
MASTER EN INGENIERÍA Y CIENCIA DE DATOS

Curso Académico 2021/2022

Trabajo Fin de Máster

RESOURCES USAGE PREDICTION ON

PARALLEL DISTRIBUTED INFRASTRUCTURES

Autor : Antonio Martı́nez Garı́n

Tutor : Dr. Agustı́n Carlos Caminero Herraez

Tutor : Dr. José Manuel Cuadra Troncoso

To my wife Leyre and my son,

This would have never been completed without your love and awesome support.

To my parents,

For all the efforts made, know they were worth it.

I

II

Agradecimientos

Cuando empecé con este proyecto, no podı́a imaginar el esfuerzo que llegarı́a a costar. Se

necesita la guı́a de personas con experiencia que indiquen los pasos iniciales y puedan corregir

el rumbo cuando se desvı́a. Por ello, me gustarı́a agradecer al Dr. José Manuel Cuadra Troncoso

y al Dr. Agustı́n Carlos Caminero Herraez por su paciencia e interés a lo largo del desarrollo

de este proyecto. Sin desestimar los esfuerzos propios, he de reconocer su labor, que ha sido

fundamental para la consecución de este TFM. Gracias por acompañarme y guiarme a lo largo

de este viaje.

III

IV AGRADECIMIENTOS

Resumen

Los contenedores ligeros se están usando de forma extensiva para ejecutar aplicaciones basadas

en contenedores llamadas trabajos. Estos trabajos son orquestados por sistemas encargados de

administrar clústeres de gran tamaño que contienen cientos de miles de aplicaciones, y destacan

por lograr una alta utilización del clúster. Sin embargo, definiciones deficientes de los requisitos

de recursos en los contenedores de los trabajos tienen un impacto negativo en la eficiencia

general del uso del clúster.

El objetivo principal de este trabajo es encontrar y entrenar modelos para predecir el uso de

recursos de los jobs cuando son enviados y analizar su capacidad de predicción. Esto se hará

utilizando datos de grandes clústeres de producción que ejecutan contenedores ligeros. Este

TFM se encuadra dentro del proyecto del FILE (efFIcient scheduLing of containErs), financiado

por la UNED.

V

VI RESUMEN

Abstract

Lightweight containers are extensively used for running containerized applications as jobs. Jobs

are orchestrated by systems which manage large clusters that contain hundreds of thousands of

jobs from thousands of applications, and they excel at achieving high utilization of the clus-

ter. However, poor container resource requirements negatively impact the overall efficiency of

cluster usage.

The main objective of this work is to find and train models to predict the resource usage of

jobs at submission time and analyze their prediction power. This will be done using data from

large production clusters running lightweight containers. This thesis is part of the FILE project

(efFIcient scheduling of containErs) financed by UNED.

Keywords: Machine Learning, Regression, Lightweight Containers, Tabular Data, Resources

Usage, Random Forest.

VII

VIII ABSTRACT

Contents

List of Figures XI

List of Tables XIII

1 Introduction 1

1.1 Introduction and Motivation . 1

1.2 Objectives . 1

1.3 Problem Formulation . 2

1.4 Memory Structure . 2

2 Previous Work 3

3 Problem Formulation 5

4 Data Description and Analysis 7

4.1 Data Description . 7

4.1.1 Data Formatting . 9

4.2 Data Cleaning . 10

4.3 Data Analysis . 11

4.3.1 Data Distributions and outliers . 12

4.3.2 Variables Correlation . 14

4.3.3 Time Series Study . 15

5 Regression Models 17

5.1 Random Forest (RF) . 17

5.2 Linear Regression (LR) . 18

IX

X CONTENTS

5.3 Deep Neural Networks (DNN) . 18

5.4 Scoring Metrics . 20

6 Model Training and Hyperparameter Tuning 21

6.1 Categorical and Numerical Features . 21

6.1.1 Features Engineering and Selection 22

6.2 Training, Validation, and Test Sets . 23

6.2.1 K-Fold Cross Validation . 23

6.3 Random Forest (RF) . 23

6.4 Linear Regression (LR) . 24

6.5 Deep Neural Network (DNN) . 25

7 Results and Discussion 27

7.1 Results . 27

7.1.1 Feature Engineering, Scaling, and Importance 27

7.1.2 Hyperparameters Tuning . 30

7.1.3 Models Performance . 30

7.2 Discussion . 32

8 Conclusions and Future Work 35

8.1 Future Work . 36

A APPENDIX A: Converting JSON GZIP data to Parquet 37

Bibliography 39

List of Figures

4.1 Events lifecycle . 8

4.2 Features Distributions . 13

4.3 Number of Jobs adjusted to minutes . 13

4.4 Skewness coefficients . 14

4.5 Correlation Matrices . 14

4.6 Time series length . 15

4.7 Jobs each Day, Hour, Minute . 16

5.1 Neural Network Example . 19

6.1 Deep Neural Network Architecture . 26

7.1 Clipped Dataset . 29

7.2 Features Importance . 29

XI

XII LIST OF FIGURES

List of Tables

4.1 Dataset Partitions Information . 10

4.2 Numerical variables statistics . 12

4.3 Categorical variables statistics . 12

4.4 Time series statistics . 15

6.1 One-Hot and Binary Encodings . 22

7.1 Model Performance for Features Encoding and Clipping 28

7.2 Models Explored Hyperparameters . 30

7.3 Models Found Hyperparameters . 31

7.4 Models Training and Execution Time . 31

7.5 Models performance . 31

XIII

XIV LIST OF TABLES

Chapter 1

Introduction

1.1 Introduction and Motivation

Lightweight containers are being used extensively in the last years in the industry, which

uses them in production environments with large clusters. Three main features support this

widespread, the isolation that they provide, the reproducibility, and the ability to optimize bet-

ter the resources that an application uses to reduce the memory footprint [Jaramillo et al., 2016].

This has led to the development of open-source container orchestrators like Kubernetes, which

is heavily inspired by Google’s Borg [Verma et al., 2015, Burns et al., 2016, Blog, 2015].

With the previous ideas in mind, studies have been developed pursuing allocation anal-

ysis and optimization in cluster resource usage [Tirmazi et al., 2020a], [Guo et al., 2019] and

[Lu et al., 2017]. It would be expected that jobs submitted had been previously assessed for the

required resources but, in practice cluster resources are underused.

To solve this issue, we propose to compare the performance of different models over traces

of a cluster with the hypothesis that resource requirements can be optimized by predicting re-

source usage for specific jobs at the time of submission. In order to test this hypothesis, we

propose to use resource requests, resource usage, and as many metadata variables are available

on published cluster data open datasets.

1.2 Objectives

The principal objectives of this research are:

1

2 CHAPTER 1. INTRODUCTION

• Find existing open datasets with production traces of lightweight containers.

• Develop a practical case study of the dataset.

Secondary objectives are likely to arise while developing the thesis, like providing insights on

optimal lightweights containers resource requests on shared clusters.

1.3 Problem Formulation

Given a cluster of machines, we define two main resources, CPU units (cpu, from now on) and

RAM Memory units (memory, from now on), which define the capacity of each of the individual

machines and can be grouped together to define the capacity of the cluster.

Jobs can be submitted to a cluster with specific cpu and memory requests and will consume

some cpu and memory, either on a single machine or several, as jobs are composed of individual

tasks. These Jobs will have tasks, and these tasks will consume cpu and memory. If they

consume more cpu than requested, and there is free cpu available they can use it, but if more

memory than the requested units is consumed the tasks are killed. Predicting the usage of a job

is therefore pivotal to ensuring a job can be submitted.

