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Curriculum learning (CL) is a machine learning technique that sorts the training 

examples according to their difficulty and exposes them to the learner progressively. In 

the field of automatic speech recognition (ASR) it has been successfully applied using 

different approaches, but none of them has taken advantage of prosody effects to weight 

the difficulty of data. In this work we present the first attempt to improve performance 

of end-to-end ASR systems making use of a CL strategy based on prosody. We start by 

evaluating transcriptions made by a pre-trained ASR model from a collection of 

utterances and compare the accuracy achieved, in terms of WER, with 18 scalar prosodic 

features extracted from each utterance. We find that transcriptions of utterances having 

either a more pronounced pitch or intensity contour achieve, in average, a lower WER. 

That is, these utterances are easier to transcribe. The standard deviation of the 

fundamental frequency shows the reverse behaviour: transcriptions of utterances having 

a large standard deviation achieve, in average, a higher WER. Then we train a new ASR 

system from scratch using a curriculum based on pitch contour. Our results indicate that 

curriculum learning based on this prosodic feature does help the system to learn but is 

not powerful enough to compensate for the negative effects of feeding the system 

gradually. 

 



 

 

El Aprendizaje curricular (o CL, del inglés Curriculum Learning) es una técnica de 

aprendizaje automático que ordena los ejemplos de entrenamiento según su grado de 

dificultad y los pasa al alumno de forma progresiva. En el campo del reconocimiento del 

inglés Automatic Speech Recognition) se ha aplicado con automática del habla (ASR, 

éxito siguiendo distintas aproximaciones, pero ninguna ha aprovechado efectos prosódicos 

para ponderar la dificultad de la señal vocal. En este trabajo presentamos el primer 

intento de mejorar el rendimiento de sistemas ASR de extremo a extremo utilizando una 

estrategia de CL basada en prosodia. Empezamos evaluando las transcripciones realizadas 

por un sistema ASR pre-entrenado para una colección de declaraciones, y comparamos 

la precisión alcanzada, en términos de WER, con 18 parámetros prosódicos extraídos de 

cada declaración. Los resultados muestran que las transcripciones de declaraciones que 

tienen un contorno de tono o intensidad más pronunciado tienen, en promedio, una WER 

menor. Es decir, este tipo de declaración es más fácil de transcribir. La desviación 

estándar de la frecuencia fundamental muestra el comportamiento opuesto: las 

transcripciones de declaraciones con una desviación estándar elevada tienen, en promedio, 

una WER mayor. En la segunda parte de la investigación entrenamos un nuevo sistema 

ASR desde cero utilizando un currículum basado en el contorno de tono. Los resultados 

obtenidos indican que la aplicación de una estrategia de CL basada en este parámetro 

prosódico ayuda al sistema a aprender, pero no es lo suficientemente potente como para 

compensar los efectos negativos que provoca el hecho de alimentar el sistema de forma 

gradual.  
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Automatic Speech Recognition (ASR) is the technology that allows computers to 

transcribe spoken language into text. It is the key piece of voice interfaces, which allow 

the introduction of simple information into a system using our voice instead of a 

keyboard. Domestic voice-enabled virtual assistants are becoming more and more popular 

thanks to the efficiency and speed they offer to perform tasks such as keyword search, 

phone dialling, data entry, or home appliances’ control. In the industry, voice interfaces 

are being used to control robots, perform computer commands, or introduce simple 

information to a database when hands and eyes are busy. As for commercial applications, 

voice interfaces are nowadays the front gate in most call centres. An even more 

challenging application is dictation of reports. 

State-of-the-art ASR systems are based in artificial intelligence. Recently, the so-called 

“end-to-end” models are picking up steam, not only in research but also in production 

settings. These systems use a neural network-based model that directly maps sequences 

of input acoustic features into sequences of words, without the need of an acoustic model, 

lexicon, nor language model. As any other neural network-based architecture, this kind 

of system needs to be trained to find the appropriate weights of the network and achieve 

a correct mapping from inputs to outputs. Training requires having huge datasets, along 

with substantial computer resources, and it is very time-consuming. Even with all this, 

accuracies are often far from perfect. Improving the model performance and accelerating 

the training process with smaller datasets are major objectives in machine learning 

research. The field of ASR is not an exception. 

A new technique that is being explored to train neural networks is Curriculum learning 

(CL). The term refers to a general approach to optimize the learning process of a machine 

learning system. The basic idea is to start small, learn easier aspects of the task or easier 

sub-tasks, and then gradually increase the difficulty level. The method is inspired by 

human teaching, where concepts are not introduced randomly but organized in a 

meaningful order that illustrates gradually more concepts, and more complex ones. 

The power of CL has been exploited in a wide range of supervised learning tasks, 

including computer vision, natural language processing, healthcare prediction and graph 

learning tasks. The application of this technique to improve the training time and final 

transcription accuracy of ASR systems has also been addressed. A successful approach 

has been to consider the length of utterance as a measure of difficulty: the longer the 

utterance, the more difficult to transcribe. CL strategies based on this hypothesis apply 

training schedules in which the system is first trained with short utterances and fed with 
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longer ones in later epochs. Alternative features that have been postulated to define “easy” 

and “difficulty”, have been noise and word rarity.  

As far of we know, prosody, i.e., the patterns of stress and intonation, has not been used 

as a measure of difficulty for CL strategies. Yet prosody provides humans with important 

markers both at word and syntactic level. Compare the stress in the word “present”, the 

noun (/ˈprez.ənt/), with that of “present”, the verb (/prɪˈzent/), and see the difference 

between the intonations of the sentence “I’d like to eat, mummy” and “I’d like to eat 

mummy”. Not only for people is speech easier to understand if pronounced with a suitable 

intonation; some studies have shown that accuracy in speech transcription made by 

machines is also related with certain prosodic features. On the other hand, there is 

evidence that babies are sensitive to prosodic markers of syntactic units, and they use 

this sensitivity to recognize phrasal units, both noun and verb phrases, in fluent speech.  

All this prompts us to pose the following question: could prosodic features be suitable 

candidates to define CL strategies that improve the training of ASR systems? This work 

is a preliminary attempt to answer this question. In particular, we intend to find prosodic 

features that show a relationship with the accuracy at which an ASR system transcribes 

speech, and use them in experiments that point the way forward for future research to 

improve performance of ASR systems using CL. 

 

The idea of organizing training data into a schedule, or “curriculum”, based on the 

easiness or difficulty of the samples was formalized and popularized by (Bengio et al., 

2009). In this work, several experiments are presented, involving vision and natural 

language tasks, which show that pre-training with a CL strategy can improve 

generalization and help to reach faster convergence. The vision task is very illustrative 

of the method. Its final objective is to train a system in the classification of geometrical 

shapes into 3 classes: rectangle, ellipse, and triangle. To this purpose, two datasets are 

generated: a “difficult” one, which includes all kind of figures, and an “easy” one, which 

Figure 1. Sample inputs from the “easy” (top) and “difficult” (bottom) datasets in the vision 

experiment by (Bengio et al., 2009). Source: (Bengio et al., 2009) 
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only includes squares, circles, and equilateral triangles. An illustration of both datasets 

is shown in Figure 1. The curriculum consists of a 2-step schedule: first, the system is 

trained using the easy training set during a predefined number of epochs; then the 

training continues using the difficult set. Experiments made using this 2-step schedule 

outperformed the baseline, which corresponded to training only on the difficult set. 

Curriculum learning has open new avenues of research in the optimization of neural 

networks. If well designed, CL strategies can significantly improve the model performance 

and accelerate the training process, two of the most desired objectives in machine learning 

research. Technically, it can be implemented as an independent plug-and-play module, 

what makes it easy to use.  

In ASR, different approaches have been successfully tested, but none that uses prosody 

as a measure of difficulty. Prosody refers to those properties of speech that can be 

perceived when we listen to segments larger than phonemes, such as syllables, words, and 

phrases. Examples of prosodic features are pitch, loudness, intonation, rhythm, voice 

quality, pauses, speech rate and duration. Altogether, these features provide the effect of 

melody. Prosodic boundaries represent a significant cue to recognize lexical candidates in 

a sentence (Salverda et al., 2003), and human comprehension, in terms of cognitive load 

and accuracy, is better when we listen to natural prosody, as opposed to monotone or 

foreign prosody where word stress is missing or not as expected (Hahn, 1999). On the 

other hand, there is evidence that infants as young as 6 months are sensitive to prosodic 

markers of syntactic units and use them to recognize phrasal units in fluent speech 

(Soderstrom et al., 2003), which suggests that prosody may be instrumental in human 

language acquisition. If prosody plays a role in helping humans to understand speech and 

babies to learn a language, it seems reasonable to believe that it might be important for 

machines as well. Training of ASR systems may consequently benefit from CL strategies 

based on prosodic features.  

 

Given the importance of prosody in speech comprehension and language acquisition by 

humans, it makes then sense to hypothesize that i) it might be easier/more difficult for 

ASR systems to transcribe utterances that are modulated in a certain way; and ii) 

prosodic features that make utterances easy/difficult to be transcribed are feasible 

candidates to define CL strategies that improve performance of ASR systems. 

