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White Matter Hyperintensities 
Segmentation with Prototype Learning 
Abstract 
This paper proposes a new method -based on meta-learning- for the WMH Segmentation 

Challenge, organized by UMC Utrecht, VU Amsterdam, and NUHS Singapore hospitals. The 

purpose of this challenge is to compare methods for the semantic segmentation of white 

matter hyperintensities (WMH), which are brain white matter lesions, of presumably vascular 

origin in brain imaging obtained with magnetic resonance. White matter hyperintensities are 

found in patients with brain diseases like Parkinson, Alzheimer or stroke. Semantic 

segmentation refers to the process of linking each pixel in an image to a class label. The 

semantic segmentation of images has had a great advance with convolution neural networks, 

but they require a large number of images to be able to obtain good results. Convolutional 

neural networks are a type of neural networks specialized on images which architecture is 

similar to neurons’ pattern in human brain and they were inspired by the organization of the 

visual cortex. With the aim to reduce the number of images required in training, in this work, 

we propose the use of meta-learning algorithms, in particular prototype learning, to do this 

semantic segmentation. In addition, this approach also allows the network to be used in a 

different task for which it was not trained, which can improve its potential use. Results 

obtained suggest that it could be possible to use the network trained to a specific task (i.e., 

detect WMH in the brain), to another task (i.e. detect any kind of tumors in the brain). 

Terms 
white matter hyperintensities, white matter lesions, meta learning, few-shot learning, 

prototype learning, semantic segmentation, convolutional neural network 

I. Introduction 
White matter hyperintensities (WMH) are brain white matter lesions (also known as 

leukoaraiosis). Usually found in a larger number of brain images from patients diagnosed with 

the small vessel disease (SVD) [1], multiple sclerosis [2], Parkinson [3], stroke [4], Alzheimer [5] 

and dementia [6]. WMH are associated with cognitive decline, tripling the risk of stroke and 

doubling the risk of dementia [10]. WMH do become more common with advancing age [11], 

but with a prevalence highly variable. Although, a large number of studies shows that they are 

implied in important risk factors: In a meta-analysis of 22 studies, WMH were associated with 

progressive cognitive impairment, increasing the risk of stroke and dementia [12]. WMH also 

generate abnormal gait [13] and disturbed balance [14] (related with physical function); and 

also increase the risk of late onset depression [15]. WMH were also highly heritable [16] and 

are less frequent in subjects with long-lived parents [17]. They are also inversely associated 

with intelligence in youth [18] and with the educational attainment [19]. If these associations 

reflect brain resilience to damage [20] are yet unknown. 

WMH are seen on brain imaging. Magnetic Resonance Image (MRI) can be used to obtain 

them. MRI is a non-invasive diagnostic method that provides anatomic and functional images 

with high spatial resolution and contrast [21]. As a result, it is highly accurate in both tissue 

characterization and pathology detection, as stated in the paper referenced before [21]. 



Different types of MR images can be obtained by controlling the radio frequency pulse and 

gradient waves [22]. 

• T1-weighted: It provides complete anatomical information. 

• T2 (T2-weighted): Useful in identifying pathological lesions that are often characterized 

by increased water content. 

• Enhanced in proton intensity: It is used to characterize lesions of the white substance. 

It has been replaced for FLAIR type images. 

• Fluid attenuation inversion recovery (FLAIR): It is a special inversion recovery sequence 

with a long inversion time. This removes signal from the cerebrospinal fluid in the 

resulting images. Brain tissue on FLAIR images appears similar to T2 weighted images 

with grey matter brighter than white matter but CSF is dark instead of bright. 

 

Figure 1. Example of FLAIR and T1 images taken from the WMH Challenge website. 

The two basic types of MRI images are T1-weighted and T2-weighted images, often referred to 

as T1 and T2 images. Nevertheless, WMH can be better observed in FLAIR as high value signals 

[7]. WMH have a signal intensity brighter and with light boundaries compared to the 

surrounding white matter [8]. Unfortunately, in FLAIR images, grey matter can also be 

presented with high signal intensity. This leads to numerous false positives when trying to 

isolate WMHs. However, grey matter structures tend to be narrow; therefore, they have 

predominantly high spatial frequency components [8]. Cerebrospinal fluid is also bright in all 

images, but using FLAIR we can overcome it and maintain a good contrast between white 

matter and WMH lesions. There are also other challenges to overcome, including less contrast 

between grey matter and white matter; spatial variations in MRI caused by variable 

radiofrequency response; and background noise [8]. Thus, there is a need for a method to 

mark out of a WMH in the brain image. 

Semantic segmentation does it: link each pixel in an image to a class label (WMH, brain, etc.). 

With semantic segmentation we could know which pixels of the image are the crane, or the 

brain, or a tumor or a white matter hyperintensity. The problem is that current segmentation 

methods using CNN needs a lot of images, but MR images are expensive because the MRI 

equipment are very expensive, and also there are no many free datasets.  



Thus, our research goal is to find a method to let us do semantic segmentation using few 

images. Current methods in meta learning do image classification using few images (i.e. 

Siamese networks and Prototypical networks). In this paper, we research how to adapt these 

methods to do this classification classifying image’s pixels. 

