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Einstein said that if quantum mechanics
were correct then the world would be crazy.
Einstein was right - the world is crazy.

D.M. Greenberger
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Me gustaŕıa dar las gracias también a Germán Sierra y a Nadir Samos por toda la ayuda
recibida para que este trabajo salga adelante. Gracias a Erik Tonni y a Francesco Gentile
por las reuniones, en Madrid y en Trieste, donde he tenido la oportunidad de aprender
tanto. Además, agradezco a Sudipto Singha Roy por sus comentarios para mejorar este
manuscrito.

Gracias a todas las personas de la UNED que, de una manera u otra, me han acompañado
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Resumen

El principal objetivo de la f́ısica de la materia condensada es el estudio del
comportamiento macroscópico de un sistema dado, que resulta de la interacción de
las muchas part́ıculas que lo constituyen. Las part́ıculas que componen estos sis-
temas presentan naturaleza cuántica, es decir, existen correlaciones cuánticas entre
ellas: están entrelazadas.

En general, los sistemas cuánticos de muchos cuerpos son dif́ıciles de tratar dado
que no se pueden describir en términos de las part́ıculas que los conforman de manera
individual. La descripción de los sistemas de muchos cuerpos viene determinada por
una función de onda global cuyos coeficientes, en una base dada, pertenecen a un
espacio de Hilbert que presenta una dimensión que crece exponencialmente con el
número de constituyentes del sistema. Esto implica una gran dificultad a la hora de
determinarlos cuando el número de part́ıculas del sistema es grande.

No obstante, no todos los estados cuánticos pertenecientes al espacio de Hilbert
correspondiente presentan la misma relevancia. Afortunadamente, existen ciertos
estados cuánticos que satisfacen la denominada ley del área. Si, por ejemplo, con-
sideramos dos regiones de un sistema, A y B, las correlaciones cuánticas entre ambos
subsistemas vienen determinadas por la entroṕıa de entrelazamiento (EE). Un es-
tado cuántico elegido aleatoriamente en el espacio de Hilbert presenta una entroṕıa
de entrelazamiento volumétrica, es decir, que escala con el volumen mı́nimo entre A
y B. Sin embargo, algunos estados cuánticos presentan una entroṕıa de entrelaza-
miento que escala con el área de la frontera de separación entre las dos regiones que
estamos considerando. Estos estados cuánticos resultan ser los estados fundamen-
tales de ciertos Hamiltonianos que presentan una longitud de correlación finita y solo
tienen en cuenta interacciones locales, que son las que encontramos en la naturaleza.
El estado fundamental no es más que el estado de mı́nima enerǵıa del sistema, que
constituye el escenario principal para el estudio de la f́ısica a bajas temperaturas.

Por el contrario, existen algunos estados fundamentales que violan la ley del área.
Esto ocurre cuando la longitud de correlación del sistema es infinita y, por tanto, las
correlaciones cuánticas de largo alcance, incluso lejos de la frontera de separación
entre las regiones A y B, deben ser tenidas en cuenta. La entroṕıa de entrelazamiento
en estos casos puede presentar una correción logaŕıtmica, que es predicha por la
teoŕıa de campos conformes (CFT), cuando el sistema es unidimensional. Otro
ejemplo de violación de la ley del área en una dimensión lo consituyen los estados
fundamentales de algunos modelos de cadenas fermiónicas con amplitudes de salto
inhomogéneas.

Las cadenas fermiónicas son objetos matemáticos unidimensionales cuyos sitios
pueden estar ocupados, o no, por una sola part́ıcula. Estos sitios de la cadena están
relacionados entre śı mediante unas amplitudes de salto que se pueden manipular.
Si estas amplitudes son iguales y homogéneas, el sistema representa un fermión de
Dirac en un espacio-tiempo plano, o de Minkowski, cuando el número de part́ıculas
del sistema equivale a la mitad de los sitios de la cadena. En este caso, decimos que
el sistema está a llenado mitad.

Por otro lado, los enlaces entre los distintos sitios de la cadena pueden depender
de la posición de estos, es decir, podemos tener amplitudes de salto inhomogéneas.
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Figure 1: El sistema (a) representa una cadena fermiónica con amplitudes de enlace in-
homogéneas: los sitios (azul) situados a la derecha de la cadena presentan una mayor
amplitud de enlace (rojo) que aquellos situados hacia la izquierda. En la cadena (b), to-
das las amplitudes de enlace corresponden a una dinámica homogénea pero la geometŕıa
del sistema se ha visto modificada.

Las amplitudes de salto inhomogéneas tienen una interpretación geométrica directa.
Dos sitios de la cadena que están fuertemente vinculados pueden considerarse como
aquellos situados muy próximos entre śı en el espacio. Por el contrario, dos sitios que
presentan una amplitud de salto débil se corresponderán con aquellos localizados
a una mayor distancia espacial. Por este motivo, es posible realizar un cambio
de coordenadas que transforme un sistema inhomogéneo en otro cuya dinámica es
homogénea, donde la geometŕıa inicial del sistema se ve alterada (ver Fig. 1). Es
decir, no todos los sitios de la cadena están equiespaciados: es lo que denominamos
espacio-tiempos curvos.

Además, cuando estas cadenas se pueden describir mediante Hamiltonianos que
son cuadráticos en los operadores fermiónicos, es posible estudiar el sistema en
términos de una sola part́ıcula que se comporta de manera independiente al resto
de constituyentes. En este caso, el Hamiltoniano se puede diagonalizar de manera
exacta encontrando los autoestados y enerǵıas de una part́ıcula individual que recoge
la f́ısica del sistema completo. Estos sistemas son los denominados modelos de
fermiones libres y son los que vamos a utilizar a lo largo de este trabajo.

Los modelos de fermiones libres son especialmente interesantes en el estudio de
sistemas de muchos espines, los cuales presentan una gran relevancia en el análisis
de diversas propiedades magnéticas de los materiales, aśı como las transiciones de
fase y los puntos cŕıticos. Algunos de estos sistemas, como el conocido modelo de
Ising, se pueden convertir a un modelo de fermiones libres mediante la conocida
transformación de Jordan-Wigner.

Una vez dicho esto, la primera parte de esta tesis pretende ser un resumen de los
conocimientos necesarios para entender el trabajo que se ha realizado, el cual será
expuesto en la segunda parte. El Caṕıtulo 1 es una breve introducción a conceptos
clave en esta tesis como son el efecto Casimir y el vaćıo cuántico, el entrelazamiento,
la entroṕıa de entrelazamiento y la ley del área. El Caṕıtulo 2 constituye un resumen
del formalismo de matriz densidad. La descripción detallada de los sistemas de
fermiones libres aśı como los modelos de espines, se encuentran en el Caṕıtulo 3.
Además, concluyendo la primera parte, el Caṕıtulo 4 pretende exponer de una forma
accesible los resultados más relevantes de la teoŕıa de campos conformes que serán
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necesarios para la comprensión del trabajo desarrollado en esta tesis.
La segunda parte de este documento recoge los objetivos principales que se han

llevado a cabo en esta tesis en los respectivos Caṕıtulos 5, 6 y 7:

• Anális de las fuerzas de Casimir simuladas en cadenas fermiónicas
inhomogéneas.
La expresión de la enerǵıa de Casimir para el estado fundamental de una
cadena fermiónica homogénea presenta una contribución no universal propor-
cional al tamaño del sistema N , más correcciones de tamaño finito de orden
O(1/N). Las correciones de tamaño finito vienen fijadas por la CFT cuando el
sistema está sujeto a invariancia conforme. En este trabajo estudiamos cómo
varian estas correcciones cuando el sistema está deformado, es decir, presenta
amplitudes de enlace inhomogéneas.

• Estudio de la densidad fermiónica en cadenas inhomogéneas cuando
nos encontramos fuera del llenado mitad.
El estado fundamental de una cadena de fermiones libres con amplitudes de
enlace inhomogéneas presenta una ocupación homogénea. Es decir, todos los
sitios de la cadena tienen la misma probabilidad de estar ocupados, o vaćıos,
incluso en espacio-tiempos curvos, siempre que nos encontremos en el estado
de mı́nima enerǵıa. Sin embargo, cuando el sistema no se encuentra en su
estado fundamental, es decir, no estamos a llenado mitad, aparece nueva f́ısica
que requiere de una aproximación continua para ser explicada.

• Caracterización de la estructura de entrelazamiento de un estado
fundamental de una cadena cŕıtica en términos de las relaciones en-
ergéticas de un subsistema con su entorno.
En general, un subsistema de un estado fundamental dado no se encuentra
en su respectivo estado fundamental sino que presenta un exceso de enerǵıa.
Parte de esta enerǵıa se puede extraer por medio de operaciones unitarias y es
lo que denominamos ergotroṕıa. Para sistemas unidimensionales con invarian-
cia conforme, la parte de este exceso de enerǵıa que no se puede extraer está
relacionada con el tamaño total de este y la entroṕıa de entrelazamiento del
subsistema.

Finalmente, el Caṕıtulo 8 recoge las conslusiones y los resultados alcanzados en esta
tesis, tanto en inglés como en castellano.
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Abstract

The main goal of condensed matter physics is to study how the macroscopic
behavior of matter arises from a large number of interacting particles. The par-
ticles involved in these systems show a quantum nature and, thus, have quantum
correlations amongst them: they are entangled.

In general, many-body systems are difficult to work with as they can not be
described in terms of single particles that behave independently of each other. The
description of many-body systems requires a global wavefunction where its coeffi-
cients in a given basis belong to a certain Hilbert space whose dimension increases
exponentially with the number of constituents of the system. For that reason, this
becomes a really difficult task for large sizes.

However, some quantum states in the Hilbert space are more relevant than others.
Fortunately, there exist certain quantum states that satisfy the so-called area law.
Let us, for instance, consider two subregions of the system, A and B. We can
measure the quantum correlations between the two regions through the so-called
entanglement entropy (EE). One randomly chosen quantum state in the Hilbert
space shows a volumetric law for the entanglement entropy, i.e., it scales with the
minimum volume between parts A and B. Nevertheless, some quantum states show
an entanglement entropy which is proportional to the boundary between the two
subsystems. These quantum states are the ground states (GS) of gapped local
Hamiltonians which have a finite correlation length. The ground state is nothing
else but the lowest possible energy state of the system, which is the perfect scenario
for the study of low temperature physics.

On the contrary, there are also ground states that violate the area law. The
violation of the area law usually takes place when the correlation length is infinite
and, thus, long-range quantum correlations become relevant even far away from the
border between the two regions we are considering. For these cases, the entanglement
entropy may show a logarithmic correction for one-dimensional systems, which is
predicted by conformal field theory (CFT). An example of violation of the area law
is given by ground states of some fermionic chains with inhomogeneous hopping
amplitudes.

A fermionic chain is a mathematical one-dimensional object in which each site
may be occupied, or not, by a single particle. The sites in the chain are related among
them by the so-called hopping amplitudes which can be tuned. If all the hopping
amplitudes are equal and homogeneous, the system represents a Dirac fermion in a
flat space-time, also called Minkowski space-time, when the number of particles is
equal to half of the sites of the chain. This is what we called half-filling.

However, these coupling parameters can be position-dependent, i.e., we can have
inhomogeneous hopping amplitudes. Inhomogeneous hopping amplitudes possess a
geometric interpretation. Two sites that have a strong hopping amplitude can be
considered to be within close proximity. On the other hand, two sites that show
a weak coupling can be interpreted as sites located spatially far away. For this
reason, it is possible to find an appropriate change of coordinates that maps a chain
with inhomogeneous hopping amplitudes to a system where certain sites are spatially
closer than others but show the same coupling amplitude regardless of their position
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Figure 2: System (a) represents an inhomogeneous fermionic chain: sites (blue) located
towards the right side show stronger hopping amplitudes (red) than those sites placed on
the left side. In system (b) all hopping amplitudes represented correspond to a homoge-
neous dynamic but the geometry of the system has been deformed.

along the chain (see Fig. 2). This is what we call curved space-times.
In addition, these chains may be described by a Hamiltonian which is quadratic

in the fermionic operators and, thus, can be solved exactly in terms of effective
non-interacting fermions, i.e., particles that move independently of each other. In
this case, the Hamiltonian can be diagonalized analytically in terms of single-body
modes and energies. These systems are called free fermion models and will be used
throughout this work.

Free fermion models are specially interesting in the analysis of spin systems which
are shown to be of great relevance in the study of magnetic properties of materials,
phase transitions and critical points. Some spin systems, such as the well-known
Ising model, can be mapped to a free fermion model by the so-called Jordan-Wigner
transformation.

The first part of this thesis provides a review of the knowledge required to follow
the work that has been developed, which will be exposed in the second part. Chapter
1 is an introduction to some important concepts such as the Casimir effect and
the quantum vacuum, entanglement, the entanglement entropy and the area law.
Chapter 2 summarizes the density matrix formalism. The description of both free
fermionic models and spin models can be found in Chapter 3. In addition, to
conclude this first part, Chapter 4 presents a review of some relevant conformal field
theory results that are needed later on.

The second part of this document shows the main goals achieved in this thesis
which constitute Chapters 5, 6 and 7, respectively:

• Analysis of Casimir forces in inhomogeneous fermionic chains.
The Casimir energy expression for the ground state of a homogeneous fermionic
chain shows a non-universal contribution proportional to the system size N ,
plus finite-size corrections of order O(1/N). These finite-size corrections are
fixed by CFT when the system is subject to conformal invariance. In this work,
we study how these corrections behave under the deformation of the system,
i.e., when inhomogeneous hopping amplitudes are considered.

• Study of the fermionic density in inhomogeneous chains away from
half-filling.
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The ground state of an inhomogeneous free fermionic chain shows a homoge-
neous occupation: all sites in the chain have the same probability of being oc-
cupied, or empty. However, away from half-filling, a new physical phenomenon
appears and it requires a continuum approximation to be explained.

• Characterization of the ground state entanglement structure of a
critical chain in terms of the energetic relations between a subsys-
tem and its environment.
In general, a subsystem of a ground state is not in its ground state but presents
an excess energy. Part of this excess energy can be extracted via unitary oper-
ations, which we call subsystem ergotropy. For one-dimensional systems with
conformal invariance, the part of the excess energy that can not be extracted
is related to its size and the entanglement entropy of the subsystem.

To conclude, Chapter 8 contains the final remarks and the results obtained in this
thesis both in English and Spanish.
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Chapter 1
Introduction

Condensed matter physics is the area of knowledge that studies how the macro-
scopic behaviour of matter arises from a large number of interacting particles. As
such, it is considered one of the widest fields in physics. Physicists in the quan-
tum condensed matter area try to understand the behaviour of complex systems of
atoms and molecules which include quantum phase transitions, high-temperature
superconductivity, spin systems and other strongly correlated phenomena where
quantum many-body techniques are extremely useful as it will be shown in this
work [1].

In particular, the purpose of quantum many-body physics is the study of systems
of many constituents which cannot be treated in an isolated way due to the strong
correlations among them. Indeed, strongly correlated many-body systems are very
difficult to describe. In 1956, Lev Landau proposed the theory of Fermi liquids
which meant a huge step into modern theoretical physics [2]. Landau’s theory of
Fermi liquids states that some interacting many-particle systems can be described in
terms of a collection of elementary excitations at low temperatures. These elemen-
tary excitations are called quasiparticles and, although they can be treated as single
particles, they encode a much more complex behavior which represents the motion
of many particles of the system simultaneously. The Fermi liquid theory provides a
universal low energy description that applies to a wide range of condensed matter
models, despite their differing high energy physics. The relation between micro-
scopic models and Fermi liquid models is provided via the renormalization group
(RG) approach which connects these models all together, even though RG may be
applied in many other different contexts. However, the low energy physics of many
interacting fermions models does not always reduce to a Fermi liquid theory. For
instance, the quasiparticle picture fails in one dimension and, thus, a new paradigm
of strongly correlated systems emerges naturally. Moreover, low-dimensional systems
are interesting in themselves as they constitute the playground of a wide variety of
theoretical physics methods and approaches such as quantum field theory (QFT),
conformal field theory (CFT) and renormalization group techniques.

Specifically, the field of low dimensional magnetism was born with the one-
dimensional Ising model [3] and the Heisenberg model [4] despite their simplicity.
The corresponding Hamiltonians of some of these models, which at most involve

3
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quadratic terms of spins of local interactions, capture a broad collection of magnetic
phenomena. Moreover, this type of Hamiltonians in 1D can be mapped onto the
so-called free fermions systems, which provide a natural language for describing in-
tegrable spin chains. Free fermionic chains, which are one of the most relevant basic
models of quantum many-body systems, constitute the main object of study in this
work.

Beyond the relevance of fermionic chains in condensed matter, they constitute
one of the basic structures behind quantum simulators. Quantum simulators are
devices designed specifically to provide insight about a certain physical problem
which take advantage of two of the most relevant quantum properties: superposition
and entanglement. For example, fermionic chains have been put forward to simulate
the Dirac vacuum in curved space-times [5], leading us to perform experiments on
the Unruh effect [6] and the Casimir effect. Such quantum simulators can be built
using ultracold fermionic atoms on an optical lattice [7].

The main goal of this chapter is to provide a qualitative notion of important
concepts that are extremely useful to follow this work. Section 1.1 develops a short
introduction to quantum vacuum and its measurable effect: the Casimir force. En-
tanglement and entanglement entropy are introduced in Section 1.2, and Section 1.3
presents a brief review of quantum thermodynamics arising from the area law and
accelerated observers.

1.1 Casimir effect

Probably, one of the most important and fundamental concepts to understand
this work is the quantum vacuum. With that aim, let us imagine the ocean and its
swell, which in our analogy represents particles. Now we slowly get rid of the waves.
In the process, we are reducing the associated energy. When nothing else can be
removed, one can say we have reached the lowest possible energy level. The calm
sea represents the vacuum. The vacuum is, therefore, nothing else but the lowest
energy state of the universe and it presents a quantum nature.

Yet, the nature of the vacuum state can be rather complex and bear measurable
effects such as Casimir forces. The Casimir effect is a physical phenomenon, pro-
posed for the first time in 1948 by Hendrik Casimir and Dirk Polder [8], which is
predictable by theory and experimentally testable. Although there are several ways
to describe this effect, the original experiment consisted in two neutral conducting
parallel plates placed within close proximity. An attractive force arises between the
plates due to quantum vacuum fluctuations [9] while the lack of an external field
should imply no force in a classical description. The nature of this force directly
depends on the configuration of the boundary conditions. Electric and magnetic
fields vanish at the boundaries, therefore, only a subset of all possible quantum
fluctuations of the vacuum can exist between the plates as one can see in Fig. 1.1:
when two or more materials are placed within a close proximity, the vacuum modes
are perturbed by the confinement of quantum fluctuations. Fluctuations with larger
wavelengths simply do not fit. Quantum fluctuations of electromagnetic waves are
a fascinating consequence of the quantization process that takes place when light is
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pushed to the quantum regime.
In 1956, the chemist Boris Derjaguin set a new experimental background by re-

placing one of the plates with a sphere due to the fact that keeping the two plates
parallel was not an easy task [10], becoming the first experimental measurement of
the Casimir forces. However, Marcus Sparnaay confirmed in 1958 the existence of
the Casimir effect in its initial set up [11]. In 1961, theorists Igor Dzyaloshinskii,
Yevgueni Lifshitz and Lev Pitaevski generalized Casimir’s results to the case where
the plates are not perfect conductors [12]. This led to consider anisotropic plates in
1970, where the total free energy of the systems depends not only on the separation
between the two parallel plates but also on the angle θ that defines their relative
orientation. Casimir torque was introduced to describe the rotation exhibited by
the plates towards the position of minimum energy [13]. Beyond the confirmation
of a quantum effect predicted decades ago, the measurement of Casimir torque sets
the perfect scenario for engineering vacuum fluctuations to modify how nanoscale
and microscale devices work [14]. In the world of microelectromechanical systems
(MEMS), the Casimir force is of great importance as it can lead to device malfunc-
tioning or even break-up. Reducing, eliminating or even reversing the Casimir force
could help to solve the problem.

Casimir’s original proposal has been extended to some equilibrium systems where
fluctuations arise from thermal effects instead of having quantum nature [15–17].
Moreover, the case of Casimir forces in equilibrium physical systems, where long-
range correlations show due to a continuous symmetry breaking, is specially relevant
such as in crystal liquids [18].

We can also define Casimir forces in physical systems of a different nature, such
as a spin or fermionic chains, as long as we can define a stress-energy tensor. Indeed,
lattice models have been proved to play an important role in the study of quantum
many-body physics. These models allow us to manipulate the boundary conditions
of the system and the geometry of the lattice which implies the perturbation of the
vacuum modes giving rise to many physical phenomena which are objects of interest
in this work.

In some cases, Casimir forces are fixed by symmetry considerations. For example,
if the fields are subject to conformal invariance, which will be explain in Chapter 4,
the Casimir force is associated to the conformal anomaly, measured by the central
charge in 2D conformal field theory, c [19–22]. The expression for the energy con-
tains a non-universal contribution proportional to the system size N , plus finite-size
corrections of order O(1/N) which are fixed by conformal invariance. Moreover, con-
formal invariance is strong enough to yield an analytical expression for the Casimir
forces in presence of arbitrarily shaped boundaries [23].

The peculiarities of Casimir forces in curved space-times have been considered by
several authors [24]. However, the problem is already difficult for static space-times
and weak gravitational fields [25–28]. Even though our technological abilities do not
allow us to access direct measurements of the Casimir effect in curved space-times,
there are several proposals to develop quantum simulators using current technologies,
such as ultracold atoms in optical lattices [7]. Concretely, it has been shown that the
Dirac vacuum on certain static space-times can be characterized in such a quantum
simulator [5]. The key insight is the use of so-called curved optical lattices, in which



6 CHAPTER 1. INTRODUCTION

Figure 1.1: Casimir force: zero-point vacuum radiation arises from those modes whose
wavelength is shorter than the distance between the parallel plates and, thus, fit into the
system.

fermionic atoms are distributed on a flat optical lattice with inhomogeneous hopping
amplitudes, thus simulating a position-dependence index of refraction or, in other
terms, an optical metric.

1.2 Entanglement

Entanglement is a surprising physical phenomenon that takes place in quantum
systems. Let us consider a system divided into two parts, A and B, within which
our quantum state is defined. If one performs a measurement of a local observable
on A, the probabilities of obtaining different results on B may be altered regardless
of the distance between A and B and vice-versa.

1.2.1 A brief history of entanglement

Back in 1905, Einstein helped introduce quantum theory with his revolutionary
discovery about light behaving both as a wave and a particle [29]. Niels Bohr
explained later that this duality depends on how you observe light but it was not
until 1924 that Louis De Broglie stated that if light waves could behave as particles
then, perhaps, particles of matter could also behave as waves. Erwing Schrödinger
developed the mathematics needed to explain this phenomenon in 1926 [30] and Max
Born showed that Schrödinger’s waves have a probabilistic interpretation, which is
compatible with Heisenberg’s uncertainty principle formulated in 1927 [31]: it is not
possible to obtain exact information about both the position and the momentum
of a particle at the same time in the quantum world, as it is also the case with
energy and time. By 1935, conceptual understanding of the quantum theory was
dominated by Bohr who was convinced that observing a quantum object involves
an unknown interaction with a measurement device that affects both systems and
it is responsible for the impossibility to co-measure other quantities with the same
device.

In the framework of those debates, quantum entanglement was first described by
Einstein, Podolski and Rosen (EPR) in their famous paper of 1935 [32], which was
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intended to be an argument against the completeness of the quantum mechanical
description of physical reality. The EPR argument consisted in considering a pair of
particles prepared in what later would be known as an entangled state. Let us picture
this with two electrons. If two electrons are prepared together in the laboratory
so that they have zero total spin, then the principle of conservation of angular
momentum leads to one electron with spin up and one electron with spin down. This
state is called a singlet state, which means that all the electrons are paired. However,
quantum theory says that there is 50% chance of one electron to have spin up and
50% chance of spin down. In this state, if the spin of the first electron is measured
along any axis, then the spin of the second electron is predictable. However, since no
information can travel faster than light and thus violate Einstein’s relativity theory,
no action taken on the first particle could instantly affect the other. Einstein,
Podolski and Rosen proposed that a realist theory would require each spin to be
determined from the beginning but it is only revealed when you look at it. Quantum
spin then involves a hidden variable yet to be described by quantum theory.

On the other side, Bohr believed that nature was fundamentally random but
Einstein did not. Hidden-variable theories of quantum mechanics were introduced
to remove the randomness of quantum measurements by assuming that some deeper
element of quantum phenomena explains each outcome. These hidden variables were
also assumed not to be accessible to current experiments so, according to Einstein,
Podolski and Rosen, the quantum theory of Bohr and Heisenberg was correct but
not complete. There were still things that the theory could not predict nor explain:
the hidden variables.

Schrödinger was the first to introduce the term entanglement the same year as the
EPR paper was published [33]. Einstein’s entanglement argument and Schrödinger’s
cat paradox, which were originally formulated to be arguments against the validity
of the quantum theory, have become some of the best known established pedagogical
tools in this area.

In 1950, Chien-Shiung Wu and Irving Shaknov found an oddly linked behaviour
in pairs of photons [34]. However, they did not know at the time that they had
performed the first real world experiment of quantum entanglement.

In 1951, David Bohm published a textbook about quantum mechanics where
he took a close look at the EPR paradox [35]. He kept working on hidden-variable
theories but realising the non-locality constraint Einstein had remarked. In addition,
Bohm and Aharonov published in 1957 a description of a plausible experiment set
up in which entangled spin correlations could be tested [36]. This would be later
known as the EPRB experiment, although there were no attempts in this direction
due to the technical difficulties involved in the process.

In 1964, John Bell proved that if local hidden-variable theories were indeed cor-
rect, then the probabilities of different measurements in the EPRB experiment
should respect a certain inequality which now bears his name [37]. However, he
proved that this inequality is violated by certain quantum states and thus showed
that an experiment could rule out any possibility of any local hidden variable theory.
Nevertheless, an experiment showing a violation of Bell’s inequalities can not rule
out a non-local theory of hidden variables such as the one developed by Bohm.

Some years later, John Clauser and his coworkers developed an alternative to
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Bell’s inequality, known as Clauser-Horne-Shimony-Holt (CHSH) inequality, that is
easier to check experimentally and does not need hidden variables involved [38]. In
1972, the CHSH inequality was published and later tested. However, it was not until
1982 when Alan Aspect became the first physicist to verify the violation of Bell’s
inequalities [39].

In the meantime, Anton Zeilinger led notorious experiments involving entangle-
ment of three particles which have strengthened the arguments in favor of quantum
non-locality. Indeed, the so-called GHZ state, named after Greenberger, Horne and
Zeilinger, has been very useful in the fields of quantum communication and cryp-
tography [40].

1.2.2 The von Neumann and Shannon entropies

While all this debate about the validity of quantum theory was taking place, John
von Neumann developed a new mathematical framework for quantum mechanics
in 1932 [41]. Indeed, von Neumann and Landau were pioneers in introducing the
density matrix formalism in the realm of quantum statistical mechanics which would
turn out to be a measurement of entanglement some years later. The density matrix
is an alternative way of expressing quantum states which, unlike the state-vector
representation, allows us to use the same mathematical language to describe both
the individual quantum states, i.e., pure states, and the mixed states that consist of
ensembles of pure states. Moreover, mixed states may also describe a part of a pure
state.

However, it was not until almost 15 years later, in 1948, that Shannon introduced
the concept of entropy in classical information theory [42]:

“My greatest concern was what to call it. I thought of calling it ‘information’, but
the word was overly used, so I decided to call it ‘uncertainty’. When I discussed it
with John von Neumann, he had a better idea. Von Neumann told me, ‘You should
call it entropy, for two reasons. In the first place your uncertainty function has been
used in statistical mechanics under that name, so it already has a name. In the
second place, and more important, no one really knows what entropy really is, so in
a debate you will always have the advantage”.

Von Neumann used then the expression of Shannon’s entropy to characterize
entanglement for mixed states. In this context, von Neumann’s entropy accounts
for the probabilities of obtaining different pure states. For a quantum-mechanical
system described by a density matrix ρ, the von Neumann entropy is

S = −Tr (ρ log ρ) . (1.1)

1.2.3 Entanglement entropy

Many efforts were put into the task of measuring entanglement and have made
their appearance over the years. Entanglement is associated to the fact that a
part of a pure state may be described as a mixed state. Given a pure bipartite
quantum state ρ of a system divided into two regions A and B, |ψ⟩AB ∈ HAB

with HAB = HA

⊗HB , all the physical properties of subsystem A are contained
in a reduced density matrix that accounts only for the degrees of freedom of the
subsystem we are considering, ρA = TrBρAB. Its spectrum {λk} encodes all the
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Figure 1.2: The number of quantum states in the Hilbert space that obeys the area law
for the entanglement entropy corresponds to a very small corner of it.

entanglement properties of the subsystem. The entanglement entropy (EE) is the
von Neumann entropy of the reduced density matrix for any of the subsystems and
it is defined as

S(A) = −Tr (ρA log ρA) . (1.2)

The entanglement entropy S(A) measures the amount of information associated to
the fact that the state ρA is not pure. If this quantity is zero, the two subsystems
are said to be unentangled. On the other hand, a non-zero entanglement entropy
directly implies the presence of these quantum correlations.

1.2.4 Area law

The entanglement entropy is, then, a fundamental quantity that characterizes the
quantum correlations between sub-regions belonging to a larger quantum system.

Let us consider two subsystems and focus on their boundary. The entanglement
entropy between the two subsystems is proportional to the area of the separation
surface, i.e., the boundary. This leads to the so-called area law, which was first
introduced in the field of black holes by Bekenstein [43].

