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COLABORACIONES EN FÍSICA

THE RELATIONSHIP BETWEEN
MATHEMATICS AND PHYSICS

1. INTRODUCTION

James Hopwood Jeans, the English physicist, as-
tronomer and mathematician summarized his feelings
on the relationship between mathematics and physics,
sa ying, “we may say that we have already considered
with disfavour the possibility of the universe having
been planned by a biologist or an engineer; from the
intrinsic evidence of his creation, the Great Architect
of the Universe now begins to appear as a pure mathe-
matician.”[1] The quotation is from Jeans’ aptly titled
book, The Mysterious Universe. Patently the link be-
tween mathematics and physics is both deep and inti-
mate, but why should such a link exist? 

The purpose of this essay is to examine the nature
of the link between these two subjects and the interplay
 between them. We will briefly examine the role that
mathematics has played in the development of the
physi cal sciences historically, before looking in more
detail at the nature of the relationship between them;
many of the arguments and conclusions presented are
by no means cut and dried, so we will finish with some
speculation about what the future may reveal about the
nature of the link from a few well known proponents.

2. THE HISTORICAL ROLE OF MATHEMATICS
IN THE PHYSICAL SCIENCES

Even the earliest examples of scientific thought are
characterised by their dependence upon mathematics.
The first evidence of the recognition of the periodicity
of the motions of celestial bodies is a series of Babylo -
nian tablets dating from the 17th century BC; the Baby-
lonians employed a sexigesimal number system which
they used to predict these periodic motions [2]. 

About a millennium later the great Greek natural
philosophers began to develop theories about the world

based on their own mathematical system. The main dif-
ference between the Greek and Babylonian mathemat-
ical systems was the axiomatic approach. For example,
while the Babylonians knew some rules of geometry
and were able in a limited sense to make logical deduc-
tions, it was the Greeks, notably Euclid, who realised
that all the rules of geometry could be deduced from a
simple set of  axioms. 

The Greeks of course  applied their own brand of
mathematics to the sciences, an obvious example being
Archimedes’ proof of the law of the lever. It is interest-
ing to note at this point that in The Character of Phys-
ical Law Feynman says “The
method of always starting
from the axioms is not very
efficient in obtaining theo-
rems... In physics we need
the Babylonian method
and not the Euclidean or
Greek method.” [3] Modern
mathematics however is cer-
tainly based on an axiomatic
 approach and this is some-
thing that we shall subsequently have to investigate
when we examine the nature of the link. Some early
Greek schools of thought, notably Pythagoreanism, went
as far as to say that numbers and ‘number theory’ were
the basis of the entire physical universe. For example
Pythagoras’ view is said to have been, “that the cosmos
was not only expressible in terms of number, but was
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number.” [4] As Aristotle
put it, “[Pythagoreans]
considered the first prin-
ciples of ma thematics to
be the first principles of
all things. Now in math-
ematics, numbers are
naturally first principles”
[4]. Despite communicat-
ing in writing many of
the cosmological ideas
of Pythagoreanism, Aris-
totle was severely critical
of the doctrine. It is easy

to see why; a whole universe that can be explained by
numbers is a somewhat implausible concept. However
as we shall see, particularly in the final section of this
essay, these ideas may not be as incredible as a first
glance suggests.

Similarly mathematics was being used in physical
science in China, India and elsewhere. However, the next
distinct step in the interplay between maths and physics
came in the middle ages. At this stage of history we
have many candidates for precursors of the modern sci-
entific method, notably the Muslim scientist Ibn al-
Haytham and Roger Bacon, an advocate for empiricism.
However,  another candidate more pertinent to our dis-
cussion is Robert Grosseteste (1175–1253), the English
statesman and bishop of Lincoln who emphasised the
need for mathematics in order to understand nature.
This view was particularly prevalent in his work De
lineis, angulis et figuris in which he states, “the diligent
investigator of natural phenomena can give the causes
of all natural effects, therefore, in this way by the rules
and roots and foundations given from the power of

geometry” [5].
Although we see
that mathemat-
ics has been
used heavily in
describing the
physical world
up to this point,
Grosseteste’s ex-
plicit statement
of the reliance of
physical theory
upon mathemat-

ics marks a key step in the development of our unders -
tanding of its role.