This paper is divided in the following sections. First, we make a summary of the methods 

presented, and the current state of the art. In particular we, present the previous works in the 

segmentation of the magnetic resonance brain images, focusing on those carried out in the 

traditional methods with convolutional networks, to go on to comment on the newest ones 

carried out with few-shot learning. Then, we present the images and method used, making a 

summary of it. Finally, we present the results obtained and our conclusions about them, 

providing an overview of the improvement of our method with respect to the previous ones. 

II. Related Work  
We have looked up about 150 papers; several books on computer vision, looking for filters to 

extract features from images; online courses on machine learning, deep learning and 

convolutional neural networks in Coursera and Udacity, including the Stanford University 

course "CS231n: Convolutional Neural Networks for Visual Recognition".1 

This section summarizes the most important papers that attempt to solve the semantic 

segmentation problem, which is the most important subject in this work. 

II.1. Semantic segmentation 
Semantic segmentation is the process of dividing a digital image into several parts or objects. 

The objective of segmentation is to simplify and/or change the representation of an image into 

one that is more meaningful and easier to analyze. 

The task of semantic segmentation is classifying each pixel of an image into a set of predefined 

semantic classes. These classes can represent cars, animals, people, road signs, tumors, etc. 

Most of the current methods are based on convolutional neural networks (CNN) [1], [2], [10], 

[13], [23]. There have been many improvements using CNN. For example, using Fully 

Convolutional Network (FNC) as an improvement of deep CNN, like Long et at. [13] did. Or 

dilated convolutions [2], [24] used to increase the receptive field without losing spatial 

resolution. 

Most of the papers from WMH Challenge participants and in the literature, or practically all, do 

semantic segmentation with CNN. We think we can do the semantic segmentation with other 

approaches with different kind of networks, or with less image requirements. 

II.2. Search for alternatives 
As we have seen, CNNs are the most widely used networks for semantic segmentation: at this 

moment there is no better method to perform it [25]. 

However, there are clear limitations [26]. The main one is overfitting, when there are not 

enough images to train these networks, which makes the trained model not generalizable to 

new images [27]. For example, in the case of the WHM Challenge, the small number of images 

provided by the contest organizers [28] has make that quite a few of them used data 

augmentation techniques to avoid this. 

 
1 http://cs231n.stanford.edu/index.html 
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In recent years an alternative has emerged that makes learning faster and with fewer images. 

This is meta learning [29]. Thus, in this research we wonder if it can be an alternative for the 

problem at hand.  

II.3. Meta learning 
Meta-learning is difficult to define. It can be understood as the process of learning to learn, or 

the process of improving the learning algorithm through multiple learning episodes. There are 

two parts in the learning process: during the learning base, an internal algorithm solves a task 

like image classification [30]. In the meta-learning phase, an external algorithm updates the 

internal algorithm, so that the learned model improves an external objective [29]. 

Meta-learning was first mentioned in 1987 in two separate papers, one by J. Shmidhuber [31], 

and the other by G. Hinton [32]. The first one mentions a theoretical framework for methods 

that can learn how to learn. The second proposed that each neural network should have two 

sets of weights, a slow one that acquires knowledge slowly, and a fast one that acquires it 

quickly. Later, Thrun et al. coined the term learning to learn [29]. 

Depending on which aspects of the learning strategy are to be learned, the learning methods 

try to improve different aspect of the algorithm. Some of them are [29]. 

Parameter initialization. Here the goal is to learn the initial parameters of the neural network. 

In these cases, Model Agnostic Meta Learning (MAML) is used, as reported in [33], [34], [35]. 

Optimizer. Here the goal is to learn the optimal learning rate and the direction of update of 

the descent gradient with Meta-SGD (Stochastic Gradient Descent) [36]. 

Embedding Functions (Metric Learning). Here the meta-optimization learns an embedded 

network that transforms the raw input into a representation that allows its learning [37], [38], 

[39], [40] (like the Euclidean distance that is used in the prototype learning [41]). 

Among the applications of meta learning is the few-shot learning. Its objective is to train Deep 

networks, like CNN, successfully with small data sets [29]. One of the applications is the multi-

class classification of images as shown in [40].  

A model of few-shot learning must learn with two small sets: 1) a small training set, referred as 

a support set, with a few labelled examples, with n examples for each class; and 2) a small 

validation set, referred as query set, with an unseen instances of the same classes contained in 

the support set [29].  

Few-shot learning is also called k-shot learning, where k denotes the number of examples in 

each of the classes in the support set. If we have only one example for each class, then it is 

called one-shot learning. And, if we have no example for each class, then it is called zero-shot 

learning. In this case, the algorithm will learn from the meta information about each of the 

classes [42]. 

Meta-learning is also one of the most promising and trend-setting research areas in the field of 

Artificial Intelligence at the moment. It is believed to be a springboard for achieving General 

Artificial Intelligence (GAI) [43]. GAI is the hypothetical Artificial Intelligence capable of 

performing any intellectual task like humans [43]. It is hypothetical because it has not yet been 

obtained. 



II.5. Few-shot learning 
Few-shot learning methods learn with only a few examples and what it has learned is 

transferable knowledge to different tasks for which it has not been trained. Some of these 

methods are: metric learning [39], [37] and learning the optimization process [44], [33]. Vinyals 

et. al [39] used this method into unsupervised learning. Snell et al. [37] proposed to represent 

each class into one feature vector (prototype), defining a Prototypical Network. And Sung et al. 