In 1993, Srednicki calculated the reduced density matrix of a block within the
vacuum by tracing out the degrees of freedom inside an imaginary surface [44]. He
showed that the entanglement entropy is proportional to the entangling surface due
to the short-distance correlations present in the system. According to this, only
those degrees of freedom located in a small region close to the separation surface
between subsystems contribute to the entropy.

Let us specialize in the case where the ground state of a gapped local Hamiltonian
on a lattice in D spatial dimensions is a pure state. The entanglement between a
region A of size LD and the rest B of the lattice is often proportional to the size of
the boundary µ(∂A),

SA ≈ µ(∂A) ≈ LD−1. (1.3)

Thus, the ground state (GS) entanglement entropy typically obeys the area law as
opposed to the volumetric law, SA ≈ LD, satisfied by generic states in the many-
body Hilbert space [45].
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Figure 1.3: Graphical representation of a translational invariant MPS with interconnected
tensors A.

1.2.5 Tensor Networks

The Hilbert space of a quantum many-body system contains an incredibly large
number of quantum states. Let us consider the number of particles of the system
to be N ∼ 1023, i.e., the order of the Avogadro number. Then, the number of basis
states in a d dimensional Hilbert space is ∼ d10

23
with , which is exponentially larger

than the number of atoms in the observable universe that it is estimated to be 1080.

Fortunately, some quantum states in the Hilbert space are more relevant than
others. Hastings proved that ground states of gapped local Hamiltonians, i.e.,,
Hamiltonians with a finite correlation length and, thus, a finite energy gap that
separates the ground state from the excited states, obey the area law for the en-
tanglement entropy under local interactions in 1D [46]. In addition, some gapless
systems in D > 1 dimensions also obey Eq. (1.3) [47].

These ground states are not uniformly distributed in Hilbert space. Instead,
they belong to a small corner of it (see Fig. 1.2). This means that finding the GS
of a certain Hamiltonian which, in general, is completely out of reach due to the
exponential growth of the underlying Hilbert space, may be a feasible task.

Moreover, the area law can be taken as a guideline for establishing classes of
quantum states which can approximate the aforementioned ground states. A first
attempt in this direction was proposed in 1988 by Affleck, Kennedy, Lieb and Tasaki
as a way to understand the one dimensional antiferromagnetic spin-1 Heisenberg
model [47] giving rise to the well known AKLT state. The idea consisted in design-
ing wavefunctions for ground states which try to capture some physical properties
of the system and finding appropriate Hamiltonians for them, which would be later
known as parent Hamiltonians. Fannes, Nachtergaele and Werner generalized this
construction in 1992 and introduced the so-called finitely correlated states, also find-
ing a gapped local Hamiltonian for them [48].

Finitely correlated states would later lead to tensor networks (TN). Certainly, TN
techniques have been used as an efficient description of quantum many-body states.
The most famous example is the density matrix renormalization group (DMRG)
algorithm, which was introduced in 1992 by Steve White to simulate 1D quantum
lattice systems [49, 50] as the exact diagonalization of quantum Hamiltonians is
restricted to systems of small size and, thus, far away from the thermodynamic
limit where quantum phase transitions appear.

Indeed, the corresponding wavefunction is described by a network of intercon-
nected tensors with entanglement playing the role of “glue” amongst pieces as it
is shown in Fig 1.3. For instance, the AKLT state can be written as a product of
matrices whose dimension is related to the correlation length and the entanglement
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(a) Gapped. (b) Gapless.

Figure 1.4: This figure shows the boundary between regions A and B for two different
cases. When the Hamiltonian of the system is gapped (a), long-range correlations are
negligible and, thus, only those degrees of freedom close to the boundary contribute to
the entanglement entropy between regions A and B: the area law is satisfied. For gapless
Hamiltonians (b), not only short range correlations are relevant and this leads to a violation
of the area law.

structure,

|ψ⟩ =
∑

i

Tr
[
Ai1Ai2 . . . AiN

]
|i1i2 . . . iN⟩ , (1.4)

where indices im go over the states in the computational basis and the trace comes
from assuming periodic boundary conditions. Eq. (1.4) is called a matrix product
state (MPS) [51]. The natural generalization of MPS to higher spatial dimensions
are the so-called projected entangled pair states (PEPS), although they are not the
only ones.

Tensor networks have become a very powerful tool in condensed matter physics
and quantum information theory as they can target the small corner of the Hilbert
space of relevant states and give a good intuition about the structure of entanglement
between the constituents of a given wavefunction This information in terms of a
network of quantum correlations leads to an effective lattice geometry in which
states actually live. By pushing this idea to the limit, it has been proposed that
geometry and curvature, i.e gravity, could emerge naturally from the entanglement
structure contained in quantum states [52,53].

1.2.6 Violations of area law

There are also ground states of local Hamiltonians which do not obey the area
law. A ground state that violates this property for the entanglement entropy must
break, at least, one of the hypothesis of Hastings theorem [46]. Thus, Hamiltonians
with non-local interactions may violate this law.

In general, when the correlation length of the system is infinite, the ground state
entanglement displays a logarithmic correction to the area law in gapless systems in
D = 1 dimensions, as well as in certain fermionic gapless systems with D > 1 which
present a Fermi surface of dimension D− 1. This logarithmic correction appears as
quantum long-range correlations become relevant (see Fig. 1.4). Therefore,

SA ≈ LD−1 logL. (1.5)
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Figure 1.5: (a) Random singlet phase: each spin forms a singlet pair with another one.
Some of them produce long distance correlations and, hence, the EE scales logarithmically
at the critical point. (b) Concentric singlet phase: the EE scales with the size of the block.
As translational invariance is broken, the EE also depends on the position of the block: if
the blocks are centered in the middle of the chain, the EE would be zero as no bonds are
cut.

Moreover, the ground states and low energy excitations of critical Hamiltonians
are also expected to violate the area law as the correlation length diverges at the
critical point implying the existence of quantum correlations of the system with the
environment even far from the boundaries.

Furthermore, it is also possible to work with one-dimensional systems that max-
imally violate the area law. For instance, a simple spin 1/2 model with nearest
neighbors interactions can lead to a highly entangled ground state by a suitable fine
tuning of its coupling constants, i.e., a volume law scaling for the EE. A way of
achieving so is to generate a ground state with a concentric singlet phase [54, 55],
as shown in Fig. 1.5. It is straightforward to see that the entanglement entropy of
this configuration would scale with the size of the block since it corresponds to the
number of bonds cut by the bipartition.

1.3 Entanglement and Thermodynamics

Let us return to Bekenstein’s conjecture that black holes should have entropy
and, furthermore, it should be proportional to the area of the event horizon A [43],

SBH =
kBA

4l2p
, (1.6)

where kB is the Boltzmann constant and lp is Planck length. The correct pro-
portionality coefficient, 1/4, was later found by Hawking [56, 57]. Using Eq. (1.6),
Bekenstein proposed a generalized version of the second law of thermodynamics [43]:
“When common entropy goes down a black hole, the common entropy in the black
hole exterior plus the black hole entropy never decreases”. This version provides a
unique relation between thermodynamics, gravitation and quantum theory.

Bekenstein’s thermodynamics of black holes received a strong support from
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Hawking when he found that a black hole must emit radiation at a temperature

TH =
ℏa

2πckB
, (1.7)

where a is the acceleration of gravity, c is the speed of light and ℏ = h/2π is
the Planck constant. From 1973 to 1976, Fulling, Davies and Unruh proposed
that a similar effect existed in an essentially flat space-time: uniformly accelerated
observers will feel a thermal bath of particles with a temperature proportional to
their acceleration while inertial observers will not [58–60]. This is the so called
Unruh effect.

Indeed, an observer undergoing constant acceleration moves in a hyperbolic tra-
jectory which is described by Rindler coordinates (see Fig. 1.6). This means that
accelerated observers will feel that they are moving through a different metric, called
Rindler metric, which possesses an event horizon that prevents communication be-
tween different regions of space-time. Therefore, inertial and non-inertial observers
will perceive the vacuum as a different quantum state. A uniformly accelerated
observer will see the ground state of an inertial observer as a mixed state in ther-
modynamic equilibrium with a finite temperature. This temperature was stated by
Unruh and it was shown to correspond to Hawking’s temperature for black hole
radiation.

Figure 1.6: Space-time diagram corresponding to Rindler coordinates η and ξ which are
the co-moving time and space coordinates, respectively, found by t = ξ sinh η, x = ξ cosh η.
The pole ξ = 0 corresponds to a singularity in the coordinate system and it can be thought
of as an event horizon. Constant η lines (green) are spacelike, and constant ξ lines (red)
are timelike. We have considered an observer moving with constant acceleration a = 1 in
the positive x-axis and assumed c = 1 for convenience. The observer is at rest at t = 0
and x = 1. This figure belongs to [6] and it is used under the authors’ permission.

The Unruh effect bears a deep relation to entanglement [61] and black hole
thermodynamics, what leads to the notion of a quantum equivalence principle [62].
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The Unruh effect also plays an important role in Jacobson’s derivation of Einstein’s
equations as equations of state for space-times in thermal equilibrium [63].

Many attempts have been performed in order to reproduce the Unruh effect
experimentally due to its fundamental relevance, including quantum simulation of
Dirac fermions using ultracold fermionic atoms in a 2D optical lattice [6]. Fur-
thermore, the possibility of using accelerated electrons to exhibit the quantum field
theoretic relation between acceleration and temperature has been considered [64,65].



Chapter 2
Density matrix formalism

This chapter constitutes a mathematical review of the density matrix formalism
where concepts as pure states, reduced density matrix, entanglement entropy (EE)
and entanglement contour are briefly discussed.

2.1 Pure states

Given a quantum system composed of two subsystems A and B with finite di-
mensional Hilbert spaces HA and HB, respectively, a pure state is defined by the
vector |ψ⟩ ∈ HAB with HAB = HA

⊗HB. The state |ψ⟩ is said to be factorized if
|ψ⟩ = |ϕ⟩⊗ |φ⟩ with |ϕ⟩ ∈ HA and |φ⟩ ∈ HB. Factorized states can be treated as
if subsystems A and B were independent of each other. However, if |ψ⟩ ≠ |ϕ⟩⊗ |φ⟩
the system is said to be entangled.

The ground states (GS) of the systems we will consider along this work are always
pure states. However, a subsystem of a pure state may not be in a pure state: it is
said to be a mixed state.

2.2 Mixed states

Mixed states are statistical ensembles of m different quantum pure states, not
necessarily orthogonal, and, thus, can be expressed as

{
∣∣ψj

〉
}mj=1 = {|ψ1⟩ , |ψ2⟩ , ..., |ψm⟩}, (2.1)

where each term has a probability given by

{pj}mj=1 = {p1, p2, ..., pm}, (2.2)

whith
∑m

j=1 pj = 1.
This way of expressing mixed states gives rise to certain difficulties when the

number of pure states involved is large. For this reason, the density matrix formalism
is introduced.

15
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2.3 Density matrix

Let us consider a quantum system described by a Hilbert space H. Then, the
state of the system is a density matrix operator ρ of the form

ρ =
∑

j

pj
∣∣ψj

〉 〈
ψj

∣∣ , (2.3)

where
∣∣ψj

〉
are pure states that occur with a probability pj. These states

∣∣ψj

〉
do

not need to be orthogonal. Indeed, if they are, they will be the eigenvectors of the
density matrix, and pj the eigenvalues. Moreover, it satisfies ρ = ρ†, ρ ≥ 0 and
Trρ = 1. If ρ is a one dimensional projector, i.e., ρ = ρ2, it is said to be a pure
state. On the other hand, if ρ ̸= ρ2, it is said to be a mixed state.

In addition, there are several relevant aspects that are important to mention:

1. Observables are described by linear selfadjoint operators A = A† and its ex-
pectation value can be calculated by

⟨A⟩ =
∑

j

pj
〈
ψj|A|ψj

〉
=
∑

j

pjTr
(∣∣ψj

〉 〈
ψj

∣∣A
)
= Tr


∑

j

pj
∣∣ψj

〉 〈
ψj

∣∣A


 .

(2.4)
Therefore,

⟨A⟩ = Tr (ρA) . (2.5)

Moreover, A has a spectral decomposition A =
∑

n αnPn. In this decompo-
sition, αn are real eigenvalues and Pn is a set of orthonormal projectors that
satisfies

∑
n Pn = 1.

2. The measurement of an observable A is described by the measurement basis
formed by the projectors of A. Let us consider the system prepared in a state
ρ. Then, the possible outcomes are

ρ̃n =
PnρPn

TrPnρPn

, (2.6)

with probability Prob(n) = TrPnρPn. The state after the measurement is ρ̃n.

3. The dynamics of the system is given by a unitary matrix Ut, acting on the
states as

ρ(t) = Utρ(0)U
†
t , (2.7)

where the initial condition ρ(0) is given by Eq. (2.3).

4. Since ρ is a positive semi-definite operator, it has a spectral decomposition

ρ =
∑

n

λn |ϕn⟩ ⟨ϕn| , (2.8)

with 0 ≤ λn ≤ 1 and
∑

n λn = 1, and |ϕn⟩ are orthonormal vectors. Notice
that n takes values up to the dimension of the corresponding Hilbert space,
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whereas j in Eq. (2.3) can take any values. Then, the von Neumann entropy
of a state ρ is given by

S = −Tr (ρ log ρ) = −
∑

n

λn log λn. (2.9)

Thus, the von Neumann entropy for any pure state is zero.

2.4 Reduced density matrix

A composite system A∪B can be in a pure state while its components are mixed.
The density matrix that describes only a part of a given system, let us say subregion
A, is called reduced density matrix and is given by

ρA = TrBρ, (2.10)

where the partial trace is defined as follows:

TrB

(
|ai⟩

〈
aj
∣∣⊗ |bi⟩

〈
bj
∣∣
)
= |ai⟩

〈
aj
∣∣
(
Tr |bi⟩

〈
bj
∣∣
)
=
(
|ai⟩

〈
aj
∣∣
) 〈
bj|bi

〉
, (2.11)

and where |ai⟩,
∣∣aj
〉
and |bi⟩,

∣∣bj
〉
are orthogonal basis of subspaces A and B, re-

spectively. Let us assume

|Ψ⟩ =
∑

ij

Cij |ai⟩ ⊗
∣∣bj
〉
=
∑

ij

Cij

∣∣aibj
〉
, (2.12)

where |ai⟩ ∈ HA and
∣∣bj
〉
∈ HB. Then, the density matrix is given by

ρ = |Ψ⟩ ⟨Ψ| =
∑

ijkl

C̄ijCkl

∣∣aibj
〉
⟨akbl| , (2.13)

and the partial traces are

ρA = TrBρ =
∑

ijkl

C̄ijCkl |ai⟩ ⟨ak|
〈
bl|bj

〉
=
∑

ik


∑

j

C̄ijCkj


 |ai⟩ ⟨ak| , (2.14)

ρB = TrAρ =
∑

ijkl

C̄ijCkl

∣∣bj
〉
⟨bl|
〈
ak|ai

〉
=
∑

jl


∑

i

C̄ijCil


∣∣bj

〉
⟨bl| . (2.15)

For a composite system in the state ρ, the reduced density matrix ρA describes
everything that is accessible by local operations in part A.
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2.5 Schmidt decomposition

A pure state |Ψ⟩ ∈ HAB can be written by means of the so-called Schmidt
decomposition (see Appendix A)

|Ψ⟩ =
nS∑

k=1

σk |αk⟩ |βk⟩ , (2.16)

where σk > 0 are the Schmidt values, {|αk⟩}NA
k=1, {|βk⟩}NB

k=1 are orthogonal basis of
HA and HB, respectively, with dimensions NA and NB, and nS ≤ min(NA, NB)
is the Schmidt number. The Schmidt number stands for the number of non-zero
coefficients σk, including multiplicity, in the Schmidt decomposition of |Ψ⟩. It also
accounts for the number of non-zero eigenvalues of the reduced density matrices
TrB |Ψ⟩ ⟨Ψ| and TrA |Ψ⟩ ⟨Ψ|.

The reduced density matrices are given by

ρA =

nS∑

k=1

σ2
k |αk⟩ ⟨αk| , (2.17)

ρB =

nS∑

k=1

σ2
k |βk⟩ ⟨βk| . (2.18)

A factorized state has Schmidt number equal to 1. On the other hand, since an
entangled state cannot be factored as a tensor product, its Schmidt number must be
at least 2. The state is maximally entangled when, for all k, σ2

k = 1/min(NA, NB).
This can be thought of as a first attempt to quantify entanglement.

The eigenvalues of the reduced density matrix codify the whole entanglement
structure of a system. Since every density operator ρA has non-negative spectrum
and it is Hermitian, it can be written as

ρA = e−KA , (2.19)

where KA is a Hermitian operator known as the entanglement Hamiltonian (EH).
By taking the logarithm of Eq. (2.17), or equivalently of Eq. (2.18), we find the
spectrum of the entanglement Hamiltonian which is also known as the entanglement
spectrum (ES)

Ek = −2 log σk. (2.20)

2.6 Entanglement entropy

The entanglement entropy is the most widespread magnitude in the characteriza-
tion of bipartite entanglement. For that purpose, the many-body system is virtually
divided into two subregions, A and B. As we discussed in the previous chapter,
the information entropy was first defined by Shannon. Von Neumann extended the
concept of entropy to quantum physics and, in terms of the density matrix, it can
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be expressed as in Eq. (1.1). Thus, the von Neumann entropy of the subsystem A
is

S (ρA) = −Tr (ρA log ρA) = −
NA∑

k=1

λk log λk, (2.21)

where ρA is the reduced density matrix of part A given by Eq. (2.10) and we assume
the whole system is in a pure state. The {λk}NA

k=1 is the set of eigenvalues of ρA and
NA is the dimension of HA.

The perspective of Shannon theory leads to interpret von Neumann’s entropy,
S(ρA), as the amount of information necessary to describe the subsystem A as a
pure state starting with the mixed state ρA. Or, in other words, it quantifies the
correlations that prevent describing A as a pure state. This is the reason why von
Neumann entropy is often called entanglement entropy.

Eigenvalues λk = 0 do not contribute to the entanglement entropy given by Eq.
(2.21), so it can be given in terms of the Schmidt singular values σk,

S(ρA) = −
nS∑

k=1

σ2
k log σ

2
k = S(ρB). (2.22)

Thus, σk =
√
λk. If the state is a product state, i.e., nS = 1, as we mentioned

earlier, then S(ρA) = 0.
The entanglement entropy satisfies a series of mathematical inequalities which are

the result of physical requirements [66]. For instance, additivity and subadditivity

S(ρA ⊗ ρB) = S(ρA) + S(ρB), (2.23)

S(ρ) ≤ S(ρA) + S(ρB). (2.24)

This last equation establishes that the entropy of a given state ρ ∈ HA ⊗ HB is
bounded by the entropy of a product state ρA ⊗ ρB.

2.7 Rényi entropies

Rényi entropies are an important generalization of the von Neumann entangle-
ment entropy, both theoretically and experimentally, which fulfill all the properties
of the entropy but with the relaxation of the subadditivity.

Analogously to the von Neumann EE, we can define Rényi entropies between a
region A and its complementary as

S
(n)
A =

1

1− n
log (TrρnA) , n ∈ R, (2.25)

where ρA is, once again, the reduced density matrix of the subregion A. In the limit
n→ 1+ Eq. (2.25) is reduced to the von Neumann entanglement entropy

SA = lim
n→1+

S
(n)
A = −Tr (ρA log ρA) . (2.26)

Given a certain system, Rényi entropies have been shown to provide highly non-
trivial information about, e.g., topological properties [67, 68]. They are also very
useful in quantum field theory since they can be computed directly with the so-called
replica trick [69].
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2.8 Entanglement contour

As we have seen, the entanglement entropy accounts for the amount of quantum
correlations between two parts present in a certain system. For instance, the area law
can be understood as resulting from entanglement that involves degrees of freedom
located near the boundary between two regions A and B. Moreover, the logarithmic
correction present in systems with infinite correlation length is argued to come from
those degrees of freedom that are further away from the boundary between A and
B.

Furthermore, Vidal and Chen [70] considered the possibility of introducing a
function sA, called entanglement contour, that assigns a real number sA(m) ≥ 0 to
each lattice sitem contained in region A such that the sum of sA(m) over all the sites
m ∈ A is equal to the entanglement entropy S(A). The aim of the entanglement
contour is, then, to quantify how much the degrees of freedom in site m contribute
to the entanglement between subregions A and B. However, it is important to
emphasize that S(A) ̸=∑m∈A S(m), where S(A) is the von Neumann entanglement
entropy. When site m is only entangled with neighboring sites contained within
region A, and thus uncorrelated with region B, the entanglement contour sA(m)
will be required to vanish. On the contrary, the one-site von Neumann entropy
S(m) still takes a non-zero value due to the presence of local entanglement within
region A.

The entanglement contour is not uniquely defined. Yet, Vidal and Chen provided
a list of reasonable requests to be made on any sensible contour function [70]:

• Positivity: sA(m) ≥ 0.

• Normalization:
∑

m∈A s(m) = S (A).

• Symmetry: if T is a symmetry of ρA that interchanges the role of sites m and
n, then s(m) = s(n).

• Invariance under local unitary transformations: if a state ψ̃ is obtained from
a state ψ by means of a unitary transformation UX that acts on a subregion
X ⊆ A, then the entanglement contour sA(X) must be the same for both
states.

• Upper bound: the entanglement contour of a subregion X ⊆ A cannot be
larger than the entanglement entropy of the subregion X with the rest of the
system.



Chapter 3
Free fermions and spin chains

The Hilbert space of quantum many-body systems grows exponentially with the
number of elements, whether they are spins, sites or orbitals. Therefore, classical
simulations of their dynamics constitute a difficult problem. However, in some cases,
we can describe the system as a combination of single-body orbitals which may be
either occupied or empty. This is the case of free fermion models which will be
discussed in this section.

Free fermion models are those expressed by a Hamiltonian which is bilinear in
the fermionic operators. Therefore, they can be exactly solved in terms of single-
body modes and single-body energies so we can treat the system as constituted by
a certain number of particles which move independently of each other.

3.1 Hopping model

Let us consider a fermionic chain with (even) N sites. We can define a hopping
Hamiltonian,

H(J)N = −
N−1∑

m=1

Jm

(
c†mcm+1 + h.c.

)
, (3.1)

where J = {Jm}N−1
m=1 are called hopping amplitudes, Jm ∈ R+ referring to the link

between sites m and m + 1 as shown in Fig. 3.1, and c†m, cm are the creation
and annihilation operators of site m, which satisfy the standard anticommutation
relations

{ci, c†j} = δij, (3.2)

{ci, cj} = {c†i , c†j} = 0. (3.3)

The exact diagonalization of Hamiltonian (3.1) is a straightforward procedure
which only involves the solution of the associated single-body problem. Let us
define the hopping matrix, Tij = Tji = −Ji

(
δi,j+1 + δi,j−1

)
, such that

H(J)N =
∑

ij

Tijc
†
icj. (3.4)

21
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Jm

c†m c†m+1

Figure 3.1: Chain with homogeneous hopping amplitudes.

Then, we can diagonalize the hopping matrix, Tij =
∑

k UikεkŪjk, where εk are the
single-body energies and the columns of Uik represent the single-body modes. These
modes determine a canonical transformation

b†k =
∑

i

Uikc
†
i , (3.5)

where U is a unitary matrix which implies that b†k are also fermionic operators and
satisfy anticommutation relations given by Eq. (3.2) and (3.3). Therefore,

H(J)N =
N∑

k=1

εkb
†
kbk, (3.6)

where εk are arranged in ascending order. We can write a basis of eigenstates of
H(J)N by fixing the occupation numbers of the b†k modes.

Let us consider the minimum energy eigenstate with a fixed number of particles
m, which is obtained by filling up the lowest m single-particle modes. Then,

|Ψm⟩ =
m∏

k=1

b†k |0⟩ , (3.7)

where |0⟩ is the Fock vacuum which is annihilated by the operators bk and the filling
fraction is defined as ν ≡ m/N . The energy of this state is

E =
m∑

k=1

εk. (3.8)

In this case, the graph associated to matrix Tij is bipartite, i.e., there are no
diagonal nor even-ranged terms. Therefore, the Hamiltonian given in Eq. (3.1)
presents particle-hole symmetry, εk = −εN+1−k, with Uik = (−1)iUi,N+1−k. For
every single-particle eigenstate with energy ε there is another eigenstate with energy
−ε, as it is shown in Fig. 3.2 (a). Therefore, the ground state (GS) is given by filling
up all the modes with negative energy if there are no zero modes, i.e., ν = 1/2, which
is called half-filling and it is represented in Fig. 3.2 (b). The energy of the highest
occupied mode is called the Fermi energy, εF .
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Figure 3.2: Particle-hole symmetry: (a) for every single-particle eigenstate with energy ε
there is another eigenstate with energy −ε. (b) The GS is given by filling up all the modes
with negative energy.

3.2 Correlation matrix and local density

The considered GS given by Eq. (3.7) is a Gaussian state, for which all observ-
ables can be obtained from the correlation matrix C, defined as

C =




〈
c†1c1

〉
· · ·

〈
c†1cN

〉

...
. . .

...〈
c†Nc1

〉
· · ·

〈
c†NcN

〉


 . (3.9)

In the case shown in the previous section where the number of particles is conserved,
we can obtain any higher-order correlator, e.g.,

〈
c†mc

†
nckcl

〉
=
〈
c†mcl

〉〈
c†nck

〉
−
〈
c†mck

〉〈
c†ncl
〉
. (3.10)

Following from Eq. (3.5), one can write the inverse relations

c†i =
∑

k

Ūikb
†
k, (3.11)

ci =
∑

k

Uikbk. (3.12)

Thus, the elements of the correlation matrix C of a system with m particles are
defined as

Cij ≡
〈
c†icj
〉
= ⟨GS| c†icj |GS⟩ =

m∑

k=1

ŪkiUkj, (3.13)

and, concretely, the local occupation or density is found as

⟨ni⟩ = Cii. (3.14)
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3.3 Computation of entanglement entropy

All the entanglement properties of a Gaussian state can be determined from the
correlation matrix C. Indeed, the reduced density matrix of any block A of size ℓ, can
be obtained diagonalizing the corresponding ℓ×ℓ submatrix, CA = {Cmn|m,n ∈ A}.
The set {νAk } of eigenvalues of CA, where each νAk ∈ [0, 1], determines uniquely the
full entanglement spectrum. Then, we may diagonalize CA

ℓ∑

m,n=1

V̄mk (CA)mn Vkl = νklδkl, (3.15)

where V are unitary matrices. So we can define a new set of fermionic operators
{fk}NA

k=1 with fk =
∑NA

m=1 Vmkck, whose correlator matrix is diagonal
〈
f †
kfl

〉
= νkδkl. (3.16)

Using the definition of the density matrix ⟨O⟩ = Tr (Oρ), we can write
〈
f †
kfl

〉
= Tr

(
f †
kflρA

)
= νkδkl. (3.17)

Eq. (3.17) implies that ρA = ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAl
which leads us to focus on the

eigenvalues of ρAk

ρAk
=

(
αk βk
β∗
k 1− αk

)
. (3.18)

If we consider the matrix form of the fermionic operators

fk =

(
0 0
1 0

)
, f †

k =

(
0 1
0 0

)
, (3.19)

and impose ⟨fk⟩ = 0, we end up with Tr (fkρA) = βk = 0. On the other hand, from
Eq. (3.17), αk = νk. Therefore,

ρA =
ℓ⊗

k=1

ρAk
=

ℓ⊗

k=1

(
νk 0
0 1− νk

)
. (3.20)

We can now compute

TrρnA =
ℓ∏

k=1

TrρnAk
=

ℓ∏

k=1

(
νnk + (1− νk)

n) . (3.21)

The Rényi entropies are given by

S(n)(A) =
1

1− n

ℓ∑

k=1

log
(
νnk + (1− νk)

n) , (3.22)

and the von Neumann entropy of block A can be expressed as

S(A) =
ℓ∑

k=1

(
νAk log

(
νAk

)
+
(
1− νAk

)
log
(
1− νAk

))
. (3.23)
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3.4 Analytical solution of the homogeneous chain

Let us consider a homogeneous fermionic chain described by Hamiltonian (3.1),
where Jm = 1. In this particular case, it is possible to diagonalize analytically the
hopping matrix Tlj in order to find the single-body modes and energies from Eq.
(3.4).

3.4.1 Open chain

For open boundary conditions (OBC), the hopping matrix is given by

Tlj = −




0 1 0
1 0 1

. . . . . . . . .
1 0 1
0 1 0



, (3.24)

and can be diagonalized using the Ansatz

ϕl = Aeikl +Be−ikl, (3.25)

where k indicates the momentum. Thus, we can now write the corresponding bulk
equations

Tljϕj = εϕl, (3.26)

where we are using the summation over the set of repeated indexes. The eigenvalues
ε represent the energy of each mode k. Therefore, taking into account Eq. (3.25)
and Eq. (3.26),

A
(
eik(l−1) + eik(l+1)

)
+B

(
eik(l−1) + eik(l+1)

)
= εk

(
Aeikl +Be−ikl

)
, (3.27)

with εk = −2 cos(k).
If we consider expressions for the first and last sites of Eq. (3.27), i.e., l = 1 and

l = N , it is straightforward to see that A = −B and

kOBC =
πn

N + 1
with n ∈ [1, N ] . (3.28)

The GS is obtained by filling up all the levels with negative energy so

GS →
{
kOBC =

πn

N + 1
, k ∈

[
1, N/2

]}
, (3.29)

if the system has an even number of sites. However, if the size of the system is odd,
the number of fermions of the ground state is odd and there is a state with zero
energy corresponding to the Fermi momentum kF = π/2, which is the momentum
of the highest occupied mode. As a consequence, the ground state is degenerate
since it is possible to define it with and without the zero mode.
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3.4.2 Periodic chain

For closed boundary conditions we must distinguish two cases depending on the
number of sites involved in the system.