1.4 Memory Structure

The thesis is organized as follows:

• In the first chapter, an introduction to the project is given.

• The second chapter (2) shows related work to the subject.

• Chapter 3 introduces the problem formulation in depth.

• In the fourth chapter (4), the data used for the project is described and analyzed. It

includes a thorough description of the data cleaning and pre-processing.

• Chapters 5 and 6 introduce the regression models used in this work.

• Next, the experimentation results are displayed and discussed (Chapter 7).

• Finally, chapter 8 includes the conclusions and future work.

Chapter 2

Previous Work

The research on event data has been extense in fields like anomaly detection, clustering, pat-

tern recognition [Han et al., 2012, Bishop, 2013], where the objective is not to predict but an-

alyze and detect events. Instead, our focus is on predictive analysis, and literature can be

found on social media analysis [Kursuncu et al., 2019], banking [Prasad and Madhavi, 2012,

Kullaya Swamy and Sarojamma, 2020] or demand [Laptev et al., 2017] events.

Event data is usually found with a timestamp that tracks when the event was generated.

Therefore, event data can be considered as a time series. A large portion of literature focuses on

analyzing evenly-spaced time series, which has lead to the development of efficient algorithms

under that assumption [Eckner, 2012]. This was largely because of limitations in computing

resources, which is no longer an issue. In 1.1 we introduced the irregular nature of events in

cloud computing and container orchestrators, which leads to unevenly-spaced time series of

event data. Approaches [Smedt et al., 2021, Casals et al., 2009] have been described to convert

irregular time series into regular ones by applying aggregations of equal time or size, and re-

sampling to obtain even subseries but it comes with an observability loss and negative effect on

forecasting accuracy.

Recently, interesting approaches have been published to tackle irregular time series by using

Recurrent Neural Networks [Hewamalage et al., 2021] and Transformers. The Temporal Fusion

Transformer [Lim et al., 2019] is one of the latest additions in the former category, introducing

a new attention-based architecture for multi-horizon forecasting while providing interpretable

insights, which is something these kinds of models usually lack. Although they are showing

3

4 CHAPTER 2. PREVIOUS WORK

promising results, we are going to discard these models for this thesis.

Concerning regression analysis, [Yan and Su, 2009] describes Linear Regression as the first

to be studied in depth, having been widely used in practice. Research in the last 25 years has

provided many new models like Random Forest [Breiman, 2001], XGBoost [Chen et al., 2015],

or Deep Neural Network architectures [Goodfellow et al., 2016].

Our work focuses on a general approach to lightweight containers, but research is of-

ten conducted on general cluster usage, or VM resource allocation [Liu and Cho, 2012] and

[Xiao et al., 2012]. Moreover, public datasets of cluster traces from real orchestration produc-

tion environments are rare, although cloud computing companies like Google [Hellerstein, 2010,

Wilkes, 2011, Wilkes, 2020b] and Alibaba [Cheng et al., 2018, Zhang, 2017] have been releas-

ing large cluster traces for scientific research over recent years. This has led to extensive analy-

sis and research on resource efficiency in the clusters [Jajoo et al., 2021, Tirmazi et al., 2020b,

Sebastio et al., 2018, Abdul-Rahman and Aida, 2014].

Chapter 3

Problem Formulation

Given a cluster of machines C, we denote each machine as ci. We define two main resources,

CPU units U and RAM Memory M . We can define the capacity of a cluster as a vector

CAP (C) = (
∑
U(ci),

∑
M(ci)) : i = 1, ..., C.

Jobs J can be submitted to a cluster with specific cpu and memory requests and will con-

sume some cpu and memory, so we denote:

• The requests of a specific Job as REQ(jk) = (U(jk),M(jk)) : k = 1, ..., J .

• The resources usage as RES(jk) = (U(jk),M(jk)) : k = 1, ..., J .

As we will further discuss in the Data Description 4.1 section, the data will be from the cluster

usage Dataset by Google for the year 2019 and only finished jobs are used from Cell E. The

units for CPU and Memory are calculated as the average and maximum, respectively, for the

execution duration of each job, although it is possible to consider other approaches for CPU as

the average of percentiles above 90%.

5

6 CHAPTER 3. PROBLEM FORMULATION

Chapter 4

Data Description and Analysis

In the previous chapter, it was established that we will not treat the data as time series, so we

need to adapt the data to obtain unique entries for each job in the event data.

We will be using three datasets, the first one containing event data for the machines in the

cluster, another for the job events, and a final one with resource usage for each job aggregated

over time. The resources and requests dataset can be identified as our main dataset, and we

expect to extract useful metadata from the collection and job events that will help increase the

performance of the models that will be trained.

4.1 Data Description

Here we will present the data that has been used in our work. Previously, we mentioned the three

data sets that will be our sources, and what follows is an introduction to the Borg system and the

datasets themselves with information extracted from their documentation [Verma et al., 2015,

Wilkes, 2020a]. The source is the Google cluster-usage traces v3 [Wilkes, 2020a] which pro-

vides trace data from eight Borg cells over the month of May 2019 [Tirmazi et al., 2020b].

A Borg cell is a set of machines, typically all in a single cluster (although it is not a require-

ment) sharing a common cluster-management system that allocates work to the machines. It

defines two main concepts for resource requests that share the same lifecycle:

• Collections: They can be jobs, a task, or a set of tasks (instances) specifying computa-

tions that a user wants to run.

7

8 CHAPTER 4. DATA DESCRIPTION AND ANALYSIS

Figure 4.1: Events lifecycle, with the edges reflecting all the available transition types. The only state that marks a

collection as successful is FINISH, encoded as 6.1

• Alloc Sets: Resource reservation made of one or more alloc instances. Jobs can be

configured to specifically use these instances.

If no alloc set is specified, then the tasks of a Job will consume resources directly from a

machine. The concept of instances is comprised by:

• Task: Linux program that can be run on a single machine and is part of a Job.

• Alloc Instance: As tasks are tied to Jobs, alloc instances are tied to an alloc set, and they

represent a slot reservation inside it.

With the basic concepts around Borg defined, we can now describe in detail the 3 datasets

that will be used in this work, all from cell E. All of the datasets include one or more timestamps

in milliseconds:

• CollectionEvents: Events that describe the life cycle (Figure 4.1) of collections. Each

entry represents an event of a collection and the variables of interest for us in this dataset

are collection id, user, and collection logical name, which is a hash of the original name

of the collection. There are other variables ignored from this dataset because either they

1Extracted from Google cluster-usage traces v3.

https://drive.google.com/file/d/10r6cnJ5cJ89fPWCgj7j4LtLBqYN9RiI9/view

4.1. DATA DESCRIPTION 9

are replicated on other datasets or offer information about machines and switches. From

this da Collections running entirely on dedicated machines are omitted. For each event, it

includes a timestamp and type of event (transition).

• InstanceEvents: Events describing the life cycle (Figure 4.1) of instances. From this

dataset we will take the variables priority (higher is better), scheduling class (categories

derived from the priority), alloc collection id (indicates the collection id of the instance,

if configured), and resource request information (cpu and memory, normalized). Other

variables are ignored because they refer to machines. Instances from collections running

entirely on dedicated machines are omitted.

• InstanceUsage: This dataset contains usage values from a series of measurement win-

dows, non-overlapping, for each instance. These windows are typically 300 seconds long,

but only if the instance is started, stopped, or updated within that period. During the mea-

surement windows, the usage data (cpu units and memory) is sampled roughly every

second and then aggregated (average, maximum) and normalized. We will use the start

and end time, collection id, instance index, maximum usage memory, average usage cpus,

and random sample usage cpus.