In this work we intend to shed some light on these hypotheses. Concerning the first 

hypothesis, we will assume that an utterance is “easy” if the transcription provided by a 

pre-trained ASR system is accurate in terms of the number of errors. That is, the fewer 

the errors of the transcription, the easier the utterance. We are interested in exploring 

the relationship between certain prosodic features and the easiness to transcribe speech. 
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For instance: are utterances pronounced at a higher pitch easier to transcribe than 

utterances pronounced at a lower pitch? Does the direction of the intonation contour 

have some effect? Do features like harmonics-to-noise ratio, jitter and shimmer, which 

are related to the quality of speech, have any influence?  

With respect to the second hypothesis, our concern is to examine up to which point 

prosodic features can be useful to train ASR systems using CL strategies. Does the 

application of a schedule in which the system is first trained with utterances having 

certain prosodic features improve training somehow? To face this question, we will train 

a new ASR model from scratch organizing the training data into a schedule, or 

“curriculum”, based on the previous results.  

 

The structure of the document is as follows. In Section 2, “Related work”, we provide a 

general review on CL and include our own survey of studies that have applied CL to end-

to-end ASR systems. We also present several works showing that prosodic features play 

a role in speech recognition and related fields. In Section 3, “Case study”, we explain the 

procedure that has been followed to carry out our experiments; introduce important 

concepts related to prosody; describe the 18 prosodic features that will be analysed, as 

well as the evaluation metrics that will be used; and give detail of the experimental set-

up. In section 4, “Experiments and results”, we provide insight of the experiments that 

have been conducted and report results and their interpretation. Finally, in section 5, 

“Conclusions and further work”, we summarize the work done and results achieved, draw 

conclusions, and suggest ways of improvement. 
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Our proposal combines two concepts that have been studied independently and have 

never, to our knowledge, been applied together, i.e., the advantages of training neural 

networks using curriculum learning strategies and the influence of prosodic features in 

automatic speech recognition. The following sections present an overview of the state-of-

the art of each of these lines of research. 

 

Although there are previous studies on the idea of introducing a curriculum into the 

training strategy of machine learning algorithm, such as (Elman, 1993), it was (Bengio 

et al., 2009) who formalized and popularized it. This work hypothesizes that a well-chosen 

curriculum strategy can both i) help to find better local minima of a non-convex training 

criterion and ii) accelerate training because the learner wastes less time with noisy or 

harder to predict examples. The work also illustrates the potential power of the method 

through several experiments where simple curriculums are tested, such as the one 

presented in section 1.1. 

Since (Bengio et al., 2009), researchers have been exploiting power of CL in a wide range 

of applications. The paradigm has also been extended to modified versions within the 

spirit of “training from easier to difficult”. In the two following sections we introduce the 

general frameworks that have been adopted under the paradigm “curriculum learning”, 

following the classification by (X. Wang et al., 2020), and present our own survey of the 

state-of-the art in the field of ASR. 

 

(X. Wang et al., 2020) classifies the existing CL approaches in three types, depending on 

what is understood for “curriculum”: 

1. : A curriculum is a sequence of training criteria over 

T training steps, C =〈Q1,...,Qt,...,QT〉. Each criterion QT is a reweighting of the target 

training distribution P(z):  

Qt(z)∝Wt(z)P(z) ∀  example z ∈ training set D. 

such that the following three conditions are satisfied: 

1- The entropy of distributions increases: H(Qt)< H(Qt+1) (this means that the 

diversity and quantity of information of the training must increase) 
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2- The weight for any example stays the same or increases: Wt(z)≤Wt+1(z) ∀ z ∈ D 

(weights of individual examples need to increase so that they can get added into 

the training set). 

3- The final criterion matches the complete training distribution: QT(z) = P(z). 

2. : A curriculum is a sequence of reweighting of 

target training distribution over T training steps. This version keeps condition (1) while 

relaxing conditions (2) and (3) in order to enable CL strategies that change the task from 

during training. The philosophy “training from easy to difficult” remains in the difficulty 

of the current task, which gradually increases until reaching the target task. 

3: : A curriculum is a sequence of training criteria 

over T training steps. Each criterion Qt includes the design for all the elements in training 

a machine learning model, such as tasks, model capacity, learning objective or loss 

function.  

There also exist different approaches to define the difficulty metric and schedule. Pre-

defined methods design them using human prior knowledge. The difficulty metric is 

usually based on the data characteristics of specific task, and it is designed considering 

complexity, diversity, and/or noise estimation. Some examples of difficulty metrics used 

in literature are regularity in shape (Bengio et al., 2009), sequence length, number of 

objects in images; number of coordinating conjunctions or phrases, information entropy, 

signal to noise ratio, image intensity and human-annotation-based Image Difficulty 

Scores. Concerning the schedule, we can classify them into two types: discrete schedules, 

which add new data after a fixed number of epochs or convergence value, and continuous 

schedules, which add training data subset at every epoch following a function λ(t), where 

λ(t) is the proportion of easier examples to be included in the t-th epoch. 

Several successful attempts have also been made using automatic methods, where the 

curriculum is generated dynamically using data-driven models or algorithms. Some of 

these methods are: 

•  methods, which let the model himself act as the 

teacher and measure the difficulty of training examples according to its losses on 

them.  

• , which use a pre-trained teacher model to measure 

the difficulty of training examples. 

• , where a teacher makes dynamic data selection 

according to the feedback from the student. 
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State-of-the-art ASR systems are mostly based on neural networks. One of the most 

successful architectures is the Deep Neural Network – Hidden Markov Model (DNN-

HMM), a hybrid system composed of an acoustic, a lexicon, and language model. Most 

recently, though, end-to-end systems have reached state-of-the-art performance and are 

picking up steam, not only in research but also in production settings (Sainath et al., 

2020). Figure 2 compares these architectures. End-to-end systems directly map sequences 

of input acoustic features into sequences of words. Common ASR end-to-end structures 

are Recurrent Neural Network Transducers (RNNT) (Graves, 2012), Connectionist 

Temporal Classification (CTC)-based systems (Graves et al., 2013; Hannun et al., 2014), 

and attention-based models, such as Google’s Listen, Append, Spell (LAS) model (Chan 

et al., 2016) and Fairseq S2T (C. Wang, Tang, et al., 2020).  

Besides their conceptual simplicity, end-to-end systems offer some important advantages. 

To begin with, the use of a single model, instead of three, makes them easier to train. 

They are also less expensive to build and require less human labour because there is no 

need of audio-word alignment nor of lexicon maintenance. Finally, they also bring 

important benefits when it comes to production: they are smaller in size, making them 

attractive for on-device ASR applications, and easier to optimize. 

Figure 2. Comparison between a standard hybrid ASR architecture, composed of an 

acoustic, a lexicon, and language model, and a sequence-to-sequence based end-to-end 

model. Font: https://www.verbio.com/e2e-architectures-for-asr-systems/ 
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There have been several successful attempts to train end-to-end ASR systems using CL 

strategies. In the following sections we present some of the approaches that have been 

explored, following the same classification as in Section 2.1.1. 

 

The mostly used scoring parameter for CL in ASR systems has been, by far, the length 

of the input sequences. For instance, in (Amodei et al., 2016) a module called SortaGrad 

is designed which applies a CL strategy to train a RNN based ASR system for English 

and Mandarin. The need of such strategy is motivated by the use of a CTC loss function, 

which tends to be unstable. The strategy consists in iterating, during the first epoch, 

through minibatches of the training set in increasing order of length of the longest 

utterance in the minibatch. SortaGrad improves the stability of training and achieves 

around 10% improvement in WER. On the other hand, (Kim et al., 2018) achieves a 

7.8% WER decrease when training CTC-based speech recognition system by training it 

first on a subset that consists of shorter length utterances. Once these are learnt, they 

introduce the full training set. In (Zhang, Chang, Qian, & Watanabe, 2020) an end-to-

end model for multi-speaker speech recognition is trained applying a CL strategy based 

on the length of the sequence during the first 3 epochs. During these epochs, the iteration 

of minibatches within the training set is made in ascending order of sequence length; after 

that, usual fine-tuning with random order of minibatches is done. They achieve a 10% 

improvement in WER. (Isik et al., 2016) uses a similar approach, but instead of the 

number of words they use the number of frames. In this case, the aim is to improve the 

performance of a multi-speaker separation system based on a deep clustering architecture. 

The study shows that pre-training with shorter segments followed by training with longer 

segments boosts performance from 9.9 dB to 10.3 dB for two speaker separation.  

The second mostly studied scoring parameter in ASR is the signal-to-noise ratio (SNR, 

the energy ratio between the target speech and the interfering sources). This approach is 

used, above all, to improve speaker recognition in multi-speaker systems. The signal-to-

noise ratio has a great influence on the final recognition performance in multi-speaker 

systems (Chang et al., 2019). When the speech energy levels for speakers in a conversation 

are markedly different, the recognition accuracy of those having lower levels is very poor. 

Following this criterium, (Zhang, Chang, Qian, & Watanabe. Shinji, 2020) and (Isik et 

al., 2016) investigate ascending SNR as a score function using analogue strategies as the 

ones described above for length-based strategies. They achieve improvements of 10% and 

4% in WER, respectively. Similarly, (Chang et al., 2019) achieve a 12% improvement 

when training MIMO-Speech, their end-to-end multi-channel multi-speaker speech 

recognition proposed system, after applying a CL strategy that combines ascending 

sequence length and ascending SNR.  
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The use of SNR as a score function to train single-speaker ASR systems dealing with 

noise has been investigated by (Braun et al., 2017). In their experiments, two training 

schedules are proposed: one which starts training the network on the lowest SNR (noisier) 

samples and expands to high SNR samples in 5 dB steps; and the opposite one, i.e., a 

schedule expanding from high SNR to low SNR. Contrary to what could be expected, 

the best performance is achieved by the first schedule, which corresponds to the “anti-

curriculum” strategy (noisy examples first). The authors consider that this result shows 

that noise allows the network to explore the parameter space more extensively at the 

beginning. Research using near-field and far-field data as a measure of difficulty, which 

is an indirect measure of noise (near-field data is less noisy) has been carried out by 

(Ranjan & Hansen, 2021). They obtain opposite results to (Braun et al., 2017): the 

proposed CL strategy, which consists in initiating the training with comparatively easier 

near-field data and including more diverse far-field data progressively in later stages, 

outperforms the baseline ASR system with relative reductions in WERs of up 10.1%. 

