
Master’s thesis: NLU for integral management of

watch functionalities

Master’s thesis

Maŕıa de las Nieves Úbeda Castañeda

Research thesis for

Máster en Lenguajes y Sistemas Informáticos

Universidad Nacional de Educación a Distancia

Supervised by

Professor Anselmo Peñas

February 2023

Acknowledgement

I am very grateful to my supervisor, Anselmo Peña, for his guidance

and suggestions, and I value the experience and knowledge I have acquired

when working on this thesis. I thank Paulo Villegas and Nerea Suárez for

the co-supervision in terms of Telefónica's supervisors for their assistance

on the thesis. I am grateful to my colleagues, Hugo Fernández, José A. Car-

ballo, Carlos Rodŕıguez, Daniel M. Garćıa Ocaña and Óscar Miranda for

their valuable remarks and feedback regarding my code. I want to express

my gratitude to Ester Vaquero for all the support and help concerning the

linguistic part. My biggest thanks belong to my family for all the encou-

ragement that they have given me throughout the years. I am particularly

grateful to Javier Ortiz for his love, patience, valuable feedback, help and

support.

Abstract

Conversational assistants and chatbots have become popular tools that can

quickly answer users' requests to help them solve simple tasks. One of the

most important goals of a conversational assistant is to understand a user's
intent, that is, NLU. To carry out this aim, intent classification is one of

the most important tasks. Thus, this thesis aims to design and implement

a benchmark to test different models that can be included for a intent re-

cognition system in order to improve a stage that already exists in Aura

(Telefónica's virtual assistant). The resulting module can classify user ut-

terances regarding watch actions. Recent advances in natural language by

using labels from a predefined set of intents. The best model achieves an

improvement of accuracy concerning the solution that is currently used by

the company.

Keywords

Intent classification, Machine Learning, Natural Language Processing, trans-

formers, classes.

Table of Contents

1. Introduction 17

1.1. Motivation . 19

1.2. Proposal and Objectives . 20

1.3. Structure of the thesis . 21

2. Preliminaries 23

2.1. The Science of Linguistics . 23

2.2. Artificial Intelligence . 23

2.2.1. Machine Learning in NLP 25

2.2.2. Deep Learning . 26

2.2.3. Transformers . 27

2.3. Natural Language Processing 29

2.4. Platforms for Dialogue Management 33

2.4.1. Dialogflow . 33

2.4.2. LUIS . 34

2.4.3. RASA . 35

2.4.4. Watson . 35

2.5. Intent Classification . 36

2.6. Libraries and tools . 38

2.6.1. Data Science and Machine Learning 38

2.6.2. NLP . 39

3. Proposal 43

3.1. Research questions . 43

3.2. Approach . 43

3.3. Difficulties found . 44

4 Bibliography

4. Dataset 47

4.1. Intent classifier Datasets . 47

4.1.1. Dataset A . 48

4.1.2. Dataset B . 49

4.2. Attribute classifier Datasets 49

4.2.1. Dataset C . 50

4.2.2. Dataset D . 50

5. Experimentation 53

5.1. Evaluation Setting . 53

5.2. Implementation . 57

5.2.1. Pre-processing Module 57

5.2.2. Classification Module 58

5.2.3. Evaluation Module . 66

5.3. Results . 67

5.3.1. Average accuracy results by model 67

5.3.2. Results based on model type and datasets 70

6. Conclusions 79

7. Bibliography 81

A. Acronyms 85

B. Analysis of results by model type 87

C. Tables 107

List of Figures

1.1. Steps in the unstructured data processing. 18

2.1. Computational Linguistics tasks. 24

2.2. Relation between NLP, Computer Science, Artificial Intelli-

gence and Human Language (adapted from What is Natural

Language Processing (NLP)? (Gopalan, 2021)). 30

2.3. Dialogflow diagram (adapted from Google Cloud Documenta-

tion (Google, n.d.). 34

2.4. Watson architecture diagram (extracted from Building Watson:

An Overview of the DeepQA Project (Ferrucci et al., 2010) . 36

2.5. Intent Classification diagram. 37

5.1. Precision metric (adapted from Explaining Accuracy, Preci-

sion, Recall, and F1 Score (Bhadouria, V., 2020). 54

5.2. Recall metric (adapted from Explaining Accuracy, Precision,

Recall, and F1 Score (Bhadouria, V., 2020). 55

5.3. F1 metric (adapted from Explaining Accuracy, Precision, Re-

call, and F1 Score (Bhadouria, V., 2020). 55

5.4. Accuracy metric (adapted from Explaining Accuracy, Preci-

sion, Recall, and F1 Score (Bhadouria, V., 2020). 56

5.5. Understanding Confusion Matrix (Narkhede, S., 2018) 56

List of Tables

4.1. Datasets summary . 47

4.2. Training and Test set details of Dataset A 48

4.3. Training and Test set details of Dataset B 49

4.4. Training and Test set details of Dataset C 50

4.5. Training and Test set details of Dataset D 51

5.1. Labels distribution for transformers' model. 63

5.2. Transformers configuration summary 64

5.3. Dialogflow agents summary 65

5.4. LUIS applications summary 66

5.5. Average accuracy by model summary 68

5.6. Classes with best F1 result for each dataset by model summary 70

5.7. Continuation: Classes with best F1 result for each dataset by

model summary . 71

5.8. Classes with best Precision result for each dataset by model

summary . 72

5.9. Continuation: Classes with best Precision result for each da-

taset by model summary . 73

5.10. Classes with best Recall result for each dataset by model sum-

mary . 74

5.11. Continuation: Classes with best Recall result for each dataset

by model summary . 75

C.1. Precision, recall and F1 by class for LSTM model and Dataset

A . 107

C.2. Confusion matrix for LSTM model and Dataset A 107

C.3. Precision, recall and F1 by class for LSTM model and Dataset

B . 107

8 LIST OF TABLES

C.4. Confusion matrix for LSTM model and Dataset B 108

C.5. Precision, recall and F1 by class for LSTM model and Dataset

C . 108

C.6. Confusion matrix for LSTM model and Dataset C 108

C.7. Precision, recall and F1 by class for LSTM model and Dataset

D . 108

C.8. Confusion matrix for LSTM model and Dataset D 108

C.9. Precision, recall and F1 by class for SVM model and Dataset A109

C.10.Confusion matrix for SVM model and Dataset A 109

C.11.Precision, recall and F1 by class for SVM model and Dataset B 109

C.12.Confusion matrix for SVM model and Dataset B 109

C.13.Precision, recall and F1 by class for SVM model and Dataset

C . 110

C.14.Confusion matrix for SVM model and Dataset C 110

C.15.Precision, recall and F1 by class for SVM model and Dataset

D . 110

C.16.Confusion matrix for SVM model and Dataset D 110

C.17.Precision, recall and F1 by class for BERT model and Dataset

A . 110

C.18.Confusion matrix for BERT model and Dataset A 111

C.19.Precision, recall and F1 by class for BERT model and Dataset

B . 111

C.20.Confusion matrix for BERT model and Dataset B 111

C.21.Precision, recall and F1 by class for BERT model and Dataset

C . 111

C.22.Confusion matrix for BERT model and Dataset C 112

C.23.Precision, recall and F1 by class for BERT model and Dataset

D . 112

C.24.Confusion matrix for BERT model and Dataset D 112

C.25.Precision, recall and F1 by class for RoBERTa model and

Dataset A . 112

C.26.Confusion matrix for RoBERTa model and Dataset A 112

C.27.Precision, recall and F1 by class for RoBERTa model and

Dataset B . 113

C.28.Confusion matrix for RoBERTa model and Dataset B 113

LIST OF TABLES 9

C.29.Precision, recall and F1 by class for RoBERTa model and

Dataset C . 113

C.30.Confusion matrix for RoBERTa model and Dataset C 113

C.31.Precision, recall and F1 by class for RoBERTa model and

Dataset D . 114

C.32.Confusion matrix for RoBERTa model and Dataset D 114

C.33.Precision, recall and F1 by class for XLNet model and Dataset

A . 114

C.34.Confusion matrix for XLNet model and Dataset A 114

C.35.Precision, recall and F1 by class for XLNet model and Dataset

B . 115

C.36.Confusion matrix for XLNet model and Dataset B 115

C.37.Precision, recall and F1 by class for XLNet model and Dataset

C . 115

C.38.Confusion matrix for XLNet model and Dataset C 115

C.39.Precision, recall and F1 by class for XLNet model and Dataset

D . 116

C.40.Confusion matrix for XLNet model and Dataset D 116

C.41.Precision, recall and F1 by class for KNeighborsUnif model

and Dataset A . 116

C.42.Confusion matrix for KNeighborsUnif model and Dataset A . 116

C.43.Precision, recall and F1 by class for KNeighborsUnif model

and Dataset B . 117

C.44.Confusion matrix for KNeighborsUnif model and Dataset B . 117

C.45.Precision, recall and F1 by class for KNeighborsUnif model

and Dataset C . 117

C.46.Confusion matrix for KNeighborsUnif model and Dataset C . 117

C.47.Precision, recall and F1 by class for KNeighborsUnif model

and Dataset D . 118

C.48.Confusion matrix for KNeighborsUnif model and Dataset D . 118

C.49.Precision, recall and F1 by class for KNeighborsDist model

and Dataset A . 118

C.50.Confusion matrix for KNeighborsDist model and Dataset A . 118

C.51.Precision, recall and F1 by class for KNeighborsDist model

and Dataset B . 119

C.52.Confusion matrix for KNeighborsDist model and Dataset B . 119

10 LIST OF TABLES

C.53.Precision, recall and F1 by class for KNeighborsDist model

and Dataset C . 119

C.54.Confusion matrix for KNeighborsDist model and Dataset C . 119

C.55.Precision, recall and F1 by class for KNeighborsDist model

and Dataset D . 120

C.56.Confusion matrix for KNeighborsDist model and Dataset D . 120

C.57.Precision, recall and F1 by class for LightGBMXT model and

Dataset A . 120

C.58.Confusion matrix for LightGBMXT model and Dataset A . . 120

C.59.Precision, recall and F1 by class for LightGBMXT model and

Dataset B . 121

C.60.Confusion matrix for LightGBMXT model and Dataset B . . 121

C.61.Precision, recall and F1 by class for LightGBMXT model and

Dataset C . 121

C.62.Confusion matrix for LightGBMXT model and Dataset C . . 121

C.63.Precision, recall and F1 by class for LightGBMXT model and

Dataset D . 122

C.64.Confusion matrix for LightGBMXT model and Dataset D . . 122

C.65.Precision, recall and F1 by class for LightGBM model and

Dataset A . 122

C.66.Confusion matrix for LightGBM model and Dataset A 122

C.67.Precision, recall and F1 by class for LightGBM model and

Dataset B . 123

C.68.Confusion matrix for LightGBM model and Dataset B 123

C.69.Precision, recall and F1 by class for LightGBM model and

Dataset C . 123

C.70.Confusion matrix for LightGBM model and Dataset C 123

C.71.Precision, recall and F1 by class for LightGBM model and

Dataset D . 124

C.72.Confusion matrix for LightGBM model and Dataset D 124

C.73.Precision, recall and F1 by class for RandomForestGini model

and Dataset A . 124

C.74.Confusion matrix for RandomForestGini model and Dataset A 124

C.75.Precision, recall and F1 by class for RandomForestGini model

and Dataset B . 125

C.76.Confusion matrix for RandomForestGini model and Dataset B 125

LIST OF TABLES 11

C.77.Precision, recall and F1 by class for RandomForestGini model

and Dataset C . 125

C.78.Confusion matrix for RandomForestGini model and Dataset C 125

C.79.Precision, recall and F1 by class for RandomForestGini model

and Dataset D . 126

C.80.Confusion matrix for RandomForestGini model and Dataset D 126

C.81.Precision, recall and F1 by class for RandomForestEntr model

and Dataset A . 126

C.82.Confusion matrix for RandomForestEntr model and Dataset A 126

C.83.Precision, recall and F1 by class for RandomForestEntr model

and Dataset B . 127

C.84.Confusion matrix for RandomForestEntr model and Dataset B 127

C.85.Precision, recall and F1 by class for RandomForestEntr model

and Dataset C . 127

C.86.Confusion matrix for RandomForestEntr model and Dataset C 127

C.87.Precision, recall and F1 by class for RandomForestEntr model

and Dataset D . 128

C.88.Confusion matrix for RandomForestEntr model and Dataset D 128

C.89.Precision, recall and F1 by class for CatBoost model and Da-

taset A . 128

C.90.Confusion matrix for CatBoost model and Dataset A 128

C.91.Precision, recall and F1 by class for CatBoost model and Da-

taset B . 129

C.92.Confusion matrix for CatBoost model and Dataset B 129

C.93.Precision, recall and F1 by class for CatBoost model and Da-

taset C . 129

C.94.Confusion matrix for CatBoost model and Dataset C 129

C.95.Precision, recall and F1 by class for CatBoost model and Da-

taset D . 130

C.96.Confusion matrix for CatBoost model and Dataset D 130

C.97.Precision, recall and F1 by class for ExtraTreesGini model

and Dataset A . 130

C.98.Confusion matrix for ExtraTreesGini model and Dataset A . . 130

C.99.Precision, recall and F1 by class for ExtraTreesGini model

and Dataset B . 131

C.100.Confusion matrix for ExtraTreesGini model and Dataset B . 131

12 LIST OF TABLES

C.101.Precision, recall and F1 by class for ExtraTreesGini model

and Dataset C . 131

C.102.Confusion matrix for ExtraTreesGini model and Dataset C . 131

C.103.Precision, recall and F1 by class for ExtraTreesGini model

and Dataset D . 132

C.104.Confusion matrix for ExtraTreesGini model and Dataset D . 132

C.105.Precision, recall and F1 by class for ExtraTreesEntr model

and Dataset A . 132

C.106.Confusion matrix for ExtraTreesEntr model and Dataset A . 132

C.107.Precision, recall and F1 by class for ExtraTreesEntr model

and Dataset B . 133

C.108.Confusion matrix for ExtraTreesEntr model and Dataset B . 133

C.109.Precision, recall and F1 by class for ExtraTreesEntr model

and Dataset C . 133

C.110.Confusion matrix for ExtraTreesEntr model and Dataset C . 133

C.111.Precision, recall and F1 by class for ExtraTreesEntr model

and Dataset D . 134

C.112.Confusion matrix for ExtraTreesEntr model and Dataset D . 134

C.113.Precision, recall and F1 by class for NeuralNetFastAI model

and Dataset A . 134

C.114.Confusion matrix for NeuralNetFastAI model and Dataset A . 134

C.115.Precision, recall and F1 by class for NeuralNetFastAI model

and Dataset B . 135

C.116.Confusion matrix for NeuralNetFastAI model and Dataset B 135

C.117.Precision, recall and F1 by class for NeuralNetFastAI model

and Dataset C . 135

C.118.Confusion matrix for NeuralNetFastAI model and Dataset C 135

C.119.Precision, recall and F1 by class for NeuralNetFastAI model

and Dataset D . 136

C.120.Confusion matrix for NeuralNetFastAI model and Dataset D 136

C.121.Precision, recall and F1 by class for XGBoost model and Da-

taset A . 136

C.122.Confusion matrix for XGBoost model and Dataset A 136

C.123.Precision, recall and F1 by class for XGBoost model and Da-

taset B . 137

C.124.Confusion matrix for XGBoost model and Dataset B 137

LIST OF TABLES 13

C.125.Precision, recall and F1 by class for XGBoost model and Da-

taset C . 137

C.126.Confusion matrix for XGBoost model and Dataset C 137

C.127.Precision, recall and F1 by class for XGBoost model and Da-

taset D . 138

C.128.Confusion matrix for XGBoost model and Dataset D 138

C.129.Precision, recall and F1 by class for NeuralNetTorch model

and Dataset A . 138

C.130.Confusion matrix for NeuralNetTorch model and Dataset A . 138

C.131.Precision, recall and F1 by class for NeuralNetTorch model

and Dataset B . 139

C.132.Confusion matrix for NeuralNetTorch model and Dataset B . 139

C.133.Precision, recall and F1 by class for NeuralNetTorch model

and Dataset C . 139

C.134.Confusion matrix for NeuralNetTorch model and Dataset C . 139

C.135.Precision, recall and F1 by class for NeuralNetTorch model

and Dataset D . 140

C.136.Confusion matrix for NeuralNetTorch model and Dataset D . 140

C.137.Precision, recall and F1 by class for LightGBMLarge model

and Dataset A . 140

C.138.Confusion matrix for LightGBMLarge model and Dataset A . 140

C.139.Precision, recall and F1 by class for LightGBMLarge model

and Dataset B . 141

C.140.Confusion matrix for LightGBMLarge model and Dataset B . 141

C.141.Precision, recall and F1 by class for LightGBMLarge model

and Dataset C . 141

C.142.Confusion matrix for LightGBMLarge model and Dataset C . 141

C.143.Precision, recall and F1 by class for LightGBMLarge model

and Dataset D . 142

C.144.Confusion matrix for LightGBMLarge model and Dataset D . 142

C.145.Precision, recall and F1 by class for WeightedEnsemble L2

model and Dataset A . 142

C.146.Confusion matrix for WeightedEnsemble L2 model and Data-

set A . 142

C.147.Precision, recall and F1 by class for WeightedEnsemble L2

model and Dataset B . 143

14 LIST OF TABLES

C.148.Confusion matrix for WeightedEnsemble L2 model and Data-

set B . 143

C.149.Precision, recall and F1 by class for WeightedEnsemble L2

model and Dataset C . 143

C.150.Confusion matrix for WeightedEnsemble L2 model and Data-

set C . 143

C.151.Precision, recall and F1 by class for WeightedEnsemble L2

model and Dataset D . 144

C.152.Confusion matrix for WeightedEnsemble L2 model and Data-

set D . 144

C.153.Precision, recall and F1 by class for Dialogflow model and

Dataset A . 144

C.154.Confusion matrix for Dialogflow model and Dataset A 144

C.155.Precision, recall and F1 by class for Dialogflow model and

Dataset B . 145

C.156.Confusion matrix for Dialogflow model and Dataset B 145

C.157.Precision, recall and F1 by class for Dialogflow model and

Dataset C . 145

C.158.Confusion matrix for Dialogflow model and Dataset C 145

C.159.Precision, recall and F1 by class for Dialogflow model and

Dataset D . 146

C.160.Confusion matrix for Dialogflow model and Dataset D 146

C.161.Precision, recall and F1 by class for LUIS model and Dataset A146

C.162.Confusion matrix for LUIS model and Dataset A 146

C.163.Precision, recall and F1 by class for LUIS model and Dataset

B . 147

C.164.Confusion matrix for LUIS model and Dataset B 147

C.165.Precision, recall and F1 by class for LUIS model and Dataset

C . 147

C.166.Confusion matrix for LUIS model and Dataset C 147

C.167.Precision, recall and F1 by class for LUIS model and Dataset

D . 148

C.168.Confusion matrix for LUIS model and Dataset D 148

C.169.Summary of the best classes concerning all the datasets and

the different models from scratch 148

LIST OF TABLES 15

C.170.Summary of the best classes concerning all the datasets and

the different models based on transformers 148

C.171.Summary of the best classes concerning all the datasets and

ExtraTrees algorithms . 149

C.172.Summary of the best classes concerning all the datasets and

KNeighbors algorithms . 149

C.173.Summary of the best classes concerning all the datasets and

LightGBM algorithms . 149

C.174.Summary of the best classes concerning all the datasets and

ExtraTrees algorithms . 149

C.175.Summary of the best classes concerning all the datasets and

ExtraTrees algorithms . 150

C.176.Summary of the best classes concerning all the datasets and

ExtraTrees algorithms . 150

C.177.Summary of the best classes concerning all the datasets and

the different models from scratch 150

Chapter 1

Introduction

Nowadays, people have undergone a new way of life. Virtual assistants have

appeared in our daily life. The idea of being surrounded by robots that can

chat with humans and ease human tasks is a reality. Definitely, this is a new

age, the period of virtual assistant technology.

Some years ago, the fact of coexisting with virtual assistants such as

Google Home, Amazon’s Alexa or Siri developed by Apple was unbelieva-

ble. Devices, generally, were conceived as tools to carry out some tasks, for

instance, making phone calls, sending messages or emails, searching inter-

esting things on the Internet, etc., although they were not customised or

easy-to-use. Even though this could appear incredible, 12 years ago, bots

did not even exist. That is why, all technological developments as well as

algorithms are quite recent.

However, technology has evolved considerably in the last few years thanks

to research, development and innovation efforts. Furthermore, some of the

most astonishing recent functionalities are, for example, telling stories, ans-

wering questions, singing songs, telling jokes, setting up reminders, playing

a content on the TV, showing routes, or even doing the shopping. Most

homes, at least, count with one of these famous devices. To cover all these

tasks, intent classification is the basis. Firstly, the user says or writes a sen-

tence that is interpreted by an algorithm, it can be an ASR1 system if it is

voice-based, or text processing algorithm if it is text-based. Then, once this

is processed and cleaned, it goes through a classification model module, ge-

1Automatic Speech Recognition: also known as Speech to Text (STT), is the task of
transcribing a given audio to text. It has many applications, such as voice user interfaces
(Jurafsky & Martin, 2022).

18 CHAPTER 1. Introduction

Figure 1.1: Steps in the unstructured data processing.

nerally an intent classification module where it carries out concrete actions.

Once the utterance is classified, it is mapped to an action that the device

used performs. Thus, if the user says “Please, set an alarm at 10 a.m.”,

it would be recognised as “alarm.on” and the action that the user will see

would be ringing an alarm at 10 a.m.

In this context, there is a vast amount of information saved in seve-

ral data bases. In fact, this diversity entails a variety of formats that will

imply “cleaning” data and interpreting it correctly. Thus, Natural Language

Processing’s main aim is making machines understand unstructured texts

and extracting the most relevant information from these texts. To carry out

this, the pre-processing phase is somehow as important as building a great

intent-classification module. Indeed, with quality data, many algorithms and

technologies can be applied. Nevertheless, one may have the best classifica-

tion algorithm, but without quality data, the recognition and classification

would be unfeasible.