[45] proposed to use a separate module to directly learn the relation between support 

features and query features. 

II.6. Few-shot segmentation 
As introduced before, our research problem is how to perform semantic segmentation with 

few images. CNN needs a lot of images to avoid overfitting. As it has been seen in the last 

section, few-shot learning methods learn with few examples, and they have been used to 

classify images [40]. The next step is use few-shot with semantic segmentation (which is 

classifying each pixel of an image into a set of predefined semantic classes). 

Semantic segmentation with few-shot learning algorithms has increased recently. Zhang et al. 

used an average pooling to differentiate foreground and background from the support set. 

Rakelly et al. [46] use a decoder with the concatenated features of the support and query set 

to get segmentation results. Shaban et al. [47] proposed a model with a branch to generate a 

set of parameters for the support set. These parameters are used to tune segmentation 

process of the query set. Dong et al. [41] has the idea of prototypical networks as a few-shot 

segmentation with metrical learning. 

II.7. Summary 
The vast majority of papers we have read use convolutional neural networks to perform 

semantic segmentation. Moreover, the results obtained do not vary much either, with success 

percentages that can be differentiated in tenths (Figure 2). For example, since 2014 it is very 

difficult to improve the results obtained in ImageNet and it is also difficult to attribute those 

very small increases to a better or more sophisticated architecture [25]. 

 

Figure 2. ImageNet Benchmark from Papers With Code website2 

In the challenge where we have developed our solution, one of the main obstacles was the 

lack of images: participants are asked for results with little information. This lack of images 

means that the performance of convolution networks is not optimal (these networks need a 

lot of data to avoid overfitting). Participants are also allowed to use other datasets but free 

 
2 https://paperswithcode.com/sota/image-classification-on-imagenet 
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MRI datasets are very scare. These facts made us to look for new approaches that can 

overcome this problem.  

One of them was Meta learning, which solves the problem of having a small number of images. 

In addition, this approach works well on problems for which it has not been trained. This 

additional advantage means that our research work could be considered to recognize other 

types of brain injuries. 

Among the papers read to inform our research background, we have chosen the paper "Few-

Shot Semantic Segmentation with Prototype Learning" [41] as a basis for the work because 

they have developed a solution to do semantic segmentation with few-shot learning, but 

applied to do semantic segmentation in color images showing where is a car, a horse, a person, 

etc. We have used their architecture as a starting point, but added some modifications to it so 

it can be applied to our research problem: semantic segmentation of brain images. Thus, 

starting from the "Prototypical networks", whose objective is to classify images, we have made 

some adaptations so that these networks classify pixels (which is what semantic segmentation 

is all about). Classify an image is classify all the pixels in the image, and classify a pixel, or a 

group of pixels, is classify a piece of the image as if this piece of the image was a complete 

image. 

III. Materials and methods 
In this section we introduce the WMH segmentation challenge, the datasets we have used in 

our experiments and our proposed method. 

A. WMH Segmentation Challenge, MICCAI 20173 
As the organizers explain in challenge’s website: “The purpose of this challenge is to directly 

compare methods for the automatic segmentation of White Matter Hyperintensities (WMH) of 

presumed vascular origin.” Manual delimitation of WMH is a time-consuming task and 

observer-dependent procedure [9]. Due to they are looking for an automatic segmentation 

algorithm. In this section we summarize it. 

A total of twenty teams took part into the challenge, with the sysu_media team [48] obtaining 

the best results using a U-Net convolutional neural network [49]. 

To evaluate the results, the organizers have used the following metrics. 

• Dice similarity coefficient. 

It is a statistical validation metric to evaluate the reproducibility performance of 

manual segmentations and the precision of spatial overlap of automated probabilistic 

fractional segmentation of MR images, illustrated in two clinical examples. 

The DICE similarity coefficient has been adopted to validate the segmentation of white 

matter lesions on MRI. 

 𝐷𝑆𝐶 =  
2 ∗ (𝐴 ∩ 𝐵)

(𝐴 + 𝐵)
 (1) 

 

 

 

 
3 https://wmh.isi.uu.nl/ 
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• Hausdorff distance (modified, 95th percentile, mm) 

The Hausdorff distance is commonly used in computer vision. In that field, a typical 

problem is that you are given a picture and a model of what you want to match. The 

goal is to find all the locations in the image that match the model. 

In other words, it would be about looking for a shape within an image. 

 

• Average volume difference (in percentage) 

It is the average of the difference in volume between two lesions. 

Let 𝑉𝐺 y  𝑉𝑃 be the volume of the lesion in the G and P regions respectively. So, the 

average volume difference (AVD) in percent is. 

 𝐴𝑉𝐷 =
𝐴𝐵𝑆(𝐴 − 𝐵)

𝐴
 (2) 

 

• Sensitivity for individual lesions (recall) 

It is the sensitivity for individual lesions. 