Another feature used to define CL strategies in ASR has been the posterior probabilities 

obtained using a previously trained model (Vydana et al., 2016). Here, they start by 

training the network on the full training set. Then, the trained network is used to get 

the predictions on the same training data. The examples that are correctly predicted are 

considered as the easily examples. Then, they train the system again, now in two steps: 

initially, with a set of easy examples, and afterwards with the full training set. The model 

trained with proposed two-step CL learning strategy achieves a higher accuracy in a 

smaller number of epochs.  

Gender has also been used as a score function in some CL strategies to train multi-

speaker ASR systems (Zhang, Chang, Qian, & Watanabe. Shinji, 2020) and (Isik et al., 

2016). Compression ratio of audio files has been tested by (Kuznetsova et al., 2021). In 

this case, the relevant improvement was not in precision, but in training speed. Finally, 

in speech-to-text translation, word rarity has been used in (Platanios et al., 2019). 

 

A curriculum learning strategy with varying tasks to train an end-to-end ASR system 

has been investigated by (Kim et al., 2018). In their proposal, first, they reduce the 

number of categories to four symbols: vowel, consonant, space, and blank. As the simpler 

classification task is learned, the full character-based label set is restored and training 

proceeds. This strategy improved performance but did not work as effectively as one the 

that focused on short utterances, so no detailed results are provided. 

 

Attempts of application of curriculum learning to the architecture of the system, have 

been made in speech-to-text translation, a field closely related to ASR. In (Kano et al., 
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2017), the authors build an end-to-end attention-based speech-to-text translation system 

on syntactically distant language pairs. The authors build the system upon a standard 

attention-based encoder-decoder network that consists of an encoder, a decoder, and 

attention modules. They propose a structured-based curriculum learning strategy that 

consist in training the attentional encoder-decoder architecture by starting from a simpler 

task, switch a certain part of the structure (encoder or decoder), and set it to a more 

difficult task. Experimental results demonstrate that the learning model is stable and 

that the final translation quality outperforms that of the standard system. In (C. Wang, 

Wu, et al., 2020) a curriculum pre-training method is proposed to improve the power of 

the encoder in an end-to-end speech translation system. Traditional methods pre-train 

the encoder on ASR data to capture speech features and learn the alignment between the 

acoustic features and phonemes or words. In order to teach the model to understand the 

sentence and incorporate the required knowledge as well, the authors add a second pre-

training phase with two extra courses: a frame-based masked language model (FMLM) 

task and a frame-based bilingual lexicon translation (FBLT) task. The proposed method 

significantly improves the "transformer + ASR" pre-train” baseline. They also pre-train 

the model on ASR, FMLM and FBLT tasks in one phase. The result is worse than the 

"transformer + ASR" pre-train” baseline, showing the importance of the curriculum 

learning strategy. 

 

As for automatic methods, (Kim et al., 2017) include in their paper a teacher-student 

technique to initialize the training of their CTC-based speech recognition system. Here, 

knowledge is transferred from a BLSTM offline model (teacher) to the final LSTM online 

system (student), achieving a 12.2% improvement on WER over the baseline. When 

combining this strategy with manual CL based on utterance length, the improvement 

increases up to 19.0%. 

 

In the previous chapter we have mentioned some features of speech that have an influence 

in the average precision in which ASR and speech-to-text translation systems can 

perform, such as the length of the sequence, the signal-to-noise ratio or word rarity. 

Previous studies on these effects motivated the authors of the presented works to 

undertake corresponding CL strategies. Factors related to prosody have also been shown 

to be related with the difficulty experienced by ASR systems to recognize speech. In a 

dedicated study on the relationship between the errors of two ASR systems and several 

prosodic, lexical, and disfluency factors (Goldwater et al., 2010) showed that, in general, 

prosodic features are strongly predictive of error rates. The prosodic features included in 
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their work were pitch (minimum, maximum and mean), intensity (minimum, maximum, 

mean and range), speech rate (phones per second), duration and log jitter. Pitch, 

intensity, and log jitter were extracted at word level; speech rate was computed at 

utterance level and assigned to all words in the utterance. The analyses on those features 

showed that precision decreased dramatically for fast speech. Mean pitch also had a large 

effect, with higher error rates for words with higher pitch relative to gender averages. 

Words with smaller ranges of pitch or intensity were more likely to be misrecognized, as 

were words with higher minimum intensity. Jitter and intensity maximum were 

associated with higher error rates at extreme values. 

In fact, some prosodic features are already available in some ASR toolkits, such as Kaldi 

(Povey et al., 2011). In 2014 Kaldi introduced new algorithms to the framework to extract 

features for pitch, delta pitch and voicing (Ghahremani et al., 2014). These features can 

be appended to the raw input vectors (MFCCs or PLPs) before being forwarded to the 

classifier. In an experimental set-up, the addition of these prosodic features improved 

performance in 6% on tonal languages (Vietnamese and Cantonese) on 2% on atonal 

languages (Assamese and Bengali).  

On the other hand, jitter and shimmer have been shown to play a role in several speech 

related tasks. Some examples are detection of speaking styles (Salverda et al., 2003; Slyh 

et al., 2008), age and gender classification (Wittig & Uller, 2003), emotion detection (Li 

et al., 2007) and speaker recognition (Farrús et al., 2007). 
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The case study proposed in this work attempts, firstly, to find feasible candidates among 

different kinds of prosodic features to define a CL strategy that helps improving 

transcription accuracy in ASR systems; secondly, to test candidate prosodic features in 

some experiments by training a new ASR model using the proposed CL strategy. 

In the following sections we describe the general procedure that has been followed, the 

prosodic features that have been included in the analysis, the evaluation methods, and 

the experimental set-up. 

 

Our research will start by analysing the relationship between the value of some prosodic 

features for a collection of utterances and the accuracy that a trained state-of-the-art 

ASR model achieves when transcribing these utterances. We will call this system ASR1. 

Prosodic features showing a clearer relationship with the accuracy achieved by ASR1 will 

become our candidates to design a CL strategy. Later, we will undertake some curriculum 

learning experiments. We will design a CL strategy based on one of the previous 

candidates and we will train a new ASR model from scratch using this strategy. We will 

refer to the model trained using the CL strategy as ASR2. The final goal of this 

experiment will be to evaluate if such training has any effect on the final performance of 

the model.  

 

Prosodic features are those features of speech that contribute toward acoustic and 

rhythmic effects. In this work we will consider 18 different features related with pitch, 

intensity, and voice quality. All of them are scalars, computed as the average along the 

utterance being analysed. The complete list of features is included in section 3.2, along 

with an introductory description of their meaning. Among the list of prosodic features 

considered, the selection of candidates to define CL strategies will made by comparing 

their value for each utterance in a dataset collection and the accuracy achieved by ASR1, 

a pre-trained ASR system, in the transcription of those utterances.  
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Figure 3 shows the steps that will be followed. These steps are: 

1- For each audio file in the dataset, values for 

each prosodic feature will be extracted using a dedicated speech analysis software. 

2- A sequence modelling toolkit with a pre-trained model, 

ASR1, will be used to evaluate the dataset. The inputs to the model will be log-

mel spectrograms extracted from the raw audio files from the dataset, each 

containing a speech utterance. As a result of this evaluation, each utterance will 

be assigned a score based on the number of errors of the transcription. The lower 

the accuracy, the easier an utterance will be considered. 

3- 

Values for each prosodic feature from step 1 will be plotted against 

transcription accuracies from step 2 following different criteria.  

4- Features showing a clearer relationship with 

transcription accuracy will be selected as candidates for a difficulty metric.  

 

The goal of this part of the research is to evaluate a CL strategy by training a new ASR 

system, ASR2, from scratch. This strategy will be defined taking into account the results 

Figure 3. Procedure followed to select candidate prosodic features for a CL strategy. 
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of the first part of the project and applied using an independent module appended to 

ASR2. Figure 4 shows the architecture of the training system, which includes: 

1. : This module takes the original dataset as 

input and organizes the data according to the curriculum. Then, it feeds the model 

gradually, following the schedule determined by curriculum.  

2. : This includes a state-of-the-art end-to-end ASR model and 

the necessary tools to train it and evaluate it.  

 

 

In the following section we introduce some characteristics of sound that are used in the 

field of prosody to describe speech and provide the list of prosodic features related to 

each characteristic that will be considered in our experiments1. 

 

1 Descriptions provided here are based on: 

• Ladefoged, P (1996). Elements of Acoustic Phonetics. Chicago: University of Chicago Press  

Figure 4: Training of an ASR system using a CL strategy based on one of the prosodic 

features candidates as difficulty metric. 
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In acoustic phonetics, the fundamental frequency, also called first harmonic or F0, refers 

to the lowest frequency component in the speech sound wave. It is based upon the number 

of complete cycles of vibration of the vocal folds.  