Finally, several challenges are raised: converting speech into text, unders-

tanding unstructured data, converting this unstructured data into structured

data, extracting the most relevant information, classifying this information

correctly and mapping this classification to an action to perform. In this

thesis, the focus is the intent-classification module. Notwithstanding, the

pre-processing data phase and the multiple evaluation of different algorithms

will be also significant parts in this project.

1.1 Motivation 19

1.1. Motivation

Grounds for this thesis lie in the attempt to continue improving the classifi-

cation model problem. That is, most of the existing virtual assistants as well

as artificial intelligences try to help users to solve domestic-related requests

such as the management of the watch. Concretely, in this thesis, the Use

Cases that are going to be analysed are the concept of turning on and off

the alarm, e.g. “Activa la alarma” and “Quita la alarma” respectively, the

timer, for example, “Pon un temporizador” and “Elimina el temporizador”

respectively, and the reminder, e.g. “Pon un recordatorio” and “Qúıtame el

recordatorio” respectively. The key point consists in evaluating different ty-

pes of technologies such as algorithms based on Long Short-Term Memory

Model2, Support-Vector Machines Model3, Automated Machine Learning

Models, and Transformers Models to see which algorithm retrieves the best

results taking into account the same data set.

Given that computer science is a large field of study, this thesis is based

on NLP, which is a subfield of it aiming at understanding human language,

or, at least, to understanding text and spoken words in much the same

way as human beings do. Therefore, this subfield combines computing and

language, for example, in the use of linguistic-rule-based models of human

language with statistical, Machine Learning or Deep Learning models.

It is important to highlight that in this work, Spanish language is the

basis to choose a concrete model to classify users' utterances due to the fact

that the vast majority of models that are already developed were thought

for English language utterances. Thus, this work provides a new approach

and/or advance regarding those classification models.

Finally, the evaluation of these models means that the main goal of

this thesis is not just using several algorithms given a concrete data set

concerning the Watch Management domain, but identifying which model

improves the results to see if it could be included in a real virtual assistant

such as Aura4.

2Long-Short-Term-Memory, also known as LSTM. It is an artificial neural network
used in the fields of artificial intelligence and deep learning.

3Support-Vector Machines Model, also known as SVM.
4Aura is the Artificial Intelligence of Telefónica, a real virtual assistant.

20 CHAPTER 1. Introduction

1.2. Proposal and Objectives

The main goal of this project consists in developing different classification

models to see which behaves best taking into account the data set that

is based on multiple use cases under the Watch Management domain in

Spanish. The final aim is selecting the algorithm that recognises most classes

correctly to understand why a technology is more useful to solve this problem

than the others.

To carry it out, these specific objectives have been proposed:

Define a specific domain that is going to be used as the basis of the

data, taking into account the data should be anonymised and real.

Define the number of use cases that comprises the data set (training

set and test set) required to develop this project.

Analyse the present state-of-the-art of the classification model pro-

blem and transformer-based embedding algorithms. An essential part

of the intent detection module of a virtual assistant such as Aura is an

algorithm that transforms sentences into vectors. Thus, similar senten-

ces have similar transformations. Therefore, an important part of this

project is dedicated to semantic textual similarity and the evaluation

of different encoding algorithms.

Search on Aura's logs to discover real users' requests that will compose

the complete corpus. One of the premises of this project is that data

must not be synthetic but real.

Define which types of technologies and algorithms will be used to carry

out this work by taking into account which are the most recent tech-

nologies and the conventional ones.

Create a pre-processing module to structure data extracted from Au-

ra’s logs and cleaning it to extract and detect the most relevant infor-

mation.

Build an architecture that allows changing the training, the testing

and the algorithm parameters, so that it is possible to do tests with

different configurations in order to obtain comparable measures when

extracting the results. Moreover, getting both low latency and memory

1.3 Structure of the thesis 21

efficiency will be taken into account due to the fact that these data

come from an existing virtual assistant, Aura.

Identify useful libraries that will allow developing these classification

models.

Iterate algorithms by using all the data from the training set and the

test set or just some parts of it. This would measure how the algorithm

behaves with a greater or smaller numbers of classes.

Evaluate each selected algorithm by using the same data set to obtain

final conclusions about its behaviour in comparison with the rest of

technologies used, i.e., classify input text with reasonable accuracy. In

fact, the classification model problem deals with mapping a senten-

ce's numerical representation to an intent or class. Several approaches

have been developed during this work such as the use of Long Short-

Term Memory model, Support Vector Machines Model, Auto Machine

Learning models, and transformers models.

The present NLP research is a collaborative work with the company

Telefónica, who provides the data (using Aura’s logs) and supervises the

approach of this project. This work aims at providing an improvement of

the intent classification and recognition module by incorporating state-of-

the-art encoding models.

1.3. Structure of the thesis

This work is divided into six chapters and will describe the research done in

the field of intent classification problem regarding a specific data set. Each

chapter provides a general background, methods, evaluation, and results

section.

Chapter 1. Introduction. This chapter introduces the underlying mo-

tivation of this thesis, the research questions to solve the problem

herewith presented as well as the proposal and objectives of this the-

sis.

Chapter 2. State-of-the-art. This chapter focuses on the techniques

used to solve this classification model problem by explaining all the

22 CHAPTER 1. Introduction

possible possible types of algorithms that have been used in the field

so far.

Chapter 3. Proposed case study. In this chapter, the data used in this

thesis and a brief approach of the project are presented. Furthermore,

some issues found while carrying out this work related to the data

handled will be also described.

Chapter 4. Development. This chapter focuses on the development of

the project. Firstly, the pre-processing module and the use of the whole

data set or partial data set would be indicated in each experiment

to see how algorithms behave in these particular tests or challenges.

Then, the algorithms used for this project, their configuration and

parameters will be also explained. Finally, in the evaluation section,

each test will be explained as well as the challenge that pretends to

be addressed, the evaluation that has been carried out in this project

and the metrics used.

Chapter 5. Evaluation and Results. In this chapter, the results of the

previous chapter are analysed and compared.

Chapter 6. Conclusions and future work. This chapter collects several

conclusions extracted from the proposed problem. In addition, new

lines of work are set out for future course of action.

Chapter 7. Bibliography. This chapter comprises all the bibliography

used and referenced in this thesis.

Chapter 2

Preliminaries

This chapter summarizes the theoretical background and history that ma-

kes automatic intent classification possible. The overall work connects the

multiple disciplines of Linguistics (human language, basically the input of

the project), Computer Science (Artificial Intelligence), and Data Science

(Machine Learning).

2.1. The Science of Linguistics

Linguistics is the study of the origin, evolution and structure of the language.

Thus, this science studies fundamental structures of human language, its

variations throughout all the language families and its conditions that make

possible the understanding and communication by using a natural language.

There are different approaches to study Linguistics. Some of them are

theoretical linguistics, applied linguistics, diachronic and synchronic linguis-

tics, comparative linguistics and computational linguistics. This last concept

is the most relevant one for this project.

Computational Linguistics is an interdisciplinary field that is based on

computing, that is, computational modelling and linguistics, e.g. natural

language. In this way, Computational Linguistics can be defined as the study

of computational approaches to linguistic questions.

2.2. Artificial Intelligence

Computer Science is the study of formal science that comprises Information

theory and computing just as their application in computational systems.

24 CHAPTER 2. Preliminaries

Figure 2.1: Computational Linguistics tasks.

This science can be described as the systematic study of algorithmic pro-

cesses that transform information: their theory, analysis, design, efficiency,

implementation and application.

One of the main subfields of Computer Science is Artificial Intelligen-

ce5. In 1950, Turing presented a paper called “Computing Machinery and

Intelligence” in which the Turing Test6 was established. This fact could be

considered as the goal and vision of Artificial Intelligence (Jurafsky & Mar-

tin, 2022). That is the reason why Turing could be considered as the father

of Artificial Intelligence.

To define this concept correctly, it is important to understand that it is

a branch of Computer Science with the aim of creating machines that are

able to perform tasks that typically require humans. Some applications of

this field can be Natural Language Processing tasks, Speech recognition and

Machine Vision. Generally, an Artificial Intelligence program focuses on the

cognitive skills of learning, reasoning and self-correction.

5also known as AI.
6It tested the machine’s ability to show intelligent behaviour equivalent to, or indistin-

guishable from a human.

2.2 Artificial Intelligence 25

Learning process: This part is based on collecting data and crea-

ting rules to convert the data into relevant information. Rules, on the

other hand, normally known as algorithms (Heeyoung Lee et al., 2017),

provide computing devices with instructions to finish the task.

Reasoning process: This part is based on choosing the right algo-

rithm to get the desired output.

Self-correction process: This part is based on fine-tuned algorithms

to ensure that they retrieve the most accurate result.

2.2.1. Machine Learning in NLP

Machine Learning is a subfield of the Artificial Intelligence and Computer

Science which is focused on the use of data and algorithms to imitate the

way that humans learn by improving their performance. It is also a relevant

component in the field of Data Science.

When using statistical methods, algorithms are trained to classify or

predict so that they can discover key information inside data mining pro-

jects.This useful information eases the decision-making process inside appli-

cations directly affecting the growth of companies which also affects directly

the growth.

Linked to this field, Data Science is a field that belongs to Computer

Science but also includes scientific methods, processes and systems to extract

knowledge and information to improve the understanding of data in different

ways. In fact, it is relevant when carrying out Machine Learning tasks.

Thus, Data science developers apply Machine Learning algorithms to

numbers, text, images, video, audio, and more to produce Artificial Intelli-

gence systems to perform tasks that typically required humans.

Machine Learning has many applications such as search engines, medical

diagnoses, fraud detection, market analysis, classification of DNA sequences,

speech recognition, text recognition and robotics.

The most relevant Machine Learning techniques are those shown below:

Decision tree learning: It is a decision support tool that uses a

tree-like model of decisions.

Association rule learning: It is a rule-based Machine Learning

method used to discover interesting relations between variables in large

26 CHAPTER 2. Preliminaries

databases.

Genetic algorithm: It is a meta-heuristic inspired by the process

of natural selection that belongs to the larger class of evolutionary

algorithms.

Artificial neural networks: They are computing systems inspired

by the biological neural networks that constitute human brains.

Support Vector Machines: They are supervised learning models

with associated learning algorithms that analyse data for classification

and regression analysis.

Clustering: It is the classification in different groups or clusters of da-

ta inputs that are similar among them according to a specific criterion

or criteria.

Bayesian Networks: It is a probabilistic graphical model that re-

presents a set of variables and their conditional dependencies via a

directed acyclic graph.

2.2.2. Deep Learning

Deep learning can be considered as a type of Machine Learning that trains

a machine to carry out tasks as humans do such as Speech to Text trans-

formation, identification of images, or making predictions. Deep Learning

uses the parameter configuration regarding data and trains the machine to

learn on its own with the use of patterns and several layers of processing. Its

methods are based on artificial neural network with representation learning.

Thus, learning can be supervised, semi-supervised or even unsupervised.

The most relevant deep learning models are those shown below:

Convolutional Neural Networks: It is a type of artificial neural

network in which artificial neurons corresponds to responsive fields,

similar to neurons inside the biological brain.

Recurrent Neural Networks7: It is a type of artificial neural net-

work in which connections between nodes can create a cycle, allowing

outputs from some nodes affect subsequent inputs of the same nodes.

Some popular RNN types are those below:

7Recurrent Neural Networks, also known as RNN.

2.2 Artificial Intelligence 27

• Long Short-Term Memory Networks: It is an artificial neu-

ral network used in the fields of Artificial Intelligence and Deep

Learning.

• Gated Recurrent Units8: They are a variation on LSTMs.

They have one less gate and are wired slightly differently: instead

of an input, output and a forget gate, they have an update gate

(Chung et al., 2014)

Generative Adversarial Networks: It is a class of artificial neural

network which uses unsupervised learning. They are implemented by

a system of two neural network that compete mutually.

Radial Basis Function Networks: It is a type of artificial neural

network that calculates the output of the function by calculating the

distance to the center node.

Feed Forward Neural Networks9 and Perceptrons10: It is a type

of artificial neural network that feeds information from the front to the

back.

Attention Networks11: It is a type of artificial neural network that

includes Transformer architecture. In addition, as this type of network

counts with enough hidden neurons, theoretically, it can model the

relationship between the input and the output.

2.2.3. Transformers

In 2017, in a paper called Attention is All You Need (Vaswani et al., 2017)

a new architecture was presented. This consisted in a Transformer, a new

deep learning model. This model has the main and new characteristic of

replacing LSTMs with attention layers.

These layers code each word in a sentence taking into account the rest of

the sequence. Thus, it allows introducing the context in the mathematical

representation of the text. That is the reason why Transformers are also

known as Contextual Embeddings.

8Gated Recurrent Units, known as GRU.
9Feed Forward Neural Networks, known as FF or FFNN.

10Perceptrons, also known as P.
11Attention Networks, also known as AN.

28 CHAPTER 2. Preliminaries

Some of the most relevant transformer models are going to be explained

in this section.

BERT: It is a model proposed in Open Sourcing BERT: Preliminaries

Pre-training for Natural Language Processing (Devlin et al., 2018). It

is a transformer-based model for Natural Language Processing tasks.

In fact, the original BERT has two different models: BERTBASE

(composed of 12 encoders with 12 bidirectional self-attention heads)

and BERTLARGE (24 encoders with 16 bidirectional self-attention

heads). One of the most relevant characteristics of this model is the

large amounts of training data used, that is, a data set of 3.3 billion

words. The fact of training this huge data set was possible due to the

novel Transformer architecture and sped up by using TPUs. BERT is

a MLM12. This model type enables bidirectional learning from text by

hiding a word in a sentence and forcing BERT's to bidirectionally use

the words on either side of the covered word to predict the masked

word. As this model type was not developed previously, this was a

milestone in modeling.

RoBERTa: It is a model proposed in RoBERTa: A Robustly Opti-

mised BERT Pretraining Approach (Liu et al., 2019). It consists in a

new training model that improves on BERT. It is built upon BERT's
algorithm but the key hyperparameters are modified, that is, the next-

sentence pre-training objective is removed and its training contains

much larger mini-batches and learning rates. Furthermore, RoBER-

Ta has a similar architecture to BERT's, although it uses a byte-level

BPE as a tokeniser as GPT-213.

XLNet: It is a model proposed in XLNet: Generalised Autoregressi-

ve Pretraining for Language Understanding (Yang et al., 2019). It is

an extension of the Transformer-XL model pre-trained using an auto-

regressive method to learn bidirectional contexts, by maximizing the

expected likelihood over all permutations of the input sequence facto-

risation order. As well as other transformers models, XLNet achieves

12Masked Language Model.
13Generative Pre-trained Transformer 2. It is an open-source artificial intelligence crea-

ted by OpenAI . It is in charge of translating text, answering questions, summarizing
passages, and generating text output.

2.3 Natural Language Processing 29

better performance than pre-training approaches based on autoregres-

sive language modeling. When using this model, the most relevant

advantages are the ability of learning bidirectional contexts by maxi-

mizing the expected likelihood over all permutations of the factorisa-

tion order and avoiding BERT's limitations due to its autoregressive

formulation.

2.3. Natural Language Processing

Natural Language Processing is a subfield of Artificial Intelligence and Lin-

guistics Science. The main goal is to make machines and computers un-

derstand natural language. It uses several techniques to understand human

language, for instance, statistical methods, Machine Learning, learning ba-

sed on rules and algorithms. There are different methods because human

language is very extensive and different. Therefore, speech and text are pro-

cessed in a different way, and probably, with different processing methods.

In fact, they differ not only in the format but also in lexicon, for instance,

in the usage of spoken expressions, abbreviations, slang, argot and so on,

in grammar and syntax, as the spoken and written language do not use the

same grammatical and syntactic constructions.

Although there are many NLP tasks, the basic and most relevant ones

are going to be explained below:

Tokenisation: It consists in segmentation of a text in constituent

parts that can be, for instance, words. This kind of tokenisation is

carried out by using separators such as punctuation signs, spaces and

so on. In addition, regarding this task, segmentation is very similar to

tokenisation because it consists of tokenising texts into phrases also

by using punctuation signs.

Lemmatisation: It consists in obtaining the basic form of a word, the

“lemma”. For example, for the word “casarnos”, the lemma is “casar”.

Consequently, in some languages such as Spanish that have several

verb tenses, this tool is quite useful to simplify texts for understanding

purposes.

NER: Also known as Named Entity Recognition. It is primarily used

to extract relevant information and to classify them in different catego-

30 CHAPTER 2. Preliminaries

Figure 2.2: Relation between NLP, Computer Science, Artificial Intelligence
and Human Language (adapted from What is Natural Language Processing
(NLP)? (Gopalan, 2021)).

ries such as person names, locations, time expressions, organisations,

etc.

Labeling: It comprises the task of assigning labels to documents or

some parts of it. It can be also known as text classification. Linked

to this task, when creating a model, labeling is used before training,

which allows an update and improvement of predictions for statistic

models.

WSD16: It is a process of identifying the sense of a word or sentence

16Word Sense Disambiguation.

2.3 Natural Language Processing 31

given its context and it is particularly helpful in cases of polysemy or

homophony.

Sentiment Analysis: It is a task that identifies the emotional tone

behind a text o part of the text.

Summarisation: It deals with reducing the number of sentences or

words of a text without changing its meaning.

Machine translation: It is the automatic process of translating a

text into a target language.

There are several factors in NLP making it a most notably complex

process (Liu et al., 2021). For instance, there are hundreds of languages, so-

mehow different or totally different syntactic and grammatical rules as well

as ambiguity of words can make these tasks so complicated. In these section,

these NLP challenges as well as others will be laid out.

Several languages: There are about 7.000 languages in the world,

although just 28 are the most spoken ones. However, even if 28 is a re-

lative low number, it is still not manageable number to carry out tasks

based on NLP. That is the reason why only NLP tasks are carried out

in the most useful and talked languages, that is, each language is diffe-

rent (not only in semantics, but also in syntax and other components),

then, NLP tasks will differ too.

Ambiguity: This is one of the hardest parts of NLP. In many langua-

ges, there are words that can be ambiguous at many levels.

• Polysemy: It occurs when a word has several meanings and the

way to select the correct meaning is done by using the context of

the sentence which it is used in. For example, “Es una persona

noble”. It can be noble as noble from nobility, or it can refer to

“noble” as a synonym of kind, kindness.

• Homonymy: It occurs when a word sounds or is written exactly

the same as another one but the origin and etymology is comple-

tely different. For example, “banco” (bank) and “banco” (bench).

32 CHAPTER 2. Preliminaries

• Homophones: It occurs when a word sounds exactly the same

as another one, such as “horca/orca”. That is, “horca” refers to

gallows while “orca” is the animal orca, the killer whale.

• Homographs: It occurs when a word is written exactly the same

as other, for instance, “llama/llama”. One of the words “llama”

refers to a verb (call), whilst the other “llama” can refer to the

animal (llama) or a noun related with fire (flame).

• Amphibology: Also known as syntactic ambiguity. It occurs

when it is not clear which element is being referring to inside

a sentence. For example, “Cuando dejamos el cristal en la mesa,

se rompió”. The action of breaking could refer to the table or to

the crystal, because the reference is not clear at all.

Tokenisation: In spoken language, it is hard to detect the moment

in which a word starts or ends. Therefore, this problem is generally

solved by using a good ASR that by probability detects several words

and put them in a context with sense. However, there are languages

such as Mandarin Chinese, in which this task is not only difficult in

spoken language but in written language too. This happens due to the

fact that there is no distance between a word and the following and

previous one. Therefore, tokenisation in Mandarin Chinese is a great

challenge.

Input data errors: When processing natural language, some pro-

blems regarding input data collection are faced. For example, there are

some accents, dialects, regionalisms, misspellings or argot that make

this task more difficult. Furthermore, the wrong use of grammar as well

as the use of abbreviations or slang create difficulties in NLP tasks.

Irony and sarcasm: These natural aspects of the language can cause

problems for Machine Learning models because it is difficult for them

to detect if something is positive or negative, or is the human wants

to say strictly what he has said or even the contrary.

Context: The use of context is the basis of Natural Language Proces-

sing tasks. Not only for some difficulties previously seen such as am-

biguity, but others such as identifying what the speaker really wants

2.4 Platforms for Dialogue Management 33

to express. Therefore, the use of context is essential for NLP, not just

rules and regexes17 can be used to solve NLP tasks.

Tropes and literary figures: The use of literary figures such as tro-

pes, metaphors, metonymies or allegories raise a significant difficulty

for NLP due to the need of the context that it requires to interpret a

concrete part of a text.

2.4. Platforms for Dialogue Management

Other useful resources when developing Intent Classification modules are

platforms, the use of third-party platforms19.

By using third-party platforms, users solve the problem of creating an

architecture from scratch, because it can be integrated in an in-house de-

velopment. However, the price of the use as well as the potential latency

when sending requests out of a local environment are the two main negative

aspects of them. Most significant IA platforms can be shown below.

2.4.1. Dialogflow

Dialogflow is a Google's Natural Language Understanding platform that

makes designing and integrating a conversational user interface into a mobile

app, web application, bots, and so on easy. Thus, there are two versions,

Dialogflow CX (the advanced version) and Dialogflow ES (the standard one).

Most of the advantages of using Dialogflow are that is quite user-friendly

and very easy to learn how to train intents and entities. On the one hand,

there is some basis already developed that can be used when introducing

your own data. On the other hand, it is easy to deploy as well as easily

scalable by adding 20 independent flows and 40.000 intents in each agent.

Nonetheless, it is a black box which means that any user is completely blind

when training because its code is not accessible to be changed or modified.

17Also known as Regular Expression. It is a sequence of characters that specifies a search
pattern in text.

19A platform is an application or website that serves as a base from which a service is
provided (Merriam-Webster, n.d.).

34 CHAPTER 2. Preliminaries

Figure 2.3: Dialogflow diagram (adapted from Google Cloud Documentation
(Google, n.d.).

2.4.2. LUIS

LUIS, also known as Language Understanding, is a Microsoft’s Artificial In-

telligence Conversational cloud-based service that allows users adding cus-

tomised Machine Learning to a conversation. That is, it is a model that is

trained to predict the global meaning of a text, extract its most relevant

information and map it to an intention. The way to use it is throughout its

portal.