Galileo Galilei, widely credited as the progenitor of
the modern scientific method echoed these sentiments
when he said “Philosophy is written in that big book
which is continually open in front of our eyes (I mean
the universe) which however one cannot understand,
if, in advance, one does not master the language and
one does not know the ciphers it uses. The language is
mathematics and the ciphers are circles, triangles and
other geometrical figures.” [6] So we have arrived at
the era of the modern scientific method, and through-
out history to this point, mathematics has played a cen-
tral role. As we proceed forwards through the work of
Newton and Maxwell and on to Relativity, Quantum
theory and beyond, the part played by mathematics has,
if anything, intensified. As Feynman puts it “what turns
out to be true is that, the more we investigate, the more
laws we find, and the deeper we penetrate nature, the
more [our need for mathematics] persists. Every one of
our laws is a purely mathematical statement in rather
complex and abstruse mathematics... It gets more and
more abstruse and more and more difficult as we go
on.” Why is this the case? Feynman offers no explana-
tion, but merely states this as a fact which is certainly
a facet of the character of physical law. The interplay
between physics and mathematics raises many other
questions however: Can mathematics generate new
physics (and vice versa)? Is mathematics simply a tool
for understanding and predicting phenomena in the
physical world, or is it something more profound? The
answers to these questions can only be found by look-
ing more closely at the link between mathematics and
physics.

3. THE NATURE OF THE RELATIONSHIP
BETWEEN PHYSICS AND MATHEMATICS

3.1  Why is Mathematics Useful in the
Description of the Physical World?

As Feynman points out at the beginning of his lec-
ture, The Relation of Mathematics to Physics, “it is per-
fectly natural that mathematics will be useful when
large numbers are involved in complex situations.” [7]
He uses the example of a game of chequers in which
each possible move is not of itself particularly mathe-
matical in nature, but an analysis of which are the best
moves to make becomes a mathematical exercise. This
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is just an outcome of the nature of mathematics as a
formalisation of abstract reasoning. However what we
see is that even in the most simple situations (for ex-
ample two masses attracted by the force of gravitation)
the physical laws must be couched in mathematical lan-
guage. 

It is important to distinguish then between these
two distinct roles of mathematics in physics, its use in
the description of complex phenomena and in the rep-
resentation of the physical laws. The relative impor-
tance of these two applications depends on the extent
to which one views physics as a reductionist science.
Luke Drury of the Dublin Institute for Advanced Study
says “Traditionally physics saw its goal as being the
reduction of all phenomena to a few very basic prin-
ciples… But there is also a school of thought which
holds that there are valid areas of physics, which arise
from inherent complexity of systems, turbulence for
example, and that there are emergent phenomena that
you can study in terms of physics, but are not simply
reducible to a reductionist paradigm.” [8] My own
opinion is that a reductionist view of the universe is
a particularly elegant one; any theory of the universe
in which the behaviour of all phenomena can be re-
duced to a few simple laws is aesthetically very pleas-
ing. While the application of these laws to real
physical situations may produce complex and unex-
pected results, the important thing is to have a con-
sistent basis from which these results can be derived;
the fact that certain phenomena cannot be predicted
at present by us is a shortcoming of our theories or
our calculational abilities, not of reductionism itself.
As Einstein puts it in his lecture On the Method of
Theoretical Physics, “It can scarcely be denied that the
supreme goal of all theory is to make the irreducible
basic elements as simple and as few as possible with-
out having to surrender the adequate representation
of a single datum of experience.” 

This brings to mind the use of Feynman’s ‘Babylon-
ian’ or ‘Greek’ approaches to physics; while Feynman
advocates a Babylonian approach to physics in its cur-
rent state, he does concede, “Some day, when physics is
complete and we know all the laws, we may be able to

start with some axioms, and no doubt someone will fig-
ure out a particular way of doing it so that everything
else can be deduced.” Feynman’s Babylonian approach
then may be symptomatic of the current incompleteness
of physics. The Greek method may only be applicable if
the reductionist’s viewpoint turns out to be vindicated
by a simply expressible Theory of Everything. We will
examine the likelihood of this possibility at the end of
the essay.

We now turn from the less troublesome explana-
tion of the occurrence of mathematics in describing
complex physical situations, to the reason why the
fundamental physical laws themselves are mathemat-
ical in nature and (as we will see in more depth in sec-
tion 3.2) why mathematics may be used to deduce new
physical laws from the existing ones. The arguments
concerning this are varied and complicated and un-
fortunately only a brief précis of two such arguments
can be given here. 