As a final note, the CPU units and Memory units are measured internally in Borg as Google

Compute units (GCU) and RAM in bytes. Also, CPU requests are measured in GCUs and CPU

consumption is measured in GCU-seconds/seconds. The GCU is defined on each machine so

that one GCU delivers approximately the same amount of computation on all of them. For

RAM, the capacity of a machine with the largest memory size is reported as 1.0, and all the

memory sizes are rescaled by dividing them by the maximum machine memory observed across

all the traces (Those values can be found on another dataset not used, MachineEvents).

4.1.1 Data Formatting

All the cluster usage data was provided as a JSON compressed with GZIP. There are available

8 folders, named after the 8 cells for which the trace data is provided, and each dataset is

stored partitioned in files named after the collection and the partition number as explained in

the statistics from Table 4.1. On each partition, each row represents one entry of data.

10 CHAPTER 4. DATA DESCRIPTION AND ANALYSIS

Dataset Num. Partitions Size (json.gz) Size (.json)

CollectionEvents 1 ≈ 254 MB ≈ 2.12 GB

InstanceEvents 51 ≈ 27.39 GB ≈ 637.5 GB

InstanceUsage 1302 ≈ 699.32 GB ≈ 5.09 TB

Table 4.1: Datasets partitions and size for Cell E.

4.2 Data Cleaning

In this section, we present all the cleaning work pursued for each dataset to create a base dataset

for training the models. As we mentioned in previous chapters, we will only extract data from

cell E.

In the previous section we talked about the datasets formatting; being provided as json.gzip

files, the first stage was to preprocess them and have them converted to a more efficient storage

format like parquet (Table 4.1). Otherwise, it would have been impossible to work with this

dataset as just loading any partition on json.gz took more than 5 minutes on average. This,

added to the size of the dataset made it impossible to work with traditional tools like Pandas, so

we had to resort to distributed frameworks like Dask[Crist, 2016], which have Pandas-like APIs.

Even so, the processing to convert the files took 3 days in total. It should also be noted, that

since this data was in JSON, it did not follow a Parquet-compatible format for all the columns,

so it was required to flatten the incompatible columns and convert them to accepted data types.

Once we had the datasets converted to parquet and with valid Pandas types, we could pro-

ceed with the cleaning:

• CollectionEvents: We filtered out events on this dataset, keeping only the ones that had

FINISHED 4.1. The reason behind this is that we just want to use collections that have

their resources requests, among other parameters, correctly defined and do not have any

misconfiguration or runtime crashes. This, obviously, creates a bias, but we rather have

this bias than use tasks that were never scheduled or crashed because they consumed

too many resources or were canceled (because there is no way to guess why they were

terminated). Also, we only extracted Jobs, because Alloc Sets are just reservations of

resources, but Jobs can be configured to use Alloc Sets. Therefore, if any Job uses an

4.3. DATA ANALYSIS 11

Alloc Set, we will still have it. The resulting collection ids will be used to filter out

collection ids on the other two datasets.

• InstanceEvents: Once we have filtered out the unfinished collection ids and the unfin-

ished instance events the resulting dataset was small enough to be loaded as a Pandas

DataFrame, 2,5 GB (although loading time is around 4 minutes).

• InstanceUsage: Again, we reduced the size of the dataset thanks to the filtering of col-

lection ids to be small enough to fit in memory, 4.1 GB (but the loading time is around 44

minutes)

Finally, we joined all the datasets together. We started by grouping the InstanceUsage

dataset to extract for each collection id the minimum start time, the maximum end time, the

number of instances, the maximum memory usage, and the average usage cpus. Then, we ex-

tracted the unique events from the InstanceEvents dataset to remove duplicates and extract the

metadata of the instances. Finally, we extract the user and collection logical name from the

CollectionEvents and we joined all the datasets by collection id.

As a result of these operations, we obtained a dataset with the collection ids that finished suc-

cessfully, their metadata, the requested resources, and the resource usage. It is worth noting

that this dataset contains time series identified by the categorical variables user and collec-

tion logical name.

4.3 Data Analysis

Outliers and distribution of the data can heavily impact the prediction accuracy of models that

assume a Normal distribution of the data. Through this section, we will carry out an in-depth

analysis of the data to identify characteristics that can be used later to benefit our models. This

section also includes the analysis of the relations between the target and independent variables

and the distribution of the events in time. Also, it is worth mentioning that there are no missing

values in the final dataset, as shown in Tables 4.2 and 4.3.

12 CHAPTER 4. DATA DESCRIPTION AND ANALYSIS

start time end time priority scheduling class num instances alloc collection id resource request cpus resource request memory maximum usage memory average usage cpus random sample usage cpus

count 529311 529311 529311 529311 529311 529311 529311 529311 529311 529311 529311

Mean 1.306453e+12 1.307947e+12 128.876863 0.933321 8.563082e+01 0.000297 0.007862 0.002927 2.123000e-03 0.002110 0.002159

Std 7.840218e+11 7.837372e+11 66.482851 0.802010 4.909463e+03 0.017220 0.018208 0.005390 4.500872e-03 0.007818 0.007966

Min 3.000000e+08 6.120000e+08 0 0 1e+00 0 0 0 9.536743e-07 0 0

1st Qtl. 6.244855e+11 6.270680e+11 103 0 3e+00 0 0.000880 0.000408 3.328323e-04 0.000225 0.000139

Median 1.232059e+12 1.233313e+12 115 1 4e+00 0 0.001320 0.000986 8.392334e-04 0.000392 0.000355

3rd Qtl. 1.969502e+12 1.970470e+12 200 2 6e+00 0 0.008102 0.002762 2.037048e-03 0.000814 0.000943

Max 2.678989e+12 2.678993e+12 360 3 1.357094e+06 1 0.518555 0.390625 3.085938e-01 0.327791 0.328583

Table 4.2: Statistics of the numerical variables including the quantiles.

user collection logical name

count 529311 529311

unique 1738 18190

top F2+Gv53Pxd4KDRb[...] qYyuDw/A+bLNI4+[...]

freq 95898 54030

Table 4.3: Statistics of the categorical variables showing the number of categories for each one and the most

frequent.

4.3.1 Data Distributions and outliers

The main descriptive statistics introduced in Tables 4.2 and 4.3 are complemented by the distri-

butions represented in Figure 4.2. Looking first at the start time, Table 4.3 shows the original

number of jobs at a minute level, with an unusual number of jobs in the first minute, and the

result of removing the outliers. These outliers are there due to how the trace was recorded,

leaving the first minute with 893 jobs, being impossible to guess which of the events on that

second happened before the start of the trace. The final minutes of the trace are not affected,

but to keep the trace with complete days, and since the trace starts on minute 5, for training the

models, we will adjust the dataset to start on minute 5 of day 0 (skipping the first second, as it

is where the outliers of minute 5 lie) until day 31 minute 5 second 0.

Continuing with the histograms of the other continuous variables, they show right-skewed

heavy tail distributions, which is confirmed by calculating the skewness 4.4. These outliers can

affect model predictions so it will be needed to apply robust scalers for these variables before

training them. This will be further discussed in Chapters 5 and 6.

4.3. DATA ANALYSIS 13

(a) Unscaled

(b) Log Scale

Figure 4.2: Features distributions, (a) showing the unscaled histograms and (b) showing the log scale histograms.

(a) Original

(b) Adjusted

Figure 4.3: Comparison showing the number of jobs grouped by day, hour, and minute in the trace with (a)

showing the original dataset and (b) showing the result of removing outliers.