As Dialogflow, it is a system that can be integrated in an independent

project by sending requests to this portal and results being retrieved and

interpreted by the own code. In fact, it is generally used in BOTs, devices,

web applications, etc. Another similarity is that this system also has pre-

trained intents and entities that can be used if desired. Nevertheless, it also

includes the possibility of creating custom entities (LUIS NER) by using

patterns, regexes, and synonyms. Additionally, LUIS has a special mode

called “LUIS as a container” that allows users download a trained model in

a Docker container.

As for the disadvantages of this platform, apart from the latency because

it is a cloud system and sending requests and waiting for the output can delay

the answer to the user, it is also a black box in which many parameters or

features cannot be customised. Therefore, most users when having problems

2.4 Platforms for Dialogue Management 35

while training can suspect what is happening, but cannot know it certainly.

Finally, LUIS will be deprecated in two years and will be replaced with

“CLU - Conversational Language Understanding” (Microsoft, n.d.).

2.4.3. RASA

RASA is a Machine Learning framework used to create conversational chat-

bots. Furthermore, it is possible to integrate RASA easily and automatically.

One positive aspect differentiating it from the rest of platforms is that it is

flexible and can be modified if required. Moreover, the most relevant advan-

tage that RASA has, is the possibility to work on three different elements:

Natural Language Understanding, Natural Language Generation and Dia-

log Management. In contrast to other platforms, RASA allows users to have

access to the configurations, that is, it is not a matter of including input

data to train a model, but the user must know what he wants to configu-

re and would be able to modify many parameters if required. According

to the article A Comparison of Natural Language Understanding Platforms

for Chatbots in Software Engineering (Abdellatif, A., 2021), RASA outper-

forms other platforms in intent recognition tasks: IBM Watson and Google

Dialogflow.

On the contrary, one of the negative aspects of using RASA is that it

is not free with large volumes of data are not free. However, there is a free

version that the user can install and use locally. Apart from this, due to the

possibility of accessing the parameter settings, it also requires from user’s

hand to work more on the training models to get better results than out-of-

the-box platforms such as Dialogflow or LUIS.

2.4.4. Watson

Watson is an IBM’s analysis and visualisation platform that allows users to

carry out tasks related with Natural Language Processing. In fact, it not

only includes the ability of classifying relevant data, identifying keywords

or sentiments but it also counts on an ASR which provides users to have a

speech-to-text Engine (Watson Speech to Text). In addition, it is possible

to add specific vocabulary such as industry argot to train correctly models

and be able to understand specific utterances.

On the downside, latency as well as indexing time are greater than other

platforms. In addition, as all is inside the same collection, the use of me-

36 CHAPTER 2. Preliminaries

mory and the size of collection can be also a problem. Thus, applications of

Watson Explorer Engine use a database that, in some cases of large collec-

tions, can be very large. Finally, the use of one collection will increase the

probabilities of not obtaining a satisfactory backup.

Figure 2.4: Watson architecture diagram (extracted from Building Watson:
An Overview of the DeepQA Project (Ferrucci et al., 2010)

2.5. Intent Classification

Intent Classification or Recognition is a technique used in NLP to determine

the underlying intention in a speaker's request. According to Jurafsky, it is

also called intent determination and consists in obtaining the goal that the

user is trying to accomplish (Jurafsky & Martin, 2022).

Intent Classification is carried out by taking the input data.In speech,

data is pre-processed using an ASR system to convert and transform it into

text. In these pre-processing stage, tokenisation,and keyword detection are

needed to provide the system with evidence and clues so that it can classify

texts correctly, this action is also known as “slot filling”18.

Then, intent classifiers are trained and texts are labelled and mapped to

intents. For example, in the request “Activa la alarma” the speaker is trying

18Extraction of the particular slots and fillers that the user intends the system to un-
derstand from their utterance with respect to their intent (Jurafsky Martin, 2022).

2.5 Intent Classification 37

to convey the idea of turning the alarm on.

One of the main benefits of an Intent Classification module is that it

is generally used for conversational AI platforms or frameworks to obtain

customised conversational experiences.

Thus, many businesses could understand the needs of their customers

and, sometimes, can solve customers' issues without the need of a person

which is, indeed, cheaper for companies. Therefore, companies not only ob-

tain information from their customers but also save money.

Consequently, companies that invest in getting information from their

customers will be the most powerful and the richest.

Figure 2.5: Intent Classification diagram.

Thus, in this work, this module has been developed to improve a real vir-

tual assistant, Aura. Therefore, the challenge will be improving the present

architecture by using new models to get better results. In order to accom-

plish this task, several technologies have been used. Thus, in this section, the

most recent and useful technologies for intent classification will be shown.

Finally, to build an Intent Classification module, there are several methods,

for example, the use of Natural Language Processing libraries or even the

use of third-party platforms and/or frameworks. It is important to mention

that these libraries are not only used particularly for this module but they

can be also used in the input data pre-processing stage.

On the one hand, while platforms and frameworks are generally out-

of-the-box products that can be integrated with in-house developments by

sending requests to them and their results will be retrieved and serve as an

input for the in-house code, libraries and toolkits are groups of functions

that are normally used to create a script to process data from scratch.

On the other hand, there are different libraries that are mainly thought

38 CHAPTER 2. Preliminaries

for developing and training models, whereas others are conceived to pre-

process input data.

2.6. Libraries and tools

A library is a collection of programs and packages that are made available for

common use within some environment. A typical library might contain com-

pilers, utility programs, packages for mathematical operations, etc. Usually,

it is only necessary to import the library program to be automatically in-

corporated in a user's program (Jalli, A., 2022).

In this section, some relevant Python programming language libraries

will be briefly explained in order to obtain a basic notion of them.

2.6.1. Data Science and Machine Learning

As it has been explained in 2.2.1, Data Science and Machine Learning are

interlinked. Thus, the main libraries that are used to cover tasks regarding

these two fields are shown below:

Matplotlib: It is a Python programming language library used to

generate graphics from data included in lists or arrays. In addition,

it allows users to create quality plots or interactive figures that can

be exported in several file formats. It is very useful to visualize and

display data.

NumPy: It is a Python programming language library that helps

users create vectors and large multidimensional matrixes on the basis

of a large group of mathematical functions.

Pandas: It is an extension of NumPy used to manipulate and analy-

se data in Python programming language. Concretely, it offers data

structures and operations to read and work with numeric tables, data

frames and series. In fact, this library is generally used to read and

load the input data that scripts will later process.

2.6 Libraries and tools 39

2.6.2. NLP

There are some tools that are used to create intent classification scripts.

These tools allow users or students having an environment that covers all

the needs of the script to be run.

Google Colab: It is a product of Google Research also known as

“Colaboratory”. It allows each user writing and executing any Python

code in a browser. It is specially useful in Machine Learning tasks as

well as big data analytics. In addition, it has the perfect environment

to run scripts that require high GPU memory usage.

Hugging Face Hub: It is a data science community and platform

that allow users building, training and deploying models based on se-

veral technologies. This platform is very useful for users that want to

review some examples of models already developed with specific tech-

nologies. The focus of this platform is on Natural Language Processing

tasks. Thus, users can have access to free courses on Deep Learning,

theory, tutorial and hands-on guides. In addition, it is also considered

a Web application to create and share computational documents: code

analysis and development, visualisation and creation of models. It is

generally used as a development and test environment before releasing

a program to be used. It supports 40 programming languages such as

R, Python and so on.

Kaggle: Kaggle is a customisable Jupyter Notebooks environment

whose GPUs14 are free and in which there is a huge community of pu-

blished data and code. Its main aim is a challenge collector in which

many tasks are published and users are allowed to complete the cha-

llenge and take part in competitions. On the other hand, when starting

to create a model, it can be very useful for users to have a look at the

models already coded. Thus, its available input data can be very help-

ful in case of searching for large amounts of training data. One relevant

advantage is that it can be considered as a part of portfolio for data

scientists. In fact, it can be used for free.

PyCharm: It is one of the most relevant IDE15 to develop Python

14Graphics Processing Units.
15Integrated Development Environment.

40 CHAPTER 2. Preliminaries

code. Furthermore, PyCharm allows users having tools to debug or

inspect the code, it also indicates errors while programming, and fast

fixings such as the refactor of automatic code or complete browser

functionalities.

When developing any module of Natural Language Processing such as an

Intent Classification module, it is very useful to count on several Python

libraries that automate tedious and iterative tasks. Although the most rele-

vant Python libraries are shown below, only some of them have been used

in this project. The specification of the use of each library will be described

in section Implementation.

Gensim: It is a Python programming language library for topic mo-

delling, document indexing, and similarity retrieval with corpora. It

includes memory-independent corpus algorithms, an intuitive interfa-

ce, distributed computing, etc.

NLTK: It is a Python programming language toolkit, that is, a group

of libraries and programs regarding Natural Language Processing. It

also includes libraries that allows tokenizing, detecting stop-words,

semantic and syntactic analysis, classification, detection of synonyms

with wordnets, etc. Therefore, many pre-processing tasks make use of

a toolkit or some libraries.

TextBlob: It is a Python programming language library with the

aim of processing textual data. It is useful to extract noun phrases, tag

part-of-speech tagging, sentiment analysis, tokenisation, intent classifi-

cation, parsing, n-grams detection, spelling correction, lemmatisation,

and wordnet integration.

AutoGluon: It is a Python programming language library that allows

users to have an easy way to use an Auto Machine Learning by focusing

on automated stack ensembling, deep learning, and real-world appli-

cations spanning image, text, and tabular data. In addition, it shows a

quick way to prototype deep learning and classical Machine Learning

solutions with a few lines of code. Therefore, many users that are not

expert can use this easily. In fact, all hyperparameters of tuning, mo-

del selection, architecture search, and data processing are automatic,

therefore they cannot be changed.

2.6 Libraries and tools 41

PyTorch: It is a Python programming language library for Machine

Learning tasks. It is used for tasks regarding Artificial Visualisation as

well as Natural Language Processing. It also has a C++ interface but

the focus is on Python. Moreover, it includes deep neural network built

on tape-based automatic differentiation system and tensor computing.

Scikit-learn: It is a Python programming language library of Machine

Learning. It includes classification algorithms, support-vector machi-

nes, random forests, K-means and Gradient boosting. It is designed to

be used with other libraries such as NumPy and SciPy. It is generally

used to get the evaluation of models as well as the confusion matrixes

to analyse all the errors and confusions.

Spacy: It is a Python programming language library to carry out

Natural Language Processing tasks such as tokenisation in different

languages, importing and training models for different languages too

and multi-task learning with transformers such as BERT. Additionally,

it is also compatible with PyTorch and TensorFlow.

TensorFlow: It is a programming language library of Machine Lear-

ning and Artificial Intelligence that can be used in several program-

ming languages such as Python, C++ and Java. It is normally used

to carry out some tasks by focusing on training models and inferring

deep neural network. Furthermore, some useful tasks that can be done

are tokenisation, training model, obtaining metrics and results, etc.

Chapter 3

Proposal

In this chapter, research questions, their approaches, and difficulties found

during the experiment will be described in depth.

3.1. Research questions

As it has been mentioned, intent classification tasks raise a problem in

terms of using the most accurate model to obtain the best results.

Thus, how can it be determined if a model outperforms the other? Does

it depend on the intents used to train and test? In addition, the number of

classes can affect the accuracy of a classification. It is said that the greater

number of classes to be grouped by, the less accurate a model will be. What

is the best approach for measuring performance?

On the other hand, there are different paradigms that can be addressed.

Furthermore, it has been mentioned that when changing the criteria of clas-

sification, even if the data set is the same, results may vary. How different are

the results taking into account two different approaches when classifying?

Can an attribute be decisive when classifying?

3.2. Approach

To solve these paradigms, several technologies, algorithms and platforms

will be used.

Thus, to answer these research questions two paradigms will be tackled

within the project.

44 CHAPTER 3. Proposal

Intent classifier: The idea of this challenge is to compare different

technologies to classify users' utterances by intents. This quandary will

be developed by using different data sets. The results of both data sets

for each technology used will be compared to see how they evolve and

which technology works the best.

Attribute classifier: As both data sets are based on intents related

to perform actions “turning on” and “turning off”, these characteris-

tics will be the focus of this challenge. Therefore, all technologies by

using these two data sets but defining two new intents by classifying

utterances by concept or attribute “on” and “off” will be the focus

of this research question. Thus, the key objective of this research is

detecting which the best technology is to solve this problem.

The main approach to answer these questions will be explained below:

Firstly, all datasets will be pre-processed. Then, these data will be clas-

sified by two different model types:

Then, these data will be classified by two different model types: intent

classification based on performing different actions depending on the selected

class; and attribute classification, based on the concept of turning on or

off any attribute. Theoretically, regarding the second paradigm, by adding

a secondary module, for example a NER module, first research question

will be addressed by identifying keywords such as “alarm”, “timer” and/or

“reminder” as named entities (NER). This secondary module is a theoretical

approach because it is not going to be developed throughout the project.

Finally, the outputs of these models will be evaluated by the evaluation

module. After that, a comparison between technologies and algorithms will

be done to check which model performs best for each paradigm and to see

how models behave using different datasets.

3.3. Difficulties found

During the development of this project, several problems have been found.

The main difficulties found will be described in this section:

Imbalance of classes within the data sets: When facing real data,

as Aura’s real logs have been used in this thesis, there are several

difficulties such as defining use cases to be used that have a similar

3.3 Difficulties found 45

number of utterances. For example, alarm.on has about 2.000 logs

while the rest of intents have only around 200 logs.

To solve this problem, there are two different approaches: reduce the

multitudinous logs sample of alarm.on randomly and leave just 200

logs sample as the rest of intents; or increase the number of logs for

the rest of intents to have the same sample as alarm.on.

However, this last alternative is not viable because one premise of this

work was that data sets should be real. Therefore, the first option was

selected.

Transformers environment required:When trying to train models

of transformers such as BERT, RoBERTa or XLNet, the problem of

not having a proper GPU arose. Therefore, after researching how to

train these models in machines without the specific requirements that

transformers need, the use of Google Colab was the solution that was

provided.

Spanish language as the basis: As Aura’s logs are in Spanish, the

language framework was Spanish language. However, most of techno-

logies as well as libraries in NLP are just thought for English language.

Therefore, this was one of the difficulties found when choosing tech-

nologies and libraries for this project.

Evaluating with the same metrics: Since several technologies and

libraries are used, although the metrics used are the same, their output

may be totally different. Thus, to compare all these technologies by

using the same data set, it was very important to define the concrete

metrics that the output must include. Therefore, apart from default

metrics that each technology has, a library has been chosen to be used

for the output of all the different technologies to calculate the same

metrics and confusion matrixes.

Chapter 4

Dataset

This chapter describes the datasets used in this project, their details, a

comparison between them and all their details. All these datasets have been

selected from Aura’s logs (Telefónica’s virtual assistant). These logs have

been tagged manually to be able to train the system. Once they have been

tagged, they have been randomly divided in training and test sets. The

distribution of these datasets are: 80% for training and 20% for test set.

For each classification model, the same datasets are going to be used but

the paradigm changes. The table below describes a summary of all datasets

used in this project.

Datasets Intent names Training Testset

Dataset A alarm.off, alarm.on, timer.off, timer.on 640 160

Dataset B alarm.off, alarm.on, timer.off, timer.on, reminder.off, reminder.on 960 240

Dataset C on, off 640 160

Dataset D on, off 960 240

Table 4.1: Datasets summary

4.1. Intent classifier Datasets

Datasets A and B are going to be used for intent classification.

48 CHAPTER 4. Dataset

4.1.1. Dataset A

Samples of Training set and Test set from this dataset have been extracted

randomly from the whole sample of Aura’s logs from the last year. In includes

several linguistic patterns to identify each action. For each intent, there

are specific linguistic expressions that determine if an utterance should be

classified under a concrete class:

alarm.off: The keyword is “alarma” or its synonyms and plural form and

some verbs that map the intent to the action of “turning off” would be

“quitar, cancelar, posponer, retirar, eliminar”, etc. Some examples of this

use case are: “Anular servicio alarma”, “Quitar la alarma a las 3.00 de la

mañana” or “Cancela alarma”.

alarm.on: The keyword is “alarma” or its synonyms and plural form and

some verbs that map the intent to the action of “turning on” would be

“activar, encender, poner, establecer, prender”, etc. Some examples of this

use case are: “Pon una alarma a las 7 menos 10 minutos”, “Quiero poner

una alarma a las 9.50” or “Activa la alarma”.

timer.off: The keyword is “temporizador” or its synonyms and plural form

and some verbs that map the intent to the action of “turning off” would be

“quitar, cancelar, posponer, retirar, eliminar”, etc. Some examples of this

use case are: “Apaga temporizador”, “Cancelar el temporizador de 1 minuto

40 segundos” or “Detener el temporizador de cinco minutos”.

timer.on: The keyword is “temporizador” or its synonyms and plural form

and some verbs that map the intent to the action of “turning on” would be

“activar, encender, poner, establecer, prender”, etc. Some examples of this

use case are: “Pon el temporizador de medio minuto”, “Activar el tempori-

zador” or “Pon temporizador diez minutos”.

Intent Name Training samples Testing samples

alarm.off 160 40

alarm.on 160 40

timer.off 160 40

timer.on 160 40

Table 4.2: Training and Test set details of Dataset A

4.2 Attribute classifier Datasets 49

4.1.2. Dataset B

Samples of Training set and Test set from this dataset have been selected

randomly from the whole sample of Aura’s logs from the last year. In in-

cludes several linguistic patterns to identify each action as in the previous

dataset. In fact, this dataset is the same as the previous one but adding two

more intent names. In this section, the specific linguistic expressions that

determine if an utterance should be classified under one of the two additional

intents are explained below.

reminder.off: The keyword is “recordatorio” or its synonyms and plu-

ral form and some verbs that map the intent to the action of “turning

off” would be “quitar, cancelar, posponer, retirar, eliminar”, etc. Some

examples of this use case are: “Quiero anular recordatorio”, “Quita el

recordatorio que hay” or “Quiero apagar el recordatorio audio”.

reminder.on: The keyword is “recordatorio” or its synonyms and plu-

ral form and some verbs that map the intent to the action of “turning

on” would be “activar, encender, poner, establecer, prender”, etc. So-

me examples of this use case are: “¿Puedes añadir un recordatorio?”,

“Pon un recordatorio para mañana a las 10.00 de la mañana” or “Crea

el recordatorio”.

Intent Name Training samples Testing samples

alarm.off 160 40

alarm.on 160 40

timer.off 160 40

timer.on 160 40

reminder.off 160 40

reminder.on 160 40

Table 4.3: Training and Test set details of Dataset B

4.2. Attribute classifier Datasets

Dataset C and D are going to be used for attribute classification.

50 CHAPTER 4. Dataset

4.2.1. Dataset C

This dataset comprises a group of utterances that are the same that Dataset

A but they have been tagged according to two specific attributes or new

intents: “on” and “off”.

off: The keyword is “off” or its synonyms. This group of utterances

is composed of Dataset A alarm.off and timer.off. Some examples of

this use case are: “Quitar el temporizador de 10 minutos”, or “¿Puedo

esquivar la alarma a las 8.00?”.

on: The keyword is “on” or its synonyms. This group of utterances is

composed of Dataset A alarm.on and timer.on. Some examples of this

use case are: “Pon temporizador”, or “¿Puedes conectar una alarma?”.

Attributes Training samples Testing samples

Off 320 80

On 320 80

Table 4.4: Training and Test set details of Dataset C

4.2.2. Dataset D

This dataset comprises a group of utterances that are the same that Dataset

B but they have been tagged according to two specific attributes or new

intents: “on” and “off”. The difference between this dataset and the previous

one is the addition of two more use cases: reminder.on and reminder.off.

This dataset comprises a group of utterances that are the same that Dataset

B but they have been tagged according to two specific attributes: “on” and

“off”.

off: The keyword is “off” or its synonyms. This group of utterances

is composed of Dataset A alarm.off, reminder.off and timer.off. Some

examples of this use case are: “Elimina temporizador”, “Recordatorio

detenido” or “Anula la alarma”.

on: The keyword is “on” or its synonyms. This group of utterances

is composed of Dataset A alarm.on, reminder.on and timer.on. Some

examples of this use case are: “Pon temporizador”, “Poner recordato-

rio” or “¿Puedes conectar una alarma?”.

4.2 Attribute classifier Datasets 51

Attributes Training samples Testing samples

Off 480 120

On 480 120

Table 4.5: Training and Test set details of Dataset D

Chapter 5

Experimentation

In this section, the development of all the experiments will be described by

including the metrics used and the modules that compose the main deve-

lopment of the work. Thus, this section includes, evaluation setting, which

is a point that highlights the metrics used and why they have been used;

the implementation, which is a point that includes the three different mo-

dules that entail the whole development of the experiment; and the results

in which the output of the different experiments will be described.

5.1. Evaluation Setting

For all datasets, intent classification was evaluated by using the same me-

trics: precision, recall and F1 in all the models.

The choice of these metrics is a primary key for model selection. Thus,

this selection is based on the type of classification: binary classification or

multilabel classification, and the model that is going to be used for this

classification.

Therefore, precision measures the ability of a classifier to identify the

correct utterances in each class while recall is the ability of a classifier to

find all the correct utterances per class. Finally, F1 is the harmonic mean of

the two previous measures (Vilalta, 2000).

To define and understand these metrics, it is important to explain the

following concepts:

TP: A true positive is a sample that is correctly classified as belonging

to a positive class by the model. For example, if the actual class of a

54 CHAPTER 5. Experimentation

sample is class A and the model also predicts class A, then this is

considered a true positive for class A.

TN: A true negative is a sample that is correctly classified as belonging

to a negative class by the model. For example, if the actual class of

a sample is not class A and the model also predicts a class different

from class A, then this is considered a true negative for class A.

FP: A false positive is a sample that is incorrectly classified as belon-

ging to a positive class by the model. For example, if the actual class

of a sample is not class A but the model predicts class A, then this is

considered a false positive for class A.

FN: A false negative is a sample that is incorrectly classified as belon-

ging to a negative class by the model. For example, if the actual class

of a sample is class A but the model predicts a class different from

class A, then this is considered a false negative for class A.