For periodic boundary conditions (PBC), the hopping matrix follows from Eq.
(3.24) but with T1N = TN1 = −1. On the other side, for anti-periodic boundary con-
ditions (APBC), one must have T1N = TN1 = 1. The Ansatz for this configurations
is ϕl = eikl and we proceed in the same way as for OBC.

For PBC, the allowed modes are

k =
2mπ

N
with





m ∈
[
−N

2
,
N

2

]
for N = 4n,

.

m ∈
[
−(N − 2)

2
,
(N − 2)

2

]
for N = 4n+ 2,

(3.30)

while for APBC,

k =
(2m+ 1)π

N
with





m ∈
[
−N

2
,
N

2
− 1

]
for N = 4n,

.

m ∈
[
−(N − 2)

2
,
(N − 2)

2
− 1

]
for N = 4n+ 2.

(3.31)

The number of fermions, Nf , for the ground state is determined by particle-hole
symmetry, Nf = N/2. Thus, the GS is determined by filling up half of the lowest

energy modes. Therefore, for PBC, the GS modes are those with k ∈
[
−N

4
,
N

4

]
for

N = 4n, and modes with k ∈
[
−(N − 2)

4
,
N − 2

4

]
for N = 4n+2. Equivalently, we

definde the GS for APBC.

3.5 Energy

In this section, we will show that the expression for the energy contains a non-
universal contribution proportional to the system size N , plus finite-size corrections
of order O(1/N). These corrections are fixed by conformal invariance which will be
explained in the next chapter.

The energy of the system with a fixed number of particles m is given by Eq.
(3.8)

E =
m∑

k=1

εk = −
m∑

k=1

2 cos(k), (3.32)

where k is given by Eq. (3.28) for OBC. Moreover, we can define the Fermi velocity
as

vF =
∂εk
∂k

∣∣∣∣
kF

= 2, (3.33)
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with kF = π/2.
Yet, the previous sum in Eq. (3.8) is difficult to compute so one can use the

asymptotic expansion of Euler-Maclaurin expression, which provides a relation be-
tween the sum and the integral of a real or complex valued continuous function for
real numbers x in the interval [a, b] in terms of higher derivatives evaluated at the
endpoints of the interval, in order to obtain the energy. Thus,

b∑

n=a

f(n) ∼
∫ b

a

f(x)dx+
f(a) + f(b)

2
+

∞∑

q=1

B2q

(2q)!

(
f (2q−1)(b)− f (2q−1)(a)

)
, (3.34)

where a and b are integer numbers, B2q are the Bernoulli numbers and f (l) is the
l-th derivative. We will only compute the first term, q = 1, of the sum involving
these numbers due to the fact that contributions to first order corrections to the
energy in N−1 are fully determined by it. Therefore, we will only need B2 = 1/6.

Taking into account the occupied modes for the GS for the different boundary
configurations explained in Section 3.4, the energy of the ground state is given by

EOBC(N) ≃ −2N

π
−
(
2

π
− 1

)
− π

12N
, (3.35)

EPBC
4n (N) = EAPBC

4n+2 (N) ≃ −2N

π
+

2π

3N
, (3.36)

EPBC
4n+2(N) = EAPBC

4n (N) ≃ −2N

π
− π

3N
. (3.37)

A detailed calculation can be found in Appendix B.

3.5.1 General boundary conditions

Let us, for instance, focus on the case of N = 4n. We can observe from Eqs.
(3.36) and (3.37) that the correction of order O(1/N) of the energy for PBC and
APBC switches its sign. This implies that there should be a phase θ for which the
correction of O(1/N) to the energy vanishes. With that aim, let us consider

k =
2mπ

N
+

θ

N
, with m ∈

[
−N

4
,
N

4
− 1

]
, (3.38)

since we are focusing on the N = 4n case. For θ = 0, we recover k =
2mπ

N
as stated

in Eq. (3.30) for PBC. On the other side, we obtain k =
2mπ

N
+
π

N
, for θ = π, which

corresponds to APBC.
Indeed, we can compute the energy of the GS, with k given by Eq. (3.38), using

the Euler-MacLaurin expression (3.34). Therefore,

E(θ) ≃ −2N

π
+

2π

3N
+

θ2

Nπ
− 2θ

N
. (3.39)

We recover Eqs. (3.36) and (3.37) for θ = 0 and θ = π, respectively, as it was
expected.
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Figure 3.3: (a) The validity of Eq. (3.39) is checked in this panel for N = 40, where
we recover PBC for θ = 0 and θ = 2π, whereas APBC are obtained when θ = π. The
corrections of order O(1/N) to the energy vanish when θ takes the values of Eq. (3.40),
which have also been checked numerically. (b) The validity of Eq. (3.39), which has to
be shifted, is checked in this panel for N = 42. As it is seen, PBC become APBC and
vice-versa. The values of θ which give no contribution to the energy of order O(1/N) (Eq.
(3.41)) have been also checked numerically.

Furthermore, from Eq. (3.39) we can find the values of θ that lead to no correc-
tions of order O(1/N):

θ1 = π

(
1 +

1√
3

)
, θ2 = π

(
1− 1√

3

)
. (3.40)

In panel (a) of Fig. 3.3 we have compared Eq. (3.39) for N = 4n, with the energy
obtained numerically. Aditionally, we have plot the PBC and APBC energies given
by Eqs. (3.36) and (3.37), together with the bulk energy which is determined by
the term proportional to the size of the system N . Indeed, when Eq. (3.39) has
no correction of order O(1/N), i.e., θ takes the values given by Eq. (3.40), E(θ) is
equal to the bulk energy.

Moreover, if we consider N = 4n + 2, the role of PBC and APBC is exchanged
as it is shown in panel (b) of Fig. 3.3. Thus, since Eq. (3.39) was obtained for
N = 4n, we need to shift it by ±π in order to reproduce the data for N = 4n + 2.
As a consequence,

θ′1 =
π√
3
, θ′2 = 2π − π√

3
. (3.41)

3.6 Spin models

Magnetism is one of the most relevant forces in nature and the magnetic proper-
ties of materials have long been considered object of interest [71]. The ferromagnetic
behaviour of certain materials, such as iron, which remain magnetized even when
the external field is removed showing all the spins aligned in the same direction,
led to the introduction of the so-called spin systems. Shortly after the electron spin
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was hypothesized in 1925, Lenz proposed to one of his students, Ising, to consider
a model in which an interaction was introduced between spins placed on a lattice.
Each spin is limited to take values ±1, and interacts with neighbors such that spins
with the same sign have a lower energy than those that disagree. Since all systems
tend to their lowest possible energy state, this model captures a tendency towards
ferromagnetism which is disturbed by temperature.

Indeed, magnetic materials exhibit interesting temperature-dependent behaviour.
As the temperature increases, thermal motion becomes relevant and competes with
the tendency of spins to be aligned. When the temperature reaches a certain point,
called the critical temperature or the Curie temperature Tc, a second order phase
transition takes place and the system can no longer maintain a spontaneous mag-
netization. However, for T > Tc the system still responds paramagnetically to
an external field: spins align in the direction of the applied magnetic field. Unlike
ferromagnets, paramagnets do not retain any magnetization in the absence of an ex-
ternal field as thermal fluctuations randomize the spin orientations. Below Tc, there
is a spontaneous symmetry breaking and spins become aligned with their neighbors
resulting in stable magnetization regions.

In addition, the Ising model presents a Z2 symmetry group which means it is
invariant under the unitary transformation of flipping all the spins in the z direction.

Ising was able to solve the one-dimensional version of the model exactly in the
absence of an external magnetic field. He found that, even for very low temper-
atures, the model never undergoes a phase transition to an ordered ferromagnetic
state which means that the spins become parallel only at T = 0. For finite T , the
correlations between neighboring spins decay exponentially and the system is disor-
dered. Furthermore, Onsager published an exact solution to the problem for a two
dimensional square lattice, as represented in Fig. 3.4, and proved that the 2D model
has a critical point at a non-zero temperature [72]. He was the first to describe the
critical exponents of the phase transition, which are currently well understood by
conformal field theory (CFT).

The quantum version of the classical Ising model presents a phase transition at
zero temperature due to the interaction with a transverse magnetic field. In order to
express the Ising Hamiltonian using a quantum mechanical description, we replace
the spin variables with their respective Pauli matrices. In this case, spin projections
align or anti-align along the z-axis and the external magnetic field is considered to
be perpendicular as in the x-axis. In the quantum sense, the spin projections along
the x and z axis do not commute so they can not be observed simultaneously. This
means classical statistical mechanics is unable to explain the transition.

The one-dimensional quantum model admits two phases depending on whether
the GS breaks or preserves the Z2 symmetry. At the critical point, the system
undergoes a quantum phase transition. The (1+ 1)D transverse field Ising model is
the quantum version of the two dimensional Ising model and can also be described
by a 2D CFT.

There are also other spin models that have been put forward to study critical
points and phase transitions of magnetic systems such as the model proposed by
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Heisenberg and which takes the name after him. This model describes, quantum
mechanically, the exchange interaction between particles of spin 1/2. The key dif-
ference between the Ising and Heisenberg models is that the Ising model, as we
already said, presents a Hamiltonian which is invariant under a simultaneous flip of
all spins, i.e., a Z2 symmetry, whereas the Heisenberg Hamiltonian is rotationally
symmetric, i.e., possesses the full SU(2) symmetry. This means that the Heisenberg
model has a continuous symmetry opposed to the discrete symmetry present in the
Ising system.

In two spatial dimensions, the Mermin-Wagner theorem [73] shows rigorously
that such a continuous symmetry cannot be broken spontaneously at any finite
temperature. Therefore, the Heisenberg model cannot have an ordered phase at low
temperature like the Ising model. However, this theorem does not apply at T = 0.

For the ferromagnetic case, the total spin of the system commutes with the
Hamiltonian and then is conserved. However, the ferromagnetic GS is not invariant
under rotations. When the symmetry that is broken is continuous, there are in-
finitely many ground states. On the contrary, the number of GS in the Ising model
is finite because the symmetry is discrete.

On the other side, in 1932 Néel identified a possible antiferromagnetic behaviour
of the system below a certain transition temperature in which nearest neighbors
order themselves in such a way that spins point in opposite directions [74]. However,
this is not an eigenstate of the Heisenberg Hamiltonian and thus the GS is not
trivial. Few rigorous results are known for the ground state of the antiferromagnetic
Heisenberg model.

As we have seen, spin models are a very powerful tool in the study of magnetism.
However, these spins systems represent quantum-many body models and analytical
approaches are not always feasible. Nevertheless, there exists a powerful method for
understanding the behaviour of quantum many-body spin systems which consists
in mapping to non-interacting effective fermions. When this mapping is possible,
it can be said that we have restricted the model’s essential behaviour to the low-
dimensional subspace of a single fermion. This means the model is solvable in
terms of single-body modes, i.e., free fermions, and the physics of the system is well
understood.

The best known mapping to free fermions is the Jordan-Wigner transformation
where non-local Pauli operators are identified with fermionic ladder operators. This
method was successfully employed by Lieb, Schultz and Mattis to solve the one
dimensional XY model [75] and the Ising model in a transverse field [3].

3.6.1 Jordan-Wigner transformation

Let us consider a single spin 1/2 and the three components of the spin-operators
Sα with α = x, y, z,

Sx =
1

2

(
0 1
1 0

)
, Sy =

1

2

(
0 −i
i 0

)
, Sz =

1

2

(
1 0
0 −1

)
. (3.42)

These spin operator are related to Pauli matrices as Sα = σα/2 (ℏ = 1).
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Figure 3.4: Ising model in 2D.

The Hilbert space of a single spin 1/2 is two-dimensional and the spin operators
commute when they act on different sites of the chain, i.e., different Hilbert spaces.
However, acting on the same site, the commutator of spin operators leads to

[
Sx
j , S

y
j

]
= iSz

j , (3.43)

and cyclic permutations. Spin operators (3.42) are related to raising and lowering
operators as

a+j = Sx
j + iSy

j , aj = Sx
j − iSy

j . (3.44)

So,

Sx
j =

(
a+j + aj

)

2
, Sy

j =

(
a+j − aj

)

2i
, Sz

j = a+j aj − 1/2. (3.45)

The Jordan-Wigner transformation [76] relates spin and fermionic degrees of
freedom as [3]

aj = exp


−πi

j−1∑

k=1

c†kck


 cj, (3.46)

a†j = c†j exp


πi

j−1∑

k=1

c†kck


 . (3.47)

The inverse relations are

cj = exp


πi

j−1∑

k=1

a†kak


 aj, (3.48)

c†j = a†j exp


−πi

j−1∑

k=1

a†kak


 . (3.49)

where cj and c†j are fermionic operators and hence satisfy {cj, c†k} = δjk, {cj, ck} =

{c†j, c†k} = 0.
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3.6.2 XY and XX models

Let us consider N spins 1/2’s located in a 1D chain with nearest-neighbor inter-
actions and general boundary conditions. The corresponding Hamiltonian is given
by [75]

HΓ = −
N−1∑

i=1

J
[
(1 + Γ)Sx

i S
x
i+1 + (1− Γ)Sy

i S
y
i+1 −Θ

(
(1 + Γ)Sx

NS
x
1 + (1− Γ)Sy

NS
y
1

)]
,

(3.50)
where J is the coupling amplitude, Γ is a parameter that characterizes the anisotropy
in XY-plane and Sα with α = x, y, z, are the spin operators of Eq. (3.42). The last
term in Eq. (3.50) has been added to take into account all the possible boundary
conditions of the system through parameter Θ. When Θ = 0, we deal with the open
chain. On the other hand, Θ = 1 stands for the periodic boundary conditions where
Sα
N+1 = Sα

1 , and Hamiltonian (3.50) is translational invariant.
If |Γ| ≠ 1, the model behaves quantum mechanically as the different components

of Si appearing in (3.50) do not commute. The second term of Hamiltonian (3.50)
opposes the ordering of the x component to favor the ordering of the y component.
We will focus on the case with |Γ| = 0, which describes the isotropic XX model
given by

HXX = −
N−1∑

i=1

J
(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
−ΘJ

(
Sx
NS

x
1 + Sy

NS
y
1

)
. (3.51)

The XX Hamiltonian commutes with the total magnetizationM, [H,M] = 0, which

is defined as M =
∑N

i=1 S
z
i . As a consequence, HXX is invariant under rotations

around the z axis. Hamiltonian (3.51) also commutes with the parity operator

P = 2
∏N

i=1 S
z
i , so it is invariant under spin inversion. This means that the number

of particles in the system, and thus the parity, are fixed.
From Eq. (3.45), one can rewrite Hamiltonian (3.51) as

H = −
N−1∑

i=1

J

2

(
a†iai+1 + aia

†
i+1

)
−Θ

J

2

(
a†Na1 + aNa

†
1

)
. (3.52)

Due to the fact that a†iai+1 = c†ici+1, for OBC we recover Hamiltonian (3.1)

HOBC = −1

2

N−1∑

i=1

J
(
c†ici+1 + c†i+1ci

)
. (3.53)

However, for PBC, aNa
†
1 = (−1)Nf+1c†Nc1, where Nf is the total number of fermions

of the system given by Nf =
∑N

i=1 c
†
ici. We must distinguish then between Nf even

and odd.

Nf even → HPBC
e = HOBC +

J

2

(
c†Nc1 + cNc

†
1

)
, (3.54)

Nf odd → HPBC
o = HOBC − J

2

(
c†Nc1 + cNc

†
1

)
. (3.55)
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For Nf even it is straightforward to see that cN+1 = −c1 which means anti-periodic
boundary conditions. When Nf is odd, cN+1 = c1 and thus the chain is closed with
PBC. This shows that boundary conditions are affected by the fermion parity.

Notice that we have mapped the XX spin model into a Hamiltonian which is
quadratic in fermionic operators so free fermions techniques may be applied. Yet,
boundary conditions are affected by the fermion parity: PBC becomes APBC when
N is even. No problem is present, instead, when the boundary conditions are open
because there is no link between operators at site N and N + 1 ≡ 1.

3.6.3 Ising model

The 1D classical Ising model in the absence of an external magnetic field is given
by the Hamiltonian

HIsing = −
N−1∑

i=1

Jσiσi+1, (3.56)

where each site is occupied by one single particle and it is represented by the discrete
variable σi. Each spin can only take a value of σi = ±1 and we have restricted the
interaction to nearest-neighbors. The magnetic behaviour of the system is deter-
mined by the parameter J . When J > 0, the Ising model is ferromagnetic and spins
desire to be aligned. On the other hand, the system becomes antiferromagnetic
when J < 0.

For the one-dimensional case, there is no phase transition, contrary to the 2D
classical system [77].

The Ising model can be extended into a quantum mechanical description when
a transverse external magnetic field is considered. In this case, spin variables are
replaced by their respective Pauli matrices and the Hamiltonian is defined as

HIsing = −
N−1∑

i=1

Jσz
i σ

z
i+1 −∆

N∑

i=1

σx
i . (3.57)

We have considered that spin projections align or anti-align along the z axis and the
magnetic field is applied in the perpendicular direction of the x axis. When ∆ > 0,
spins tend to line up in the direction of the positive x axis.

The one-dimensional quantum Ising model presents two distinguished phases
based on whether the ground state breaks or preserves the Z2 symmetry. When
|∆| < 1, the GS breaks the spin-flip symmetry and the system is said to be in the
ordered phase. When |∆| > 1, the GS preserves the symmetry and the system is said
to be in a disordered phase. Both of these phases are gapped [3]. At the boundary
between these two gapped phases we find a quantum phase transition, or a critical
point, which can be described by a CFT as we will see in the next chapter.

3.6.4 Heisenberg model

The Heisenberg model explains the exchange interaction between particles of
spin 1/2, which has a quantum mechanical origin.

The spin-1/2 Heisenberg model in 1D is one of the simplest critical interacting
systems and is defined by [4]
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HHeisenberg = −J
N−1∑

i=1

[(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
+∆Sz

i S
z
i+1

]
, (3.58)

The exchange interaction is controlled by J , and the ratio ∆ is the anisotropy
parameter. When ∆ = 1, Hamiltonian (5.32) is known as the Heisenberg model or
XXX model. On the other hand, it is said to be the XXZ model for ∆ ̸= 1, or,
equivalently, XYZ when the coupling parameter J is different in the three directions.

The exchange interaction term present in Heisenberg Hamiltonian has no effect
over the state where all spins align in the same direction. Therefore, this state
is a ground state when the Heisenberg model is ferromagnetic. For the antiferro-
magnetic Heisenberg model the ground state is more complicated than the simple
configuration of anti-parallel spins [78].

Under the Jordan-Wigner transformation, Hamiltonian (3.58) can be written in
fermionic language as

H = −
N−1∑

i=1

Ji

(
c†ici+1 + h.c.

)
+ 2

L∑

i=1

Ji n
†
ini+1, (3.59)

where ni = c†ici is the fermion number operator. We can see that fermionic particles
at nearby sites repel each other, making it impossible to use free fermion techniques.
Yet, the GS energy of this Hamiltonian can be accurately obtained using the density
matrix renormalization group (DMRG) algorithm [49,50] or the Bethe Ansatz.



Chapter 4
Conformal Field Theory

The aim of this chapter is to briefly introduce conformal field theory (CFT) and its
relevance in condensed matter physics. CFT predictions have been crucial in this
work as it will be shown in the next chapters.

In order to have a good understanding of this thesis, we will focus on 2D CFT
results so we will leave the cases where D > 2 out of this text. A 2D CFT is strongly
constrained by its symmetries because the algebra of conformal transformations is
infinite-dimensional. Conformal field theories in two dimensions are a powerful tool
in many topics as scale invariance is directly related to conformal invariance.

4.1 Motivation

One of the main purposes of condensed matter physics is the distinction and
characterization of phases of matter. For that aim, the renormalization group (RG)
procedure has proved to be very useful [79]. The RG focuses on how the physical
phenomena change with the length scale of a given system. Let us consider a Hamil-
tonian H

(
{g}
)
, parametrized by a certain set of coupling constants {g}. The RG

characterizes how H
(
{g}
)
varies under a re-scaling R of the corresponding lattice

spacing a, i.e., a → ba with b > 1. The RG transformation {g′} = R
(
{g}
)
can

be seen as a flow from point {g} to point {g′}. When {g∗} = R
(
{g∗}

)
, we say we

have reached a fixed point and thus, the correlation length of the system does not
change under the re-scaling transformation. However, this correlation length must
be measured with respect to the new scale so R (ξ) = ξ/b. Therefore, there are two
values for ξ at the fixed point: ξ = 0 and ξ = ∞. The first case is trivial, and
leads to a factorized state. The second case, ξ = ∞, leads to critical points, where
short-distance behaviour is irrelevant and phase transitions take place.

A conformal field theory is a field theory that is invariant under conformal trans-
formations, i.e., transformations that preserve angles [21]. An example of these
transformations is scaling : the theory remains the same both at small and long
distances. For instance, due to their scale invariance, critical points can be charac-
terized with conformal field theories [80].

We will focus on relativistic conformal field theories, which play an important

35
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role in the space of quantum field theories as they describe fixed points of the
renormalization group flow in a relativistic quantum field theory [81]. The symmetry
group of a relativistic conformal field theory is encoded by Poincaré transformations,
dilations and special conformal transformations. Special relativity establishes that
all of physics is invariant under Poincaré transformations: physics remain the same
regarding where an observer is (translation), the direction they are facing (rotation)
or how fast they are moving (boost).

Two of the simplest examples of conformal field theories are classical Maxwell’s
equations in the absence of sources (charged particles) and the free massless Dirac
fermion in dimension D = 4 [81], which are both non-interacting fields with no
mass so the associated Lagrangians have no dimensional coupling parameters. This
means that the action is invariant under conformal transformations. There are
also examples of interacting theories with classical conformal invariance [82] with
massless fields. However, if the associated Lagrangian has a mass parameter the
theory can not be conformally invariant: the mass introduces a characteristic length
scale in the system that is not invariant under scale transformations.

The quantum version of conformal invariance presents certain peculiarities, due
to the need of regularization, which introduces a length scale, giving rise to the
so-called conformal anomaly, which will be discussed in the following paragraphs.

CFT has found applications beyond the characterization of fundamental fields.
It describes critical points in statistical mechanics, both classical and quantum,
with special success in 2D classical [77] or (1 + 1)D quantum cases, due to the
special properties of the conformal group in this case. Moreover, CFT provides
an interesting route to quantize gravity, such as string theory or the holographic
principle, through the AdS/CFT correspondence [83]. A theory of gravity in an anti-
de Sitter space, i.e., space-time with a negative cosmological constant corresponds
to a CFT on the boundary. In string theory, the worldsheet theory describing the
excitations of a string is a CFT.

The following sections constitute an overview of CFT in (1 + 1)D, which it is
enough for the applications we employ in this thesis. For a more general review
see [21,22].

4.2 Conformal transformations

As previously stated, conformal transformations in 2D are spatial maps that pre-
serve angles (see Fig. 4.1). In terms of a certain metric, a conformal transformation
is a change of coordinates, r → r̃, that yields a local rescaling of the metric [21]:

gµν(r) → g̃µν(r̃) = Ω(r)gµν(r). (4.1)

Focusing on 2D, we may consider coordinates (x0, x1), in Euclidean metric, and
the change of coordinates xµ → wµ(x). Thus, the metric transforms as

gµν → g̃µν =
∂wµ

∂xα
∂wν

∂xβ
gαβ. (4.2)
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Figure 4.1: A conformal mapping transforms Cartesian coordinates (a) into curvilinear
coordinates (b) while preserving angles.

For a Euclidean metric, g00 = g11 = 1, Eq. (4.2) is a conformal transformation if,

(
∂w0

∂x0

)2

+

(
∂w0

∂x1

)2

=

(
∂w1

∂x0

)2

+

(
∂w1

∂x1

)2

. (4.3)

∂w0

∂x0
∂w1

∂x0
+
∂w0

∂x1
∂w1

∂x1
= 0. (4.4)

which arise from imposing proportionality between the original and the final metric,
i.e., g̃00 ∝ g00 = 1, g̃11 ∝ g11 = 1 and g̃01 ∝ g01 = 0, g̃10 ∝ g10 = 0.

These equations are equivalent to the holomorphic (+) and anti-holomorphic (−)
Cauchy-Riemann equations

∂0w1 = ±∂1w0, (4.5)

∂0w0 = ±∂1w1. (4.6)

This motivates the use of complex variables z and z̄ so we define

z ≡ x0 + ix1, (4.7)

z̄ ≡ x0 − ix1, (4.8)

∂ ≡ ∂z =
1

2
(∂0 − i∂1) , (4.9)

∂̄ ≡ ∂z̄ =
1

2
(∂0 + i∂1) . (4.10)

The metric in the new variables takes the form

ds2 = dzdz̄, (4.11)

and the Cauchy-Riemann equations can be written as

∂̄w(z, z̄) = 0. (4.12)

The solution to this equation is an holomorphic mapping: z → w(z). The conformal
group for D = 2 coincides with the set of all analytic maps and it is infinite-
dimensional. This is the reason why conformal symmetry is so powerful in two
dimensions.
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We consider now an infinitesimal transformation

w(z) = z + ε(z), (4.13)

and its analogue for z̄. Therefore,

ds2 = dzdz̄ → dw

dz

dw̄

dz̄
∂z∂z̄. (4.14)

We have infinitely many conformal infinitesimal transformations. However, in order
to form a group the mapping must be invertible and map the whole plane into itself,
including the point at infinity. The transformations that satisfy these conditions
are called global conformal transformations, or Möbius transformations. Locally
conformal transformations, on the other hand, are holomorphic mappings which
need not be invertible.

If we consider the mapping w(z) and we want it to be invertible, the only possible
form it can take is

w(z) =
P (z)

Q(z)
. (4.15)

This means the only acceptable singularities are poles. P (z) and Q(z) can be at
most linear functions in order to avoid several distinct zeros or multiple zeros so the
inverse image (of zero) is well defined,

w(z) =
az + b

cz + d
. (4.16)

One more condition is needed for f to be invertible: ad− bc ̸= 0. The conventional
normalization is ad− bc = 1. This is called a projective transformation.

4.3 Witt algebra and Virasoro algebra

Let us consider an infinitesimal transformation of the form of Eq. (4.13) and
take a Laurent expansion

ε(z) =
∑

n∈Z
cnz

n+1, (4.17)

where cn are assumed to be infinitesimal. We can compute the action of the confor-
mal map on functions f(z, z̄) which leads to the generators of the conformal algebra

ln = −zn+1∂z, (4.18)

l̄n = −z̄n+1∂z̄. (4.19)

The commutation relations satisfied by these generators are the so called Witt
algebra relations,

[ln, lm] = (n−m)ln+m, (4.20)

[l̄n, l̄m] = (n−m)l̄n+m, (4.21)

[ln, l̄m] = 0. (4.22)

These generators are responsible of
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• Dilations: l0 = −z ∂
∂z

.

• Translations: l−1 = − ∂

∂z
.

• Special conformal transformations: l1 = −z2 ∂
∂z

.

We can generate self-adjoint operators as (ln + l̄n) and i(ln − l̄n), which are the
dilation and rotation operators respectively. The eigenstates of l0 show a special
relevance since it represents the scaling operator,

l0 |ψ⟩ = h |ψ⟩ , (4.23)

l̄0 |ψ⟩ = h̄ |ψ⟩ , (4.24)

where h and h̄ constitute the eigenvalues of the dilatation (∆) and rotation (s)
operators

∆ = h+ h̄→ Scaling dimension, (4.25)

s = h− h̄→ Conformal spin. (4.26)

4.3.1 Central extension: Virasoro algebra.

The Witt algebra leads to an incomplete description of CFT’s. In terms of
physics, this is due to the existence of a conformal anomaly which appears as a
consequence of the regularization scales (IR and UV) in our problem. From a formal
mathematical perspective, the reason of the appearance of the conformal anomaly
is that the representations of the conformal group associated to field theory tend to
be projective representations, i.e., true representations up to a scale factor. Both
physical and mathematical arguments lead us to introduce the notion of central
charge, c, a numerical value that characterizes CFT’s.

Indeed, the corresponding symmetry Lie algebra of a quantum system is, in
general, a central extension of the classical symmetry algebra [84]. The symmetry
algebra of a conformal field theory must be the central extension of the Witt algebra,
which is the so called Virasoro algebra and it is given by

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (4.27)

The derivation of Eq. (4.27) is very interesting so a detailed calculation can be
found in Appendix C.

If hermiticity conditions are imposed on Virasoro operators in order to deal with
a proper quantum system, then the CFT is called unitary. This implies

L†
n = L−n, (4.28)

L̄†
n = L̄n. (4.29)
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Figure 4.2: Mapping from the cylinder to the complex plane.

4.4 Radial quantization

The operator formalism of quantum mechanics implies an arbitrary choice of the
time and space axis in space-time. Alternatively, in an Euclidean metric, we can
choose the radial direction from the origin to be the time direction. This is what
leads to radial quantization.

One can use spherical coordinates to express the flat metric for any Euclidean
field theory on R2 [85]

d2s = dxµdxν = dr2 + r2dϕ2 = r2

(
dr2

r2
+ dϕ2

)
. (4.30)

If we define t = log r,
ds2 = e2t

(
dt2 + dϕ2

)
. (4.31)

Performing a conformal transformation in Eq. (4.31), the factor e2t is removed
and the remaining metric corresponds to a two-dimensional cylinder, R× S1.

