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Abstract

The exploration for better navigational algorithms that allow robots to move in the environment
is one of the main fields of research in Robotics. In the literature, many innovations have been
proposed in order to improve the performance of these navigational methods. The complexity
associated makes the research both exciting and challenging. One crucial step in the design of
a proper navigational model is the recognition of the objects that compose the surroundings
of the robot. In order to obtain a precise representation, the robot relies on sensors. The data
obtained from the laser rangefinder comes in the form of segments that rarely represent the
whole object. Furthermore, this data has a particular noise that does not allow to apply the
basic geometrical techniques for shape estimation.

Circular objects, such as columns or trees, are persistent in many of these situations.
Following the research done by Cuadra Troncoso (2011) and Muñoz Bañón (2016), we use
the Kalman Filter in order to acquire a better approximation of the parameters that represent
the circle. The Kalman Filter is a widely used technique for estimating parameters in dynamic
systems. Despite the many examples found in the literature, research on the topic of circle
estimation is not abundant.

In this paper, we propose a model for estimating circles with the Extended Kalman
Filter. Through experimentation, we have adapted this model to improve the results. Moreover,
we take a step forward and apply the technique designed for circle estimation to a more
practical problem. Using Simultaneous Localization and Mapping techniques, we benefit from
the Kalman Filter to locate a moving robot and create a map composed of different circular
and linear objects.



Resumen

El estudio para encontrar algoritmos de navegación, que permitan a los robots moverse en
el entorno, es uno de los campos de investigación más importantes de la Robótica. Muchas
innovaciones han sido propuestas con el fin de mejorar el rendimiento de estos métodos. La
complejidad asociada hace que esta investigación sea, al mismo tiempo, difícil e interesante.

Un aspecto muy importante en el diseño de un modelo de navegación es el reco-
nocimiento de los objetos de su alrededor. El robot obtiene la información necesaria para la
representación de dichos objetos, a través de los sensores. Los datos obtenidos de estos senso-
res, como por ejemplo un láser, suelen venir en forma de segmentos que no representan todo
el objeto al que pertenecen. Además, estos datos lleven un error asociado que impiden aplicar
métodos geométricos para la estimación.

Lo objetos circulares, como por ejemplo columnas o árboles, son muy comunes en
estas situaciones. Continuando con el trabajo realizado por Cuadra Troncoso (2011) y Mu-
ñoz Bañón (2016), haremos uso del Filtro de Kalman para obtener una aproximación de los
parámetros que forman el modelo de un círculo. A pesar de los numerosos ejemplos de aplica-
ción del Filtro de Kalman en la literatura, no se encuentran muchas referencias relacionadas
con los círculos. En este trabajo, propondremos un modelo de aproximación de círculos con
el Filtro de Kalman Extendido. Hemos adaptado este modelo para mejorar los resultados en
la experimentación. Asimismo, aplicaremos este modelo a un problema más práctico. A través
de técnicas de localización y mapeo, usaremos el Filtro de Kalman para localizar un robot en
movimiento y crear un mapa compuesto por objetos lineales y circulares.
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Chapter 1

Introduction

1.1. Contextualization

In the last years, we have been able to see how the use of new technologies has
become a more crucial part of our life. Everywhere we look, we see that we are connected and
dependant on a different type of computers that can ease our life in many ways. From both
software and hardware perspectives, aspects, which theoretic part used to be hidden, have been
brought to light. Algorithms that were defined in the early days of the Artificial Intelligence
(AI) are now beginning to be studied with more interest in many computer science faculties.
There is a big necessity of improving these algorithms, as well as being able to integrate them
into different devices in order to allow us to get away from repetitive tasks, that can be easily
performed by a computer, for instance, house chores, such as cleaning, cooking, or doing the
laundry.

Among all the significant areas of the AI, that have been of matter in these last
years, Autonomous Robotics (AR) have produced a considerable impact on both industrial
production and everyday house life. As the International Federation of Robotics (IFR) points
out, the consume of industrial robot reached a record in 2017, and it keeps increasing by an
average of 14 per cent per year [IFR (2017)]. As it is presented in figure 1.1, the production
in different industries is on Robotics will continue to increase. This increment might have an
unfavourable impact on the tasks carried out by workers, who might be replaced by autonomous
machines, but this is not considered as the focus of this paper.

1



2 1.1. Contextualization

Figure 1.1: Estimated annual supply of industrial robots. (IFR World Robotics, 2018).

The significant growth of the usage of robots has been noticed not only in large
scale industries but also in the everyday routine life, for instance, robot vacuum cleaners or
robotic lawnmowers. Accordingly, it is notable that the trust put by people on those machines
has grown significantly. In the figure 1.2 by [Tractica (2016)], it is shown how the Robotics
have been entering a vast market. People trust these machines in a wide range from toys to
household. The figure also shows the expected boost in the consumes of such technologies in
the coming years.

Figure 1.2: Costumers revenue by Application Market. (Tractica, 2016).

As it is mentioned in the article, despite many new emergent companies are producing
such robots for home usage, a general distrust on these machines, which are supposed to ease
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the life of the people, still prevails. According to the author of the article, it is due to two
main reasons: the prices set upon the robots and the general apprehension people may have
to the real effectiveness of these house gadgets. For this reason, the study of this area has to
be considered with a significant distinction, in particular, find better resources and techniques
to gain the people confidence, along with the opportunity to create something that one day
might be understood as one of the most important applied sciences there is [Boesl (2016)].
Considering the changes in the market related to Robotics, in this paper, we centre on Computer
Science and Mathematics perspective. Hence, in the next section, an introduction is presented,
together with the goals and motivation of this project.

1.2. Motivation and Goals

In this project we aim to gather the information extracted from the research performed
by [Muñoz Bañón (2016)] and [Cuadra Troncoso (2011)] on segment estimation. In his thesis,
Cuadra Troncoso (2011) describes an approximation for estimating linear segments using the
Kalman Filter. The success of this research brings improvements in the navigation algorithms
that require to possess geometrical information about the surrounding objects [Cuadra Troncoso
et al. (2015)]. With this goal in mind, Muñoz Bañón (2016) proposes an extension of the design
of the Kalman Filter, but this time for circular segments. In real life experiments, the circular
segments are prevalent; in many situations, the presence of objects such as trees or columns
is usual. By estimating the circumference that represents the object, we can improve the
navigation and mapping techniques.

In this project, we want to provide a continuation of what started in both cited
projects. The project aims to research for a better approach to estimating the circular segments.
Furthermore, we take a step forward and analyze the behaviour of this algorithm in a SLAM
based approach. With this respect, the general goals of the project can be enumerated as:

1. To provide a better initialization method for the Kalman Filter. In work by [Muñoz Bañón
(2016)], the conclusion is extracted that the initial estimation influences the results of
the Kalman Filter. Therefore, a better initialization method is required.

2. Study and try to provide a more stable Extended Kalman Filter. Many aspects affect
the circle fitting process. Although on many occasions, the results obtained match the
expectations; in many others, they are not precise. A study of why this happens and
how to solved it must be fulfilled.
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3. Whether or not better results will be accomplished. This project aims to test the circle
estimation in the SLAM problem. Thus, from the one side that a localization method
must be provided. Also, from the other side, a mapping approach must be designed. In
this case, we will concentrate on mapping scenes with circular objects, see chapter 5.

The goals described above can be seen as easy from a naive perspective. Nevertheless, the
estimation of geometrical figures, specifically circular ones, prove itself to be complex. Not only
a good mathematical knowledge is required, but also a large time window of experimentation
and analysis of the design is needed. Figure 1.3 shows a scheme of the process that we will
follow in this project. The overall goal of the project is to do small steps into reality by
hardening the estimation process one bit at a time.

Figure 1.3: Project goals and scheme. The scheme describes the different steps taken during
the project.

1.3. Report structure

This report is organized in different chapters structured to provide a progressive and
incremental view on the knowledge of the project matters:

1. Introduction and contextualization
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2. Theoretical Foundations

3. State of the art

4. Circle fitting

5. SLAM: localization and mapping

6. Conclusions

The introductory chapter provides a brief contextualization, along with a little expla-
nation of the goals of the project. In the second chapter, a deeper explanation of theoretical
concepts related to Robotics is given, in pursuance of introducing a bit more the reader into
the topic of the experiment. After that, we deliver some mathematical definitions and intro-
duce the Kalman Filter. Later on, in the third chapter, we add up the research of the circular
segments estimation by [Muñoz Bañón (2016)]. The fourth chapter will propose an innovation
of the Extended Kalman Filter and a new initialization method. The fifth chapter is dedicated
to the SLAM process divided into two phases localization and mapping, centred in circular
segments. To conclude, in chapter 6, we will analyze what we have accomplished and what is
yet to do.
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Chapter 2

Theoretical Foundations

In the previous chapter, we have talked about the influence of robotics on people’s
lives in the present days. In this chapter, we present a more in-depth look into the concepts
that are the bottom line of this project. At first, a brief general understanding of the robotic
paradigms is given, followed by an introduction of SLAM and some mapping techniques. Finally,
at the end of the chapter, mathematical aspects, that are crucial for a proper understanding
of the implementation and definition of the domain of the current experiment, are presented.

2.1. Artificial Intelligence and Autonomous Robotics

The first thing that comes to people’s mind when talking about AI and, more specif-
ically, about robots, is perhaps the pop culture, created in the movies from the ’70s until our
days. The robots have been displayed as anthropomorphic machines, usually assigned to a
repetitive task, for instance, a robot which serves in a restaurant and behaves and moves like
a real waiter. This conception could explain the expectations pointed in this direction on the
first days of Artificial Intelligence. However, having gained more experience and solved more
problems of the development of ’thinking’ computer systems, engineers and scientist construed
a more realistic description of the robots.

The epistemology of the word ’Robot’ brings us to Prague in the early 20th century,
when the writer Karel Capek created a play in which he introduced machines that are working
for the owner. More specifically, the word is related to the Slavic word Rabot that means "to
work" [Etimology (2012)]. Furthermore, in this definition, we eventually encounter ourselves

7
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facing the first valid affirmation about what the Robot is supposed to be.

"Robot – a machine that can perform a complicated series of tasks automatically,
usually programmable by a computer." [Oxford Dictionary (2019)]

The interpretation given by the dictionary turns out to be more exact, and there is
no reference to any human biological aspect. Following the history of IA and Robotics, one
can comprehend how the reality has grown bigger in the eyes of the scientists, for instance,
in some situations the robots shall adopt a certain morphology in order to perform the task
they have been created for more effectively. Referring again to a robot vacuum cleaner, which
certainly does not look like a janitor, rather resembling a normal human-operated vacuum, for
the reason that it has to be able to reach places in the house that require a small size.

In this perspective, the definition of a robot can take another step forward. The way
of controlling a robot, or how a robot can carry out its assigned task and reach its goals, make
us differentiate between two types of robots. On the one hand, we have robots that work
with human interaction, which can be done, for example, via teleoperation, and on the other
hand, we have autonomous robots which are supposed to be able to accomplish certain goals
by themselves. According to [Murphy (2018)], a more formal description of an Autonomous
Robot would be:

"An intelligent robot, or autonomous, is a mechanical creature which can function
individually. Intelligent meaning that it is not doing the things mindlessly, thus in
a repetitive way."

The definition above is how we understand a robot in this project. The implication
that carries giving the word intelligent to a machine brings with it a great deal of concern of
how our mind works, and that is one of the main questions that Artificial Intelligence must
answer, step by step.

Another fundamental concept, explained in more details in section 2.2, are the
Paradigms of Robotics. Whenever we are about to enter into the development phase of a
robotics-related project, we must inevitably consider the three paradigms described and im-
proved from the first days of the AI till now. As it happens with any other engineering task, the
concept of design plays a significant role and paves us the way to a more consistent project, that
is adjusted to general conventions. Hence, specifying generic concepts and then specializing



Chapter 2. Theoretical Foundations 9

in the topic of the project seems the best way to procure a good understanding and perhaps
lead to easier maintainability.

Figure 2.1: Desired process of robotic problems development.

Besides what the concept of the implementation and design might give from other
experiences, the field of robotics is also based on creativity, in the way that for solving specific
tasks the engineer has to be able to imagine different solutions and then test them [VexRobotics
(2019)]. The figure 2.1 illustrates what can be understood as a think-and-try way of developing
a process. This creativity depends considerably on the mathematical knowledge the scientist
has and how he or she can turn it into a real computational solution.

2.2. Robotic paradigm

There exist many fields in Artificial Intelligence. In this paper, among others, a
problem related to the robots and their interaction with the world around is discussed. It
is essential then to make a comparison on the different perspective that has been developed
through the history of the AI, and it is displayed in the Robotic Paradigm.

In the early days of research on how intelligence relates to computers, many assump-
tions were made. Moreover, there were particular expectations on how computers could one
day complete the tasks that humans perform every day without difficulty. Theses expectations
became more realistic with years of study when the researchers discovered how complex could
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it be, for example, to make a robot wander in a room without hitting any obstacle. Deeds
that from a naive perspective could seem easy to achieve can be difficult to apply with the
mathematical laws and concepts, which work in the computational world. This dualism has
been since then one of the most decisive points of research in the field of Robotics [Murphy
(2018)].

The scientists and engineers who decide to take over a robot developing project, more
specifically, an autonomous robot, must consider aspects that are related to both mathematics
and biology. In particular, a deeper understanding of how an animal accomplishes a simple
task from a third-person point of view can improve the development of the indicated task
with a robot. A representative example of this is given in [Cuadra Troncoso (2011)] with the
navigation based on area centres. The robot calculates the centre of the areas among the
detected obstacles and navigates towards it. This method has a more natural approximation
to how a human being walks through a room, focusing more on the empty spaces rather than
trying to avoid the objects. It results in smoother and more natural navigation. Many other
examples can be illustrative when studying a specific robotic problem. However, there have
been generalizations that allow engineers and scientists to find common ground.

The Robotic Paradigms are related to how the robot interacts with the world around
it. Thus, three main primitives are defined: Sense, Plan and Act. The order in which these
primitives execute defines the control architecture of the project, and in consequence, the
paradigm within it belongs [Faigl (2015)]. We define three paradigms, namely, hierarchical
paradigm, reactive paradigm and hybrid paradigm. A more detailed explanation follows.

2.2.1. Hierarchical paradigm

The first paradigm is the Hierarchical paradigm. In this deliberative architecture,
the robot senses first, then plans and then acts.

Figure 2.2: Order of the main primitives in the hierarchical paradigm.
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The figure 2.2 shows how interaction with the world occurs from a hierarchical per-
spective. First of all, a sensing phase determinate the surroundings of the robot. After this,
a plan is made considering what has been sensed. Lastly, an actuation takes place depending
on the plan made in the previous phase. This paradigm follows the Closed World assumption.
The model of the world provided to the robot includes everything that it needs to know.

The sensing phase is characterized by different calculations and the construction of a
world model that must be accurate in order to elaborate a solid plan for the next phase, which
leads to two main disadvantages of the paradigm. Firstly, the sensing and planning phases
are usually lengthy and require high performance of the hardware of the robot. Secondly, the
closed world assumption can lead to unwanted situations, for example, when in the "real world"
the fundamental situation changes, and the initially considered plan has no sense for a further
step in the experiment. For instance, a new moving obstacle, such as a person or a pet, could
enter a room, initiating a whole new sensing process.

Regardless of its disadvantages, various important projects have been implemented
using this architecture. For example, a robot Shakey, based on this deliberative perspective,
was designed and built at the Stanford Research Institute between the years 1966 and 1972
[rob (2015)]. Shakey can be considered the world’s first intelligent robot. The project took
a big step forward in its time because it applied theoretical algorithms, such as A* algorithm,
and techniques from the early days of the AI, such as STRIPS [str (2019)]. It was named
Shackey because of the shaking movement it used to do during the planning process, induced
by an alteration of the sensors as a result of finding a new obstacle.

Nowadays, hardware performance has increased considerably, which could solve the
main problems of the hierarchical paradigm, but the problem of framing the world persists,
concerning the time and the computational resources it requires. Thus, to create an accurate
world model, representation is still a challenge in almost every task associated with robotics.

2.2.2. Reactive paradigm

The need for a faster connection between the robot sensors and actuators caused
the definition of a new perspective, the Reactive paradigm. It takes inspiration from the
biological world. For example, an impulse received through the eyes activates an immediate
muscular response, meaning that there is no planing in between the sense and the act primitives.