Once these definitions are clear, the metrics can be described as below:

Precision: It is explained as how good the model is when predicting

a class. For each class, there is a metric of precision.

Figure 5.1: Precision metric (adapted from Explaining Accuracy, Precision,
Recall, and F1 Score (Bhadouria, V., 2020).

Recall: It is explained as the percentage of the correct predictions of

the model regarding the actual labels or classes. For each class, there

is a metric of recall.

5.1 Evaluation Setting 55

Figure 5.2: Recall metric (adapted from Explaining Accuracy, Precision, Re-
call, and F1 Score (Bhadouria, V., 2020).

F1: It is explained as the balanced metric between precision and recall.

For each class, there is a metric of F1.

Figure 5.3: F1 metric (adapted from Explaining Accuracy, Precision, Recall,
and F1 Score (Bhadouria, V., 2020).

Accuracy: It is explained as how good our model is at predicting the

correct category.

56 CHAPTER 5. Experimentation

Figure 5.4: Accuracy metric (adapted from Explaining Accuracy, Precision,
Recall, and F1 Score (Bhadouria, V., 2020).

Once these metrics are available, a confusion matrix34 can be created to see

how classes have diverted to others.

Figure 5.5: Understanding Confusion Matrix (Narkhede, S., 2018)

34A confusion matrix is a performance measurement for Machine Learning Classification
problem of at least two classes. It is a table with four different combinations of predicted
and actual values (Narkhede, S., 2018).

5.2 Implementation 57

5.2. Implementation

In this section, all the modules related to the implementation will be explai-

ned: pre-processing module, that is common to all the experiments; classifi-

cation module, which include the explanation of the libraries and parameters

used in all the experiments and models used; and evaluation module, which

is the explanation of the code that has been developed for the metrics ex-

plained in 5.1.

5.2.1. Pre-processing Module

A pre-processing module can be defined as a group of operations that is

applied to each string to delete irrelevant and undesired information, to

standardize the format and to extract relevant and useful characteristics

or attributes for the following stages or modules. In this section, all the

operations used to pre-process Aura’s logs will be described in depth.

Loading and reading data: To load data from Aura’s logs, a CSV

file was the format chosen for data sets. These CSV files (training

and test sets) include two columns: “texts or utterances” and “class

name or intent name”. To load and read these files, the Pandas library,

concretely, read csv has been used.

Tokenize: Once the files have been read, the column “texts or utte-

rances”, row by row, that is, each user’s utterance is split in words.

This tokenisation is carried out by using from the NLTK library,

word tokenize.

Lowercase: After that, all the result input, already tokenised, is lower-

cased. To perform this action, a lambda function is used to lower-case

users' utterances.

Stopwords cleaning: Then, once the input is in lowercase and al-

ready tokenised, the process of stopwords20 removal begins. Fortuna-

tely, NLTK counts with a stopword list for Spanish. Therefore, the

library used has been this one.

20Stopwords, also known as “empty words” are words that have no meaning by themsel-
ves, that is, they are used to pair them with other words. For instance: articles, pronouns,
adverbs, prepositions and even some verbs. These words, generally, in NLP are filtered
not to be taken into account when processing them.

58 CHAPTER 5. Experimentation

Stemming: Once these operations are carried out, the last but not

least operation is performed, that is, the stemming21. As Porter Stem-

mer has been also used for Spanish language texts, this algorithm has

been selected to carry out this task. Therefore, from the library NLTK,

PorterSteemer has extracted the stem word of each token within the

utterance. The difference between stemming and lemmatisation is that

stemming uses the stem of the word while lemmatisation transforms

the word into its base form.

Once these operations have been accomplished, the input for the following

module has been obtained.

5.2.2. Classification Module

In this section, all the algorithms and technologies used to answer and solve

the research questions laid out in section 3.1 will be described, its configu-

ration and parameters used as well as all the requirements met to use them

to achieve these challenges.

For each model, there will be two descriptions due to the fact that there are

two different research questions: intent classification and attribute classifi-

cation. Most of the models have been developed and evaluated in Python,

and the ones developed in dialogue platforms have been also evaluated in

Python.

Models from scratch:

All the models developed from scratch represent some of the most

relevant models for intent classification. LSTM and SVM are used to

classify users' utterances in defined intents.

• LSTM Model: In this model, firstly, once the pre-processing

module processed the training and the test set files, the Pan-

das library has been used to load and read training and test set

files. Secondly, the module preprocessing from the Scikit-learn

library is loaded to use OneHotEncoder to convert classes to

labels. Then, the TensorFlow library is imported to use its to-

kenizer. After that, the tokenised files are padded by importing

21Stemming is the process to reduce a word to its word stem or root form. It is nor-
mally used in information retrieval processes. In addition, the most relevant algorithm for
stemming is Porter Stemmer

5.2 Implementation 59

pad sequences from TensorFlow.

Later, a function is created to transform data into a matrix. Next,

by importing TensorFlow Dense, LSTM, BatchNormalisation,

Dropout, Input from layers module; Adam from optimizers mo-

dule, CategoricalCrossentropy from losses module, he uniform

and glorot uniform from initializers module, AUC from metrics

module, Model from Keras module and l2 from regularizers mo-

dule, a class called LSTM model has been created. Thus, it has

been used to build the model by using the following configura-

tion:

◦ Dropout rate22: The set value is 0.5.

◦ Bias regularizer23: The set value is 0.3.

◦ Kernel regularizer24: The set value is 0.3.

Finally, to train the model, the parameters that have been con-

figured are:

◦ Validation split25: The set value is 0.2.

◦ Epochs26: The set value is 60.

According to previous researches such as Deep Bi-Directional

LSTM Network for Query Intent Detection (Sreelakshmi et al.,

2018), the semantic enrichment and the proposed deep learning

model implemented when using LSTM improves the results of

intent detection.

• SVM Model: In this model, firstly, once the pre-processing

module processed the training and the test set files, the Pandas

library has been used to load and read training and test set files.

Secondly, the library Spacy has been imported. This library has

been used to load the pipeline es core news md that includes

22It is the probability of training a given node in a layer (Srivastava et al., 2014).
23It applies a penalty only on the layer’s bias.
24It applies a penalty on the layer’s kernel (weight) but excluding bias.
25Keras can separate a portion of the training data into a validation set and then,

evaluate the performance of the model used on that validation dataset in each epoch.
26It is a parameter that defines the number of times that the learning algorithm will

work through the training dataset.

60 CHAPTER 5. Experimentation

the following components: tok2vec, morphologizer, parser, sen-

ter, NER, attribute ruler and lemmatizer. It is in Spanish and

counts with vocabulary, syntax and entities extracted from writ-

ten texts of pieces of news and media.

After that, the dimensionality of the loaded pipeline is calcula-

ted. Later, by defining a function, the sentences used in Spacy

NLP model are encoded to obtain a encoded training set and a

encoded test set. Then, by importing Scikit-learn preprocessing

module and using LabelEncoder, classes assigned to training and

test set files are also encoded. Finally, module SVM from the

Scikit-learn library is imported to define the training and vali-

dation functions that only requires the following parameters:

◦ training function: model, encoded training set and enco-

ded labels of training set file.

◦ validation function: model, encoded test set and encoded

labels of test set file.

In addition, one of the advantages of using SVM to classify in-

tents is its effectiveness both in high dimensional spaces (it is

relatively memory efficient], and in cases in which the number of

dimensions is greater that the number of samples, and it works

relatively well when classes are clearly distinguishable.

Auto Machine Learning: The development of AutoGluon, this Au-

to Machine Learning library, is based on their modules and all the

models that are trained when using it. To begin with, the library Au-

toGluon module tabular, by importing TabularDataset allows loading

and reading training and test datasets. After that, the TabularPre-

dictor from tabular module is also imported to create the predictor.

Once it is done, by using the feature TabularPredictor and adding our

expected intents as labels and using the training data already loaded,

the models are trained. The libraries used to train models made by

AutoGluon are those below described:

• CatBoost: It is a high-performance open source Python library

for gradient boosting on decision trees (AutoGluon, n.d.).

5.2 Implementation 61

• ExtraTreesEntr: It is a class that implements a meta estima-

tor that fits a number of randomised decision trees on various

sub-samples of the dataset and uses averaging to improve the

predictive accuracy and control over-fitting (Scikit-learn, n.d.).

Its supported criteria is Entropy27.

• ExtraTreesGini: It is a class that implements a meta estima-

tor that fits a number of randomised decision trees on various

sub-samples of the dataset and uses averaging to improve the

predictive accuracy and control over-fitting (Scikit-learn, n.d.).

Its supported criteria is Gini impurity28.

• KNeighborsDist: It is a classifier that implements the k-nearest

neighbors vote by using the parameter of weight with value dis-

tance (Scikit-learn, n.d.).

• KNeighborsUnif: It is a classifier that implements the k-nearest

neighbors vote by using the parameter of weight with value uni-

form (Scikit-learn, n.d.).

• LightGBM: It is a gradient boosting framework that uses tree

based learning algorithms. It is designed to be distributed. (Mi-

crosoft Corporation, n.d.).

• LightGBMLarge: It is a gradient boosting framework that uses

tree based learning algorithms with a custom configuration which

enables larger models but trains slower (Microsoft Corporation,

n.d.).

• LightGBMXT: It is a gradient boosting framework that uses

tree based learning algorithms and using the parameter extra trees

is “True” (Microsoft Corporation, n.d).

• NeuralNetFastAI: It is a class for Fast AI v1 neural network

model that operate on tabular data (AutoGluon, n.d.).

27It is a measurement used to build Decision Trees to determine how the features of a
dataset should split nodes to form the tree (Mohri, M., et al., 2018).

28It is the measurement of disorder or impurities in the information processed in Machine
Learning (Zhou, V., 2019).

62 CHAPTER 5. Experimentation

• NeuralNetTorch: It is a class for neural network model that

operates on tabular data. These networks use different types of

input layers to process different types of data in various columns

(AutoGluon, n.d.).

• RandomForestEntr: It is a random forest classifier that is con-

sidered a meta estimator that fits a number of decision tree clas-

sifiers on various sub-samples of the dataset and uses averaging

to improve the predictive accuracy and control over-fitting. Its

supported criteria is Entropy (Scikit-learn, n.d.).

• RandomForestGini: It is a random forest classifier that is con-

sidered a meta estimator that fits a number of decision tree clas-

sifiers on various sub-samples of the dataset and uses averaging

to improve the predictive accuracy and control.

• WeightedEnsemble L2: It is a weighted ensemble meta-model

that implements Ensemble Selection.

• XGBoost: It is an optimised distributed gradient boosting li-

brary designed to be highly efficient, flexible and portable. It

implements Machine Learning algorithms under the Gradient

Boosting framework (XGBoost, n.d.).

For the three models regarding transformers that have been develo-

ped, the code is practically the same. The changes that are performed

differ in the modules used concerning the transformers library and so-

me parameters of the model. In this section, the code is going to be

explained and the differences of the configuration parameters will be

detailed in each model paragraph.

Thus, in these models, once the pre-processing module processed the

training and the test set files, the Pandas library has been used to

load and read training and test set files. Secondly, labels of training

and test set files are encoded by using LabelEncoder from the Scikit-

learn preprocessing module. Later, some libraries are imported such

as the TensorFlow library, concretely, Adam and SGD from optimizers

module.

Furthermore, by importing ClassificationModel from the simpletrans-

formers library classification module, the model is created by adding

5.2 Implementation 63

a concrete setting up that will be shown in the following paragraphs.

Finally, by using the module train model and the training file loaded,

the selected model is trained.

Next, the common configuration for the three models will be shown:

• GPU29 The set value is enabled.

• num labels30: The set value depends on the dataset used.

Dataset used num labels

Dataset A 4

Dataset B 6

Dataset C 2

Dataset D 2

Table 5.1: Labels distribution for transformers' model.

• args31: The set value is num train epochs, that describes the

number of epochs selected for training, whose value in these ex-

periments with this type of model is 30.

To conclude, the concrete setting up parameters and libraries used for

the three models will be shown below:

• BERT’s model: The only difference concerning the transfor-

mers library is the use of modules BertTokenizer and TFBertMo-

del to tokenize and build the model based on BERT. In addition,

regarding the concrete parameters used in the ClassificationMo-

del library to create and train the model are those below:

◦ Model type32: The set value is bert.

◦ Model name33: The set value is bert-base-cased.

29Graphics Processing Unit.
30It is an optional argument, but useful one when the number of classes should be taken

into account.
31It refers to optional arguments, for example num train epochs.
32It refers to the type of model used (Rajapakse, 2022).
33It specifies the exact architecture and trained weights to use. This may be a Hugging

Face Transformers compatible pre-trained model, a community model, or the path to a
directory containing model files (Rajapakse,2022).

64 CHAPTER 5. Experimentation

• RoBERTa’s model: The one difference concerning the trans-

formers library is the use of modules DistilBertTokenizer and

RobertaTokenizer to tokenize and build the model based on Ro-

BERTa. In addition, regarding the concrete parameters used in

the ClassificationModel library to create and train the model are

those below:

◦ Model type: The set value is roberta.

◦ Model name: The set value is roberta-base.

• XLNet’s model: The one difference concerning the transfor-

mers library is the use of modules TFXLNetModel and XLNet-

Tokenizer to tokenize and build the model based on XLNet. In

addition, regarding the concrete parameters used in Classifica-

tionModel library to create and train the model are those below:

◦ Model type: The set value is xlnet.

◦ Model name: The set value is xlnet-base-cased.

Transformer
model

Model type Model name num labels num train epochs

BERT bert
bert-base-
cased

Dataset A: 4,
Dataset B: 6,
Dataset C: 2,
Dataset D: 2

30

RoBERTa roberta roberta-base

Dataset A: 4,
Dataset B: 6,
Dataset C: 2,
Dataset D: 2

30

XLNet xlnet
xlnet-base-
cased

Dataset A: 4,
Dataset B: 6,
Dataset C: 2,
Dataset D: 2

30

Table 5.2: Transformers configuration summary

Dialogue Management Platforms Models: Third party platform

models have been developed in their own platform and evaluated in a

Python module.

5.2 Implementation 65

• Dialogflow Model: As there are four different data sets, four

agents in Dialogflow have been built. Although they have the

same configuration, the data imported in these agents is different

due to the four data sets. The agent configuration is the following

one:

◦ Default time zone: GMT+1 (Madrid zone).

◦ Beta Features: Enable beta features and APIs.

◦ Language: Spanish ES.

◦ ML Classification Threshold: 0.5.

◦ Default entities: Disable.

For each agent, different entities and intents are registered:

Agents Intent names Entities

Dataset A alarm.off, alarm.on, timer.off, timer.on “alarma”, “temporizador”

Dataset B
alarm.off, alarm.on, timer.off, timer.on, remin-
der.off, reminder.on

“alarma”, “temporizador”,
“recordatorio”

Dataset C on, off “encender”, “apagar”

Dataset D on, off “encender”, “apagar”

Table 5.3: Dialogflow agents summary

• LUIS Model: Four different applications in LUIS have been

created because four different experiments are going to be carried

out. Although they have the same configuration, the training

data included in these applications is different due to the four

data sets. The application setting up is the following one:

◦ Culture: es-ES.

◦ Prediction resource: Enable.

◦ Domain: Selected a pre-built domain.

◦ Default entities: Disable.

For each application, different entities and intents are registered:

66 CHAPTER 5. Experimentation

Agents Intent names Entities

Dataset A alarm.off, alarm.on, timer.off, timer.on “alarma”, “temporizador”

Dataset B
alarm.off, alarm.on, timer.off, timer.on,
reminder.off, reminder.on

“alarma”, “temporizador”,
“recordatorio”

Dataset C on, off “encender”, “apagar”

Dataset D on, off “encender”, “apagar”

Table 5.4: LUIS applications summary

5.2.3. Evaluation Module

All the models developed in 5.2.2 have the same evaluation module. This

module consists of, firstly, extracting labels expected from the test set files

and, secondly, predicting labels for each utterance that appears in each test

set file by each model.

Then, once the two arrays have been obtained (predicted test set and

labeled test set), by importing the module metrics of Scikit-learn, concre-

tely, classification report and confusion matrix, all the metrics explained

previously have been obtained (precision, recall, F1, total accuracy and con-

fusion matrix), by model and data set.

Thus, for models developed from scratch such as LSTM and SVM mo-

dels, there will be four different results one per each dataset and model

(eight in total).

The same will happen with transformers' models (BERT, RoBERTa, and

XLNet), there will be four different results one by each dataset. Thus, twelve

different results will be obtained regarding transformers.

Concerning AutoGluon Machine Learning models, as there are four-

teen models (CatBoost, ExtraTreesEntr, ExtraTreesGini, KNeighborsDist,

KNeighborsUnif, LightGBM, LightGBMLarge, LightGBMXT, NeuralNet-

FastAI, NeuralNetTorch, RandomForestEntr, RandomForestGini, Weighte-

dEnsemble L2, XGBoost), there will be fifty-six different results, taking into

account the four datasets used.

Finally, regarding dialog management platforms (LUIS and Dialogflow),

there will be also eight results: four from each platform including the four

different datasets that have been tested.

In addition, it is relevant to mention that the evaluation of dialog ma-

nagement platform modules has a singularity. This consists in creating a

5.3 Results 67

previous submodule in which POST requests are sent to each platform and

the obtained results are saved to generate the array required of predicted

test set labels.

This submodule has been also developed by using Python. It requires

the training set, the test set (input files), a configuration file and the output

file. In addition, it performs tests against the different services (Dialogflow

and LUIS), and depending on each service, SDKs or requests to other appli-

cations that allow testing the model are used. Once the information of these

requests is retrieved, it is saved and printed in the output file.

5.3. Results

Results will be shown in different ways. Firstly, a display of the average

accuracy of all the models will be shown to be able to compare these models

in general.

Then, the results will be shown by dataset and model used, splitting them

by type of development: models developed from scratch, models based on

transformers, models with AutoGluon and models developed with dialogue

management platforms. Finally, the results will be compared and analysed

regarding the different datasets in the following chapter.

5.3.1. Average accuracy results by model

In this section, the results regarding average accuracy will be shown in a

table to be compared below:

68 CHAPTER 5. Experimentation

Models Dataset A Dataset B Dataset C Dataset D
Dataset
Average

XLNet 0.98 0.97 0.97 0.94 0.965

Dialogflow 0.96 0.97 0.97 0.96 0.965

LUIS 0.94 0.95 0.96 0.97 0.955

RoBERTa 0.98 0.97 0.97 0.88 0.95

BERT 0.97 0.97 0.98 0.88 0.95

SVM 0.89 0.87 0.94 0.93 0.9075

LightGBMXT 0.89 0.86 0.89 0.87 0.8775

ExtraTreesGini 0.87 0.87 0.89 0.86 0.8725

ExtraTreesEntr 0.87 0.87 0.88 0.86 0.87

WeightedEnsemble
L2

0.86 0.87 0.89 0.86 0.87

LSTM 0.83 0.87 0.94 0.84 0.87

CatBoost 0.88 0.85 0.89 0.85 0.8675

XGBoost 0.87 0.87 0.88 0.85 0.8675

LightGBM 0.88 0.82 0.88 0.85 0.8575

LightGBMLarge 0.86 0.85 0.87 0.85 0.8575

RandomForestGini 0.86 0.84 0.86 0.85 0.8525

RandomForestEntr 0.86 0.83 0.86 0.86 0.8525

KNeighborsDist 0.74 0.69 0.81 0.71 0.7375

KNeighborsUnif 0.74 0.67 0.81 0.72 0.735

NeuralNetTorch 0.63 0.42 0.73 0.71 0.6225

NeuralNetFastAI 0.62 0.41 0.76 0.68 0.6175

Table 5.5: Average accuracy by model summary

On the one hand, based on the results obtained in the table above, the best

average accuracy results regarding dataset A are those obtained by models

based on transformers: RoBERTa and XLNet have obtained the same metric

and BERT has obtained a similar result. The same situation has occurred

with dataset B. However, in this case, all the models based on transformers

have obtained the same result. In addition, Dialogflow has also reached the

same punctuation.

Concerning dataset C, BERT has obtained a slightly better result. Close

to this score, there are other models such as RoBERTa, XLNet, and Dialog-

flow.

Regarding dataset D, the best results are obtained by models developed

with dialogue management platforms: LUIS in this case is minimally better

5.3 Results 69

than Dialogflow.

Finally, reviewing the average dataset column, it can be observed that

Dialogflow and XLNet have obtained the best results followed by LUIS,

RoBERTa and BERT. Therefore, both technologies transformers and dialog

management platforms are the models that seem to be the most appropriate

ones to classify these types of Use Cases.

Thus, according to the previous conclusions, it can be said that, gene-

rally, models based on transformers and models developed with dialogue

management platforms are more complete and accurate than the rest of

model types.

To summarize, XLNet would be the best option to develop these types

of Use Cases; firstly, because it has obtained one of the best results; and,

secondly, because it allows developers modifying parameters to continue im-

proving the results of the classification.

On the other hand, it can be observed that, generally, the type of model

that works the worst is models that perform worst are those developed with

AutoGluon. However, it is true that not all the models developed with this

auto Machine Learning tool work in the same way. That is, CatBoost, Ex-

traTreesEntr, ExtraTreesGini, LightGBM, LightGBMLarge, LightGBMXT,

RandomForestEntr, RandomForestGini, WeightedEnsemble L2 and XGBoost

are better that the rest of the models. Thus, it can be confirmed that some

algorithms such as CatBoost, ExtraTrees variations, LightGBM variations,

RandomForest variations and XGBoost work better than KNeighbors varia-

tions, NeuralNet FastAI and Torch.

As a result of that, it can be concluded that transformers, that is one of

the last algorithm types that have been developed, have supposed a great

progress concerning intent classification tasks. Although this model type is

a great progress, it is evident that models that have been developed with

dialogue management platforms are also great solutions to carry out intent

classification tasks quickly and easily.

Although both model types have obtained similar results, it is clear that

one of the advantages of transformers is that the developer can alter and

modify whatever they need to optimize these results, while concerning the

dialogue platforms, developers can only modify training to make the results

improve, which is a clear limitation.