Figure 5 shows the waveform produced when pronouncing Spanish vowel [a]. As it can 

be seen, the wave consists of an approximate repetition of the shaded pattern. The 

duration of the repeated pattern is 0.004 seconds, that is, in one second it is repeated 250 

times. This is equivalent to say that the fundamental frequency is 250Hz.  

The fundamental frequency is of particular importance in studies of intonation, where it 

displays a close correspondence with the pitch, the auditory sensation of “melody”. 

Variations in pitch have phonological functions, as in word stress; syntactic functions, as 

 
• Crystal, D. (2008). A Dictionary of Linguistics and Phonetics. Oxford: Blackwell. 

• Teixeira, J.P., Oliveira, C., Lopes, C. (2013). Vocal Acoustic Analysis – Jitter, Shimmer and HNR 

Parameters. Procedia Technology, 9, 1112-1122 

• Praat’s webpage: https://www.fon.hum.uva.nl/praat/ 

Figure 5.Waveform of a Spanish [a] pronounced by the author of this work. The 

shaded area shows a pattern that is repeated along the timeline; it corresponds to 

the lowest frequency component of the wave sound, F0. The horizontal double 

arrows show the intervals considered when computing Jitter. The vertical ones, the 

values of the amplitude considered when computing shimmer. 
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in the effect produced by a comma; and statement-level functions, to distinguish clause 

types (declarative, interrogative, imperative and exclamative).  

The fundamental frequency at each point is computed considering a windows of a certain 

time length. Variations  are then computed comparing the mean fundamental 

frequency consecutive windows. In our study, we have analysed the effect of the following 

parameters related to the fundamental frequency: 

• mean_f0: Average value of the fundamental frequency along the utterance. 

• stdev_f0: Standard deviation of the fundamental frequency along the utterance. 

• mean_delta_f0: Average of the variation of the fundamental frequency along the 

sentence.  

• stdev_mean_f0: Standard deviation of the variation of the fundamental frequency 

along the sentence. 

 

The intensity is the amplitude the signal of the audio sample. In speech, it corresponds 

to the size of the vibrations of the vocal folds causing the variations in air pressure that 

originate the sound wave. From prosodic perspective, intensity of signal is perceived as 

loudness. 

In our study, we have analysed the effect of the following parameters related to the 

fundamental frequency: 

• mean_delta_intensity: Average of the variation of the intensity along the sentence.  

• stdev_mean_intensity: Standard deviation of the variation of the fundamental 

frequency along the sentence. 

 

The Harmonics-to-Noise Ratio (HNR) represents the degree periodicity. It is computed 

as: 

𝐻𝑁𝑅(𝑑𝐵) = 10 log
𝐸𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐

𝐸𝑛𝑜𝑖𝑠𝑦
 

where Eperiodic is the fraction of energy in the periodic part of the signal and Enoisy is the 

fraction of energy in the noisy part. In speech, the periodical component arises from the 

vibration of the vocal cords; the noisy one, from the glottal noise.  
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Jitter is a measure of the deviation from true periodicity of a presumably periodic signal. 

It is defined as the period variation from cycle to cycle. When computed, a number N of 

cycles must be taken into account: 

𝑗𝑖𝑡𝑡𝑒𝑟(seconds) =
∑ |𝑇𝑖 − 𝑇𝑖−1|𝑁

𝑖=2

𝑁 − 1
                       (1) 

where Ti is the duration of the ith interval and N is the number of intervals. 

In this work we have used the following metrics related to jitter: 

• local_absolute_jitter: Average jitter over the utterance, i.e, N from Equation 1 is 

the total number of periods in the utterance. 

• local_jitter local_absolute_jitter, divided by the average period.  

• rap_jitter: Relative Average Perturbation, which is a version of local jitter defined 

in terms of three consecutive intervals. 

• ppq5_jitter: Five-point Period Perturbation Quotient (PPQ5), which is also a 

version of local jitter, this time defined in terms of five consecutive intervals. 

• ddp_jitter: Relative mean absolute third-order difference of the point process (or, 

equivalently, the second-order difference of the interval process).  

 

Shimmer is defined as the amplitude variation from cycle to cycle. It is computed as the 

average among a certain number of periods of the absolute base-10 logarithm of the 

difference between the amplitudes of consecutive periods, multiplied by 20: 

𝑆ℎ𝑖𝑚𝑚𝑒𝑟(dB) =
1

𝑁 − 1
∑ |20log (

𝐴𝑖+1

𝐴𝑖
)|                     (2)

𝑁−1

𝑖=1
 

where Ai is the amplitude of the -ith interval and N is the number of intervals considered. 

The metrics related to shimmer analysed in this work are: 

• localdb_shimmer Average shimmer over the utterance, i.e., N from Equation 2 is 

the total number of periods in the utterance.

• local_shimmer Average absolute difference between the amplitudes of consecutive 

periods, divided by the average amplitude.

• appq3_shimmer Three-point Amplitude Perturbation Quotient, the average 

absolute difference between the amplitude of a period and the average of the 

amplitudes of its direct neighbours, divided by the average amplitude. 
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• appq5_ shimmer Five-point Amplitude Perturbation Quotient, the average 

absolute difference between the amplitude of a period and the average of the 

amplitudes of its four closest neighbours, divided by the average amplitude. 

• appq11_ shimmer  11-point Amplitude Perturbation Quotient, the average absolute 

difference between the amplitude of a period and the average of the amplitudes 

its ten closest neighbours, divided by the average amplitude. 

 

In both types of experiments, selection of candidate prosodic features and curriculum 

learning experiments, we will use the Word Error Rate (WER) to evaluate transcriptions. 

WER is a common metric in the field of ASR. It works at word level, providing a measure 

of how many “errors” are in the transcription text produced by system. It is computed 

as2: 

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
 

where S is the number of substitutions, D, the number of deletions, I, the number of 

insertions, and N, the number of words in the reference (gold transcription). Since it 

computes errors, rather than hits, a high WER indicates low performance.  

In the selection of candidate prosodic features, we will use WER to score the level of 

difficulty of all utterances in the dataset collection: utterances for which ASR1 provides 

transcriptions with low WER will be considered as “easy”. When reporting the 

performance in the CL training experiments, we will use WER accuracy instead, which 

is defined as: 

𝑊𝐴𝑐𝑐 = 1 − 𝑊𝐸𝑅 

 

 

The following sections describe the experimental set-up: dataset collection containing 

speech utterances and gold transcriptions, speech analysis software used to extract 

prosodic features, ASR models used to compute accuracy and carry out experiments, and 

hardware. 

 

2 Font: Wikipedia contributors. (2020, February 7). Word error rate. In Wikipedia, The Free Encyclopedia. 

Retrieved 15:41, June 19, 2022, from https://en.wikipedia.org/w/index.php?title=Word_error_rate&oldid=939575741 
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LibriSpeech (Panayotov et al., 2015) is a corpus of read speech, based on LibriVox's 

public domain audiobooks, built specifically to enable the training and testing of ASR 

systems. The collection contains 1000 hours of speech sampled at 16 kHz, organized in 

several subsets for training, evaluating, and testing. For each case, there are two kinds 

of subset: those labeled as “clean” and those labeled as “other”. 

The collection has been built making a careful alignment between the recordings from 

LibriVox and the corresponding texts from the Project Guttenberg. The resulting pairs 

have been split into short fragments of 35 seconds or less to facilitate training. The 

selection of samples to be included in each subset has been made following these criteria: 

• Subsets labeled with “clean” are, on average, of higher recording quality and with 

accents closer to US English.  

• For all subsets there is gender balance in terms of number of speakers and 

available data.  

• Subsets are speaker disjoint: all fragments corresponding to the same speaker are 

assigned to one and only one subset. 

For each speaker in the clean training sets the total amount of speech is limited to 25 

minutes. For validation and test sets, approximately eight minutes of speech is used. 

The entire collection includes these subsets: 

• ,  - development and test set containing approximately 5 

hours of "clean" speech. 

•  - training set, of approximately 100 hours of "clean" speech. 

•  - training set, of approximately 360 hours of "clean" speech. 

• ,  - development and test set containing approximately 5 

hours of speech more "challenging" to recognize. 

•  - training set of approximately 500 hours containing speech that 

was not classified as "clean". 

Table 1 includes detailed information of each subdataset. 
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Table 1. Table subsets in LibriSpeech 

 

Inside each subset, samples are organized in folders according to readers and chapters. 

For each reader and chapter, a text file with the transcription of the text fragments is 

included. Audio samples are provided in .flac (Free Lossless Audio Codec) format, an 

audio file format with lossless compression, and labelled with the ID of reader and the 

ID of the chapter in the LibriVox’s database, plus a number indicating the fragment 

within the chapter. For instance, audio sample 5049-25947-0060.flac from train-clean-100 

subset corresponds to reader 5049, chapter 25947 and fragment 60. Its gold transcription 

can be found in train-clean-100/5049/25947/5049-25947.trans.txt, shown in Figure 7. It 

reads: “5049-25947-0060 “lieutenant thomas is badly wounded in here and we can't move 

him”. Text files with metadata for books, chapters and speakers is also provided. 

In this project, we have used the train-clean-100 subset for training and the dev-clean 

subset for validation. Train-clean-100 contains 28,539 samples; dev-clean, 2,703.  

 

Prosodic features have been extracted using the dedicated software described in the 

following sections.  

