientation in the frequency domain and final lane detection is done
using template matching. Results showed that LANA was robust under varying
conditions.

With the goal of removing camera distortions, bird’s eye view perspective trans-
formation can be used. This is proposed in [17] where after IPM transformation,
and adaptive lane detection and classification method based on spatial lane fea-
tures and Hough transform algorithm was used. [6] also detect lanes in bird’s eye
view with the help of Gaussian filter. Other studies focus on other types of filters
like [58] in Steerable filter or [48] in Gabor filter. In general, bird’s eye view has the
inconvenience that is really sensitive to the calibratable parameters, which could
even change during acceleration or deceleration of the vehicle. Another possibility
for curve-fitting and distance estimation is using stereo vision [12][18], avoiding the
calibration problems of bird’s eye view, but requiring two cameras.

[14] proposed a method based on template matching to find possible lanes and
color clustering to extract them, introducing deep learning architectures (multilayer
perceptron network) for illumination-invariant recognition.

In general, lane detection using feature based methods do not need so much com-
putational resources as others, and work well under certain conditions, but due to
too many assumptions and constrains, they show a lack of robustness dealing with
shadows and under poor visibility conditions [55].

2. Fitting/tracking model: once the lanes have been detected, different models have
been used for curve fitting and improving performance, such as linear, parabolic
or spline. Among these, spline lines is the one which offers more flexibility [55].
Hough Transformation (HT) is very common in the literature [7] for lane detection
and fitting (just straight lines). In [54] Catmull-Rom spline was studied. To improve
performance [16][57] proposed a B-snake curve fitting, which can describe any arbi-
trary shape by modifying the control points. [37] introduced parallel-snake model
and [30] used a linear-parabolic model. [6] roughly detected the lanes with Hough
transform and then improved it with Random sample consensus (RANSAC), which
is the most popular algorithm to estimate the model parameters, and B-spline model.
For the analysis, it also introduced the well known Caltech lane dataset.

To even improve more the results, tracking techniques can be used. Kalman filter
is widely studied in the literature [9][52][41]. Another very common filter is the
particle filter [39]. [40] combined both filters in a Kalman particle filter achieving
more robust results in simultaneous tracking of multiple lanes.

In general, the use of model fitting can considerably improve the performance and
robustness due to the fact that noise and outlier pixels can be ignored by the model.



2.2. Deep learning 7

On the other hand, these methods have more computational cost and are not so
easy to implement [55].

2.2 Deep learning

Research in computer vision in general, and in lane detection in particular, has reached
a new stage with the development and boom of deep learning. In the last decade many
different architectures have been proposed, outperforming, in general, classical approaches.
Other studies [59] classified them into three categories.

1. Convolutional Neuronal Networks (CNNs) [35] with encoder/decoder architec-
ture: this type of network is very typical for semantic segmentation tasks. Two
architectures commonly used are UNet [46] and SegNet [8]. These networks are
proposed in [59] for lane detection and are also studied in this work. Based on Seg-
Net, [43] proposed a network called LaneNet, specialized in real time lane detec-
tion, and used across this work. To avoid the need of huge expensive labeled data
[11] exploited additional sensor types to generate large quantities of annotated im-
ages in a weakly-supervised way, which were then used to train a deep semantic
segmentation network (UNet).

FIGURE 2.1: Encoder/decoder architecture. Left UNet and right SegNet.
For simplicity reason batch normalization and activation layers after con-

volutional layers are not shown.

In [44] a spatial CNN (SCNN) was proposed, where traditional layer-by-layer CNNs
were generalized to slice-by-slice CNNs, enabling message passing between pixels
across rows and columns in a layer.

2. Generative Adversarial Networks (GANs) [23]: have also been used for lane detec-
tion. [21] proposed an embedding-loss GAN (EL-GAN). It follows a typical GAN



8 Chapter 2. Literature review and related work

architecture, where the lane are predicted by a generator and judged by a discrimi-
nator.

3. Convolutional Neuronal Networks (CNNs) [35] and Recurrent Neuronal Net-
works (RNNs) [47]: this idea was first introduced in [36]. In this approach the
RNN is not inferring along different frames, but along slices (different region of in-
terest) of one frame. Then, a CNN extracts the features for each slice and, finally, a
RNN is used to infer the lane from the feature maps of each slice. This method was
reported to outperform results from only CNN based architectures. [59] proposed a
new variant of a CNN and RNN network based on a encoder/decoder framework,
which takes multiples frames as input and predicts the lane on the last one at pixel
level. The CNN encoder extracts the feature maps from the different frames, which
serve as an input to a ConvLSTM. Finally the CNN decoder is responsible for the
reconstruction and prediction itself. This idea is also used in this work. To have a
more detailed description on its utilization, please refer to chapter 3.

In conclusion, although deep learning based methods need more computational re-
sources and large amount of labeled data, they outperform conventional methods and
show more robustness under different driving scenarios [55] (no classical computer vi-
sion method is ranked on the leaderboard of any lane detection challenge/benchmark
-TuSimple, CULane or BDD100K-). With the breakthrough and explosion of deep learn-
ing and specialized hardware, it is also expected that new real time capable architectures,
which need less labeled data to be trained, will be developed in the next years.



9

Chapter 3

Proposed method and
implementation

3.1 Basic network architecture

As already explained in chapter 2, [59] combined convolutional neuronal networks
(CNN) and recurrent neuronal networks (RNN), more concretely long short-term mem-
ory (LSTM) [26] in one single architecture. Lanes are static, visible, continuous objects
on the street, with a huge overlapping between frames, meaning a highly related and
temporal correlation of the signals. These types of characteristics make them ideal for the
type of neural networks mentioned above:

1. Convolutional Neuronal Networks (CNN) [35]: unlike fully connected layers, where
each neuron in one layer is connected to every neuron in the next layer, making
them sensitive to over-fitting, CNNs work recognizing patterns in the image, as-
sembling them together in an increasing complexity hierarchy. CNNs were inspired
by biological processes where different groups of neurons react to different patterns
[29]. This makes them very usable for computer vision tasks. CNNs architecture
is at the end built upon recursive layers of convolution and pooling operations.
Therefore an input image can be encoded or abstracted to a feature map containing
the relevant information. [22].

2. Recurrent Neuronal Networks (RNN) [47]: lane’s continuity and overlapping makes
them very suitable for using time-series frameworks. RNN is a type of architecture
known for its talent in continuous signal processing and sequential feature extrac-
tion. RNN shares the same weights across several time steps making it possible to
generalize along different lengths (in this case different number of input frames).



10 Chapter 3. Proposed method and implementation

FIGURE 3.1: Network architecture for the special case of 5 frames and Con-
vLSTM2D with 2 layers. The basic idea of this architecture for lane detec-
tion was proposed in [59], however the encoder/decoder can be adapted
and further changes can be done to improve not just performance but also

other aspects, like running time or size.

The proposed architecture in [59] can be understood as an fully convolutional neu-
ronal network with a recurrent intermediate step to process the time information. The
encoder abstracts n-input images to n-feature maps which can be seen as time sequence
information and be fed into the recurrent neuronal network. These feature maps contains
the necessary information to detect the lanes and keep the time related information but
have the advantage of its reduced size which means that they can be handled well by the
long short-term memory layers. The output of the LSTM is used as input to the convo-
lutional neuronal network decoder which outputs an array of the same size as the input
image containing the probability of each pixel belonging to a lane or not. The complete
architecture is shown in Figure 3.1. In this example five frames are used as input with a
two layer ConvLSTM.