70 CHAPTER 5. Experimentation

5.3.2. Results based on model type and datasets

In this section, results regarding model types will be described and shown

in a table to be compared below:

Models Dataset A Dataset B Dataset C Dataset D

XLNet

alarm.off
(0.99),
alarm.on
(0.99)

alarm.off
(0.99),
alarm.on
(0.99)

on (0.97),
off (0.97)

on (0.97),
off (0.97)

Dialogflow

alarm.off
(1.00),
alarm.on
(1.00)

alarm.off
(0.99),
alarm.on
(0.99)

on (0.97),
off (0.97)

on (0.96),
off (0.96)

LUIS

alarm.off
(0.99),
alarm.on
(0.99)

alarm.off
(0.97),
alarm.on
(0.97)

on (0.96),
off (0.96)

on (0.97),
off (0.97)

RoBERTa

alarm.on
(0.99),
timer.on
(0.99)

reminder.off
(1.00), re-
minder.on
(1.00)

on (0.97),
off (0.97)

off (0.89)

BERT
alarm.on
(0.98)

alarm.off
(0.99),
alarm.on
(0.99)

on (0.98),
off (0.98)

on (0.89)

SVM
alarm.on
(0.94)

alarm.on
(0.93)

on (0.94),
off (0.94)

on (0.93),
off (0.93)

LightGBMXT
alarm.off
(0.92)

alarm.off
(0.93)

off (0.90)
on (0.87),
off (0.87)

ExtraTreesGini
alarm.off
(0.93)

alarm.off
(0.93)

on (0.89),
off (0.89)

off (0.87)

ExtraTreesEntr
alarm.off
(0.92)

alarm.off
(0.94),
alarm.on
(0.94)

off (0.88) off (0.87)

WeightedEnsemble L2

alarm.off
(0.88),
alarm.on
(0.88)

alarm.off
(0.95),
alarm.on
(0.95)

off (0.90) off (0.87)

Table 5.6: Classes with best F1 result for each dataset by model summary

5.3 Results 71

Models Dataset A Dataset B Dataset C Dataset D

LSTM
timer.off
(0.95)

alarm.off
(1.00),
alarm.on
(1.00)

on (0.95),
off (0.95)

off (0.86)

CatBoost

alarm.off
(0.94),
timer.on
(0.94)

alarm.on
(0.88)

off (0.90) off (0.87)

XGBoost
alarm.off
(0.91)

alarm.off
(0.95),
alarm.on
(0.95)

off (0.88) off (0.86)

LightGBM
alarm.off
(0.93)

alarm.off
(0.92)

off (0.89) off (0.86)

LightGBMLarge

alarm.off
(0.89),
alarm.on
(0.89)

alarm.off
(0.94),
alarm.on
(0.94)

off (0.88) off (0.86)

RandomForestGini

alarm.off
(0.90),
alarm.on
(0.90)

alarm.off
(0.90)

on (0.86),
off (0.86)

off (0.87)

RandomForestEntr

alarm.off
(0.90),
alarm.on
(0.90)

alarm.off
(0.89)

on (0.86),
off (0.86)

off (0.88)

KNeighborsDist
alarm.off
(0.80)

alarm.on
(0.79)

off (0.82) off (0.73)

KNeighborsUnif
alarm.off
(0.77)

alarm.on
(0.75)

off (0.83) off (0.74)

NeuralNetTorch
timer.on
(0.68)

alarm.on
(0.60)

on (0.73) off (0.73)

NeuralNetFastAI
timer.on
(0.67)

timer.on
(0.57)

off (0.76) on (0.69)

Table 5.7: Continuation: Classes with best F1 result for each dataset by model
summary

72 CHAPTER 5. Experimentation

Models Dataset A Dataset B Dataset C Dataset D

XLNet

timer.off
(1.00),
alarm.on
(1.00)

reminder.off
(1.00), re-
minder.on
(1.00),
alarm.on
(1.00)

off (1.00) off (0.98)

Dialogflow

alarm.off
(1.00),
alarm.on
(1.00)

alarm.off
(1.00),
timer.off
(1.00)

on (0.99)
on (0.96),
off (0.96)

LUIS
alarm.on
(1.00)

alarm.off
(0.97),
alarm.on
(0.97),
timer.off
(0.97)

off (0.97) on (0.98)

RoBERTa
alarm.on
(1.00)

alarm.on
(1.00), re-
minder.off
(1.00), re-
minder.on
(1.00)

on (0.97),
off (0.97)

on (0.90)

BERT

alarm.off
(1.00),
timer.off
(1.00)

alarm.off
(1.00),
timer.off
(1.00), re-
minder.off
(1.00)

off (1.00) off (0.96)

SVM
alarm.on
(0.93)

reminder.on
(0.94)

on (0.95) off (0.96)

LightGBMXT
alarm.on
(0.97)

alarm.on
(0.97)

on (0.96) on (0.89)

ExtraTreesGini
alarm.on
(0.97)

alarm.on
(0.97)

on (0.89),
off (0.89)

on (0.95)

ExtraTreesEntr
alarm.on
(0.97)

alarm.on
(0.97)

on (0.88) on (0.95)

WeightedEnsemble L2

alarm.off
(0.88),
alarm.on
(0.88)

alarm.on
(0.97)

on (0.96) on (0.94)

Table 5.8: Classes with best Precision result for each dataset by model sum-
mary

5.3 Results 73

LSTM
alarm.on
(1.00)

alarm.off
(1.00),
alarm.on
(1.00), re-
minder.on
(1.00)

on (0.99) on (0.97)

Models Dataset A Dataset B Dataset C Dataset D

CatBoost

alarm.on
(0.94),
timer.on
(0.94)

reminder.on
(0.91)

on (0.96) on (0.98)

XGBoost
alarm.on
(0.97)

alarm.on
(0.97)

on (0.94) on (0.89)

LightGBM
alarm.on
(0.97)

reminder.on
(0.90)

on (0.96) on (0.89)

LightGBMLarge
alarm.on
(0.90)

alarm.on
(0.97)

on (0.94) on (0.90)

RandomForestGini
alarm.on
(0.92)

alarm.on
(0.94)

on (0.87) on (0.96)

RandomForestEntr
alarm.on
(0.92)

alarm.on
(0.94)

on (0.87) on (0.96)

KNeighborsDist
alarm.on
(0.82)

alarm.on
(0.78)

on (0.87) on (0.74)

KNeighborsUnif
timer.on
(0.88)

timer.on
(0.75)

on (0.90) on (0.77)

NeuralNetTorch
timer.on
(0.72)

alarm.on
(0.55)

off (0.73) on (0.74)

NeuralNetFastAI
timer.on
(0.77)

alarm.on
(0.56)

on (0.76) off (0.69)

Table 5.9: Continuation: Classes with best Precision result for each dataset
by model summary

74 CHAPTER 5. Experimentation

Models Dataset A Dataset B Dataset C Dataset D

XLNet

alarm.off
(1.00),
timer.on
(1.00)

alarm.off
(1.00), re-
minder.on
(1.00),
timer.on
(1.00)

on (1.00) on (0.98)

Dialogflow

alarm.off
(1.00),
alarm.on
(1.00)

timer.on
(1.00),
alarm.on
(1.00)

off (0.99)
on (0.96),
off (0.96)

LUIS
alarm.off
(1.00)

alarm.off
(0.97),
alarm.on
(0.97),
timer.on
(0.97)

off (0.97) off (0.98)

RoBERTa

alarm.on
(1.00),
timer.on
(1.00)

reminder.off
(1.00), re-
minder.on
(1.00),
alarm.off
(1.00)

on (0.97),
off (0.97)

off (0.90)

BERT

alarm.on
(1.00),
timer.on
(1.00)

alarm.on
(1.00), re-
minder.on
(1.00),
timer.on
(1.00)

on (1.00) on (0.97)

SVM

alarm.off
(0.95),
alarm.on
(0.95)

alarm.off
(0.95),
alarm.on
(0.95)

off (0.95) off (0.96)

LightGBMXT
alarm.off
(0.97)

alarm.off
(0.97)

off (0.96) off (0.90)

ExtraTreesGini
alarm.off
(0.97)

alarm.off
(0.97)

on (0.89),
off (0.89)

off (0.96)

ExtraTreesEntr
alarm.off
(0.97)

alarm.off
(0.97)

off (0.89) off (0.96)

WeightedEnsemble L2

alarm.off
(0.88),
alarm.on
(0.88)

alarm.off
(0.97)

off (0.96) off (0.95)

Table 5.10: Classes with best Recall result for each dataset by model summary

5.3 Results 75

Models Dataset A Dataset B Dataset C Dataset D

LSTM

alarm.off
(1.00),
timer.off
(1.00)

alarm.off
(1.00),
alarm.on
(1.00), re-
minder.off
(1.00)

off (0.99) off (0.97)

CatBoost

alarm.off
(0.95),
timer.off
(0.95)

reminder.off
(0.93)

off (0.96) off (0.98)

XGBoost
alarm.off
(0.97)

alarm.off
(0.97)

off (0.95) off (0.90)

LightGBM
alarm.off
(0.97)

alarm.off
(0.95)

off (0.96) off (0.90)

LightGBMLarge
alarm.off
(0.90)

alarm.off
(0.97)

off (0.95) off (0.92)

RandomForestGini
alarm.off
(0.93)

alarm.off
(0.95)

off (0.88) off (0.97)

RandomForestEntr
alarm.off
(0.93)

alarm.off
(0.95)

off (0.88) off (0.97)

KNeighborsDist
alarm.on
(0.82)

alarm.on
(0.80), re-
minder.off
(0.80)

off (0.87) off (0.78)

KNeighborsUnif
timer.off
(0.90)

alarm.on
(0.78), re-
minder.off
(0.78)

off (0.93) off (0.81)

NeuralNetTorch
timer.off
(0.70)

alarm.on
(0.65)

on (0.74) off (0.78)

NeuralNetFastAI
timer.on
(0.77)

timer.on
(0.62)

off (0.76) on (0.70)

Table 5.11: Continuation: Classes with best Recall result for each dataset by
model summary

According to the tables above, models of each type are going to be com-

pared to show the differences and similarities concerning results of each

dataset. In addition, to review the results detailed by precision, recall and

F1, appendix ?? includes the data analysed in depth.

76 CHAPTER 5. Experimentation

To begin with, regarding models from scratch, it can be observed that

both models have obtained similar results in terms of average accuracy,

although SVM model has outperformed LSTM model in dataset A and da-

taset D. That is, regarding dataset A and B, he lesser number of classes

for SVM model the better results it obtains. However, for LSTM, the con-

trary happens. When adding more training, concretely, two more classes

“reminder.on” and “reminder.off”, results improve in relation to dataset A.

Nevertheless, the opposite case occurs for dataset C and D. The greater num-

ber of samples classified in the same number of classes “on” and “off”, the

worse results are obtained by both models. Additionally, the key difference

of this case is that LSTM does not assimilate the additional sample added

to dataset D (sample reclassified “reminder.on” as “on” and “reminder.off”

as “off”).

Furthermore, which is interesting to highlight is the the best class for

each dataset in both models. Generally, classes coincide in two datasets: A

and C. However, when adding more samples to the training and test sets,

datasets B and D, results are different in datasets B and D. On the one hand,

in dataset B, “alarm.on” coincides as the best class. However, for LSTM,

also “alarm.on” works as well as “alarm.off”. On the other hand, in dataset

D, both classes have obtained the same punctuation in SVM model, while

in LSTM model, “off” is minimally better than “on”.

That is the reason why, it can be observed that both models work in a

very similar way. Nonetheless, when adding more samples that have the same

concept but with different keywords, SVM models are able to assimilate this

problem appropriately.

Secondly, regarding models based on transformers, which in general are

one of the best model types, it can be noticed that there is hardly any

difference in terms of average accuracy results for the three models, although

it is clear that just XLNet has been able to grasp dataset D. That is, the

the samples of the classes that belong to “reminder.on” and “reminder.off”.

Furthermore, to check if the best class for each dataset in the three mo-

dels is the same can be relevant when comparing results. Generally, classes

coincide in two datasets: A and C. However, when adding more samples to

the training and test sets, datasets B and D, results are different in datasets

B and D. On the one hand, in dataset B, “alarm.on” coincides as the best

class. However, for LSTM, also “alarm.on” works as well as “alarm.off”. On

5.3 Results 77

the other hand, in dataset D, both classes have obtained the same score in

SVM model, while in LSTM model, “off” is minimally better than “on”.

Thus, it can be seen that as there is a minimum difference in terms of

average accuracy, so there is also a minimum difference in terms of dataset

A, B and C because results for the different classes and the three models are

quite close, although classes with the best results cannot coincide. Despite

this fact, the notable difference between these models occurs in dataset D

for XLNet model in which both classes have obtained the same good result,

while in the rest of models, just one class has obtained better results than

the other.

Thirdly, regarding models developed with AutoGluon, that, clearly, some

of them are much better than others in these experiments in terms of average

accuracy, it can be noticed that dataset C has obtained the best results in

comparison with the rest of datasets for all the models under this category.

It is also evident that, dataset B has obtained the worst results in relation

to the rest of the datasets regardless of the model used under this type.

As there are many models that have been tested under this category, the

summary of the best classes concerning datasets and models are going to be

split by subtype. Thus, six different tables will be shown according to the

similarities and differences between the algorithms used.

Models based on ExtraTrees have obtained practically the same results.

Therefore, it is expected that their best classes for each dataset and model

are the same for almost all the cases. In fact, for these cases that are not the

same, the result for the class that is classified as the best one is very close

to the following best result.

As the two models based on KNeighbors have obtained similar results, it

is expected that their best classes for each dataset and model are the same.

As the three models based on LightGBM have obtained similar results,

it is expected that their best classes for each dataset and model are similar

too,although not completely the same in all cases.

Concerning NeuralNet models, results are very similar. However although

for dataset A and B the best classes are the same, for dataset C and D, the-

se algorithms have behaved in a different way and the best classes are the

contrary in each case. This means that both models interpret intent classi-

fication task for the concepts “on” and “off” in a different way.

Regarding RandomForest models, results in terms of selecting the best

78 CHAPTER 5. Experimentation

class for each dataset are the same. This explains that general results such

as the average accuracy metric obtained by these models is practically the

same for all the datasets. Thus, differences are minimum.

Finally, these three models, CatBoost, XGBoost and WeightedEnsem-

ble L2 have been included in the same group to be analysed in depth due

to their similar results concerning average accuracy. Therefore, it is not sur-

prising that the best classes for these three models are practically the same.

Finally, in relation to the models developed with dialogue management

tools, it can be observed that both models have obtained similar results

in terms of average accuracy, although Dialogflow model has outperformed

LUIS model in all the datasets except for dataset D, in which LUIS has

obtained a slightly better result.

It can be said that both technologies work in a similar way. Different

from the rest of model types, these models work better in dataset C, and

between A and B, there is a minimum variance, obtaining B better results

than A.

Furthermore, it is relevant to see if the best classes for each dataset and

model are also the same. The best classes coincide in all the datasets which

means that the differences between these models are minimum.

Chapter 6

Conclusions

In this thesis, two different approaches regarding intent classification have

been presented. In fact, both approaches have been tested by using the

different types of models shown in the previous section.

At the beginning of this thesis, the following research questions were formu-

lated:

How can it be determined if a model works better than other? Does it

depend on the intents used to train and test?

What is the best approach for measuring performance?

How different are the results taking into account two different approa-

ches when classifying? Can an attribute be decisive when classifying?

To try to answer these questions, the intent classification of four dif-

ferent classification model types were evaluated on four different datasets

that include different intents. One of the datasets, called dataset A, was

created by using logs from Aura with four different intents: “alarm.off”,

“alarm.on”,“timer.off” and “timer.on”. Then, dataset B includes the sa-

me classes as A but adding two more: “reminder.off” and “reminder.on”.

Finally, datasets C and D are the same sample as datasets A and B respec-

tively but being classified in two different classes by concept or attribute:

“off” and “on”. The four types of models compared were models developed

from scratch, models based on transformers, models developed with Auto-

Gluon and models developed with dialogue management platforms. They

have been chosen based on having previously been successfully used for in-

tent classification as well as representing different categories of classifiers.

80 CHAPTER 6. Bibliography

The results obtained in the experiments presented in this thesis indicate

that most of the intent classification models perform quite similarly, that

is, they retrieve relatively high classification accuracies. Concretely, trans-

formers, dialogue management platforms and models from scratch perform

better than those developed with AutoGluon. Indeed, XLNet and Dialog-

flow would be better options than the rest taking into account their average

dataset results.

Additionally, three more general conclusions can be addressed:

Firstly, out of the classification methods evaluated in this thesis, models

based on transformers generally perform the best on intent classification.

However, models developed by using dialogue management platforms we-

re not far behind and sometimes even performed better than transformer

models. This can be determined when evaluating them using the following

metrics: precision, recall, F1 and accuracy.

Secondly, according to the previous conclusions and analysis, dataset C,

that is the approach of classifying “on” and “off” with a training and test

set sample that include similar use cases such as “alarm.on”, “alarm.off”,

“timer.on” and “timer.off” retrieves better results that the rest of dataset.

Thirdly, when including more samples with other use cases “remin-

der.on” and “reminder.off” that, a priori, can be conceived as the same

concept “on” and “off” but not only the keyword “reminder” is different

but the verbs and expressions used for turning on and off a reminder are

also different, some classifiers have been not able to interpret that the con-

cept was the same and it has penalised the results in some cases such as in

RoBERTa and BERT models.

Finally, to be able to answer with more certitude if an attribute or key-

word can be decisive when classifying, further research need to be done

along these lines and, for instance, address the potential optimization in

classification when including a NER module in the equation.

Chapter 7

Bibliography

Abdellatif, A., Badran, K., Costa, D.E., & Shihab, E. (2021). A Comparison

of Natural Language Understanding Platforms for Chatbots in Software

Engineering. arXiv.org., from https://arxiv.org/abs/2012.02640

AutoGluon. (n.d.). Autogluon Official Documentation, from

https://auto.gluon.ai/stable/index.html

Bhadouria, V. S. (2020). Explaining Accuracy, Precision, Recall, and F1 Sco-

re, from https://medium.com/swlh/explaining-accuracy-precision-recall-

and-f1-score-f29d370caaa8

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation

of Gated Recurrent Neural Networks on Sequence Modeling. arXiv.org.,

from https://arxiv.org/abs/1412.3555

Devlin, J. & Chang, M. (2018). Open Sourcing BERT: State-of-the-

Art Pre-training for Natural Language Processing.Google AI Blog,

from https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-

pre.html

Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.

A., Lally, A., Murdock, J. W., Nyberg, E., Prager, J., Schlaefer, N., &

Welty, C. (2010). Building Watson: An Overview of the DeepQA Project.

AI Magazine.

Google. (n.d.). Dialogflow ES basics, from

https://cloud.google.com/dialogflow/es/docs/basics

82 CHAPTER 7. Bibliography

Gopalan, B. (2021). What is Natural Language Processing(NLP)?,

from https://www.numpyninja.com/post/what-is-natural-language-

processing-nlp

Heeyoung Lee, H., Surdeanu, M. & Jurafsky, D. (2017). A scaffolding ap-

proach to coreference resolution integrating statistical and rule-based mo-

dels. Natural Language Engineering.

Jalli, Artturi. (2022). What Is a Library in Programming? A Complete Gui-

de, from https://www.codingem.com/what-is-a-library/

Jurafsky, D. & Martin, J. H. (2022). Speech and language processing: An

introduction to natural language processing, computational linguistics,

and speech recognition. Pearson.

Liu, X., Eshghi, A., Swietojanski, P., & Rieser, V. (2021). Benchmar-

king natural language understanding services for building conversa-

tional agents. Lecture Notes in Electrical Engineering, 165183, from

https://doi.org/10.1007/978-981-15-9323-9 15

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,

O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Rober-

ta: A robustly optimized Bert pretraining approach. arXiv.org., from

https://arxiv.org/abs/1907.11692

Merriam-Webster. (n.d.). Platform. In Merriam-Webster.com dictionary,

from https://www.merriam-webster.com/dictionary/platform

Microsoft Corporation. (n.d.). Welcome to LightGBM's documentation!,

from https://lightgbm.readthedocs.io/en/latest/

Microsoft. (n.d.). What is conversational language understanding?, from

https://learn.microsoft.com/en-us/azure/cognitive-services/language-

service/conversational-language-understanding/overview

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Ma-

chine Learning. The MIT Press.

Narkhede, S. (2018). Understanding Confusion Matrix, from

https://towardsdatascience.com/understanding-confusion-matrix-

a9ad42dcfd62

Bibliography 83

Rajapakse, T. (2022). Simple Transformers.Classification Specifics, from

https://simpletransformers.ai/docs/classification-specifics/supported-

model-types

Scikit-learn. (n.d.). Scikit-learn Documentation, from https://scikit-

learn.org/stable/

Sreelakshmi, K., Rafeeque, P. Ca, & Gayathri, E.S. (2018).

Deep bi-directional LSTM network for query intent detec-

tion Procedia Computer Science, 143, pp. 939 946., from

https://doi.org/10.1016/j.procs.2018.10.341

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov,

R. (2014). Dropout: A Simple Way to Prevent Neural Networks from

Overfitting, 15 (56), pp. 1929 1958.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. arXiv.org.,

from https://arxiv.org/abs/1706.03762

Vilalta, R. (2000). Evaluation metrics in classification: A quantification of

distance-bias. Yorktown Heights, NY: IBM T.J. Watson Research Center.

XGBoost. (n.d.). XGBoost Documentation, from

https://xgboost.readthedocs.io/en/latest/

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q.

V. (2020). XLNet: Generalized autoregressive pretraining for Language

Understanding. arXiv.org., from https://arxiv.org/abs/1906.08237v2

Zhou, V. (2019). A Simple Explanation of Gini Impurity, from

https://victorzhou.com/blog/gini-impurity/

Appendix A

Acronyms

AI Artificial Intelligence.

AN Attention Networks.

ASR Automatic Speech Recognition.

BERT Bidirectional Encoder Representations from Transformers.

CNN Convolutional Neural Networks.

FFNN Feed Forward Neural Networks.

GRU Gated Recurrent Units.

IDE Integrated Development Environment.

LSTM Long-Short-Term-Memory.

ML Machine Learning. NER Named Entity Recognition.