 

Praat (Boersma & Weenink, 2022) is an open-source computer program for speech 

analysis in phonetics. It can analyse, synthesize, and manipulate speech. Particularly, it 

provides a graphic interface and a set of tools to generate, edit and analyse waveforms, 

spectrograms, intensity contours and pitch tracks. 

Figure 6. Extract from file train-clean-100/5049/25947/5049-25947.trans.txt 
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Let’s see some of what the package offers with a practical example from our dataset 

collection, the audio sample 5049-25947-0060.flac from the train-clean-100 subset of the 

LibriSpeech collection. The sample corresponds to a fragment (sentence) of the book 

Notes of a War Correspondent (Davis, 1910). The text read by the volunteer reader is 

“lieutenant thomas is badly wounded in here and we can't move him”.  

Figure 7. Audio sample 5049-25947-0060.flac as displayed by Praat.The screen 

above corresponds to sentence “lieutenant thomas is badly wounded in here and we 

can't move him”. In the screen below, the word “lieutenant” has been zoomed in. 
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Figure 7 shows some of the representations that the package can generate. All 

representations are plotted against the same horizontal axis: the timeline of the audio 

file. These representations are: 

• : The waveform is the plot of the signal stored in the FLAC file after 

decompression. Sound is a pressure wave; this signal reproduces the signal picked 

up by the microphone when the audio was recorded.  

• : The spectrogram is a representation of the energy density as a 

function of time (horizontal axis) and frequency (vertical axis). Darker parts of 

the spectrogram mean higher energy densities; lighter parts mean lower energy 

densities. 

• : Pulses represent periodic fragments of the waveform. They are plotted 

as vertical blue straight lines on the waveform plot, at the maximum of each 

fragment. Pulses are the base for further computations such as the fundamental 

frequency, jitter or shimmer. They only exist if the waveform shows periodicity; 

otherwise, the waveform is considered as noise and no further computations can 

be done. 

• : Pitch, or fundamental frequency, is shown as blue dots on the spectrogram 

area. For each pulse, pitch is computed by counting the number of pulses within 

a time window on both sides of the pulse mark, and dividing into the window 

length. 

• : The intensity, plotted as a yellow line on the spectrogram area, 

represents the mean amplitude at linearly spaced time intervals.  

With all the previous information, Praat can compute global parameters such as the ones 

used in this work. Figure 8 shows, for instance, the Voice report for the sample audio 

5049-25947-0060. 

 

Parsemouth (Boersma & Weenink, 2021) is an open-source Python library that facilitates 

access to core functionality of Praat in Python, allowing researchers to integrate 

sophisticated acoustic analyses in their Python scripts. It uses the pybind11 library to 

communicate with and access to Praat’s internal objects, memory, and code. The package 

includes Praat as part of the library in order to provide immediate access to the raw data 

calculated by Praat. This, together with the use of Numpy, makes it possible to use the 

existing data without copying, which makes the computation faster. 

Among other functionalities, Parselmouth can quickly code up batch operations over a 

collection of files. This allows, for instance, to get a set of parameters for all audio files 

in a dataset collection in one run. 
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In this work, two ASR models have been used. In the experiments aimed at finding 

candidates for a CL strategy, ASR1, a pre-trained model, has been used to evaluate the 

difficulty of utterances from the training dataset. In the curriculum learning experiments, 

ASR2, a new model, has been trained from scratch using a CL strategy.  

 

The ASR system used to assign a difficulty score to the samples in the training set has 

been the repository speechbrain/asr-wav2vec2-commonvoice-en from HuggingFace 

Transformers. Hugging Face Transformers (Wolf et al., 2020) is a toolkit designed to 

easily develop state-of-the-art speech technologies, including systems for speech 

recognition. The repository speechbrain/asr-wav2vec2-commonvoice-en provides all the 

necessary tools to perform automatic speech recognition from an end-to-end system pre-

trained on Common Voice (English Language) (Ardila et al., 2020) within SpeechBrain 

(Ravanelli et al., 2021). In the current work, we will refer to this system as ASR1. 

Figure 8. Voice report for the sample audio 5049-25947-0060 
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The ASR system used to perform experiments on CL strategies has been built upon 

Fairseq framework [Ott 2019], a state-of-the art, open-source sequence modelling toolkit 

developed by Facebook AI. It is based on Pytorch and it allows to train custom neural 

sequence end-to-end models for several text generation tasks such as machine translation, 

summarization and language modelling. The library provides command line tools to pre-

process data, train and evaluate models, and generate output, together with a set of 

parameters to define advanced training options and select tasks, models, criterions (loss 

functions), optimizers and learning rate schedulers. The easiness and flexibility through 

which all these options can be set up make this framework a very suitable one for both 

research and production. 

The Fairseq task that can be used as an ASR system is the speech-to-text task (S2T) 

[Wang 2020]. This task has been designed for both automatic speech recognition and 

speech-to-text translation.  

In this report, we will refer to this system as ASR System 2. Since results concerning CL 

experiments are highly dependent on training parameters other than those strictly related 

to CL, we provide relevant information on the system configuration, so that results can 

be contextualized and reproduced. 

Physically, sound is a pressure wave. Recording a sound means converting this physical 

waveform into an electrical representation by means of a microphone and storing it in 

some medium. In the case of digital audio, the continuous electrical signal must be first 

discretized (sampling) and the resulting values encoded into digital values (bits) of some 

precision (bit-depth). The FLAC audio files from LibriSpeech are sampled at 16kHz (1600 

samples per second) and 16 bit-depth. 

Fairseq library includes tools to download and pre-process several ASR datasets 

benchmarks. In our project, the LibriSpeech collection was downloaded and pre-processed 

using the prep_librispeech_data.py method. The process followed these steps: 

1. . Datasets for training, testing and evaluation were downloaded. 

The original files are FLAC audio files, organised in folders according to the 

speaker id.  

2. . As most ASR state-of-the-art systems, the Fairseq 

S2T task takes log-mel spectrograms as input. In this part of the process, Kaldi-

compliant (Povey et al., 2011) 80-channel log mel-filter bank features are 

extracted from FLAC audio files and stored into numpy files via torchaudio. 
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3. : Filter banks are packed into a ZIP file for faster reading. 

4. : A tabular separated values file (TSV) is generated with 

the following information for each sample: the ID, the path to the filter bank, the 

number of frames, the target text and the speaker ID. 

5. : A vocabulary file with 10,000 unigrams is created via 

SentencePiece (Kudo & Richardson, 2018) tokenizer. 

6. : A YAML file is generated with online speech 

data transforms and data-related settings, such as tokenizer type and vocabulary 

path. 

For the text data, Fairseq S2T makes online tokenization with the tokenizer defined in 

the yaml file. 

The model used to run our experiments was a vanilla transformer (Vaswani et al., 2017)  

included in the Fairseq library, the s2t_transformer. This version includes a 

convolutional downsampler before the positional embedding layer which reduces the 

length of speech inputs by 3/4th before they are fed into the encoder. In order to perform 

our experiments faster, the small configuration version of the model, s2t_transformer_s, 

was chosen. This version has about 30M parameters and is 350MBs in size. 

The loss function used to optimise the model parameters was cross-entropy. Adam 

optimizer was used, with a learning rate decreasing with an inverse square root scheduler. 

Before curriculum learning experiments, some fine-tuning for learning rate and weight 

decay was done to set the baseline, as well as tests including and not including a warm-

up stage. The inclusion of a warm-up stage when training a vanilla Transformer from 

scratch using any gradient-based optimization approach is crucial for the final 

performance of the model [Xiong 2020]. These is because the vanilla Transformer places 

the layer normalisation between the residual blocks, resulting in large-expected gradients 

of the parameters near the output layer, which makes the training unstable. With the 

warm-up stage, the optimization starts with an extremely small learning rate and 

gradually increases up to a predefined maximum value in a predefined number of 

iterations.  

To create batches, Faiseq groups source and target sequences of similar length. This 

minimises the sequences padding. The content batches stay the same throughout training; 
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batches themselves are shuffled randomly every epoch. The library also allows to 

accumulate gradients from multiple mini-batches before updating, resulting in larger 

effective batch sizes. 

Fairseq provides support for both full precision (FP32) and half precision (FP16). When 

setting the training to FP16, forward-backward computations are done in half precision, 

while parameters remain in full precision. This technique accelerates the process and 

preserves accuracy. A dynamic loss scale is applied to avoid underflows for activations 

and gradients.  

 

To feed the system using CL strategies a dedicated module, Speacher (Cambara, 2021), 

has been used. Speacher (from “speech teacher”) takes dataset manifests files as input 

and generates an output folder with subdatasets sampled according to difficulty criteria. 

The tool has been designed to work with other speech recognition frameworks, like 

Fairseq. 

 

As part of the project, systems ASR1 and ASR2, along with their dependencies, were 

installed in two servers at University of Barcelona and Universidad Nacional a Distancia. 

Especially CL experiments, which consisted in training a state-of-the-art ASR model with 

30M parameters for a considerable number of epochs, required the use of powerful GPUs. 

Table 2 presents basic information of both servers. 

 

Table 2. Short datasheet of servers used in the project. 

 Server 1 Server 2 

CPU Xeon W-2155@3.3GHz (10 cores) i9-10920X@3.50GHz (12 cores9 

GPU 4x Nvidia RTX2080Ti of 12GB 2 Nvidia RTX 3090 of 24 GB 

 

RAM  64Gb 128GB 

Cuda version 10.1 11.5 
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In this section we present the two types of experiments conducted as mentioned above. 