The figure 2.3 shows that now we abandon the closed world assumption. In the
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Figure 2.3: Order of the main primitives in the reactive paradigm.

reactive method, the unexpected inputs from the surrounding world are accepted and controlled
by a particular behaviour which must be predefined [Arkin (1998)]. In some sense, it can
be understood as a deterministic final state automaton, when the initial state automatically
executes the next step.

The reactive paradigm is inspired by the fact that some insects and other simple
animals exhibit intelligent behaviour virtually without brain [Faigl (2015)]. Furthermore, there
still exists the framing problem, that is, in which way to define the mapping and recognition
of the surrounding world in an appropriate computational way.

2.2.3. The hybrid paradigm

As it is mentioned in the previous sections, both hierarchical and reactive paradigms
specify the strict setting of the sense, plan and act primitives, which does not work in numerous
situations. On the one hand, the amount of time needed for sensing and planing in the
hierarchical paradigm supposes a risk and does not match the expectations of many domains.
On the other hand, the reactive paradigm omits the necessary planning that is attached to
almost any experiment, and hence, its limitations are apparent. For these reasons, a new
paradigm, namely, the Hybrid paradigm, is defined. It gathers the positive aspects of the two
formerly defined paradigms. Hence, a new organization of the three main primitives emerges.

Figure 2.4: Order of the main primitives in the hybrid paradigm.
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Figure 2.4 illustrates the insertion of the planning primitive in the reactive approach,
represented in the figure 2.3. The innovation comes in the first stage of planning using a
global world model. The next phase is a pair of sense-act reactive control, which executes the
instructions to accomplish the goal. In this respect, the problem of not having information and
planning stages in the reactive paradigm solves by the introduction of the planing primitive.
The information acquired in this phase is beneficial for the rest of the operation.

Even though the planning phase stills requires a considerable time window, the real
improvement of the hierarchical paradigm comes by not having to plan every instruction of the
goal every time a new, unexpected element enters the world. Thus, the goal can be achieved in
less time and, most likely, using fewer resources. Moreover, the different events that may occur
during the experiment can be understood as subtasks and solved with the minimal interference
on the main assignment. The last has big implications from a computational point of view, since
solving different situations, such as dead reckoning or obstacle-avoidance, can be implemented
and executed in different threats, allowing better performance and resource preservation.

Presently, most of the robot-related projects use the hybrid paradigm or a customized
version of it.

2.3. SLAM

In robotics, Simultaneous Localization and Mapping (SLAM) is an essential area
of study. It comprises constructing a map of the surroundings of a robot without having
a definite knowledge about its position or the position of the surrounding objects. In the
specialized literature, it is defined as the chicken-egg problem, since the localization of the
features requires the position of the agent, while the localization of landmarks can be of great
significance for a more exact calculation of the robot position.

The problem of localizing the robot is named Odometry. For legged or wheeled
robots, a wheel slippage or an error in the gyroscope of certain servo may complicate the task
of predicting the disposition. Hence, the question "Where am I?" is answered from a functional
point of view rather than a perfectionist one. That is because aiming to construct a perfect
map is usually an unfeasible task due to many erroneously involved components existing even
in the simple experiments [Siegwart et al. (2011)].

The localization calculations could be solved easily by attaching a Global Positioning
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Figure 2.5: "Where am I?" [Pixabay (2018)]

System (GPS) to the agent. Even though the localization provided by such a device might
still be faulty, eventually it is reasonably precise and is used in substantial projects related to
aviation and autonomous cars.

Despite the fact of the existence of the global position system that gives us a position
of reference within the world, two shortcomings may arise.

Firstly, many experiments are executed in an indoor environment, meaning the informa-
tion from the GPS might not be available.

Secondly, and more importantly, is that in SLAM, the global position is just a component
of the localization step. Moreover, the relative position to a certain object or person is
required.

As a result of the need of the relative position, the robot must use its sensors to calculate the
position of the surrounding objects. When relying on the sensors and the effectors to perform
a certain task in an unknown world, three main problems, specified in the following, arise:

Noisy sensors - The information, provided by a sensor, for example, a laser rangefinder, is
usually affected by many environmental aspects, such as lighting, building materials, reflection
or others. Although the errors are present in all the existent hardware, the development of
prediction, filtering and smoothing techniques may help to reduce the interference of different
noises.
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Sensor aliasing - The sensor aliasing problem usually occurs when the information provided
from a particular sensor is not representative of an individual situation. For instance, when
a navigating across a dark room, a robot can receive the perception of not moving because
the different light signals are indistinguishable from each other. The fact that two or more
signals can not be differentiated increases the uncertainty of the surroundings. This problem
is partially solved by techniques such as sensor fusion. Thus, combining the events extracted
from different sensors may provide a way to differentiate the overall situation of the agent.

Effector noise - When giving orders to the robot, there always exists a certain noise asso-
ciated with the performance of the effector. It provokes, for example, that an expected new
position of the robotic arm might not be the obtained one. The inaccurate outcomes occurred
in calculations, produced by both sensor and effector noise, are noticeable in Odometry.

2.3.1. Types of SLAM

In the literature, we can differentiate two types of SLAM, namely, offline and online.

In the online SLAM, the map the robot builds of the world is created simultaneously with
the navigational process.

In the offline SLAM, the mapping process is performed afterwards. The information
collected by the sensors along the navigation process, is analyzed and transformed into
the desired map.

In our case, the SLAM procedure chosen to represent the map is the offline method.
Thus, first we gather information and then we create the surrounding map.

2.3.2. Odometry

The word "Odometry" references the calculations done on the data provided by the
sensors of the robot in order to obtain an estimation of the robot position [Shen et al. (2011)].
The considered sensors are, among others, range sensors and wheel encoders. Aspects, such as
the diameters of a wheel, velocity, and range of gyroscope determinate the values of a particular
data state that gives information about the robot position. However, this information is subject
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to specific errors and imperfections associated with the specifications of the robot. Therefore,
it is crucial to have a good insight of the agent being used, which means, gather all the
information provided by the manufacturers about the robot itself and the expected error of the
sensors.

In real life experiments, each robot is different due to imperfections that may appear
during the usage.

It is evident from all mentioned above that Odometry is not an easy task. It requires
competence in mathematical modelling of the relation between the effectors and the actual
movement of the robot, as well as the elimination of possible outliers present in the data that
can alter the perception and results of the model entirely. It becomes even more complicated
when the data from the sensors about the surroundings is very noisy or does not exist at all.
Such calculation of the position of the robot, considering only the velocity and angle of bearing
from the wheels is named dead-reckoning.

2.4. Mathematical aspects

The previous section. In this section, some of the mathematical procedures related
to estimation are presented. Later on, the parameters and modules of these approaches will
be adapted for the specific problem of this project.

2.4.1. Least squares regression

The most straightforward way of fitting an equation given specific points is the Least
Square Regression. This procedure allows us to fit an equation to given points by minimizing
the geometrical position between them and the possible solution. In a more formal definition,
the least square regression tries to adjust the parameters of a specific function in order to fit
the data set best [Menon (2018)]. The following definitions are to clarify some notions related
to this topic.

Definition 1. Residual. The residual is the subtract between the actual value of the function
f and the values predicted by the model. The residual obtained in a certain domain represents
the fitting accuracy of a model.

ei = yi − f(xi, β). (2.1)
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where y is the dependent variable variable, x is the dependent one.

The least square method will try to find the best parameters for the fitting equation
by minimizing the square of the residual.

S =
n∑
i=1

ei
2. (2.2)

A good basic example of this is the linear approximation. Giving certain points
described in the Cartesian coordinates, as shown in figure 2.6, it is relatively easy to draw a
line "by eye" that represents the values of the predicted function that fits the model.

Definition 2. Straight Line equation. The straight-line equation is given by the product
of the slope (determined by (m)) with the change in x, plus the value of y when x is zero
(determined by (b)).

y = mx+ b (2.3)

As we can observe, having two points (x1, y1) and (x2, y2), we can obtain the values
of b and m from the equation 2.3.

Figure 2.6: Linear least squares. The dots are the data and the output is the line fitted by the
model.

The figure 2.6 shows particular points from which we fit the line equation 2.3. By
using the least square method, the residual in this case is defined as the difference between
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the left- and right-hand sides of the points applied to the equation of the line y = mx + b,
being m and b the parameters of the model. Thus, the sum S from equation 2.2, applied to
the points (x1, y1) and (x2, y2) is:

S(m, b) = [y1 − (x1 ∗m+ b)]2 + [y2 − (x2 ∗m+ b)]2 (2.4)

The next step is to minimize the equation by calculating the partial derivatives ∂S
∂m

and ∂S
∂b

and setting them to zero. Obtaining a system of two equations with two unknowns
(namely, m and b), parameters which define the estimated line.

Despite being simple, the least square method is widely used in many data science
projects. Also, it is easy to generalize to other models as we will see in section 4.4.2, with
circle fitting applying a least square method.

2.4.2. The Kalman Filter

Among all the approximation methods used in robotics and data science, the Kalman
filter is one of the most relevant. As it is explained in [Ogorek (2019)], there have been many
papers related to this topic that go from a superficial explanation of what the Kalman filter
is to a more abstract in-depth mathematical description. In the following chapter, we present
the fundamental though thorough ideas of the Kalman filter in order to provide a better
comprehension of the topic. Since the groundwork of this report is based on the Kalman filter
and its extended version, the notions defined in the following are essential.

To be able to proceed with the Kalman approach, we need to clarify some concepts
[Lacy and Thacke (1998)]. First of all, we introduce the notion of the mean square error
associated with a signal:

yi = aixi + ni (2.5)

where yi is the observed signal, ai is a gain term, xi is the information bearing signal, and ni
is the noise.

The goal of this process is to estimate xi. We define an error function by the
difference between x̂i, which represents the estimation and xi:
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f (ei) = f (x̂i − xi) (2.6)

In the following, we introduce some definitions to simplify the further understanding
of the concepts.

Definition 3. Monotonic Function. A monotonic function is a function which is either
entirely non-increasing or entirely non-decreasing. In other words, a function is monotonic if
its first derivative (which does need to be continuous) does not change its sign [Stover (1999)].

We emphasise that the error function should be both positive and monotonic. The
square of the function f (ei) = f (x̂i − xi)2 follows the constraint.

Definition 4. Mean Squared Error (MSE). The mean squared error is the sum of squared
errors divided by number (n) of predictions:

MSE = 1
n

n∑
i=1

(xi − x̂i)2 (2.7)

The Kalman filter is used to estimate values of a certain variable in a specific system
influenced by noise. First, a state vector x of the process is defined;this vector represents the
value of the model at a certain step i [Rlabbe]. The next element necessary for defining the
filter is the transition model, which represents the evolution of the state vector x throughout
the process:

xi+1 = F · xi + wi (2.8)

where F is a state transition matrix, and w is the associated noise.

Following with the description, we define a measurement vector zt that gathers the
values obtained at a certain time. The basis concept of the Kalman Filter is the combination
between the theoretical model and the observations. The connection between the measurement
and the state vector is provided by a relation H, added a certain typical measurement error v:

zi = H · xi + vi (2.9)
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The Kalman filter intends to minimize the mean squared error associated with both
the measurement and to the transition of state vectors xt → xt+1. For modelling such errors,
it is necessary to use Gaussian distributions.

Qi : wi ∼ N (0,Qi) (2.10)

Ri : vi ∼ N (0,Ri) (2.11)

In the Kalman filter, the measurement noise R is supposed to be a Gaussian white
noise [Wiki (2019)]. However, many dynamical filters do not follow this constraint.

The next essential element for describing the Kalman Filter is the covariance matrix
P. By minimizing this matrix, the filter accomplishes the estimation of the parameters. The
covariance matrix can be expressed as:

Pi = E
[
(xi − x̂i) (xi − x̂i)T

]
(2.12)

As explained before, the Kalman Filter requires to minimize the MSE. In order to
achieve this we need a coefficient that minimizes the the trace of the covariance matrix. Thus,
we define the coefficient K, namely the Kalman Gain:

Ki = Pi−1H>i S−1
i (2.13)

The Kalman Gain works as a weighting for the regressor with the smallest error.

The last essential element to define is the control input u. The process takes advan-
tage of known control inputs, in order to improve the prediction of the next state of vector
x.

The Kalman filter is a recursive method based on two phases: predicting the next
state of the system 2.8 and the update phase that improves the current estimate vector with
a control input. A more detailed explanation of each step follows.

The Predict step uses the state estimated vector of the previous step i− 1 to produce
an estimation on the current step i:

x̂i = Fix̂i−1 + Biui (2.14)
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The equation 2.14 is derived from the equation 2.8, adding the matrix B, that is applied
to the control input u. The last will improve the prediction of the state estimator.

The error covariance is also predicted as follows:

Pi = FiPi−1F>i + Qi (2.15)

The Update step produces both posterior values of the state estimated vector and the
covariance matrix by using what is called the Kalman gain K. For this step, the following
procedure is applied:

1. Firstly, the measurement residual yi is calculated as:

ỹi = zi −Hix̂i−1 (2.16)

In this step we subtract from the measurement zi the expected value Hix̂i|i−1. In
other words, we calculate the fit of the function, or how certain the predicted value
is.

2. Secondly, the innovation covariance Si is obtained as follows:

Si = HiPi−1H>i + Ri (2.17)

3. In the next step, we calculate the Kalman gain Ki. There are different approaches
to calculate what will determinate the change of the state estimate vector, and
after all, the fit of the model. The following one expresses the generic form of the
Kalman gain:

Ki = Pi−1H>i S−1
i (2.18)

4. Having the Kalman gain Ki and the fit of the model yi, we can update the state
estimate vector:

x̂i = x̂i−1 + Kiỹi (2.19)

5. Finally, we update the error covariance matrix Pi:

Pi = (I−KiHi) Pi−1 (2.20)
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Figure 2.7: The Kalman filter recursive method for dynamic systems. First the transition model
is applied. Second, the update phase adapts the values considering the measurement function.

The figure 2.7 shows a diagram with distinct steps. As we can see, the recursive
estimate requires an initial value to start the predict-update step process. It means that we
need to have an initial state estimated vector value x0, as well as define properly the initial
covariance matrix P0. Other elements, such as the error covariance matrix Qi and Ri, have
to be estimated properly in order to obtain the desired results of the model fitting.

There are many adjustments that can be done to the predict-update process. Subse-
quently, we will see that each experiment requires to find a proper description of the different
elements that are parts of the model. Not every formula provided in its generic form works
for every case, as we will notice in the circle fitting example, section 4.6, or the tracking the
position of a robot, section 5.3.3, a important adaption has to be made to the Kalman filter
in pursuance of better results.
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2.4.3. The Extended Kalman filter

The Kalman filter brings good results within linear models. However, many models
are based non-linear equations. In this respect, a new approach was presented, so that one may
use the Kalman filter for a non-linear domain. The Extended Kalman filter (EKF) uses an
extension in the Taylor Series of the the transition matrices F and H from equations 2.8 and
2.9. Thus, assuming the non-linearities in the dynamic and the observation model are smooth,
we can estimate the next value of the state vector and therefore propose a new method for
these non-linear applications [Terejanu (2005)].

Once again, we define the equations for the estate estimated vector and the mea-
surement model:

xi+1 = Fxi + wi (2.21)

zi = Hxi + vi (2.22)

The EKF linearizes an estimate of the current mean and covariance. It uses mul-
tivariate Taylor Series expansions to linearize the model. In consequence, the functions that
define the transition and measurement model do not need to be linear; however, they must be
differentiable [Kalman].

Unlike what happens with the Kalman filter, in its extended version the functions F
and H can not be applied directly to the error covariance matrix P. Instead, we compute the
Jacobian (see definition 5) [Morrell (1997)].

F i = ∂f

∂x

∣∣∣∣∣
x̂i−1,ui

H i = ∂h

∂x

∣∣∣∣∣
x̂i

Definition 5. Jacobian. The Jacobian is a determinant, which is defined for a finite number
of functions of the same number of variables and in which each row consists of the first partial
derivatives of the same function for each of the variables [Webster (2016)].