NLP Natural Language Processing.

NLU Natural Language Understanding.

RNN Recurrent Neural Networks.

ROBERTA Robustly Optimised BERT pre-training Approach.

STT Speech To Text.

SVM Support-Vector Machines Model.

WSD Word Sense Disambiguation.

Appendix B

Analysis of results by model

type

This appendix includes the specific information for the analysis of results

by model type based on the four datasets used. For each dataset, two tables

will be provided: one for the results and another one for the confusion matrix.

Models developed from scratch

In this section, LSTM model and SVM model results will be shown

and described.

• LSTM: In this section, results for LSTM model are going to be

described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.on” (1.00). However, its recall result

is the worst (0.42). In addition, the best recall results have

been obtained by “alarm.off” (1.00) and “timer.off” (1.00)

classes. Taking into account the F1 metric, the class that

yielded the best result is “timer.off” (0.95). These results

can be checked in tables C.1 and C.2.

◦ Dataset B

In dataset B, regarding precision, the classes with the best

results are “alarm.on” (1.00), “alarm.off” (1.00) and “re-

minder.on” (1.00). In addition, the best recall results ha-

88 appendix B. Analysis of results by model type

ve been obtained by “alarm.on” (1.00), “alarm.off” (1.00),

“timer.off” (1.00) and “reminder.off” (1.00) classes. Taking

into account the F1 metric, the classes with best results

are “alarm.off” (1.00) and “alarm.on” (1.00). However, the

class with the worst F1 result has been “reminder.on” (0.52)

although its precision is one of the best (1.00). These results

can be checked in tables C.3 and C.4.

◦ Dataset C

In dataset C, regarding F1, both classes have obtained the

same results which is a good score (0.95). However, the best

recall result has been obtained by “Off” (0.99) class while

the best precision result has been obtained by “On” (0.99)

class. These results can be checked in tables C.5 and C.6.

◦ Dataset D

In dataset D, regarding F1, both classes have obtained si-

milar results (0.86 - 0.82). However, the best recall result

has been obtained by “Off” (0.97) class while the best pre-

cision result has been obtained by “On” (0.97) class. These

results can be checked in tables C.7 and C.8.

• SVM: In this section, results for SVM model are going to be

described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.on” (0.93). In addition, its recall result

is one of the best results beside “alarm.off” (0.95). Howe-

ver, the worst recall result has been obtained by “timer.off”

(0.82) class. Taking into account the F1 metric, the class

that yielded the best result is “alarm.on” (0.94). These re-

sults can be checked in tables C.9 and C.10.

◦ Dataset B

In dataset B, regarding precision, the class that yielded the

89

best result is “reminder.on” (0.94). However, the class with

less recall result is also “reminder.on” (0.78). On the other

hand, the best recall results have been obtained by classes

“alarm.off” (0.95) and “alarm.on” (0.95). Taking into ac-

count the F1 metric, the class that yielded the best result

is “alarm.on” (0.93) class. These results can be checked in

tables C.11 and C.12.

◦ Dataset C

In dataset C, the F1 metric is the same for both classes

(0.94). However, while “Off” class has obtained a better

result regarding recall (0.95), “On” class has obtained a

better result concerning precision (0.95). These results can

be checked in tables C.13 and C.14.

◦ Dataset D

In dataset D, the F1 metric is the same for both classes

(0.93). However, while “Off” class has obtained a better

result regarding recall (0.96), “On” class has obtained a

better result concerning precision (0.96). These results can

be checked in tables C.15 and C.16.

Models developed with transformers In this section, transfor-

mer models such as BERT, RoBERTa and XLNet will be shown and

described.

• BERT: In this section, results for BERT model are going to be

described and shown in a table.

◦ Dataset A

In dataset A, the best recall results have been obtained by

classes “alarm.on” (1.00) and “timer.on” (1.00). However,

the best precision results have been obtained by the opposi-

te classes: “alarm.off” (1.00) and “timer.off” (1.00). Finally,

F1 metrics are pretty similar but the best result has been

obtained by “alarm.on” class (0.98). These results can be

90 appendix B. Analysis of results by model type

checked in tables C.17 and C.18.

◦ Dataset B

In dataset B, the best recall results have been obtained

by classes “alarm.on” (1.00), “reminder.on” (1.00) and “ti-

mer.on” (1.00). However, the best precision results have

been obtained by the opposite classes: “alarm.off” (1.00),

“reminder.off” (1.00) and “timer.off” (1.00). Finally, F1

metrics are pretty similar but the best results have been

obtained by “alarm.on” (0.99) and “alarm.off” (0.99). The-

se results can be checked in tables C.19 and C.20.

◦ Dataset C

In dataset C, F1 metric results are the same for both classes

(0.98). The one difference between both classes is that the

recall result is higher in class “On” (1.00), while precision

result is higher in “Off” class (1.00). These results can be

checked in tables C.21 and C.22.

◦ Dataset D

In dataset D, “Off” class has obtained better result regar-

ding precision (0.96), while “On” class has obtained better

result regarding recall (0.97). However, the best F1 result

has been obtained by “On” class (0.89). These results can

be checked in tables C.23 and C.24.

• RoBERTa: In this section, results for RoBERTa model are

going to be described and shown in a table.

◦ Dataset A

In dataset A, the best recall results have been obtained by

classes “alarm.on” (1.00) and “timer.on” (1.00). However,

the best precision result has been obtained by one of the

opposite classes: “alarm.off” (1.00). Finally, F1 metrics are

pretty similar but the best results have been obtained by

classes “alarm.on” (0.99) and “timer.on” (0.99). These re-

91

sults can be checked in tables C.25 and C.26.

◦ Dataset B

In dataset B, the best recall results have been obtained by

classes “alarm.off” (1.00), “reminder.off” (1.00) and “re-

minder.on” (1.00). However, the best precision results have

been obtained by the following classes: “alarm.on” (1.00),

“reminder.off” (1.00) and “reminder.on” (1.00). Finally, the

best F1 results have been obtained by classes “reminder.off”

(1.00) and “reminder.on” (1.00). These results can be chec-

ked in tables C.27 and C.28.

◦ Dataset C

In dataset C, both classes have obtained the same results

concerning recall (0.97), precision (0.97) and F1 (0.97). The-

se results can be checked in tables C.29 and C.30.

◦ Dataset D

In dataset C, both classes have obtained pretty similar re-

sults (0.89 - 0.88). However, “Off” class is slightly better

concerning recall (0.90) and “On” class is slightly better

regarding precision (0.90). These results can be checked in

tables C.31 and C.32.

• XLNet: In this section, results for XLNet model are going to

be described and shown in a table.

◦ Dataset A

In dataset A, the best recall results have been obtained by

classes “alarm.off” (1.00) and “timer.on” (1.00). However,

the best precision result has been obtained by “alarm.on”

(1.00) and “timer.off” (1.00) classes. Finally, F1 metrics are

pretty similar but the best results have been obtained by

classes “alarm.on” (0.99) and “alarm.off” (0.99). These re-

sults can be checked in tables C.33 and C.34.

92 appendix B. Analysis of results by model type

◦ Dataset B

In dataset B, the best recall results have been obtained

by classes “alarm.off” (1.00), “reminder.on” (1.00) and “ti-

mer.on” (1.00). However, the best precision result has been

obtained by “alarm.on” (1.00) and “timer.off” (1.00) clas-

ses. Finally, F1 metrics are pretty similar but the best re-

sults have been obtained by classes “alarm.on” (0.99) and

“alarm.off” (0.99). These results can be checked in tables

C.35 and C.36.

◦ Dataset C

In dataset C, the F1 result is the same for both classes

(0.97). The one difference between these classes is that “Off”

class is better regarding precision result (1.00), while “On”

class is better regarding recall result (1.00). These results

can be checked in tables C.37 and C.38.

◦ Dataset D

In dataset D, the F1 result is the same for both classes

(0.94). The one difference between these classes is that “Off”

class is better regarding precision result (0.98), while “On”

class is better regarding recall result (0.98). These results

can be checked in tables C.39 and C.40.

Models developed with AutoGluon In this section, results of the

different models generated by AutoGluon will be shown and described.

• KNeighborsUnif: In this section, results for KNeighborsUnif

model are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “timer.on” (0.88). However, its recall result is

the worst (0.57). In addition, the best recall result has been

obtained by “timer.off” (0.90). Taking into account the F1

metric, the class that yielded the best result is “alarm.off”

93

(0.77). These results can be checked in tables C.41 and

C.42.

◦ Dataset B

In dataset B, regarding precision, the classes with the best

results are “timer.on” (0.75) and “alarm.on” (0.72) clas-

ses. In addition, the best recall results have been obtained

by “alarm.on” (0.78), “reminder.off” (0.78) and “alarm.off”

(0.72) classes. Taking into account the F1 metric, the classes

with best results are “alarm.on” (0.75) and “reminder.off”

(0.73). These results can be checked in tables C.43 and

C.44.

◦ Dataset C

In dataset C, regarding F1, the class that yielded the best

result is “Off” (0.83). However, the worst precision result

is also obtained by “Off” (0.75) while the best precision re-

sult has been obtained by “On” (0.90). These results can

be checked in tables C.45 and C.46.

◦ Dataset D

In dataset D, regarding F1, “Off” class has obtained better

result (0.74). However, the best precision result has been

obtained by “On” (0.77) while the best recall result has

been obtained by “Off” (0.81). These results can be chec-

ked in tables C.47 and C.48.

• KNeighborsDist: In this section, results for KNeighborsDist

model are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result (0.82) is “alarm.on”. In addition, the best re-

call results have been obtained by classes “timer.off” (0.82)

and “alarm.off” (0.82). Taking into account the F1 metric,

the class that yielded the best result is “alarm.off” (0.80)

94 appendix B. Analysis of results by model type

class. These results can be checked in tables C.49 and C.50.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result is “alarm.on” (0.78) class. In addition, the best re-

call results have been obtained by “alarm.on” (0.80) and

“reminder.off” (0.80) classes. Taking into account the F1

metric, the class that yielded the best result is “alarm.on”

(0.79 class. These results can be checked in tables C.51 and

C.52.

◦ Dataset C

In dataset C, regarding F1, the class that yielded the best

result is “Off” (0.82) class. However, the worst recall result

(0.72) has been obtained by “On” while the best precision

result (0.87) has been obtained by “On”. These results can

be checked in tables C.53 and C.54.

◦ Dataset D

In dataset D, regarding F1, “Off” class has obtained bet-

ter result (0.73). However, the best precision result (0.74)

has been obtained by “On” class while the best recall result

(0.78) has been obtained by “Off” class. These results can

be checked in tables C.55 and C.56.

• LightGBMXT: In this section, results for LightGBMXT model

are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.on” (0.97). In addition, the best recall

results have been obtained by classes “timer.off” (0.95) and

“alarm.off” (0.97). Taking into account the F1 metric, the

class that yielded the best result is “alarm.off” (0.92). The-

se results can be checked in tables C.57 and C.58.

95

◦ Dataset B

In dataset B, regarding precision, the class with the best

result (0.97) has been obtained by “alarm.on” class. In ad-

dition, the best recall result (0.97) has been obtained by

“alarm.off” class. Taking into account the F1 metric, the

class that yielded the best result is “alarm.off” (0.93). The-

se results can be checked in tables C.59 and C.60.

◦ Dataset C

In dataset C, regarding F1, the class that yielded the best

result is “Off” (0.90). However, the worst recall result (0.81)

has been obtained by “On” class while the best precision

result (0.96) has been obtained by “On” class. These results

can be checked in tables C.61 and C.62.

◦ Dataset D

In dataset D, regarding F1, both classes have obtained the

same results (0.87). However, the best precision result (0.89)

has been obtained by “On” class while the best recall result

(0.90) has been obtained by “Off” class. These results can

be checked in tables C.63 and C.64.

• LightGBM: In this section, results for LightGBM model are

going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class with the best

result is (0.97) “alarm.on”. In addition, the best recall re-

sults have been obtained by classes “timer.off” (0.90) and

“alarm.off” (0.97). Taking into account the F1 metric, the

class that yielded the best result is “alarm.off” (0.93) class.

These results can be checked in tables C.65 and C.66.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result (0.95) has been obtained by “alarm.on” class. In ad-

96 appendix B. Analysis of results by model type

dition, the best recall result (0.95) has been obtained by

“alarm.off” class. Taking into account the F1 metric, the

class that yielded the best result is “alarm.off” (0.92). The-

se results can be checked in tables C.67 and C.68.

◦ Dataset C

In dataset C, regarding F1, the class with the best result

is “Off” (0.89). However, the worst recall result (0.80) has

been obtained by “Off” class while the best precision result

(0.96) has been obtained by “On” class. These results can

be checked in tables C.69 and C.70.

◦ Dataset D

In dataset D, regarding F1, class “Off” has obtained better

result (0.86) than “On” (0.82). However, the best precision

result (0.89) has been obtained by “On” class while the best

recall result (0.90) has been obtained by “Off” class. These

results can be checked in tables C.71 and C.72.

• RandomForestGini: In this section, results for RandomForest-

Gini model are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.on” (0.92). In addition, the best recall

result (0.93) has been obtained by class “alarm.off”. Taking

into account the F1 metric, the class that yielded the best

result is “alarm.off” (0.93). These results can be checked in

tables C.73 and C.74.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result (0.94) has been obtained by “alarm.on” class. In ad-

dition, the best recall result (0.95) has been obtained by

“alarm.off” class. Taking into account the F1 metric, the

class that yielded the best result is “alarm.off” (0.90). The-

97

se results can be checked in tables C.75 and C.76.

◦ Dataset C

In dataset C, regarding F1, both classes have obtained the

same result (0.86). However, the worst recall result (0.85)

has been also obtained by “Off” class while the best preci-

sion result (0.87) has been obtained by “On” class. These

results can be checked in tables C.77 and C.78.

◦ Dataset D

In dataset D, regarding F1, class “Off” has obtained a bet-

ter result (0.87) than “On” (0.84) class. However, the best

precision result (0.96) has been obtained by “On” class whi-

le the best recall result (0.97) has been obtained by “Off”

class. These results can be checked in tables C.79 and C.80.

• RandomForestEntr: In this section, results for RandomFores-

tEntr model are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.on” (0.92). In addition, the best recall

result (0.88) has been obtained by class “alarm.off”. Taking

into account the F1 metric, the class that yielded the best

results are “alarm.off” (0.90) and “alarm.on” (0.90) classes.

These results can be checked in tables C.81 and C.82.

◦ Dataset B

In dataset B, regarding precision, the class with the best re-

sult is “alarm.on”. In addition, the best recall result (0.95)

has been obtained by “alarm.off”. Taking into account the

F1 metric, the class that yielded the best results are “alarm.off”

(0.89) and “alarm.on” (0.88) classes. These results can be

checked in tables C.83 and C.84.

98 appendix B. Analysis of results by model type

◦ Dataset C

In dataset C, regarding F1, both classes have obtained the

same result (0.86). However, the worst recall result (0.85)

has been also obtained by “Off” class while the best preci-

sion result has been obtained by “On” (0.87) class. These

results can be checked in tables C.85 and C.86.

◦ Dataset D

In dataset D, regarding F1, class “Off” has obtained better

result (0.88) than “On” class (0.85). However, the best pre-

cision result has been obtained by “On” class (0.96) whi-

le the best recall result has been obtained by “Off” class

(0.97). These results can be checked in tables C.87 and

C.88.

• CatBoost: In this section, results for CatBoost model are going

to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best results are “alarm.on” (0.94) and “timer.on” (0.94). In

addition, the best recall result have been obtained by clas-

ses “alarm.off” (0.95) and “timer.off” (0.95). Taking into

account the F1 metric, the class that yielded the best re-

sult is “alarm.off” (0.90). These results can be checked in

tables C.89 and C.90.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result is “reminder.on” (0.91). In addition, the best recall

result (0.93) has been obtained by “reminder.off” class. Ta-

king into account the F1 metric, the class that yielded the

best result is “alarm.on” (0.88). These results can be chec-

ked in tables C.91 and C.92.

◦ Dataset C

99

In dataset C, regarding F1, class “Off” has obtained bet-

ter result (0.90) than class “On” (0.88). However, the best

recall result (0.96) has been obtained by “Off” class while

the best precision result (0.96) has been obtained by “On”

class. These results can be checked in tables C.93 and C.94.

◦ Dataset D

In dataset D, regarding F1, class “Off” have obtained better

results (0.87) than “On” (0.83). However, the best precision

result (0.98) has been obtained by “On” class while the best

recall result (0.98) has been obtained by “Off” class. These

results can be checked in tables C.95 and C.96.

• ExtraTreesGini: In this section, results for ExtraTreesGini mo-

del are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.on” (0.97). In addition, the best recall

result (0.97) has been obtained by class “alarm.off”. Taking

into account the F1 metric, the class that yielded the best

result is “alarm.off” (0.93). These results can be checked in

tables C.97 and C.98.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result is “alarm.on” (0.97). In addition, the best recall re-

sult (0.97) has been obtained by “alarm.off” class . Taking

into account the F1 metric, the class that yielded the best

result is “alarm.off” (0.93). These results can be checked in

tables C.99 and C.100.

◦ Dataset C

In dataset C, regarding F1, both classes have obtained the

same result (0.89). However, the best recall result (0.89) has

been obtained by “Off” class while the best precision result

100 appendix B. Analysis of results by model type

has been obtained by “On” class (0.89). These results can

be checked in tables C.101 and C.102.

◦ Dataset D

In dataset D, regarding F1, class “Off” has obtained bet-

ter result (0.87) than “On” class (0.84). However, the best

precision result (0.95) has been obtained by “On” class whi-

le the best recall result (0.96) has been obtained by “Off”

class. These results can be checked in tables C.103 and

C.104.

• ExtraTreesEntr: In this section, results for ExtraTreesEntr

model are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.off” (0.97). In addition, the best recall

result has been obtained by class “alarm.off” (0.97). Taking

into account the F1 metric, the class that yielded the best

result is “alarm.off” (0.92). These results can be checked in

tables C.105 and C.106.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result is “alarm.on” (0.97). In addition, the best recall re-

sult (0.97) has been obtained by “alarm.off”. Taking in-

to account the F1 metric, the classes with best results are

“alarm.off” (0.94) and “alarm.on” (0.94). These results can

be checked in tables C.107 and C.108.

◦ Dataset C

In dataset C, regarding F1, “Off” class has obtained a bet-

ter result (0.88) than “On” class (0.87). However, the best

recall result (0.89) has been obtained by “Off” class while

the best precision result (0.88) has been obtained by “On”

class. These results can be checked in tables C.109 and

101

C.110.

◦ Dataset D

In dataset D, regarding F1, class “Off” has obtained bet-

ter result (0.87) than “On” class (0.85). However, the best

precision result (0.95) has been obtained by “On” class whi-

le the best recall result (0.96) has been obtained by “Off”

class. These results can be checked in tables C.111 and

C.112.

• NeuralNetFastAI: In this section, results for NeuralNetFastAI

model are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “timer.on” (0.77). In addition, the best recall

result (0.72) has been obtained by class “alarm.on”. Taking

into account the F1 metric, the class that yielded the best

result is “alarm.on” (0.67). These results can be checked in

tables C.113 and C.114.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result (0.56) has been obtained by “alarm.on”. In addition,

the best result (0.62) has been obtained by “timer.on”. Ta-

king into account the F1 metric, the class that yielded the

best result is “timer.on” (0.57). These results can be chec-

ked in tables C.115 and C.116.

◦ Dataset C

In dataset C, regarding F1, both classes have obtained prac-

tically the same result. The difference is minimum (0.76 -

0.75). However, the best recall result (0.76) has been obtai-

ned by “Off” class while the best precision result (0.76) has

been obtained by “On” class. These results can be checked

in tables C.117 and C.118.

102 appendix B. Analysis of results by model type

◦ Dataset D

In dataset D, regarding F1, both classes have obtained prac-

tically the same result. The difference is minimum (0.68 -

0.69). However, the best precision result (0.69) has been ob-

tained by “Off” class while the best recall result (0.70) has

been obtained by “On” class. These results can be checked

in tables C.119 and C.120.

• XGBoost: In this section, results for XGBoost model are going

to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.on” (0.97). In addition, the best recall

result (0.97) has been obtained by class “alarm.off”. Taking

into account the F1 metric, the class that yielded the best

result is “alarm.off” (0.91). These results can be checked in

tables C.121 and C.122.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result (0.97) is “alarm.on”. In addition, the best recall re-

sult (0.97) is “alarm.off”. Taking into account the F1 me-

tric, the classes with best results are “alarm.off” (0.95) and

“alarm.on” (0.95). These results can be checked in tables

C.123 and C.124.

◦ Dataset C

In dataset C, regarding F1, the class that yielded the best

result is “Off” (0.88). However, the best recall result (0.95)

has been obtained by “Off” class while the best precision

result (0.94) has been obtained by “On” class. These results

can be checked in tables C.125 and C.126.

103

◦ Dataset D

In dataset D, regarding F1, both classes have obtained prac-

tically the same result. The difference is minimum (0.86 -

0.85). However, the best precision result (0.89) has been ob-

tained by “On” class while the best recall result (0.90) has

been obtained by “Off” class. These results can be checked

in tables C.127 and C.128.

• NeuralNetTorch: In this section, results for NeuralNetTorch

model are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “timer.on” (0.72). In addition, the best recall

result has been obtained by class “timer.off” (0.70). Taking

into account the F1 metric, the class that yielded the best

result is “timer.on” (0.68). These results can be checked in

tables C.129 and C.130.

◦ Dataset B

In dataset B, regarding precision, the class with the best re-

sult is “alarm.on” (0.55). In addition, the best recall result

is “alarm.on” (0.65). Taking into account the F1 metric,

the class that yielded the best result is “alarm.on” (0.60).

These results can be checked in tables C.131 and C.132.

◦ Dataset C

In dataset C, regarding F1, the class that yielded the best

result is “On” (0.73). However, the best recall result (0.74)

has been obtained by “On” class while the best precision

result (0.73) has been obtained by “Off” class. These results

can be checked in tables C.133 and C.134.