First, a collection of utterances from a dataset was analysed. Several prosodic features 

were extracted from each utterance using a dedicated software, Parselmouth. In parallel, 

a transcription for each utterance was generated and evaluated using ASR1, a pre-trained 

ASR model. As a result of this evaluation, an accuracy score in terms of WER was 

provided for each utterance in the dataset. Then, for each prosodic feature, we looked for 

relationships with the accuracy achieved. Those prosodic features showing a relationship 

with WER became candidates for the second kind of experiments. These latter 

experiments consisted in training a new ASR model, ASR2, from scratch using different 

strategies, in order to test whether the application of a curriculum based on one of the 

selected prosodic features improved the final accuracy and/or the training speed. In what 

follows we describe these experiments, as well as the results. 

 

This part of the work includes the extraction of prosodic features, the evaluation of 

transcriptions by ASR1, and the comparison between both results to find relationships. 

 

Prosodic features described in section 3.2 were extracted for each of the 28,539 utterances 

in the dataset collection, LibriSpeech train-clean-100, using the Parselmouth software. 

Table 3 shows statistical information of the results. 

 

Table 3. Statistical information of prosodic features extracted from audio 

samples in dataset train-clean-100.Units are displayed in parentheses next-to 

the name of the feature. 

mean_f0 (Hz) 59.10 317.00 162.00 45.20 

stdev_f0 (Hz) 1.64 122.00 39.20 14.60 

mean_delta_f0 (Hz) -5.29 4.99 -0.11 0.31 

stdev_delta_f0 (Hz) 0.26 22.50 6.13 2.58 

mean_delta_intensity (dB) -1.23 2.76 0.00 0.05 

stdev_delta_intensity (dB) 0.13 18.20 1.86 0.98 

hnr (dB) -0.47 22.60 11.50 2.94 

local_jitter 0.0098 0.0658 0.0239 0.0058 

local_absolute_jitter (s) 0.00004 0.00076 0.00017 0.00008 

rap_jitter (s) 0.002 0.031 0.010 0.003 
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ppq5_jitter (s) 0.003 0.038 0.011 0.003 

ddp_jitter (s) 0.007 0.093 0.029 0.008 

local_shimmer 0.023 0.226 0.098 0.021 

localdb_shimmer (dB) 0.193 1.740 0.963 0.170 

apq3_shimmer (dB) 0.009 0.120 0.036 0.011 

aqpq5_shimmer (dB) 0.013 0.157 0.053 0.015 

apq11_shimmer (dB) 0.025 0.561 0.098 0.026 

dda_shimmer (dB) 0.026 0.360 0.107 0.034 

 

 

ASR1, described in section 3.4.3.1, was used to generate a transcription for each of the 

28,539 utterances in the dataset collection, LibriSpeech train-clean-100. Each predicted 

transcription was evaluated by comparing it with its gold transcription. WER was used 

as the accuracy metric. Figure 9 shows the statistical information of the results. Each bin 

in the figure includes the number of utterances whose predicted transcriptions achieved 

the accuracy indicated in the horizontal label. As it can observed, one half of the samples 

in the dataset have WER lower than 10, and one third, lower than 20.  

 

 

Figure 9. Statistical information of WER for transcriptions of utterances in dataset train-

clean-100 as predicted by ASR1. 
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Results from section 4.1.1 were compared with results from section 4.1.2 with the purpose 

of finding connections. We adopted two approaches: scatter graph and bin partition. In 

the scatter graph approach, 18 graphs were generated, one for each feature. The 

horizontal axis represented WER; the vertical axis, the prosodic feature being considered. 

For each utterance in the dataset, a dot was plotted in position (WER, prosodic feature 

value) for that utterance. Figure 10 shows the 18 resulting graphs. 
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Figure 10. Prosodic features against WER for each sample in the train-clean-100 dataset. 

Each graph corresponds to the prosodic feature indicated in the vertical axis. Units are 

those showed in Table 3. Statistical information of prosodic features extracted from audio 

samples in dataset train-clean-100. 

As it can be observed, all graphs show a quite homogeneous relationship between WER 

and the corresponding prosodic feature. Most dots are located along a horizontal band 

within the WER interval [0,100], which is centred very close to the mean value of the 

prosodic feature. This observation can be contrasted with the results of the linear 

regression computed on pairs (WER, prosodic feature), shown in Table 4. In all cases the 

slope is very close to zero. Its maximum value corresponds to stdev_f0 (0.00299), followed 

by mean_f0 (0.00296), stdev_delta_f0 (0.00025), mean_delta_f0 (0.00018) and HNR (0.00018). 

To perceive the centring of the band, we can compare values in column “mean value” in 

Table 3 with values in column “intercept” in Table 4: they are nearly the same. The 

Pearson correlation coefficient, which measures the strength of the linear relationship 

between two variables, is also close to zero, confirming the lack of direct linear relation. 
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Table 4. Linear regression between WER and each of the prosodic 

features considered. 

mean_f0 0.0029700 162.00 0.0049 

stdev_f0 0.0029900 39.10 0.0153 

mean_delta_f0 0.0000953 -0.112 0.0230 

stdev_delta_f0 0.0002540 6.120 0.0074 

mean_delta_intensity -0.0000022 0.003 -0.0031 

stdev_delta_intensity -0.0001220 1.860 -0.0093 

hnr 0.0001780 11.50 0.0045 

local_jitter -0.0000003 0.024 -0.0037 

local_absolute_jitter 0.0000000 0.000 -0.0029 

rap_jitter 0.0000003 0.010 0.0072 

ppq5_jitter 0.0000001 0.011 0.0020 

ddp_jitter 0.0000008 0.029 0.0072 

local_shimmer 0.0000001 0.098 0.0004 

localdb_shimmer 0.0000012 0.963 0.0005 

apq3_shimmer 0.0000004 0.036 0.0027 

aqpq5_shimmer 0.0000006 0.053 0.0030 

apq11_shimmer -0.0000006 0.098 -0.0016 

dda_shimmer 0.0000012 0.107 0.0027 

 

As for the width of the band, we can notice its tendency to be narrower with increasing 

WER. We believe, though, that this tendency does not show a relevant relationship 

between prosodic features and WER but should be attributed to the WER distribution 

among the dataset instead. The number of samples with low WER is considerably higher 

than the number of samples with high WER. As mentioned before, one half of the samples 

in the dataset have WER lower than 10, and one third, lower than 20. The concentration 

of dots at the left of the graph is much higher than at the right, which makes it more 

probable for feature values with high deviation from the mean to appear. 

An observation we wish to make is the symmetry with respect to the zero value for 

graphs corresponding to mean_delta_f0 and mean_delta_intensity. These features represent 

variation among the sentence: a positive mean_delta_f0 indicates that the utterance ends 

in a higher pitch than it starts, and a negative, the reverse. Similarly, a positive 

mean_delta_intensity reveals that the volume at the end of the utterance is higher than at 

the beginning. A high absolute value of either of these parameters might be a sign of 

global intonation, regardless of if it is ascending or descending. In further experiments we 
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took absolute values of these features into account, instead of the original ones. We will 

refer to the new features as abs(mean_delta_f0) and abs(mean_delta_intensity). 

In the bin partition approach, we classified utterances into a set of bins according to the 

value of the prosodic feature being considered. Then, the average of WER for each bin 

was computed and plotted. For the sake of example, let’s have a look to Figure 11, which 

corresponds to prosodic feature abs(mean_delta_f0). Six different partitions have been made, 

each with a different number of bins: N=1, 2, 3, 4, 5, 6. Each bin in a partition contains 

only those samples whose value for the prosodic feature being considered is within the 

interval displayed in the horizontal axis. Intervals have been computed so that each bin 

contains the same number of samples (quantile binning). In the first graph, where N=1, 

only one bin is considered, which includes 28,539 samples, the whole dataset. The range 

Figure 11. Average WER computed within quantiles of abs(mean_delta_f0).The 

horizontal axis displays intervals of abs(mean_delta_f0); the vertical one, WER values. 

Dots displayed in the graph correspond to the mean WER computed over all 

utterances having a value of abs(mean_delta_f0) within the interval. For each dot, two 

annotations are included: first, the number of utterances included in the bin; and 

second, the value of the mean WER. 



33 

 

of values of abs(mean_delta_f0) for utterances in this bin expands from the minimum value 

of this feature, 0, to its maximum, 5.291Hz. In the second graph, where N=2 (two bins), 

each bin contains half of the dataset, that is, 14,269 or 14,270 utterances. The range of 

values of the prosodic feature abs(mean_delta_f0) for the first and second bin are [0, 0.114) 

and [0.114, 5.291], respectively. This means that the 14,270 samples in the dataset have 

abs(mean_delta_f0)<0.114; the remaining 14,269 samples have abs(mean_delta_f0)≥0.114. The 

average WER for utterances having abs(mean_delta_f0)<0.114 is 30.288, whereas that for 

utterances having abs(mean_delta_f0) ≥0.114 is 23.997.  

Using this approach, we do observe a relationship between feature abs(mean_delta_f0) and 

WER: an increase in the value of abs(mean_delta_f0) involves a decrease, in average, of 

WER. This is clearer for N≤4; for N>4, some deviations from this tendency appear. 

Qualitatively, this indicates that utterances that start and end with a significantly 

different pitch are, in average, easier to transcribe than utterances that start and end in 

a similar pitch. 