Starting with a CFT on Rd, the theory should be invariant under conformal
transformations of the metric: a CFT on R2 should be equivalent to study the
theory on R × S1. This map takes circles of constant radius in R2 to constant t
slices on the cylinder. The dilation operator on R2, which maps circles onto circles
with different radius, corresponds to time translations on the cylinder, i.e., it behaves
as a Hamiltonian. Thus, this leads to the expression

H = L0 + L̄0 + cte., (4.32)

where L0 and L̄0 are the Virasoro operators responsible for dilations as was previ-
ously explained.

We start then from an infinite space-time cylinder with coordinate t going from
−∞ to ∞ along the direction of its axis and coordinate x going from 0 to L.
In Euclidean geometry, the cylinder is described by a single complex coordinate
w = t+ ix. Now we can map the cylinder onto the complex plane, as shown in Fig.
4.2, via z = e2πw/L so t→ −∞ is mapped to the origin z = 0 and t→ ∞ is sent to
infinity.
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4.5 Primary fields and correlation functions

The connection between a statistical mechanics and quantum field theory is made
by writing the partition function and correlation functions as functional integrals,

Z =
1

Z

∫
DΦexp

(
−S[Φ]

)
, (4.33)

〈
ϕ1(x1) . . . ϕk(xk)

〉
=

1

Z

∫
DΦ ϕ1(x1) . . . ϕk(xk) exp

(
−S[Φ]

)
, (4.34)

where S[Φ] is the Euclidean action, Φ the collection of fields and ϕi ∈ Φ.
Let us consider a spinless field ϕ(x) for simplicity. The field ϕ(x) is called a

quasi-primary field if it transforms under a global conformal transformation as,

ϕ(x) → ϕ̃(x̃) =

∣∣∣∣
∂x̃

∂x

∣∣∣∣
−∆/d

ϕ(x), (4.35)

where ∆ is the scaling dimension. In complex coordinates for the 2D case, Eq.
(4.35) can be written as

ϕ̃ (ω, ω̄) =

(
∂ω

∂z

)−h(
∂ω̄

∂z̄

)−h̄

ϕ (z, z̄) , (4.36)

where h and h̄ are called conformal weights. The combinations ∆ = h + h̄ and
s = h − h̄ are the scaling dimension and the spin of ϕ, respectively, as it was said
previously. A primary field is a field ϕ that satisfies Eq. (4.36) for any analytic
map ω(z). On the other hand, we will say the field is quasi-primary when ω(z)
is a projective transformation (4.16), i.e., the map is invertible. An example of a
quasi-primary field which is not primary is the stress-energy tensor which will be
discussed in the next section.

At the quantum level, the natural object of study are the N point correlation
functions of the fields. Conformal invariance fixes completely the two-point and
three-point correlation functions. For a general two-point function, the assumption
of quasi-primarily fields implies

〈
ϕ1(x1)ϕ2(x2)

〉
=

∣∣∣∣
∂x̃

∂x

∣∣∣∣
∆1/d

x=x1

∣∣∣∣
∂x̃

∂x

∣∣∣∣
∆2/d

x=x2

〈
ϕ1(x̃1)ϕ2(x̃2)

〉
. (4.37)

Rotation and translation invariance added to covariance under a scale transforma-
tion leads to 〈

ϕ1(x1)ϕ2(x2)
〉
=

C12

|x1 − x2|∆1+∆2
, (4.38)

for some constant C12 which can be conveniently set to 1. After some work, the
two-point correlation function can be written as

〈
ϕ1(x1)ϕ2(x2)

〉
=
δ∆1,∆2

x2∆1
12

, (4.39)
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where we have set xij =
∣∣xi − xj

∣∣. The two-point function vanishes unless the two
fields have the same scaling dimension.

For the three-point correlation function, covariance under rotations, translations
and dilations imply that it must take the form

〈
ϕ1(x1)ϕ2(x2)ϕ3(x3)

〉
=

C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

, (4.40)

where the constant C123 is a non-trivial parameter.
The complete determination, up to a constant, of two and three-point correlation

functions is a consequence of how conformal transformations are defined in two
dimensions, i.e., it is not possible to construct conformal invariants using only two or
three points. However, for N ≥ 4 it is possible to construct N(N−3)/2 independent
invariants, known as anharmonic ratios or cross-ratios. Let us consider, for instance,
the four-point correlation

〈
ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)

〉
= f

(
x12x34
x13x24

,
x12x34
x23x14

) 4∏

i<j

x
∆/3−∆i−∆j

ij , (4.41)

with ∆ =
∑4

i=1∆i. The function f is not completely determined by conformal
invariance.

4.6 Stress-energy tensor and Casimir energy

Under an arbitrary transformation of coordinates of the form

xµ → xµ + ξµ(x), (4.42)

the change in the action is given by

δS =

∫
ddxT µν∂µξν . (4.43)

Translational invariance implies δS = 0 when we perform a coordinate change
ξν = aν , leading to

∂µT
µν(x) = 0, (4.44)

which is equivalent to the conserved current arisen from a continuous symmetry.
Rotational invariance should also make Eq. (4.43) vanish and, therefore, the stress-
energy tensor must be symmetric

T µν(x) = T νµ(x). (4.45)

Finally, the dilation invariance implies that T is traceless,

T µ
µ (x) = 0. (4.46)

If T µν is assumed to be symmetric, Eq.(4.43) can be written as

δS =
1

2

∫
ddxT µν

(
∂µξν + ∂νξµ

)
. (4.47)
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When Eq. (4.42) is considered as an infinitesimal transformation, the corresponding
change in the metric tensor to first order in ξ is

g̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ

=
(
δαµ − ∂µξ

α
)(

δβν − ∂νξ
β
)
gαβ

= gµν −
(
∂µξ

ν + ∂νξµ
)
.

(4.48)

Therefore, we can think of the stress-energy tensor as the functional derivative of
the action with respect to the metric

δS = −1

2

∫
d2xT µνδgµν . (4.49)

Taking into account Eq. (4.1) and Eq. (4.48), we can rewrite the change in the
action as

δS =
1

2

∫
d2xT µ

µ ∂ρξ
ρ. (4.50)

The components of the stress-energy tensor need some rewriting when using
complex coordinates. Thus, we find

Tzz̄ = Tz̄z =
1

4
T µ
µ =

1

4
(T00 + T11) = 0. (4.51)

Tzz =
1

4
(T00 − 2iT10 − T11) =

1

2
(T00 − iT10) . (4.52)

Tz̄z̄ =
1

4
(T00 + 2iT10 − T11) =

1

2
(T00 + iT10) . (4.53)

Eq. (4.44) and the tracelessness of the stress-energy tensor lead to

∂z̄Tzz = 0. (4.54)

∂zTz̄z̄ = 0. (4.55)

This means that T ∼ Tzz depends only on z, hence is an holomorphic function,
and that T̄ ∼ Tz̄z̄ depends only on z̄, hence is an anti-holomorphic function. This
is a very important element in the solvability of two-dimensional CFT. The non-
vanishing components of the stress-energy tensor are chiral and anti-chiral fields,
T (z) and T̄ (z̄), which can be written in terms of Virasoro operators

T (z) =
∑

n∈Z
Lnz

−n−2, (4.56)

T̄ (z̄) =
∑

n∈Z
L̄nz̄

−n−2. (4.57)

The symmetries of the stress-energy tensor lead to a very important constraint
for the correlators known as the Ward identity. This identity is most powerful in the
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case of local conformal invariance in 2D, but the starting point is a global identity
valid in any dimension which is given by

n∑

i=1

〈
ϕ1(x1) . . . δϕi(xi) . . . ϕn(xn)

〉
=

1

2

∫
ddx

〈
T µν(x)X

〉
∂µξν(x), (4.58)

where δϕi(xi) corresponds to the infinitesimal variation of the i-th field with respect
to an infinitesimal change of coordinates, and X denotes a product of local fields
ϕi(xi) such that

X = ϕ1(x1)ϕ2(x2) . . . ϕn(xn). (4.59)

If we consider operators T (z) and T̄ (z̄) given by Eq. (4.56) and Eq. (4.57), re-
spectively, to be primary and the infinitesimal transformation only locally conformal,
we will get a much stronger local form of the Ward identity given by

〈
T (z)X

〉
=

n∑

i=1

(
hi

(z − zi)
2 +

∂i
z − zi

)
⟨X⟩ . (4.60)

The right hand side of the equation above represents the expected short-distance
singularities of T (z) when approaching the primary fields and it can also be expressed
by

T (z)ϕj(zj, z̄j) =
hj

(z − zj)2
ϕj(zj, z̄j) +

1

z − zj
∂zjϕj(zj, z̄j) + ... (4.61)

This expression is called operator product expansion (OPE) and two local operators
inserted at nearby points can be approximated by a string of operators at on of
these points.

A new characterization for primary fields arises from here as those fields whose
OPE with the stress-energy tensor takes the previous form. The OPE of T with
itself takes the form

T (z1)T (z2) =
c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂z2T (z2)

z1 − z2
+ ... (4.62)

As it is observed, the stress-energy tensor is not, in general, a primary field. The
only way it can be primary is if the central charge vanishes.

Since T is not primary, it cannot transform following Eq. (4.36). According
to CFT, the variation of the energy-momentum tensor T under a finite conformal
transformation, z → w(z), in flat space-time is given by [21]

T (w) =

(
dw

dz

)−2 [
T (z)− c

12
{w; z}

]
, (4.63)

where c is the central charge of the CFT and {w; z} is the Schwarzian derivative,

{w; z} =
d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

. (4.64)
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The Schwarzian derivative vanishes if and only if w(z) =
az + b

cz + d
, so T (z) is a quasi-

primary field.

The appearance of the central charge, also called conformal anomaly, is related
to a “soft” breaking of conformal symmetry by the introduction of a macroscopic
length scale into the system, for example by boundary conditions.

Let us consider a generic conformal field theory living on the whole complex
plane and map this theory on a cylinder of circumference L with periodic boundary
conditions (PBC) by

z → w =
L

2π
ln z. (4.65)

Using the finite transformation law of Eq. (4.63) gives

Tcyl(w) =

(
2π

L

)2 [
Tpl(z)z

2 − c

24

]
, (4.66)

where Tpl and Tcyl are used to distinguish the stress tensor before and after the
transformation. On the plane, scale invariance sets all one-point functions to zero
so 〈

Tpl(z)
〉
= 0. (4.67)

The expectation value of Eq. (4.66) leads to a non-zero vacuum energy density on
the cylinder,

〈
Tcyl(w)

〉
= − π2c

6L2
. (4.68)

The central charge c is shown to be proportional to the Casimir energy : the change
in the vacuum energy density due to the periodicity condition on the cylinder [21].
Casimir energy goes to zero as the macroscopic scale L goes to infinity.

Moreover, we can define the change in the free energy E as

δE =

∫ L

L0

〈
T 00
〉
δL, (4.69)

where T 00 = Tzz + Tz̄z̄ is obtained from Eqs. (4.51), (4.52) and (4.53). In addition,
following [21], one can write a renormalized stress-ernergy tensor given by

T = −2πTzz, T̄ = −2πTz̄z̄. (4.70)

Therefore,
〈
T 00
〉
= − 1

2π

(
⟨T ⟩+

〈
T̄
〉)

= −⟨T ⟩
π
. (4.71)

Plugging Eq. (4.68) in Eq. (4.71) and then integrating as indicated in Eq. (4.69),
we obtain that the free energy (up to an additive constant which only implies a shift
in the energy) is

E0,cyl = − πc

6L
. (4.72)
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The same procedure can be extended to compute the free energy with an open
boundary conditions configuration. However, in this case we perform the following
transformation

z → w =
L

π
ln z, (4.73)

which maps the upper half plane to the strip. Indeed, Eq. (4.63) now takes the form

Tstrip(w) =

(
π

L

)2 [
Tpl(z)z

2 − c

24

]
. (4.74)

Assuming again that the expectation value of the stress-energy tensor vanishes on
the plane as stated in Eq. (4.67), we can write the expectation value of T on the
strip

〈
Tstrip(w)

〉
= − π2c

24L2
, (4.75)

and
E0,strip = − πc

24L
. (4.76)

Let us define L = Na, where N is the number of sites in the fermionic chains
and a is the lattice spacing. Then, Eq. (4.76) can be rewritten as

E0,strip = −πc (1/a)
24N

= −πcvF
24N

, (4.77)

where vF = 1/a is the Fermi velocity. Indeed, we can compare this expression to Eq.
(3.35) with vF given by Eq. (3.33) and, thus, conclude that c = 1 for free fermions.
On the other hand, the Ising model (see Section 3.6) may be described by a CFT
with c = 1/2.

We should be aware that Eqs. (4.72) and (4.76) are universal as long as Eq.
(4.67) holds. They only depend on the central charge of the corresponding theory.
However, further calculations are needed when the expectation value of the stress-
energy tensor does not vanish on the plane. For instance, this is the case of anti-
periodic boundary conditions (APBC) for fermionic fields.

4.6.1 Fermionic fields

A CFT of a complex fermion operator with central charge c = 1, i.e., a Dirac
fermion Ψ, can be understood in terms of its decomposition in the real Majorana
components ψ1, ψ2, with ψi = ψ†

i , conformal weights h = h̄ = 1/2 and c = 1/2.
Thus,

Ψ(z, z̄) =

(
χ(z, z̄)
χ̄(z, z̄)

)
=

1√
2

(
ψ1 + iψ2

ψ̄1 + iψ̄2

)
, (4.78)

in Euclidean space. Therefore, to study the quantization of Ψ it is sufficient to
consider the quantization of its analytic and antianalytic Majorana components,
ψ(z) and ψ(z̄) [22].

There exist two choices of boundary conditions on the plane

ψ(e2πiz) = −ψ(z) → Ramond (R), k ∈ Z → APBC, (4.79)
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ψ(e2πiz) = ψ(z) → Neveu-Schwarz (NS), k ∈ Z+ 1/2 → PBC . (4.80)

In addition, the plane can be mapped onto the cylinder by the transformation
given in Eq. (4.65) and, thus,

ψcyl(w) → ψcyl(z) =

(
dz

dw

)1/2

ψpl(z) =

√
2πz

L
ψpl(z). (4.81)

We should be aware that the factor
√
z exchanges the behavior of the boundary

conditions from the cylinder to the plane.

ψ(x+ 2πL) = ψ(x) → Ramond (R), k ∈ Z → PBC, (4.82)

ψ(x+ 2πL) = −ψ(x) → Neveu-Schwarz (NS), k ∈ Z+ 1/2 → APBC. (4.83)

Since we are working on a cylinder of circumference L, we may write the mode
expansion of the fermion field in terms of creation and annihilation operators with
our choice of normalization as,

ψ(x) =

√
2π

L

∑

k

bke
2πikx/L, (4.84)

where x is the space coordinate along the cylinder and the operators bk satisfy the
canonical anticommutation relations {bk, bq} = δk+q,0.

PBC on the plane yield a zero expectation value of T ,

〈
ψ(z)ψ(w)

〉
=

1

z − w
→
〈
T (z)pl

〉
= 0. (4.85)

On the other hand, APBC on the plane lead to a non-zero expectation value of T ,

〈
ψ(z)ψ(w)

〉
=

1

2

√
z/w +

√
w/z

z − w
→
〈
T (z)pl

〉
=

1

16z2
. (4.86)

Plugging the previous results in Eq. (4.66),

〈
Tcyl(w)

〉
=





− c

24

(
2π

L

)2

= − π2c

6L2
→ NS,

.

c

48

(
2π

L

)2

=
π2c

12L2
→ R.

(4.87)

Taking into account that the Majorana fermions have c = 1/2, then

〈
Tcyl(w)

〉
=





− 1

48

(
2π

L

)2

→ NS,

.

1

24

(
2π

L

)2

→ R.

(4.88)
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4.7 Twist fields and entanglement entropy

Let us consider an infinite fermionic chain and a subsystem of it, A = [u, v], with
length ℓ = |u− v| where u and v are the endpoints of the interval. The subsystem
can be described in terms of a reduced density matrix ρA and CFT can provide
the universal behavior of the Rényi entropies S(n)(ρA) [86], as we will show in this
section.

The starting point is to write the density matrix of a thermal state, ρ, as an
Euclidean path integral on the imaginary time interval (0, β) under a Hamiltonian
H as

ρ =
e−βH

Z
, (4.89)

where β is the inverse temperature and Z = Tre−βH corresponds to the partition
function that ensures the correct normalization. It represents a cylinder of circum-
ference β obtained by sewing together the edges along τ = 0 and τ = β. Thus, the
reduced density matrix ρA corresponds to the same cylinder but with an open cut
in A.

The next step is to consider n copies of this cylinder sewed together along the
cuts, as seen in Fig. 4.3, i.e., TrρA. These copies are also called replicas and are
indexed by k = 1, . . . , k = n. From this, we can define a path integral Zn(A) over
an n-sheeted Riemannian surface Rn. Then,

TrρnA =
Zn(A)

Z1(A)
, (4.90)

and the Rényi entropies are given by

S(n)(A) =
1

1− n
log
(
Zn(A)

)
+

n

1 + n
log
(
Z1(A)

)
. (4.91)

It can be shown that the partition function Zn(A) is related to the two-point
correlation function of some fields that live at the cuts of A

Zn(A) ∝
〈
Tn(u, 0)T̄n(v, 0)

〉
. (4.92)

These are the so-called twist fields and have been shown to behave as primary
operators (see Eq. (4.36)) with dimension

∆n = ∆̄n =
c

24

(
n− 1

n

)
. (4.93)

Furthermore, the two-point correlator of primary fields is completely fixed by con-
formal invariance, thus

〈
Tn(u, 0)T̄ (v, 0)

〉
=

( |u− v|
a

)−2(∆n+∆̄n)

=

(
ℓ

a

)−c(n−1/n)/6
, (4.94)

where a is the lattice spacing.
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Figure 4.3: A representation of the Riemann surface formed by three copies sewed together
by the open cuts.

Then, the Rényi entropies which are determined by Sn(A) =
1

1− n
Trρn can be

written as

S(n)(A) = S(ℓ) =
1

1− n
log

(
ℓ

a

)−c(n−1/n)/6
+c′n =

c

6

(
1 +

1

n

)
log

(
ℓ

a

)
+c′n, (4.95)

where c′n is a non-universal constant.
From the previous result, one can also compute the entanglement entropy [86]

S(ℓ) =
c

3
log

(
ℓ

a

)
+ c′1. (4.96)

Let us now consider a system of size N with PBC, and a subsystem A of length
ℓ. Then, the Rényi entropies are given by

S(n)(ℓ) =
c

6

(
1 +

1

n

)
log

(
N

πa
sin

(
πℓ

N

))
+ c′n, (4.97)

where c′n is also a non-universal constant and the quantity inside the logarithm is
the chord length, which tends to ℓ when N ≫ 1.

On the other side, for an open chain we consider a subsystem A = [0, ℓ] of length
ℓ. In this case, one of the boundaries of the interval under consideration corresponds
to the physical boundary of the system. As a consequence, it was shown that the
Rényi entropies can be expressed as

S(n)(ℓ) =
c

12

(
1 +

1

n

)
log

(
N

πa
sin

(
πℓ

N

))
+ c̃′n, (4.98)
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where c̃′n is a non-universal constant. Therefore, the entanglement entropy for an
open chain is given by [69]

S(ℓ) =
c

6
log

(
N

πa
sin

(
πℓ

N

))
+ c̃′1. (4.99)



Summary

This summary provides a brief overview of the most important points from Part I,
and intends to facilitate the reading of the following chapters.

• Given a quantum system S = A ∪ B with finite dimensional Hilbert spaces
HA and HB, respectively, a pure state is given by the vector |ψ⟩ ∈ HAB. If
|ψ⟩ = |ϕ⟩ ⊗ |φ⟩ with |ϕ⟩ ∈ HA and |φ⟩ ∈ HB, it is said to be factorized.
Otherwise, |ψ⟩ is entangled. Mixed states are statistical ensembles of pure
states and may be described in terms of density matrices.

• Given a many-body system S = A ∪ B in a pure state ρ = |ψ⟩ ⟨ψ|, the state
that describes A is given by the reduced density matrix ρA,

ρA = TrBρ. (4.100)

The spectrum of ρA codifies the entanglement properties of A. Moreover, quan-
tum correlations between A and B, i.e., the entanglement, can be measured
by the von Neumann entanglement entropy (EE),

S(A) = −Tr (ρA log ρA) . (4.101)

The EE, S(A), measures the amount of information associated to the fact that
the state ρA is not pure.

• Quantum many-body systems are difficult to describe due to the exponential
growth of the underlying Hilbert space, which hosts all possible quantum states,
with the number of particles in the system. Nevertheless, the EE for ground
states (GS) of gapped local Hamiltonians obey an area law and, thus, can be
distinguished from randomly chosen quantum states in H. However, there also
exist GS that violate the area law such as GS of some fermionic chains with
position-dependent, i.e inhomogeneous, hopping amplitudes.

• Free fermionic chains have been shown to be of great relevance since they can
be described by a Hamiltonian H, which can be solved in terms of single-body
modes and single-body energies, added to the fact that some spin models can
be mapped to free fermion systems. For that aim, in the homogeneous case,

51
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it is possible to diagonalize the corresponding hopping matrix in order to find
the eigenstates and the spectrum of H, which is given by

εk = −2 cos k, (4.102)

where k stands for all the allowed modes and depends on the boundary con-
figurations. From Eq. (4.102), it is feasible to compute the energy of the
GS

E =

N/2∑

k=1

εk. (4.103)

Since the corresponding Hamiltonian presents particle-hole symmetry, the GS
is given by filling up all the modes with negative energy, i.e., half-filling: N/2.
The result shows that the energy contains a non-universal contribution pro-
portional to the system size N , plus finite-size corrections of order O(1/N).

• Finite-size corrections, of order O(1/N), to the energy are fixed by a 2D con-
formal field theory (CFT) when the system is subject to conformal invariance
and they are shown to be proportional to the central charge c. The central
charge arises naturally when the central extension of the algebra of conformal
transformations, i.e., those which preserve angles, is performed.

• It has been proved that the EE entropy for a block of size ℓ of an open chain
of size N can be written as

S(ℓ) =
c

6
log

(
N

πa
sin

(
πℓ

N

))
+ Snon-univ, (4.104)

where a is the lattice spacing parameter and Snon-univ is a non-universal con-
tribution.
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Chapter 5
Casimir forces on deformed fermionic
chains

This chapter is based on the following article:

• B. Mula, S.N. Santalla, J. Rodŕıguez-Laguna, Casimir forces on deformed
fermionic chains, Phys. Rev. Research 3, 013062 (2021).

We characterize the Casimir forces for the Dirac vacuum on free-fermionic chains
with smoothly varying hopping amplitudes, which correspond to (1+1)D curved
space-times with a static metric in the continuum limit. The first-order energy
potential for an obstacle on that lattice corresponds to the Newtonian potential
associated to the metric, while the finite-size corrections are described by a curved
extension of the conformal field theory predictions, including a suitable boundary
term. We show that, for weak deformations of the Minkowski metric, Casimir forces
measured by a local observer at the boundary are universal. We provide numerical
evidence for our results on a variety of (1+1)D deformations: Minkowski, Rindler,
anti-de Sitter (the so-called rainbow system) and sinusoidal metrics. Moreover,
we show that interactions do not preclude our conclusions, exemplifying with the
deformed Heisenberg chain.

5.1 Introduction and context

As we already discussed in Section 1.1, the quantum vacuum on a static space-
time is nothing but the ground state (GS) of a certain Hamiltonian. Therefore,
it is subject to quantum fluctuations which help minimize its energy. Yet, these
fluctuations are clamped near the boundaries, giving rise to the celebrated Casimir
effect [8], see [87] for experimental confirmations. Its relevance extends away from
the quantum realm, with applications to thermal fluctuations in fluids [88]. Its
initial description required two infinite parallel plates, giving rise to an attractive
force between them as was also explained in Section 1.1. In fact, this attraction was
rigorously proved for identical plates by Kenneth and Klich [9], yet the force can
become repulsive or even cancel out when the boundary conditions do not match [89].
The special features of fermionic 1D systems have also been considered [90,91].
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For fields subject to conformal invariance, the Casimir force is associated to the
conformal anomaly, measured by the central charge in 2D conformal field theory
(CFT), c, as it was seen in Chapter 4. For further details see [19–22]. In Section ??,
we showed that the expression for the energy contains a non-universal contribution
proportional to the system size N , plus finite-size corrections of order O(1/N).
These finite-size corrections depend on the boundary conditions, as shown in Eqs.
(3.35), (3.36) and (3.37), which are fixed by conformal invariance (see Section 4.6).
Moreover, conformal invariance is strong enough to yield an analytical expression
for the Casimir forces in presence of arbitrarily shaped boundaries [23].

The peculiarities of Casimir forces in curved space-times have been considered by
several authors [24]. The problem is already difficult for static space-times and weak
gravitational fields [25–28]. The Casimir force takes the same form on weak static
gravitational fields at first-order, when coordinate differences are substituted by
actual distances, although with non-trivial second-order corrections. Interestingly,
the Casimir effect has been put forward as a possible explanation of the cosmological
constant, making use of Lifshitz theory [92,93].

Even if our technological abilities do not allow us to access direct measurements
of the Casimir effect in curved space-times, we are aware of possible strategies to
develop quantum simulators using current technologies, such as ultracold atoms
in optical lattices [7]. Concretely, it has been shown that the Dirac vacuum on
certain static space-times can be characterized in such a quantum simulator [5],
and an application has been devised to measure the Unruh radiation (see Section
1.3), including its non-trivial dimensional dependence [6, 94, 95]. The key insight
is the use of curved optical lattices, in which fermionic atoms are distributed on
a flat optical lattice with inhomogeneous hopping amplitudes, thus simulating a
position-dependence index of refraction or, in other terms, an optical metric.

Dirac vacuum in such curved optical lattices present quite novel properties.
When the background metric is negatively curved, i.e.: (1+1)D anti-de Sitter (AdS),
the entanglement entropy (EE) may violate maximally the area law [96] (see Sec-
tion 1.2.6), forming the so-called rainbow state [97–99]. Interestingly, the EE of
blocks within the GS of a (1+1)D system with conformal invariance is fixed by
CFT [13, 69, 86, 100, 101]. Such conformal arguments can be extended to a stati-
cally deformed (1+1)D system, and the EE of the rainbow system was successfully
predicted [102], along with other interesting magnitudes, such as the entanglement
spectrum, entanglement contour and entanglement Hamiltonian [103,104].

The aim of this chapter is to extend the aforementioned (1+1)D CFT predictions
on curved backgrounds to characterize the Casimir force for the fermionic vacuum on
curved optical lattices. This article is organized as follows. In Section 5.2 we describe
our physical system and summarize the CFT techniques employed to evaluate the
EE on curved backgrounds, providing some examples. Section 5.3 characterizes
the Casimir forces on curved optical lattices, using the same example backgrounds,
emphasizing the role of universality in the finite-size corrections. In Section 5.4 we
extend our results to the inhomogeneous Heisenberg chain. The article closes with
a series of conclusions and proposals for further work.
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Jm

c†m c†m+1

(a)

(b)

Figure 5.1: (a) Illustration of an inhomogeneous chain withN = 8 sites. (b) Corresponding
positions after the deformed coordinates x̃.

5.2 Fermions on curved optical lattices

Let us consider an open fermionic chain with (even) N sites, whose Hilbert
space is spanned by creation operators c†m, m ∈ {1, · · · , N} following standard
anticommutation relations. We can define an inhomogeneous hopping Hamiltonian
as in Eq. (3.1),

H(J)N = −
N−1∑

m=1

Jmc
†
mcm+1 + h.c., (5.1)

where J = {Jm}N−1
m=1 are the hopping amplitudes, Jm ∈ R+ referring to the link

between sites m and m + 1 as in Fig. 5.1 (a). In order to obtain some physical
intuition, let us remember that the set of {Jm} constitutes a position-dependent
Fermi velocity, i.e.: a signal takes a time of order J−1

m to travel between sites m and
m + 1. If the {Jm} are smooth enough, we can assume Jm = J(xm) for a certain
smooth function J(x), with xm = m∆x. Unless otherwise specified, we will use
∆x = 1.

It can be proved that Eq. (5.1) is a discretized version of the Hamiltonian
for a Dirac fermion on a curved (1+1)D space-time with a static metric of the
form [5,99,102]

ds2 = −J2(x)dt2 + dx2, (5.2)

i.e. a space-time metric with a position dependent speed of light or, equivalently, a
modulated index of refraction. Defining x̃(x) such that

dx̃ =
dx

J(x)
, (5.3)

we have

ds2 = J2(x)(−dt2 + dx̃2), (5.4)

which is conformally equivalent to the Minkowski metric. This deformation is illus-
trated in Fig. 5.1 (b): sites get closer when the Jm associated to their link is large,
giving rise to an homogeneous effective hopping amplitude.
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Conformal equivalence between metrics (5.4) and the Minkowski metric suggests
that conformal field theory (CFT) techniques might describe the universal properties
of low-energy eigenstates of Hamiltonian (5.1). Indeed, we will show that this is the
case, once those universal properties have been ascertained.

Some interesting metrics fall into this category. If J(x) = J0 is a constant,
we recover Minkowski space-time on a finite spatial interval. The Rindler metric,
which is the space-time structure perceived by an observer moving with constant
acceleration a in a Minkowski metric, is described by

J(x) = J0 + ax. (5.5)

Notice that it presents an horizon at xh = −J0/a, where the local speed of light
vanishes. Information can not cross this point, thus separating space-time into
two Rindler wedges [105]. We will consider some other choices for the hopping
amplitudes, such as the sine metric,

J(x) = J0 + A sin (kx) , (5.6)

or a rainbow metric given by

J(x) = J0 exp

(
−h
∣∣∣∣x−

N

2

∣∣∣∣

)
, (5.7)

for h ≥ 0, with h = 0 corresponding to the Minkowski case. This metric has
constant negative curvature except at the center, x = N/2, thus resembling an anti-
de Sitter (AdS) space, and has been considered recently because its vacuum presents
volumetric entanglement [97–99, 102–104]. Unless otherwise stated, we will always
assume J0 = 1.