For example, consider the function f : R2 → R2, with (x, y) 7→ (f1(x, y), f2(x, y)),
where f1(x, y) = x3y and f2(x, y) = 5x+ sin y. The Jacobian function is defined as:

Jf(x, y) =
 ∂f1

∂x
∂f1
∂y

∂f2
∂x

∂f2
∂y

 =
 3xy x3

5 cos y

 (2.23)
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As well as in the Kalman filter, the EKF is a recursive method based on the pair
predict-update.

Figure 2.8: Extended Kalman Filter predict-update steps. The equations are based on the
explanations made in previous paragraphs.

The Extended Kalman Filter is the most essential part of this paper. The most rele-
vant steps, used in the localization and mapping processes proposed in this experiment, relate
to this technique. In fact, the EKF is considered the standard of nonlinear state estimation in
navigation systems [Wan (2006)].



Chapter 3

State of the art

This paper, to a certain extent, is a continuation of the work of [Muñoz Bañón
(2016)] and [Cuadra Troncoso (2011)]. As explained in the introduction, we aim to provide
accurate detection and representation of circular segments using a laser range finder attached
to a robot. [Cuadra Troncoso (2011)] proposes an approach for lineal segments using the
Kalman filter that adapts very well to the expectations. In reality, robots should also be able
to detect and estimate circular segments such as column or trees.

In this chapter, we introduce the geometry aspects of a circle, followed by an ex-
planation of the modelling of the Kalman Filter proposed in [Muñoz Bañón (2016)]. More
precisely, the extension to the EKF will be needed since the circle is defined in two dimensions
as a non-linear function. At the end of the chapter, the problems encountered in the developing
and modelling will be commented, with the hope of describing how difficult the definition and
representation of circular segments can turn to be, despite how simple can seem from a naive
perspective.

3.1. The circle

In this project, we aim to provide an accurate description and modelling of the
circular segments. In order to accomplish that, we require to have a solid knowledge of the
mathematical description of the circle.

The circle is defined by every point that has equal distance from a specified central
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point, defined as (x0, y0), in Cartesian coordinates [DODGSON (1896)]. It is described by the
Pythagoras distance of two points, being this distance r (radius):

r =
√

(x− x0)2 + (y − y0)2 (3.1)

Figure 3.1: Circle in Cartesian coordinates.

In equation 3.1, the correlation between the three parameters r, x0, y0 might be
advantageous from a descriptive point of view. However, modelling the parameters for fitting
the circle might become more difficult when there exists a strong correlation between these
parameters. In other words, when trying to fit these parameters, the error from one of the axes
may affect the estimated value of the other two parameters. For this reason, we need a new
description of the circle that allows as to get a lower interdependence. Moreover, the readings
from the laser rangefinder are obtained as a polar distribution. Following the Pythagoras
theorem, we obtain the polar representation of the circle as follows:

r(φ) = ρ · cos(Φ−Θ)2 ±
√
R2 − ρ2 · sin(Φ−Θ)2 (3.2)

where:

ρ determinate the distances from the centre of the circle to the origin of coordinates.
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θ Is the angle between the centre of the circle and the origin.

R is the radius of the circle.

r is the distance of a certain point of the circle to the origin.

φ is the clockwise angle from the x-axis.

Figure 3.2: Circle in Polar coordinates. Differentiate concave(red) and convex(blue) parts from
the origin of coordinates.

In figure 3.2, we can see the different elements defining the formula. As we can
observe, it has a ± sign. Namely, the formula with a minus sign is the one that draws the
convex part of the circle (blue in the figure), while using the plus sign we obtain the concave
sight with regard to the origin (red in the figure).

The formula in polar coordinates improves in terms of modelling. Now, we only have
three parameters that depend on r, which is a function of φ. In the polar coordinates, φ is the
angle with the origin and takes value from 0 to 2π. However, this values are admissible only
if the origin of coordinates is inside the circle. For this project, this has no much sense, since
we are trying to estimate circular segments and the centre of origin is the robot. Admitting a
circle containing the origin would mean, in other words, that the robot is in the inside of, for
example, a tree or a column. Therefore, we have to provide a valid φ for every circle that is
not containing the origin of coordinates. Given a circle, defined in polar coordinates, with a
centre in ρ and with an angle θ, we must provide the angle α, which is the maximum angel
that can be added or subtracted to θ to obtain the set of angles φ that describe the circle
[David (2014)]:
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Figure 3.3: The angles α marks the limits of φ for the description of circle outside the origin
of coordinates.

θ − α ≤ φ ≤ θ + α

The angle α is calculated by drawing a segment from the origin O to the centre of
the circle ρ, named as OP . Next step is to draw the tangent between O and T −→ OT .

From the figure 3.3, we define the angle between OP and OT :

sinα = PT

OP
−→ α = arcsin R

ρ
(3.3)

where R and ρ denote the same as in equation 3.2.

We have formally described every circle which can be drawn in polar coordinates.
However, three main complications may appear from a computational point of view:

1. The ± sign, found in the equation 3.2 has to be implemented in two different cases. In
the meantime, just the minus sign will be regarded, since we consider only the convex
part of the circle, this is, the one detected by the robot. It is important to notice that
circular shaped walls are not considered in this project.

2. For certain values of r, the solution of the equation might be an imaginary number. The
last will interfere with the estimations.

3. The last complication comes with the estimation of α, since the value of α depends
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on the estimation of the parameters of the circle, an error in the estimation would add
possible values to φ, which do not belong to this specific circle.

As commented in the introduction, the difficulty of a project usually becomes more
visible when we acquire a reasonable knowledge. Later on, we see that even though the circle
might have a fundamental mathematical formalization, it can be complex to design a proper
model.

3.2. Circle readings

In a real experiment, the various data we obtain from the rangefinder sensor is always
associated with a certain noise. Estimating segments is a task that requires a good under-
standing of the world in which we are working. Successfully developing a system that adapts
to different situations is difficult, if not unfeasible.

The before mentioned also holds for the circle fitting problem. Many aspects must be
considered when using a rangefinder (e.g., a laser), such as illumination, texture or reflection.
Therefore, accomplishing an error-free approach must not be the goal. As we briefly explained
in the section 2.3 (SLAM), when trying to estimate features extracted from sensor readings, the
aim is to give a pragmatic description of the world rather than a perfectionist one. Following
this philosophy, we are ready to introduce a first approach to the circle recursive estimation
using the Kalman filter. In order to be able to do this, we have to make some assumptions.

Primarily, we will obtain simulation data provided by laser rangefinder that gives us
180 points, that is, from 0 to 179 degrees. Moreover, the unit of measure for angles is radians,
so, in fact, we obtain 180 points from 0 to π.

Secondly, we assume a white noise with a Gaussian distribution. The Kalman filter
presents a solution for such type of noise and has proven to solve many problems in that context
[Nixon (1997)].

Figure 3.4 illustrates the readings of a circle with a radius 0.25 meters and a distance
of 1 meter. Its exact representation by equation 3.2 is: ρ = 1.5, θ = 1, 57 rad, R = 0.25 m.

If we compare the real representation of a circle with what we see in figure 3.4, we
realize that they do not look alike. That is because, on the one hand, we are just able to
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Figure 3.4: Circle readings with σ = 0.02 Gaussian noise. On the left, we have the polar
representation of the data obtained by the laser. On the right, the same data in Cartesian
coordinates.

access the convex part of the circle, and from the other hand, a Gaussian additive noise with
a deviation σ = 0.02 is added to the signal. Thus, the distribution of the point might seem
randomly situated in the coordinates.

3.3. Circle and the Kalman Filter

Having in mind how the leaser readings look like, we can start defining the different
components of the Kalman Filter.

The first step to take is to design the state variable x in equation 2.8. Since the
data provided by the laser rangefinder comes as a function of distances in degrees, the most
natural choice is the polar representation. Moreover, we have already described the advantage
of having the function r(φ) rather than different inputs (x, y).

Coming back to the equation 3.2, we see that we have three parameters, and these
are the ones to be established as the state variables.

x =


distance
angle
radius

 =
[
ρ θ R

]>
(3.4)
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The next step is to define the process model. Recalling section 2.4.2, the Kalman
filter is divided into two phases. In the predict step, we predict the values the state variables
will acquire. This is done by using a matrix F that computes the transition from xt to xt+1.
In our case, the matrix F is the identity matrix.

F =


1 0 0
0 1 0
0 0 1



That is because the transition is produced by the transformation from one step to
the next one of the parameters given in the formula. Once x and F are defined, we have to
decide which one is the error wi associated with the process model. For the same reason that
the parameters are the only ones considered in the state estimate vector 3.4, there is no noise
attached to the process model.

The next step is to define the covariance matrix P. In this case, according to
[Muñoz Bañón (2016)], we apply a normalization by the Gaussian error P −→ P

σ2 . It will give
as a matrix P, which is independent of the error covariance. In consequence, the error Q,
associated with the variance in the model, is equal to 1.

Once we describe the process model, the measurement model must be clarified. The
equation 3.2 is non-linear, and for this reason, we are not allowed to use the standard Kalman
Filter , we must to use its extension. The basic prerequisite for the Extended Kalman Filter
is to be differentiable 2.4.3. Since we have chosen the polar equation of the circle, we obtain
the partial derivatives in the determinant shape; this is, the Jacobian H. In the EKF, the
function that interacts with the process covariance and the Kalman gain is the Jacobian of the
measurement function:

H i = ∂h

∂x

∣∣∣∣∣
x̂i

Considering equation 3.2 and the state model, the Jacobian is formed as follows:

h(x) = ρ · cos(Φ−Θ)2 ±
√
R2 − ρ2 · sin(Φ−Θ)2
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Hn =


∂r
∂ρ
∂r
∂θ
∂r
∂R

 (3.5)

Now we have to obtain the partial derivatives of r by every parameter in the state
vector x = (ρ θ R):

∂r

∂ρ
= ρn−1 sin2 (φn − θn−1)√

R2
n−1 − ρ2

n−1 sin2 (φn − θn−1)
+ cos (φn − θn−1)

∂r

∂θ
= −ρn−1 sin (φn − θn−1)− ρn−1 sin (φn − θn−1) cos (φn − θn−1)√

R2
n−1 − ρ2

n−1 sin2 (φn − θn−1)

∂r

∂R
= − Rn−1√

R2
n−1 − ρ2

n−1 sin2 (φn − θn−1)

Having the partial derivatives, we define H as:

Hn =


cos (φn − θn−1) + ρn−1 sin2(φn−θn−1)√

R2
n−1−ρ

2
n−1 sin2(φn−θn−1)

−ρn−1 sin (φn − θn−1)− ρn−1 sin(φn−θn−1) cos(φn−θn−1)√
R2

n−1−ρ
2
n−1 sin2(φn−θn−1)

− Rn−1√
R2

n−1−ρ
2
n−1 sin2(φn−θn−1)

 (3.6)

Those mentioned above are the necessary components required for the basic definition
of the model that we use in the EKF. In [Muñoz Bañón (2016)], some modifications are
proposed concerning the generic equations given in section 2.4.2, especially in the update of
the covariances P of the Kalman Filter.

In algorithm 1, we introduce two innovations concerning the update of the covariance
matrix P (line 15). The first one is that the identity matrix I is no longer used as a subtracted
entity, and the second one is newly introduced lambda parameter multiplied by Ik, where k is
the number of parameters of the state estimate vector, in this case, k = 3.
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Algorithm 1 Proposed Kalman recursive function
def ekf(ri,φi,xi−1, MSEi−1):
#returns the Jacobean based on r and phi values from equation 3.6
Hi = Jacobean(ri,φ)
# calculate the residual
ỹi = ri −Hi(xi)
# innovation covariance
Si = 1 + HiPi−1H>i + Ri

# kalman gain
Ki = Pi−1H>i S−1

i

# update the state estimate
x̂i = x̂i−1 + Kiỹi
# modified update covariance compare with equation 2.20
Pi ←

(
P−1
i−1 + H>i Hi + λIk

)−1

# Calculate the added mean square error
MSEI = MSEi−1 +MSE

The lambda function is the component to apply the Tikhonov regularization [Tikhonov
et al. (1998)]. For a deeper explanation of the search of an appropriate λ and the development
of the Tikhonov regularization, it is better to refer to the master thesis [Muñoz Bañón (2016)],
section 3.3.Where mentioned it as a solution to ill-conditioned regression of non-linear models.

The Extended Kalman filter is an recursive process, meaning that we need the initial
values of the state vector x0 = (φ0, θ0, R0).

Another essential element is introduced to the Kalman iteration function. The es-
timation of the noise error adding proves to be helpful later on when we try to distinguish
between different types of segments (e.g., linear or circular). For that, we add to the algorithm
the calculation of the mean squared error shown in equation 2.7.

The calculation of the MSE will orientate us in every iteration. When we observe the
variation in the value, we can extract some ideas on how the estimation itself is developing.
For example, a growing series of MSE values will probably indicate that the estimation is ill-
configured or somehow malfunctioning. It could also mean that we are trying to misplace a wall
for a column or the other way around, in more practical terms, will see about this in chapter 5.
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3.3.1. Student’s t-test

The last important aspect of the process is to decide when the process should stop.
There are two main proposed conditions, in which the iteration of the filter should come to an
end:

1. The value of the error has increased several times in comparison to previous iterations.
The MSE can increase due to the existence of an outlier. Having a closer look to figure
3.4, one observes that certain values, given in an erroneous context, can differ largely
from the others. The probability of these values appearing one after another in a row is
reasonably low. Hence, if the calculations of MSE has a growing tendency, probably we
are not calculating properly where the segment ends.

2. Another condition to stop the iteration is a so-called break-point. A break-point means
that, apparently, we have reached the end of the segment from one side or the other.

A common way to analyze the progress of statistics problem, where we need to estimate the
parameters with small sample size and unknown variance, is the Student’s t-distribution (or
simply the t-distribution). However, every distribution that follows t-distribution has its pecu-
liarities, determined by the degrees of freedom [tdi]. The number of independent observations
in a set of data is called the degree of freedom; for instance, if we estimate from a single
sample, the degree of freedom is n− 1. The implicated parameters of the model play a role in
the calculations.

For using the EKF together with the Student’s t-distribution, we have to accept the
considerations of the Gauss Markov theorem assumptions [Anderson (2018)]:

Linearity: the estimated parameters must be linear.

Randomness: the data must be randomly obtained from the population.

Non-Collinearity: the calculated regressors are not perfectly correlated.

Exogenous: the error is not correlated with the regressors.

Homoscedaticity: the error variance is constant, along with the distribution of the
values of the regressors.
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The first condition from the list above is accomplished by the EKF when using the
partial derivatives procures a linearization of the state vector. The data is extracted randomly
as seeds obtained in the scale-space algorithm, section 4.3.1. The regressors in equation 3.4 are
not correlated. The error in our case is related to the measurement model given by the function
r(φ), and it is not dependant on the regressors. Finally, homoscedasticity is an assumption
that we make for the current case of study. However, the error in real experiments has a
variable distribution, provoked by the reflection of different materials the laser rangefinder
might be pointing to, meaning that the more realistic approach would be considering the
heteroscedasticity.

3.3.2. Comments and proposals

Now that wee have discussed the most important considerations on how the Extended
Kalman filter is designed, we should consider the limitations of the subject matter that has
been discussed thus far. We retake a look at some of the problems already described in order
to provide different perspectives that motivate further research.

The estimation of the circle, as proven in [Muñoz Bañón (2016)], is not an easy task.
Some complications, as described further in this section, have to be considered.

First of all, the appearance of imaginary numbers as a result of the calculation of the
square root in the Jacobean equation 3.6. When the estimated circle does not contain the origin
of coordinates, we might obtain negative numbers inside the square root. In previous projects,
only the real part of the result was considered since the data set was small; therefore, rejecting
some points would be unreasonable. Hence, the whole data set was included by merely removing
the imaginary part of the resulting numbers. The problem arises when the imaginary numbers,
resulting in these cases, are not in direct relation with the real circumference. Therefore, its
inclusion in the estimation process usually leads to undesirable results.

The second problem lies in estimating circle objects that are too close to the robot.
When the robot is close to such an object (e.g., a column), the seed of data extracted from
the laser rangefinder might be excessively concentrated in an interjection of the segment,
resulting in not accurately defined radius of the circle (occasionally, the segment might event
be approximated to a straight line). This issue is further discussed in the following chapter.