The first is propounded by Dennis Dieks of Utrecht
University who opines that “mathematics is flexible and
versatile and it is the very difference in the nature of
mathematics and physics that makes it applicable in the
most disparate scientific domains and hence vastly effec-
tive.”[6] This argument views mathematics as nothing
more than an (albeit very useful) tool; it is therefore
something of a formalist’s view of mathematics1 and an
empiricists view of physics, which while in no way un-
orthodox, is not the only view that may be held. Luke
Drury of the Dublin In-
stitute for advanced
studies expresses the
perhaps less philo-
sophically discrete
view that, “the unrea-
sonable effectiveness
of mathematics derives
precisely from the fact
that it is abstracted
physics”. His view is
that the distinction be-
tween Platonists and
formalists is in fact ob-
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1 The formalist view of mathematics was championed by David Hilbert who said, “Mathematics is a game played according to
certain simple rules with meaningless marks on paper.” In the formalist doctrine mathematics is simply a tool for moving from one
point to another by a series of logical steps. This is in opposition to the Platonist view in which mathematical truths are eternal and
are discoveries by the human mind and not inventions of them.
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solete. Mathematics is based on our experience of the
world around us but in a sense becomes the ideal things
of Plato by the very process of abstraction. However, nei-
ther extreme formalism in Hilbert’s sense of the word nor
extreme Platonism need be invoked to corroborate this
explanation.

The most widespread opinion however still appears
to be that expressed by Wigner in his paper The Unrea-
sonable Effectiveness of Mathematics in the Natural
Sciences. “The miracle of the appropriateness of the
language of mathematics for the formulation of the
laws of physics is a wonderful gift which we neither
understand nor deserve.” [9] This viewpoint is com-
pletely justifiable, particularly when one looks at how
much of the link between the two subjects is yet to be
understood.

3.2 Can mathematics generate new physics
(and vice versa)?

The answers to these questions are certainly yes; the
generation of new physics by the application of math-
ematics to existing physical laws forms the third role
of mathematics in the physical sciences. The converse
generation of new mathematics is also of course being
a key part of the relationship between mathematics and
physics.

There are innumerable examples of the generation
of new physics by mathematics. I have chosen to briefly
go through one example explicitly as I found it partic-
ularly striking when it was first taught to me. The il-
lustration I have chosen is the Aharonov-Bohm effect.
Here we start from Maxwell’s equation, ∇ ⋅ B = 0. The
rules of vector calculus tell us that we can write,
B = ∇ × A for any vector field A, since the divergence
of a curl is always 0. We call this field, A, the vector
potential. This appears to just be a mathematically dif-
ferent way of writing the same thing. However, it is
now possible to have a region where B = 0 but where
A is non-zero. Physically, we might think that an ob-
servable change to electrons pa ssing through a region
could only be caused by a non-zero magnetic (or elec-
tric) field and that A, as a mathematical construct could
not affect any experimental results. Nonetheless, A does
produce a quantum mechanical phase shift in the wave
function of electrons, which leads to measurable inter-
ference effects. I certainly found this a very surprising
result; the fact that we may start from some physical

law, apply a set of mathematical steps which do not
necessarily follow a prescribed path laid out by physical
intuition and arrive at a valid result with real, measur-
able physical meaning.

Despite also applying to the representation of the
most elementary physical laws, this ability to use math-
ematics to create (or discover?) new physics is what
Wigner is really referring to in the title of his paper.
Dirac also feels that it is an ‘unreasonable usefulness’
and expresses this in the introduction to his speech to
the Royal Society of Edinburgh in 1939, “The physicist,
in his study of natural phenomena, has two methods of
making progress: (1) the method of experiment and ob-
servation, and (2) the method of mathematical reason-
ing. The former is just the collection of selected data;
the latter enables one to infer results about experiments
that have not been performed. There is no logical rea-
son why the second method should be possible at all,
but one has found in practice that it does work and
meets with remarkable success.”[10] Dirac himself fa-
mously made extensive use of the happy accident of
maths’ effectiveness by the prediction of antimatter
from his seminal equation. In fact, his advocation of
the fruitfulness of such an approach has led to the con-
cept of, “Dirac’s methodological revolution according
to which the contemporary physical theory should
be constructed by working with pure mathematics in-
stead of reflecting conjecturally only on physical phe-
nomena” [6]. Other examples of the successful use of
such an approach include the Lorentz transformations,
gravitational lensing, the Lamb shift and many, many
more [11].