5.2.1 Free fermions on the lattice

The exact diagonalization of Hamiltonian (5.1) is a straightforward procedure
which only involves the solution of the associated single-body problem as we showed
in Section 3.1. Let us define the hopping matrix, Tij = Tji = −Jiδi,j+1, such that

H(J)N =
∑

i,j

Tijc
†
icj, (5.8)

then we can diagonlize the hopping matrix, Tij =
∑

k Ui,kϵkŪj,k, where ϵk are the
single-body energies and the columns of Ui,k represent the single-body modes. The

GS of Hamiltonian (5.1) can be written as |Ψ⟩ = ∏N/2
k=1 b

†
k |0⟩, where |0⟩ is the Fock

vacuum and b†k =
∑

i Ui,kc
†
i .

As we already mentioned in Section 3.1, the system presents particle-hole sym-
metry, ϵk = −ϵN+1−k, with Ui,k = (−1)iUi,N+1−k. At half-filling the local density is
always homogeneous,

〈
c†ncn

〉
= 1/2 for all n, independently of the metric. For the

Minkowski metric,

〈
c†ncn+1

〉
=

N/2∑

k=1

ŪnkUn+1,k ≈
c0
2

≡ 1

π
, (5.9)
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plus a correction term presenting parity oscillations, related to the fact that the
Fermi momentum is kF = π/2.

5.2.2 CFT and entanglement for curved lattice fermions

Let us provide a cursory summary of the application of CFT techniques to the
characterization of the entanglement structure of the fermionic vacuum on curved
optical lattices.

The von Neumann entanglement entropy of a block A of a pure state |Ψ⟩, dis-
cussed in Section 1.2.3, is defined as

SA = −Tr [ρA log ρA] , (5.10)

where ρA = TrĀ |Ψ⟩ ⟨Ψ| is the reduced density matrix for block A, and Ā is its
complement. In the case of Gaussian states, which follow Wick’s theorem, this mag-
nitude can be determined from the two-point correlation function with low compu-
tational effort [106]. Following [69,101], the EE of a lateral block A = {1, · · · , ℓ} of
the GS of a conformal system with central charge c on a chain with N sites can be
written as in Eq. (4.99)

S(ℓ) =
c

6
log

(
N

π∆x
sin

(
πℓ

N

))
+ Snon-univ. (5.11)

where c = 1 for free fermions (see Section 4.6), ∆x is the UV cutoff and Snon-univ is a
non-universal contribution containing a constant term and parity oscillations which
has been explicitly computed for the free-fermionic case [107,108].

Expression (5.11) has been successfully extended to evaluate entanglement en-
tropies on the GS of Hamiltonian (5.1) [102,103]. When Dirac fermions are inserted
in a smooth static optical metric of the type (5.2), the EE deforms appropriately,
i.e. the block lengths must be transformed via Eq. (5.3),

ℓ→ ℓ̃ = x̃(ℓ∆x) =

∫ ℓ∆x

x0

dx

J(x)
≈

ℓ−1∑

p=1

∆x

Jp
, (5.12)

while Ñ = x̃(N∆x). We must also take into account the transformation of the UV
cutoff,

∆x → ∆x̃(ℓ) =
∆x

J(ℓ)
. (5.13)

Thus, we obtain

S(ℓ) =
c

6
log


 Ñ

π∆x̃
sin

(
πℓ̃

Ñ

)
+ Snon-univ. (5.14)

Concretely, in [102, 103] the EE for lateral blocks within the GS of the rainbow
Hamiltonian (5.1) using (5.7) was obtained using
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Figure 5.2: Entanglement entropy of the GS of free fermionic systems on a optical chain
with N = 400 for three different metrics: Minkowski, rainbow (Eq. (5.7) with h = 0.01)
and Rindler (Eq. (5.5) with a = 2), using the procedures of [106] The continuous lines are
the CFT prediction, given by Eq. (5.14), with a non-universal constant term added.

∆x̃ = e−h|N/2−ℓ|∆x, (5.15)

hÑ = 2(ehN/2 − 1)∆x, (5.16)

hℓ̃ =





(
ehN/2 − eh(N/2−ℓ)

)
∆x, if ℓ ≤ N/2,

.(
ehN/2 + eh(ℓ−N/2)

)
∆x, if ℓ ≥ N/2.

(5.17)

In the limit hℓ≫ 1, the EE of a block of size ℓ ≤ N/2 becomes

S(ℓ) ≈ ch

6
ℓ+ Snon-univ, (5.18)

i.e. it yields a volume law for entanglement [103], violating maximally the so-called
area law of entanglement [96]. We can also apply Eq. (5.14) to the case of the
Rindler metric, where we find

S(ℓ) =
1

6
log

(
ℓ logN

π∆x
sin

(
π log(N/ℓ)

logN

))
+ Snon-univ. (5.19)

The validity of these expressions can be checked in Fig. 5.2, where we have
plotted the entropy S(ℓ) as a function of the block size ℓ for three systems using
N = 400: the Minkowski case, Eq. (5.11), the rainbow case with h = 0.01, Eq.
(5.14) with (5.17), and the Rindler case with a = 2, via Eq. (5.19). Indeed, the
non-universal terms are present, which also carry parity oscillations, but they are a
small correction to the entanglement entropy as predicted by the CFT.

The accuracy of the CFT prediction allows us to conjecture that free Dirac
fermions on curved optical lattices can be characterized by a suitable deformation
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of a conformal field theory, expecting that the non-universal terms will be small
enough. We will put this conjecture to the test in the next section.

5.3 Casimir forces on curved optical lattices

Let us characterize the Casimir forces on curved optical lattices in successive
approximations. First of all, we will show that the GS energy of Hamiltonian (5.1)
is proportional to the sum of the hoppings in first-order perturbation theory. This
will lead us to show that the force felt by a classical obstacle immerse in that state
will be similar to the Newtonian gravitational force in the corresponding metric.
Then, we will reach the main result of this work: the finite-size corrections to the
Casimir energy are universal, and the corresponding expressions are a deformed
variant of the general CFT form.

5.3.1 Potential energy and correlator rigidity

Let us consider a free fermionic chain of N sites on a deformed metric, following
Eq. (5.1). The exact vacuum energy can be written as

EN = −2
N−1∑

p=1

Jp Re⟨c†pcp+1⟩. (5.20)

We can estimate this expression via perturbation theory, if we assume that Jp =
J0 + δJp and make use of Eq. (5.9). The result at first-order is

E0 ≈ −c0SN , where SN ≡
N−1∑

p=1

Jp. (5.21)

The validity of this approximation can be checked in panel (a) of Fig. 5.3, for
four different metrics: Minkowski, Rindler, Sine and Rainbow. The accuracy of
our conjecture suggests that the local correlators in the deformed vacuum are still
homogeneous. In fact, we will make the further claim that the local correlators are
rigid, i.e. ⟨c†pcp+1⟩ ≈ c0/2 for a weakly deformed metric. This claim has been checked
independently in the panel (b) of Fig. 5.3, where the local correlators are shown for
different deformations. Indeed, their average values are still very close to c0 = 2/π,
and the only substantial deviation is provided by the expected parity oscillations
which are well known in the Minkowski case.

A heuristic argument to understand correlator rigidity may be as follows. For
fermionic fields in Minkowski space-time we have

〈
ψ(x)ψ(x+∆x)

〉
∼ ∆x−1. After

a deformation, ∆x → ∆x̃ = ∆x/J(x). Yet, the fields transform also as ψ̃(x) =
J1/2(x)ψ(x), and the local correlator remains invariant.

Let us consider a classical particle standing between sites p and p+1, which acts
like an obstacle inhibiting the local hopping by a factor γ < 1, Jp → γJp. Let us now
evaluate the excess energy of the deformed GS as a function of p, V (p) = E0(p)−E0,
which acts as a potential energy function for the obstacle. The results are shown in
Fig. 5.4, where we plot V (p) for the same four different situations, using N = 100
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Figure 5.3: (a) Check of the bulk prediction for the energy, E0 ≈ −c0SN for four metrics:
Minkowski, Rindler (a = 0.01), Sine (A = 0.5, k = π/100) and Rainbow (h = 5 · 10−3.
Numerical values are given in dots, while the theoretical prediction is provided in the full
line. (b) Illustration of the correlator rigidity. Local correlators, ⟨c†pcp+1⟩ as a function of
the position p for the same four metrics.

and both γ = 0.01 and γ = 0.75. As γ approaches 1 the trivial case is recovered,
i.e. the potential energy is equivalent to E0.

The first salient feature of Fig. 5.4 is that the potential energy V (p) resembles
the hopping function J(x), with some strong parity oscillations. We are thus led
to conjecture that a classical particle moving on a static metric in (1+1)D would
be dragged by a force similar to the gravitational pull. Making use of Hellmann-
Feynman’s theorem, we see that

V (p) ≈ −2JpRe
〈
c†pcp+1

〉
≈ −2Jpc0. (5.22)

5.3.2 Finite-size corrections

The GS of a finite open chain of N sites in Minkowski space-time is given by
Cardy’s expression [19–22] (see also Section 3.5, Eq. 3.35),

EN = −c0(N − 1)− cB − cπvF
24N

+O(N−2), (5.23)

where c is the associated central charge, vF is the Fermi velocity and c0 and cB
are non-universal constants, which correspond to the bulk energy per link and the
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Figure 5.4: Potential energy V (p) obtained by inhibiting the p-th hopping by a factor γ,
Jp → γJp, for four different metrics: Minkowski, Rindler (a = 0.01), rainbow (h = 0.04)
and sinusoidal (A = 0.5 and k = 2π/50), always using N = 100 and two values of γ = 0.01
and 0.75. In continuous line, we plot J(x) multiplied by a factor which only depends on
γ.

boundary energy. Notice that the last term is universal, since its form is fixed by
conformal invariance [19–22] (see Section 4.6), but the bulk and boundary terms
are not. The GS energy of Hamiltonian (5.1) with Jn = 1 follows Eq. (5.23) very
accurately, using c = 1 for Dirac fermions, vF = 2, c0 = 2/π and cB = 4/π − 1.

Our main target is to generalize expression (5.23) to the case of deformed back-
grounds. Indeed, we may follow the guidelines of Section 5.2.2 and attempt a sub-
stitution x → x̃, such that dx̃/dx = J(x)−1, but it will not work for the bulk and
boundary terms. In that case, the bulk energy would become proportional to Ñ .
Thus, in the rainbow case we should obtain an energy term which grows exponen-
tially with N for any fixed h > 0, which is not found. Indeed, as we will show, that
transformation is only relevant for the universal term.

Let us propose an extension of Eq. (5.23) to curved backgrounds based on
physical arguments, term by term.

• The term c0(N − 1) stands for the bulk energy, which should be replaced by
c0SN , i.e. the sum of the N − 1 first hopping amplitudes, multiplied by the
local correlator term.

• The boundary term, cB should be proportional to the terminal hoppings, thus
generalizing to cB(J1 + JN−1)/2.

• The conformal correction is universal. Thus, it must be naturally deformed,
changing N−1 into Ñ−1, where Ñ is the effective length in deformed coordi-
nates, given by Ñ =

∑N−1
i=1 J−1

i (we let ∆x = 1).
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Thus, we claim that the correct generalization of Eq. (5.23) to curved optical
lattices is given by

EN = −c0SN − cB
2

(J1 + JN−1)−
cπvF

24Ñ
+O(N−2). (5.24)

This expression can be more rigorously justified through a careful analysis of the
conformal field theory origin of Eq. (5.23), and this is discussed in Appendix D.1.

The inverse of the deformed length Ñ−1 can be given an interesting physical
interpretation. Indeed, it is easy to recognize (N − 1)Ñ−1 as the harmonic average
of the local speeds of light, which can be understood as an effective Fermi velocity,
v̄F . Yet, for small deformations, the harmonic average is similar (and lower than)
the arithmetical average. Thus, for the sake of simplicity, we approximate v̄F ≈
2SN/(N − 1). Thus, we may provide an approximate version of Eq. (5.24) for a
weakly deformed (1+1)D lattice,

EN ≈ −c0SN − cB
2
(J1 + JN−1)−

πSN

12N2
. (5.25)

5.3.3 Universality of Casimir forces in curved backgrounds

Numerical checks of Eqs. (5.24) or (5.25) must be subtle, because the finite-size
correction is typically much smaller than the bulk energy term. Let us consider an
alternative observable: the Casimir force measured by a local observer located at
the boundary. Since energy is associated to a frequency, local energy measurements
at site x will be given by

E(x) =
EN

g
1/2
00 (x)

=
EN

JN
. (5.26)

Such an observer will measure a force given by the covariant spatial derivative
of F = −DxE(x), taking the lattice spacing ∆x = 1 (see Appendix D.2 for details)
and changing the sign for convenience, we define

FN ≡ EN − EN−2

JN−1 + JN−2

. (5.27)

Assuming smoothly varying hopping amplitudes we obtain

FN ≡ −c0 −
cB
2

(
J ′
N

JN

)
− π

12N2
+

πSN

6JNN3
. (5.28)

Let us consider the terms individually. The first, c0 = 2/π, is simply associated to the
bulk energy. The second is a boundary force, which is absent from the homogeneous
case, and will take a leading role in some cases. For very weak deformations, JN ≈
J0 + δJN is a small deformation, we can assume that SN ≈ NJN , and we obtain

FN ≈ −c0 −
cB
2

(
J ′
N

JN

)
+

π

12N2
. (5.29)

Thus, we are led to the following claim: Casimir forces on a weakly curved back-
ground are metric-independent when measured by a local observer at the boundary.
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Figure 5.5: Casimir forces, FN + c0, for different metrics. (a) Rindler metric. Inset,
log-log plot of |FN + c0| as a function of N , in log-log scale. Notice most small systems
are dominated by the CFT correction, while for larger sizes the boundary term N−1

dominates. (b) Rainbow metric, we observe that F + c0 tends to ϵBh. Inset: log-log plot
of FN + c0 − ϵBh. (c) Sinusoidal metric (top) and modulated frequency metric (bottom).
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Indeed, consider an observer on a classical obstacle located at site p. It will be
subject both to a left and a right Casimir forces. The bulk and boundary parts will
cancel out, and only the universal finite-size correction will survive, yielding

F (p) = FN−p − Fp =
π

12

(
1

(N − p)2
− 1

p2

)
. (5.30)

The validity of expression (5.29) can be checked in Fig. 5.5. In all cases, the
black continuous line is the theoretical prediction, Eq. (5.29). Fig. 5.5 (a) shows the
forces FN + c0 as a function of N for Rindler metrics of different sizes, varying both
J0 and the acceleration a. We have included the Minkowski case, which corresponds
to J0 = 1 and a = 0, as one of the limits. We notice that FN + c0 can be both
positive and negative, depending on the values of J0 and the acceleration a. This
behavior is explained through our expression (5.29): the boundary term scales like
N−1 and it is always negative. Meanwhile, the universal conformal term scales like
N−2 and is always positive. Thus, the prevalence of one or the other explains the
global behavior, but for large enough N the boundary term is always dominant. This
trade-off can be visualized in the inset of Fig. 5.5 (a), where we plot the absolute
value |FN +c0| as a function of N in log-log scale. For Minkowski, J0 = 1 and a = 0,
the 1/N2 behavior extends for all sizes, but as soon as a > 0 we observe a small-N
behavior like N−2 which performs a crossover into the dominant N−1 term beyond
a finite size which scales as (J0/a)

1/2.
Fig. 5.5 (b) shows the case of the Casimir forces in the rainbow state, for which

the boundary term is constant: J ′
N/JN = −h for all N . Thus, the behavior of

FN + c0 corresponds merely to the CFT term, Eq. (5.23) with a constant additive
correction. This behavior is further clarified when this constant is removed, and we
observe the nearly perfect collapse of all the forces in the inset of Fig. 5.5 (b).

We have also considered is the sinusoidal metric, Eq. (5.6), where the boundary
term dominates the force for large N , while the CFT term dominates for low N , as
we can see in the top panel of Fig. 5.5 (c). There, we can observe the behavior of
the hoppings (in pale pink), along with the forces and their fit to expression (5.29).
Indeed, the force behaves like the derivative of the hopping function. In order to
highlight this behavior, we have considered yet another metric, given by

JN = 1 + A sin(kN2), (5.31)

i.e. a modulated frequency sinusoidal. The results are shown in the bottom panel
of Fig. 5.5 (c), showing again an excellent agreement between the theory and the
numerical experiments.

5.4 Casimir force in the inhomogeneous Heisen-

berg model

We may wonder whether these results are only valid for free fermions or if,
instead, they can be applied to other CFT. Thus, we have considered one of the
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Figure 5.6: Casimir forces for the spin-1/2 Heisenberg chain with Rindler couplings. The
black lines correspond to the theoretical prediction, given by Eq. (5.34). Compare to the
inset of Fig. 5.5 (a).

simplest critical interacting systems, described in Section 3.6.4, the (inhomogenous)
spin-1/2 Heisenberg model in 1D, defined by

H = −
L−1∑

i=1

Ji S⃗i · S⃗i+1, (5.32)

Using the Jordan-Wigner transformation we may rewrite it in fermionic language as

H = −
L−1∑

i=1

Ji

(
c†ici+1 + h.c.

)
+ 2

L∑

i=1

Ji nini+1, (5.33)

where we can see that fermionic particles at nearby sites repel each other, making it
impossible to use free-fermion techniques. Yet, the GS energy of this Hamiltonian
can be accurately obtained using the density matrix renormalization group (DMRG)
algorithm [49,50]. The results for the Rindler couplings, Eq. (5.5) are shown in Fig.
5.6. The maximal size that we have reached is lower than in the previous case,
N = 100, because the numerical computation is more demanding. Yet, the results
show that a straightforward extension of Eq. (5.29) predicts the force values with a
remarkable accuracy using c0 = 0.4431, cB = 0.2618 and vF = 1.319, through

FN ≈ −c0 −
cB
2

(
J ′
N

JN

)
+

πvF
24N2

. (5.34)

Fig. 5.6 shows |FN + c0| in logarithmic scale as a function of N for different
Rindler deformations of the Heisenberg Hamiltonian, along with the theoretical
prediction, Eq. (5.29). These plots can be compared with the inset of Fig. 5.5 (a).
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5.5 Conclusions and further work

We have derived an expression for the ground-state energy of the discretized
version of the Dirac equation in a deformed (1+1)D medium, which corresponds to
the vacuum state in static curved metrics. We can model a classical particle nav-
igating through the system depressing a local hopping, and then it can be readily
checked that the classical particle moves approximately in a potential which cor-
responds to the classical gravitational potential associated with the metric. The
quantum corrections to this semi-classical result can be obtained by suitably de-
forming the predictions of conformal field theory (CFT). Indeed, we have checked
that the finite-size corrections are dominated by two terms: a boundary term related
to the derivative of the local hopping amplitude at the edge of the system, and a
naturally deformed version of the CFT force, where the central charge is preserved.
The conformal correction can be interpreted in two complementary ways: either the
Fermi velocity is substituted by the (harmonic) average value of the hopping terms,
or the system size is transformed by its deformed value.

In any case, we should emphasize that the finite-size corrections to the vacuum
energy are, indeed, universal. Moroever, we have shown that an observer at a
boundary measuring the Casimir forces will obtain a metric-independent value.

It is relevant to ask whether our results extend to other conformal field theories,
both interacting, such as Heisenberg, or non-interacting, such as the Ising model in
a transverse field. Even more challenging will be to extend these results to (2+1)D
field theories and to consider non-static metrics, where the dynamical effects will be
relevant, linking them to the dynamical Casimir effect [109]. Even if the energy is not
defined in those cases, a force can still be found acting on classical particles. It is also
interesting to consider chains under strong inhomogeneity or randomness [110–113].

As a natural next step, we intend also to develop protocols in order to con-
firm these results in the laboratory employing ultra-cold atoms in optical lattices,
where similar curved-metric problems have been addressed in the past, such as the
measurement of the Unruh effect [5, 6].



Chapter 6
Depletion in fermionic chains with
inhomogeneous hoppings

This chapter is based on the following article:

• B. Mula, N. Samos Sáenz de Buruaga, G. Sierra, S.N. Santalla, J. Rodŕıguez-
Laguna, Depletion in fermionic chains with inhomogeneous hoppings, Phys.
Rev. B 106, 224204 (2022).

The ground state of a free-fermionic chain with inhomogeneous hoppings at half-
filling can be mapped into the Dirac vacuum on a static curved space-time, which
presents exactly homogeneous occupations due to particle-hole symmetry. Yet, far
from half-filling we observe density modulations and depletion effects. The system
can be described by a 1D Schrödinger equation on a different static space-time,
with an effective potential which accounts for the depleted regions. We provide a
semiclassical expression for the single-particle modes and the density profiles asso-
ciated to different hopping patterns and filling fractions. Moreover, we show that
the depletion effects can be compensated for all filling fractions by adding a chemi-
cal potential proportional to the hoppings. Interestingly, we can obtain exactly the
same density profiles on a homogeneous chain if we introduce a chemical potential
which is inverse to the hopping intensities, even though the ground state is different
from the original one.

6.1 Introduction and context

As we already said, fermionic chains have been put forward to simulate the Dirac
vacuum in curved space-times, which would lead us to perform experiments on the
Unruh effect (see Section 1.3) or Casimir forces on a background gravitational field
(see Chapter 5) [5, 6, 114]. Such quantum simulators can be built using ultracold
fermionic atoms on an optical lattice, employing modulated laser beams to provide
inhomogeneous hopping amplitudes between neighboring cells [7]. The key insight
is that an inhomogeneity in the hoppings will give rise to an effective space-time
metric in the thermodynamic limit, under some mild conditions.

69
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In the aforementioned examples the Dirac vacuum is obtained as the ground
state (GS) of the lattice Hamiltonian at half-filling, which was discussed in Sec-
tion 3.1. Interestingly, when the underlying lattice is bipartite the system presents
particle-hole symmetry and the occupation numbers become exactly homogeneous.
Moreover, its large scale physical properties can be accounted for using conformal
invariance arguments on the appropriately deformed metric [21, 22, 102–104]. Yet,
as the filling fraction is lowered (or raised) the density will vary from point to point.
Morever, it may become negligible in the region containing the lowest hopping am-
plitudes, a phenomenon which we have termed depletion. This result can be readily
understood in the strong inhomogeneity regime, employing a strong-disorder renor-
malization group (SDRG) scheme [115], because the orbitals with the lowest energies
are localized upon the lowest hopping amplitudes, which may correspond sometimes
to effective long-distance renormalized bonds. An illustration of this situation can
be seen in Fig. 6.1. Yet, in the weak inhomogeneity limit the mathematical descrip-
tion of the depletion effects faces some technical challenges: second-order derivatives
of the fields must be considered in the gradient expansion of the Hamiltonian, thus
breaking explicitly the conformal symmetry which characterizes the half-filling case.

This depletion has already been observed by other authors. For example, it has
been reported that the entanglement entropies of inhomogeneous fermionic chains
away from half-filling can be interpreted as those corresponding to an effective
shorter chain, corresponding to the non-depleted region [116]. Moreover, the ef-
fect of a finite density fermion field in entanglement has been studied both in the
relativistic [117] and non-relativistic frameworks [118].

This work addresses the emergence of depletion in inhomogeneous pure-hopping
free fermionic chains away from half-filling, and it is divided as follows. In Section
6.2 we describe our physical model, while Section 6.3 describes the depletion phe-
nomenon in the strong disorder limit. Section 6.4 describes our continuum approxi-
mation for all filling fractions, and the effective Schrödinger equation on a different
space-time metric. Section 6.5 describes our theoretical approach to the density pro-
files and the depleted areas. Section 6.6 shows the depletion for the entanglement
entropy and the entanglement contour. The question of the effective potential is
addressed in Section 6.7, showing that it can be either proportional to the hopping
amplitudes or inversely proportional to them, depending on our precise definition.
Finally, Section 6.8 summarizes our findings and discusses our suggestions for further
work.

6.2 Model

Let us consider an open fermionic chain with N (even) sites, whose Hilbert space

is spanned by creation operators c†i , i ∈ {1, · · · , N} following standard anticommu-

tation relations. {c†i , cj} = δi,j. The Hamiltonian is the same as in Eq. (5.1),

H(J)N = −
N−1∑

i=1

Ji c
†
ici+1 + h.c., (6.1)
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(a)

ν = 1/2

ν = 1/4

ν = 3/4

(b)

ν = 1/2
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ν = 3/4

Figure 6.1: Depletion in free-fermionic chains with inhomogeneous hoppings, explained
using the SDRG for different values of the filling fraction ν. In (a) we have a rainbow chain
whose single-particle orbitals are bonds between symmetrically placed sites. For ν = 1/2,
all the bonds get single occupation (light red) and the density is exactly homogeneous. For
ν = 1/4 we only occupy the two strongest bonds, leaving a depleted area near the borders.
For ν = 3/4 the weakest bonds get double occupation (bright red), while the strongest
remain with single occupation. In (b) we have a dimerized chain such that the energy
associated to each bond grows rightwards. For ν = 1/2 we obtain the same homogeneous
density. For ν = 1/4 only the rightmost bonds are occupied, and the left half is depleted.
For ν = 3/4 the leftmost bonds obtain double occupation, and the rightmost ones still get
one particle.
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where J = {Ji}N−1
i=1 are the hopping amplitudes, Ji ∈ R+ referring to the link between

sites i and i + 1. The Hamiltonian given by Eq. (6.1) has been fully described in
Section 5.2.

In all cases, we will assume that the sequence of hopping amplitudes presents a
proper thermodynamic limit. Let JN = {Ji,N}N−1

i=1 be a family of hopping amplitudes
for all possible chain lengths N . Then, we assume that there exists a continuous
function J : [0, 1] 7→ R+ such that Ji,N = J(i/N). For concreteness, let us consider
three different examples as we did in Chapter 5. The Rindler metric is the space-
time structure perceived by an observer moving with constant acceleration in a
Minkowski metric, described by

J(x) = J0x. (6.2)

Another natural choice is the sine metric,

J(x) = J0 + J1 cos (2πx) , (6.3)

or the rainbow metric [97–99,102–104,110,112,119,120], given by

J(x) = J0 exp

(
−ĥ
∣∣∣∣x−

1

2

∣∣∣∣

)
, (6.4)

where we define h = ĥN for convenience. Eq. 6.4 is valid for h ≥ 0, with h = 0
corresponding to the Minkowski case. This metric presents a constant negative
curvature except at the center [99, 102], x = 1/2, thus resembling an anti-de Sitter
(adS) space [104], and has been extensively discussed because it presents a maximal
apparent violation of the area law of the entanglement entropy. Notice that the J0
parameter is irrelevant in all cases, since it just fixes the global energy scale, and we
will take it as one.

6.2.1 Density and particle-hole symmetry

The correlation matrix can be easily computed for the GS of Hamiltonian (6.1),

Cij ≡ ⟨ψm| c†icj |ψm⟩ =
m∑

k=1

ŪkiUkj, (6.5)

and, concretely, the local occupation or density is found as ⟨ni⟩ = Cii. Since our
system is bipartite, let us define an operator P acting on the single-particle wave-
functions that flips the sign of all components within one of the sublattices. It is
easy to prove that JP = −PJ . In other terms, if Uk is an eigenstate of J with en-
ergy εk, then PUk will be another eigenstate of J with energy −εk. Every negative
energy orbital has a positive energy partner related through a P operation, thus
proving the particle-hole symmetry of the spectrum, as it was mentioned in Section
3.1. Since U is a unitary matrix,

∑N
k=1 |Uki|2 = 1, for all i. We may decompose the

sum into two,
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Figure 6.2: Density profiles for the rainbow chain with N = 400 sites and two filling
fractions, ν = 1/4 and ν = 3/4, for different values of the inhomogeneity parameter h.
Notice that for low inhomogeneities we always have a nearly flat profile, which gets more
modulated as the inhomogeneity increases, converging towards the SDRG prediction as
the inhomogeneity becomes large. As predicted by particle-hole symmetry, the ν = 1/4
and ν = 3/4 cases present mirror symmetry for all the values of the inhomogeneity.

1 =

N/2∑

k=1

|Uki|2 +
N∑

k=N/2+1

|Uki|2, (6.6)

but the second summust be exactly the same as the first, because |Uki|2 = |UN+1−k,i|2.
Therefore, each sum must add up to 1/2, thus proving that the eigenstate

∣∣ψN/2

〉
at

half-filling must have homogeneous occupation, ni = 1/2 for all sites, independently
of the hopping amplitudes.

6.3 Depletion at strong inhomogeneity

Let us consider the strong inhomogeneity regime, in which the values of the
hopping amplitudes differ largely between different links. In this situation, the
strong-disorder renormalization group (SDRG) approach developed by Dasgupta
and Ma describes the low-energy states very effectively [113, 115, 121–123]. Indeed,
the SDRG algorithm instructs us to select the most energetic link, Ji, and to establish
a bonding or anti-bonding orbital over the corresponding couple of sites, depending
on the hopping sign, which are afterwards removed from the system. Let us stress
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that the particle occupying such a bond has the same probability of being found on
each site. The neighboring sites to this new bond are then linked among themselves
by an effective hopping amplitude, which is obtained via second-order perturbation
theory,

J̃i = −JLJR
Ji

, (6.7)

where JL and JR are the left and right neighboring hopping amplitudes, and the
minus sign is due to the fermionic nature of the particles. Notice that this new
effective link can be selected in the next iteration, if it happens to be the strongest
one, thus yielding a long-distance bond. Some interesting synthetic states, such as
the rainbow state, are built in such a way that all bonds (except the first one) are
long-distance [97,98].