14 CHAPTER 4. DATA DESCRIPTION AND ANALYSIS

Figure 4.4: Skewness coefficients calculated for the percentiles 90th to 100th of features displaying a heavy tail

distribution. Highlighted are the (percentile, variable) cells above 3.

(a) Pearson Correlation Matrix (b) Spearman Correlation Matrix

Figure 4.5: Correlation matrices side by side. Matrix (a) shows linear relationships, whereas (b) highlights

monotonic relationships. Names are shortened for visualization purposes.

4.3.2 Variables Correlation

Figure 4.5 shows an evaluation of the correlation between variables, and a strong correlation

between start time and end time can be observed, as well as between requests and usage of cpu

and memory respectively. To avoid multicollinearity on models like Logistic Regression, we

must remove one of the timestamp variables. Request and resource usage for cpu and memory

also show a high correlation, and there is also some correlation between the memory and cpu

variables. Looking closer at num instances and the priority variables we can see some corre-

lation with the resources and requests, especially with memory. The alloc id variable does not

seem to have much correlation with any of the other variables.

4.3. DATA ANALYSIS 15

Users Collections User-Collection

First Last Count First Last Count First Last Count

Min 3.060e+08 4.260e+08 1 3.060e+08 4.260e+08 1 3.060e+08 4.260e+08 1

1st Qtl. 5.732e+11 1.085e+12 2 6.594e+11 1.082e+12 1 6.594e+11 1.082e+12 1

Median 1.005e+12 1.091e+12 4 1.077e+12 1.090e+12 2 1.077e+12 1.090e+12 2

3rd Qtl. 1.0817e+12 1.117e+12 14 1.090e+12 1.305e+12 4 1.090e+12 1.305e+12 4

Max 2.646e+12 2.679e+12 95887 2.654e+12 2.679e+12 54019 2.654e+12 2.679e+12 54019

Table 4.4: Statistics of the different time series based on grouping by the categories, showing the first and last

event start time and the number of events.

(a) Length of time series for users.

(b) Length of users-collection names time series.

Figure 4.6: Time series length of the different available time series combinations. Each data point represents one

series. Fig (a) shows an aggregation by users, (b) by collection names, and (c) by a combination of user and

collection name.

4.3.3 Time Series Study

The dataset can be grouped into several time series, so let’s look at the distribution and number

of the timestamps for each grouping. Table Figure 4.6 shows the length of the different avail-

able groupings for time series, and Table 4.4 shows the users series for time and number of

observations. They show that the number of events is not regular, the length of the series differs

greatly between categories in each grouping, and the time stamps are not aligned.

Grouping the number of jobs by periods of day, hour, and minute (Table 4.7), we observe

peaks of job requests on days 6, 11, and 12. On an hour level, jobs are requested more frequently

between 11 and 16 hours, and keep decreasing from there until 10 hours. On a minute level,

some peaks are observed; and we see jobs are requested more around minutes 59 to 2.

16 CHAPTER 4. DATA DESCRIPTION AND ANALYSIS

(a) Jobs by Day

(b) Jobs by Hour

(c) Jobs by Minute

Figure 4.7: Number of jobs aggregated by (a) Days, (b) Hours, (c) and Minutes to show seasonality.

As the data shows, we have hundreds of very irregular series; they are not aligned on time

or number of observations, displaying large differences in the number of observations between

series, and where series on Q3 have 14 or fewer jobs, whereas for series above Q3 the number

keeps exponentially increasing until reaching 95,887 on the largest series.

Chapter 5

Regression Models

This section will focus on describing three supervised learning regression models and regression

metrics that will be used in our work: Linear Regression, Random Forest, and Deep Neural

Networks.

5.1 Random Forest (RF)

This ensemble method for regression obtains results by building a set of decision trees during

the training phase. Random Forest was initially developed in 1995 with the idea of growing

trees with a random selection of features [Ho, 1995] and lately extended [Breiman, 2001] to

add the idea of bagging (bootstrap aggregating) to keep the variance of the “forest“ of trees

under control. For regression, the average of the individual trees is returned as the prediction.

Random Forest has a tendency to overfit the training set. This can be controlled by tuning the

maximum number of features that are randomly chosen to grow each tree [Hastie et al., 2009].

This happens because each tree has high variance but low bias, averaging moderates the variance

while keeping the bias low. However, interpretability provided by decision trees is lost.

Data scaling is not required as this is a decision tree-based algorithm and, in practice, they

have shown to be robust to outliers; essentially, the effect of the outliers is diminished because

of the averaging between all the trees.

17

18 CHAPTER 5. REGRESSION MODELS

5.2 Linear Regression (LR)

For n observations of t continuous, dependent, variables Y a multiple linear regression tries to

establish a relation between Y and the explicative variables X = (1, X1, X2, . . . , Xp) with a

function Y = f(X) + ε. This function can be expressed as f(x) = Xβ, leaving us with the

formal definition:

Y =Xβ + ε (5.1)

where Y ∈ Mnxt,X ∈ Mnx(p+1),β ∈ Mpxt and ε ∈ Mnxt. An extra requirement is that

(n > p) which means that we need more data than explicative variables [James et al., 2013].

The only problem with this first definition is that it will not fit a nonlinear relationship in the

data. To solve this, polynomial regression exists, which is a slight variation of linear regression:

yi = β0 + β1xi + β2x
2
i + ...+ βmx

m
i + εi(i = 1, 2, ...,m) (5.2)

Even with this modification, the model is still linear in terms of the unknown parameters β by

treating x, xi, ..., xm as independent variables, so it is still a linear regression.

5.3 Deep Neural Networks (DNN)

These kinds of models were inspired by the networks of biological neurons found in our brains.

Deep Neural Networks can be described, essentially, as Neural Networks with a large number of

layers. This makes it hard to train them because of the large number of parameters to be learned;

nowadays, Deep Neural Networks can be trained in a reasonable amount of time thanks to the

tremendous increase seen since the 1990s in computing power [Géron, 2019]. Each neuron can

be considered as linear regression with, typically, a nonlinear activation function (although we

can have neurons without any activation function). The weights of each neuron are learned

by a method called backpropagation [Goodfellow et al., 2016], which allows to calculate and

attribute the error associated with each neuron. By using this error, it is possible to adjust and fit

the weights of each neuron. Therefore we can define a neural network model as the combination

of the network architecture and the weights learned by each neuron.

Several techniques have appeared to speed-up training times and reduce overfitting, allow-

ing the networks to train faster and better [Ioffe and Szegedy, 2015a, Goodfellow et al., 2016,

Srivastava et al., 2014]. For this work, we will try building a model using:

5.3. DEEP NEURAL NETWORKS (DNN) 19

Figure 5.1: Example of a Neural Network with fully connected layers. It is composed of 3 neurons in the input

layer, 2 hidden layers with 5 neurons each and 2 neurons in the output layer.

• Batch Normalization: This technique stabilizes the learning process and reduces dras-

tically the number of epochs required for training deep neural networks. It does it by

standardizing the activations of a previous layer so that the following layer will not make

dramatically different assumptions about the inputs when the weights are updated.

• Dropout: Reduces overfitting and improves regularization by disconnecting, or dropping

out, randomly the outputs of a layer. This has the effect of creating layers with different

numbers of neurons and connectivities between layers so that the training becomes noisy

and forces different nodes to learn more about specific inputs.

• Mini-batch Gradient Descent: This variation of the gradient descent algorithm consists in

splitting the training dataset into small batches. The default is usually 32, but some recent

work has proven better results when training with smaller mini-batches, as small as 2 or

4 [Masters and Luschi, 2018].