The distinction between different segments, be it linear or circular, is profoundly
influenced by the position of the robot. Moreover, it is related to the idea of break-points.
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The proper detection of each segment boundaries is essential. Errors in estimation can include
outliers in the data set.

We propose another approach, where we try to analyze the circle fitting problem
from a more pragmatic point of view. Since the main problem seems to be related to the small
representation of the segments, by adding movement to the robot we obtain more features
that represent the same circle, allowing us to mix and construct larger-scale data sets, in many
cases improving the estimation of the circle. Naturally, handling the movement comes with
certain disadvantages, which have to be analyzed. For that, we use some SLAM techniques
which help to construct maps. All of the above serves as a guide to introduce a circle as a new
geometrical figure.



Chapter 4

Circle fitting

In the previous chapter, we have described the Extended Kalman filter iteration pro-
cess. However, for the first step of the process, we should set the parameters of the state
estimate vector. In this chapter, we explain the mechanism of extracting the data set from a
circle and, later on, obtaining the initial parameters from the noisy signal. The main idea is
to be able to acquire different features or segments that represent the same circle in order to
improve the estimation. Finally, we propose a new design of the Extended Kalman Filter.

4.1. Robot and sensor

The porpoise of this project is to take a step forward the description of circles since
they appear in many robotics experiments. Although the most realistic situation would be
using a real robot, due to the low budget and time window limit, these experiments use a
simulator, specifically V-REP by [CoopeliaRobotics]. This simulator is suitable for our research
due to three main reasons. Firstly, it comes with different models, particularly: robots, static
objects, and materials. Secondly, each of these modules can have associated scripts that allow
us to control the module independently from the others, which helps to separate the navigation
from the sensor reading process. Lastly, and most importantly, V-REP provides a beneficial
API that allows us to accede the simulation from other programming languages, in this case,
Python.

Let us now make an introduction to the robot that we are going to use in the
experiments, namely, the Pioneer P3DX. In the literature, the Pioneer robot is widely used.

37
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Figure 4.1: Pioneer 3-DX schemes and dimensions. The figure shows measure of important
components, such as the wheels and the axis of the robot.

It is composed of two lateral wheels that allow a smooth movement and change in direction.
The Pioneer research robots are the world’s most popular intelligent mobile robots for education
and research purposes. Their versatility, reliability and durability have made them the preferred
platform for advanced intelligent robotics [MobileRobots].

The dimensions of the robot, shown in figure 4.1, play a significant role in the next
chapter, where we enter the explanation of localization and odometry.

The usability and easy access to the robot, plus the fact that the simulator V-REP
already includes a representation of a module of the robot, are the reasons that determine
this choice. The robot also includes SONAR rangefinders and sockets on the top in order to
connect, in this case, the laser beam, on which readings we will base the circle fitting.

Figure 4.2: Pioneer 3-DX with an Hokuyo Laser attached.
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4.1.1. Laser rangefinder

The laser we use is the Hokuyo UST-30LX Scanning Laser Rangefinder, attached to
the top of the robot. In [Dekan and Duchon], the author provides a probabilistic model for a
laser range finder. In the experiments of this project, we use the same laser.

Figure 4.3: Scheme of the phase shift calculation by the laser rangefinder [Siegwart et al.
(2011)].

A laser rangefinder usually operates by the principle of the time of flight. It measures
the phase shift from the sent to the received signal [Siegwart et al. (2011)]. For obtaining the
phase shift, the laser sends a light beam towards the environment. When the laser beam hits a
certain point P , the light reflects if the surface thickness is greater than the wavelength. The
reflection is, therefore, isotropic. It is important to notice that the calculation of the distance
depends on the material, due to the thickness of the surface [Dekan and Duchon]. In our
case, we consider the specifications for the Hokuyo sensor provided by the manufacturer. The
specifications of the laser in figure 4.4 show that the accuracy from 0.1m to 10m has a deviation
error of 30mm under 3000lx White Kent Sheet. In this project, we use the approximation made
by [Dekan and Duchon] of concrete materials. Hence, we consider that the detected objects
are walls or columns built of these materials.

The accurate description, provided in this article, and the fact that is it already
implemented as a model in the simulator we use, are the two reasons why we choose this laser
rangefinder. However, a particular modification of the simulator is needed to adjust the errors
and be able to obtain the 180 measures of the laser, which is originally set to an angle of 270
degrees.
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Figure 4.4: The specifications provided by the manufacturer of the Hokuyo UTM-30LX [Hokuyo
(2007). Different errors expected considering the distance from the objects.]

4.2. The first experiment

In order to provide a more practical explanation of the calculations and the imple-
mentation of the Kalman filter, a basic experiment is conducted. We define a simple case,
particularly, an unmovable robot facing a column with an angle of 90 degrees.

Figure 4.5: The robot pointing to a column in the first experiment. The column is one and
half meters away from the robot.

As we can see in figure 4.5, the column is 1, 5 meters away from the robot and
has a radius of 0.25 meters. Using the parameters from equation 3.2, we obtain ρ = 1.5m,



Chapter 4. Circle fitting 41

θ = π
2 rad, and R = 0.25m. Notice that all the measures given in this paper are in meters,

with the exception of the angles that are given in radians.

The laser readings, given by the simulator in this situation, are shown in figure 4.6
below.

Figure 4.6: The readings provided by the simulator for the first experiment.

This experiment serves as a first demonstration of the application of steps to run the
Kalman filter. Considering the difficulty of the process, it is recommended to review this base
case later, when we examine many-corners cases. The philosophy lies in hardening the problem
once we obtain expected results at each level of difficulty.

4.3. Signal clustering using scale-space

To be able to start the Kalman recursive process of a segment, we need to be confident
in the extraction of the so-call seeds. In Cuadra Troncoso (2011), the author uses an Artificial
Vision technique, in order to obtain a proper division of the segments that composed each
reading. The algorithm provides initial data, named seed, from which we can initialize the
Kalman estimation. Thus, providing us with the initial data, essential to get the initialize the
parameters of the circle. Therefore, we need a method to extract the limits of every segment,
existing in the function r(φ), that is, the polar representation of laser readings. In this project,
the applied algorithm for extracting the seed information is based on the explanations from
[Vincken et al. (1997)].
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Figure 4.7: Example for scale-space, set-up with two columns

Let us see an example that might clarify the matter. Assume a case of finding two
columns located in front of the robot, as in figure 4.7. We need to determine that there are
two segments to be analyzed and obtain data from both of them. The difficulty of application
of this procedure grows with the number of segments and their proximity to each other.
Another essential issue to comment is the possibility of an appearance of seeds in between the
two segments, meaning that the initialization of the filter is incorrect, hence, producing not
desirable results.

4.3.1. Introducing scale-space

We need to find a perspective from which the data obtained in the laser rangefinder
is identified as a set of segments. In [Witkin (1984)], the author provides a method, in which,
given a 1D signal, by applying convolution to it we obtain a function of two dimensions F (x, t),

representing a surface in which the signal variations appear as zeros in the first derivatives, ∂
kF

∂ϕk

of the function F . In other words, the fundamental idea of this algorithm is to parameterize the
function space with a single parameter so that one can localize or select interesting variations of
the parameter. The convulsion, based on Gaussians, provides an approach where the different
scales do not add new extremum to the function F ; instead, the parameter variations become
more workable by the elimination of other aspects that might be noisy [Kumar (2018)].

Moreover, scale-space allows us to implement feature analysis without having any
prior information about where the appropriate scale to extract useful information for a given
data set is [Lacy and Thacke (1998)].
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Figure 4.8: The original signal is derived in different levels in order to represent it in different
levels of scale. The different layers maintain the characteristics that are fundamental for the
segmentation.

4.3.2. Process description

Formally, given a 1D function f : R→ R, its scale-space representation is given by:

L(x; t) =
∫
ξ∈R

f(x− ξ)g(ξ)dξ

where g denotes the Gaussian kernel with a variance t that refers to the scale parameter:

g(x; t) = 1
(2πσ2)D/2

e−(x2
1+···+x2

D)/2t (4.1)

By applying the smoothing, using the Gaussian kernel, we obtain a parametric repre-
sentation of the specific signal. The segmentation strategy follows four steps:

1. Blurring: The first step applies the Gaussian kernel from equation 4.1, creating the
different scales. This process, known as convolution, provides us with a smoother repre-
sentation of the signal. It is essential to follow the principle scale invariance. Thus, the
kernel that is used might not affect the characteristics of the signal in the consecutive
scales.



44 4.3. Signal clustering using scale-space

Figure 4.9: The convolved signal from figure 4.7.

2. Linking: The next step of the process is to create connections between the voxels of
the signal that are present at higher levels of scale. Putting together twin voxels from
levels n and n + 1 is necessary for the determination of characteristics that stay in the
scale invariance. By linking all the voxels of the signal, we create a segmentation tree.
The linkage criterion follows an affectiveness approach. The dependency of the affection
between a child and a parent voxel is based on the Gaussian. Hence, the parents are
selected by the level of affection to a possible child, where this affection is measured by:

affection = D ·
∑N
i=1wi · Ci∑N
i=1wi

, with Ci ∈ [0, 1]

where D is the distance and Ci’s are individual linking components.

3. Root labeling: Once the connections between the voxels are created, we can proceed
with the segmentation. Weakly linked voxels, as well as the ones on the top level of the
segmentation tree, are labelled as roots, meaning that a voxel, selected from the scale
tree, represents a single segment at a basic level. Labelling the voxel as root is usually
completed by choosing a heuristic criterion, such as the ground intensity variance.
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Figure 4.10: a) The linking step, where different voxels are connected. b) Voxels with a weak
linkage on top-most level are set as root.

4. Downward projection: Once we have obtained the segmentation tree, we can project
the connections onto the the signal. The linkages are followed downwards in order to
relate the root voxels. Furthermore, all the ground voxels, connected to a common root,
are set to be a single segment. In figure 4.10, voxels 1-0, 2-0 and 1-1 are together in the
same segment.

For a deeper description of the scale-space process applied to the signal refer to
Vincken et al. (1997), where the reader can find a more exhaustive explanation of the concepts
commented above.

The scale-space process has proved a good performance in the experiments of this
project. However, adding complexity to the world could create errors that have not been
observed in this case.

The initialization provided by this algorithm is of great importance since it is the first
step to analyze the signal. Hence, errors in the calculations would most likely lead to the wrong
estimation of the segments present in the readings.

4.4. Parameters initialization

After we have obtained the first points representing a segment, we can continue
with the initialization of the Kalman recursive process. The results of applying the scale-space
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algorithm to the data from figure 4.11, in which we base the first experiment, are shown in
figure 4.11 below.

Figure 4.11: Seed obtained from scale-space process applied on the laser data of the first
experiment.

The points that we obtain are approximately between 1.39 and 1.72 radians. This
approximation covers almost the whole circle from the data set, which gives a good impression
on the segmentation executed by the scale-space approach. The next step is to initialize the
parameters of the circle.

As it has already been mentioned in section 3.3, the initial parameters ρ, θ, and R
of the described model have to be set, to start the iterations of the filter.

4.4.1. Geometrical approach

The most intuitive mathematical way of fitting a circle given certain points is to use
its Cartesian equation and create a system of equations to find the unknowns [ja72]. Looking
back to section 3.1 of the previous chapter, we recall the equation 3.1 of a circle in Cartesian
coordinates:

r =
√

(x− x0)2 + (y − y0)2

The equation has three unknowns, therefore, we need at least three points described
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by (x, y) → (x1, y1), (x2, y2), (x3, y3). Having the three points, we define the system of
equations:

(x1 − x0)2 + (y1 − y0)2 − r2 = 0
(x2 − x0)2 + (y2 − y0)2 − r2 = 0
(x3 − x0)2 + (y3 − y0)2 − r2 = 0

(4.2)

Let us recover the points from the seed obtained in the previous section. And apply
those to the system of equations to see in a practical example, based on the experiment
described in section 4.5.

However, before, we must consider the fact that the values, determining the seed, are
in Polar coordinates. It exhibits the first disadvantage of this method. From a mathematical
perspective, the transformation between coordinates (e.g., Cartesian to Polar), might not
imply a significant difference. However, in computational terms, this transformation can have
a notable impact on performance. Having the aforementioned in mind, we consider three points
from the seed: we take the initial value, the last one, and the one in the middle.

First point→ r(1.3962) = 1.49 −→ (x1, y1) = (0.26, 1.46)

Middle point→ r(1.55) = 1.28 −→ (x2, y2) = (0.026, 1.27)

Last point→ r(1.72) = 1.54 −→ (x3, y3) = (−0.22, 1.52)

The transformations above are computed by using the Polar to Cartesian convertion
as follows:

x = r · cosφ

y = r · sinφ

In the following, we substitute the corresponding values from equation 4.2:

(0.26− x0)2 + (1.46− y0)2 − r2 = 0
(0.026− x0)2 + (1.27− y0)2 − r2 = 0
(−0.22− x0)2 + (1.52− y0)2 − r2 = 0
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By subtracting the first equation from the second one and from the third one, we
obtain a system of two lineal equations:

−0.47x0 + 0.38y0 − 0.76 = 0

0.96x0 − 0.12y0 + 0.161 = 0

Therefore, we have found the coordinates of the center of the circle as:

(x0, y0) = (0.16, 1.76)

By equation 3.1 we calculate the radius using the first point considered:

r =
√

(0.26− 0.16)2 + (1.46− 1.69)2 = 0.31

Recall that the circle described in section 4.5 in Cartesian coordinates has center
coordinates (xc, yc) = (0, 1.5) and radius = 0.25. We observe that the obtained results differ
from the expected ones. By assuming that we have more than three points in the seed, we try
to improve the initial estimation using an approach based on the calculations done above.

Figure 4.12: Comparison of an expected circle(blue) and obtained one(red) by three randomly
selected points.

The error in the initial estimation is related to two main factors. The first one is
that the points contained in the seed have an associated error, therefore, if we would have
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no error and the description of the three points would be exact, we would obtain the exact
parameters that define the circle. The second one comes with the computational application;
namely, when representing geometrical points at the programming language level, we operate
with floating-point numbers, known for having limitations in terms of truncation and exact
calculus.

Following the idea proposed by [Muñoz Bañón (2016)] and inspired by the calculations
of lineal segments by [Cuadra Troncoso (2011)], we make use of the advantage of having seeds
of more than three points. By having a larger data set, we compare the estimations done by
combinations of different individuals of the seed. Throughout experimentation with different
circles, this method will prove to be more reliable. However, the existence of outliers is still a
concern.

Algorithm 2 Circle initial estimation algorithm based on three points calculations
estimate_circle_three_points(seed: [()]):
# Create an array of choices with every point from the seed
choices = [seed]
# For every combination of three extract three random points and remove from the choices
list
for all elements in choices do
firstPoint = random(choices)
choices.remove(firstPoint)
secondPoint = random(choices)...
# Calculate the estimation based on three points extracted and add to list
estimation = estimate(firstPoint, secondPoint, thirdPoint)

end for
return mean(estimation)

Algorithm 2 shows a high-level implementation of the method for initializing the
parameters of the circle. First, we create a list of possible points, obtained from the seed:
we extract the points as triplets and remove them from the original set so that they are not
reused. Then, for the calculation of parameters xcenter and ycenter, using the function estimate,
we extract the unknowns from the system of equations 4.2, as follows:

xc = (x2
2 − x2

1 + y2
2 − y2

1) (y2 − y3)− (x2
2 − x2

3 + y2
2 − y2

3) (y2 − y1)
2 ((x3 − x2) (y2 − y1)− (x1 − x2) (y2 − y3))

yc = x2
2 − x2

1 + y2
2 − y2

1 + 2a (x1 − x2)
2 (y2 − y1)
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Then, the radius is calculated by equation 3.1 given the first point of the triplet
of points defined above. Finally, we return the means of arrays formed by the parameters
estimated in each iteration. The results of the first experiment, as displayed in figure 4.13,
improves in comparison with what we had in figure 4.12. By computing the functions, given
the seed extracted in the scale-space phase, we obtain:

ρ = 1.54, θ = 1.6, R = 0.21

Figure 4.13: Comparison of expected circle and obtained one by function in algorithm 2.