When the SDRG algorithm is performed at half-filling we fill up m = N/2
bonds, each of which delocalizes a particle between a different pair of (perhaps
not neighboring) sites. Thus, each site has an occupation probability of 1/2, in
accordance with the theorem of Section 6.2.1. Yet, if we place m < N/2 particles,
they will always occupy the region with highest hopping amplitudes, even if the
renormalization procedure yields long-distance bonds. Fig. 6.2 shows indeed that,
in the strong inhomogeneity regime, we can observe two different density regions for
m < N/2: half-occupied and empty. For m > N/2, due to particle-hole symmetry,
we occupy the same bonds but in reversed order. Each site within a doubly occupied
bond gets maximal occupation, ⟨ni⟩ = 1. Therefore, as we increase the filling
fraction above ν = 1/2 we fill up completely the regions with the lowest hopping
amplitudes, mirroring the previous process.

This filling sequence is illustrated in Fig. 6.1 (a) for a rainbow chain and (b) a
dimerized chain for filling fractions ν = 1/2, ν < 1/2 and ν > 1/2 with a small size.
In Fig. 6.2, on the other hand, we can see the actual densities numerically obtained
for a larger chain, with N = 400, using ν = 1/4 and ν = 3/4, as a function of the
parameter h which controls the level of inhomogeneity. As h grows, we move from
a nearly uniform density profile towards the square profile of the SDRG prediction,
which differs in the cases of ν = 1/4 and ν = 3/4. Indeed, in both cases we have
⟨ni⟩ = 1/2 at the central half of the chain, while the lateral regions are depleted for
ν = 1/4 or full for ν = 3/4.

6.4 Depletion at weak inhomogeneity

In this section we establish a continuum approximation to Hamiltonian (6.1) for
all possible filling fractions obtained through a gradient expansion. At half-filling
our model is known to map into the Dirac Hamiltonian in the continuum limit,

i /Dxψ(x) = 0, (6.8)

where Dx is the covariant derivative on a given space-time metric given by the
hopping function J(x) [99, 102]. In this work we will consider the situation away
from half-filling, showing that the gradient expansion should be taken to second
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order in the derivatives of the field, giving rise to a continuum approximation based
on the Schrödinger equation on a curved background metric,

−∇2
xψ(x) + V (x)ψ(x) = Eψ(x), (6.9)

where ∇2
x stands for the Laplace-Beltrami operator on a different manifold [124],

whose metric is also given by the hopping function J(x).

6.4.1 Dirac Hamiltonian

Let us assume that the local creation and annihilation operators can be approxi-
mated in terms of two slowly varying fermionic fields, ψL(x) and ψR(x), which makes
reference to the right and left parts of the wavefunction,

cm =
√
a
(
eikF xψL(x) + e−ikF xψR(x)

)
,

c†m =
√
a
(
e−ikF xψ†

L(x) + eikF xψ†
R(x)

)
, (6.10)

where a is the lattice spacing, x = ma, and kF the Fermi momentum, giving rise to
the Hamiltonian

H(x) = −
∫ N

0

dx J(x)
[
e−ikF aψ†

L(x+ a)ψL(x) + eikF aψ†
R(x+ a)ψR(x)

−e−ikF ae−2ikF xψ†
L(x+ a)ψR(x) + eikF ae2ikF xψ†

R(x+ a)ψL(x)
]
,

(6.11)

with N = Na.
We should remark that the crossed terms, such as ψ†

L(x+a)ψR(x), have strongly
oscillating prefactors e−2ikF x, and thus their integral becomes negligible. As an initial
approach, we may expand the fields to first order in a, ψ(x+ a) ≈ ψ(x) + a∂xψ(x),
thus yielding the effective Hamiltonian

H(x) = −
∫ N

0

dxJ(x)

[(
2 cos(kFa)− ae−ikF aJ

′(x)

J(x)

)
ψ†
L(x)ψL(x)

+

(
2 cos(kFa)− aeikF aJ

′(x)

J(x)

)
ψ†
R(x)ψR(x)

+2ai sin(kFa)
(
ψ†
L(x)∂xψL(x)− ψ†

R(x)∂xψR(x)
)]

.

(6.12)

Let us perform a generic coordinate transformation, x→ x̃, such that

dx̃

dx
= G̃(x̃), (6.13)

so that ∂x = G̃(x̃)∂x̃, ∂
2
x = G̃(x̃)G̃′(x̃)∂x̃ + G̃2(x̃)∂2x̃ and ψ(x) = ψ̃(x̃)G̃1/2(x̃). We

will choose G̃(x̃) so as to make the coefficient of the first derivative homogeneous.
Therefore, G̃(x̃) = J̃(x̃) and Eq. (6.12) can be written as
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H(x̃) = −
∫ N

0

dx̃

[
2ai sin(kFa)

(
ψ̃†
L∂x̃ψ̃L(x̃)− ψ̃†

R(x̃)∂x̃ψ̃R(x̃)
)

+cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)(
ψ̃†
L(x̃)ψ̃L(x̃) + ψ̃†

R(x̃)ψ̃R(x̃)
)

 ,

(6.14)

which in the case of half-filling, i.e. kFa→ π/2, reduces to

HD(x̃) = −
∫ N

0

dx̃ 2ai sin(kFa)
(
ψ̃†
L(x̃)∂x̃ψ̃L(x̃)− ψ̃†

R(x̃)∂x̃ψR(x̃)
)
. (6.15)

Yet, we observe that for kFa < π/2 the Dirac equation acquires a potential term,
which may seem at first sight to be responsible for the depletion effect, but is not.
Indeed, the eigenstates of (6.14) can be obtained in a closed form (equivalently for

ψ̃R),

ψ̃L(x̃) = exp


 −i
2a sin(kFa)


ωx̃−

∫
cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)
dx̃





, (6.16)

where ω is an integration constant. In other words, the wavefunctions are modulated
planes wave in x̃ and they will not decay exponentially. See Appendix E for more
details.

6.4.2 Second order approximation

In order to reproduce the observed depletion effects we should expand the fields
to second order in the lattice parameter a,

ψ(x+ a) ≈ ψ(x) + a∂xψ(x) +
a2

2
∂2xψ(x), (6.17)

thus yielding a Hamiltonian of the form
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H(x) = −
∫ N

0

dxJ(x)



(
2 cos(kFa)− ae−ikF xJ

′(x)

J(x)
+
a2

2
e−ikF xJ

′′(x)

J(x)

)
ψ†
L(x)ψL(x)

+

(
2 cos(kFa)− aeikF xJ

′(x)

J(x)
+
a2

2
eikF xJ

′′(x)

J(x)

)
ψ†
R(x)ψR(x)

+2ai sin(kFa)
(
ψ†
L(x)∂xψL(x)− ψ†

R(x)∂xψR(x)
)

+a2eikF xJ
′(x)

J(x)
ψ†
R(x)∂xψR(x) + a2e−ikF xJ

′(x)

J(x)
ψ†
L(x)∂xψL(x)

+ a2 cos(kFa)
(
ψ†
L(x)∂

2
xψL(x) + ψ†

R(x)∂
2
xψR(x)

)]
,

(6.18)

which gives rise to the following equations of motion,

Eψ(x)R/L = −J(x)



(
2 cos(kFa)− ae±ikF aJ

′(x)

J(x)
+
a2

2
e±ikF aJ

′′(x)

J(x)

)
ψ(x)R/L

∓2ai sin(kFa)∂xψ(x)R/L + a2e±ikF aJ
′(x)

J(x)
∂xψ(x)R/L

+a2 cos(kFa)∂
2
xψ(x)R/L

]
, (6.19)

where the R/L notation makes reference to the right and left parts of the wave-
function, and the corresponding sign should be chosen in each case. We would like
to notice that a second-order discrete version of Eq. (6.19) with lattice spacing a
yields our original single-body Hamiltonian (6.1), thus proving the direct equivalence
between both systems.

In the rest of the section we will transform this equation into a Schrödinger equa-
tion, making use of two transformations: (a) a coordinate transformation following
Eq. (6.13), which is equivalent to embedding our system in a non-trivial space-time
metric, and (b) a gauge transformation in order to get rid of the first derivative
term.

Our next purpose is then to make the coefficient of the second derivative homo-
geneous through a suitable change of variable x̃. Making a slight abuse of notation,
we let J̃(x̃)G̃2(x̃) = 1 → G̃(x̃) = J̃−1/2(x̃). Notice the difference with Eq. (6.12), in
which we had G̃(x̃) = J̃(x̃) once the appropriate transformation of coordinates was
performed in order to obtain a homogeneous first-derivative term. The equation of
motion in these new transformed coordinates reads
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Eψ̃(x̃)R/L = −a2 cos(kFa)∂2x̃ψ̃(x̃)R/L ± 2i sin(kFa)

(
aJ̃1/2(x̃)− a2

2

J̃ ′(x̃)

J̃(x̃)

)
∂x̃ψ̃(x̃)R/L

− 2 cos(kFa)

(
J̃(x̃)− a

4

J̃ ′(x̃)

J̃1/2(x̃)
+

7a2

32

J̃ ′2(x̃)

J̃2(x̃)
− a2

8

J̃ ′′(x̃)

J̃(x̃)

)
ψ̃(x̃)R/L

− e±ikF a

2

(
−a J̃ ′(x̃)

J̃1/2(x̃)
− a2

J̃ ′2(x̃)

J̃2(x̃)
+ a2

J̃ ′′(x̃)

J̃(x̃)

)
ψ̃(x̃)R/L. (6.20)

This equation can be rewritten so as to make the single-body operator manifestly
hermitian,

Eψ̃(x̃)R/L = −a2 cos(kFa)∂2x̃ψ̃(x̃)R/L

± 2i sin(kFa)


aJ̃1/4(x̃)∂x̃

(
J̃1/4(x̃)ψ̃(x̃)R/L

)
− a2

2

(
J̃ ′(x̃)

J̃(x̃)

)1/2

∂x̃

(
J̃ ′(x̃)

J̃(x̃)

)1/2

ψ̃(x̃)R/L




− 2 cos(kFa)

(
J̃(x̃)− a

2

J̃ ′(x̃)

J̃1/2(x̃)
− a2

32

J̃ ′2(x̃)

J̃2(x̃)
+
a2

8

J̃ ′′(x̃)

J̃(x̃)

)
ψ̃(x̃)R/L. (6.21)

In order to transform our equation of motion into a Schrödinger equation, our next
task is to get rid of the first derivative term using a gauge transformation,

ψ̃(x̃)R/L = eiβR/L(x̃)Ψ̃(x̃)R/L, (6.22)

which implies that

∂x̃ψ̃(x̃)R/L = iβ′
R/L(x̃)e

iβR/L(x̃)Ψ̃(x̃)R/L + eiβR/L(x̃)∂x̃Ψ̃(x̃)R/L,

∂2x̃ψ̃(x̃)R/L = iβ′′
R/L(x̃)e

iβR/L(x̃)Ψ̃(x̃)R/L (6.23)

− β′2
R/L(x̃)e

iβR/L(x̃)Ψ̃(x̃)R/L2iβ
′
R/L(x̃)e

iβR/L(x̃)∂x̃Ψ̃(x̃)R/L

+ eiβR/L(x̃)∂2x̃Ψ̃(x̃)R/L. (6.24)

The condition that we have to impose so that the first-derivative terms cancel out
is

β′
R/L(x̃) = ∓ tan(kFa)

(
1

2

J̃ ′(x̃)

J̃(x̃)
− 1

a
J̃1/2(x̃)

)
. (6.25)

Applying this transformation we obtain
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EΨ̃(x̃)R/L = −1 + cos(kFa)
2

cos(kFa)
J̃(x̃)Ψ̃(x̃)R/L

+ a
1

cos(kFa)

J̃ ′(x̃)

J̃1/2(x̃)
Ψ̃(x̃)R/L

− a2

4

(
sin(kFa)

2

cos(kFa)

J̃ ′2(x̃)

J̃2(x̃)
− cos(kFa)

4

J̃ ′2(x̃)

J̃2(x̃)
+ cos(kFa)

J̃ ′′(x̃)

J̃(x̃)

)
Ψ̃(x̃)R/L

− a2 cos(kFa)∂
2
x̃Ψ̃(x̃)R/L. (6.26)

Eq. (6.26) has the form of a Schrödinger equation in x̃ with a mass M =
2/ cos(kFa) that tends to zero as kFa → π/2, thus rendering the approximation
invalid in that limit. The effective potential, to zero order in a, becomes

V (x̃) ≈ −1 + cos(kFa)
2

cos(kFa)
J̃(x̃). (6.27)

Notice that, for kFa ≪ 1 we have to a very good approximation V (x̃) ≈ −2J̃(x̃)
or, equivalently, V (x) = −2J(x), while for larger values of kFa the different modes
of our system correspond to different Schrödinger equations. The reason is that the
prefactors of Eq. (6.26) present explicit dependence on kFa. The next corrections,
corresponding to higher orders in a, can be shown to be small or constant for the
hopping amplitudes employed in this work. We would also like to stress that our
system is now embedded on a manifold with metric ds2 = dt2 − dx̃2, and all geo-
metrical measurements should be transformed back before further comparisons with
our original discrete model.

Let us discuss the numerical validity of Eq. (6.26), which is familiar to us due
to its Schrödinger form. For highly excited states we are allowed to perform a
Wentzel-Kramers-Brillouin (WKB) approximation, which leads to a form

Ψ̃(x̃)R/L ∼ 1√
p̃(x̃)

e±ip̃(x̃)x̃, (6.28)

in the new coordinate x̃, where p̃(x̃) is the momentum of a particle in that position

according to classical mechanics, i.e. p(x) = ±
√

2M(E − V (x))

p̃(x̃) =

√√√√ 1

cos(kFa)2

(
1 + cos(kFa)

2

cos(kFa)
J̃(x̃) + E

)
, (6.29)

Yet, we should transform this solution back to our original coordinate system in
order to check its numerical validity, making use of the change of coordinates for a
probability distribution, |Ψ̃(x̃)|2dx̃ = |Ψ(x)|2dx, which leads to

|Ψ(x)R/L| =
|Ψ̃(x̃)R/L|
J1/4(x̃)

∼ 1√
p̃(x̃)

1

J1/4(x̃)
. (6.30)
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Figure 6.3: Comparing the modes obtained from Hamiltonian (6.1) using N = 400 for
Rindler and Rainbow chains with the WKB approximation given in Eq. (6.30), consid-
ering different filling fractions ν. The continuous red line represents the semiclassical
approximation Eq. (6.30) to the continuous approximation given in Eq. (6.26). Panel (a):
Rindler chain, from top to bottom, m = 50, 100 and 175. Panel (b): rainbow chain, top
to bottom m = 40 and m = 150.

We have checked the validity of Eq. (6.30) in Fig. 6.3. In panel (a) we have chosen a
Rindler system with J(x) = 1

4
+ x with N = 400 and shown the modes m = 50, 100

and 175. The continuous red curve in each case corresponds to the approximation
(6.30), suitably normalized. We can see that the decay is nearly perfect. Panel (b)
shows the same situation for the rainbow chain, using h = 4, N = 400, with the
modes m = 40 and m = 150. We can see that the decay is nearly perfect in all the
cases.

We should stress that our continuum approximation, Eq. (6.19) can not be
employed to obtain a continuum limit of our original model. Indeed, for a → 0, all
terms containing derivatives of the field ψ(x) vanish, thus rendering the equation
useless. In order to make sense of Eq. (6.19) we must keep a finite and this implies
that we should preserve all derivatives of the gradient expansion. Alternatively, we
may define a new physical variable u = x/a, in such a way that any derivative with
respect to x multiplied by a becomes a derivative with respect to u: ∂u = a∂x.
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6.5 Density profiles

Our next aim will be to provide a continuum approximation to the density profiles
observed for free-fermionic chains with inhomogeneous hopping amplitudes away
from half-filling, based on the validity of the Schrödinger equation on a different
manifold, Eq. (6.26), using a certain effective potential V (x). If we fill all orbitals up
to a certain energy E, we will observe depletion in the classically forbidden regions,
defined by V (x) > E, and bounded by the turning points, defined by V (x∗) = E.
To order zero in a, from (6.27), we may estimate these turning points as

E = −1 + cos(kFa)
2

cos(kFa)
J(x∗). (6.31)

This result can also be obtained in a heuristic way, starting from a simplified version
of Eq. (6.19),

Eψ(x)R/L = −J(x)
(
2 cos(kFa)ψ(x)R/L

∓ 2ai sin(kFa)∂xψ(x)R/L

+a2 cos(kFa)∂
2
xψ(x)R/L

)
. (6.32)

Now, we suppose that the wavefunction is locally a plane wave with a certain position
dependent momentum q(x), i.e. ψ(x)R/L ∼ e±iq(x)x. Then,

E = −J(x)(2 cos(kFa) + 2a sin(kFa)q(x)

− a2 cos(kFa)q(x)
2), (6.33)

and we can then obtain q(x) solving a quadratic equation. If q(x) is not real, then x
belongs to the classically forbidden region. Thus, by making the discriminant zero
we reach Eq. (6.31).

We can obtain an approximation to the local density ρ(x) of a Schrödinger equa-
tion by considering a particle with energy E traveling through a small segment of
size ∆x around position x, where the potential energy is V (x). Its momentum will
be given by

q(x) =
√

2m(E − V (x)). (6.34)

Within a semiclassical approximation we may estimate the number of orbitals with
presence on that segment assuming that the momenta are discretized as q(x) ≈
nπ/N ≈ πρ(x). Thus, we have

ρ(x) ≈ 1

π

√
2m
(
E − V (x)

)
. (6.35)

In our case, for low values of kFa we also build the density by filling up the modes
of a Schrödinger equation, and thus we may write
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Figure 6.4: Fermionic density for a chain of N = 400 sites with different filling fractions
1/2, 1/4, 1/8 and 1/16 and four different inhomogeneities: (a) Minkowski, (b) Rindler,
J(x) = x, (c) Rainbow, J(x) = exp(−ĥ|x − 1/2|) with h = 4 (h = ĥN) and (d) Sine,
J(x) = 1 + 0.5 cos(2πx). The black curves correspond to the theoretical curves, given by
Eq. (6.37).

ρ̃(x̃) ≈ 1

π

√
2

a2

(
E − 2J̃(x̃)

)
. (6.36)

Yet, this expression is designed for the transformed coordinate x̃. We should express
it in our original coordinate in order to make useful predictions, using ρ̃(x̃)dx̃ =
ρ(x)dx, we have ρ(x) = ρ̃(x̃)J̃−1/2(x̃), and therefore

ρ(x)a ≈ A

√
E

J(x)
− 2, (6.37)

where A is a normalization constant. Indeed, ρ(x)a can be interpreted as the local

occupation, which can be directly compared to ⟨c†ici⟩ for i = x/a. Interestingly, the
density is directly related to the inverse of the hopping function J(x). Notice that
Eq. (6.37) is not necessarily valid for larger values of kFa, since the modes that we
are filling up do not correspond to the same Schrödinger equation.
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Figure 6.5: EE of free fermionic systems on an optical chain with N = 400 for two different
metrics. (a) Rainbow (Eq. (6.4) with h = 4), (b) Rindler (Eq. (6.2) with J0 = 1.

We have computed numerically the fermionic density for different hopping func-
tions, and observed depletion in all the considered cases, except for the Minkowski
space-time, as we can see in Fig. 6.4. As expected, the depleted regions decrease
their size as the filling fraction grows. Moreover, Eq. (6.37) predicts very well the
density profiles for all ν ≤ 1/4. Surprisingly, for all values of the filling fraction the
functional form

ρ(x)a = A

√
1

J(x)
−B, (6.38)

fits extremely well the numerical density profiles, as we can check in Fig. 6.4.

6.6 Entanglement entropy and entanglement con-

tour

We already saw in Chapter 5 that the entanglement entropy for deformed systems
at half-filling is given by a CFT extension of Eq. (5.11), written in Eq. (5.14)

S(ℓ) =
c

6
log


 Ñ

π∆x̃
sin

(
πℓ̃

Ñ

)
+ Snon-univ, (6.39)

where ℓ is the size of the block we are considering.
However, for filling-fractions ν ̸= 1/2 the EE also shows depleted areas which

are shown in Fig. 6.5: (a) rainbow and (b) Rindler. As it was expected, these
empty regions coincide with the depleted areas in the fermionic density, for the
corresponding filling-factor, represented in Fig. 6.4: there can not be entanglement
in empty regions.

Moreover, it has been conjectured in previous works [116] that the region where
the particles can be placed must be a CFT and, thus, CFT predictions can be used.
With that aim, one may think that Eq. (6.39) should be able to reproduce the
EE outside of the depleted areas that appear when we are away from half-filling.
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However, we have not be able to obtained successful results in this direction yet
although we expect it to be true.
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Figure 6.6: Contour functions for the entanglement entropy of the rainbow case (Eq.
(6.4)), L × sA(x) and L ×B (x) in terms of x/L, with h = 4 and L = 400. We have
considered two complementary blocks A = (0, x0) and B = (x0, L), separated by one
entangling point at x0 = 150. Two filling fractions have been brought into play: ν = 1/2
(orange) and ν = 1/4 (blue). The depleted regions can be observed away from half-filling.
A linear divergence is observed in the neighborhood of the entangling point, explained
in [103], while finite parity oscillations occur close to the boundaries of the segment.

Furthermore, one can also look at the entanglement contour (see Section 2.8) for
a deformed system away from half-filling. We have consider the rainbow case for
two different filling-fractions shown in Fig. 6.6: ν = 1/2 and ν = 1/4.

Indeed, there are several analytical results for the entanglement contour of the
inhomogeneous chain with rainbow hopping amplitudes [103], which explain the
linear divergence observed in the neighborhood of the entangling point in Fig. 6.6,
while finite parity oscillations occur close to the boundaries of the segment. On the
other side, the depleted areas appear to be exactly the same as in the fermionic
density and in the entanglement entropy for each appropriate filling-factor.

6.7 Compensating and mimicking potentials

As we have discussed above, our continuum approximation led to an effective
Schrödinger equation with a potential whose classically forbidden areas correspond
to the depletion regions of the particle density.

Let us extend our original model, Eq. (6.1), introducing an inhomogeneous
chemical potential µµµ = {µi}Ni=1,

H(J,µµµ)N = −
N−1∑

i=1

Ji

(
c†ici+1 + h.c.

)
+

N∑

i=1

µic
†
ici. (6.40)

We may introduce a compensating potential, defined by

µi = µ0Ji, (6.41)
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Figure 6.7: Density profile for the GS of Hamiltonian (6.40) with a compensating potential,
using three types of hopping functions: Minkowski, Rindler and rainbow, and different
filling fractions, ν = 1/2, 1/4 and 1/8.

where we implicitly assume that the chemical potential at site i is given by the
average of its two neighboring hopping constants. With such choice, the GS of
Hamiltonian (6.40) always presents a flat density profile, for all filling fractions,
whenever µ0 = 2 cos(kFa), as it can be checked in Fig. 6.7. In mathematical terms,
the reason is that the added chemical potential cancels out the potential energy
term in Eq. (6.19). In this case the Hamiltonian does not present any terms which
are independent of the lattice spacing, a, and thus we are allowed to renormalize the
hopping function, J(x) → ∞, a → 0, while J(x)a → Ĵ(x), thus yielding a proper
continuum limit.

The physical meaning of this compensating effect is also interesting. Let us start
out with the GS of Hamiltonian (6.40) using Ji = 1 and µi = 0, filled up with νN
fermions. We notice that the energy cost of introducing a new particle does not
decay to zero as the system size increases, and instead is bounded by −2 cos(kFa),
with kFa = πν. Thus, the system can not be conformally invariant. We can change
that by introducing a chemical potential, µi = 2 cos(kFa). In that case, the energy
cost of introducing extra particles becomes zero. This new system can be set in
any different static 1+1D metric by introducing an appropriate Weyl factor, thus
yielding the compensating potential system [102,119].

Now we may ask a complementary question. Let us keep a flat hopping function,
J(x) = 1, i.e. Ji = 1. Can we find a chemical potential {µi} which mimics the
density profiles obtained from the inhomogeneous hopping function without chemical
potential, for the same filling fraction? Interestingly, the answer is yes.

Let us consider the bulk equations to obtain the eigenstates of the original hop-
ping matrix. Let (ψ1 · · ·ψN)

T be the eigenvector of the hopping matrix with eigen-
value E. Then,

Jn−1ψn−1 + Jnψn+1 = Eψn, (6.42)

which can be rewritten for very smooth J as
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Figure 6.8: Density profiles of the GS of Hamiltonian (6.40) using homogeneous hoppings,
Ji = 1, and the corresponding mimicking potential, Eq. (6.46), for (a) a rainbow chain
with N = 400 and h = 4 and (b) a Rindler system with J(x) = x, using the filling fractions
shown in the key, along with the original density profiles using inhomogeneous hoppings
and without chemical potential.

Jn(ψn−1 + ψn+1) ≈ Eψn. (6.43)

Now we can take the hopping amplitude to the RHS, assuming that it is non-zero,

ψn−1 + ψn+1 −
(
E

Jn
− E

)
ψn ≈ Eψn, (6.44)

which can be read as a homogeneous hopping Hamiltonian with a chemical potential
µn of the form

µn = E

(
1

Jn
− 1

)
, (6.45)

i.e. the chemical potential depends on the energy itself, and thus the secular equation
becomes non-linear. This reasoning motivates the following mimicking chemical
potential

µi =
µ0

Ji
(6.46)

In Fig. 6.8 we plot the density profiles associated to the ground states of Eq.
(6.40) with the above chemical potential Eq. (6.46), along with the original density
profiles obtained for inhomogeneous hoppings and without chemical potential. The
coincidence between them both is extremely remarkable, given that Eq. (6.46) only
ensures the similarity between the highest energy filled mode in both cases.

Thus, we are led to ask whether the two GS are the same or not. Fig. 6.9 provides
a negative answer to that question. In it we have shown the entanglement entropies
(EE) of blocks A = [1, · · · , ℓ] as a function of ℓ for both states in the rainbow case
(6.39), defined as S(ℓ) = −TrA(ρA log ρA) with ρA = TrĀ |Ψ⟩ ⟨Ψ|. As it was shown
in [116], the EE of our states is approximately equal to the EE of blocks of a shorter



CHAPTER 6. DEPLETION IN FERMIONIC CHAINS WITH INHOMOGENEOUS HOPPINGS 87

system bounded by the turning points at half-filling [102, 119]. Yet, the EE of the
GS of the mimicking system are different, presenting strong similarities to the EE
of homogeneous chains [69].
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Figure 6.9: Entanglement entropy S(ℓ) of blocks of the form [1, · · · , ℓ] of the mimicking
GS (points) and the original GS (lines), with the same filling fractions for rainbow chains
with h = 0.01 and N = 400.

6.8 Conclusions and further work

A free-fermionic chain without chemical potential and with inhomogeneous hop-
pings at half-filling will present an exactly homogeneous density profile. In the
continuum limit, this system represents a Dirac fermion on a static curved back-
ground, with the lapse function of the metric given by the hopping amplitudes. Yet,
if we move away from half-filling we will notice that the particles concentrate at the
regions with higher hopping amplitudes, and leave the regions with lower hopping
amplitudes empty, a phenomenon that we have called depletion.

In the strong inhomogeneity regime, the Dasgupta-Ma renormalization scheme
allows to prove that this should be the case, since the particles will establish bonds
on top of the larger hoppings, either original or renormalized. Thus, the depletion
is exact.

In the weak inhomogeneity regime, we have shown that the associated single-
particle problem is equivalent to a Schrödinger equation on a different static curved
manifold, with the lapse function given by the square root of the hopping amplitudes,
and a potential determined by the hopping amplitudes and the filling fraction. No-
tice that this shows that the effective system does not show conformal invariance.
Naturally, the laplacian operator must be substituted with the Laplace-Beltrami op-
erator corresponding to the associated metric, and the depleted regions correspond
to the classically forbidden areas of this Schrödinger equation. The wavefunctions
and the density profiles can be accurately obtained using a semiclassical approxi-
mation.

It is interesting to ask how this model breaks the conformal symmetry which
is known to hold at half-filling. Indeed, a second order expansion of the fields is
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required to find a continuum approximation to our lattice model, instead of the
first-order expansion at half-filling. The second-order derivative term, which maps
into a laplacian, breaks explicitly the conformal invariance introducing a length
scale, which is inversely proportional to the effective mass.

We may introduce a compensating potential in our system, through a chemical
potential proportional to the hopping amplitudes, which exactly cancels the de-
pletion effect and provides exactly homogeneous density profiles. In this case, the
continuous approximation allows us to conjecture that the system recovers its full
conformal invariance.

We have also introduced a mimicking potential, which provides exactly the same
density profiles away from half filling on a fermionic chain with homogeneous hop-
pings. Interestingly, this mimicking potential is inversely proportional to the hopping
amplitudes. Yet, the associated ground state is not the same as in the original case,
as we have been able to show checking the entanglement entropies of lateral blocks.
The ground states of the compensating and mimicking systems present interesting
challenges which should be considered in further work.



Chapter 7
Ergotropy and entanglement in critical
spin chains

This chapter is based in the following article:

• B. Mula, E.M. Fernández, J.E. Alvarellos, J.J. Fernández, D. Garćıa-Aldea,
S.N. Santalla, J. Rodŕıguez-Laguna, Ergotropy and entanglement in critical
spin chains, Phys. Rev. B 107, 075116 (2023).

A subsystem of an entangled ground state is in a mixed state. Thus, if we isolate
this subsystem from its surroundings we may be able to extract work applying
unitary transformations, up to a maximal amount which is called ergotropy. Once
this work has been extracted, the subsystem will still contain some bound energy
above its local ground state, which can provide valuable information about the
entanglement structure. We show that the bound energy for half a free fermionic
chain decays as the square of the entanglement entropy divided by the chain length,
thus approaching zero for large system sizes, and we conjecture that this relation
holds for all 1D critical states.