As already explained above, the inputs to the RNN blocks are the feature maps out-
put by the CNN encoder. There are different types of RNN available in the literature like
gated recurrent units (GRUs) [15], but LSTM has been proposed because they generally
outperform other RNN architectures [20], partially thanks to its forget gate given them
the ability to forget irrelevant unimportant information and remember essential features.
The traditional LSTM is time- and computation- consuming, therefore, the proposed net-
work uses convolutional LSTM (ConvLSTM) [49]. The ConvLSTM replaces the matrix
multiplication in every gate of LSTM with a convolution, which is widely used in end-
to-end training and feature extraction from time-series data. The equation describing the



3.2. Encoder/Decoder selection 11

behavior of a ConvLSTM at time t can be formulated as:

Ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3.1)

ft = σ(Wx f ∗ xt + Wh f ∗Wt−1 + Wc f ◦ Ct−1 + b f ) (3.2)

ot = σ(Wxo ∗ xt + Who ∗Wt−1 + Wco ◦ Ct−1 + bo) (3.3)

it = σ(Wxi ∗ xt + Whi ∗Wt−1 + Wci ◦ Ct−1 + bi) (3.4)

Ht = ot ◦ tanh(Ct) (3.5)

where Xt denotes the input feature maps extracted by the encoder CNN at time t. Ct, Ht

and Ct−1 denote the memory and output activations at time t and t-1, respectively. Ct, it,
ft and ot denote the cell, input, forget and output gates, respectively. Wxi is the weight
matrix of the input Xt to the input gate, bi is the bias of the input gate. The meaning of
other W and b can be inferred from the above rule. σ() represents the sigmoid operation
and tanh() represents the hyperbolic tangent. ∗ denotes the convolution operation and ◦
the Hadamard product.

3.2 Encoder/Decoder selection

One of the advantages of this architecture is its flexibility due to the fact that it can
be adapted to be used with different types of encoder/decoder networks. Although the
original paper [59] focuses on UNet [46] and SegNet [8], we have decided to center our-
selves on another encoder/decoder architecture, LaneNet [43]. We hope that this ap-
proach can outperform the original paper under some circumstances due to:

1. LaneNet is and encoder/decoder architecture which is already specialized in lane
detection. Although LaneNet shows state-of-the-art performance, it has a lack of
robustness when dealing with challenging situations (Figure 1.1).

2. LaneNet has fewer number of parameters and is a smaller network, making it more
suitable for real time capable applications. Figure 3.2 shows the number of trainable
parameters depending on the selected encoder/decoder architecture. LaneNet-
LSTM has approximately 80 times fewer parameters than UNet-LSTM and 102
times than SegNet-LSTM. Although these numbers do not tell anything about the
performance or the real time capability of the network, they do provide information
about how much memory is needed to store them.



12 Chapter 3. Proposed method and implementation

FIGURE 3.2: Number of trainable parameters for the different architectures
(encoder and decoder variations) used during this work. It is just an in-
dicative due to the fact that small changes in the LaneNet-LSTM have been
done to try to improve its performance. As basic for this figure, a 2-layer
and 32-filter ConvLSTM is used. Another take away from this figure is that
ConvLSTM represents 39.3% of the trainable parameters in the LaneNet-
LSTM, 71.6% in the UNet-LSTM and 56.2% in the case of SegNet-LSTM.

3.3 Variations

Until now we have explained the basic idea of the architecture to be used in this
work and why, we think, it has the potential to outperform the state-of-the-art algo-
rithms. However, during training we observed high fluctuations on the validation loss
(Figure 3.3). In general, this might be a typical behavior when training deep learning
models and might be explained because the training loss is actually the target of the train-
ing process and it is therefore affected directly, while the validation loss is only affected
indirectly, so it is more volatile. However, this could also point to some other underneath
problems:

1. Network size: one of the conclusion of Figure 3.2 is not just the number of param-
eter themselves, but also the proportion between the encoder/decoder part and
the ConvLSTM. In the case of the LaneNet-LSTM, 39.3% of the trainable param-
eters belong to the ConvLSTM. This percentage is increased to 71.6% in the case
of UNet-LSTM and to 56.2% in the case of SegNet-LSTM. In order to distribute
homogeneously the number of parameters over the network, we introduced a 2D
convolutional layer at the LSTM output, making its output smaller, reducing the
number of parameters (filters) and keeping the structure of the decoder intact.



3.3. Variations 13

FIGURE 3.3: Loss and validation loss for LaneNet-LSTM. Fluctuations on
the validation loss could indicate over-fitting problems. To try to mitigate
this changes in the network size, regularization and batch size have been

proposed.

2. Regularization (dropout): other method very well known in the literature to miti-
gate over-fitting problems is regularization. In this case, we proposed dropout layer
at the LSTM output to try to generalize better over the different time frames.

3. Batch size: during training the model is attempting to estimate the real distribu-
tion of the data, however it just gets the distribution of the training dataset (which
should be similar but it must not be necessarily the same). In addition to this, when
using small batch sizes, the distribution of the data is built upon a really small
part of the training dataset, which makes this calculation even much more sensi-
tive. This could lead to fluctuation in the losses which are not even related to the
architecture itself. Therefore, the batch size is an important hyper-parameter. The
problem of increasing the batch size is that the needed GPU memory increases lin-
early. In our case, where we deal with already very big inputs (n frame sets), very
small batch sizes must be used in order to avoid memory allocation errors.



14

Chapter 4

Experimental results

In this chapter, the steps followed to achieve the methodology described in chapter 3
are presented. First, the dataset used and the pre-processing applied to it. Secondly, the
implementation and equipment used for the training and the different hyper-parameters
analyzed. And finally the metrics and key performance indicators used to evaluate the
accuracy and robustness of the proposed method and its comparison with diverse lane
detection state-of-the-art methods.

4.1 Dataset

For the training and key performance indicator the TuSimple dataset is used [2]. It
contains 3626 video clips for the training set and 2782 for the testing set taken under
good and medium weather situations, at different daytime and traffic conditions on US
highways. Each video clip is a set of 20 frames with until 5 lanes, where just the last
frame is labeled, and with a resolution of 1280×720.

Dataset Train clips Test clips Frames pro clip* Resolution Lanes Scenarios

TuSimple 3626 2782 20* 1280x720 ≤5 US Highways

TABLE 4.1: Characteristic of TuSimple dataset [2]. * just the frame 20th is
labeled.

The annotation of each lane is done using polylines, defined by the intersection points
(represented as green circles in Figure 4.1) between each evenly horizontal distributed red
line and each lane. This means that at most five polylines might be defined for each frame.
On the other hand, the proposed architecture is conceived to work at pixel level, classify-
ing each as lane or not lane. Therefore, using these polylines, ground truth frames have
been generated where each pixel belongs to the class 0 (background) or 1 (lane). Each
lane has a width of 5 pixel -for 512x288 resolution- and 2 pixel -for 256x144 resolution-.
Although the architecture proposed in chapter 3 is quite flexible, the encoders/decoders
have been designed for a specific resolution and this is the reason why we have gener-
ated two different ground truths with two different resolutions. But, in any case, the lane
width is approximately 1% of the total image width.



4.2. Implementation 15

FIGURE 4.1: Example of TuSimple dataset [2]. Even distributed horizontal
lines are plotted in red and the intersection with each polyline with a green

point.