An analogue partition was made using each of the 18 prosodic features described in 

Section 3.2. The resulting graphs can be consulted in Annex: Partitions of prosodic 

features. Apart from abs(mean_delta_f0), two more features showed an either decreasing 

or increasing relationship with WER: abs(mean_delta_intensity) and stdev_f0. Feature 

abs(mean_delta_intensity) showed a similar tendency as abs(mean_delta_f0): in average, a 

higher value of abs(mean_delta_intensity) resulted in a lower WER. That is, sentences 

starting in a lower volume that they end, or the other way round, are easier to 

transcribe than those starting and ending in similar values. By contrast, an increase of 

feature stdev_f0 resulted in an increase of WER.  

We are not surprised by the results concerning abs(mean_delta_f0) and 

abs(mean_delta_intensity). They agree with results presented by (Goldwater et al., 2010), 

and they endorse our initial hypothesis that more modulated sentences might be easier 

to transcribe. However, results concerning stdev_f0 point to the opposite direction. This 

feature is a measure of how different is pitch along the utterance. For monotonous speech, 

pitch, that is, the fundamental frequency, is close to the mean all the time, so the 

standard deviation should be low. Conversely, highly modulated speech means that pitch 

deviate significantly from the mean at some moment, so the standard deviation should 

be high. The fact that utterances with low stdev_f0 are, in average, better transcribed by 

ASR1 seems to indicate that monotonous speech is easier to transcribe than more 

modulated speech.  
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In this part of the work, we trained a new ASR model, ASR2, from scratch using a CL 

strategy based on the previous results. We saw earlier that, when classified into bins 

according to the values of abs(mean_delta_f0), abs(mean_delta_intensity) and stdev_f0, a 

relationship with WER could be established. In particular, the average WER for subsets 

of utterances having lower values of abs(mean_delta_f0) or abs(mean_delta_intensity) was 

higher than that for subsets having higher values of abs(mean_delta_f0) or 

abs(mean_delta_intensity), respectively. By contrast, subsets of utterances having lower 

values of stdev_f0 had an average WER lower than that of subsets having higher values 

of stdev_f0. Following the CL hypothesis raised at the beginning of this work, these 

findings suggest that i) abs(mean_delta_f0), abs(mean_delta_intensity) and stdev_f0 might be 

good candidates for CL strategies and ii) an appropriate schedule might be to feed the 

system in N<=4 steps, adding a subdataset with more difficult samples each time. 

Results concerning abs(mean_delta_f0) shows a parallelism with results reviewed by 

(Esteve-Gibert & Prieto, 2018). According to the authors, there is evidence that the 

direction of the intonation contour is used by pre-lexical infants to signal speech act 

information and may play a role in language acquisition. As described above, 

abs(mean_delta_f0) indicates the difference in pitch between the beginning and end of the 

utterance, which can be defined, precisely, as intonation contour. This provided us 

additional grounds to select this specific feature for our CL experiments. We believe that 

similar reasoning could have been applied to abs(mean_delta_intensity). Note, also, that the 

fact that the tendency shown by stdev_f0 contradicts what we would have expected 

considering human language comprehension does not mean that it should be rejected as 

a candidate for CL strategies. For any reason we do not know, it was easier for ASR1 to 

transcribe sentences having high stdev_f0. Consequently, the CL hypothesis could have 

been applied using this feature as a metric score as well. 

Having all the above in mind, we undertook CL experiments using abs(mean_delta_f0) as 

our difficulty metric and a partition method with N=4 as our schedule. Consequently, 

the dataset was divided into 4 equal-sized subdatasets, each containing utterances whose 

value of abs(mean_delta_f0) was included in the intervals shown in the graph in Figure 11 

corresponding to 4 bins. Table 5Table 3 lists the resulting datasets. The training of the 

system was made in 4 steps. In the first step, Dataset 1, which contained utterances with 

the higher value of abs(mean_delta_f0), was used to train the system for a step-length of L 

updates. In the second step, Dataset 2 was added, and training continued for another L 

updates. In the third step, Dataset 3 was added, and training continued for another L 

updates. Finally, in the fourth step, Dataset 4 was added, and training continued until a 

total number of 300,000 steps or stabilization. 
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Table 5. Subdatasets used in the CL strategy. 

Label Number of 

utterances 

Values of 

abs(mean_delta_f0) (H z) 

Dataset 1 7135 [0.000, 0.054) 

Dataset 2 7135 [0.054, 0.114) 

Dataset 3 7135 [0.114, 0.231) 

Dataset 4 7134 [0.231, 5.291] 

 

The strategy with N=1, that is, the inclusion of the whole dataset from the beginning of 

the training, constituted our baseline. We also trained the system using a null strategy, 

which consisted in making a partition with N=4, like that of the CL strategy, but 

including random samples in each bin. The anti-curriculum approach, that is, training 

the system by feeding it with difficult samples at the beginning was also made. We 

undertook two types of training: with and without a warm-up stage. A warm-up stage is 

a period at the beginning of the training were the learning rate increases up to a certain 

value, before starting to decrease in the usual way. As we will see, the inclusion of a 

warm-up stage when training a vanilla Transformer from scratch using gradient-based 

optimization approach is crucial for the final performance of the model. However, it 

includes some complexity to our experiments, since the warm-up period overlaps with 

the curriculum learning one.  

Altogether, our experiments can be summarised as follows: 

1. Fine-tuning of two baselines, without and with warm-up. 

2. Testing of null hypothesis, without and with warm-up. 

3. CL and anti-CL experiments using a 4 bin-schedule based on abs(mean_delta_f0), 

without and with warm-up. 

For the interpretation of results, we must mention that they are based on isolated 

experiments, i.e., no statistical approaches have been taken. Our purpose in this part of 

the project was merely to test the ground for further experiments.  

 

Before starting our CL experiments, we defined baselines based on the same ASR system 

and training dataset. We fined-tuned a baseline without warm-up, and one with warm-

up. Two parameters were optimized: learning-rate and weight-decay. The values 

achieving best performance were used in all further experiments. 
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We began by fine-tuning the learning rate for the no-warm-up case. The precision was 

set to FP16 to speed up the process. The weight-decay was fixed to 0. Figure 12 shows 

accuracy evolution when training with learning rates within 0.0008 and 0.002. Learning 

rates from 0.01 resulted in gradient explosion and are not shown in figure. The best 

accuracy was obtained for lr=0.002. 

The next parameter we fine-tuned was weight-decay. Figure 13 shows accuracy evolution 

when training in the same conditions as above, now with a fixed learning rate (0.002) 

and changing the weight-decay. Setting the weight-decay to 0.2 improved training from 

a final accuracy of 63.68 to 66.18 on the evaluation dataset, dev-clean. 

A baseline for trainings using warm-up was also fine-tuned. Here, we first fixed the 

learning-rate to 0.002 and changed the weight decay. Trainings with weight-decay equal 

or higher than 0.3 resulted in gradient explosion and are not shown. Figure 14 shows 

Figure 12. Fine-tuning of the learning rate for a baseline without warm-up. 

Figure 13. Fine-tuning of the weight-decay for a baseline without warm-up. 
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accuracy evolutions for these experiments. As a result of these experiments, weight decay 

for the warm-up case was set to 0.2. 

Finally, lower learning rates were tested for the warm-up case to see if accuracy case 

could be further improved. Figure 15 shows these experiments. As in the training without 

warm-up, the best learning rate was 0.002.  

Note the improvement achieved when using a warm-up stage. At 300,000 updates, the 

maximum allowed in our experiments, the best accuracy reached when training without 

warm-up is 64.0, whereas in the warm-up case, an accuracy of 82.3 is achieved in one 

tenth of that time, i.e at 30,000 updates.  

Figure 14. Fine-tuning of the weight-decay for a baseline with warm-up. 

Figure 15. Fine-tuning of the learning rate for a baseline with warm-up. 
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The null hypothesis consisted in training the system following the same 4-step schedule 

as in the CL experiments. In this case, though, samples included in each subdataset were 

selected randomly. The purpose of this experiment was to compare the effects of sorting 

the data based in a difficulty metric and the simple effect of feeding the system in 4 steps. 

The step-length, that is, the number L of updates of the first 3 steps of the curriculum 

schedule, was set 10,000 for experiments without warm-up and 1,000 for experiments 

with warm-up. As training without warm-up is so slow, we considered that a large step-

length was necessary to make the effects of curriculum learning evident. By contrast, in 

the warm-up case, it was important to fit the schedule within the warm-up stage, so that 

effects would not be mixed. 

Figure 16 and Figure 17 show the evolution of the accuracy, evaluated on dev-clean 

dataset. The effect of adding new samples in the null-hypothesis case can be clearly seen 

in the no-warm-up case, were step-lengths are longer. Note that, in both the no-warm-

up and warm-up cases, accuracy when training with the null hypothesis is behind the 

baseline, that is, feeding the system in 4 steps, adding a quarter of the data at each step, 

decreases training efficiency. In the warm-up case, training using the null-hypothesis 

speeds up between updates 6.000 and 15.000 reaching the baseline, but in the no-warm-

up case there are residual effects of this delay still in update 300,000. It does not surprise 

us that training evolution goes behind at the beginning, when the number of samples fed 

into the system is smaller. Recall that, in the null hypothesis, samples in each bin are 

selected randomly and are not expected to be especially informative for the system. 

Overall, during the first steps the system has less information to fit the model. What 

should concern us is that, in the warm-up case, this effect is still significant after 300,000 

updates. 