The cases of physics generating new mathematics
are also many and well documented. Throughout his-
tory the disciplines of mathematics and physics have
gone hand in hand and many physicists have also been
highly gifted mathematicians. The most obvious exam-
ple to give might be Isaac Newton whose invention of
calculus, called by Newton his Method of Fluxions, was
formulated in terms of motions and velocities i.e. in
physical terms [12].

Other examples of physicists developing new
mathematical techniques abound, but a more interest-
ing facet of the interplay is the appearance of ex-
tremely recondite mathematics into physical theory
and the similar (although generally more recent) phe-
nomenon of physical theory generating new mathe-
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matics in unexpected and seemingly inexplicable
ways.

We will start first with some examples of esoteric
mathematics cropping up unexpectedly in unlikely
physical situations. Perhaps some of the most abstract
mathematics we can think of is found in the rarefied
air of number theory. One of the most famous problems
in number theory is the Riemann hypothesis which is
concerned with the distribution of zeros of the Rie-
mann zeta function. The Riemann hypothesis is inti-
mately connected with the distribution of prime
numbers. However, the distribution of zeros of the zeta
function turns out to correspond to physical phenom-
ena such as the spacing of energy levels of heavy
atoms [13]. In fact number theory seems to crop up in
many seemingly disparate areas of physics such as sta-
tistical mechanics, quantum chromodynamics and
many more [14]. 

Perhaps even more surprising are physical theories
creating new and abstruse mathematics. For example
Brendan Goldsmith gives as an example, “quantum
field theory has had a significant influence in many
areas of geometry from elliptic genera to knot theory”.
We have examined some of the reasons why mathemat-
ics might be able to produce new physics, and even
these are questionable in their adequacy. The reasons
why physics should be able to create new, seemingly
abstract mathematics are even more elusive. 

The answer to our question then is a resounding yes,
but what has, I hope, been highlighted by this section
is the fact that the link between maths and physics is
not yet fully understood. The relationship is of such
depth that we are currently at the stage of getting fas-
cinating glimpses at the nature and topology of the
connections, but are still far from being able to map
them in their entirety.

4. POSSIBILITIES FOR THE FUTURE

Here I will present two speculative conjectures on
the nature of the link between mathematics and physics
and what this may mean for the physical sciences. 

The first is an idea of Paul Dirac’s given in his 1939
Edinburgh Royal Society speech, which was entitled
‘The Relation between Mathematics and Physics’. After
an insightful discussion on the subject he comes to the
conclusion that the current state of affairs is unsatis-
factory due to “the limitation in the extent to which
mathematical theory applies to a description of the
physical universe.” This is a view which I share. Cur-
rently maths and physics both seem to me a little bit
like large (perhaps infinite) archipelagos; scientists and
mathematicians both attempt to enlarge the islands,
and in so doing sometimes find they have made it all
the way to another island, or they meet a fellow scien-
tist/mathematician coming the other way.2 What we
may find is that all the islands and promontories turn
out to be part of a single landmass and possibly that
maths and physics are in fact the same landmass but
viewed in different ways. There are so many examples
where mathematical ideas have seemed irreconcilably
far removed from physical reality and then turned out
to be highly relevant or even indispensable to a physi-
cal theory, that one may be led to wonder if it is only
our incomplete knowledge of physics (and mathemat-
ics) which stops us establishing a ‘one-to-one’ corre-
spondence. An example of the aforementioned: before
the advent of quantum mechanics it may have seemed
laughable to suggest that observables would be ob-
tained by the action of self-adjoint operators on vectors
in an infinite dimensional Hilbert space. When the con-
cept of complex numbers was first introduced, it too

may have seemed inap-
plicable to the physical
world. As Wigner points
out “Surely to the un-
preoccupied mind, com-
plex numbers are far
from natural or simple
and they cannot be
suggested by physical
observations. Further-
more, the use of com-
plex numbers is in this
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2 An example from physics might be finding that the electric and magnetic fields are actually two aspects of the same phenomenon,
but viewed in different inertial frames by applying the transformations of special relativity. In mathematics a famous example would
be Wiles’ proof of Fermat’s last theorem. This in effect turned out to be a proof of the (ostensibly unrelated) Taniyama-Shimura con-
jecture which itself was a proof of the correspondence between elliptic curves and modular forms, two seemingly disparate groups
of mathematical objects.
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case not a calculational trick of applied mathematics
but comes close to being a necessity in the formulation
of the laws of quantum mechanics.”