In order to avoid over-fitting problems, data augmentation has been used to train all
models. Many studios have shown that transformations in the color scale, bright and
gamma augmentation, help generalization [50]. Many researches have also proved that
adding small amount of noise (jitter) to the training data usually has the same effect
on regularization and avoid over-fitting problems [45]. Therefore these kinds of data
augmentation have been used throughout this work. In addition to this, also random
horizontal flip and translation has been implemented.

4.2 Implementation

The experiments conducted during this work were executed on a computer equipped
with an Intel(R) Xeon(R) E5-1650@ 3.50GHz, 126 GB RAM and four Nvidia GeForce GTX
1080 with 11 GB RAM and 11,47 peak TFlops (SP).

This work has been implemented in Python using Tensorflow 2.0 [3] and Keras 2.3.1
[4]. Tensorflow is a software library created by Google which used computational graphs
to describe machine learning algorithms. A computational graph is a type of graph where
the nodes describe operations and the edges describe data input to or output by those
operations. The main advantage of Tensorflow, and in general similar frameworks, is
that we just have to development the forward pass, and the backward pass (needed for
gradient descent optimization) is calculated automatically. Instead of writing the code
directly on Tensorflow we have used the high-level neural networks API Keras.



16 Chapter 4. Experimental results

4.3 Metrics

Lane detection is an imbalanced binary classification problem, where the amount of
ones, which represent lanes, are much less than the amount of zeros, which represent the
background. In general, ones are just 4% of the dataset, this means that classifying all
pixels as no-lane gives an accuracy of 96%. Therefore, accuracy is just a reference index,
and it should not be used as key performance indicator. Therefore precision, recall and
false positive rate are metrics which can indicate with higher precision the performance
of the system:

precision =
TP

TP + FP
(4.1)

recall or true positive rate =
TP

TP + FN
(4.2)

f alse positive rate =
FP

FP + TN
(4.3)

F1 = 2
precision · recall

precision + recall
(4.4)

where TP stands for true positive, TN true negatives, FP for false positive and FN for
false negative. Evaluating these metrics under different thresholds, ROC (receiver op-
erating characteristic curve) and PRC (precision recall curve) can be generated. Using
these curves offers the advantage of analyzing the classifier using the whole spectrum
rather than selecting one arbitrary threshold. To calculate the true positive rate and false
positive rate used for ROC, TP, TN, FP and FN are used. This means that ROC does not
show any bias toward models that perform well on the minority (1) class at the expense
of the majority (0) class [25]. Although ROC can be used for imbalanced dataset, the re-
sults might be at some point misleading due to the fact that a small number of correct or
incorrect predictions could lead to big changes on ROC and hence on the area under it.
On the other hand, both precision and recall are not influenced by TN, which represent
the majority (0) class in this case, meaning that PRC focuses on the minority class and
therefore might be prefered when dealing with imbalanced datasets where ROC curves
may provide an excessively optimistic view of the classifier performance [10].

The above mentioned metrics are suitable for segmentation tasks. For the perfor-
mance calculation at lane level, which exceeds the scope of this work, a common metric
used in the literature is the accuracy calculated as the average correct number of lane’s
points per image:

accuracy = ∑
im

Cim

Sim
(4.5)

with Cim the number of correct points and the Sim the number of ground truth points. A
predicted point is said to be correct when the horizontal difference to the ground truth is
less than a threshold [2].



4.4. Training 17

4.4 Training

Once the architecture is implemented, the neuronal network can be trained to infer
the ground truth by the use of back propagation. During training the following aspects
have been considered.

1. Loss function: normally in this type of binary classification problem, binary cross
entropy is used, because is easily derived, which is necessary to apply gradient
descent during the training phase. Sometimes, when working with an imbalanced
dataset, as it is the case, also weighted binary cross entropy is very common in the
literature to avoid the fact that classifying all pixels as no-lane leads to a really high
accuracy (in this case of approximately 96%). During this work both loss functions
have been analyzed.

binary cross entropy =
n

∑
i=1

yi ∗ log(ŷi) + (1− yi) ∗ log(1− ŷi) (4.6)

weigthed binary cross entropy =
n

∑
i=1

C0 ∗ yi ∗ log(ŷi) + C1 ∗ (1− yi) ∗ log(1− ŷi)

(4.7)

C0 =
numsamples==0

numsamples
C1 =

numsamples==1

numsamples
(4.8)

where n is the number of pixels, yi is the ground truth at pixel i, ŷi is the predicted
value at pixel i and C0 and C1 are constants which depend only on the imbalanced
dataset. One disadvantage of these kind of loss functions is that they make no dis-
tinction between 1-pixel error or n-pixels error. As shown in figure Figure 4.2 both
predictions (green and red) lead to the same binary cross entropy error, although
one of them is much better, closer to the actual ground truth.

FIGURE 4.2: Ground truth lane is represented with the color white. Lanes
with color green and red are two possible predictions with the same binary

cross entropy error, although the green one has an smaller "error".

Our hypothesis is that, at some point, this could difficult the convergence to the



18 Chapter 4. Experimental results

global/local minima. In other to tackle such a problem, we propose a small mod-
ification to the function loss, smoothing the ground truth by applying a Gaussian
filter to it. Mathematically, this can be expressed as follows:

so f t binary cross entropy =
n

∑
i=1

G(yi) ∗ log(ŷi) + (1− G(yi)) ∗ log(1− ŷi) (4.9)

where G(yi) represents the Gaussian filter of the ground truth at pixel i.

In table Table 4.2 the influence of the different loss functions on LaneNet is pre-
sented. As shown, none of the proposed functions have an statistical impact on the
network performance. Even weighted binary cross entropy, which is really com-
mon in the literature, does not lead to further improvements.

Network AUROC AUPRC Accuracy F1

LaneNet/bin. cross entropy 99.276 87.616 98.291 78.832

LaneNet/weighted bin. cross entropy 99.224 87.045 98.259 78.422

LaneNet/soft bin. cross entropy/fil. size=3 99.280 87.625 98.288 78.819

LaneNet/soft bin. cross entropy/fil. size=5 99.326 87.986 98.304 78.983
LaneNet/soft bin. cross entropy/fil. size=7 99.265 87.537 98.286 78.786

LaneNet/soft bin. cross entropy/fil. size=11 98.286 87.510 98.279 78.658

LaneNet/soft bin. cross entropy/fil. size=11; 7; 5; 3; 0 98.285 87.751 98.306 79.102

TABLE 4.2: Influence of the different loss functions on the area under
ROC (receiver operating characteristic curve), under PRC (precision recall

curve), maximum accuracy and its corresponding F1.

In figure Figure 4.3 the training and validation loss for the different loss functions
on LaneNet over the epoch is presented. The proposed soft binary cross entropy
does not show any effect on the convergence speed either.

According to this analysis binary cross entropy is a really stable and robust loss
function and therefore it has been used across the comparison between the different
variants of LaneNet-LSTM.

2. Optimizer: we have used ADAM with a learning rate of 3e-4. ADAM is much less
sensitive to hyper-parameters, including a bad learning rate, than other optimizers.
Although, in general, a well calibrated stochastic gradient descent (SGD) would
probably slightly outperform ADAM when working with convolutional neuronal
networks, its optimal learning rate region is much more narrow and problem-specific.
In addition, the used of ADAM is much more common when working with RNNs
[5].

3. Batch size: batch size is an important hyper-parameter which could help to mit-
igate the high fluctuation on the validation loss. On the other hand, as already
explained in chapter 3, higher batch sizes mean higher memory needs, and due to



4.5. Performance 19

FIGURE 4.3: Training and validation loss for the different proposed loss
functions. Soft binary cross entropy does not show any effect on conver-

gence speed.

hardware limitations, no increase of it was technically possible. So we have used a
batch size between 6 and 15, depending on the number of input frames.