◦ Dataset D

In dataset D, regarding F1, the “Off” class has obtained

a better result (0.73) than “On” class (0.69). However, the

104 appendix B. Analysis of results by model type

best precision result (0.74) has been obtained by “On” class

while the best recall result (0.78) has been obtained by

“Off” class. These results can be checked in tables C.135

and C.136.

• LightGBMLarge: In this section, results for LightGBMLarge

model are going to be described and shown in a table.

◦ Dataset A

In dataset A, regarding precision, the class that yielded the

best result is “alarm.on” (0.90). In addition, the best recall

result has been obtained by class “alarm.off” (0.90). Taking

into account the F1 metric, the classes with best results are

“alarm.off” (0.89) and “alarm.on” (0.89). These results can

be checked in tables C.137 and C.138.

◦ Dataset B

In dataset B, regarding precision, the class with the best

result is “alarm.on” (0.97). In addition, the best recall re-

sult is “alarm.off” (0.97). Taking into account the F1 me-

tric, the classes with best results are “alarm.on” (0.94) and

“alarm.off” (0.94). These results can be checked in tables

C.139 and C.140.

◦ Dataset C

In dataset C, regarding F1, the class that yielded the best

result is “Off” (0.88). However, the best recall result (0.95)

has been obtained by “Off” class while the best precision

result (0.94) has been obtained by “On” class. These results

can be checked in tables C.141 and C.142.

◦ Dataset D

In dataset D, regarding F1, the “Off” class result (0.86)

is better than “On” class result (0.84). However, the best

precision result (0.90) has been obtained by “On” class whi-

le the best recall result (0.92) has been obtained by “Off”

105

class. These results can be checked in tables C.143 and

C.144.

• WeightedEnsemble L2: In this section, results for Weighte-

dEnsemble L2 model are going to be described and shown in a

table.

◦ Dataset A

In dataset A, regarding precision, the classes with best re-

sults are “alarm.on” (0.88) and “alarm.off” (0.88). In ad-

dition, the best recall results have been obtained by clas-

ses “alarm.off” (0.88) and “alarm.on” (0.88). Taking into

account the F1 metric, the classes with best results are

“alarm.off” (0.88) and “alarm.on” (0.88). These results can

be checked in tables

◦ LUIS: In this section, results for LUIS model are going to

be described and shown in a table.

⋄ Dataset A

In dataset A, regarding precision, the class that yielded

the best result is “alarm.on” (1.00). However, the best

recall result has been obtained by “alarm.off” (1.00).

Taking into account the F1 metric, the class that yiel-

ded the best results are “alarm.on” (0.99) and “alarm.off”

(0.99). These results can be checked in tables C.161

and C.162.

⋄ Dataset B

In dataset B, regarding precision, the classes with best

results are “alarm.on” (0.97) and “alarm.off” (0.97).

However, the classes with best recall results are also

“alarm.on” (0.97), “alarm.off” (0.97), beside “timer.on”

(0.97). Taking into account the F1 metric, the class

that yielded the best results have been obtained by

“alarm.on” (0.97) and “alarm.off” (0.97). These results

can be checked in tables C.163 and C.164.

106 appendix B. Analysis of results by model type

⋄ Dataset C

In dataset C, the F1 metric is the same for both classes

(0.96). However, while “Off” class has obtained a better

result regarding recall (0.97), “On” class has obtained a

better result concerning precision (0.97). These results

can be checked in tables C.165 and C.166.

⋄ Dataset D

In dataset D, the F1 metric is the same for both classes

(0.97). However, while “Off” class has obtained a better

result regarding recall (0.98), “On” class has obtained a

better result concerning precision (0.98). These results

can be checked in tables C.167 and C.168.

Appendix C

Tables

Class Precision Recall F1 Sample

alarm.off 0.63 1.00 0.78 40

alarm.on 1.00 0.42 0.60 40

timer.off 0.91 1.00 0.95 40

timer.on 0.97 0.90 0.94 40

Table C.1: Precision, recall and F1 by class for LSTM model and Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 40 0 0 0

alarm.on 22 17 0 1

timer.off 0 0 40 0

timer.on 0 0 4 36

Table C.2: Confusion matrix for LSTM model and Dataset A

Class Precision Recall F1 Sample

alarm.off 1.00 1.00 1.00 40

alarm.on 1.00 1.00 1.00 40

reminder.off 0.62 1.00 0.76 40

reminder.on 1.00 0.35 0.52 40

timer.off 0.87 1.00 0.93 40

timer.on 0.97 0.88 0.92 40

Table C.3: Precision, recall and F1 by class for LSTM model and Dataset B

108 appendix C. Analysis of results by model type

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 40 0 0 0 0 0

alarm.on 0 40 0 0 0 0

reminder.off 0 0 40 0 0 0

reminder.on 0 0 5 35 0 0

timer.off 0 0 0 0 40 0

timer.on 0 0 0 1 25 14

Table C.4: Confusion matrix for LSTM model and Dataset B

Class Precision Recall F1 Sample

Off 0.91 0.99 0.95 80

On 0.99 0.91 0.95 80

Table C.5: Precision, recall and F1 by class for LSTM model and Dataset C

Off On

Off 79 1

On 7 73

Table C.6: Confusion matrix for LSTM model and Dataset C

Class Precision Recall F1 Sample

Off 0.77 0.97 0.86 120

On 0.97 0.72 0.82 120

Table C.7: Precision, recall and F1 by class for LSTM model and Dataset D

Off On

Off 117 3

On 34 86

Table C.8: Confusion matrix for LSTM model and Dataset D

109

Class Precision Recall F1 Sample

alarm.off 0.88 0.95 0.92 40

alarm.on 0.93 0.95 0.94 40

timer.off 0.89 0.82 0.86 40

timer.on 0.88 0.88 0.88 40

Table C.9: Precision, recall and F1 by class for SVM model and Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 38 2 0 0

alarm.on 2 38 0 0

timer.off 2 0 33 5

timer.on 1 1 3 35

Table C.10: Confusion matrix for SVM model and Dataset A

Class Precision Recall F1 Sample

alarm.off 0.81 0.95 0.87 40

alarm.on 0.90 0.95 0.93 40

reminder.off 0.88 0.88 0.88 40

reminder.on 0.94 0.78 0.85 40

timer.off 0.92 0.82 0.87 40

timer.on 0.81 0.88 0.84 40

Table C.11: Precision, recall and F1 by class for SVM model and Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 38 2 0 0 0 0

alarm.on 2 38 0 0 0 0

reminder.off 2 0 33 5 0 0

reminder.on 1 1 3 35 0 0

timer.off 4 0 0 0 35 1

timer.on 0 1 0 3 5 31

Table C.12: Confusion matrix for SVM model and Dataset B

110 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.93 0.95 0.94 80

On 0.95 0.93 0.94 80

Table C.13: Precision, recall and F1 by class for SVM model and Dataset C

Off On

Off 76 4

On 6 74

Table C.14: Confusion matrix for SVM model and Dataset C

Class Precision Recall F1 Sample

Off 0.91 0.96 0.93 120

On 0.96 0.90 0.93 120

Table C.15: Precision, recall and F1 by class for SVM model and Dataset D

Off On

Off 115 5

On 12 118

Table C.16: Confusion matrix for SVM model and Dataset D

Class Precision Recall F1 Sample

alarm.off 1.00 0.95 0.97 40

alarm.on 0.95 1.00 0.98 40

timer.off 1.00 0.93 0.96 40

timer.on 0.93 1.00 0.96 40

Table C.17: Precision, recall and F1 by class for BERT model and Dataset
A

111

alarm.off alarm.on timer.off timer.on

alarm.off 38 2 0 0

alarm.on 40 0 0 0

timer.off 0 0 37 3

timer.on 0 0 0 40

Table C.18: Confusion matrix for BERT model and Dataset A

Class Precision Recall F1 Sample

alarm.off 1.00 0.97 0.99 40

alarm.on 0.98 1.00 0.99 40

reminder.off 1.00 0.95 0.97 40

reminder.on 0.95 1.00 0.98 40

timer.off 1.00 0.93 0.96 40

timer.on 0.93 1.00 0.96 40

Table C.19: Precision, recall and F1 by class for BERT model and Dataset
B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 0 40 0 0 0 0

reminder.off 0 0 38 2 0 0

reminder.on 0 0 0 40 0 0

timer.off 0 0 0 0 37 3

timer.on 0 0 0 0 0 40

Table C.20: Confusion matrix for BERT model and Dataset B

Class Precision Recall F1 Sample

Off 1.00 0.96 0.98 80

On 0.96 1.00 0.98 80

Table C.21: Precision, recall and F1 by class for BERT model and Dataset
C

112 appendix C. Analysis of results by model type

Off On

Off 77 3

On 0 80

Table C.22: Confusion matrix for BERT model and Dataset C

Class Precision Recall F1 Sample

Off 0.96 0.78 0.86 120

On 0.82 0.97 0.89 120

Table C.23: Precision, recall and F1 by class for BERT model and Dataset
D

Off On

Off 94 26

On 4 116

Table C.24: Confusion matrix for BERT model and Dataset D

Class Precision Recall F1 Sample

alarm.off 1.00 0.95 0.97 40

alarm.on 0.98 1.00 0.99 40

timer.off 0.97 0.97 0.97 40

timer.on 0.98 1.00 0.99 40

Table C.25: Precision, recall and F1 by class for RoBERTa model and Da-
taset A

alarm.off alarm.on timer.off timer.on

alarm.off 38 1 1 0

alarm.on 0 40 0 0

timer.off 0 0 39 1

timer.on 0 0 0 40

Table C.26: Confusion matrix for RoBERTa model and Dataset A

113

Class Precision Recall F1 Sample

alarm.off 0.98 1.00 0.99 40

alarm.on 1.00 0.97 0.99 40

reminder.off 1.00 1.00 1.00 40

reminder.on 1.00 1.00 1.00 40

timer.off 0.91 0.97 0.94 40

timer.on 0.97 0.90 0.94 40

Table C.27: Precision, recall and F1 by class for RoBERTa model and Da-
taset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 40 0 0 0 0 0

alarm.on 1 39 0 0 0 0

reminder.off 0 0 40 0 0 0

reminder.on 0 0 0 40 0 0

timer.off 0 0 0 0 39 1

timer.on 0 0 0 0 4 36

Table C.28: Confusion matrix for RoBERTa model and Dataset B

Class Precision Recall F1 Sample

Off 0.97 0.97 0.97 80

On 0.97 0.97 0.97 80

Table C.29: Precision, recall and F1 by class for RoBERTa model and Da-
taset C

Off On

Off 78 2

On 2 78

Table C.30: Confusion matrix for RoBERTa model and Dataset C

114 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.87 0.90 0.89 120

On 0.90 0.87 0.88 120

Table C.31: Precision, recall and F1 by class for RoBERTa model and Da-
taset D

Off On

Off 108 12

On 16 104

Table C.32: Confusion matrix for RoBERTa model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.98 1.00 0.99 40

alarm.on 1.00 0.97 0.99 40

timer.off 1.00 0.95 0.97 40

timer.on 0.95 1.00 0.98 40

Table C.33: Precision, recall and F1 by class for XLNet model and Dataset
A

alarm.off alarm.on timer.off timer.on

alarm.off 40 0 0 0

alarm.on 1 39 0 0

timer.off 0 0 38 2

timer.on 0 0 0 40

Table C.34: Confusion matrix for XLNet model and Dataset A

115

Class Precision Recall F1 Sample

alarm.off 0.98 1.00 0.99 40

alarm.on 1.00 0.97 0.99 40

reminder.off 1.00 0.93 0.96 40

reminder.on 0.93 1.00 0.96 40

timer.off 1.00 0.95 0.97 40

timer.on 0.95 1.00 0.98 40

Table C.35: Precision, recall and F1 by class for XLNet model and Dataset
B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 40 0 0 0 0 0

alarm.on 1 39 0 0 0 0

reminder.off 0 0 37 3 0 0

reminder.on 0 0 0 40 0 0

timer.off 0 0 0 0 38 2

timer.on 0 0 0 0 0 40

Table C.36: Confusion matrix for XLNet model and Dataset B

Class Precision Recall F1 Sample

Off 1.00 0.94 0.97 80

On 0.94 1.00 0.97 80

Table C.37: Precision, recall and F1 by class for XLNet model and Dataset
C

Off On

Off 75 5

On 0 80

Table C.38: Confusion matrix for XLNet model and Dataset C

116 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.98 0.90 0.94 120

On 0.91 0.98 0.94 120

Table C.39: Precision, recall and F1 by class for XLNet model and Dataset
D

Off On

Off 108 12

On 2 118

Table C.40: Confusion matrix for XLNet model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.72 0.82 0.77 40

alarm.on 0.82 0.68 0.74 40

timer.off 0.65 0.90 0.76 40

timer.on 0.88 0.57 0.70 40

Table C.41: Precision, recall and F1 by class for KNeighborsUnif model and
Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 33 4 3 0

alarm.on 12 27 0 1

timer.off 1 1 36 2

timer.on 0 1 16 23

Table C.42: Confusion matrix for KNeighborsUnif model and Dataset A

117

Class Precision Recall F1 Sample

alarm.off 0.66 0.72 0.69 40

alarm.on 0.72 0.78 0.75 40

reminder.off 0.69 0.78 0.73 40

reminder.on 0.61 0.57 0.59 40

timer.off 0.60 0.62 0.61 40

timer.on 0.75 0.53 0.62 40

Table C.43: Precision, recall and F1 by class for KNeighborsUnif model and
Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 29 9 0 1 1 0

alarm.on 6 31 0 0 2 1

reminder.off 2 0 31 6 0 1

reminder.on 2 2 11 23 0 2

timer.off 5 0 1 6 25 3

timer.on 0 1 2 2 14 21

Table C.44: Confusion matrix for KNeighborsUnif model and Dataset B

Class Precision Recall F1 Sample

Off 0.75 0.93 0.83 80

On 0.90 0.69 0.78 80

Table C.45: Precision, recall and F1 by class for KNeighborsUnif model and
Dataset C

Off On

Off 74 6

On 25 55

Table C.46: Confusion matrix for KNeighborsUnif model and Dataset C

118 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.69 0.81 0.74 120

On 0.77 0.63 0.69 120

Table C.47: Precision, recall and F1 by class for KNeighborsUnif model and
Dataset D

Off On

Off 97 23

On 44 76

Table C.48: Confusion matrix for KNeighborsUnif model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.77 0.82 0.80 40

alarm.on 0.82 0.70 0.76 40

timer.off 0.65 0.82 0.73 40

timer.on 0.78 0.62 0.69 40

Table C.49: Precision, recall and F1 by class for KNeighborsDist model and
Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 33 4 3 0

alarm.on 9 28 1 2

timer.off 1 1 33 5

timer.on 0 1 14 25

Table C.50: Confusion matrix for KNeighborsDist model and Dataset A

119

Class Precision Recall F1 Sample

alarm.off 0.71 0.72 0.72 40

alarm.on 0.78 0.80 0.79 40

reminder.off 0.71 0.80 0.75 40

reminder.on 0.61 0.62 0.62 40

timer.off 0.62 0.60 0.61 40

timer.on 0.70 0.57 0.63 40

Table C.51: Precision, recall and F1 by class for KNeighborsDist model and
Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 29 8 0 2 1 0

alarm.on 5 32 0 0 2 1

reminder.off 1 0 32 6 0 1

reminder.on 2 0 11 25 0 2

timer.off 4 0 0 6 24 6

timer.on 0 1 2 2 12 23

Table C.52: Confusion matrix for KNeighborsDist model and Dataset B

Class Precision Recall F1 Sample

Off 0.76 0.89 0.82 80

On 0.87 0.72 0.79 80

Table C.53: Precision, recall and F1 by class for KNeighborsDist model and
Dataset C

Off On

Off 71 9

On 22 58

Table C.54: Confusion matrix for KNeighborsDist model and Dataset C

120 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.69 0.78 0.73 120

On 0.74 0.65 0.69 120

Table C.55: Precision, recall and F1 by class for KNeighborsDist model and
Dataset D

Off On

Off 93 27

On 42 78

Table C.56: Confusion matrix for KNeighborsDist model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.87 0.97 0.92 40

alarm.on 0.97 0.85 0.91 40

timer.off 0.81 0.95 0.87 40

timer.on 0.94 0.78 0.85 40

Table C.57: Precision, recall and F1 by class for LightGBMXT model and
Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 39 1 0 0

alarm.on 6 34 0 0

timer.off 0 0 38 2

timer.on 0 0 9 31

Table C.58: Confusion matrix for LightGBMXT model and Dataset A

121

Class Precision Recall F1 Sample

alarm.off 0.89 0.97 0.93 40

alarm.on 0.97 0.88 0.92 40

reminder.off 0.77 0.90 0.83 40

reminder.on 0.89 0.82 0.86 40

timer.off 0.79 0.82 0.80 40

timer.on 0.91 0.78 0.84 40

Table C.59: Precision, recall and F1 by class for LightGBMXT model and
Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 5 35 0 0 0 0

reminder.off 0 0 36 4 0 0

reminder.on 0 0 7 33 0 0

timer.off 0 0 4 0 33 3

timer.on 0 0 0 0 9 31

Table C.60: Confusion matrix for LightGBMXT model and Dataset B

Class Precision Recall F1 Sample

Off 0.84 0.96 0.90 80

On 0.96 0.81 0.88 80

Table C.61: Precision, recall and F1 by class for LightGBMXT model and
Dataset C

Off On

Off 77 3

On 15 65

Table C.62: Confusion matrix for LightGBMXT model and Dataset C

122 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.85 0.90 0.87 120

On 0.89 0.84 0.87 120

Table C.63: Precision, recall and F1 by class for LightGBMXT model and
Dataset D

Off On

Off 108 12

On 19 101

Table C.64: Confusion matrix for LightGBMXT model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.89 0.97 0.93 40

alarm.on 0.97 0.88 0.92 40

timer.off 0.80 0.90 0.85 40

timer.on 0.89 0.78 0.83 40

Table C.65: Precision, recall and F1 by class for LightGBM model and Da-
taset A

alarm.off alarm.on timer.off timer.on

alarm.off 39 1 0 0

alarm.on 5 35 0 0

timer.off 0 0 36 4

timer.on 0 0 9 31

Table C.66: Confusion matrix for LightGBM model and Dataset A

123

Class Precision Recall F1 Sample

alarm.off 0.88 0.95 0.92 40

alarm.on 0.95 0.88 0.91 40

reminder.off 0.73 0.93 0.81 40

reminder.on 0.90 0.68 0.77 40

timer.off 0.76 0.70 0.73 40

timer.on 0.74 0.78 0.76 40

Table C.67: Precision, recall and F1 by class for LightGBM model and Da-
taset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 38 2 0 0 0 0

alarm.on 5 35 0 0 0 0

reminder.off 0 0 37 3 0 0

reminder.on 0 0 13 27 0 0

timer.off 0 0 1 0 28 11

timer.on 0 0 0 0 9 31

Table C.68: Confusion matrix for LightGBM model and Dataset B

Class Precision Recall F1 Sample

Off 0.83 0.96 0.89 80

On 0.96 0.80 0.87 80

Table C.69: Precision, recall and F1 by class for LightGBM model and Da-
taset C

Off On

Off 77 3

On 16 64

Table C.70: Confusion matrix for LightGBM model and Dataset C

124 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.82 0.90 0.86 120

On 0.89 0.80 0.84 120

Table C.71: Precision, recall and F1 by class for LightGBM model and Da-
taset D

Off On

Off 108 12

On 24 96

Table C.72: Confusion matrix for LightGBM model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.88 0.93 0.90 40

alarm.on 0.92 0.88 0.90 40

timer.off 0.82 0.80 0.81 40

timer.on 0.80 0.82 0.81 40

Table C.73: Precision, recall and F1 by class for RandomForestGini model
and Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 37 3 0 0

alarm.on 5 35 0 0

timer.off 0 0 32 8

timer.on 0 0 7 33

Table C.74: Confusion matrix for RandomForestGini model and Dataset A

125

Class Precision Recall F1 Sample

alarm.off 0.86 0.95 0.90 40

alarm.on 0.94 0.85 0.89 40

reminder.off 0.81 0.88 0.84 40

reminder.on 0.86 0.80 0.83 40

timer.off 0.81 0.72 0.76 40

timer.on 0.75 0.82 0.79 40

Table C.75: Precision, recall and F1 by class for RandomForestGini model
and Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 38 2 0 0 0 0

alarm.on 6 34 0 0 0 0

reminder.off 0 0 35 5 0 0

reminder.on 0 0 8 32 0 0

timer.off 0 0 0 0 29 11

timer.on 0 0 0 0 7 33

Table C.76: Confusion matrix for RandomForestGini model and Dataset B

Class Precision Recall F1 Sample

Off 0.85 0.88 0.86 80

On 0.87 0.85 0.86 80

Table C.77: Precision, recall and F1 by class for RandomForestGini model
and Dataset C

Off On

Off 70 10

On 12 68

Table C.78: Confusion matrix for RandomForestGini model and Dataset C

126 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.79 0.97 0.87 120

On 0.96 0.74 0.84 120

Table C.79: Precision, recall and F1 by class for RandomForestGini model
and Dataset D

Off On

Off 116 4

On 31 89

Table C.80: Confusion matrix for RandomForestGini model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.88 0.93 0.90 40

alarm.on 0.92 0.88 0.90 40

timer.off 0.84 0.80 0.82 40

timer.on 0.81 0.85 0.83 40

Table C.81: Precision, recall and F1 by class for RandomForestEntr model
and Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 37 3 0 0

alarm.on 5 35 0 0

timer.off 0 0 32 8

timer.on 0 0 6 34

Table C.82: Confusion matrix for RandomForestEntr model and Dataset A

127

Class Precision Recall F1 Sample

alarm.off 0.84 0.95 0.89 40

alarm.on 0.94 0.82 0.88 40

reminder.off 0.81 0.88 0.84 40

reminder.on 0.86 0.80 0.83 40

timer.off 0.81 0.72 0.76 40

timer.on 0.75 0.82 0.79 40

Table C.83: Precision, recall and F1 by class for RandomForestEntr model
and Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 7 33 0 0 0 0

reminder.off 0 0 35 5 0 0

reminder.on 0 0 8 32 0 0

timer.off 0 0 0 0 29 11

timer.on 0 0 0 0 7 33

Table C.84: Confusion matrix for RandomForestEntr model and Dataset B

Class Precision Recall F1 Sample

Off 0.85 0.88 0.86 80

On 0.87 0.85 0.86 80

Table C.85: Precision, recall and F1 by class for RandomForestEntr model
and Dataset C