As the loss function, we will use MSLE (Mean Squared Logarithmic Error), the measure

of the percentual difference between the true and the predicted value of the dependent variable.

The main benefit of this metric is that it penalizes more underestimates than overestimates

(which introduces an asymmetry in the error curve), and since it is a relative difference, it does

not penalize more large differences on large values, which makes it robust to outliers. It is

20 CHAPTER 5. REGRESSION MODELS

described with the formula:

MSLE =
1

n

n∑
i=1

(loge(1 + yi)− loge(1 + ŷi))
2 (5.3)

5.4 Scoring Metrics

The following metrics will be used for measuring the performance of the algorithms:

• R2 (Coefficient of determination): Proportion of variation in the dependent variable that

is predictable from the independent variables. The best possible value is 1, and 0 is

equivalent to just returning the average of the dependent variable without considering the

inputs. It can also have negative values. It is obtained by dividing the residual sum of

squares between the total sum of squares:

R2 = 1−
∑

i e
2
i∑

i (yi − y)2
(5.4)

• MAE (Mean Absolute Error): Measure of errors between all the observations. It is less

affected by outliers than mean squared error, as it penalizes less large errors. It is obtained

by dividing the sum of absolute errors by the number of observations:

MAE =

∑n
i=1 |ei|
n

(5.5)

Chapter 6

Model Training and Hyperparameter

Tuning

In this chapter, we will present the features preprocessing required, architectures, training, and

hyperparameter tuning for the different models. For all the models, the dataset will be previ-

ously adjusted based on the start time as explained in 4.3.1. Once the hyperparameter tuning of

all the models

6.1 Categorical and Numerical Features

In regard to feature transformation and scaling it is required to process numerical features scal-

ing them so that they can be comparable, and encode categorical features into a numeric for-

mat before feeding them to the algorithms. As we will see on Random Forest, this is not re-

quired for that specific model, but for Neural Networks and Linear Regression, it is fundamen-

tal [Bishop et al., 1995]. Therefore, we will clip the values of the numerical variables described

on Figure 4.4 by setting a maximum value for each variable using the largest non-highlighted

quantile value. We expect to reduce the number of outliers that can affect the training.

The main reason for scaling the data on Linear Regression is that the coefficients can be

extremely different for data on different scales, reducing interpretability. As an example, let’s

consider two dummy features a, which is always positive, and b, which is always negative,

with different scales. Centering them around 0 by standardizing them allows the coefficients

to be able to compare directly units in both features, keeping coefficients on the same scale.

21

22 CHAPTER 6. MODEL TRAINING AND HYPERPARAMETER TUNING

Categories oh 1 oh 2 oh 3 b 1 b 2

’cat a’ 1 0 0 0 1

’cat b’ 0 1 0 1 0

’cat c’ 0 0 1 1 1

Table 6.1: One Hot encoding and Binary encoding for a categorical variable. The first column represents a

categorical column, the next three columns are the one-hot encoding, and the last 2 represent the binary encoding.

This reasoning also applies to neural networks, but an even more important reason for scaling

features is that it boosts gradient descent to converge faster [Ioffe and Szegedy, 2015b].

6.1.1 Features Engineering and Selection

We added two new features, duration = end time − start time , and burstable, which is

a binary feature defined as burstable = resource request cpus == 0. The reasoning be-

hind this new feature is that jobs where resource request cpus = 0 use free cpu capacity for

processing. This way the models might benefit from this information.

Features selection is the process of selecting a subset of relevant variables. The main ben-

efits are reducing training time, avoiding overfitting, and obtaining better predictions. For this

reason, we removed start time and end time as they showed no correlation to the target vari-

ables 4.5.

The three chosen models require that we encode categorical features as float numbers (al-

though Random Forest also accepts integers). We will experiment with:

• one-hot encoding: Consists of encoding k categories of a feature as a sparse matrixMnxk

where n is the number of statistical units, or observations.

• binary encoding: Encoding with an approach similar to one-hot encoding, but instead of

creating one column per category, it encodes each category as an ordinal number and then

encodes each of those numbers with their binary representation, with as many columns as

bits required.

An example of both encodings can be seen in Table 6.1.

6.2. TRAINING, VALIDATION, AND TEST SETS 23

6.2 Training, Validation, and Test Sets

Before training, we need to split the data first into 3 datasets randomly sampled [James et al., 2013]

which, later, will be split into features and targets:

• Training dataset: This dataset will be used to fit the models (75%).

• Validation dataset: This dataset will be used while tuning each model hyperparameters

to provide an unbiased evaluation of the model that was fit with the training data. When

the hyperparameter tuning is done, it will be used together with the training dataset to fit

a model. (12.5%)

• Test dataset: This dataset will be used for unbiased evaluation of the different models after

having fit them with the combination of the training and validation datasets. (12.5%)

6.2.1 K-Fold Cross Validation

Above, we introduced the validation dataset usage and its impact on the model bias, but it

has limitations [James et al., 2013] such as having no randomness because the validation set

is constant. To reduce even further overfitting, k-fold cross-validation can be applied. This

technique consists of “randomly dividing the train set of observations into k groups, or folds,

of approximately equal size. The first fold is treated as a validation set, and the method is fit on

the remaining k − 1 folds” [James et al., 2013]. Then, we execute rounds until all the folds are

evaluated, and combine the results, usually, by averaging them.

6.3 Random Forest (RF)

In the models section 5.1 we explained that RF does not require feature scaling, but the cat-

egorical features need to be encoded. We will try both representations, evaluating against the

validation set two models trained with the same hyperparameters and proceed with the one that

has the best performance.

The main hyperparameters for RF are [Owen, 2022]:

• n estimators: Number of decision trees to be utilized to build the forest. In general,

the larger the number, the better. The main trade-off is the increasing computational

24 CHAPTER 6. MODEL TRAINING AND HYPERPARAMETER TUNING

cost. Also, at a certain threshold, the number of trees no longer increases performance

significantly (or even decreases, due to overfitting).

• max features: The maximum number of randomly sampled features used by each tree to

choose a splitting point. The squared root of the number of features is a nice default to

start searching.

• min samples split: This specifies the minimum number of samples required for a tree to

be able to split a node. Higher values help prevent overfitting.

• max depth: The maximum depth that each tree can grow. Limiting it reduces overfitting.

In practice, leaving the trees to grow to maximum length has no major impact other than

longer computing time if we tune min samples.

• bootstrap: Whether bootstrap samples are used when building trees instead of the whole

dataset.

The hyperparameters will be selected by applying 5-fold crossvalidation 6.2.1.

6.4 Linear Regression (LR)

For linear regression to work properly, it is needed to do a feature selection first to ensure no

correlation between variables, which can negatively affect the predictions. Moreover, numerical

features need to be scaled or normalized and categorical features, encoded. As we described

in Preprocessing 6.1, the values of numerical data will be clipped, so we are able to apply

standardization, to scale to unit variance.

We will try two linear regressions with default hyperparameters, one regular linear regres-

sion (LR), and a polynomial regression (PR), and check the performance of one-hot encoding

and binary encoding on them. Then, with the best, the following hyperparameters could be

tuned:

• fit intercept (LR and PR): Whether to calculate the intercept of the linear regression.

• polynomial features degree (PR only): Maximal degree of the polynomial features.

• use interaction only (PR only): Whether to use interaction features only.

6.5. DEEP NEURAL NETWORK (DNN) 25

• include bias (PR only): Whether to include the bias column.

The hyperparameters will be selected by comparing each model score against the validation

set.