4. Epochs: each of the proposed networks have been trained until 500 epochs, al-
though, in most cases, from epoch 200 signs of over-fitting start to appear.

4.5 Performance

In table Table 4.3 the final result of the proposed architecture and its variants is pre-
sented. We have investigated the influence on performance of the following factors:

1. Filters: in order to use the decoder without modifications, the output of the recur-
rent neuronal network have to match. This could lead, as already explained in chap-
ter 3, to relatively big ConvLSTM. To avoid this, a standard convolution neuronal
network, which map the RNN output to decoder input can be added, leading to
a decrease of the network trainable parameters without affecting the performance
(from 2,722,789 trainable parameters with 128 filter to 657,765 with 32 filters).

2. Frames and stride: number of input frames and their stride. The proposed architec-
ture gives many possibilities regarding the inputs, not just about how many input
frames, but also their stride. In this way, not just the covered space/time, but also
the overlapping factor can be considered as hyper-parameters of the network. Ta-
ble 4.3 shows how increasing the number of frames, leads to approximately 0.1%
increase in performance (at the cost of needing more computational resources for
the encoder).



20 Chapter 4. Experimental results

3. Dropout: dropout layer at the RNN output. As already explained in chapter 3, big
fluctuations on the validation loss could indicate over-fitting problems. In order to
try to mitigate them, dropout layer at the RNN output has been proposed to try to
stimulate generalization on the feature map. Table 4.3 shows how a slightly increase
of the dropout rate is beneficial for the network performance, reducing thus over-
fitting. At some point, an excessive dropout has the opposite effect, leading to
performance drop because of reducing the network’s degree of freedom too much
(under-fitting).

Filters Dropout Frames Stride AUROC AUPRC Accuracy F1

128 0.0 5 1 99.186 86.229 98.206 77.727

128 0.0 5 2 99.270 87.471 98.280 78.687

128 0.0 5 3 99.261 87.287 98.268 78.602

128 0.0 2 1 99.149 86.126 98.227 78.090

128 0.0 2 2 99.156 86.407 98.234 78.231

128 0.0 2 3 99.166 86.462 98.231 78.075

32 0.0 5 1 99.141 85.506 98.175 77.444

32 0.1 5 1 99.326 87.947 98.319 79.144
32 0.1 5 2 98.283 87.823 98.301 78.930

32 0.2 5 1 99.283 87.569 98.289 78.852

32 0.3 5 1 99.240 87.160 98.276 78.627

TABLE 4.3: Area under ROC (receiver operating characteristic curve),
area under PRC (precision recall curve), maximum accuracy and its corre-
sponding F1 for the different combinations of LaneNet-LSTM. The results

correspond to the better results obtain for each architecture.

4.6 When is the network really over-fitting?

To be able to select the optimal model, one key question to be answered is: when is the
model really over-fitting? Although this might seen as a quite easy question to answer,
it might still have some open points. At the beginning, we can just try to optimize the
validation loss, and pick out the best model just depending on it. Although this might
be seen as a reasonable approach, it might be sometimes not the best decision. During
the training process of some of the proposed architectures we have seen that although
the validation loss increases, other metrics like validation accuracy, validation precision
or validation recall also increase (Figure 4.4). This rises an interesting question: which
metric is more important? Should we focus on the validation loss or is the accuracy more
important?



4.6. When is the network really over-fitting? 21

FIGURE 4.4: During the training of some of the networks we have seen
the following phenomena: validation loss, validation accuracy, validation
recall and validation precision increase simultaneously. Intuitively the re-
lationship between validation loss and the other three metrics should be

inverse.

Attending at their definition loss and accuracy does not measure exactly the same
thing. Loss measures the difference between ground truth - which is 0 or 1 - and predic-
tion - which is a floating number between 0 and 1. In the other hand, accuracy measures
the difference between thresholded prediction - which is not a floating number anymore,
but rather 0 or 1 - and the ground truth itself. According to this definition if the predic-
tion changes, the loss will change, but the accuracy could stay constant until the predicted
value goes over or under the defined threshold. This means that accuracy is more robust
to changes in the raw prediction. However, intuitively there must be somehow a inverse
correlation between both, due to the fact that better predictions should lead to lower loss
and higher accuracy, and vice versa. And therefore the presented case is somewhat contra
intuitive. The more expected behaviors would be:

1. Loss decreases and accuracy increases: this is the classic behavior at the begin-
ning of the training, where the predicted value crosses the threshold leading to an



22 Chapter 4. Experimental results

accuracy increase.

2. Loss decreases or increases and accuracy stays the same: this happens when the
predicted value changes, affecting directly the loss, but this change is not enough
to cross the threshold, meaning no change in the accuracy.

A possible explanation to this phenomena would be that during training the network
learns new patterns, some of them are useful for the generalization and some of them are
not. Learning a new pattern is the process when the predicted value crosses the accuracy
threshold, leading to an actual change on the thresholded prediction. By definition, if
the accuracy increases we are learning more useful patterns than patterns which lead to
over-fitting problems. On the other hand, learning more useful patterns does not mean
necessarily that the validation loss decreases. In fact, when we secure incorrect patterns,
in the sense that the predicted value goes incorrectly whether towards 0 or 1, the val-
idation loss blows up. This is because the binary cross entropy has a lower limit, 0 -
limx→1 log(x) = 0 -, but no upper limit - limx→0 log(x) = −∞ -.

So getting back to the original question, when is the network really over-fitting? From
a definition point of view, the network is over-fitting because the validation loss increases,
but it is at the same time learning more useful patterns than incorrect ones.

4.7 Comparison with state-of-the-art

4.7.1 Quantitative performance: pixel level

In this section we compare the proposed architecture with other state-of-the-art meth-
ods. As we are mainly focus on the segmentation task in this work, all the metrics we use
are at pixel level. In Table 4.4, the results for the different architectures in terms of area
under receiver operating characteristic curve, area under precision recall curve, maxi-
mum accuracy and its associate F1 are presented. These metrics are the average of five
trainings to be able to make better statistical conclusions.

Network AUROC AUPRC Accuracy F1

LaneNet 99.276 87.616 98.291 78.832

LaneNet-LSTM* 99.274 87.685 98.300 78.965

UNet 98.097 85.954 98.416 78.528

UNet-LSTM 99.369 87.654 98.450 79.095
SegNet 98.353 83.022 98.186 74.806

SegNet-LSTM 99.122 84.476 98.215 75.287

TABLE 4.4: Area under ROC (receiver operating characteristic curve), un-
der PRC (precision recall curve), maximum accuracy and its corresponding
F1 for the compared state-of-the-art networks. * refers to LaneNet-LSTM

with 32 filters ConvLSTM2D and dropout of 0.1.

As a consequent of running the training multiple times, the result can be also pre-
sented in a box diagram (Figure 4.5). Finally, to test whether the proposed method offers



4.7. Comparison with state-of-the-art 23

a statistical improvement with respect to the state-of-the art, we have used the Student’s
t-test (Appendix A). At 5% significance level, we do not reject the hypothesis that the
mean of the populations is the same, or there is no sufficient evidence in the data to
conclude that the populations are different. The final conclusion is thus, that the three
architectures LaneNet, LaneNet-LSTM and UNet-LSTM have statistically the same per-
formance.