7.1 Introduction and context

Quantum thermodynamics applies the core concepts of quantum information
theory [125–127] to design optimal nanoscale devices, such as quantum thermal
machines [128–130]. A very fruitful concept is that of ergotropy [131, 132], i.e. the
maximal work that can be reversibly extracted from a mixed state, which is a crucial
tool in order to build efficient quantum batteries [133–135]. Indeed, ergotropy is
known to be strongly influenced by the presence of quantum correlations of different
types [136–140]. Of course, if we lift the reversibility constraint, we may use quantum
measurements to extract work in an optimal way [141,142].

Yet, the connection works in both directions, and we may employ quantum
thermodynamics to characterize the entanglement structure of a quantum system.
As it is well known and it was explained in Chapter 2, a subsystem of a ground
state (GS) is usually not in its local ground state. Instead, it must be described by

89
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a reduced density matrix, which can be expressed as a thermal density matrix under
a certain entanglement Hamiltonian (EH), which need not coincide with the local
one [143,144]. Notice that the EH allows us to describe the entanglement structure
of complex quantum states in thermal terms. Both the EH and its eigenvalues,
which define the entanglement spectrum (ES) [68], have provided invaluable insight
to characterize the entanglement structure of the low energy states of quantum
many-body systems [106, 112, 145–151], in some cases exploiting their conformal
invariance [103,119,152].

In this work we introduce the notion of subsystem ergotropy within a GS in
order to characterize its entanglement structure through the analysis of the energetic
relations between a subsystem A and its environment B. The expected value of
the local energy of any subsystem will typically exceed its own GS energy, and the
subsystem ergotropy is defined as the part that can be extracted in the form of work.
Our analysis will focus on a few simple quantum many-body systems, starting with
a detailed analysis of free fermionic chains, and extending our study to other critical
spin chains. In all the considered cases, we benefit from the constraints imposed
by conformal invariance on the reduced density matrix. We show that, once the
maximal work has been extracted, the remaining bound energy presents universal
scaling as the square of the entanglement entropy of the block divided by the system
size, thus approaching zero for large system sizes.

This chapter is organized as follows. Section 7.2 develops the basic theoretical
background, combining tools from quantum thermodynamics and quantum infor-
mation theory. Then we show our analytical and numerical calculations for a free
fermionic chain in Section 7.3. Other critical spin chains, such as the Ising model in
a transverse field or the Heisenberg model, are briefly considered in 7.4.

7.2 Theoretical background

7.2.1 Ergotropy of generic mixed states

The ergotropy W of a mixed state ρ with respect to a Hamiltonian H can be
defined as the maximal amount of work that can be extracted from the state by
applying unitary operations [131,132], i.e.

W ≡ max
U

(
Tr(ρH)− Tr(UρU †H)

)
, (7.1)

where U is any unitary transformation. Alternatively, it can be shown [131] that the
ergotropy corresponds to the maximal work that can be reversibly extracted from the
system, but the former characterization suits our purposes better. A state defined by
a density matrix ρ is called passive with respect to H when its ergotropy is zero, i.e.
when we can not extract any work from it by performing unitary operations. In that
case, the eigenstates of H and ρ must be aligned such that the highest probability
state of ρ will correspond to the lowest eigenstate of H, and so on. Thermal states
built on H, written as ρ = Z−1 exp(−βH) with β = 1/T the inverse temperature
(we assume kB = 1) and Z the normalization factor, are always passive with respect
to their Hamiltonian, but the converse is not true. In other words: all thermal states
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are passive, but not all passive states are thermal.
Let λ0 ≥ λ1 ≥ · · · ≥ λN−1 be the eigenvalues of ρ, where N is the dimension of

the Hilbert space. Similarly, let E0 ≤ E1 ≤ · · · ≤ EN−1 denote the eigenvalues of H
in ascending order, and let E = Tr(ρH) be the expected value of the energy of the
system. Now, let us define the passivized state,

ρ̃ ≡ UρU †, (7.2)

with U the unitary operator implicitly defined in Eq. (7.1). Naturally, the spectra
of both density matrices must coincide,

Sp(ρ) = Sp(ρ̃) = {λk}N−1
k=0 , (7.3)

Since the passive energy Ẽ ≡ Tr(ρ̃H) must be minimal among all density matrices
with the same spectrum, we deduce that the maximal probability, λ0, must share
eigenstate with the the GS energy of H, E0; the second probability, λ1, with the
first excited state, E1, and so on. Therefore,

Ẽ =
N−1∑

k=0

λkEk, (7.4)

and degeneracies do not pose any complications. The ergotropy is given by

W ≡ E − Ẽ ≤ E − E0. (7.5)

Notice that since we have chosen a common basis of eigenvectors of H and ρ̃, the
two operators must commute, [H, ρ̃] = 0. In general, this density matrix ρ̃ need not
be thermal for H, i.e. it may not be written as ρ̃ ≈ Z−1 exp(−βH) for any value of
β.

7.2.2 Subsystem ergotropy

Let us consider a quantum system on a composite Hilbert space H = HA ⊗HB,
with Hamiltonian H,

H = HA ⊗ IB + IA ⊗HB +HAB ≡ H0 +HAB, (7.6)

where H{A,B} acts on H{A,B} respectively, and HAB will be called the interaction
Hamiltonian. Of course, this decomposition is not unique, and we will assume that
HAB has been chosen as small as possible in some norm. Let |Ψ⟩ be the (non-
degenerate) GS energy of H, which can always be written as a Schmidt decomposi-
tion given by Eq. (2.16)

|Ψ⟩ =
nS∑

k=1

λ
1/2
k |αk⟩ ⊗ |βk⟩ , (7.7)

where |αk⟩ ∈ HA, |βk⟩ ∈ HB are two orthornormal sets, λk ≥ 0 (also in non-
increasing order) and nS ≤ min(dim(HA), dim(HB)) is the Schmidt number. The
reduced density matrix for part A can be written as in Eq. (2.17)
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Figure 7.1: Illustrating the energies involved in our discussion of the subsystem ergotropy
and their differences. Indeed, EA denotes the expected value of the HA within the global
GS of H, ẼA is the minimal energy achieved through unitary operations on HA and EA,0

is the GS of HA. Moreover, ∆EA = EA − EA,0 is the excess energy, WA = EA − ẼA is
the subsystem ergotropy and QA = ẼA − EA,0 is the subsystem bound energy. The blue
archs denote entanglement, as it is explained in the text. Notice that, in order to define
these energies, block A must be physically separated from its environment.

ρA =

nS∑

k=1

λk |αk⟩ ⟨αk| . (7.8)

Being positive definite, this matrix can always be written as a thermal density
matrix,

ρA = exp(−KA), (7.9)

where KA is called the entanglement Hamiltonian (EH) associated to part A. Of
course, KA need not be equal to HA, the local Hamiltonian, and this difference will
be crucial in what follows. Also, let us introduce the entanglement spectrum (ES)
as the spectrum of the EH [68].

Now let us physically separate subsystem A from its environment, i.e. subsystem
B, by suddenly quenching HAB to zero. The subsequent behavior of our subsystem
will be described by HA, with spectrum {EA,k}, which we may assume to be non-
degenerate. We define the three energies involved in our problem:

• EA =
〈
Ψ|HA ⊗ IB|Ψ

〉
, the expected value of HA in the global GS.

• ẼA =
∑

k λkEA,k, the passive energy of the system, obtained through unitary
transformations.

• EA,0, the GS of HA.

These three energies must be in descending order, EA ≥ ẼA ≥ EA,0. We define
the excess energy as ∆EA ≡ EA −EA,0. The subsystem ergotropy can be computed
as
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WA = EA − ẼA, (7.10)

while

QA ≡ ẼA − EA,0, (7.11)

denotes the amount of energy which is unavailable, which we will call the subsystem
bound energy [127]. See Fig. 7.1 for an illustration. The top panel represents the
GS of H, and EA is the energy associated to block A. The light blue archs represent
the entanglement links [153,154] which characterize the entanglement structure. We
reach the middle panel applying a suitable unitary operator on block A, maximally

reducing its energy to ẼA while preserving the entanglement spectrum and, a for-
tiori, the amount of entanglement with the rest of the system, which in this figure is
represented by the number of links leaving A. The newly established links are now
denoted in dark blue. Finally, the lowest panel denotes the GS of HA, which is now
disentangled from the environment, with energy EA,0.

7.2.3 Ergotropy and time evolution

Once we have split the subsystem A from its environment, it will evolve under
the action of its local Hamiltonian, HA, following von Neumann’s equation,

iℏ ∂tρA = [HA, ρA]. (7.12)

Remarkably, this time evolution preserves both the expected value of the energy, EA,
and the full spectrum of the density matrix, even though the subsequent dynamics
can be complex [155–157]. It is relevant to ask how much work we can obtain
from this time-evolved density matrix employing unitary transformations, i.e. how
the ergotropy evolves after the split quench. The answer is that the ergotropy is
exactly preserved along the time evolution. A proof of this fact is straightforward.
The time-evolved density matrix for the subsystem after the split can be written as
ρA(t) = V (t)ρA(0)V

†(t) for some unitary transformation V (t). The ergotropy of this
matrix, defined in Eq. (7.1), is exactly the same, because the associated passivized
state, given in Eq. (7.2), is exactly the same, if we just use the identity

ρ̃A = UρA(0)U
† = UV †(t)ρA(t)V (t)U †, (7.13)

allowing us to define a new unitary transformation, Ũ = UV †(t), such that ρ̃A =
ŨρAŨ

†. This result implies that the work extraction procedure need not start im-
mediately after the disconnection between the subsystem and its environment, as
long as the subsequent evolution is unitary.

7.2.4 Interaction energy inequality

Thus, we can extract work from a subsystem of a composite quantum state in
its GS. Yet, this work should always be less than the corresponding increase in
the energy of the system induced by our interaction, because otherwise the current
system energy would be lower than the GS energy, E. We can prove this result
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easily. After the unitary transformation on subsystem A the global system will be∣∣∣Ψ̃
〉
, such that

〈
Ψ̃
∣∣∣H
∣∣∣Ψ̃
〉
= Ẽ = ẼA + ẼB + ẼAB, (7.14)

where each term on the rhs corresponds to the expectation value of one of the three

operators, HA, HB and HAB on
∣∣∣Ψ̃
〉
, and we notice that ẼB = EB. This energy

Ẽ ≥ E, the GS energy, which can be decomposed equally, E = EA + EB + EAB.

Taking into account that EA − ẼA = WA, we obtain

ẼAB − EAB ≥ WA ≥ 0. (7.15)

which implies that the gain through ergotropy must be less or equal than the loss
in the interaction term.

7.3 Ergotropy of a free fermionic chain

We now particularize the previous calculation to the case of a free fermionic
chain, before extending our results to other critical spin chains. As we will show,
the ergotropy and bound energy of free fermionic chains can be explicitly computed
and present universal features associated to conformal invariance, in similarity to
the Casimir energy [19,20,114]. For simplicity, we will restrict ourselves to the case
in which the block A corresponds to the left half of the chain.

7.3.1 Free fermionic chains

Let us consider a fermionic chain of N (even) sites with open boundaries, de-
scribed by the Hamiltonian

HN = −
N∑

i,j=1

Tij c
†
icj, (7.16)

where c†i and ci denote the fermionic creation and annihilation operators on site
i and Tij = T̄ji denotes the hopping matrix. We will focus on the homogeneous
chain with open boundaries, whose hopping amplitudes are given by Tij = δi,j±1. In
this case, the low energy behavior of the chain can be accurately represented by a
conformal field theory (CFT) [21,22].

In Section 3.1 we discussed that the GS of Hamiltonian (7.16) can be obtained
through the eigenvalues {εk} (in increasing order) and eigenmodes {Uki} of the
hopping matrix Tij, which are usually called single-body energies and modes, re-
spectively. The spectrum presents particle-hole symmetry, εk = −εN+1−k, and the
GS is obtained by filling up the N/2 negative energy modes, such that

E =

N/2∑

k=1

εk, (7.17)
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while the corresponding eigenstate is a Slater determinant determined by its corre-
lator matrix (see Section 3.2), defined as

Cij ≡
〈
c†icj
〉
=

N/2∑

k=1

ŪkiUkj. (7.18)

All the entanglement properties can be determined from matrix C. Indeed, the
reduced density matrix of any block A of size ℓ can be obtained diagonalizing the
corresponding ℓ× ℓ submatrix, CA. The set {νAk } of eigenvalues of CA, where each
νAk ∈ [0, 1] determines uniquely the full ES, will be called entanglement occupations.
The von Neumann entropy of block A, as we showed in Section 3.3, can be expressed
as [106]

SA = −
ℓ∑

k=1

(
νAk log(νAk ) + (1− νAk ) log(1− νAk )

)
. (7.19)

In Section 4.7 we discussed that conformal symmetry fixes the universal part of the
entanglement entropy of a lateral block A = {1, · · · , ℓ} of a critical chain with N
sites, [13, 100,101]

SA ≈ c

6
log

(
N

π
sin

(
πℓ

N

))
+ Snon-univ, (7.20)

where c = 1 is the central charge of the associated CFT [21, 22] and Snon-univ is a
non-universal constant. Moreover, the EH of a free fermionic chain must also present
a free fermionic form, Eq. (7.16), with a different hopping matrix [143,144],

ρA =
1

Z
exp(−KA) =

1

Z
exp


−

ℓ∑

i,j=1

KA
ijc

†
icj


 . (7.21)

The single-body energies of the EH, EA
k , can be obtained from the entanglement

occupations through the Fermi-Dirac expression,

νAk =
1

1 + exp(EA
k )
, (7.22)

and they are (approximately) equally spaced, with a level separation given by the
so-called entanglement gap, EA ≈ EA

k+1 − EA
k , which is known to behave like [103]

EA ≈ 2π2

log(γN)
, (7.23)

where log γ ≈ 2.3 is a non-universal constant [103]. Moreover, an approximate
inverse relation has been proposed between the entanglement gap and the entangle-
ment entropy,

EASA ≈ π2

3
. (7.24)
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7.3.2 Casimir energy and free fermions

Our next aim is to compute the three energies involved in our calculations: EA,

ẼA and EA,0. Let us start with EA,0 for convenience. We proceed to build HA, the

hopping matrix for the block A, and obtain its eigenvalues, {εAk }N/2
k=1, in increasing

order. The GS energy of A is given by

EA,0 =

N/4∑

k=1

εAk . (7.25)

An approximate expression for EA,0 as a function ofN can be provided [19,20,114]

E0(N) = −c0(N − 1)− cB − cπvF
24N

+O(N−2), (7.26)

where we distinguish three terms as explained in Chapter 5. The first one, −c0(N −
1), with c0 = 2/π, is the bulk energy. The second term, −cB = −(4/π − 1), is
the boundary term. The third one provides the finite-size correction and is fixed by
conformal invariance. Indeed, c = 1 is the central charge associated to our theory
and vF = 2 is the Fermi velocity given by Eq. (3.33). Thus, we have

EA,0 ≈ −c0
(
N

2
− 1

)
− cB − π

6N
. (7.27)

We can use a similar strategy to estimate EA, but we should proceed with care.
Indeed, we can obtain EA numerically from the GS of the whole chain, subtracting
the energy associated to the central link and dividing by two,

EA =
E0(N)

2
− CN/2,N/2+1. (7.28)

The first term can be easily estimated from (7.27),

E0(N)

2
≈ −c0

(
N

2
− 1

)
+
c0
2
− cB

2
− π

24N
, (7.29)

and the second one can be found making use of (7.18), giving rise to an alternating
behavior (see Appendix F),

Cn,n+1 ≈ −c0
2
− π

24(N + 1)2
+

(−1)n

2(N + 1) sin
(

π(n+1/2)
N+1

) , (7.30)

which, since N/2 is even, reduces for the central link to

CN/2,N/2+1 ≈ −c0
2
− π

24(N + 1)2
+

1

2(N + 1)
, (7.31)

yielding

EA ≈ −c0
(
N

2
− 1

)
− cB

2
−
(
π

24
+

1

2

)
1

N
. (7.32)
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Figure 7.2: (a) The three energies involved, EA, Ẽ and EA,0, for a free fermionic chain,
with A the left half, as a function of the system size, along with the theoretical asymptotic
expressions, Eqs. (7.27), (7.32) and (7.39). (b) The three energy differences, ∆EA =
EA−EA,0, WA = EA− Ẽ, QA = Ẽ−EA,0, and their expected theoretical values according
to Eqs. (7.33), (7.40) and (7.41).

We notice that the bulk term is exactly the same as for EA,0, and the boundary term
is exactly half, as we would expect intuitively, since this subsystem only possesses
one boundary instead of two. We should stress that a naive calculation would yield
a Casimir correction π/(24N), but we obtain an additional contribution from the
energy associated to the central link. The validity of the approximations to these
two energies, EA,0 and EA, can be checked in Fig. 7.2 (a).

Therefore, the excess energy, ∆EA = EA − EA,0, is given by

∆EA ≈ cB
2

+

(
π

8
− 1

2

)
1

N
. (7.33)

7.3.3 Bound energy and entanglement

Extracting the maximal amount of work through unitary operators reversibly
is equivalent to minimizing the block energy while preserving the full spectrum of
the reduced density matrix. Thus, we proceed to align the occupation eigenvectors
with the eigenstates of HA, whose eigenvalues will be denoted by {εAk }. The passive
energy ẼA can be written as

ẼA =
ℓ∑

k=1

νkε
A
k . (7.34)

Since EA ≤ ẼA ≤ EA,0, it is reasonable to consider that the passive energy ẼA

will also present the same bulk term as in Eq. (7.27), but with different corrections.
Let us provide a similar asymptotic expansion to its value.

The eigenvalues of HA can be found exactly as it shown in Section 3.4 (see Eq.
(3.28)),

εAp = −2 cos

(
pπ

N/2 + 1

)
, (7.35)
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with p ∈ {1 · · ·N/2}, and those of the correlation matrix CA can also be approxi-
mated as

νAp ≈ 1

1 + exp
(
−β
(
p−N/4

)) , (7.36)

where β corresponds to the entanglement gap, given in Eq. (7.23) [103]. Thus, the
passive energy is given by

ẼA =

N/2∑

p=1

εAp ν
A
p ≈

N/2∑

p=1

−2 cos(2πp/N)

1 + e−β(p−N/4)
. (7.37)

If we take the continuum limit, making use of the Sommerfeld expansion [158] and
the Euler-Maclaurin formula, we arrive at

ẼA ≈ −c0
(
N

2
− 1

)
− cB − cπvF

12N
+

2π3

3Nβ2
, (7.38)

so we obtain the final form

ẼA ≈ −c0
(
N

2
− 1

)
− cB − π

6N
+

log2(γN)

6πN
. (7.39)

The reader can find the detailed calculation in Appendix G.

We may now find the analytic expression for the ergotropy,

WA = EA − ẼA ≈ cB
2

+

(
π

8
− 1

2

)
1

N
− log2(γN)

6πN
, (7.40)

where the requirement WA ≥ 0 demands that cB > 0. This expression can be
checked in panel (a) of Fig. 7.2. Furthermore, we can estimate the bound energy,

QA = ẼA − EA,0 ≈
log2(γN)

6πN
≥ 0, (7.41)

which is unconditionally positive, and can also be checked in panel (b) of Fig. 7.2.
Notice that Eq. (7.41) implies that the bound energy is directly related to the inverse
squared of the entanglement gap of the system, or the square of the entanglement
entropy. Using Eq. (7.20) and Eq. (7.23), we obtain an approximate relation

QAN ≈ 6

π
S2
A, (7.42)

which provides a relation between the entanglement entropy of a block of a free
fermionic chain and the bound energy associated. Eq. (7.42) is the main prediction
of this work, and we conjecture that its validity extends beyond the case of free
fermionic chains, to any critical state in 1D described by a conformal field theory.
The validity of this expression can be numerically checked in Fig. 7.3.
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Figure 7.3: Numerical check of the linear relation between the bound energy multiplied by
the system size, QAN , and the entanglement entropy squared, S2

A for the free fermionic
chains, Eq. (7.42), for sizes N in the same range as in Fig. 7.2. The slope of the straight
line, as expected, is 6/π ≈ 1.9.

.

We may define an ergotropy fraction wA = WA/∆EA and a bound fraction,
qA = QA/∆EA, as the ratios between the ergotropy or the bound energy to the
excess energy. We can see that wA → 1 and qA → 0 as N → ∞, implying that for
larger systems we can extract most of the excess energy in the form of work using
unitary transformations.

7.4 Preliminary results on other critical models

We have considered two other spin chains, the critical Ising model in a transverse
field (ITF) and the Heisenberg model, both introduced in Section 3.6, and performed
numerical explorations using a combination of Lanczos and exact diagonalization for
small systems which provide preliminary numerical evidence of the validity of Eqs.
(7.41) and (7.42) for these systems.

The Hamiltonian of the ITF model that we have considered is given by

HITF = −
N−1∑

i=1

σz
i σ

z
i+1 − Γ

N∑

i=1

σx
i , (7.43)

for Γ = 1. The low energy eigenstates of HITF are known to follow a conformal field
theory with central charge c = 1/2 [21,22]. Therefore, the entanglement entropy of
the left half can be written as a linear function of log(N). We have obtained prelim-
inary numerical results employing exact diagonalization up to size N = 14, which
are shown in Fig. 7.4. In panel (a) we show with points the energy decomposition,
∆EA, WA and QA, for the left-half chain of the even sized systems, along with their
fits with continuous lines to theoretical curves suggested by the generalization of
Eqs. (7.33), (7.40) and (7.41), i.e.
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Figure 7.4: Subsystem energy decomposition for small Ising critical chains, with N up to
14. (a) Energies ∆EA, WA and QA for the left-half chain as a function of the system size,
along with the expected theoretical fits. (b) Approximate linear relation between QAN
and log2(N), showing the expected relation between QA and SA, Eq. (7.42), along with a
linear fit to the last five points.
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Figure 7.5: Subsystem energy decomposition for small Heisenberg chains, with N up to
24, using only multiples of four. (a) Energies ∆EA, WA and QA for the left-half chain,
along with the expected theoretical fits. (b) Approximate linear relation between QAN
and log2(N), showing the expected relation between QA and SA, Eq. (7.42), along with a
linear fit to the last five points.
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∆EA ≈ α1 −
α2

N
,

WA ≈ α1 −
α2

N
− α3

log2(α4N)

N
,

QA ≈ α3
log2(α4N)

N
. (7.44)

In our case the optimal values of the parameters are α1 ≈ 0.137, α2 ≈ 0.07, α3 ≈
0.044 and α4 ≈ 5.5. We would like to stress that we fit the 21 points of the three
curves using the same values for the αi parameters. In Fig. 7.4 (b) we observe
an approximate linear relation between NQA and log2(N), as expected, along with
a linear fit obtained from the larger systems. Even though the functional form is
shown to be approximately correct, we should use these fitting parameters with care,
due to the small system size.

On the other hand, we have considered the antiferromagnetic spin 1/2 Heisenberg
chain with open boundaries, given by the Hamiltonian

HHeisenberg =
N−1∑

i=1

S⃗i · S⃗i+1, (7.45)

which also corresponds to a conformal field theory for low energies, with c = 1
in this case, and can be mapped to an interacting fermion Hamiltonian using the
Jordan-Wigner transformation [21, 22]. As it was mentioned above, the GS can be
analytically obtained using the Bethe Ansatz, but we have chosen to obtain it using
the Lanczos algorithm up to N = 24, taking into account the full SU(2) symmetry
of the model. Panel (a) of Fig. 7.5 shows the energy decomposition for the left-half
of the chain, using only values of N which are multiples of four. Again, we plot
along a fit of these 18 points to the form (7.44), obtaining approximate parameters
α1 ≈ 0.44, α2 ≈ 0.9, α3 ≈ 0.41 and α4 ≈ 1.32. Panel (b) of Fig. 7.5 shows the linear
relation between QAN and log2(N), highlighting the validity of Eq. (7.42), again
comparing to a linear fit for the largest sizes.

The approximate validity of Eq. (7.42) in all three models is related to the fact
that it only depends on the following facts:

• The Casimir expression for the energy of the GS.

• The affine relation between the entanglement entropy and log(N).

• The approximate inverse relation between the entanglement entropy and the
entanglement gap.

All these relations stem from conformal invariance, a property shared by all three
models discussed in this work.

It would be interesting to check the validity of our preliminary results for larger
system sizes in the ITF and Heisenberg cases. The ITF case can be evaluated using
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a combination of Jordan-Wigner and Bogoliubov transformations. The Heisenberg
case is more involved, since e.g. the density matrix renormalization group (DMRG)
can not be used in a straightforward manner [159], because we need to use both the
entanglement spectrum and the full energy spectrum of the subsystem.

7.5 Conclusions and further work

In this work we have considered the excess energy possessed by a subsystem of
a ground state. Part of this excess energy can be extracted via unitary operations,
which we call subsystem ergotropy, and part of it can not be extracted in this way,
which we call subsystem bound energy. For concreteness, we have considered one-
dimensional systems which present conformal invariance, and we have done the
calculations in detail for free fermionic chains, combining numerical calculations
with a detailed analysis of the Casimir corrections to the GS energy. The most
relevant relation found is a linear functional dependence between the subsystem
bound energy and the square of its entanglement entropy divided by the system
size. We have shown that this relation is likely to apply to other critical spin chains,
thus allowing us to conjecture that its validity will extend to all 1D conformal field
theories.

We would like to stress that, as the system size grows, the fraction of excess
energy which can be extracted as work approaches one. In other words: almost all
the subsystem energy becomes available in the thermodynamic limit. This result is
non-trivial, although it responds to our intuition that for larger systems we have a
larger freedom to manipulate the local mixed state. It is relevant to ask how general
this result is. For instance, we may wonder about the behavior of the subsystem
ergotropy away from criticality, i.e. for dimerized spin chains or for the Ising model
with a non-critical value of the transverse field Γ, or how to extend it to higher
dimensional systems.

Our results encourage further exploration of the application of quantum thermo-
dynamics to the analysis and characterization of entanglement. Beyond the quan-
titative study of the ergotropy and bound energies, it is relevant to ask about the
passive state which we obtain when all the ergotropy has been obtained. Indeed, it
must be a thermal state under the entanglement Hamiltonian, but it is also relevant
to ask about its properties under its own local Hamiltonian, and how do these two
Hamiltonians relate. Given the relation between the entanglement Hamiltonian and
the Unruh effect [94, 102, 160], this research programme may bear fruits also to the
interplay between gravity, entanglement and thermodynamics.



Chapter 8
Conclusions

This last chapter provides a brief summary of the conclusions and the work done in
this thesis.

In Chapter 5 we have considered critical chains, specially free fermionic chains,
with inhomogeneous hopping amplitudes, i.e., position-dependent couplings between
sites along the chain. Inhomogeneous chains can be interpreted as deformed systems:
the geometry of the system changes and must be described in terms of a Riemann
metric. In particular, we can say we are in Minkowski flat space-time when dealing
with the homogeneous case.

Furthermore, it has been proved that the Hamiltonian on the lattice is a dis-
cretized version of the Hamiltonian for a Dirac fermion on a curved (1+ 1)D space-
time where the associated metric presents a position-dependent speed of light or,
equivalently, a modulated index of refraction. Under the appropriate transforma-
tion of coordinates, this metric can be rewritten as conformally equivalent to the
Minkowski metric. Indeed, conformal equivalence between the curved metrics due
to inhomogeneity and the Minkowski metric suggests that CFT techniques may be
employed to describe the properties of low-energy states. However, conformal equiv-
alence between these metrics only holds when dealing with the ground state of the
system, at half-filling, which constitutes the scenario of the results obtained in this
work:

• Finite-size corrections to the Casimir energy are universal and the correspond-
ing expressions are a deformed variant of the general CFT form. Indeed,
we have found a theoretical description of the energy of the GS of a finite
open chain with inhomogeneous hopping amplitudes. However, since numeri-
cal checks must be subtle because the finite-size correction is typically much
smaller than the bulk energy term, we have considered an alternative observ-
able: the Casimir force measured by a local observer located at the boundary of
the system. As a consequence, we show that Casimir forces measured by an ob-
server on the boundary on a weakly curved background are metric-independent
followed by numerical evidence. Furthermore, these results have been extended
to the inhomogeneous Heisenberg model.

• The GS energy of the lattice Hamiltonian corresponding to an open fermionic
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Figure 8.1: Overview of the topics addressed along this thesis.

chain with position-dependent hopping amplitudes is proportional to the sum
of the hoppings in first-order perturbation theory. This leads us to claim
that the force felt by a classical obstacle immerse in that state will be similar
to the Newtonian gravitational force in the corresponding metric. Moreover,
this conjecture suggests that the local correlators in the deformed vacuum
are still homogeneous, i.e., local correlators are rigid, which has been checked
analytically and numerically.

In Chapter 6 we have worked with inhomogeneous free fermionic chains away
from half-filling. In this case, conformal invariance is lost and new physics arises.
The main result of this work is the following:

• The fermionic density for curved backgrounds shows completely empty regions
away from half-filling, contrary to the homogeneous occupation found for all
filling-fractions in Minkowski flat space-time and at half-filling in the inho-
mogeneous case. These depleted areas can be explained using a continuum
approximation of the lattice Hamiltonian. With that aim, fermionic fields
must be expanded to second order in the lattice spacing parameter. Indeed,
we show that their appearance is due to an effective potential coming from a
Schrödinger-like equation for curved backgrounds.