6.5 Deep Neural Network (DNN)

The features preprocessing required for DNN will be the same as for LR 6.4, so we will apply

the same as the final one chosen for LR. For the architecture, we will try different setups com-

bining dense layers with relu as activation function, batch normalization, and dropout. Finally,

the output layer will be a dense layer with three units, and without any activation function. To

find a correct setup we will train and validate with a reduced sample from the training dataset.

The hyperparameters for the DNN will be:

• width: Number of units per dense layer.

• depth: Number of dense blocks 6.1, which are composed of a dense, normalization, and

dropout layer.

• batch size: The number of observations to include in each batch for training.

The number of units per dense layer, the number of layers (or depth), and the batch size used

for training the model.

The hyperparameters will be tuned by comparing the fitted models against the validation

set.

26 CHAPTER 6. MODEL TRAINING AND HYPERPARAMETER TUNING

(a) Dense Block (b) Network Architecture

Figure 6.1: Details on how the network architecture is built, and a dense block composition.

Chapter 7

Results and Discussion

Through this chapter, the results of the experiments will be shown, and the following questions

will be answered:

1. Which model performs better?

2. Which models are more complex in terms of training time, prediction time, and hyperpa-

rameter tuning?

3. Do we overpredict more than underpredict?

4. How much do the independent variables explain the dependent variables?

We expect that the answers to these questions will help us evaluate if these results help in the

selection of better resource request values for lightweight containers.

7.1 Results

In this section, we will show the results of the experiment, including final hyperparameters,

model performance, and DNN architecture.

7.1.1 Feature Engineering, Scaling, and Importance

Feature engineering was required to train the models. Table 7.1 shows the effect that encoding

and scaling of the data have on the predictive power. Looking at the impact that the clipped

27

28 CHAPTER 7. RESULTS AND DISCUSSION

Model Validation Score (R2) Training Time

RF Binary Unclipped 0.92 0:00:10

RF Binary Clipped 0.93 0:00:09

RF One-Hot Unclipped 0.92 1:06:24

RF One-Hot Clipped 0.93 0:11:14

LR Binary Unclipped 0.65 0:00:05

LR Binary Clipped 0.74 0:00:05

LR One-Hot Unclipped 0.84 0:00:08

LR One-Hot Clipped 0.92 0:01:22

PR Binary Unclipped 0.85 0:01:16

PR Binary Clipped 0.88 0:01:10

Table 7.1: Binary and One-Hot encoding with Standard and Robust scaling (Clipped data is scaled with Standard

scaler, Unclipped data with Robust scaler) comparison, with training time rounded to the nearest second. One-Hot

for Polynomic Regression is missing due to R2 being 0 for both Standard and Robust scaling. In bold is the best

score and training time. All the models are trained with the default hyperparameters.

dataset distribution 7.1 has, for Random Forest (RF) (For reference, Figure 4.3.1 shows the

original distribution), the scores are all very similar, although the best score and training time

are obtained when the numeric features are clipped and the numeric features are binary encoded.

For Linear Regression (LR) the score and training times are inversely proportional, the best

model in terms of scoring is obtained when numeric features are clipped and categorical features

are encoded with one-hot encoding but show the largest training time. Finally, for Polynomial

Regression (PR) the best score and training time are obtained by clipping and binary encoding.

The results show that the PR performs worse than LR in terms of scoring while having a similar

training time. The models trained with clipped numeric data obtained better validation scores.

Figure 7.2 shows that resources request features, user and duration are the most important

features on the hyperparameter-tuned Random Forest.

7.1. RESULTS 29

(a) Normal Scale

(b) Log Scale

Figure 7.1: Effect on the distributions of the features when clipping is applied.

Figure 7.2: Features importance extracted from the Random Forest model.

30 CHAPTER 7. RESULTS AND DISCUSSION

Model Hyperparameter Values Explored

RF

bootstrap True, False

max features 3, 4, 5, 6, 7

min samples split 2, 3, 4, 5

n estimators [10, 150]

LR fit intercept True, False

DNN

batch size 32, 64, 128, 1024, 2048

width 32, 64, 128, 256, 512, 1024

depth [2, 10]

Table 7.2: Explored hyperparameters for each model Values are expressed as comma-separated lists or as

intervals.

7.1.2 Hyperparameters Tuning

Based on the previous results, Linear Regression was trained without polynomial features. Table

7.2 shows all the hyperparameters and the range of values explored for each of them. The Deep

Neural Network (DNN) has the larger number of possible permutations, 60, and LR the lowest,

with 2. The neural network obtained with the selected hyperparameters has 1,075,715 trainable

and 5,120 non-trainable parameters.

7.1.3 Models Performance

Table 7.4 shows a summary of training and prediction times. The Deep Neural Network is the

model that takes longer to train. On predictions, 5 predictions were generated by each of them

and the mean time for these predictions is displayed, with Linear Regression being the faster.

Looking at Table 7.5, the model with the best performance is Random Forest, followed closely

by Linear Regression. All the models are negatively biased on cpu, but only Random Forest

and Linear Regression have a positive bias on memory.

7.1. RESULTS 31

Model Hyperparameter Final Values

RF

bootstrap False

max features 5

min samples split 3

n estimators 80

LR fit intercept False

DNN

batch size 128

width 512

depth 5

Table 7.3: Final hyperparameters found for each model.

Model Train Time 5-Predictions Mean Time

RF 02:26.39 00:03.75

LR 02:08.81 00:00.37

DNN 23:45.64 00:03.80

Table 7.4: Duration, for the final model training and the average of 5 predictions.

Model Target R2 MAE Bias Agg. R2 Agg. MAE Agg. Bias

RF

max mem 0.99 6.94e-5 3.09e-07

0.92 2.01e-4 -4.48e-7avg cpu 0.96 1.44e-4 -2.65e-07

rnd cpu 0.88 2.75e-4 -1.39e-06

LR

max mem 0.99 9.01e-5 7.83e-08

0.92 2.22e-4 -2.24e-7avg cpu 0.94 1.83e-4 -3.59e-07

rnd cpu 0.92 2.47e-4 -3.90e-07

DNN

max mem 0.82 9.81e-4 -3.07e-4

0.78 7.67e-4 -2.12e-4avg cpu 0.81 5.67e-4 -1.59e-4

rnd cpu 0.74 6.73e-4 -1.68e-4

Table 7.5: Comparison of the scores and bias on the test dataset.

32 CHAPTER 7. RESULTS AND DISCUSSION

7.2 Discussion

Having reviewed the results of all the experiments executed, now, we will analyze them.

In regards to the best model in terms of score, Random Forest has shown the best results.

We did not limit the depth of the individual trees, so they could have easily overfit the dataset,

but since we limited the number of features randomly chosen by tuning this hyperparameter,

we prevented the overfitting while keeping the bias low and reducing the variance, because

the results of the trees are averaged [Breiman, 2001]. Effectively, each tree is working with a

subset of the data, so they can be uncorrelated from each other. Interestingly, bootstrapping was

disabled when we found the best hyperparameters. This can be explained by the large number

of samples in our dataset, which makes resampling data with replacement unnecessary.

If we look at the complexity of the models, the Deep Neural Network has proven to be

the hardest to train and configure. Training time is large, and choosing the correct architecture

requires large experimentation; the network has many hyperparameters that can be tuned, which

depend on the architecture chosen. Others like the activation function used on each layer, or

whether an activation function is used at the outputs layer, or the loss metric, can be narrowed

into a smaller selection, but they need to be tried nevertheless. The batch size has also proven

to affect the training speed, which compared to the other models is dramatically higher. This

is inherent to the great number of parameters that the network needs to learn. Dropout also

increases the number of required parameters, as it effectively disconnects parts of the network

during training to prevent neurons from co-adapt [Hinton et al., 2012].