FIGURE 4.5: Box plots for area under ROC (receiver operating characteris-
tic curve), under PRC (precision recall curve), maximum accuracy and its

corresponding F1 for the compared state-of-the-art networks.

One important point of this analysis is that the TuSimple dataset has been taken
mostly under favorable conditions, no shadows, no lane occlusions, etc. On the other
hand, the discussed methods should outperform single-frame detection algorithms spe-
cially under challenging situations, therefore the proposed metrics have been recalcu-
lated just for these situations (to do so a manual classification of the validation set has
been done, Appendix B). The results of this analysis are presented in Table 4.5 and
show that multiple-frame detection algorithms clearly outperform single-frame ones un-
der challenging situations.

Network AUROC AUPRC Accuracy F1

LaneNet 96.487 67.234 96.724 57.437

LaneNet-LSTM* 97.282 70.445 96.877 60.943

UNet-LSTM 97.627 72.519 97.278 64.106

TABLE 4.5: Area under ROC (receiver operating characteristic curve), un-
der PRC (precision recall curve), maximum accuracy and its corresponding
F1 for the compared state-of-the-art networks for only the challenging situ-
ations contained in the TuSimple validation set. * refers to LaneNet-LSTM

with 32 filters ConvLSTM2D and dropout of 0.1.

Although in subsection 4.7.3 a more general visual examination is presented, we
would like to briefly introduce here the results in adverse scenarios. Semantic segmen-
tation architectures should work robustly at a coarse level, identifying the total number
of lanes correctly, and at a fine level, detecting solid and robust lanes with a high over-
lapping with the ground truth. With theses two requirements in mind, the experimental



24 Chapter 4. Experimental results

results show that ,in general, multiple-frame architectures outperform single-frame ones,
and, in particular, that the proposed algorithm outperform state-of-the-art single-frame
networks. Figure 4.6 shows three examples of the predictions of the above mentioned
architectures (LaneNet, LaneNet-LSTM, UNet-LSTM) under challenging situations.

FIGURE 4.6: Three examples of images in challenging situations. Top row:
LaneNet. Middle row: LaneNet-LSTM. Botton row: UNet-LSTM. Green
lanes correspond to ground truth and red lanes to predictions (yellow is

just an overlap of both of them).

Multiple-frame architectures show a more robust behavior, inferring more solid and
robust lanes specially when the contrast is changing rapidly (e.g. entrance of a tunnel).
Under this challenging situations, they also show higher capabilities on detecting the
lines of the neighboring lanes. The proposed LaneNet-LSTM architecture is also even
able to correctly inference complex side lines, which are not in the ground truth, decreas-
ing thus the quantitative performance.

4.7.2 Quantitative performance: lane level

Although the main focus of this work is lane segmentation, we have also investigated
one possibility to analyze the results at lane level. The initial concept proposed can be
described in two mayor steps:

1. Calculate binary segmentation map with one of the already presented architec-
tures: this is the main focus of this work and the used metrics and obtained results
have been already presented in the subsection 4.7.1.

2. Use the Hough transform [19] to extract the lane features: can be used to only de-
scribe straight lanes. It is a paremetric method where the distance resolution of the
accumulator, the angle resolution of the accumulator and accumulator threshold



4.7. Comparison with state-of-the-art 25

can be calibrated. The main problem with this method is that the Hough trans-
form is not working really stable on the segmentation maps, being very sensitive
to parameters change. In order to detect every segmented lane, the accumulator
threshold has to be so far reduced, that some lanes are found multiple times and
even non-existing one are detected like in Figure 4.8.

FIGURE 4.7: Example result of the Hough transform applied to the seg-
mentation map.

Because of the fact that Hough transform does not work as expected, we have re-
search also another method based on region growing. The segmentated pixel are clus-
tered into different lines using region growing and finally a line is fitted into the different
cluster. Although this method works well when the segmentation is solid and robust, it
is not able of performing in real time - it takes 4 second for an image of 512x256 pixels -.

FIGURE 4.8: Example result for region growing. Top: raw image. Middle:
output of the clustering. Bottom: result after line fitting.



26 Chapter 4. Experimental results

Although the main focus of this work is not the detection of the lanes themselves, but
just the segmentation part, small investigation using traditional computer vision algo-
rithms has been done. As already discussed, even the breakthrough from segmentation
to lanes is not a straightforward step, and it requires complex algorithms in order to work
robustly in all possible segmentation maps. Analyzing this step could be a new research
line for future works.

4.7.3 Qualitative performance

Until now we have mostly analyzed the performance just in terms of metrics, but it
is always a good practice to understand visually where the networks are having more
problems to figure out possible weak points and improvements. In order to do this, in
Figure 4.9, Figure 4.10 and Figure 4.11 we have plotted the 20 worst predictions based on
AUPRC for each architecture. In the images green lanes correspond to ground truth and
red lanes to predictions (yellow is just an overlap of both of them). From this analysis we
would like to highlight:

1. As stated in chapter 1 one of the main goals of the proposed method is to improve
performance under driving scenarios with shadows, light reflections and lane oc-
clusions. Among the 20 worst predictions, while for LaneNet there are 7 frames un-
der these circumstances, for LaneNet-LSTM and UNet-LSTM there are just 4 and 3
respectively. This is notable improvement of the performance under these challeng-
ing circumstances and might show that the Conv-LSTM is able of learning patterns
from temporal information. This behavior matches the metrics and conclusions al-
ready presented in subsection 4.7.1.

2. Another point which has influenced the quantitative analysis is that there are some
good predicted lanes which are not labeled in the validation set. Of course, the
trained network cannot get better than the labels themselves, and this might be
indicating that the labeling is not representing the ground truth with fidelity.



4.7. Comparison with state-of-the-art 27

FIGURE 4.9: The 20 predicted scenarios with the worst AUPRC calculated
by LaneNet.

FIGURE 4.10: The 20 predicted scenarios with the worst AUPRC calculated
by LaneNet-LSTM.

FIGURE 4.11: The 20 predicted scenarios with the worst AUPRC calculated
by UNet-LSTM.



28 Chapter 4. Experimental results

4.7.4 Running time

Until now we have analyzed the system just in terms of ROC, PRC, accuracy and F1,
but these are not the only possible metrics. For a system like this, which might run em-
bedded, profile and real time capability is of vital importance. The fact, that the proposed
architecture takes a sequence of frames as inputs and additionally adds ConvLSTM layer
between the encoder and decoder, might have an influence on the running time. Of
course, to process a sequence of input images more time is required than just to process
a single one, like LaneNet, UNet or SegNet do. However, theoretically the encoder just
need to process the actual frame, because the n-last frame have been already procedure
and the feature maps stored in memory. Even the n-input frames can be encoded simulta-
neously/parallelly. Therefore running time can be reduce at the cost of memory or GPU
FLOPS. The measured inference time parallelizing the encoder is presented in Table 4.6.

Network Average inference time [ms]

LaneNet 26.512

LaneNet-LSTM* 51.317

UNet 9.691
UNet-LSTM 53.728

SegNet 22.463

SegNet-LSTM 63.682

TABLE 4.6: Average inference time. * refers to LaneNet-LSTM with 32
filters ConvLSTM2D and dropout of 0.1.

Until now we have evaluated the networks in terms of space complexity, this means
how many parameters they have or how much memory we need to store them. But,
as demonstrated here, space complexity and time complexity are not necessarily corre-
lated. For example, SegNet has 24 times more trainable parameters than LaneNet, but it
executes approximately 15% faster.