 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑊𝑀𝐻

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑊𝑀𝐻
 (3) 

 

• F1-score for individual lesions 

In the statistical analysis of the binary classification, the F1 score (also F score or F 

measure) is a measure of the precision of a test. Consider both the precision p and the 

recovery r of the test to calculate the score: p is the number of correct positive results 

divided by the number of all positive results returned by the classifier, and r is the 

number of correct positive results divided by the number of all relevant samples (all 

samples that should have been identified as positive). The F1 score is the harmonic 

mean of accuracy and recovery, where an F1 score reaches its best value at 1 (perfect 

precision and recovery) and its worst at 0. 

 

 𝐹1 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

 

The ranking of the WMH Segmentation Challenge - MICCAI 2017 was obtained averaging over 

all test scans. For each metric, the participants were sorted from best to worst. The best team 

receives the rank 0 and the worst, rank 1. The other teams are ranked (0,1). Finally, all team’s 

ranks are averaged into an overall rank. 

Thirteen teams used convolutional neural network architectures (such as U-Net [48], VGG-16 

[50], DenseNet [51], HighResNet [52] or DeepMedic [53]), four used random forest [54], and 

the remaining three used deep neural networks [55] to perform the semantic segmentation of 

brain images by magnetic resonance. 

Two types of brain imaging were offered by the organizers: T1 and FLAIR. Eighteen of the 

participants trained with both [56], while two of them trained with FLAIR imaging only [52]. 

Because of the limited number of images provided by the competition organizers: MRI from 60 

different patients; for each patient we have T1 and FLAIR images, each image has another 

image with manual annotation of the WMH (a binary masks). Ten teams used data 



enhancement techniques [57], and another two used additional data (MR images from other 

datasets) than the provided by the organizers to train their models [58]. 

Since our research work aims to improve semantic segmentation, the next section summarizes 

the most relevant papers about it. 

# Team Rank DSC H95 (mm) AVD (%) Recall F1 

1 pgs 0.0185 0.81 5.63 18.58 0.82 0.79 

2 sysu_media_2 0.0187 0.80 5.76 28.73 0.87 0.76 

3 sysu_media 0.0288 0.80 6.30 21.88 0.84 0.76 

4 buckeye_ai 0.0314 0.79 6.17 22.99 0.83 0.77 

5 coroflo 0.0493 0.79 5.46 22.53 0.76 0.77 

6 neuro.ml_2 0.0511 0.78 6.33 30.63 0.82 0.73 

7 cian 0.0571 0.78 6.82 21.72 0.83 0.70 

8 bioengineering_espol_team 0.0596 0.78 6.24 28.26 0.78 0.74 

9 nlp_logix 0.0678 0.77 7.16 18.37 0.73 0.78 

10 nih_cidi_2 0.0803 0.75 7.35 27.26 0.81 0.69 

11 bigrbrain_2 0.0847 0.77 9.46 28.04 0.78 0.71 

12 bigrbrain 0.0910 0.78 6.75 23.24 0.70 0.73 

13 nic-vicorob 0.0927 0.77 8.28 28.54 0.75 0.71 

14 rasha_improved 0.0964 0.77 7.42 24.97 0.76 0.67 

15 wta 0.1012 0.78 6.78 16.20 0.66 0.73 

16 dice 0.1046 0.77 7.63 19.77 0.69 0.71 

17 fmrib 0.1114 0.75 8.91 27.93 0.72 0.70 

18 wta_2 0.1132 0.76 8.21 21.31 0.67 0.72 

19 misp_2 0.1178 0.78 11.10 19.71 0.68 0.71 

20 uned_2 0.1237 0.76 8.90 28.83 0.73 0.63 

21 uned_contrast 0.1355 0.75 9.90 44.33 0.77 0.60 

22 k2 0.1531 0.77 9.79 19.08 0.59 0.70 

23 uned 0.1552 0.73 11.04 55.84 0.81 0.54 

24 rasha_simple 0.1562 0.74 9.05 29.73 0.65 0.64 

25 acunet 0.1735 0.65 9.22 29.35 0.67 0.67 

26 lrde 0.1797 0.73 14.54 21.71 0.63 0.67 

27 misp 0.1821 0.72 14.88 21.36 0.63 0.68 

28 ipmi-bern 0.2625 0.69 9.72 19.92 0.44 0.57 

29 nih_cidi 0.2843 0.68 12.82 196.38 0.59 0.54 

30 scan 0.2898 0.63 14.34 34.67 0.55 0.51 

31 tig_corr 0.3039 0.68 17.48 39.07 0.54 0.46 

32 livia 0.3044 0.61 22.70 38.39 0.54 0.61 

33 achilles 0.3081 0.63 11.82 24.41 0.45 0.52 

34 skkumedneuro 0.3604 0.58 19.02 58.54 0.47 0.51 

35 tignet 0.3909 0.59 21.58 86.22 0.46 0.45 

36 tig 0.3955 0.60 17.86 34.34 0.38 0.42 

37 knight 0.4239 0.70 17.03 39.99 0.25 0.35 

38 upc_dlmi 0.4449 0.53 27.01 208.49 0.57 0.42 

39 himinn 0.4500 0.62 24.49 44.19 0.33 0.36 

40 nist 0.4830 0.53 15.91 109.98 0.37 0.25 



41 text_class 0.5781 0.50 28.23 146.64 0.27 0.29 

42 neuro.ml 0.6074 0.51 37.36 614.05 0.71 0.21 

43 hadi 0.8940 0.23 52.02 828.61 0.58 0.11 
Table 1. Current results of the WMH Segmentation Challenge. In bold the best results on each metric. In this work we 

have followed the paper [9], but for the time of its publication there were more submits and now the best team is 
“pgs” and not “sysu_media”, as we mention in this paper. Table taken from WMH Challenge website4 

B. Datasets 
We have used two datasets, one of them is the WMH Challenge presented in the previous 

section. All of them have MR images from brain with injuries (tumors or WMH) and its 

corresponding label images with injuries segmented manually by expert board-certified 

neuroradiologists. We have chosen these datasets because all are related, all have the same 

type of images, and because of that, we can use them to pre-train our network to test if there 

is an improvement with pre-trained networks doing semantic segmentation. 