Feature engineering and scaling have proven to be key for linear regression and the neural

network. When feeding clipped vs unclipped we saw that it has a dramatic impact on the per-

formance of these two models. In a neural network, if the data has outliers or the features are on

very different scales, the larger values can greatly impact how the weights are adjusted, making

the training much more unstable, or even preventing it from converging. Linear regression is

also very sensitive to outliers as these data points do not follow the general trend of the rest of

the data, and this is exactly what linear regression tries to achieve. Random Forest proved to be

robust to outliers, no feature scaling was required and although clipping improved the scoring,

the impact was not huge. Higher dimensionality on the categorical data impacted negatively the

training time for Random Forest, as the makes it less likely that numerical features are chosen,

7.2. DISCUSSION 33

so the trees have fewer options for splitting the data, which induces sparsity in the trees.

Analyzing the aggregated metrics, we see they are always penalized because the random

usage cpus consistently have lower scores on R2 and MAE, which can be explained by the

fact that random usage cpus express the average of random samples of cpu usage sampled

each second during the execution of a job. This approximates the average cpu usage for long-

running jobs, but for tasks that run in periods smaller than the maximum 300 seconds window,

this metric is unreliable. The high bias (Table 7.5) of the neural network indicates that we might

need to reduce the dropout. For LR and RF, if we go back to the numeric statistics (Table 4.2)

the average memory usage is 2.12e-3, which means we have low positive bias +3.09e-7, average

usage cpu, and random usage cpu with low negative bias. This indicates that we tend to slightly

overpredict the memory usage and slightly underpredict the cpu usage with RF and LR, which

is good, as maximum memory is a hard limit (if a job goes over the memory limit it is killed),

but cpu usage is not (a job not having sufficient cpu will simply throttle).

Finally, Figure 7.2 shows that for Random Forest the alloc collection id and burstable vari-

ables do not influence the dependent variables, whereas the resource requests are the most

important. Looking at the coefficients of determination in Table 7.5 we see that almost all

max memory and average usage cpu variation can be predicted with the independent variables.

34 CHAPTER 7. RESULTS AND DISCUSSION

Chapter 8

Conclusions and Future Work

From an objectives perspective, if we recall what we defined at the beginning of the thesis,

1.2, find existing open datasets with production traces of lightweight containers, and develop a

practical case study of the dataset, we can consider both of them achieved.

Finding open datasets for lightweight containers proved to be a hard task, as only two were

found, Google’s Cluster Data [Wilkes, 2020b] and Alibaba [Zhang, 2017]. Most often, datasets

found either did not contain container usage data or were too old. Also, We managed to obtain

a model that allows us to predict the usage of memory and cpu. Random Forest has proven

to be easy to train; even with the default parameters and no feature scaling performed well on

tabular data. Hyperparameter tuning is relatively easy compared to other complex models like

Deep Neural Networks, and little feature engineering is required. In fact, only the categorical

variables need to be encoded.

Finally, when it comes to the predictions of resource usage, the memory predictions are

positively biased and memory usage has a very small overprediction. As long as the predicted

memory is lower than the requested memory, the jobs will not be terminated and the memory

usage on the cluster can be reduced, resulting in more memory available and capacity for more

jobs. As for the cpu usage, it is slightly underpredicted, but there exist tasks that set cpu request

as 0, so they use free capacity. This is because cpu is not such a critical resource, so under, and

although there can be peaks of usage, cpu can be freed during the execution of a task, while

memory is not. If a job needs to ensure the cpu and memory availability using a high priority,

as monitoring jobs do, will ensure it has the resources always available during the execution.

35

36 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1 Future Work

We propose some approaches related to this work:

• An interesting approach would be to take the results from this work and try to apply

them to the other cells provided in the original dataset. Also, it could be interesting to

obtain trace data from a production Kubernetes cluster or from other datasets that contain

lightweight containers with equivalent metadata.

• The data could be processed differently to obtain other kinds of jobs, like failed jobs, and

try to predict which job definitions are more likely to not finish so that the user can be

warned at submission time.

• From a time series point of view, Google’s Cluster Data dataset [Wilkes, 2020a] presented

here could be used to fit a model to forecast resource usage for specific priorities, like

forecasting the number of production tier jobs that will be requested, or free capacity. The

latter approach could be used to optimize node provisioning for the cluster by planning to

allocate other lower priority jobs on the forecasted free capacity so that the cluster is not

underused.

Appendix A

APPENDIX A: Converting JSON GZIP

data to Parquet

An example of how to read and transform large datasets by using Dask will be available on

https://github.com/Hijus22/cluster-usage-forecasting.

37

https://github.com/Hijus22/cluster-usage-forecasting

38 APPENDIX A. APPENDIX A: CONVERTING JSON GZIP DATA TO PARQUET

Bibliography

[Abdul-Rahman and Aida, 2014] Abdul-Rahman, O. A. and Aida, K. (2014). Towards under-

standing the usage behavior of Google cloud users: the mice and elephants phenomenon. In

IEEE International Conference on Cloud Computing Technology and Science (CloudCom),

pages 272–277, Singapore.

[Bishop, 2013] Bishop, C. (2013). Pattern Recognition and Machine Learning: All ”just the

Facts 101” Material. Information science and statistics. Springer (India) Private Limited.

[Bishop et al., 1995] Bishop, C. M. et al. (1995). Neural networks for pattern recognition.

Oxford university press.

[Blog, 2015] Blog, K. (2015). Borg: The predecessor to kubernetes. Ku-

bernetes Blog. Posted at https://kubernetes.io/blog/2015/04/

borg-predecessor-to-kubernetes/. (accesed on 2021-04-16).

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[Burns et al., 2016] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and Wilkes, J. (2016).

Borg, omega, and kubernetes. ACM Queue, 14:70–93.

[Casals et al., 2009] Casals, J., Jerez, M., and Sotoca, S. (2009). Modelling and forecasting

time series sampled at different frequencies. Journal of Forecasting, 28:316 – 342.

[Chen et al., 2015] Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K.,

et al. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4):1–4.

[Cheng et al., 2018] Cheng, Y., Chai, Z., and Anwar, A. (2018). Characterizing co-located dat-

acenter workloads: An alibaba case study. In Proceedings of the 9th Asia-Pacific Workshop

on Systems, pages 1–3.

39

https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes/
https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes/

40 BIBLIOGRAPHY

[Crist, 2016] Crist, J. (2016). Dask & numba: Simple libraries for optimizing scientific python

code. In 2016 IEEE International Conference on Big Data (Big Data), pages 2342–2343.

IEEE.

[Eckner, 2012] Eckner, A. (2012). Algorithms for unevenly-spaced time series: Moving aver-

ages and other rolling operators. In Working Paper.

[Géron, 2019] Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, tools, and techniques to build intelligent systems. ” O’Reilly Media,

Inc.”.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning.

MIT press.

[Guo et al., 2019] Guo, J., Chang, Z., Wang, S., Ding, H., Feng, Y., Mao, L., and Bao, Y.

(2019). Who limits the resource efficiency of my datacenter: An analysis of alibaba data-

center traces. In Proceedings of the International Symposium on Quality of Service, IWQoS

’19, New York, NY, USA. Association for Computing Machinery.

[Han et al., 2012] Han, J., Kamber, M., and Pei, J. (2012). 12 - outlier detection. In Han, J.,

Kamber, M., and Pei, J., editors, Data Mining (Third Edition), The Morgan Kaufmann Series

in Data Management Systems, pages 543–584. Morgan Kaufmann, Boston, third edition

edition.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The

elements of statistical learning: data mining, inference, and prediction, volume 2. Springer.