29

Chapter 5

Discussion

The results of the proposed architecture LaneNet-LSTM can be analyzed/discussed
in terms of three major metrics:

1. Performance: the proposed network achieves state-of-the-art performance on the
TuSimple dataset. Under challenging situations, it shows a quantitative improve-
ment of 4.8% in AUPRC in comparison with single-frame architectures (LaneNet),
without outperforming though (by 2.9% in AUPRC) other deeper/bigger multiple-
frame architectures like UNet-LSTM. One key conclusion is that most of the well
established datasets in the field of autonomous driving just consider "ideal" con-
ditions, and although two different architectures could show similar performance
under those, the long tale influence has to definitely be taken into account. In the
analyzed case, the performance of single-frame networks drops more abruptly than
multi-frame architectures under challenging situations, leading to the conclusion
that temporal information help under these adverse situations and validating the
hypothesis formulated in section 1.3.

2. Number of parameters: due to the fact that the ultimate goal is that these networks
run on embedded systems with limited resources and under real time conditions,
other metrics rather than performance, like the number of parameters and running
time, have to be taken into account. Although the proposed architecture is not
as light as a single-frame network, like LaneNet (it has approximately 1.8 times
more trainable parameters), it is lighter than other available multi-frames architec-
tures like UNet-LSTM (approximately 80 times less trainable parameters). Another
important fact that it should be also mentioned is that the proposed architecture,
although it is much smaller, works with higher image resolutions (512x288 pixels
against 256x144) leading to smaller segmentation granularity.

3. Running time: although the running time is not exactly the same as the number
of parameters, they are usually directly correlated. Systems based on single-frame
networks, like LaneNet, need approximately half of the time than multi-frame ar-
chitectures as the one proposed in this work or the UNet-LSTM [59]. One of the
advantages of the multiple-frame architecture is that encoder calculations can be



30 Chapter 5. Discussion

easily parallelized or the result from previous frames saved on the memory, saving
computational time at cost of GPU FLOPS or memory.



31

Chapter 6

Conclusion

In this work, a new variant of a CNN and RNN network was proposed based on al-
ready available researches. This architecture is based on a encoder/decoder framework,
which takes multiple frames as input and predicts the lane on the last one at pixel level
(semantic segmentation). The CNN encoder extracts the feature maps from the different
frames, which serve as input to the ConvLSTM. Finally the CNN decoder is responsible
for the reconstruction and prediction itself.

The proposed architecture achieves state-of-the-art results on TuSimple dataset, out-
performing single-frame networks on challenging situations (shadows, entry and exit of
tunnels, high contrasts, etc.) and only overcome by other deeper/bigger multi-frame sys-
tems working at lower resolutions [59]. In terms of memory, this fact makes the proposed
system more suitable for embedded applications.

In a future work, other types of encoder/decoder architectures or RNN can be in-
vestigated. This research has mainly focused on the segmentation part and no so much
on the clustering part. For future work, further investigation in this direction might be
needed. Another important aspect is that in this work we have focused on 2D, but this
information has to be transformed to 3D in order to be used for the motion planning.
This is a step that might be also investigated in further projects.

Acknowledgment: this work was supported by AVL Software and Functions GmbH
in Regensburg, Germany.



32

Bibliography

[1] URL: https://paperswithcode.com/sota/lane-detection-on-tusimple (visited
on 03/07/2021).

[2] URL: https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/
lane_detection (visited on 03/07/2021).

[3] URL: https://www.tensorflow.org/ (visited on 03/13/2021).
[4] URL: https://keras.io/ (visited on 03/13/2021).
[5] URL: http://karpathy.github.io/2019/04/25/recipe/ (visited on 03/13/2021).
[6] Mohamed Aly. “Real time Detection of Lane Markers in Urban Streets”. In: CoRR

abs/1411.7113 (2014). arXiv: 1411.7113. URL: http://arxiv.org/abs/1411.7113.
[7] A. A. Assidiq et al. “Real time lane detection for autonomous vehicles”. In: (2008),

pp. 82–88. DOI: 10.1109/ICCCE.2008.4580573.
[8] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “SegNet: A Deep Con-

volutional Encoder-Decoder Architecture for Image Segmentation”. In: CoRR abs/
1511.00561 (2015). arXiv: 1511.00561. URL: http://arxiv.org/abs/1511.00561.

[9] A. Borkar, M. Hayes, and M. T. Smith. “Robust lane detection and tracking with
ransac and Kalman filter”. In: (2009), pp. 3261–3264. DOI: 10.1109/ICIP.2009.
5413980.

[10] Paula Branco, Luís Torgo, and Rita P. Ribeiro. “A Survey of Predictive Modelling
under Imbalanced Distributions”. In: CoRR abs/1505.01658 (2015). arXiv: 1505.
01658. URL: http://arxiv.org/abs/1505.01658.

[11] T. Bruls et al. “Mark Yourself: Road Marking Segmentation via Weakly-Supervised
Annotations from Multimodal Data”. In: (2018), pp. 1863–1870. DOI: 10 . 1109 /
ICRA.2018.8460952.

[12] C. Caraffi, S. Cattani, and P. Grisleri. “Off-Road Path and Obstacle Detection Using
Decision Networks and Stereo Vision”. In: IEEE Transactions on Intelligent Trans-
portation Systems 8.4 (2007), pp. 607–618. DOI: 10.1109/TITS.2007.908583.

[13] A. F. Cela et al. “Lanes Detection Based on Unsupervised and Adaptive Classifier”.
In: (2013), pp. 228–233. DOI: 10.1109/CICSYN.2013.40.

[14] H. Choi and S. Oh. “Illumination invariant lane color recognition by using road
color reference neural networks”. In: (2010), pp. 1–5. DOI: 10.1109/IJCNN.2010.
5596304.

[15] Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling”. In: CoRR abs/1412.3555 (2014). arXiv: 1412.3555. URL:
http://arxiv.org/abs/1412.3555.

https://paperswithcode.com/sota/lane-detection-on-tusimple
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://www.tensorflow.org/
https://keras.io/
http://karpathy.github.io/2019/04/25/recipe/
https://arxiv.org/abs/1411.7113
http://arxiv.org/abs/1411.7113
https://doi.org/10.1109/ICCCE.2008.4580573
https://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1511.00561
https://doi.org/10.1109/ICIP.2009.5413980
https://doi.org/10.1109/ICIP.2009.5413980
https://arxiv.org/abs/1505.01658
https://arxiv.org/abs/1505.01658
http://arxiv.org/abs/1505.01658
https://doi.org/10.1109/ICRA.2018.8460952
https://doi.org/10.1109/ICRA.2018.8460952
https://doi.org/10.1109/TITS.2007.908583
https://doi.org/10.1109/CICSYN.2013.40
https://doi.org/10.1109/IJCNN.2010.5596304
https://doi.org/10.1109/IJCNN.2010.5596304
https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555


Bibliography 33

[16] F. Coşkun et al. “Real time lane detection and tracking system evaluated in a hardware-
in-the-loop simulator”. In: (2010), pp. 1336–1343. DOI: 10.1109/ITSC.2010.5625111.

[17] Juan Collado et al. “Adaptative Road Lanes Detection and Classification”. In: Lec-
ture Notes in Computer Science 4179 (Sept. 2006). DOI: 10.1007/11864349_105.

[18] R. Danescu and S. Nedevschi. “Probabilistic Lane Tracking in Difficult Road Sce-
narios Using Stereovision”. In: IEEE Transactions on Intelligent Transportation Systems
10.2 (2009), pp. 272–282. DOI: 10.1109/TITS.2009.2018328.