B.1. WMH Challenge Dataset 
The data with which we are going to test our solution are those provided in the “WMH 

Segmentation Challenge”. These data come from three hospitals in the Netherlands and 

Singapore. To obtain them, five different scanners from three different commercial brands 

have been used. Each hospital has provided images of 20 different patients. For each patient a 

3D T1 image and a 2D multi-layer FLAIR image have been provided. In addition, for each 

patient a standard manual reference (a mask) is provided indicating where the hyper 

intensities are. FLAIR type images have been used to draw this reference. 

B.1.1. Data detail 

The data (images) have the following distribution. 

Institute Scanner # training Size of FLAIR scans # test 

UMC Utrecht 3 T Philips Achieva 20 240 x 240 x 48 30 

NUHS Singapore 3 T Siemens Trio Tim 20 252 x 232 x 48 30 

VU Amsterdam 3 T GE Signa HDxt 20 132 x 256 x 83 30 

 3 T Philips Ingenuity 0 Unknown 10 

 1.5 T GE Signa HDxt 0 Unknown 10 
Table 2. WMH dataset data distribution. 

The participants have been provided with 60 sets of brain images. The jury has, in turn, 110 

images to test the presented solution. Those 110 images are not available to participants. 

The images where provided in two formats. 

- Original: Original images, anonymized and having the face removed 

- Preprocessed: All images were pre-processed with SPM12 r6685 to correct bias field 

inhomogeneities. 

B.1.2. Standard Reference Manual (or WMH masks) 

One mask has been provided for each image of each patient. These masks are images with 

three possible pixel values. 

- 0: background. 

- 1: WMH. 

 
4 https://wmh.isi.uu.nl/ 
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- 2: other pathologies. 

B.1.3. Image pre-processing 

The images of each hospital have different sizes, so it has been necessary to resize them. 

As for the WMH masks, pixels with a value of 2, other pathologies, have been eliminated since 

they are not the scope of this challenge.  

B.2. Multimodal Brain Tumor Segmentation Challenge 2019 dataset 
The MICCAI 2019 BraTS Challenge [59][60][61] focuses on evaluation of state-of-the-art 

methods for segmentation brain tumors in multimodal magnetic resonance imaging (MRI) 

scans. It focuses on the segmentation of brain tumors. 

The challenge focuses on the segmentation of intrinsically heterogeneous brain tumors 

(gliomas). It also focuses on the prediction of patient overall survival, via integrative analyses 

of radiomic features and machine learning algorithms. Finally, BraTS'19 intends to 

experimentally evaluate the uncertainty in tumor segmentations. 

B.2.1. Data detail 

All scans are available as NIfTI files (.nii.gz), like WMH Challenge images; and are in four 

formats: a) native (T1), b) post-contrast weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid 

Attenuated Inversion Recovery (T2-FLAIR). 

The dataset has been segmented manually by clinical experts with three labels [61]: GD-

enhancing tumor (label 4), the peritumoral edema (label 2), and the necrotic and non-

enhancing tumor core (NCR/NET — label 1). 

We have also converted all the labels into 1 because in [61] points that to segment the whole 

tumor extent with have to unite all the labels. We need to do it because we are going to 

segment images with two segmentation classes: brain healthy tissue and tumors. 

B.2.2. Image pre-processing 

With the mask image, we have converted every pixel value to one if its value is greater than 

one. In other words, we have joined all the labels. 

We did because we want to train the network to identify the whole tumor, and originally, 

these mask images are labeled with three labels as we have explained in the previous section. 

C. The proposed method 
As anticipated in section II.7, we are going to use the same method described in [41]. Their 

method is a framework for N-way k-shot semantic segmentation based on prototype learning. 

Prototype means that some elements are more representative than others with the same 

category [62]. Prototypical networks classify data (images) computing their distances with the 

prototype representation of each class [37]. The novelty for their method is that they have 

used to do semantic segmentation (to classify each pixel in the image). 

We have adopted their method, partially, to do semantic segmentation of one channel images 

(MR images are grey scale) unlike them who have used three channels images (colour images 

from real life and from ImageNet).  

C.1. Architecture 
We use mostly the same architecture than [41] with some differences. 



 

Figure 3. Architecture and data flow of [41] taken from their paper. 

 

Figure 4. Our architecture and data flow. 

The network has two branches: one to extract the prototypes (prototype learner branch), and 

another branch, segmentation branch, to do the semantic segmentation of the query images 

(the input images for this second branch). 

The input for the learner branch is the brain image masked by the WMH mask, and its output 

is a feature maps with 1 channel. Instead of using a GAP layer, we use the mean of all of the 

feature vectors get in the training. 