The main advantage of the function proposed here is that we can execute the iter-
ative process as many times as we want. Hence, we can obtain approximations by doing as
many combinations as needed. Nevertheless, what this function does not have considered is
the existence of outliers, that can lead to unexpected results. It is crucial to have a value,
representing the confidence that we have on the fitting process. For instance, in the next
section, we present the linear square regression method, where the residual can be an indicator
of how good the model fits.
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4.4.2. Least-squares Circle Fitting

The method described in the previous section does not deal with the presence of
outliers. The estimation, based on randomly chosen points, could be interpreted as a hard-
coding function. Ideally, supposing that we obtain the points with no associated error, the
geometrical approximation would be satisfactory for estimating the parameters of the circle.
On the contrary, we contemplate an experimental situation with the need for a more statistical
approximation. In [Bullock (2017)] the author proposes a method for estimating the circle
parameters in R2.

Formally, given a set of points in R2 → {(xi, yi) |0 ≤ i < N}, we look for the circle
that fits the best in the points. We define x and y:

x = 1
N

∑
i

xi and y = 1
N

∑
i

yi

Also, we define ui = xi − x and vi = yi − y. The problem is, after solving the first
in the coordinates (u, v), transform it to (x, y).

The circle we want to estimate has center (uc, vc) and radius R. Following the
philosophy of the least-squares algorithm, we minimize the square residual given by:

S =
∑
i

(g (ui, vi))2

where g(u, v) = (u− uc)2 + (v − vc)2 − α→ α = R2.

In order to accomplish the minimization, we have to obtain the partial derivatives of
S(α, uc, vc):

∂S

∂α
= 2

∑
i

g (ui, vi)
∂g

∂α
(ui, vi)

= −2
∑
i

g (ui, vi)

The partial derivative of α, ∂S
∂α

, equals to 0 if and only if:
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∑
i

g (ui, vi) = 0 (4.3)

Continuing with the partial derivative uc,
∂S

∂uc
:

∂S

∂uc
= 2

∑
i

g (ui, vi)
∂g

∂uc
(ui, vi)

= 2
∑
i

g (ui, vi) 2 (ui − uc) (−1)

= −4
∑
i

(ui − uc) g (ui, vi)

= −4
∑
i

uig (ui, vi) + 4uc
∑
i

g (ui, vi)︸ ︷︷ ︸
=0 by equation 4.3

Thus, by equation 4.3, the derivative ∂S

∂uc
= 0 if and only if:

∑
i

uig (ui, vi) = 0 (4.4)

Similarly, ∂S
∂vc

= 0 if and only if:

∑
i

vig (ui, vi) = 0 (4.5)

Now, by expanding equation 4.4, we have:

∑
i

ui
[
u2
i − 2uiuc + u2

c + v2
i − 2vivc + v2

c − α
]

= 0

We define Su =
∑
i

ui, Suu =
∑
i

u2
i , etc. and substitute in the above:

Suuu − 2ucSuu + u2
cSu + Suvv − 2vcSuv + v2

cSu − αSu = 0

Having Su = 0, we simplify the previous equation to:
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ucSuu + vcSuv = 1
2 (Suuu + Suvv) (4.6)

By doing the same with equation 4.5, we obtain:

ucSuv + vcSvv = 1
2 (Svvv + Svuu) (4.7)

Solving equations 4.6 and 4.7, we obtain (uc, vc) and, by expanding equation 4.3, we
obtain the radius:

∑
i

[
u2
i − 2uiuc + u2

c + v2
i − 2vivc + v2

c − α
]

= 0

(xc, yc) = (uc, vc) + (x, y)

Having Su = 0 and Sv = 0:

α = u2
c + v2

c + Suu + Svv
N

(4.8)

where R =
√
α.

The mathematical description of this method might seem complicated. However, in
a higher-level description, we provide a model formula of the circle by equation 3.1 and then
obtain the partial derivatives. Thus, when the derivatives are equal to 0, we minimize the
square residual and find the estimation of the parameters.

The algorithm 3 shows that the implementation of this method is straightforward and,
as observed through experiments, its performance is better than in the geometrical proposal
(indicated in algorithm 2) in terms of time complexity. One notable disadvantage of this method
is that the presence of outliers, due to the error associated with the signal, can provoke that
the linear system (line 13) does not have a solution. In this case, we catch the exception and
return a big symbolic value as residue. Thus, we clarify that the estimation has not obtained
a solution.

residue =
∑
i

(Ri −Ri)2 (4.9)
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Algorithm 3 Circle estimation based on least-squares.
1: estimate_circle_least_squares(x, y):
2: # Calculate mean of x and y
3: x = mean(x)
4: y = mean(y)
5: # Calculate u and v
6: u = x− y
7: v = y − y

# Calculate the S components
8: Suv = ∑(u ∗ v)
9: Suu = ∑(u2)

10: Svv = ∑(v2)
11: Suuv = ∑(u2 ∗ v)
12: ...

# Solve system of equations of s components based on equations 4.6 and 4.7.
13: uc, vc = solve_equation(S...)
14: xcenter = x+ uc
15: ycenter = y + vc
16: radius =

√
(x− x2

center) + (y− y2
center)

17: radius = mean(radius)
18: residue = ∑(radiusi − radius)2

19: return ρ, θ, radius, residue

Nevertheless, we define an indicator of the performance of the estimation, the so-
called residue, calculated by equation 4.9. It is given by the distance from each point to
the estimated centre, extracted from the mean of the distance from each point to the centre
(line 18). In the code it makes us realize whether any outlier has diverged the estimation.
Thus, a small residue would indicate a good estimation, and a big one would indicate that
the estimation has been not prosperous. The terms big and small are, of course, relative and
require a research for each particular experiment.

Having a fitting indicator represents a significant advantage in comparison to the
geometrical method.

Let us consider an example with some points extracted from the seed, from section
4.2, and show the process of the previously shown calculations. The number of points N can
be as large as we want.

From table 4.1 we have the averages x = −0.066 and y = 1.39. Also, we have
Suu = 0.15, Suv = −0.013, Suuu = 0.0075 , Svvv = 0.00046, Svuu = 0.009, Suvv = −0.0038.
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ρ θ xi yi ui vi
1.49 82 0.20 1.47 0.26 0.08
1.30 87 0.06 1.29 0.126 -0.1
1.33 95 -0.11 1.32 -0.04 -0.07
1.40 98 -0.19 1.38 -0.124 -0.01
1.54 101 -0.29 1.51 -0.224 0.12

Table 4.1: Least-Square Example table showing randomly picked points from the seed obtained
in the first experiment, section 4.2.

Hence, from equations 4.6 and 4.7, we obtain the linear system as follows:

 0.15 −0.013
−0.036 0.0048

  uc

vc

 =
 0.0036

0.14

 (4.10)

Thus, we have (xc, yc) = (−0.029, 1.54), and from equation 4.8 we calculate that
R =

√
α = 0.24. As we see, with such a small amount of points we obtain the estimation

that is quite precise.

Figure 4.14: Comparison of expected circle and obtained one by least square method. The
blue circle is the expected one, whereas the red circle is the obtained one.

The election of one of the two above proposed methods, namely, the geometrical
approach and the least-squares circle fitting, is an essential step towards the further process of
estimating circles. As we see later, the initial estimation affects the further estimation of the
Extended Kalman filter significantly. To this end, in the next section, we present the initial
estimation by both methods of four different circles. It might be representative when we apply
the SLAM approach in the following chapter 5.
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4.5. Initial estimation comparison

Each experiment shown in this section uses the approaches presented in the previous
two sections, particularly, the geometrical approach and the least-squares circle fitting. For
every circle proposed, there are 400 repetitions, and the results of the real values are compared.
Moreover, the error added to the material has a normal distribution with σ = 0.02meters.

The first circle we consider is the one from the example of the first experiment,
presented in figure 4.5. As we recall, the real parameters are: ρ = 1.5, θ = 1.5758, and
R = 0.25. The results are shown in table 4.2:

∆ρ ∆θ ∆R
Geometrical (Min) 0.000264 0.001419 0.0028
Geometrical (Max) 1.10 0.93 0.62
Geometrical (Avg) 0.12 0.066 0.078
Least Squares (Min) 0.00024 0.00063 0.00024
Least Squares (Max) 0.0625 0.015 0.04422
Least Squares (Avg) 0.027 0.008 0.018

Table 4.2: Results for first experiment using both initial parameters estimation approaches.
The factor ∆ρ indicates the error of the parameter rho, where as the ∆θ indicates the error
in of parameter θ and so the ∆radius the error of the radius. The section geometrical shows
the results of applying the algorithm 2. The leas squares sections shows the results of applying
the algorithm 3.

In table 4.2, showing the results of the first experiment, we already notice that for
the minimum in the estimation, the error is more or less similar for both approaches, with a
slight difference in favour of the least-squares method. However, in the least-squares method,
the maximum gets reduced in a significant way. Hence, so does the average, proving that in
this case, this approach is much more consistent.

The second circle we consider has different parameters with respect to the angle θ,
specifically, the parameters are: ρ = 1.41, θ = 0.78, and R = 0.25.
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Figure 4.15: Schema of the second circle estimated

∆ρ ∆θ ∆R
Geometrical (Min) 0.0019 0.0007 0.00039
Geometrical (Max) 1.25 0.95 1.29
Geometrical (Avg) 0.16 0.089 0.10
Least Squares (Min) 0.00061 0.0009 0.000240.011
Least Squares (Max) 0.090 0.022 0.096
Least Squares (Avg) 0.036 0.015 0.06

Table 4.3: Results for second circle estimated.

The results, presented in table 4.5, follow the same considerations as in the previous
experiment. The maximums in the geometrical approach grow slightly due to the size of the
seed provided by the scale-space. In the case of the first experiment, we have obtained a larger
data set than in the second one.

In the third experiment, we also account those considerations. At the same time, we
try to update the radius of the circle in order to obtain a better understanding of what happens
when we experiment with the sizes. Therefore, we define the parameters of the third circle as
follows: ρ = 1.00, θ = 0.0, and R = 1.00.
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Figure 4.16: Schema of the third circle estimated.

In this case, in the geometrical approach, the maximum error grows. The existence
of larger data in the seed means more probability of finding outliers that can deteriorate the
estimation process. On the contrary, the estimation based on least-squares seems to provide
better results, most likely because of the larger data set.

∆ρ ∆θ ∆R
Geometrical (Min) 0.0009 0.00014 0.00028
Geometrical (Max) 2.46 0.92 3.33
Geometrical (Avg) 0.40 0.21 0.31
Least Squares (Min) 0.0000132 0.00138 0.024
Least Squares (Max) 0.07 0.012 0.10
Least Squares (Avg) 0.018 0.007 0.0638

Table 4.4: Results of the third experiment.

In the last, fourth experiment, we reduce the size of the circle and place it further
from the robot. This experiment aims to see how the initialization behaves with a much smaller
data set. The parameters of this column with respect to the robot are: ρ = 4, θ = 1.57, and
R = 0.25.
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Figure 4.17: Schema of the fourth circle estimated.

The results are provided in table 4.5. The outcomes given by the geometrical proposal
are far from desirable; the small data set can not give a right prediction of the distance and
radius in the maximal error case. On the contrary, the least square method, even though it
increases is minimums and maximums, still provides a better estimation.

∆ρ ∆θ ∆R
Geometrical (Min) 0.0002 0.00004 0.00035
Geometrical (Max) 7.001 1 9.003
Geometrical (Avg) 0.37 0.06 0.39
Least Squares (Min) 0.000037 0.00130.0039 0.00010
Least Squares (Max) 0.2269 0.0207 0.14
Least Squares (Avg) 0.05 0.01 0.022

Table 4.5: Results of the fourth experiment.

As we have seen from the four experiments, presented in this section, the least-
squares circle fitting copes better with the primary estimation task. There are two reasons to
choose this method as the main approach for the initialization of the parameters. The first
is the high performance and easy implementation, shown in algorithm 3. The second reason
comes with the stability, despite the lower minimums provided by the geometrical approach in
the experiments above, the least-squares fitting shows a better average and does not get to
estimate such significant errors on either large or small data sets.
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4.6. Extended Kalman Filter

In previous sections, we have defined the initialization of the algorithm. We have
seen that the error and different aspects such as the position or the size affect directly on the
estimation process. In section 3.3 we described a first implementation of the Kalman Filter
proposed by Muñoz Bañón (2016). In this section, we will present a new proposal for the
design of the Kalman Filter. This new proposal is inspired by the idea of using Kalman Filter
for localization of the robot in Choset (2016) and Stachniss (2015). This implementation of the
Kalman Filter imitates a localization problem on the data obtained from the laser rangefinder.
In this respect, we understand the input r(φ) as the erroneous position to correct. While
applying the filter, we adapt the parameters of the circle to a more consistent approximation
with the received measures. In other words, the different points will be treated as if it were
the robot that draws the circular trajectory, and this points where a GPS gives the position.

4.6.1. Kalman Filter design

Using words, it seems difficult to understand, that is why in figure 4.18 we show a
visualization of the state of the Kalman Filter in progressive steps. In this figure we visualize
the estimation of the circle described by the parameters ρ = 1 , θ = 1, 57 and radius = 0.25.

Figure 4.18: A visualization of the the different iterations occurring in the Kalman Filter. The
blue line is the real circle, the red line is the estimation given by the algorithm. The green dots
represent the inputs from the laser.
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Figure 4.18 shows two crucial things to be noticed. The first one is that the size of the
data set is essential when adjusting the parameters. Thus, a small data set will complicate the
estimation process. The last reminds to the machine learning algorithms when more data for
training might probably lead to better results. The second aspect to consider is the dependence
of the filter with the input data from the laser(green dots). If we take a closer at image 3, we
see that a bit more deviated point produces a significant change in the estimation, in this image
and the following. Although, bit by bit, the estimation stabilizes at its last steps. Hence, the
presence of outliers must be examined, to the point that we must ask ourselves if it is worth to
discard these points. However, let us start with the formal definition of the Kalman filter that
leads to this visualization. To accomplish this, we need to defined the different parts explained
in section 2.4.2.

State variables, as we did before, the first step when implementing the Kalman
Filter is to define which ones will be the state variables, this is, the state estimate vector:

x =


r
ρ

θ

R

 =
[
rρθR

]>
(4.11)

where r is the distance with the detected point at each iteration and the others at the polar
parameters of the circle given in 3.2.

The process model, the transition function that defines how the dynamic system
should change from one step to the next one, is the identity matrix of four elements. The
parameters in the transition define the change. So we obtain the identity matrix.

F =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



The next step is to define the measurement model, the function h that calculates
the expected values based on the estimated parameters follows the formula 3.2.

The Jacobian proposed is the same as in equation 3.6. Adding of course, a 1 at the
beginning that is to represent the input r:
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Hn =



1
cos (φn − θn−1) + ρn−1 sin2(φn−θn−1)√

R2
n−1−ρ

2
n−1 sin2(φn−θn−1)

−ρn−1 sin (φn − θn−1)− ρn−1 sin(φn−θn−1) cos(φn−θn−1)√
R2

n−1−ρ
2
n−1 sin2(φn−θn−1)

− Rn−1√
R2

n−1−ρ
2
n−1 sin2(φn−θn−1)


(4.12)

We must remember that the measurement has to be defined by the partial derivatives
in order to be able to linearize the model; this is precisely the innovation proposed on the
Extended Kalman Filter.

It only affects the r parameter in the state vector 4.11. Adding the noise into the
matrix, Q smooths up the estimation of the parameter r and hence the estimation of other
parameters [Wakar (2016)]. Finally, the assumed error on the initialization shown by the initial
covariance matrix P0 is the identity matrix, and we do not assume an error since the model is
given directly by the parameters which are not correlated. Since we have assumed an error of
σ = 0.02 in the inputs provided by the laser rangefinder, the noise associate to the measurement
is:

Q =
[
σ2

range

]
=
[

0.022
]

and initial P0:

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Now that we have defined the different components necessary for the estimation, we
can show the process of the Extended Kalman Filter. The implementation is based on some
examples of robot localization from literature, more specifically in [balzer82 (2018)].