[19] Richard O. Duda and Peter E. Hart. “Use of the Hough Transformation to Detect
Lines and Curves in Pictures”. In: Commun. ACM 15.1 (Jan. 1972), 11–15. ISSN: 0001-
0782. DOI: 10.1145/361237.361242. URL: https://doi.org/10.1145/361237.
361242.

[20] F. A. Gers, J. Schmidhuber, and F. Cummins. “Learning to forget: continual predic-
tion with LSTM”. In: 2 (1999), 850–855 vol.2. DOI: 10.1049/cp:19991218.

[21] Mohsen Ghafoorian et al. “EL-GAN: Embedding Loss Driven Generative Adver-
sarial Networks for Lane Detection”. In: CoRR abs/1806.05525 (2018). arXiv: 1806.
05525. URL: http://arxiv.org/abs/1806.05525.

[22] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://
www.deeplearningbook.org. Cambridge, MA, USA: MIT Press, 2016.

[23] Ian J. Goodfellow et al. “Generative Adversarial Networks”. In: (2014). arXiv: 1406.
2661 [stat.ML].

[24] Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision. 1st. USA:
Addison-Wesley Longman Publishing Co., Inc., 1992. ISBN: 0201569434.

[25] Alberto Fernández Hilario et al. Learning from Imbalanced Data Sets. Springer Inter-
national Publishing, 2018. ISBN: 978-3-319-98074-4.

[26] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[27] Yuenan Hou et al. “Learning Lightweight Lane Detection CNNs by Self Attention
Distillation”. In: CoRR abs/1908.00821 (2019). arXiv: 1908.00821. URL: http://
arxiv.org/abs/1908.00821.

[28] Yen-Chang Hsu et al. “Learning to Cluster for Proposal-Free Instance Segmenta-
tion”. In: CoRR abs/1803.06459 (2018). arXiv: 1803.06459. URL: http://arxiv.
org/abs/1803.06459.

[29] David H. Hubel and Torsten N. Wiesel. In: ().
[30] Claudio Jung and Christian Kelber. “Lane following and lane departure using a

linear-parabolic model”. In: Image and Vision Computing 23(13) (Nov. 2005), pp. 1192–
1202. DOI: 10.1016/j.imavis.2005.07.018.

[31] Seokwoo Jung et al. “Towards Lightweight Lane Detection by Optimizing Spatial
Embedding”. In: (2020). arXiv: 2008.08311 [cs.CV].

[32] Yeongmin Ko et al. “Key Points Estimation and Point Instance Segmentation Ap-
proach for Lane Detection”. In: (2020). arXiv: 2002.06604 [cs.CV].

[33] C. Kreucher and S. Lakshmanan. “A frequency domain approach to lane detection
in roadway images”. In: 2 (1999), 31–35 vol.2. DOI: 10.1109/ICIP.1999.822849.

https://doi.org/10.1109/ITSC.2010.5625111
https://doi.org/10.1007/11864349_105
https://doi.org/10.1109/TITS.2009.2018328
https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
https://doi.org/10.1049/cp:19991218
https://arxiv.org/abs/1806.05525
https://arxiv.org/abs/1806.05525
http://arxiv.org/abs/1806.05525
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1908.00821
http://arxiv.org/abs/1908.00821
http://arxiv.org/abs/1908.00821
https://arxiv.org/abs/1803.06459
http://arxiv.org/abs/1803.06459
http://arxiv.org/abs/1803.06459
https://doi.org/10.1016/j.imavis.2005.07.018
https://arxiv.org/abs/2008.08311
https://arxiv.org/abs/2002.06604
https://doi.org/10.1109/ICIP.1999.822849


34 Bibliography

[34] C. Kreucher and S. Lakshmanan. “LANA: a lane extraction algorithm that uses
frequency domain features”. In: IEEE Transactions on Robotics and Automation 15.2
(1999), pp. 343–350. DOI: 10.1109/70.760356.

[35] Y LeCun. “Generalization and network design strategies”. In: Technical Report CRG-
TR-89-4, University of Toronto (1989).

[36] J. Li et al. “Deep Neural Network for Structural Prediction and Lane Detection in
Traffic Scene”. In: IEEE Transactions on Neural Networks and Learning Systems 28.3
(2017), pp. 690–703. DOI: 10.1109/TNNLS.2016.2522428.

[37] Xiangyang Li et al. “Lane Detection and Tracking Using a Parallel-snake Approach”.
In: Journal of Intelligent and Robotic Systems 77 (Mar. 2014). DOI: 10.1007/s10846-
014-0075-0.

[38] Q. Lin, Y. Han, and H. Hahn. “Real-Time Lane Departure Detection Based on Ex-
tended Edge-Linking Algorithm”. In: (2010), pp. 725–730. DOI: 10.1109/ICCRD.
2010.166.

[39] Andre Linarth and Elli Angelopoulou. “On feature templates for Particle Filter
based lane detection”. In: Conference Record - IEEE Conference on Intelligent Trans-
portation Systems (Oct. 2011), pp. 1721–1726. DOI: 10.1109/ITSC.2011.6083016.

[40] H. Loose, U. Franke, and C. Stiller. “Kalman Particle Filter for lane recognition on
rural roads”. In: (2009), pp. 60–65. DOI: 10.1109/IVS.2009.5164253.

[41] Abdelhamid Mammeri, Azzedine Boukerche, and Guangqian Lu. “Lane detection
and tracking system based on the MSER algorithm, hough transform and kalman
filter”. In: (Sept. 2014). DOI: 10.1145/2641798.2641807.

[42] Luca Mora, Xinyi Wu, and Anastasia Panori. “Mind the gap: Developments in au-
tonomous driving research and the sustainability challenge”. In: Journal of Cleaner
Production 275 (2020), p. 124087. ISSN: 0959-6526. DOI: https://doi.org/10.1016/
j . jclepro . 2020 . 124087. URL: https : / / www . sciencedirect . com / science /
article/pii/S0959652620341329.

[43] Davy Neven et al. “Towards End-to-End Lane Detection: an Instance Segmentation
Approach”. In: CoRR abs/1802.05591 (2018). arXiv: 1802 . 05591. URL: http : / /
arxiv.org/abs/1802.05591.

[44] Xingang Pan et al. “Spatial As Deep: Spatial CNN for Traffic Scene Understanding”.
In: CoRR abs/1712.06080 (2017). arXiv: 1712.06080. URL: http://arxiv.org/abs/
1712.06080.

[45] Russell D. Reed and Robert J. Marks. Neural Smithing: Supervised Learning in Feed-
forward Artificial Neural Networks. MIT Press, 1999.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”. In: CoRR abs/1505.04597 (2015). arXiv:
1505.04597. URL: http://arxiv.org/abs/1505.04597.