For the segmentator we use the same network architecture as the feature extractor. We fuse 

the output of this branch with the output of the segmentator in the prototype fusion, and we 

pass the result to a decoder to get the prediction. 



Instead of using VGG16 network only, we use VGG16 and U-Net implementation from [48], to 

compare their results. We use VGG16 because is the same network used in [41], and we have 

used also U-Net because it has been designed for tasks with biomedical images [63] and it has 

been used by [48] in their winning solution of the challenge and you can check its architecture 

in Figure 5. 

 

Figure 5. U-Net network architecture [48] solution. 

VGG-16 network is an encoder, that encodes and image and its output is used to classify it. In 

our method we are using two VGG-16 networks in an encoder-decoder architecture. The 

encoder generates a high-dimensional feature vector. The decoder takes this high-dimensional 

feature vector and generates a semantic segmentation mask. Figure 6 shows this architecture. 

 

Figure 6.VGG-16 encoder-decoder architecture. Picture taken from [64]. 

C.2. The proposed algorithm 
The algorithm to train the feature branch is. 

- Initialize the feature extractor network’s weights with the best initialization method 

(explained in the next section). 

- With the whole support set, we train the feature extractor branch in episodic fashion. 

- While training, we are getting the features arrays for the WMH class. 

- At the end of the training, we do the mean of these features’ arrays. 

To get a prediction with the segmentation branch, we do. 



- Initialize the segmentation network’s weights with the same initialization method as 

feature extractor. 

- To make a prediction, we take one image that it has not been used in the training, and 

we use it as the input for this branch to generate an output. 

- We use this output as the input for a decoder to get the predicted WMH 

segmentation. 

We have changed the architecture from paper [41] because we what to simplify it and take 

advantage of the location information contained in the class features’ array obtained in the 

Feature branch. 

C.3. Weight Initialization 
They initialize network’s weights training with the ImageNet dataset. Instead, we have trained 

several methods to initialize our network. You can check a table with a comparation in the 

following section “Experiments setup”. We cannot train our network with ImageNet because it 

is a dataset with three channels images and we work with one channel images. Brain images, 

as mentioned before, are one channel images. 

The methods used are. 

1. Gaussian distribution. 

Layers’ weights are initialized with the values of a normal distribution with a mean of 0 

and a standard deviation of 1. 

 

2. Xavier normal initializer. 

Sets layers’ weights to values chosen from a random uniform distribution centered in. 

 
±

√6

√𝑛𝑖 + 𝑛𝑖+1

 (5) 

 

where 𝑛𝑖 is the number of incoming connections for current layer, and 𝑛𝑖+1 is the 

number of outcoming connections. 

 

3. Weights from the winning team sysu_media [48]. 

This team has shared their solution’s weights and we have loaded into our U-Net 

network. Tensorflow lets train a model (in this case U-Net network) and save their 

weights into a binary file. This let research to not train the network every time we have 

to test our algorithm. And also, this let us to share our training between other 

researches.  

 

4. The MICCAI 2019 BraTS Challenge dataset [59][60][61] 

We have trained our networks with images from this dataset and then save the 

weights to use them later into our experiments. 

C.4. Optimizer and loss function 
For the optimizer we use ADAM optimizer [65] in both branches and dice coefficient function 

[66] to measure the similarity. The initial learning rate is 10−4 on both branches. 

For the loss function we have used the metric “Dice similarity coefficient”, which is one of the 

metrics for the WMH Challenge. We have used this and no other because this function is 

differentiable and we can use in backpropagation during training. 



IV. Experiments 
In this section we report the outcomes of the experiments carried out with the datasets and 

architecture described in the previous section. 

1. Experiments setup 
Following Figure 4, the experiment was divided in two steps. 

1. Train the prototype learner with support set and query set using the four weights 

initialization methods explained in section E. Support set and query set have images 

from the WMH Challenge dataset. 

2. Then we use the class prototypes obtained in the previous step to get the 

segmentation mask for new unseen brain images from the WMH Challenge dataset in 

the experiments. 

We have considered two classes: brain and white matter hyperintensity. And we have trained 

the prototype learner with five data points as they did in [37]. We are going to do the same 

methods than [37], 2-way 5-shot learning and 2-way 1-shot learning, to compare results. The 

number of episodes in the prototype learner train was 200 because there are 960 brain images 

from the three hospitals. If we are using 5-shot, it means that we are using 5 images on each 

episode; so 
960

5
= 192 episodes. We choose these 5 images randomly on each episode; In 

order to be more or less sure that we use all the images in the set, we decided to use 200 

episodes. 

To compute the mean for the class prototype, instead of getting one value as the mean of all 

the values in the features array (as they did in the referential paper [41]), we have computed 

the mean as an array, where each value in this array is the mean of the elements at the same 

row and column for all the features array compute it on the training. We did it this way due to 

the configuration of the WMH, since they appear surrounded by a characteristic brain tissue 

and we have found more interesting to have the average of each characteristic “pixel” that 

makes up a WMH, instead of a single number. 

We have preprocessed all the images from the WMH Challenge, 960 images. A part from the 

preprocessing done by the WMH challenge organizers, we have done the same pre-process 

than the winning challenge solution [28] to: guarantee a uniform size of all data and normalize 

voxel intensity to reduce variation across subjects. We enforce these: cropping or padding 

each image to a uniform size (200 x 200) and Gaussian normalization on the brain voxel 

intensity. 