As we can see in algorithm 4 the covariance calculation represents the main update.
The other equations are similar to the generic ones shown in the last chapter. The new
covariance matrix update proves to be more numerically stable than the generic on what
observed through different experiments.
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Algorithm 4 Kalman recursive function based on navigational problems.
def ekf(ri,φi,xi−1):
#returns the Jacobean based on r and phi values from equation 3.6
Hi = Jacobean(ri,φ)
# calculate the residual
ỹi = ri −Hi(xi) # innovation covariance
Si = HiPi−1H>i + Ri

# kalman gain
Ki = Pi−1H>i S−1

i

# update the state estimate
x̂i = x̂i−1 + Kiỹi
# modified update covariance compare with equation 2.20
Pi ←

(
I−KH) ∗Pi−1 ∗ (I−KH>)

)

4.6.2. Results

If we remember the generic description of the Extended Kalman Filter, specifically
equation 2.14, we see that there is a component base on the control input u. One essential
problem we have in what respects the circle fitting is that we do not possess any control input
since the parameters are strictly defined from the model. During the project many approxima-
tions have been made trying to palliate this problem. A complication on the initialization of
the parameters will lead to a presumably bad estimation of the circle. Figure 4.18 shows the
estimation when the initial parameters are accurate with an error of ±0.1(threshold observed
after various experiments), this is 10 cm. However, when the error in the initialization grows,
the Kalman estimation tends to worsen the results. Let us see what happens when we initialize
the algorithm used to visualize figure 2.14 with a bad initial estimation. This means that if
we have a real representation by parameters ρ = 1 θ = 1.5758 and R = 0.25, we take an
illustrative not correct initial estimation of ρ = 0.87 θ = 1.4 and R = 0.20.

Figure 4.19 shows that the initial estimation tumbles a bit around the real circle(red
line vs blue line). However, it stabilizes in the last image. The last suggests that if we would
have more points provided by the readings and the seed, probably the estimation could be
better. In many cases, the complex values, which result from the model equation 3.2, have no
relation to the real circle.
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Figure 4.19: A visualization of the Kalman Filter with a wrong initialization
.

∆ρ ∆θ ∆R
Least Squares (Min) 0.001 0.00002 0.0014
Least Squares (Max) 0.058 0.020 0.048
Least Squares (Average) 0.027 0.08 0.018
Kalman(Min) 0.0007 0.007 0.0013
Kalman(Max) 0.0083 0.040 0.12
Kalman (Average) 0.023 0.014 0.019

Table 4.6: Results of applying the Kalman Filter on first experiment 4.5. The section on
the top shows the calculations performed by the leas-squares method. The section below the
results obtained in the Kalman estimation.

Table 4.6 seems to indicate what explained in previous paragraphs. As already said,
it seems the Kalman Filter works properly within a certain threshold of the initial estimation.
If the initial estimation does not provide a correct approximation, the filter does not provide
correct results. If, on the contrary, the initial estimation correctly approximates the real circle,
the filter does not represent a real improvement. Lastly, there are some intermediate values
of the initial estimation, where the Kalman Filter tends to improve the initial estimation. The
three left experiments illustrate the same tendency.
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∆ρ ∆θ ∆R
Least Squares (Min) 0.003 0.000020 0.00060
Least Squares (Max) 0.076 0.027 0.092
Least Squares (Average) 0.036 0.08 0.06
Kalman(Min) 0.000222 0.006 0.0311
Kalman(Max) 0.067 0.1 0.099
Kalman (Average) 0.040 0.02 0.03

Table 4.7: Results for the second experiment

∆ρ ∆θ ∆R
Least Squares (Min) 0.00014 0.00675 0.02917
Least Squares (Max) 0.05 0.0270 0.095
Least Squares (Average) 0.017 0.013 0.062
Kalman(Min) 0.00023 0.006 0.0311
Kalman(Max) 0.07 0.10.017 0.0990
Kalman (Average) 0.002 0.020.013 0.06

Table 4.8: Results for the third experiment.

∆ρ ∆θ ∆R
Least Squares (Min) 0.0006 0.01121 0.0007
Least Squares (Max) 0.19 0.025 0.12
Least Squares (Average) 0.06 0.016 0.017
Kalman(Min) 0.0009 0.01 0.00005
Kalman(Max) 0.19 0.025 0.12
Kalman (Average) 0.059 0.016 0.017

Table 4.9: Results for the forth experiment.

Figure 4.20 shows the tendency of the errors in the parameters of the circle, when the
initial estimation has an error of approximately 0.1 for each parameter. As explained before,
the Kalman Filter tends to improve the solution when the initial estimation is not so precise.
On the contrary, when the initial estimation improves the kalman filter tends to worsen the
results, see figure 4.21.
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Figure 4.20: Visualization of good tendency of the parameters during kalman iteration, when
the initialization has an error of approximately ±0.1. The left image shows the tendency follow
by parameter ρ, the image in the middle the parameter θ and the last image parameter radius
.

Figure 4.21: Visualization of a bad tendency of the parameters during Kalman iteration. When
initialization has precise.
.

4.6.3. Analysis

There are four significant outcomes that we can extract from the analysis performed
on different experiments. These outcomes serve as a summary of the ideas commented in this
chapter, and also they might be useful for future research.

The Kalman Filter is a recursive process that requires an initialization of the parameters
that form its model. This initialization has a crucial influence on the final results obtained
by the filter. In this chapter, we have provided a method, which average errors show
that it procures reasonable stability.
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In many applications the Kalman Filter obtains data as a control input, and this is useful
to provide stabilization of the filtering process. Without a control input, the filter depends
primarily on the measurement function; this provokes that the presence of outliers might
worsen the estimation considerably. A possible solution for this is to use more than one
sensor and apply data fusion techniques in order to palliate the effect of the noisy inputs
with another source of measurement.

The detection of breakpoints, this is , the limits of the circular segments is a crucial step.
The presence of data, which does not belong to the segment we are estimating, worsens
the results of the application.

The last and most important aspect refers to the equation used by the model. The
polar representation of the circle contains a square root that, on some occasions, gives a
complex number as a solution. This issue has two undesirable effects on the performance
of the filter. The first one is that, in some cases, the calculations based on complex
numbers has its limitations from a computational point of view. Moreover, the apparition
of complex values can lead to indeterminacy in the calculations of the covariance matrix.
The solution we have provided for this is, as commented, to modify the generic formula
which updates this matrix.

The last point commented may have a solution with a profound modification of the filter
design. Thus, updating the model and basing it on the Cartesian representation can represent
a solution [Nixon (1993)]. Another possible approach is to use the Unscented Kalman Filter.
The last shows a more stable approximation in many examples of the literature. We have tried
to provide a solution using these methods. However, the mathematical knowledge required
proved too high.

Now that we have analyzed the performance of the Kalman Filter. We can take a
step forward and consider what would happen if we allow the robot to move. That is the
reason why in the next chapter, we present two experiments where circular objects, located
around the scene, need to be estimated by the robot.
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Chapter 5

SLAM based Circle Fitting

In the previous chapter, we have seen an approximation of how we can perform the
estimation of a circle. However, until now in the experiments, we have considered only a static
situation, where the robot does not move, and there is solely one column. In real life, we
want to be able to approximate circular elements, such as columns and trees, in a landscape
environment. Aiming to follow the philosophy of adding more complexity in each step, in
this chapter, we show how does the algorithm, presented in the previous chapter, behave in a
SLAM problem. First of all, we present the scenes or worlds for the experiments. Second, we
explain the navigation algorithm used for the robot to move around and explore, following by
an explanation of the two methods used for estimating the position of the robot. The next
step is the most representative one: we proposed a process for estimating and creating a map
composed by circular objects. Finally, we show the results of the estimation for the two scenes
proposed.

5.1. Scenes disposition

The scenes, proposed in this chapter, are built in the simulator V-REP. This simulator
provides an intuitive user interface. Moreover, it allows us to create different basic shapes, e.g.
cylinders, from scratch.

At first, we consider an outdoor scene. The need for estimating circular segments
appears in situations where we have trees of different sizes. Not only terrestrial robots but
also aerial ones find themselves in the circumstances, where recognizing specific patterns in
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the readings is necessary. Luckily, in this experiment, we will consider only the two dimensions,
x and y, of the Cartesian system, as we have been doing throughout the paper.

Figure 5.1: The robot in the backyard with a tree set up. The different trees are located to
cover some observed corner cases.

The figure 5.1 shows a simple disposition of trees in the landscape. Nevertheless, the
trees are distributed in a way that corner cases, appeared during the design process, can be
tested. The attentive reader might have realized that the size of trunks does not change much
from one tree to another. The reason we do not add thick trees is clarified later in section
5.4.4. Although, in real situations, broad circular segments should be expected. A necessary
characteristic of trees model provided by V-REP is that the trees do not draw a perfect circular
shape at the bottom of there trunks, which has to be considered since the data obtained by
the laser rangefinder does not represent a real circle.

Figure 5.2: The robot in the office with a column set up.
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The next scene, shown in figure 5.2, represents an indoors office with a column set
up. On the contrary of what happened with the trees, the column models are primitive shapes
based on cylinders [coo (2009)]. It means that the error, associated with the readings, is not
so high, hence, we expect better approximation. Once again, the presented columns and an
indoor plant are not disposed randomly but have a meaning, related to the classification of
features and breakpoints detection, that are discussed further in this chapter. Although the
second scene is not a realistic setup for an office, adding more rectangular elements, such as
tables or chairs, leads to a problem of splite classification.

5.2. Navigation

Once we have described the disposition of both scenes, we explain the algorithm we
use in order to make the robot explore the surroundings. The aim of this experiment is not
the navigation algorithm that rules the direction of the robot. However, we need a simple
navigational model that can avoid the obstacles and wander around in order to collect the
different features to be analyzed. In this respect, in this chapter, we consider two navigation
approaches.

5.2.1. Braitenberg algorithm

The first algorithm we consider to make the robot move around is an algorithm that
in the simplest form is purely reactive (see section 2.2.2). This algorithm is designed by the
neuroscientist Valentino Braitenberg, and it is based entirely on the reactive paradigm. This
approach is used for obstacle avoidance. The input from the rangefinder sensors affects the
movement of the agent directly [Gochev and Nadzinski (2014)].

Formally, we describe an array of weights, with the length of the array of sensors
we have. The measured distance from each sensor affects the motor velocity proportionally.
Hence, as the distance is getting smaller with respect to a specific obstacle, the wheel on the
same side accelerates depending on the weights, assigned in order to avoid the obstacle. The
velocity of each motor is updated by the following equation:

vm = vm + wc · d
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where wc is the weight coefficient assigned to the sensor that provides normalized data, d and
vm references the velocity of the motor we update.

In our case, the robot PIONEER P3DX has by default sixteen ultrasonic sensors.
Therefore, we need an array of sixteen weights for each of two engines situated in the left
and right wheels. The value, given to this array of weights, determinates how slow or fast the
avoidance is. Moreover, we define a maximum detection distance for the robot not to seem
oscillatory.

The application of the Braitenberg algorithm has the advantage of being easily pro-
grammed and lightweight. On the other side, the disadvantage is that the robot randomly
wanders around avoiding objects.

5.2.2. Graph based approach

The Braitenberg algorithm works correctly for obstacle avoidance. However, it does
not set a specific path for the robot. We need the robot to move in a more determinate way..
Thus we indicate the robot which parts of the world it has to visit.

Figure 5.3: The graph representing the path the robot follows during the indoor experiment.
The robot follows the alphabetical order of the nodes.
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In figure 5.3 we see the navigational path the robot takes when the experiment is
running. A graph is defined with different nodes in alphabetical order. The robot will follow
those nodes accomplishing a successful overview of the scene. Of course in order to obtain
this graph we need previous knowledge and the close world assumption, which exits in the
hierarchical paradigm.

In order to accomplish the movement of the robot from one node to another we need
three essential functions.

1. A function that returns to the robot distance to the next node. By the distance, we
mean the euclidean distance between the point (node) and the robot location:

distance =
√

(nodex− robotx)2 + (nodey− roboty)2

The positions of the robot in this and the next function are obtained from the simulator
and are absolute, meaning that there is no error associated to both measures, i.e. the
position of the robot and the node.

2. The angle θ the robot has with respect to the node is obtained as:

θ = arctan ·2(nodey− roboty
nodex− robotx

)

The calculation uses an extended function of the trigonometrical inverse for the tangent
called atan2 [architectpianist].

3. A function that relates the angle with the velocity of the wheels is proposed in the
following. We need to accelerate one of the wheels in order to make the robot orientate
directly to the node. Once the angle they form is between certain threshold, 0 to 20
degrees in this case, we set the two wheels to the same velocity. Thus, the robot will
move directly towards the node.

Although the proposed navigation system is straightforward, the aim of this paper it
is not to study the different navigation models that could be applied. We have implemented
a potential field based algorithm [Siddiqui (2018)]. However, the performance requires by this
algorithm interfered with more important aspects of the experiment.

Nonetheless, the combination of the graph approach with the Braitenberg obstacle
avoidance is sufficient for the goals of the experiment. This combination sets the navigation
approach into the hybrid paradigm from section 2.2.3.
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5.3. Localization

Once we have set up experiments with a moving robot, as the next step, we move
on to the first part of the SLAM, particularly, the localization. In this section, we show three
techniques to obtain the absolute position of the robot. The first one is based on the Odometry,
explained in section 2.3.2. The second one tries to solve the errors of the first approach by
adding a GPS. Finally, the last approach we discuss is the localization for indoors experiments
with the Extended Kalman filter.

5.3.1. Dead reckoning

The first approach proposed for localizing the robot is based on the information
obtained by the encoders of the wheels [Maderia Cardoso (2017)]. Each wheel has an encoder
that can be used to extract its velocity by the next equation:

V = ∆θ
∆ time ·R (5.1)

where ∆θ is the increment in the angular position of the encoder, ∆time is the time increment,
and R is the radius of the wheels. In our case R = 0, 0975m, as determined in figure 4.1.

Once we obtain the velocity of both wheels of the robot, we can calculate its linear
and angular velocity by the following equations:

V = Vr + Vl
2

ω = Vr − Vl
D

where Vr and Vl are the velocity of the left and right wheel respectively, and D is the axis of
the robot. In our case D = 0, 381m (see figure 4.1).

In this respect, we define the state vector of the robot given by its position in the
Cartesian coordinates and its bearing:

x =
[
x y θ

]T
(5.2)



Chapter 5. SLAM based Circle Fitting 75

Now we have to relate the information about the velocity obtained in equation 5.1
with the position and bearing angle.

Figure 5.4: The disposition of the wheels showing mathematical angles involved [Wakar
(2016)]. Alpha is the angle the wheel draws when turning.

In figure 5.4 we see a front wheel bearing with an angle α. Having θ, which is the
robot absolute orientation, we can define the position x and y before the robot turns as:

xt−1 = x−R sin(θ)

yt−1 = y +R cos(θ)

And after the robot turns, the new state vector is given by:

xt = xt−1 +
(
∆s · cos

(
θt−1 + ∆θ

2

))
yt = yt−1 +

(
∆s · sin

(
θt−1 + ∆θ

2

))
θ = θt−1 + ∆θ

(5.3)

where the component ∆s is:

∆s = Vr ·∆t+ Vl ·∆t
2 (5.4)

and ∆θ:

∆s = Vr ·∆t+ Vl ·∆t
2 · robotaxis

(5.5)

In both equations above, ∆t is the increment of time between one calculation and
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the next. In our experiments ∆t = 0, 1 seconds.

Having the motion equations defined, we can already develop the algorithm that will
give us the consecutive positions of the robot. The implementation has to have in account
that the transformation of angles might be incorrect. A critical aspect from equation 5.1 is
that the sign of the velocity depends directly on the increment of the angle of the encoder.
If the absolute angle is greater than π, then the encoder has changed the spin direction (it
occurs when the robot is turning).

Figure 5.5: The results of dead reckoning for indoor scene(left) and outdoor scene(right). The
blue line shows the real path travelled by the robot. The red line the path estimated with
dead-reckoning.

Figure 5.5 shows the results of applying the previous calculations to the scenes de-
scribed in section 5.1. The blue line represents the real path travelled by the robot, and the red
one is the path travelled according to the dead reckoning. The robot has travelled for thirty
seconds, considering ∆t = 0.1.