[Hellerstein, 2010] Hellerstein, J. L. (2010). Google cluster data. Google re-

search blog. Posted at http://googleresearch.blogspot.com/2010/01/

google-cluster-data.html. (accesed on 2020-04-12).

[Hewamalage et al., 2021] Hewamalage, H., Bergmeir, C., and Bandara, K. (2021). Recurrent

neural networks for time series forecasting: Current status and future directions. Interna-

tional Journal of Forecasting, 37(1):388–427.

http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html

BIBLIOGRAPHY 41

[Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhut-

dinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature de-

tectors.

[Ho, 1995] Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international

conference on document analysis and recognition, volume 1, pages 278–282. IEEE.

[Ioffe and Szegedy, 2015a] Ioffe, S. and Szegedy, C. (2015a). Batch normalization: Accelerat-

ing deep network training by reducing internal covariate shift.

[Ioffe and Szegedy, 2015b] Ioffe, S. and Szegedy, C. (2015b). Batch normalization: Acceler-

ating deep network training by reducing internal covariate shift.

[Jajoo et al., 2021] Jajoo, A., Hu, Y. C., Lin, X., and Deng, N. (2021). The case for task

sampling based learning for cluster job scheduling. Computing Research Repository,

abs/2108.10464.

[James et al., 2013] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduc-

tion to Statistical Learning. Springer (New York).

[Jaramillo et al., 2016] Jaramillo, D., Nguyen, D. V., and Smart, R. (2016). Leveraging mi-

croservices architecture by using docker technology. In SoutheastCon 2016, pages 1–5.

[Kullaya Swamy and Sarojamma, 2020] Kullaya Swamy, A. and Sarojamma, B. (2020). Bank

transaction data modeling by optimized hybrid machine learning merged with arima. Journal

of Management Analytics, 7(4):624–648.

[Kursuncu et al., 2019] Kursuncu, U., Gaur, M., Lokala, U., Thirunarayan, K., Sheth, A., and

Arpinar, I. B. (2019). Predictive Analysis on Twitter: Techniques and Applications, pages

67–104. Springer International Publishing, Cham.

[Laptev et al., 2017] Laptev, N., Yosinski, J., Li, L. E., and Smyl, S. (2017). Time-series ex-

treme event forecasting with neural networks at uber. In International conference on machine

learning, volume 34, pages 1–5. sn.

[Lim et al., 2019] Lim, B., Arik, S. O., Loeff, N., and Pfister, T. (2019). Temporal fusion

transformers for interpretable multi-horizon time series forecasting.

42 BIBLIOGRAPHY

[Liu and Cho, 2012] Liu, Z. and Cho, S. (2012). Characterizing machines and workloads on

a google cluster. In 2012 41st International Conference on Parallel Processing Workshops,

pages 397–403. IEEE.

[Lu et al., 2017] Lu, C., Ye, K., Xu, G., Xu, C.-Z., and Bai, T. (2017). Imbalance in the cloud:

An analysis on alibaba cluster trace. In 2017 IEEE International Conference on Big Data

(Big Data), pages 2884–2892.

[Masters and Luschi, 2018] Masters, D. and Luschi, C. (2018). Revisiting small batch training

for deep neural networks. CoRR, abs/1804.07612.

[Owen, 2022] Owen, L. (2022). Hyperparameter Tuning with Python. Packt Publishing.

[Prasad and Madhavi, 2012] Prasad, U. D. and Madhavi, S. (2012). Prediction of churn behav-

ior of bank customers using data mining tools. Business Intelligence Journal, 5(1):96–101.

[Sebastio et al., 2018] Sebastio, S., Trivedi, K. S., and Alonso, J. (2018). Characterizing ma-

chines lifecycle in google data centers. Performance Evaluation, 126:39 – 63.

[Smedt et al., 2021] Smedt, J. D., Yeshchenko, A., Polyvyanyy, A., Weerdt, J. D., and

Mendling, J. (2021). Process model forecasting using time series analysis of event sequence

data. In International Conference on Conceptual Modeling, pages 47–61. Springer.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhut-

dinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The

journal of machine learning research, 15(1):1929–1958.

[Tirmazi et al., 2020a] Tirmazi, M., Barker, A., Deng, N., Haque, M. E., Qin, Z. G., Hand,

S., Harchol-Balter, M., and Wilkes, J. (2020a). Borg: the next generation. In EuroSys’20,

Heraklion, Crete.

[Tirmazi et al., 2020b] Tirmazi, M., Barker, A., Deng, N., Haque, M. E., Qin, Z. G., Hand, S.,

Harchol-Balter, M., and Wilkes, J. (2020b). Borg: the Next Generation. In Proceedings of

the Fifteenth European Conference on Computer Systems (EuroSys’20), Heraklion, Greece.

ACM.

BIBLIOGRAPHY 43

[Verma et al., 2015] Verma, A., Pedrosa, L., Korupolu, M. R., Oppenheimer, D., Tune, E., and

Wilkes, J. (2015). Large-scale cluster management at Google with Borg. In Proceedings of

the European Conference on Computer Systems (EuroSys’15), Bordeaux, France.

[Wilkes, 2011] Wilkes, J. (2011). More Google cluster data. Google research

blog. Posted at http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html. (accesed on 2022-09-09).

[Wilkes, 2020a] Wilkes, J. (2020a). Google cluster-usage traces v3. Technical report,

Google Inc., Mountain View, CA, USA. Posted at https://github.com/google/

cluster-data/blob/master/ClusterData2019.md. (accesed on 2022-09-12).

[Wilkes, 2020b] Wilkes, J. (2020b). Yet more Google compute cluster trace data.

Google research blog. Posted at https://ai.googleblog.com/2020/04/

yet-more-google-compute-cluster-trace.html. (accesed on 2022-09-11).

[Xiao et al., 2012] Xiao, Z., Song, W., and Chen, Q. (2012). Dynamic resource allocation

using virtual machines for cloud computing environment. IEEE transactions on parallel and

distributed systems, 24(6):1107–1117.

[Yan and Su, 2009] Yan, X. and Su, X. (2009). Linear regression analysis: theory and com-

puting. World Scientific.

[Zhang, 2017] Zhang, Z. (2017). Alibaba/clusterdata: Cluster data collected from production

clusters in alibaba for cluster management research.

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://ai.googleblog.com/2020/04/yet-more-google-compute-cluster-trace.html
https://ai.googleblog.com/2020/04/yet-more-google-compute-cluster-trace.html

	List of Figures
	List of Tables
	Introduction
	Introduction and Motivation
	Objectives
	Problem Formulation
	Memory Structure

	Previous Work
	Problem Formulation
	Data Description and Analysis
	Data Description
	Data Formatting

	Data Cleaning
	Data Analysis
	Data Distributions and outliers
	Variables Correlation
	Time Series Study

	Regression Models
	Random Forest (RF)
	Linear Regression (LR)
	Deep Neural Networks (DNN)
	Scoring Metrics

	Model Training and Hyperparameter Tuning
	Categorical and Numerical Features
	Features Engineering and Selection

	Training, Validation, and Test Sets
	K-Fold Cross Validation

	Random Forest (RF)
	Linear Regression (LR)
	Deep Neural Network (DNN)

	Results and Discussion
	Results
	Feature Engineering, Scaling, and Importance
	Hyperparameters Tuning
	Models Performance

	Discussion

	Conclusions and Future Work
	Future Work

	APPENDIX A: Converting JSON GZIP data to Parquet
	Bibliography