The experiments were implemented by Tensorflow 2.2.0 [67] on several environments: i) 

NVIDIA GeForce GTX 970, ii) Google Collaboratory using a GPU notebook and iii) NVIDIA 

JETSON TX2. We have used these three environments because the first one is my personal 

computer and we have not been able to run the experiments due to the lack of memory. We 

decided to move the environment to Google Collaboratory because it is free and its hardware 

resources, like GPUs, are far from enough to let test our algorithm [68]. Finally, we have also 

tried the algorithm on NVIDIA JETSON TX2 which has the best performance. 

 

 

 



Execution times in each of the tasks. 

VGG-16 

Environment Load images Training Predict Total 

NVIDIA GTX 
970 

32,426854848861694 412,695604801178 1,1420652866363525 446,264524936676 

Google 
Collaboratory 

72,16633415222168 81,3402853012085 1,6061344146728516 
155,112753868103 

 

NVIDIA 
JETSON TX2 

67,26481236587416 75,6698214536974 0,9552147378934212 143,889848557465 

Table 3. VGG-16 execution time comparation (seconds). 

U-NET 

Environment Load images Training Predict Total 

NVIDIA GTX 
970 

38,1671826839447 301,79126167297363 1,1170639991760254 341,07550835609436 

Google 
Collaboratory 

50,01747369766235 56,29819703102112 1,5159823894500732 107,84133577346802 

NVIDIA 
JETSON TX2 

45,32658412536972 52,36574921556958 0,8511365974521312 98,5434699383913 

Table 4. U-NET execution time comparation (seconds). 

As expected, artificial intelligence algorithms run better with GPU. NVIDIA Jetson TX2 has a 

better architecture than free services from Google and from my modest NVIDIA GTX 970 GPU. 

Weights initialization 

In the experiments, both branches, the prototype learner and the segmentor, use the encoder 

part of the VGG16 network and U-Net network. The weights of the network were initialized in 

several forms. 

1. Gaussian distribution. 

2. Xavier normal initializer  

3. Weights from the winning team sysu_media [48]. 

4. The MICCAI 2019 BraTS Challenge dataset [59][60][61]. 

Environment Network 1 2 3 4 

Google Colab VGG-16 1,0 0,99605644 0,99788135 0,99788135 

Google Colab U-Net 0,9757263 0,97694886 0,99658155 0,9995242 

Table 5. Dice coef. loss comparation. 

We have implemented the dice similarity coefficient used in the WMH Challenge. Dice coef. Is 

a statistical validation metric to evaluate the reproducibility performance of manual 

segmentations and the accuracy of spatial overlap of automated fractional probabilistic 

segmentation of MR images. The dice coef. Loss function is 1 − 𝑑𝑖𝑐𝑒_𝑐𝑜𝑒𝑓. The closer the 

value is to 1 the worse the network prediction is. 

 

 

 

 



In table 6 we show the network prediction for each of the weight initialization methods. 

Weights VGG-16 U-Net 

1 

  

2 

  

3 

  

4 

  
Table 6. Output comparation for the different weight initialization methods and networks. 

The two best initialization methods were sysu_media (3) and BraTS19 (4) because they use the 

same kind of images that we are going to use in our experiment. Obviously, we cannot use 

sysu_media initialization because they use the same images that we use in the experiment and 

we can get wrong results due to overfitting. 

2. Experiments execution 
We have trained our model in an episodic fashion—that is, in each episode, we sample a few 

data points (images) from our dataset. On each episode we take a few images to train it and 

another few images to test it. So, over series of episodes, our model learns how to learn from a 

smaller dataset. This follows the idea behind few-shot learning, which is learn with few data. 

We did quite a few experiments changing the network, VGG-16 or U-Net, and changing the 

step one (the way we initialize network’s weights). So, with VGG-16 we did four experiments, 

one for each weight initialization method. And with U-Net we did another four. 

One of the most interesting features in Meta Learning is that we can use our trained network 

in a task which it was not trained. To test it, we have initialized the net with the weights of the 

WMH Challenge winning solution, and use it to predict tumors with BraTS19 images dataset. 

V. Experimental results 

1. Results 
We have found that using a pre-trained network gets better results than if we initialize the 

network with another initialization method (Gaussian distribution or Xavier normal initializer). 

In table 5 and table 6, we found that the best results are for the network pre-trained with 

similar images than the WMH Challenge images. So, we have pretrained our networks with 



BraTS19 images dataset. We have not used the sysu media dataset [48] because they use the 

same images as us and we can falsify the results by obtaining overfitting. In other words, we 

have pretrained our networks with BraTS19 images dataset. 

The results do not differ much if we use VGG-16 or U-Net. In all the cases analyzed the loss 

function scores over 0.997, a little better with U-Net, and no difference between 2-way 5-shot 

and 2-way 1 shot. It is better for U-Net because the network was created for Biomedical Image 

Segmentation [49] and there is no different between 5-shot and 1-shot because the prediction 

problem probably does not depend on the number of images you train with. Maybe the 

problem is in the network architecture. 