Dirac shares this view hypothesising that, “the
whole of the description of the universe has its mathe-
matical counterpart” and further that “a person with a
complete knowledge of mathematics could deduce, not
only astronomical data, but also all the historical events
that take place in the world, even the most trivial ones.”
This is an extremely bold conjecture but Dirac goes on
to suggest how such a scheme might be realized. He
thinks that the state of the entire universe at each in-
stant of time may be characterizable by a single integer:
the age of the universe expressed in terms of atomic
constants. In terms of these units he gives the age of
the universe3 as approximately 1039 a number which he
says “characterizes the present in an absolute sense”.
The apparent unlikelihood of such a correlation is not
lost on Dirac but neither does it deter him: “At first
sight it would seem that the universe is far too complex
for such a correspondence to be possible. But I think
this objection cannot be maintained, since a number of
the order 1039 is excessively complicated, just because
it is so enormous. We have a brief way of writing it
down, but this should not blind us to the fact that it

must have excessively
complicated proper-
ties… There is thus a
possibility that the an-
cient dream of philoso-
phers to connect all
Nature with the proper-
ties of whole numbers
will some day be re-
alised.” 

These ideas are cer-
tainly thought-provok-
ing; it struck me on
reading this that a more

natural and fundamental unit of time for a clock of the
universe might be the Planck time4. The age of the uni-
verse in these units is approximately 1061, a number of
even greater complexity with which to quell concerns.
I was also led to think about how connections between
the natural numbers ands the physical universe might
show themselves; perhaps there is a certain range of the
natural numbers5 which all have some particular ob-
scure feature in common which correspond to the in-
flationary period of the early universe; what particular
aspect of the physical universe might correspond to a
prime number value of time on the universe’s clock?
Perhaps at the instant the clock ticks past one of the 62
digit primes of the current epoch the universe displays
some measurable feature not observable at other (non-
prime) times. I am in some danger now of getting car-
ried away by an idea which, if true, would certainly be
of unprecedented profundity, but which also seems ab-
surd to the rational mind. Indeed were the scheme not
proposed by such a venerated figure as Dirac, I may not
have had the courage to give it any credence. With the
hope of doing no disservice to the name of my
favourite physicist, a quotation from Einstein seems
apt: “I have trouble with Dirac. This balancing on the
dizzying path between genius and madness is awful.”
[15]

The second conjecture is put forward by Stephen
Hawking, but before we look at this we must first ac-
quaint ourselves with Gödel’s Incompleteness Theorem.
This may be the most important result in the history of
mathematical logic and roughly states that For any con-
sistent theory that proves basic arithmetical truths, an
arithmetical statement that is true, but not provable in
the theory, can be constructed. That is, any effectively
generated theory capable of expressing elementary
arithmetic cannot be both consistent and complete.

As Hawking puts it, “Thus mathematics is either in-
consistent, or incomplete. The smart money is on in-
complete.” [16]
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3 At the time, the age of the universe was thought to be 2 × 109 years.
4 This unit is defined only from the fundamental constants ħ, G and c and may be the shortest time interval which can have any

physical meaning. The Planck time is given by:

t p= (ħG/c5)1/2 � 5,4 × 10-44 s

and is the time it would take a photon to travel the Planck length. 
5 Between about 20 million and 2 × 1031.
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He goes on to ask, “What is the relation between
Gödel’s theorem and whether we can formulate the the-
ory of the universe, in terms of a finite number of prin-
ciples? One connection is obvious. According to the
positivist philosophy of science, a physical theory is a
mathematical model. So if there are mathematical re-
sults that can not be proved, there are physical prob-
lems that can not be predicted.”

Throughout this essay we have seen the strength of
the link between mathematics and physics. Does Gödel’s
theorem mean that this link while providing support and
progress in physics also means that a Theory of Every-
thing (or at least one based on a finite number of axioms)
is impossible? Perhaps. However, despite a slight reluc-
tance to relinquish Feynman’s idea of an axiomatic ap-
proach being employed “Some day, when physics is
complete and we know all the laws”, I share Hawking’s
sentiment about the future.

“Some people will be very disappointed if there is
not an ultimate theory that can be formulated as a fi-
nite number of principles. I used to belong to that
camp, but I have changed my mind. I’m now glad that
our search for understanding will never come to an end,
and that we will always have the challenge of new dis-
covery. Without it, we would stagnate... I’m sure Dirac
would have approved.”
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