The problem of this approach is that the small errors accumulate in each step of
the execution become larger and larger. Since no control input whatsoever is given, the error
continues to grow until the end of the execution. The error in odometric calculations can occur
due to many factors. In this experiment, we have no bumps or discontinuities on the floors,
but there is an error associated with the encoder position estimation.
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5.3.2. GPS based Extended Kalman filter

Continuing with the localization of the robot, we present a solution for the outdoors
experiment. In this section, we explain the modelling using the Extended Kalman filter, from
which we normalize and filter the noisy data, obtained from a GPS so that we can extract a
more accurate position of the robot. This approach, described in [Sakai (2019)], adapts well
to the needs and description of the outdoors experiment.

Let us start by defining the state vector that represents the estimation progress in
each iteration of the filter. We do this by adding the velocity to the equation 5.2:

x =
[
x y θ vt

]T
(5.6)

The next step is to define the motion model, which describes the transition from one
position to the next one:

xt+1 = Fxt + But

With respect to ut, we have the control input:

ut = [vt, ωt]

where v is the speed of the robot provided by the speed sensor and the gyro sensor that gives
us information about the orientation (this value could also be provided by the odometry).

The matrix B that relates the control input with the state transition is defined as:

B =


cos(φ)dt 0
sin(φ)dt 0

0 dt

1 0



Now, as we explained in section 2.4.2, the EKF linearizes the non-lineal equations by
calculating the Jacobian matrix:
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JF =



dx
dx

dx
dy

dx
dφ

dx
dv

dy
dx

dy
dy

dy
dφ

dy
dv

dφ
dx

dφ
dy

dφ
dφ

dφ
dv

dv
dx

dv
dy

dv
dφ

dv
dv



One may notice that each (i, j) component of the matrix JF describes the partial
derivative of the components of equation 5.6. The result is then:

JF =


1 0 −v sin(φ)dt cos(φ)dt
0 1 v cos(φ)dt sin(φ)dt
0 0 1 0
0 0 0 1



To predict the covariance P, we use the generic equation 2.15.

Now let us define the observation model. As we have already mentioned, the mea-
surement is guided by a GPS which provides us with an input:

zt = [xt, yt]

Having the aforementioned in mind, we define the observation equation:

zt = Hxt

where

H =
 1 0 0 0

0 1 0 0



The reason we define the matrix H in this way is transparent; since we get direct
input of the state vector values x and y, the function returns these same values. Therefore,
we set to 1 the positions of these variables in the matrix H.

Again, we have to calculate the Jacobian defined by the partial derivatives:
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JH =
 dx

dx
dx
dy

dx
dφ

dx
dv

dy
dx

dy
dy

dy
dφ

dy
dv

=
 1 0 0 0

0 1 0 0



Now, having defined the three main components of the filter, we need to provide the
noise matrices R and Q. The error matrix Q associated to the prediction of the covariance
matrix P in our case is:

Q =
[

0.4 0.4 0.01 1
]T

Each defined value matches the expected error of the state estimate vector in equation
5.6. We take the matrix R as :

R =
 0.1 0

0 0.1

2

Finally,as we have completed defining the components of the Extended Kalman filter.
The recursive process follows the generic equations and phases shown in figure 2.8. We initialize
the filter with the initial position of the robot: x0 =

[
0 0 π 0

]T
and the initial covariance

matrix P0, which is a 4× 4 size identity matrix.

Figure 5.6 shows the path travelled by the robot calculated and filtered by the Kalman
filter designed above. The ellipse drawn at the end of the path is the covariance ellipse. As
explained in [Spruyt (2015)], it allows us to visualize a 2D confidence interval. In other words,
it shows the region, where a major percentage of the values can be drawn by the underlying
Gaussian distribution.

The different noise distributions, shown in figure 5.6 are added to remark how im-
portant is to define the noise matrices R and Q for each experiment. We will comment more
on the importance of tweaking the small components of the filter in the conclusive chapter.

If we compare figures 5.6 and 5.5, we see that the approximation of the first one is
better (even when the simulated error is higher). However, GPS approximation is not exactly
realistic. In many cases, the GPS connection signal is weak or not available at all. This example
shows an easy approximation of one of the most common usages of the Kalman Filter, that is
the GPS error adjustment [Katkov (2018)].
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Figure 5.6: The results of GPS for the outdoors scene. The blue line representing the real
travelled path. The red line represents the estimation done by the Kalman Filter. The green
dots are the data provided by the GPS. In the left image the GPS has an error with a deviation
σ = 0, 06. In the right image this deviation is increased to σ = 1.

5.3.3. Odometry based Extended Kalman filter

In the previous section, we assumed having a GPS chip inserted in the robot. Al-
though this is imaginable in outdoors experiments, the indoors experiments are usually based on
odometric calculations. Also, in the previous section, we have seen that Kalman is an efficient
approach when combining sensor data (the velocity and orientation with GPS information).
In this section, we take a step further to a more realistic approach. We estimate the path
travelled by the robot indoors using just one landmark. A landmark is a known object in the
experiment that, when detected by some robot sensor, can be used as measurement input to
improve the odometric calculations. We follow the explanations from [Pinheiro and Cardozo
(2014)] to design and use an Extended Kalman filter that, based on the odometry and the
position of the landmark, estimates the travelled path.

Again, let us start with the definition of the state vector. We use the same vector
as in equation 5.3. We can model the robot movement as a nonlinear motion model with
associated noise.
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xi+1 = Fxi + wi

To extend this, we have to recover the equations 5.3 from dead reckoning.


x

y

θ


i

=


x

y

θ


i−1

+
[

∆s · cos
(
θt−1 + ∆θ

2

)
∆s · sin

(
θt−1 + ∆θ

2

)
∆θ

]
(5.7)

For designing a non-linear model, compute the Jacobian of the equation 5.7:

F = ∂f(x, u)
∂x

=


∂f1
∂x

∂f1
∂y

∂f1
∂θ

∂f2
∂x

∂f2
∂y

∂f2
∂θ

∂f3
∂x

∂f3
∂y

∂f3
∂θ

 =


1 0 −∆st sin

(
θt−1 + ∆θt

∂t

)
0 1 ∆st cos

(
θt−1 + ∆θt

2

)
0 0 1


where, ∆s and ∆θ denote the same as in equations 5.4 and 5.5, respectively. As for now, we
observe that the design of the system is based on the dead-reckoning formulations.

We define the the control input, in this case given by the vector u, as:

u =
 v

α


where v is the velocity of each wheel and α is the robot steering. Both are needed for the
calculation of ∆θ and ∆s.

We have defined how we predict the state estimate vector. In the next step we
describe how we update the covariance matrix P :

P = FPFT + VMVT (5.8)

In equation 5.8 we have a new set up comparing to the equation 2.15. It is because
our motion model is non linear, so we linearize F by providing the Jacobian with respect to
the vector u:
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V = ∂f(x, u)
∂u


∂f1
∂v

∂f1
∂α

∂f2
∂v

∂f2
∂α

∂f3
∂v

∂f3
∂α



=


1
2 cos

(
θt−1 + ∆θt

2

)
− ∆st

2Robotaxis
sin

(
θt−1 + ∆θt

2

)
1
2 cos

(
θt−1 + ∆θt

2

)
+ ∆st

2Robotaxis
sin

(
θt−1 + ∆θt

2

)
1
2 sin

(
θt−1 + ∆θt

2

)
+ ∆st

2Robotaxis
cos

(
θt−1 + ∆θt

2

)
1
2 sin

(
θt−1 + ∆θt

2

)
− ∆st

2Robotaxis
cos

(
θt−1 + ∆θt

2

)
1

2Robotaxis
− 1

2Robotaxis



Now we define the matrix M that describes the noise associated to the control input
in equation 5.8:

M =
 σ2

vel 0
0 σ2

α



We have defined the system model, that will serve for the predicting phase of the
filter. Taking a closer look, we see that the system model is based on the dead reckoning
information. For now, we have not added a real improvement to the design, except the noise
matrix.

In this respect, we need to design the measurement model. As it has been already
said, the measurement model works by detecting a group of one or more landmarks that can be
used to reference and update the knowledge of the robot position. In this experiment, we will
use just one landmark, which seems to be enough for a correct estimation of the travelled path.
This assumption holds because of the small size of the room shown in figure 5.2. Moreover, the
fact of just having one landmark means we have less complexity and needless computational
performance.

The measurement input is given by the range and baring from the landmark, thus:

z = h(x,p) +N (0, R)

=
 √(Lx − x)2 + (Ly − y)2

arctan 2
(
Ly−y
Lx−x

)
− θ

 (5.9)

where Lx and Ly are the Cartesian coordinates of the landmark detected by the sensors. The
first row calculates the range and the second the bearing from the robot to the landmark.
Since we are in non-linear model, we need to compute the Jacobian of the function above:
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Jh =

 − Lx−xt√
(Lx−xt)2+(Ly−yt)2 −

Ly−yt√
(Lx−xt)2+(Ly−yt)2 0

Ly−yt

(Lx−xt)2+(Ly−yt)2 − Lx−xt

(Lx−xt)2+(Ly−yt)2 −1



The robot will follow the path based on the odometric parameters of the system
model. However, once a landmark is detected, the state estimate will be updated accordingly
to its relative position to the landmark. The error matrix R associated to the measurement
model, this is, the laser readings is in our case the same supposed in previous experiments:

R =
 σ2

range 0
0 σ2

bearing

 =
 0.2 0

0 0.01



The error is associated with the range captured by the sensors and the bearing of the
detection. Having defined the necessary components, we start the process shown in figure 5.7.

Figure 5.7: Process for the odometry and landmarks based Kalman Filter.

The figure 5.7 shows that we initialize the process by the initial position of the robot,
given as a vector x0 =

[
0 0 π 0

]T
. The resulting path of applying the estimation to the

indoor scene is shown in figure 5.8.
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Figure 5.8: Visualization of the estimation of the path taken by the robot in this last Kalman
approach. The blue line, as before, represents the real path travelled by the robot, the green
line is the Kalman estimation of the travelled path, and the red line represents the odometric
calculations. The blue square is the position of the landmark (Lx = 2, Ly = 2).

In our case, the landmark is virtual, meaning we give simulated values in the function
z of the measurement model. The reason for this is that we do not want to trouble the feature
detection process described in the next section.

The estimation shown in the figure is more trustworthy, comparing with the odometry
estimation. For unknown reasons, in some executions, the estimation goes badly, this is most
lightly related to a not consistent definition of the error matrices R and Q . Another problem
that has been noticed is the high requirements for performance. Sometimes the simple fact of
adding the plot function produces interferences with the calculations of the algorithm, provoking
errors and delays in the plotting of the different estimations.

We have shown in this section approaches to be able to accede a more certain robot
position. Nevertheless, in the real world, outside a simulator, we would most likely get worse
estimations than shown in the last sections.
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5.4. Mapping

We continue with the SLAM approach. Now having obtained the robot position, we
start building the map. As we explained in section 2.3.1, the method followed to create the
map is offline. Thus, during the navigation we collect the data that at the end of it will serve
as as source of information to create the map. In this paper, we focus on the detection of
circular segments. It means we assume a simple environment, such as the one described in
section 5.1. The interference of other geometrical objects is not considered here and is left as
a proposition for future work, meaning that besides the walls (lineal segments) we only have
circular objects, such as columns, trees, and plants. In this section, we imitate the machine
learning process in order to extract the circular segments from the laser rangefinder data. For
doing this, we follow the steps of the context recognition chain inspired by the one proposed
in [Holzl (2017)]:

Figure 5.9: The different steps for obtaining the circular objects from the surroundings. First
during the navigation the information from the sensors is stored. Second, this data is segmented
and preprocessed in order to normalize it. Third, we classify the segments into linear or circular
segments. Last, we join the segments that belong to the same circular object and apply the
estimation.
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5.4.1. Sensor sampling

The situation basis for both experiments is that the robot moves around, and with
a certain periodicity, the laser reads data and saves it into an array. In this case, we assume
that the time interval in which each sampling is taken is one second. It is for the reason that,
if we take the same interval as in the localization process ∆t = 0.1, the performance and the
amount of memory needed is too large. Thus, we define an array of samplings S that contains
every lecture the robot has made during its wandering.

S = [s1, s2...sn] (5.10)

Every sampling is obtained as form of the function r(φ), where r is the distance to
the object and φ is the angle between each laser ray and the robot from 0 to π (180 degrees).
Note that when the laser detects no object at a particular deviation, it assigns a zero to that
specific angle.

Figure 5.10: Multiple readings of the same column (left), multiple readings of the same wall
(right).

On figure 5.10, the different samplings are shown in order to help to visualize the
concepts above. On the left-hand side, different readings of the same column are presented;
each reading in time is depicted with a different colour. On the right-hand side, the same holds
for the walls. Each of the colours arrays of points is saved as a sampling in equation 5.10.
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5.4.2. Prepocessing

In this section, we transform the array of sampling from the previous section, so it
makes sense from an absolute perspective. Each sampling is saved as the distance from the
robot at the moment the laser performs the reading, meaning that the samplings are relative
to the robot position. In order to proceed to the next step, we need to calculate the absolute
position of each of the positions in the sampling. For doing it, we need to use a simple vector
adding.

Figure 5.11: Example of calculation of the absolute position of the sampling s. The robot is
in position (x = 3, y = 1), where as the position of the sampling is (x = 1, y = 2).

To help the explanations, figure 5.11 shows a simple example of a disposition when
a laser reading is captured. The position of the robot is denominated by vector ~b = (xr =
3, yr = 1), whereas the relative position of the object captured is ~c = (xr = −2, yr = 1). To
calculate the absolute position of the sample we add the ~b and ~c.

~a = ~b+ ~c = (3, 1) + (−2, 1) = (xs = 1, ys = 2)

As we can see, we obtain the position of the sample from the origin of coordinates.
This process is repeated for every point in the sample st, so we get an array P of segments
observed from the origin of coordinates. The reason we want a common point of reference is
to determinate which segments belong together to describe a unique object.
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5.4.3. Segmentation

Before starting the segment classification, we need to realize that in each lecture,
a not unique object is captured. On the contrary, the typical situation is that more than
one object is detected. In parallel with the absolute position calculation, we need to find the
breakpoints that define each segment per lecture. To accomplish this, we define a simple
situation.

Figure 5.12: Laser pointing to specific landmark during the navigation. The rays that reflect
on the landmark provoke a change in the data obtained by the laser. Thus, a big change is
notices in the function r(φ). [Qader (2018)]

Figure 5.12 shows the laser rays pointing to a specific object or landmark. As we can
see, the leftmost ray extends itself longer than the ones that reflect on the landmark. This
approach aims to calculate which rays belong to each of the objects captured in one reading.
One possibility would be using an extension of the scale-space algorithm described in section
4.3.1. However, we do not posses the time required to adapt the algorithm to this specific
usage.

Having the function rφ from the laser readings, we can calculate the first derivative
r′(φ). By definition, the derivative is a measure of the rate at which the value of the function
changes with respect to the change of the function variable; in our case, the change in the value
r(φ) with respect to φ. If we look again at figure 5.12, we should expect that the leftmost ray
and the rightmost ray produce a big change in the value of r, which provokes a pick in the
first derivative that can be understood as a breakpoint. Therefore, the segments are defined
by the values in between two breakpoints.
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Let us illustrate this with a real example, extracted from the indoors experiment,
precisely, the situation at time 0, shown in figure 5.13. Here, the robot receives readings from
two lateral walls, two columns, and a part of the wall in front of it.

Figure 5.13: The robot pointing to two columns and behind walls.

Figure 5.14: Readings in illustrative situation (left) and first derivative of function r(φ) for
these readings (right).

The figure 5.14 shows on the left-hand side the readings obtained by the laser in the
situation described above, and on the right-hand side, the calculation of the first derivative
of the function. As we observe, there exist eight maximums and minimums that divide the
readings into nine segments. The segments, which value is zero, in this case, the second and
the eighth, correspond to a non-detection zone. The rest of the segments represent with regard
to the robot: the right wall, the right column, the wall in-between columns, the left column
and the left lateral wall.
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A noticeable difficulty of this method is the calculations of maximums and minimums
of the first derivative. To accomplish this, we need to compare each value of the function
r′(φ):

|r′(φ)i − r′(φ)i−1| > ∆c

where r′(φ)i and r′(φ)i−1 are consecutive values in the derivative, and ∆c is a threshold value.
We need the threshold because the change in the function r is also subjected to noise, meaning
that a big interference in the signal received by the laser could cause a pick in the first derivative
and be understood as a breakpoint.