Network 2-way 5-shot 2-way 1-shot 

VGG-16 0,99788135 0,99788135 

U-Net 0,9995242 0,9995242 

Table 7. Loss for 2-way 5-shot and 2-way 1-shot. 

The ground truth compared with the network predict are in Table 5. 

Network 2-way 5-shot 2-way 1-shot 

VGG-16 

  
U-Net 

  
Table 8. Comparation between mask and network prediction. 

In Table 8 we seen that the predictions are the same for both experiments (5-shot and 1-shot). 

Comparing the results from the paper [41], in Figure 7, and our experiments we noticed that 

predictions from [41] are quite goods. The predictions in Figure 7 are the color mask in top of a 

person, or the horse, the dog or in top of the motorbike. In the Horse image (c) we see that the 

color mask for the horse is bigger than the horse but it is quite good, not perfect, to know 

where is horse in the image. But our experiments results show that maybe WMH are too small 

to be segmented or even the pixels for all of the WMH are not grouped like the horse: there is 

one horse in picture (c) and in the last mask, bottom right corner in table 9, there are more 

than four WMH. 

 

Figure 7. Predictions from paper [41]. 



Network 2-way 5-shot 2-way 1-shot 

VGG-16 

  
U-Net 

  
Table 9. Predictions from our algorithm. 

2. Discussion 
Comparing our method with method in paper [41], we have the following differences. 

We have pre-trained both branches with one-channel images (from “The MICCAI 2019 BraTS 

Challenge” dataset) instead of using ImageNet dataset. We did this way because we work with 

one-channel images and ImageNet images are three channels and we can use a network pre-

trained with three-channels images with one-channel images. 

We have computed the class prototype as an array instead of a single value. We did it this way 

due to the configuration of the WMH, since they appear surrounded by a characteristic brain 

tissue and we have found more interesting to have the average of each characteristic “pixel” 

that makes up a WMH, instead of a single number. 

Instead of using a Prototype Fusion we have used a decoder to decode the fusion between the 

features array from the segmentor branch with the class prototype into a WMH mask. 

With our changes in the architecture from paper [41] we wanted create a simpler architecture 

but semantic segmentation is a difficult task in which we have to take into account the spatial 

location, within the image, of what you are segmenting. Maybe we have lost this information 

and this is why appears a white border into U-Net predictions. 

  



Finally, we have also initialized both networks with sysu media weights, and try to predict 

brain tumors in the BraTS19 dataset with these results. 

Network 2-way 5-shot 2-way 1-shot 

VGG-16 0,9978261 0,9978261 

U-Net 0,79084265 0,6719284 

Table 10. Loss predicting BraTS19 images with sysu media weights. 

Network 2-way 5-shot 2-way 1-shot 

VGG-16 

  
U-Net 

  
Table 11.Networks' predictions images. 

U-Net network has a better performance with this configuration. Looks like pretraining the 

network with brain MR images with WMH and try to predict brain tumors from BraTS19 

images has a better performance. It seems that the improvement is due to that we are trying 

to predict tumors instead of WMH, and this is easier for the network than predict WMH. If we 

get different results with the same network and changing the images, then, in future works, 

we have to improve the preprocess step with the images. 

VI. Conclusion and future works 
The field of semantic segmentation done with prototype learning is in early stages of research. 

The problem we have deal with is to find the way to identify the WMH in brain images. In 

paper [41] they cropped the relevant area in an image, i.e. an image of a landscape with a 

horse, the cropped the horse getting an image with a black background and a horse. We think 

cropping the images, getting only the brain to get the WMH and its surrounding tissue is a 

good idea, because the networks focuses on the relevant tissue. As we commented in the 

introduction, “WHM have a signal intensity brighter and with light boundaries compared to the 

surrounding white matter [8]”. 

The research presented in this paper is framed in the project "Intelligent systems for active 

aging and rehabilitation" offered by the phyUM research line on physical user movement in 

the Doctorate Program at UNED, where this research is expected to be continued. Specifically, 

the contribution of this work to this line of research is focused on the search for computer 

vision techniques for the analysis of brain images that allow the identification of brain damage, 

for example, those that occur after a stroke and can affect a person's ability to move. In this 

way, teaching/learning strategies could be designed to adapt to the motor rehabilitation needs 

associated with stroke. In addition, this work can also provide some insights to the INT2AFF 

project, which studies -in an intrasubject approach- how emotions evolve when users are 

learning tasks.  These tasks can be psychomotor actions such as learning again to walk after a 

stroke. In particular, functional MRI, which collects MRI along time, to measure the evolution 

of brain activity, has proven useful to study human emotions [69]. 



Future works can lead to find alternative ways of identifying the relevant features instead of 

convolutional filters (a method to identify relevant features of an image and where in the 

image they are). Or even trying to find another way to teach a program to learn meta 

information containing a high-level description of each class. In this work, the application of an 

architecture with a decoder at the end of the second branch has suggested that we need a 

method to get also the location information for what the network has found. 

Another future works that can be addressed are. 

• Find a way to create a sharper image of the image obtained from the network as a 

prediction. For example, by treating the image as if it were out of focus, apply some 

algorithm to bring it into focus. 

• Have another kind of layer to extract the features of an image and where in the image 

have been located. 

• Use the output of the decoder to get the cost function and use it to train the network.  
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