Figure 16. Comparison of accuracy evolution for baseline and null hypothesis, without 

warm-up. 
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 abs(mean_delta_f0)

In this part of the work, we tested a CL design using a 4-bin schedule based on the 

prosodic feature abs(mean_delta_f0). Two schedules were tested. The first one, the “CL 

schedule”, consisted in feeding the system with subdatasets from Table 5 in descending 

order of abs(mean_delta_f0), that is, from “easier” samples to “more difficult” ones. In the 

second schedule, the “Anti-CL schedule”, the reverse was followed: datasets were included 

into the system in ascending order of abs(mean_delta_f0). Each pair of experiments were 

conducted twice: without and with warm-up. In experiments without warm-up the step 

length was fixed to 10,000; in those with warm-up, to 1,000. Figure 18 and Figure 19 

show the evolution of the accuracy, evaluated on dev-clean dataset. In both figures, the 

null hypothesis has been added, to allow comparison.  

Figure 17. Comparison of accuracy evolution for baseline and null hypothesis, with warm-

up. 

Figure 18. Comparison of accuracy evolution for CL and anti-CL strategies based on 

abs(mean_delta_f0), without warm-up. The null hypothesis is also included. 



40 

 

Note that, during the first 70,000 and 8,000 updates in the no-warm-up and warm-up 

cases, respectively, the CL strategy outperforms the null-hypothesis, whereas the Anti-

CL strategy underperforms it. Later, this effect is diluted. In the warm-up case, there is 

no significant difference in accuracies achieved in later epochs. In the no-warm-up case, 

the tendency even reverses, and the anti-CL strategy takes advantage. It should be 

studied if this effect is directly related to CL, or it is a random effect appearing at 

advanced stages, where the effects of the first epochs are somehow forgotten.  

Table 6 and Table 7 summarize accuracy results for all experiments at updates 50,000 

and 5,000 for the no-warm-up and warm-up cases, respectively. Results at the end of the 

training are also included. As we can see, in the no-warm-up case, at step 50,000, accuracy 

for the CL strategy is 5.9% above the null hypothesis and 9.7% above anti-CL; in the 

warm-up case, at step 5,000, accuracy for the CL strategy is 2.71% above the null 

hypothesis and 0.12% above anti-CL. Compared to the baseline, all experiments 

underperform during the first epochs. In the warm-up case, though, null, CL and anti-

CL experiments reach the baseline at some point, so the final accuracy is quite similar. 

In the no-warm-up case, the accuracy of the baseline is better from the beginning to the 

end of the training, at 300,000 steps. 

 

Table 6. Accuracies of experiments without warm-up 

Baseline 35.7 66.21 

Null hypothesis 22.39 59.86 

CL  23.71 59.34 

Anti-CL 20.41 61.67 

Figure 19. Comparison of accuracy evolution for CL and anti-CL strategies based on 

abs(mean_delta_f0), with warm-up.The null hypothesis is also included. 
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Table 7. Accuracies of experiments with warm-up 

Baseline 71.53 82.29 

Null hypothesis 65.38 82.19 

CL  67.15 81.46 

Anti-CL 65.46 81.98 

 

These results seem to indicate that the CL hypothesis based on abs(mean_delta_f0) has 

some positive effect in speeding up training during the first stages. However, this effect 

is not powerful enough as to compensate the negative effect that feeding the system in 

four steps produces. This effect can be isolated by comparing the baseline and the null 

hypothesis. For the no-warm-up case, accuracy when using the null hypothesis is 37% 

behind the baseline at update 50,000 and 9.6% at update 300,000. For the warm-up case, 

it is 8.6% behind at update 5,000 and 0.12% at update 30,000. Figure 16 and Figure 17 

above clearly show this effect. 
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In this work we have explored the possibility of improving performance of end-to-end 

ASR systems using CL strategies based on prosody. In the field of ASR, CL has been 

successfully applied using different approaches. This is the first attempt to take 

advantage of prosody effects. 

In the first part of the project, several prosodic features have been extracted from a 

collection of 28,539 utterances. The same utterances have been transcribed using a pre-

trained ASR system. The percentage of errors in these transcriptions has been used as 

difficulty metric and plotted against each prosodic feature using two different approaches: 

scatter graph and bin partition. In the scatter graph approach each utterance of the 

dataset was plot in position (x, y) of a 2-dimensional graph, where x was the number of 

errors, expressed as WER, and y was the value of the prosodic feature being considered. 

This approach did not allow us to detect any relationship between prosodic features and 

WER. In the bin partition approach, the collection of utterances was classified into a set 

of bins according to the value of the prosodic feature being considered. Then, the average 

of WER for each bin was computed and plotted. In this approach, WER showed a 

tendency to decrease with increasing values of features abs(mean_delta_f0) and 

abs(mean_delta_intensity), and a tendency to increase with increasing values of stdev_f0. The 

tendency of WER to either decrease or increase with ascending values of these features 

was clearer when the number of bins in the partition was equal or less than four. Feature 

abs(mean_delta_f0) corresponds to the absolute value of the mean variation of the 

fundamental frequency along the utterance. It is a measure of intonation contour: 

ultimately, it indicates the difference in pitch between the beginning and end of the 

utterance. Similarly, abs(mean_delta_intensity), or the absolute value of the mean variation 

of the intensity along the utterance, is a measure of volume contour. Feature stdev_f0 

corresponds to the standard deviation of the fundamental frequency along the utterance.  

In the second part of the project, a CL strategy was defined using feature 

abs(mean_delta_f0) as the difficulty metric. The original dataset of 28,539 was divided into 

4 subdatasets, each containing a quarter of the samples. The partition was made so that 

in each subdataset there were utterances with value of abs(mean_delta_f0) within a certain 

interval. Then, a new ASR system was trained from scratch using this CL schedule: first, 

the system was trained using the dataset containing samples with the highest values of 

abs(mean_delta_f0) (“easy utterances”, for either 1,000 or 10,000 steps, depending on 

whether a warm-up stage was included. Then, a new subdataset, the one containing 

utterances with the highest values of abs(mean_delta_f0) among the three remaining 

datasets, was added. Training continued for another 1,000 or 10,000 updates. Then the 

next dataset was added, and so on, until the whole collection was introduced. 

Experiments using the reverse strategy, i.e., training in 4 steps beginning with the dataset 
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containing utterances with the lowest values of abs(mean_delta_f0) (“difficult utterances”), 

were also done. We refer to this strategy as anti-CL. A strategy using the same partition 

but including random samples in each subdataset was also tested. We refer to this 

strategy as the null hypothesis. All these experiments were done twice, with and without 

a warm-up stage. Results were compared with a baseline, which consisted in training the 

system using the whole dataset from the beginning. 

For both the warm-up and no-warm-up experiments, CL strategies outperformed the null 

hypothesis and the anti-CL hypothesis at the beginning of the training. However, they 

did not outperform the baseline. This indicates that curriculum learning based on 

abs(mean_delta_f0) somehow helps the system to learn during the first stages, but this effect 

is not powerful enough as to compensate the negative consequences that feeding the 

system starting with a fraction of the dataset has. 

Clearly, further experiments should be made before confirming or refuting the CL 

hypothesis based on abs(mean_delta_f0). The effectiveness of CL is highly sensitive to the 

mode of progression through the tasks (Graves et al., 2017).  

The CL hypothesis is grounded on the idea that training with “easy” examples avoids 

wasting time with noisy or harder to predict samples and helps the system achieve a 

better generalization (Bengio et al., 2009) faster. However, “easy” examples might carry 

too little information for the system to learn, delaying learning. The challenge behind the 

definition of a CL strategy is to find a balance between these two effects, both by selecting 

the appropriate difficulty metric and determining an efficient schedule. Apart from this, 

applying CL implies starting training with a reduced dataset, which has proved to have 

a negative effect. To reduce this effect, it might be more appropriate to use a 2-bin 

schedule, instead of a 4-bin one. Such a schedule would also magnify the difference 

between samples in the datasets, making the effect of CL more evident. The use of a 

larger dataset could also help to prevent the learning delay at the beginning, caused to a 

lack examples. Other step lengths, that is, the number of updates during which the system 

is trained before more data is added, should also tested, as well as other types of 

schedules, such as a continuous linear or exponential pacing.  

On the other hand, alternative features could also be used to define new prosody-based 

CL strategies. Experiments in the first part of the project showed that 

abs(mean_delta_intensity) and stdev_f0 could be feasible candidates. A combination of 

abs(mean_delta_f0), abs(mean_delta_intensity) and stdev_f0 could also be used. In fact, a plot in 

the partition bin approach using the addition of normalised abs(mean_delta_f0) 

abs(mean_delta_intensity) unveiled an more pronounced relationship with WER. 

Finally, different prosodic features should be analysed. Two features that we intend to 

explore in the future are mean(abs_delta_f0) and mean(abs_delta_intensity). Features 

considered in this work, abs(mean_delta_f0) and abs(mean_delta_intensity), are computed by 
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first extracting local variations of an utterance, averaging over them, and finally taking 

the absolute value of this average. With this method, positive and negative variations 

within the utterance cancel out when computing the average, and only the difference 

between the beginning and the end remains. However, for speech comprehension, internal 

variations in intonation and volume are crucial, both at lexical (word stress) and 

syntactical level. Considering local absolute variations and averaging over those would 

provide a more significant scalar feature to give account of this important prosodic effect. 
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