Figure 5.15 shows the first derivative with circular blue markers on the detected
breakpoints.

Another corner case detected during the experiments is when the relative distance
between two different objects and the robot is relatively similar. In this case, only a small
change is noticed; thus, the breakpoints are not captured by the procedure of finding minima
and maxima. We talk more about it in the conclusive chapter.

Figure 5.15: Detected breakpoints by the maxima an minima procedure. Each minimum and
maximum describes the beginning and end of a specific segment.
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5.4.4. Feature classification

Once we have obtained the breakpoints for every segment in the array of samplings
5.10, we partition the readings into segments and perform the calculations to obtain the
absolute position. From this, we obtain an array of features F, where each fi represents a
segment:

F = [f1, f2...fn] (5.11)

It is crucial to notice, that the features with a small length and the ones compose
just by zero are discarded. In the first case, because really small features probably come from
an erroneous estimation of the breakpoints and most likely do not grant relevant information.
In the second case, the features compose just by 0 represents the part of the readings when
no object was detected. This can be understood as part of the preprocessing.

Once we have the segments, we proceed to one of the most complex tasks of this
process, namely, the classification of segments as linear or circular. It is tough to accomplish
as in many situations the read data from a circle can be easily understood as a linear segment
and the other way around. As an illustration, think that if we look from a short distance at a
large column, it will seem that we are facing a wall, since the part of the column that we are
able to see does not denote a significant circular deviation. In a big scale, the same happens
with the Earth, which looks flat from a human’s perspective.

Consider an example illustrated in figure 5.16. We observe a situation when the robot
is pointing closely at a wide column. The segment that represents the column in the figure is
the one in-between the two blue dots. It is essential to notice how similar the segments on the
top right and left representing walls are with the center bottom one representing the column.

The next step is to define a procedure where we decide whether the data refers to a
linear or a circular segment. A possible way of doing it would be to recover the explanation from
section 2.4.1, where we defined a residual that can give as an indicator of how the estimation
of linear fitting went. By applying this procedure to the data shown in figure 5.16, we obtain
a residual value of Rlinear = 0.05. On the other hand, we can use the same data to try to
estimate a circle by the method explained in section 4.4.2. Then, the residue is defined as the
sum of the distances of each point to the estimated centre of the circumference. In this case,
the result of the circle estimation residue is Rcircular = 0.1.
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Figure 5.16: The robot closely facing a big column(top) and the readings obtained.

We could discuss whether comparing these results makes sense. However, this is not
possible since the values of each estimation do not have an actual relationship among them.
The fact that, in this case, the residue for the circular estimation is greater than for the wall
fitting is not relevant, because it does not provide useful information about a generalization of
the experiment.

The other approach proposed in [Muñoz Bañón (2016)], is to observe the deviation of
the value of the MSE error described in the Kalman filter section. By comparing this deviation
on circular and linear segments, we can discern between both. However, after experimenting
with this approach, it was not possible to find the proper aspects to discern between the two.
Furthermore, this method can not be applied if we have more than two types of segments.

It is because of this and the time window that we decide to define a much simpler
approach. We observe the values of the least squared circle fitting in the experiments. From
these values, we define a threshold. All the segments, which circular estimation is above
the defined threshold are considered linear segments and the ones under the threshold are
considered circular segments. Moreover, we define the maximum radius the column in our
experiments can have. The linear segments can be predicted as large-sized circumferences. By
limiting the size, we discard many of erroneous estimations.
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5.4.4.1. Comments on implementation

The code implemented for feature classification deserves a comment. Even though
we have not been able to provide a stable method for discerning between the types of segments,
a design based on object-oriented programming is proposed.

Figure 5.17: Class diagram abstracting the type of segments.

The figure 5.17 shows a diagram of classes. The super-class segment contains com-
mon attributes and operations. For example, the common attributes are the values representing
the points of the segments. The operations can be general ones, such as converting the co-
ordinates. Each of the sub-classes has its methods. In the case of the Line, it is the linear
regression, whereas the class Circle is estimated by the Kalman Filter.

We point out some advantages of using an objected-oriented description of the seg-
ments. The first one is that it can be easily extended, meaning that we can add other types of
geometrical figures. Each one of the sub-classes can provide its estimation methods. Another
advantage is the use of comparators in the classes; for example, we can define whether two
segments are equal or not. From the maintainability and extensibility point of view, defining
the different segments as classes is preferable and can help to improve the classification in
future projects. At some point.

One other possible solution would be to use the lineal segments estimation method
developed by [Cuadra Troncoso (2011)]. Once we put the two methods together it might be
that we could find a significant feature for discerning between the two types of segments.



94 5.4. Mapping

5.4.5. Segment fusion

In the segment classification phase, we obtained two different arrays of features: one
containing what we have classified as lines and the other what are thought to be circular
segments. In this section, we explain how to decide which of these segments belong together
(meaning that the segments were captured at different times but belong to the same object).

In order to be able to match different circular segments into one unique circular
object, we have to define what we understand as different columns. We assume that every
circular object in the experiment is separated from the other by a minimum distance. Thus,
the circles do not intersect. For every circular segment obtained in the classification phase, we
apply the least square estimation explained in section 4.4.2. Even though the initial estimation
is not so precise, it is enough to decide whether two or more of the obtained segments represent
one circle.

Figure 5.18: Comparison of two circles. The distance between centers determines whether
they intersect or not.

For two circles C1 and C2, extracted from different segments, we say that they rep-
resent the same circle if:

RC1 +RC2 ≤
√

(xC1 − x2
C2)− (yC1 − yC2)2

If this condition is satisfied, we say that the segments from which the circles where
estimated belong to the same object. In this case, we fusion the segments by creating a new
instance of the class Circle and add the values of both. Finally have an array of circular segments
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representing the detected circles in the experiment. Remember that for all this method, there
is an error involved, meaning that the process is not deterministic. Thus, different experiments
have different results. A segment that belongs to the same circle may be considered as different,
hence producing a result with a greater number of circles than actually existing.

5.4.6. Final estimation

We have obtained the array of segments composed by one segment per circular object
in the scene. We are ready to apply the estimation measures that we see necessary to estimate
the circles. In this case we apply the Kalman Filter explained in section 4.6 for each circular
segment obtained from the previous phase. However, one consideration must be made in this
section we applied the Kalman Filter to the convex part of the circle. If we remember the
definition of the circumference that we provided in the equation 3.2, we see that for defining
the convex part we took the minus sign of the equation. The values obtain from the plus sign
will give us the concave part of the circle. Hence, we need to update the design of the Kalman
Filter. Let us see it again to have a better view. In figure 5.19 the red segment is drawn by
the plus sign version of the formula.

Figure 5.19: Circle in Polar coordinates.

We update the design of the Kalman Filter by updating its measurement function h.
This function now will consider that if the measurement received is higher than the estimated
center of the circle then this points belongs to the concave part. If the data received is lower
then we understand that is a point that belongs to the convex part. Because of stability reasons
all the points that are close to the distance ρ are discarded. This is because the noise can alter
this points that are near the two tangents of the circle with the origin.
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Furthermore, it has been observed that the initial estimation of the circle improves
when adding also data from the concave part. However, this is not the same for the Kalman
Filter in every case. Notice that some times adding more data means raising the probability of
having outliers.

Now that we have updated the Kalman Filter we apply the estimation process and
obtain the circular objects around the scenes.

5.4.7. Results

5.4.7.1. Results indoors scene

For the indoors scene we have a run time of 60 seconds. This time is more than
enough to capture different features that represent the circles. the localization algorithm used
is the one based in the GPS, section 5.3.2.

In the indoors scenes we have distributed the columns and the plant so they cover
some of the corner cases explained in previous sections. From the one side the plant is really
close to the wall which difficulties the estimation of breakpoints. From the other side we have
two small columns close to each other. Figure 5.20 identifies every circular object for the
indoors experiment. The results in one of the best cases can be visualized in right side of the
figure. The red circles represent the real columns and the blue circles represent the estimated
ones. There are some gaps in the walls, mainly caused because the laser did not detect them.

Another factor can be that as a criteria the linear segments that are not over a certain
threshold by the residue calculated in the linear regression process are not plotted. Table 5.4.7.1
shows the results of the error for each one of the circular segments.

∆ρ ∆θ ∆R
Column 1 0.022 0.004 0.019
Column 2 0.010 0.008 0.02
Column 3 0.05 0.018 0.027
Column 4 0.074 0.0085 0.005
Column 5 0.008 0.009 0.003

Table 5.1: Results for each circular object of the indoors scene. The errors are given with
respect to the polar parameters of the circle in equation 3.2.
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Figure 5.20: Identification of the circles for the indoor experiment and good case results. The
blue circles represent the real position of the columns and the red ones the estimation after
applying the mapping chain.

Figure 5.21: Typical errors in experiment associated to a bad classification. On the left the
circular segments have been take as linear ones. On the right, the wall section together with
the plant is understood as a big circular object.
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In other cases, the most common errors in estimation are related to the classification
process. Either one circular segment is take as an linear one or the other way around. Two
examples can be seen in figure 5.21. In the left hand side image we see two segments in the
big columns that have been understood as lines. With respect to the image in the right hand
side, what happened, most likely, is that the breakpoints calculation failed. From this failure
we get a segment that includes part of the circular object and the wall. The result being an
estimate column that does not exist.

5.4.7.2. Results outdoors scene

The outdoor scene is a bit different. Where as in the indoor experiment the columns
and the plant described a perfect circular object, in the outdoor experiment the trees do not
possess a circular trunk. Hence, the classification is harder because the shape of the trees
draws a linear segment in one of its sides. The simulation time for this experiment is larger,
180 seconds, because there is more terrain to cover.

Figure 5.22 shows the estimation on one good case. The problems explained in
previous section, derived from the classification and the calculations of breakpoints are the
same here. In some occasions, we get lineal segments where the trees are supposed to be.
Furthermore, many times, we do not obtain the trees as circular segments. This is due to the
linear side of the tree that worsens the circular estimation.

∆ρ ∆θ ∆R
Tree 1 0.04 0.0012 0.51
Tree 2 0.054 0.01 0.19
Tree 3 0.023 0.011 0.066
Tree 4 0.032 0.007 0.05
Tree 5 0.008 0.0036 0.011

Table 5.2: Result errors for outdoors estimation.

As we can see in table 5.2 the estimation of the radius of the big trees is not so
precise(radius of tree 1 and tree 2). The reason for this is the linear section that the draws the
bottom of the tree. Also could be derived of the problem of big circles. The estimation has been
made by extracting the localization from the simulator. The experiments with the different
localization explained in section 5.3 have been tried, however the error in the orientation of the
robot is too high to provide a good estimation of the circular objects.
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Figure 5.22: Identification of the trees outdoors and the results in a good case. The red circles
represent the real position of the columns and the blue ones the estimation after applying the
mapping chain.
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Chapter 6

Conclusion and outlook for future work

6.1. Conclusion

To enable a mobile robot to navigate in an unknown environment, and at the same
time, calculating its location and building a map of the surroundings is not an easy task. Every
step of the process opens new questions, which require answers. Furthermore, composing the
estimation of the surroundings with circular objects does not make the task easier.

There are two main ingredients needed for a partly successful accomplishment of this
task. The first one is to have a competitive mathematical knowledge of the problem. We
have seen that what is a basic geometrical shape that everyone has met since primary school,
can turn to be difficult from a statistical point of view. The second essential factor is the
understanding of the different aspects related to the design of a context recognition process.

In this project, we have overcome these difficulties and provided an extension to a
relatively new concept, that is the estimation of circular segments with the Kalman Filter.
By researching, we have found a better initialization method. The least-squares circle fitting
explained in section 4.4.2, proves to be more numerically stable. Thus, even when there is the
presence of outliers and noise-related factors, the maximum errors satisfy the expectations.

With this respect, we have applied the knowledge and conclusions from work by
[Muñoz Bañón (2016)] to design what seems to be a more stable solution of the Kalman
Extended Filter. The research done for applying localization method using this kind of filter
has served as inspiration for the circle fitting approach.

101
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What at the beginning of research seems to be a easy problem, turns into a compli-
cated question with many factors to analyze. The presence of many parameters of the model
and constraints to avoid the sensor error influence difficulties and enlarges the experimentation
time. When dealing with Artificial Intelligence related projects, the existence of magic numbers
is ubiquitous. Magic numbers are a nickname given by the machine learning communities to
those static numbers assigned as a threshold. The value of these numbers improves the results,
although the real reason behind it, requires a parallel study.

Continuing with this idea, we can think of this project as a tree, branched by every
new question. It is the explanations we give to this question, and there answers what suppose
a big challenge.

Despite that, the results of the Extended Kalman Filter for circle fitting have not
been as exact as expected from the beginning. With these results, we could and have done a
step forward into a SLAM problem. As described in the literature, the most basic localization
and mapping problem can turn out to be very complicated. For designing a new model, we
have to make some underlying assumptions and try to reduce the complexity of what a real
experiment would suppose. In this sense, the time window and the budget of the system play a
significant role. The models used in the simulator, both robot and laser rangefinder, are highly
costly. Nevertheless, the simulator approximates the first corner cases that we could find in
reality.

On the one hand, we have used the Kalman Filter to design two localization ap-
proaches. The first approximation based in a GPS(section 5.3.2), proves itself to work rel-
atively good. However, the assumption of having access to a GPS signal cannot apply for
every situation. Therefore, another approach is proposed by combining the odometric data
with the detection of landmark, in section 5.3.3. This two implementations, together with the
circle fitting approach, prove that the Kalman Filter is a powerful technique. However, the real
complexity lies in the tweaking of the parameters, for instance, the error matrices associated
with the process.

Finally, we have provided an innovative context recognition chain in section 5.4. This
mapping chain, although only based in circular segments, can be extended for other geometrical
figures. Both the design and the implementation lead to good maintainability.

The mapping process is an excellent example of the study of Machine Learning Prob-
lems. Each step of the process opens new questions, namely the segment classification. In
this project, this part has not matched the expectations. Nevertheless, the implementation
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proposed in section 5.4.4.1 has paved the path for future research. Consequently, the results
obtained in the estimation of the circular object represent a necessary abstraction of a real prob-
lem from the one side, the results when estimating columns match the expectations, where we
have errors of just some centimetres. From the other side, when using the tree models that
are not precisely circular, the results are not so exact.

To sum up, the context recognition problem is an exciting field. The more one
learns about the problem. The more one realizes how difficult it is. Thus, during the process
of research, the expectations are lowered, sometimes causing a sensation of disappointment.
However, by overcoming this, there are moments when the knowledge acquired through inves-
tigation becomes practical and helps solve some of the problems. It is at this moment, when
one realizes how fascinating the Artificial Intelligence can become.

6.2. Future work

There are many aspects of this project that are worth researching. In this last section,
we briefly comment on four of them. The ones that deserve more attention.

The main one is to keep researching on the design of a better Kalman Filter. It has been
tried during this project to use the Unscented Kalman Filter. However, the mathematical
competence it requires is too high.

The second line of study proposed derives from this project, in my opinion, should be
to study the classification of different segments. Statistical algorithms used in Machine
Learning could provide an interesting solution.

The third one is related to the SLAM problem. Even though in this project, we have
designed the two parts that compose this problem separately, namely localization and
mapping, once we put them together, the errors do not match the expectations.

Finally, in this same line of study, to improve the Kalman Filter based on the odometry
information, section 5.3.3. Despite accomplishing good results some times, many times
due to unknown reasons, the estimation goes badly.

There are many more topics that can be researched. After all, as we explained in the introduc-
tory chapter, the focus of the study in Artificial Intelligence should be to provide more realistic
solutions one bit at a time.
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Glossary

behaviour mapping of sensory inputs to pattern of motor action. 12

Closed World assumption The world model contains everything the robot needs to know.
11

isotropic (of an object or substance) having a physical property which has the same value
when measured in different directions. 39

Paradigm a philosophical and theoretical framework of a scientific school or discipline within
which theories, laws, and generalizations and the experiments performed in support of
them are formulated [CS-Oswego (2019)]. 9

parameterize Describe or represent a function in terms of a parameter or parameters. 42

regressor Regressor is the independent variable in a regression equation. 35
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