Off On

Off 70 10

On 12 68

Table C.86: Confusion matrix for RandomForestEntr model and Dataset C

128 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.80 0.97 0.88 120

On 0.96 0.76 0.85 120

Table C.87: Precision, recall and F1 by class for RandomForestEntr model
and Dataset D

Off On

Off 116 4

On 29 91

Table C.88: Confusion matrix for RandomForestEntr model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.86 0.95 0.90 40

alarm.on 0.94 0.85 0.89 40

timer.off 0.81 0.95 0.87 40

timer.on 0.94 0.78 0.85 40

Table C.89: Precision, recall and F1 by class for CatBoost model and Dataset
A

alarm.off alarm.on timer.off timer.on

alarm.off 38 2 0 0

alarm.on 6 34 0 0

timer.off 0 0 38 2

timer.on 0 0 9 31

Table C.90: Confusion matrix for CatBoost model and Dataset A

129

Class Precision Recall F1 Sample

alarm.off 0.89 0.85 0.87 40

alarm.on 0.86 0.90 0.88 40

reminder.off 0.77 0.93 0.84 40

reminder.on 0.91 0.72 0.81 40

timer.off 0.83 0.88 0.85 40

timer.on 0.87 0.82 0.85 40

Table C.91: Precision, recall and F1 by class for CatBoost model and Dataset
B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 34 6 0 0 0 0

alarm.on 4 36 0 0 0 0

reminder.off 0 0 37 3 0 0

reminder.on 0 0 11 29 0 0

timer.off 0 0 0 0 35 5

timer.on 0 0 0 0 7 33

Table C.92: Confusion matrix for CatBoost model and Dataset B

Class Precision Recall F1 Sample

Off 0.84 0.96 0.90 80

On 0.96 0.81 0.88 80

Table C.93: Precision, recall and F1 by class for CatBoost model and Dataset
C

Off On

Off 77 3

On 15 65

Table C.94: Confusion matrix for CatBoost model and Dataset C

130 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.78 0.98 0.87 120

On 0.98 0.72 0.83 120

Table C.95: Precision, recall and F1 by class for CatBoost model and Dataset
D

Off On

Off 118 2

On 34 86

Table C.96: Confusion matrix for CatBoost model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.89 0.97 0.93 40

alarm.on 0.97 0.88 0.92 40

timer.off 0.80 0.82 0.81 40

timer.on 0.82 0.80 0.81 40

Table C.97: Precision, recall and F1 by class for ExtraTreesGini model and
Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 38 2 0 0

alarm.on 6 34 0 0

timer.off 0 0 38 2

timer.on 0 0 9 31

Table C.98: Confusion matrix for ExtraTreesGini model and Dataset A

131

Class Precision Recall F1 Sample

alarm.off 0.89 0.97 0.93 40

alarm.on 0.97 0.88 0.92 40

reminder.off 0.88 0.88 0.88 40

reminder.on 0.88 0.88 0.88 40

timer.off 0.83 0.75 0.79 40

timer.on 0.77 0.85 0.81 40

Table C.99: Precision, recall and F1 by class for ExtraTreesGini model and
Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 5 35 0 0 0 0

reminder.off 0 0 35 5 0 0

reminder.on 0 0 5 35 0 0

timer.off 0 0 0 0 30 10

timer.on 0 0 0 0 6 34

Table C.100: Confusion matrix for ExtraTreesGini model and Dataset B

Class Precision Recall F1 Sample

Off 0.89 0.89 0.89 80

On 0.89 0.89 0.89 80

Table C.101: Precision, recall and F1 by class for ExtraTreesGini model and
Dataset C

Off On

Off 71 9

On 9 71

Table C.102: Confusion matrix for ExtraTreesGini model and Dataset C

132 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.80 0.96 0.87 120

On 0.95 0.76 0.84 120

Table C.103: Precision, recall and F1 by class for ExtraTreesGini model and
Dataset D

Off On

Off 115 5

On 29 91

Table C.104: Confusion matrix for ExtraTreesGini model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.89 0.97 0.92 40

alarm.on 0.97 0.88 0.91 40

timer.off 0.81 0.85 0.83 40

timer.on 0.84 0.80 0.82 40

Table C.105: Precision, recall and F1 by class for ExtraTreesEntr model and
Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 38 2 0 0

alarm.on 5 35 0 0

timer.off 0 0 34 6

timer.on 0 0 8 32

Table C.106: Confusion matrix for ExtraTreesEntr model and Dataset A

133

Class Precision Recall F1 Sample

alarm.off 0.91 0.97 0.94 40

alarm.on 0.97 0.90 0.94 40

reminder.off 0.90 0.88 0.89 40

reminder.on 0.88 0.90 0.89 40

timer.off 0.81 0.75 0.78 40

timer.on 0.77 0.82 0.80 40

Table C.107: Precision, recall and F1 by class for ExtraTreesEntr model and
Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 38 2 0 0 0 0

alarm.on 5 35 0 0 0 0

reminder.off 0 0 35 5 0 0

reminder.on 0 0 4 36 0 0

timer.off 0 0 0 0 30 10

timer.on 0 0 0 0 7 33

Table C.108: Confusion matrix for ExtraTreesEntr model and Dataset B

Class Precision Recall F1 Sample

Off 0.87 0.89 0.88 80

On 0.88 0.86 0.87 80

Table C.109: Precision, recall and F1 by class for ExtraTreesEntr model and
Dataset C

Off On

Off 71 9

On 11 69

Table C.110: Confusion matrix for ExtraTreesEntr model and Dataset C

134 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.80 0.96 0.87 120

On 0.95 0.77 0.85 120

Table C.111: Precision, recall and F1 by class for ExtraTreesEntr model and
Dataset D

Off On

Off 115 5

On 28 92

Table C.112: Confusion matrix for ExtraTreesEntr model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.54 0.53 0.53 40

alarm.on 0.63 0.72 0.67 40

timer.off 0.60 0.68 0.64 40

timer.on 0.77 0.57 0.66 40

Table C.113: Precision, recall and F1 by class for NeuralNetFastAI model
and Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 21 14 4 1

alarm.on 6 29 3 2

timer.off 8 1 27 4

timer.on 4 2 11 23

Table C.114: Confusion matrix for NeuralNetFastAI model and Dataset A

135

Class Precision Recall F1 Sample

alarm.off 0.50 0.45 0.47 40

alarm.on 0.56 0.55 0.56 40

reminder.off 0.28 0.20 0.23 40

reminder.on 0.30 0.33 0.31 40

timer.off 0.27 0.30 0.28 40

timer.on 0.52 0.62 0.57 40

Table C.115: Precision, recall and F1 by class for NeuralNetFastAI model
and Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 18 13 0 5 2 2

alarm.on 8 22 2 5 0 3

reminder.off 2 0 8 7 16 7

reminder.on 3 4 5 13 8 7

timer.off 3 0 11 10 12 4

timer.on 2 0 3 3 7 25

Table C.116: Confusion matrix for NeuralNetFastAI model and Dataset B

Class Precision Recall F1 Sample

Off 0.75 0.76 0.76 80

On 0.76 0.75 0.75 80

Table C.117: Precision, recall and F1 by class for NeuralNetFastAI model
and Dataset C

Off On

Off 61 19

On 20 60

Table C.118: Confusion matrix for NeuralNetFastAI model and Dataset C

136 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.69 0.67 0.68 120

On 0.68 0.70 0.69 120

Table C.119: Precision, recall and F1 by class for NeuralNetFastAI model
and Dataset D

Off On

Off 61 19

On 28 92

Table C.120: Confusion matrix for NeuralNetFastAI model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.85 0.97 0.91 40

alarm.on 0.97 0.82 0.89 40

timer.off 0.80 0.90 0.85 40

timer.on 0.89 0.78 0.83 40

Table C.121: Precision, recall and F1 by class for XGBoost model and Da-
taset A

alarm.off alarm.on timer.off timer.on

alarm.off 39 1 0 0

alarm.on 7 33 0 0

timer.off 0 0 36 4

timer.on 0 0 9 31

Table C.122: Confusion matrix for XGBoost model and Dataset A

137

Class Precision Recall F1 Sample

alarm.off 0.91 0.97 0.95 40

alarm.on 0.97 0.90 0.95 40

reminder.off 0.90 0.88 0.89 40

reminder.on 0.88 0.90 0.89 40

timer.off 0.81 0.75 0.78 40

timer.on 0.77 0.82 0.80 40

Table C.123: Precision, recall and F1 by class for XGBoost model and Da-
taset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 3 37 0 0 0 0

reminder.off 0 0 36 4 0 0

reminder.on 0 0 6 34 0 0

timer.off 0 0 2 0 30 8

timer.on 0 0 0 0 8 32

Table C.124: Confusion matrix for XGBoost model and Dataset B

Class Precision Recall F1 Sample

Off 0.83 0.95 0.88 80

On 0.94 0.80 0.86 80

Table C.125: Precision, recall and F1 by class for XGBoost model and Da-
taset C

Off On

Off 76 4

On 16 64

Table C.126: Confusion matrix for XGBoost model and Dataset C

138 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.82 0.90 0.86 120

On 0.89 0.81 0.85 120

Table C.127: Precision, recall and F1 by class for XGBoost model and Da-
taset D

Off On

Off 108 12

On 23 97

Table C.128: Confusion matrix for XGBoost model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.55 0.53 0.54 40

alarm.on 0.63 0.65 0.64 40

timer.off 0.62 0.70 0.66 40

timer.on 0.72 0.65 0.68 40

Table C.129: Precision, recall and F1 by class for NeuralNetTorch model and
Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 21 14 4 1

alarm.on 6 26 3 5

timer.off 7 1 28 4

timer.on 4 0 10 26

Table C.130: Confusion matrix for NeuralNetTorch model and Dataset A

139

Class Precision Recall F1 Sample

alarm.off 0.49 0.50 0.49 40

alarm.on 0.55 0.65 0.60 40

reminder.off 0.19 0.07 0.11 40

reminder.on 0.37 0.25 0.30 40

timer.off 0.29 0.45 0.35 40

timer.on 0.51 0.60 0.55 40

Table C.131: Precision, recall and F1 by class for NeuralNetTorch model and
Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 20 14 0 0 0 0

alarm.on 6 26 2 3 0 3

reminder.off 5 1 3 1 23 7

reminder.on 3 6 3 10 10 8

timer.off 3 0 5 10 18 4

timer.on 4 0 3 2 7 24

Table C.132: Confusion matrix for NeuralNetTorch model and Dataset B

Class Precision Recall F1 Sample

Off 0.73 0.71 0.72 80

On 0.72 0.74 0.73 80

Table C.133: Precision, recall and F1 by class for NeuralNetTorch model and
Dataset C

Off On

Off 57 23

On 21 59

Table C.134: Confusion matrix for NeuralNetTorch model and Dataset C

140 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.68 0.78 0.73 120

On 0.74 0.64 0.69 120

Table C.135: Precision, recall and F1 by class for NeuralNetTorch model and
Dataset D

Off On

Off 93 27

On 43 77

Table C.136: Confusion matrix for NeuralNetTorch model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.88 0.90 0.89 40

alarm.on 0.90 0.88 0.89 40

timer.off 0.82 0.82 0.82 40

timer.on 0.82 0.82 0.82 40

Table C.137: Precision, recall and F1 by class for LightGBMLarge model
and Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 36 4 0 0

alarm.on 5 35 0 0

timer.off 0 0 37 3

timer.on 0 0 7 33

Table C.138: Confusion matrix for LightGBMLarge model and Dataset A

141

Class Precision Recall F1 Sample

alarm.off 0.91 0.97 0.94 40

alarm.on 0.97 0.90 0.94 40

reminder.off 0.75 0.95 0.84 40

reminder.on 0.94 0.72 0.82 40

timer.off 0.79 0.75 0.77 40

timer.on 0.80 0.80 0.80 40

Table C.139: Precision, recall and F1 by class for LightGBMLarge model
and Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 4 36 0 0 0 0

reminder.off 0 0 38 2 0 0

reminder.on 0 0 11 29 0 0

timer.off 0 0 2 0 30 84

timer.on 0 0 0 0 8 32

Table C.140: Confusion matrix for LightGBMLarge model and Dataset B

Class Precision Recall F1 Sample

Off 0.82 0.95 0.88 80

On 0.94 0.79 0.86 80

Table C.141: Precision, recall and F1 by class for LightGBMLarge model
and Dataset C

Off On

Off 57 23

On 21 59

Table C.142: Confusion matrix for LightGBMLarge model and Dataset C

142 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.81 0.92 0.86 120

On 0.90 0.79 0.84 120

Table C.143: Precision, recall and F1 by class for LightGBMLarge model
and Dataset D

Off On

Off 110 10

On 25 95

Table C.144: Confusion matrix for LightGBMLarge model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.88 0.88 0.88 40

alarm.on 0.88 0.88 0.88 40

timer.off 0.85 0.85 0.85 40

timer.on 0.85 0.85 0.85 40

Table C.145: Precision, recall and F1 by class for WeightedEnsemble L2
model and Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 35 5 0 0

alarm.on 5 35 0 0

timer.off 0 0 34 6

timer.on 0 0 6 34

Table C.146: Confusion matrix for WeightedEnsemble L2 model and Dataset
A

143

Class Precision Recall F1 Sample

alarm.off 0.93 0.97 0.95 40

alarm.on 0.97 0.93 0.95 40

reminder.off 0.85 0.88 0.86 40

reminder.on 0.87 0.85 0.86 40

timer.off 0.83 0.75 0.79 40

timer.on 0.77 0.85 0.81 40

Table C.147: Precision, recall and F1 by class for WeightedEnsemble L2
model and Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 4 36 0 0 0 0

reminder.off 0 0 35 5 0 0

reminder.on 0 0 6 34 0 0

timer.off 0 0 0 0 30 10

timer.on 0 0 0 0 6 34

Table C.148: Confusion matrix for WeightedEnsemble L2 model and Dataset
B

Class Precision Recall F1 Sample

Off 0.84 0.96 0.90 80

On 0.96 0.81 0.88 80

Table C.149: Precision, recall and F1 by class for WeightedEnsemble L2
model and Dataset C

Off On

Off 77 3

On 15 65

Table C.150: Confusion matrix for WeightedEnsemble L2 model and Dataset
C

144 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.81 0.95 0.87 120

On 0.94 0.78 0.85 120

Table C.151: Precision, recall and F1 by class for WeightedEnsemble L2
model and Dataset D

Off On

Off 114 6

On 27 93

Table C.152: Confusion matrix for WeightedEnsemble L2 model and Dataset
D

Class Precision Recall F1 Sample

alarm.off 1.00 1.00 1.00 40

alarm.on 1.00 1.00 1.00 40

timer.off 0.89 0.97 0.93 40

timer.on 0.97 0.88 0.92 40

Table C.153: Precision, recall and F1 by class for Dialogflow model and
Dataset A

alarm.off alarm.on timer.off timer.on

alarm.off 40 0 0 0

alarm.on 0 40 0 1

timer.off 0 0 39 1

timer.on 0 0 5 35

Table C.154: Confusion matrix for Dialogflow model and Dataset A

145

Class Precision Recall F1 Sample

alarm.off 1.00 0.97 0.99 40

alarm.on 0.98 1.00 0.99 40

reminder.off 0.91 0.97 0.94 40

reminder.on 0.97 0.90 0.94 40

timer.off 1.00 0.95 0.97 40

timer.on 0.95 1.00 0.98 40

Table C.155: Precision, recall and F1 by class for Dialogflow model and
Dataset B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 0 40 0 0 0 0

reminder.off 0 39 1 0 0 0

reminder.on 0 0 4 36 0 0

timer.off 0 0 0 0 38 2

timer.on 0 0 0 1 25 14

Table C.156: Confusion matrix for Dialogflow model and Dataset B

Class Precision Recall F1 Sample

Off 0.95 0.99 0.97 80

On 0.99 0.95 0.97 80

Table C.157: Precision, recall and F1 by class for Dialogflow model and
Dataset C

Off On

Off 79 1

On 4 76

Table C.158: Confusion matrix for Dialogflow model and Dataset C

146 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.96 0.96 0.96 120

On 0.96 0.96 0.96 120

Table C.159: Precision, recall and F1 by class for Dialogflow model and
Dataset D

Off On

Off 115 5

On 5 115

Table C.160: Confusion matrix for Dialogflow model and Dataset D

Class Precision Recall F1 Sample

alarm.off 0.98 1.00 0.99 40

alarm.on 1.00 0.97 0.99 40

timer.off 0.88 0.93 0.90 40

timer.on 0.92 0.88 0.90 40

Table C.161: Precision, recall and F1 by class for LUIS model and Dataset
A

alarm.off alarm.on timer.off timer.on

alarm.off 40 0 0 0

alarm.on 1 39 0 0

timer.off 0 0 37 3

timer.on 0 0 5 35

Table C.162: Confusion matrix for LUIS model and Dataset A

147

Class Precision Recall F1 Sample

alarm.off 0.97 0.97 0.97 40

alarm.on 0.97 0.97 0.97 40

reminder.off 0.88 0.93 0.90 40

reminder.on 0.92 0.88 0.90 40

timer.off 0.97 0.95 0.96 40

timer.on 0.95 0.97 0.96 40

Table C.163: Precision, recall and F1 by class for LUIS model and Dataset
B

alarm.off alarm.on reminder.off reminder.on timer.off timer.on

alarm.off 39 1 0 0 0 0

alarm.on 1 39 0 0 0 0

reminder.off 0 0 37 3 0 0

reminder.on 0 0 5 35 0 0

timer.off 0 0 0 0 38 2

timer.on 0 0 0 0 1 39

Table C.164: Confusion matrix for LUIS model and Dataset B

Class Precision Recall F1 Sample

Off 0.94 0.97 0.96 80

On 0.97 0.94 0.96 80

Table C.165: Precision, recall and F1 by class for LUIS model and Dataset
C

Off On

Off 78 2

On 5 75

Table C.166: Confusion matrix for LUIS model and Dataset C

148 appendix C. Analysis of results by model type

Class Precision Recall F1 Sample

Off 0.96 0.98 0.97 120

On 0.98 0.96 0.97 120

Table C.167: Precision, recall and F1 by class for LUIS model and Dataset
D

Off On

Off 118 2

On 5 115

Table C.168: Confusion matrix for LUIS model and Dataset D

Dataset LSTM SVM

Dataset A timer.off timer.off

Dataset B
alarm.off,
alarm.on

alarm.on

Dataset C both classes both classes

Dataset D off both classes

Table C.169: Summary of the best classes concerning all the datasets and
the different models from scratch

Dataset BERT RoBERTa XLNet

Dataset A alarm.on
alarm.on, ti-
mer.on

alarm.off,
alarm.on

Dataset B
alarm.off,
alarm.on

reminder.off,
reminder.on

alarm.off,
alarm.on

Dataset C both classes both classes both classes

Dataset D on off both classes

Table C.170: Summary of the best classes concerning all the datasets and
the different models based on transformers

149

Dataset ExtraTreesEntr ExtraTreesGini

Dataset A alarm.off alarm.off

Dataset B
alarm.off,
alarm.on

alarm.off

Dataset C off both classes

Dataset D off off

Table C.171: Summary of the best classes concerning all the datasets and
ExtraTrees algorithms

Dataset KNeighborsDist KNeighborsUnif

Dataset A alarm.off alarm.off

Dataset B alarm.on alarm.on

Dataset C off off

Dataset D off off

Table C.172: Summary of the best classes concerning all the datasets and
KNeighbors algorithms

Dataset LightGBM LightGBMLarge LightGBMXT

Dataset A alarm.off alarm.on, alarm.off alarm.off

Dataset B alarm.off alarm.on, alarm.off alarm.off

Dataset C off off off

Dataset D off off both classes

Table C.173: Summary of the best classes concerning all the datasets and
LightGBM algorithms

Dataset NeuralNetFastAI NeuralNetTorch

Dataset A timer.on timer.on

Dataset B alarm.on alarm.on

Dataset C off on

Dataset D on off

Table C.174: Summary of the best classes concerning all the datasets and
ExtraTrees algorithms

150 appendix C. Analysis of results by model type

Dataset RandomForestEntr RandomForestGini

Dataset A alarm.off, alarm.on alarm.off, alarm.on

Dataset B alarm.off alarm.off

Dataset C both classes both classes

Dataset D off off

Table C.175: Summary of the best classes concerning all the datasets and
ExtraTrees algorithms

Dataset CatBoost WeightedEnsemble L2 XGBoost

Dataset A alarm.off alarm.off, alarm.on alarm.off

Dataset B alarm.on alarm.off, alarm.on
alarm.off,
alarm.on

Dataset C off off off

Dataset D off off off

Table C.176: Summary of the best classes concerning all the datasets and
ExtraTrees algorithms

Dataset Dialogflow LUIS

Dataset A
alarm.off,
alarm.on

alarm.off,
alarm.on

Dataset B
alarm.off,
alarm.on

alarm.off,
alarm.on

Dataset C both classes both classes

Dataset D both classes both classes

Table C.177: Summary of the best classes concerning all the datasets and
the different models from scratch

	Introduction
	Motivation
	Proposal and Objectives
	Structure of the thesis

	Preliminaries
	The Science of Linguistics
	Artificial Intelligence
	Machine Learning in NLP
	Deep Learning
	Transformers

	Natural Language Processing
	Platforms for Dialogue Management
	Dialogflow
	LUIS
	RASA
	Watson

	Intent Classification
	Libraries and tools
	Data Science and Machine Learning
	NLP

	Proposal
	Research questions
	Approach
	Difficulties found

	Dataset
	Intent classifier Datasets
	Dataset A
	Dataset B

	Attribute classifier Datasets
	Dataset C
	Dataset D

	Experimentation
	Evaluation Setting
	Implementation
	Pre-processing Module
	Classification Module
	Evaluation Module

	Results
	Average accuracy results by model
	Results based on model type and datasets

	Conclusions
	Bibliography
	Acronyms
	Analysis of results by model type
	Tables