[47] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning Rep-
resentations by Back-propagating Errors”. In: Nature 323.6088 (1986), pp. 533–536.
DOI: 10.1038/323533a0. URL: http://www.nature.com/articles/323533a0.

https://doi.org/10.1109/70.760356
https://doi.org/10.1109/TNNLS.2016.2522428
https://doi.org/10.1007/s10846-014-0075-0
https://doi.org/10.1007/s10846-014-0075-0
https://doi.org/10.1109/ICCRD.2010.166
https://doi.org/10.1109/ICCRD.2010.166
https://doi.org/10.1109/ITSC.2011.6083016
https://doi.org/10.1109/IVS.2009.5164253
https://doi.org/10.1145/2641798.2641807
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.124087
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.124087
https://www.sciencedirect.com/science/article/pii/S0959652620341329
https://www.sciencedirect.com/science/article/pii/S0959652620341329
https://arxiv.org/abs/1802.05591
http://arxiv.org/abs/1802.05591
http://arxiv.org/abs/1802.05591
https://arxiv.org/abs/1712.06080
http://arxiv.org/abs/1712.06080
http://arxiv.org/abs/1712.06080
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0


Bibliography 35

[48] M. A. Selver et al. “Camera based driver support system for rail extraction using 2-
D Gabor wavelet decompositions and morphological analysis”. In: (2016), pp. 270–
275. DOI: 10.1109/ICIRT.2016.7588744.

[49] Xingjian Shi et al. “Convolutional LSTM Network: A Machine Learning Approach
for Precipitation Nowcasting”. In: CoRR abs/1506.04214 (2015). arXiv: 1506.04214.
URL: http://arxiv.org/abs/1506.04214.

[50] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data Augmenta-
tion for Deep Learning”. In: abs/1505.01658 (2019).

[51] U. Suddamalla et al. “A novel algorithm of lane detection addressing varied sce-
narios of curved and dashed lanemarks”. In: (2015), pp. 87–92. DOI: 10.1109/IPTA.
2015.7367103.

[52] T. Suttorp and T. Bucher. “Learning of Kalman Filter Parameters for Lane Detec-
tion”. In: (2006), pp. 552–557. DOI: 10.1109/IVS.2006.1689686.

[53] W. Wang et al. “A Learning-Based Approach for Lane Departure Warning Systems
With a Personalized Driver Model”. In: IEEE Transactions on Vehicular Technology
67.10 (2018), pp. 9145–9157. DOI: 10.1109/TVT.2018.2854406.

[54] Y. Wang, D. Shen, and E. Teoh. “Lane detection using Catmull-Rom splice”. In:
(1998).

[55] Y. Xing et al. “Advances in Vision-Based Lane Detection: Algorithms, Integration,
Assessment, and Perspectives on ACP-Based Parallel Vision”. In: IEEE/CAA Journal
of Automatica Sinica 5.3 (2018), pp. 645–661. DOI: 10.1109/JAS.2018.7511063.

[56] Yinghua He, Hong Wang, and Bo Zhang. “Color-based road detection in urban
traffic scenes”. In: IEEE Transactions on Intelligent Transportation Systems 5.4 (2004),
pp. 309–318. DOI: 10.1109/TITS.2004.838221.

[57] Yue Wang, Eam Khwang Teoh, and Dinggang Shen. “Lane detection using B-snake”.
In: (1999), pp. 438–443. DOI: 10.1109/ICIIS.1999.810313.

[58] S. Zhou et al. “A novel lane detection based on geometrical model and Gabor fil-
ter”. In: (2010), pp. 59–64. DOI: 10.1109/IVS.2010.5548087.

[59] Qin Zou et al. “Robust Lane Detection from Continuous Driving Scenes Using
Deep Neural Networks”. In: CoRR abs/1903.02193 (2019). arXiv: 1903.02193. URL:
http://arxiv.org/abs/1903.02193.

https://doi.org/10.1109/ICIRT.2016.7588744
https://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1506.04214
https://doi.org/10.1109/IPTA.2015.7367103
https://doi.org/10.1109/IPTA.2015.7367103
https://doi.org/10.1109/IVS.2006.1689686
https://doi.org/10.1109/TVT.2018.2854406
https://doi.org/10.1109/JAS.2018.7511063
https://doi.org/10.1109/TITS.2004.838221
https://doi.org/10.1109/ICIIS.1999.810313
https://doi.org/10.1109/IVS.2010.5548087
https://arxiv.org/abs/1903.02193
http://arxiv.org/abs/1903.02193


36

Appendix A

Student’s t-test

1. Formulate the hypothesis: the null hypothesis H0 : µ1 = µ2 states that both meth-
ods have the same mean and the alternative hypothesis H1 : µ1 6= µ2 states that
one is statistically better then the other. µ1 and µ2 refers to the means of the two
populations from which the samples were drawn.

2. Calculate test statistic: the next step is calculate the test statistics

tobs =
(x1 − x2)− (µ1 − µ2)√

s2
1

n1
+

s2
2

n2

:=
(x1 − x2)√

s2
1

n1
+

s2
2

n2

(A.1)

where:
x : drawn samples mean.
µ: population mean. According to the null hypothesis H0 : µ1 = µ2. This means
that µ1 − µ2 = 0.
s2: standard deviation of the drawn samples.
n: number of drawn samples.

3. Calculate critical value: finally the critical value −tα,ν can be calculated.

ν =
(

s2
1

n1
+

s2
2

n2
)2

(
s2
1

n1
)2

n1−1 +
(

s2
2

n2
)2

n2−1

(A.2)

So with this information and using a significance level of 5% we can obtain t0.05,ν.

4. Conclusion: the rejection region is from −∞ to t0.05,ν and from t0.05,ν to +∞. If we
calculate this procedure for the three best analyzed methods, the test statistic tobs is
outside the calculated rejection regions so we do not reject the null hypothesis H0.
This means that in terms of the initial question, at 5% significance level, we do not
reject the hypothesis that the mean of the two populations is the same, or there is no
sufficient evidence in the data to conclude that the two populations are different.
The final conclusion is thus, that the three architectures LaneNet, LaneNet-LSTM
and UNet-LSTM have statistically the same performance.



Appendix A. Student’s t-test 37

Comparison tobs ν t0.05,ν H0 : µ1 = µ2

LaneNet vs LaneNet-LSTM -0.253 7.983 -1.851 Accepted

LaneNet vs UNet-LSTM -0.127 7.650 -1.860 Accepted

LaneNet-LSTM vs UNet-LSTM 0.101 7.778 -1.866 Accepted

TABLE A.1: Results of Student’s t-test for the comparison between
LaneNet, LaneNet-LSTM and UNet-LSTM.



38

Appendix B

Challenging conditions on the
TuSimple dataset

TuSimple dataset is recorded exclusively under good weather conditions, which of
course represents just a very small subset of all the possible scenarios under which au-
tonomous driving shall be able to work. The main goal of the proposed methods is tackle
the problem of challenging situations like shadows, light reflections, lane occlusion, etc.
To calculate the performance under these circumstances the validation set has been man-
ually labeled to find the more difficult situations: shadows, entry and exit of tunnels,
high contrasts, etc. Some examples of these frames are presented in Figure B.1.

FIGURE B.1: Some of the frames categorized as challenging in the TuSim-
ple validation dataset.

In total the TuSimple validation dataset contains only 30 images under those circum-
stances, which it might be argued that the calculated results might not be statistically
relevant.


	Declaration of Authorship
	Acknowledgements
	Abstract
	Introduction
	Motivation
	Problem statement
	Hypothesis
	Objectives and methodology
	Document structure

	Literature review and related work
	Classical computer vision methods
	Deep learning

	Proposed method and implementation
	Basic network architecture
	Encoder/Decoder selection
	Variations

	Experimental results
	Dataset
	Implementation
	Metrics
	Training
	Performance
	When is the network really over-fitting?
	Comparison with state-of-the-art
	Quantitative performance: pixel level
	Quantitative performance: lane level
	Qualitative performance
	Running time


	Discussion
	Conclusion
	Bibliography
	Appendix Student’s t-test
	Appendix Challenging conditions on the TuSimple dataset