In Chapter 7 we show how quantum thermodynamics can be employed to char-
acterize the entanglement structure of a quantum system. In particular, we consider
a subsystem of the GS of a critical chain. The expected energy of any subregion will
typically exceed its own GS energy and the subsystem ergotropy is defined as the
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part of this energy that can be extracted in the form of work. The most relevant
results of this work can be summarized as follows:

• Once the maximal work has been extracted, the remaining bound energy
presents universal scaling as the square of the entanglement entropy of the
block divided by the system size, thus approaching zero for large systems.
This has been shown for open fermionic chains and extended to other criti-
cal systems in 1D, allowing us to conjecture that it may be applied to all 1D
conformal field theories.

• The expected energy of a subsystem of the GS of a critical chain yields a
Casimir correction plus an additional term coming from the energy associ-
ated to the central link of the chain, when the subsystem under consideration
corresponds to half of the chain.

• The fraction of the excess energy which can be extracted as work approaches
one as the system size grows.

Although the topics addressed throughout this work may look disconnected,
they actually show important relations among them as it is shown in Fig. 8.1. We
have considered homogeneous and inhomogeneous critical chains in two different
scenarios: half-filling and away from half-filling.

Homogeneous chains show conformal invariance for any filling-fraction so CFT
techniques have long been applied giving rise to well known analytical results, such
as the energy of the GS for an open chain and EE predictions at half-filling. Thus,
we have used homogeneous critical chains at their GS as the perfect scenario to
study ergotropy. If we remain at half-filling but move towards inhomogeneous sys-
tems, conformal invariance is still preserved. Therefore, the study of Casimir forces
on curved backgrounds has been developed in this scenario as an extension of the
CFT predictions on flat space-times. However, inhomogeneous chains away from
half-filling do not hold conformal invariance and new physics arises: depletion. In
conclusion, in this thesis we have made use of CFT techniques when available and
developed new theory when needed in order to explore low-energy states of both
homogeneous and inhomogeneous critical chains.
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Conclusiones

Este último caṕıtulo constituye un breve resumen de las conclusiones generales y el
trabajo realizado en esta tesis.

En el Caṕıtulo 5 hemos considerado cadenas cŕıticas, en especial cadenas de
fermiones libres, con amplitudes de salto inhomogéneas, es decir, con acoplos depen-
dientes de la posición entre los distintos sitios del sistema. Las cadenas inhomogéneas
pueden ser interpretadas como sistemas deformados: la geometŕıa del sistema vaŕıa
y debe ser descrita en términos de una métrica de Riemann. En concreto, podemos
decir que trabajamos en el espacio-tiempo plano de Minkowski cuando la cadena es
homogénea.

Se ha demostrado que el Hamiltoniano en la red es una versión discretizada del
Hamiltoniano de un fermión de Dirac en un espacio-tiempo curvo (1+1)D donde
la métrica asociada presenta una velocidad de la luz dependiente de la posición
o, de manera equivalente, un ı́ndice de refracción modulado. Bajo un cambio de
coordenadas apropiado, esta métrica puede escribirse como equivalente conforme a
la métrica de Minkowski. Esta equivalencia conforme entre métricas nos sugiere
que las técnicas de CFT pueden ser utilizadas para describir las propiedades de los
estados de baja enerǵıa. Sin embargo, la equivalencia conforme entre las métricas
curvas y el espacio-tiempo plano solo ocurre cuando el sistema se encuentra en su
estado fundamental, es decir, a llenado mitad, el cual constituye el escenario de los
resultados obtenidos en este caṕıtulo:

• Las correcciones de tamaño finito a la enerǵıa de Casimir son universales y sus
expresiones correspondientes son una versión deformada de la predicción de
la CFT. Hemos encontrado una descripción teórica del estado fundamental de
una cadena infinita, con condiciones de contorno abiertas, en espacio-tiempos
curvos. La comprobación numérica de estas correcciones no es sencilla debido a
que son mucho más pequeñas que el término central. Por este motivo, definimos
un nuevo observable: la fuerza de Casimir medida por un observador local
situado en un extremo. En consecuencia, las fuerzas de Casimir, medidas por
un observador que se encuentra en el borde del sistema, en espacio-tiempos
ligeramente deformados, no dependen de la métrica. Este resultado se extiende,
además, al modelo de Heisenberg inhomogéneo.

• El estado fundamental del Hamiltoniano discreto correspondiente a una ca-
dena fermiónica con condiciones de contorno abiertas y amplitudes de salto
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Figure 8.2: Visión general de los temas tratados en esta tesis.

inhomogéneas, es proporcional a la suma de estas amplitudes en teoŕıa de per-
turbaciones a primer orden. Por tanto, la fuerza que experimienta un obstáculo
clásico inmerso en este estado es similar al potencial gravitatorio en la métrica
correspondiente. Además, esta conjetura sugiere que los correladores locales
en el vaćıo deformado son los mismos que en el caso homogéneo, es decir, los
correladores locales son ŕıgidos, lo cual se ha comprobado tanto de manera
anaĺıtica como numérica.

En el Caṕıtulo 6 hemos considerado cadenas inhomogéneas de fermiones libres
fuera del llenado-mitad. En este caso, no hay invariancia conforme y aparece nueva
f́ısica. El resultado principal de este caṕıtulo es el siguiente:

• La densidad fermiónica en sistemas deformados muestra zonas complematem-
nte vaćıas cuando nos encontramos fuera del llenado mitad. Por el contrario,
la ocupación es homogénea para cualquier fracción de llenado en el caso ho-
mogéneo y para llenado mitad en el caso inhomogéneo, que es donde hay in-
variancia conforme. Las regiones de depleción pueden ser explicadas mediante
una aprocimación continua del Hamiltoniano en la red. Para ello, los campos
fermiónicos han de ser expandidos a segundo orden en el parámetro de espa-
ciado de la red. Estas regiones de depleción aparecen debido a la existencia
de un potencial efectivo procedente de una ecuación de tipo Schrödinger en
espacio-tiempos curvos.

En el Caṕıtulo 7 mostramos cómo la termodinámica cuántica puede ser utilizada
para caracterizar la estructura de entrelazamiento de un sistema cuántico. Para
ello, consideramos un subsistema del estado fundamental de una cadena cŕıtica. La
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enerǵıa esperada de cualquier subregión excede, en general, la enerǵıa de su propio
estado fundamental. La parte de este exceso de enerǵıa que se puede extraer en
forma de trabajo es lo que denominamos ergotroṕıa del subsistema. Los resultados
más relevantes de este caṕıtulo son los siguientes:

• Una vez se ha extraido el máximo trabajo del subsistema, la enerǵıa que queda
presenta un comportamiento universal que viene determinado por el cuadrado
de la entroṕıa de entrelazamiento del bloque dividida entre el tamaño total
del sistema. Por tanto, tiende a cero para sistemas grandes. Este resultado
ha sido comprobado para cadenas de fermiones libres y ha sido extendido a
otras cadenas cŕıticas, dando lugar a la conjetura de que es aplicable a todas
las teoŕıas conformes en una dimension.

• La enerǵıa esperada de un subsistema del estado fundamental de una ca-
dena cŕıtica presenta una correción de Casimir más un término adicional que
proviene de la enerǵıa asociada al enlace central, cuando el subsistema que
estamos considerando es la mitad de la cadena.

• La fracción de exceso de enerǵıa que puede extraerse del sistema en forma de
trabajo tiende a uno cuando el sistema aumenta de tamaño.

Aunque los temas tratados en esta tesis parecen presentar poca relación entre
śı, estos están estrechamente conectados tal y como se puede ver en la Fig. 8.2.
Hemos considerado cadenas homogéneas e inhomogénas en dos escenarios diferentes:
a llenado mitad y fuera del llenado mitad.

Las cadenas homogéneas presentan invariancia conforme para cualquier fracción
de llenado, por lo que las técnicas de CFT pueden ser utilizadas. Los estados fun-
damentales de los sistemas homogéneos a llenado mitad han constituido el escenario
para el estudio de la ergotroṕıa. Si nos mantenemos a llenado mitad pero consid-
eramos cadenas inhomogéneas, la invariancia conforme se mantiene. Por tanto, el
estudio de las fuerzas de Casimir en espacio-tiempos curvos se ha llevado a cabo
en este marco como una extensión de las predicciones de la CFT en la métrica de
Minkowski. Sin embargo, la simetŕıa conforme se rompe en cadenas inhomogéneas
fuera del llenado mitad y nueva f́ısica aparece: la depleción. En resumen, en esta
tesis hemos utlizado las predicciones de CFT en los casos con invariancia conforme y
hemos desarrollado nueva teoŕıa para los casos contrarios, con el objetivo de estudiar
los estados de baja enerǵıa de sistemas homogéneos e inhomogéneos.
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Appendix A
Schmidt decomposition

Let us consider the pure state given by Eq. (2.12)

|Ψ⟩ =
∑

ij

Cij

∣∣aibj
〉
, (A.1)

where {|a⟩} and {|b⟩} are orthonormal basis of the Hilbert spaces HA and HB,
respectively, and NA, NB their corresponding dimension. Notice that the coefficients
Cij can be arranged in a rectangular matrix of dimension NA ×NB which admits a
singular value decomposition (SVD),

C = UΛV †, (A.2)

where U and V are unitary matrices of dimensionNA×NA andNB×NB, respectively.
The matrix Λ, which has dimension NA×NB, is diagonal and shows real and positive
elements, Λkk = σk, called singular values of matrix C. Therefore, it can be expressed
as

Cij =

min(NA,NB)∑

k=1

UikσkV
∗
kj, (A.3)

and we can rewrite Eq. (A.1)

|Ψ⟩ =
∑

ij

∑

k

UikσkV
∗
kj

∣∣aibj
〉
=
∑

k

σk


∑

i

Uik |ai⟩


⊗


∑

j

V ∗
kj

∣∣bj
〉

 . (A.4)

Let us define now |αk⟩ =
∑

i Uik |ai⟩ and |βk⟩ =
∑

j Ukj

∣∣bj
〉
so it follows

|Ψ⟩ =
min(NA,NB)∑

k=1

σk |αk⟩ ⊗ |βk⟩ . (A.5)

This is the so-called Schmidt decomposition of a pure state in H = HA ⊗HB.
Let us assume σk are ordered in decreasing order such as only the first nS are

non-zero. Then, the sum in Eq. (A.5) can only take values up to nS, which is called
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the Schmidt number. If nS = 1, the state can be factorized and |Ψ⟩ = |α1⟩ ⊗ |β1⟩.
If nS > 1, the state is entangled.

From Eq. (A.5) one can compute the reduced density matrices

ρA = TrB |Ψ⟩ ⟨Ψ|

= TrB

nS∑

k,k′=1

σkσk′ |αk⟩ ⊗ |βk⟩ ⟨αk′| ⊗ ⟨βk′ |

=

nS∑

k,k′=1

σkσk′
(
|αk⟩ ⟨αk′ | ⊗ |βk⟩ ⟨βk′|

)

=

nS∑

k,k′=1

σkσk′
(
|αk⟩ ⟨αk′ |

)
Tr
(
|βk⟩ ⟨βk′|

)

=

nS∑

k,k′=1

σkσk′ |αk⟩ ⟨αk′| δkk′

=

nS∑

k=1

σ2
k |αk⟩ ⟨αk| .

(A.6)

The reduced density matrix ρA is diagonal in the basis of {αk}, with eigenvalues σ2
k.

Analogously, we can compute

ρB =

nS∑

k=1

σ2
k |βk⟩ ⟨βk| . (A.7)

It is important to pay attention at the fact that both density matrices, ρA and
ρB, of a given system in a pure state have the same spectrum1, {σ2

k}, which is the
so called entanglement spectrum.

1If we do not take into account the vanishing eigenvalues.



Appendix B
Energy for OBC

The energy of the system is given by Eq. (3.8) where εk = −2 cos(k). For open
boundary conditions, the allowed modes are given by Eq. (3.28). In order to com-
pute the energy of the GS, we need to fill in only those modes with negative energy,
i.e., k ∈

[
1, N/2

]
. Therefore, the endpoints of the interval we are considering in

order to apply Euler-MacLaurin expression, Eq. (3.34),

b∑

n=a

f(n) ∼
∫ b

a

f(x)dx+
f(a) + f(b)

2
+

∞∑

q=1

B2q

(2q)!

(
f (2q−1)(b)− f (2q−1)(a)

)
, (B.1)

are a = 1 and b = N/2.
The first term of the asymptotic expansion is given by

∫ b

a

f(x)dx = 2

∫ N/2

1

cos

(
mπ

N + 1

)
dm, (B.2)

where m ∈
[
1, N/2

]
and N is the size of the system. It is a straightforward cal-

culation to compute this term so the result after integrating Eq. (B.2) is given
by

2(N + 1)

π

(
cos

(
π

2(N + 1)

)
− sin

(
π

N + 1

))
≈ 2N

π
+

(
2

π
− 2

)
− π

4(N + 1)
,

(B.3)
where the cosine and sine functions must be expanded to second and first order,
respectively, in order to ensure no missing contributions in 1/N . Higher terms in
the expansion of the trigonometric functions lead to higher order corrections which
are not relevant in this work.

The second term of the expansion is given by

f(a) + f(b)

2
= cos

(
Nπ

2(N + 1)

)
+ cos

(
π

N + 1

)
≈ π

2(N + 1)
+ 1. (B.4)

The third term of the Euler-MacLaurin asymptotic expansion includes the Bernoulli
terms that take into account all high order derivatives involved. However, for our
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purposes we only need to compute the term corresponding to k = 1

B2

2

(
f ′(b)− f ′(a)

)
=

π

6(N + 1)

(
sin

(
π

N + 1

)
− cos

(
π

2(N + 1)

))
≈ −π

6(N + 1)
,

(B.5)
where B2 = 1/6.

From Eq. (B.3), (B.4) and (B.5), we end up with the following expression for the
energy of the GS at half-filling with open boundary conditions in the thermodynamic
limit where N → ∞,

EOBC(N) ≈ −2N

π
−
(
2

π
− 1

)
− π

12
. (B.6)

The calculation is analogous for PBC but now k =
2mπ

N
. Furthermore, we must

distinguish two cases: N = 4n and N = 4n + 2. When N = 4n, the endpoints of
the interval we are considering are a = −N/4 and b = N/4. On the other hand, for
N = 4n+2 we must use a = −(N−2)/4 and b = (N−2)/4. This difference in a and
b leads to different results for the energy of the GS when computing the three terms
corresponding to the asymptotic expansion of Euler-MacLaurin expression given in
equations (3.36) and (3.37).

We showed in Section ?? that the energy for APBC is equivalent to the PBC
case by changing the roles of N = 4n and N = 4n+ 2, and taking into account the
allowed modes in each case, which are different for the anti-periodic and periodic
cases.



Appendix C
Virasoro algebra as a central extension

If we consider a matrix Lie group M , which is formed by n× n invertible matrices
with entries in C, the elements G of its Lie algebra m are given by

G =
d

dt

(
g(t)

)
|t=0, (C.1)

where g is a differentiable path inM that goes through the identity element at t = 0.
The commutators of elements of the Lie algebra can be computed using two paths,
g1 and g2,

[G1, G2] =
d

dt

(
g1(t)g2(t)g1(t)

−1g2(t)
−1
)
|t=0, (C.2)

with G1 = g′1(0) and G2 = g′2(0). Given a group representation U(M), the commu-
tator of two elements, U1 and U2, of its Lie algebra u(m) is computed by

[U1, U2] =
d

dt

(
U
(
g1(t)

)
U
(
g2(t)

)
U
(
g1(t)

)−1
U
(
g2(t)

)−1
)
|t=0. (C.3)

From equations (C.2) and (C.3), one can read that there is a Lie algebra isomorphism
between m and u(m): u is a faithful representation of m.

Let us consider now U(M) as a projective representation where the multiplication
rule reads

U(g1)U(g2) = ω(g1, g2)U(g1, g2) = eiξ(g1,g2)U(g1, g2). (C.4)

The function ω is often required to be smooth and it is called a 2-cocycle in M so
it satisfies

ω(g, e) = ω(e, g) = 1, (C.5)

ω(g1, g2g3)ω(g2, g3) = ω(g1, g2)ω(g1g2, g3), (C.6)

ω
(
g, g−1

)
= ω

(
g−1, g

)
. (C.7)

If we now use the multiplication rule (C.4) in Eq. (C.3), we end up with

[U1, U2] =
dU
(
g1(t)g2(t)g1(t)

−1g2(t)
−1
)

dt
|t=0 +

dΩ(g1, g2)

dt
|t=0 c, (C.8)

where Ω(g1, g2) = eiξ(g1,g2)ξ(g
−1
1 ,g−1

2 )ξ(g1g2,g
−1
1 g−1

2 ) and c is called the central charge.
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The operators in a Lie algebra form a linear vector space. Since the linear vector
space is closed under commutations, the commutator of any two basis vectors can
be expressed as a linear superposition of basis vectors. Following Eq. (C.2) and
Eq.(C.8), this leads to

[Gi, Gj] = Ck
ijGk, (C.9)

[Ui, Uj] = Ck
ijUk +Dijc, (C.10)

where Ck
ij are the so-called structure constants. In order for u to be closed under

the bracket and become a Lie algebra, a central charge c must be included.

The central charge arises naturally in the context of projective representations.
Let us consider the most general central extension of the Witt algebra, which is
given by

[Lm, Ln] = (m− n)Lm+n + c(m,n). (C.11)

It is straightforward to check c(m,n) = −c(n,m).
We can write any general central charge extension into the standard form where

c(m,n) is a c-number if we appropriately redefine the generators Lm. The algebra
remains the same under the transformation Lm → Lm + a(m), where a(m) is a
c-number function. Under this redefinition,

c(m,n) → c(m,n) + (m− n)a(m+ n), (C.12)

and we choose

a(m) = − 1

m
c(m, 0),m ̸= 0 (C.13)

a(0) = −1

2
c(1,−1). (C.14)

Therefore, we find

c(m, 0) → c(m, 0) +ma(m) = 0,m ̸= 0 (C.15)

c(1,−1) → c(1,−1) + 2a(0) = 0. (C.16)

The conformal algebra then takes the form

[Lm, L0] = mLm, (C.17)

[L1, L−1] = 2L0. (C.18)

The remaining generators satisfy the same algebra written in Eq. (C.11).
Let us consider the Jacobi identity for m,n ̸= 0 and m+ n ̸= 0,

0 =
[
[Lm, Ln]L0

]
+
[
[Ln, L0]Lm

]
+
[
[L0, Lm]Ln

]
= −(m+ n)c(m,n). (C.19)

Since m+ n ̸= 0, c(m,n) = 0. Taking all of this into account, we find that

c(m,n) = a(m)δm+n,0, (C.20)

[Lm, Ln] = (m− n)Lm+n + a(m)δm+n,0, (C.21)
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where a(±1) = 0 and a(m) = −a(−m).
Let us now look at a generic Jacobi identity,

0 =
[
[Lm, Ln]Lp

]
+
[[
Lp, Lm

]
Ln

]
+
[[
Ln, Lp

]
Lm

]
, (C.22)

0 = (m− n)a(m+ n) + (2m+ n)a(n)− (m+ 2n)a(m). (C.23)

For m = 1,

a(n+ 1) =
n+ 2

n− 1
a(n). (C.24)

This leads to

a(n) =
a(2)

6
n(n2 − 1), (C.25)

with a(2) chosen to be a(2) =
c

2
. Therefore,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (C.26)

If hermiticity conditions are imposed on Virasoro operators in order to deal with a
proper quantum system, then the CFT is called unitary. This implies

L†
n = L−n, (C.27)

L̄†
n = L̄n. (C.28)



.



Appendix D
Casimir energy

D.1 CFT derivation of the Casimir energy in curved

backgrounds

Let us provide a theoretical justification for our deformed extension of expression
(5.23), given in Eq. (5.24). The two first terms are non-universal: c0(N−1) 7→ c0SN ,
while cB 7→ (cB/2)(J1+JN) are just a consequence of first-order perturbation theory.
Yet, the finite-size correction term (cπvF/24N) is universal, i.e. fixed by conformal
invariance, and requires further explanation. In what follows we will assume that
the Fermi velocity (the speed of light) is vF = 1.

According to CFT, the variation of the energy-momentum tensor T under a local
conformal transformation, z → w(z), in flat space-time is given by [21]

T ′(w) =

(
dw

dz

)−2 [
T (z)− c

12
{w; z}

]
, (D.1)

where c is the central charge of the CFT and {w; z} is the Schwarzian derivative,

{w; z} =
d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

. (D.2)

Let us consider a CFT defined on the whole complex plane, with vanishing energy
density

〈
T (z)

〉
∼ 0. Now, we would like to map it into a strip of width L (see Section

4.6), using

z → w =
L

π
ln z. (D.3)

This yields a nonzero vacuum energy density on the strip

〈
Tstrip(w)

〉
= − cπ2

24L2
. (D.4)

Now, the energy density can be evaluated (check Eq. (5.40) of [21]),
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〈
T 00
〉
= ⟨Tzz⟩+ ⟨Tz̄z̄⟩ = − 1

π
⟨T ⟩ = πc

24L2
, (D.5)

which corresponds to the universal term in Eq. (5.23). Yet, our z variable is com-
posed of a deformed space variable and time, z = x̃+ it, so the length appearing in
this expression is, in fact, L̃, as required.

Let us provide an alternative derivation, only valid for infinitesimal deformations
of the metric, gµν 7→ gµν + δgµν . The free energy density of a conformal system, F ,
varies as

δF = −1

2

∫
d2x

√
g δgµν ⟨T µν⟩ , (D.6)

where
√
g = det

(
gµν
)1/2

is required by the invariance of the space-time integration
measure. Let consider the Minkowski energy density, given by

T 00 =
πc

24L2
, (D.7)

and deform the metric, mapping g00 = −1 to g00 + δg00 = −J2(x) ≈ −1 − 2δJ(x).
This leads to a new free energy,

δF =

∫
d2x δJ(x)

πc

24L2
, (D.8)

where the integration must be performed on a strip [0, L] × R, where the vertical
direction is trivial. The total energy is given by the new free energy per unit length
(in the transverse direction),

E = FL + δFL =

(
1

L

∫ L

0

(1 + δJ(x))

)
πc

24L
, (D.9)

i.e. the energy gets corrected by a new Fermi velocity, which is equal to the average
value of J(x) in the interval. This is the main result of Eq. (5.25).

Of course, this result is only valid for very small deformations, J(x) ≈ 1 +
δJ(x). The full expression (5.24) can be obtained by integrating it, F =

∫
δF . We

may parametrize the change from g00 = −1 to g00 = −J2(x) in a continuous way,
considering a one-parameter metric family, g00(s) = J2(x, s) such that J2(x, 0) = −1
and J2(x, 1) = J2(x), so that the final energy correction takes the form

∆F =

∫ 1

0

ds

∫
dx
√
g(s)

(
πc

24L(s)2

)
∂J(x, s)

∂s
, (D.10)

where L(s) and
√
g(s) correspond respectively to the effective length and the volume

factor at each stage of the deformation process.
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D.2 Casimir force measured by local observer

Let E be the Casimir energy for the whole system. When it is measured by a
local observer at site x will be given by E(x) = E/g00(x)

1/2 = E/J(x), following
Eq. (5.26). Let us remember that the energy is not a scalar, but a vector pointing
along the time axis: (E(x), 0). The force is defined as the spatial component of the
covariant derivative of the energy,

F (x) = −DxE(x), (D.11)

where the covariant derivative of a vector is defined as

DµV
α = ∂µV

α + Γα
µνV

ν , (D.12)

where the Γα
µν are the Christoffel symbols, given by

Γα
µν =

1

2
gαβ

(
gβµ,ν + gβν,µ − gµν,β

)
. (D.13)

for the metric connection. In the case of an optical metric, Eq. (5.2), the only
relevant Christoffel symbol is

Γ0
10 =

J ′(x)

J(x)
. (D.14)

Thus, we can find the force

F (x) = −∂xE(x)
J(x)

+
J ′(x)

J(x)
E(x)− J ′(x)

J(x)
E(x) = −∂xE(x)

J(x)
. (D.15)

And from this equation we can find a possible definition of the Casimir force felt by
a local observer at the boundary,

FN ≈ −EN − EN−1

JN∆x
, (D.16)

where we set ∆x = 1, since it is arbitrary. Yet, the strong parity oscillations suggest
that a better alternative is to take the discrete derivative over two lattice spacings,

FN ≡ − EN − EN−2

JN−2 + JN−1

. (D.17)
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Appendix E
Eigenstates of first order continuum
approximation

In order to find the eigenstates of the Hamiltonian

H(x̃) = −
∫ N

0

dx̃

[
2ai sin(kFa)

(
Ψ̃†

L∂x̃Ψ̃L(x̃)− Ψ̃†
R(x̃)∂x̃Ψ̃R(x̃)

)

+cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)(
Ψ̃†

L(x̃)Ψ̃L(x̃) + Ψ̃†
R(x̃)Ψ̃R(x̃)

)

 ,

(E.1)

we need to solve the corresponding equations of motion

∂tΨ̃R/L(x̃, t) = i
[
H, Ψ̃R/L(x̃, t)

]
. (E.2)

We will make use of the following property

[AB,C] = A [B,C] + [A,C]B = A{B,C} − {A,C}B, (E.3)

and the knowledge that fermionic fields obey cannonical anticommutation relations
given by

{ΨR/L(x),ΨR/L(x
′)} = {Ψ†

R/L(x),Ψ
†
R/L(x

′)} = 0, (E.4)

{Ψ†
R/L(x),ΨR/L(x

′)} = δ(x− x′), (E.5)

{∂xΨR/L(x),ΨR/L(x
′)} = 0. (E.6)

Therefore, we only need

[
Ψ†

R/L(x)∂xΨR/L(x),ΨR/L(x
′)
]
= −δ(x− x′)∂xΨR/L(x), (E.7)

and [
Ψ†

R/L(x)ΨR/L(x),ΨR/L(x
′)
]
= −δ(x− x′)ΨR/L(x). (E.8)
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Now we can compute the conmmutator of the fields with the Hamiltonian in
order to write the equations of motion given by Eq. (E.2),

[
H, Ψ̃L(x̃, t)

]
=

∫ N

0

dx̃


−2ai sin(kFa)∂x̃Ψ̃L(x̃, t)− cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)
Ψ̃L(x̃, t)


 ,

(E.9)

[
H, Ψ̃R(x̃, t)

]
=

∫ N

0

dx̃


2ai sin(kFa)∂x̃Ψ̃R(x̃, t)− cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)
Ψ̃R(x̃, t)


 .

(E.10)
From the equations above, it follows that

∂tΨ̃L(x̃, t) = −i


2ai sin(kFa)∂x̃Ψ̃L(x̃, t) + cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)
Ψ̃L(x̃, t)


 ,

(E.11)

∂tΨ̃R(x̃, t) = i


2ai sin(kFa)∂x̃Ψ̃R(x̃, t) + cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)
Ψ̃R(x̃, t)


 .

(E.12)

Let us assume we can write Ψ̃R/L(x̃, t) = ψ̃R/L(x̃)e
−iωt. Plugging it in Eq. (E.11) and

Eq. (E.12), and considering we are working at t = 0 and, thus, Ψ̃R/L(x̃) = ψ̃R/L(x̃),

ψ̃L(x̃) = exp


 −i
2a sin(kFa)


ωx̃−

∫
cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)
dx̃





, (E.13)

ψ̃R(x̃) = exp


 i

2a sin(kFa)


ωx̃−

∫
cos(kFa)

(
2J̃(x̃)− a

J̃ ′(x̃)

J̃(x̃)

)
dx̃





, (E.14)

where ω is an integration constant. In other words, the wavefunctions are modulated
planes wave in x̃.



Appendix F
Correlators for OBC

We have seen that for OBC the eigenstates are given by

ϕn = A sin(kn) = A
eikn − e−ikn

2i
, (F.1)

with k =
mπ

N + 1
where m is an integer number, n represents the sites along the

chain, and A is a normalization constant:
∑N

n=1 |ϕn|2 = 1 → A =

√
2

N + 1
.

The nearest neighbors correlators can be written in terms of unitary matrices
Ukn, which columns are the eigenstates given by Eq. (F.1),

〈
c†ncn+1

〉
=

N/2∑

k=1

ŪknUk,n+1. (F.2)

We need to sum over all the occupied modes and, as we are at half-filling, the sum
goes up to k = N/2. Thus, plugging the eigenstates of Eq. (F.1) in Eq. (F.2), it
follows that

〈
c†ncn+1

〉
=

1

N + 1

N/2∑

m=1

cos

(
mπ

N + 1

)
− 1

N + 1

N/2∑

m=1

cos

(
mπ

N + 1
(2n+ 1)

)
. (F.3)

One can compute the sum of both terms of the expression above by making use of
the relation

Nt∑

m=0

cos(mα) =
1

2
+

sin

(
2Nt + 1

2
α

)

2 sin

(
α

2

) , (F.4)

where α is a constant that may depend on n. Therefore,

〈
c†ncn+1

〉
=

1

2(N + 1) sin

(
π

2(N + 1)

) −
sin

(
π

2
(2n+ 1)

)

2(N + 1) sin

(
π

2(N + 1)
(2n+ 1)

) . (F.5)
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We must be aware that the sine functions present in the previous equation may
have n in their argument. In that case, we can not perform a series expansion as the
result must be valid for all values of n and not just in the small regime. However,

it is possible to expand sin

(
π

2(N + 1)

)
as there is no n-dependence.

Taking into account that

n even → sin

(
π

2
(2n+ 1)

)
= 1,

n odd → sin

(
π

2
(2n+ 1)

)
= −1,

(F.6)

we end up with

〈
c†mcm+1

〉
OBC

≃ 1

π
+

π

24 (N + 1)2
− (−1)n

2 (N + 1) sin

(
π
(
n+ 1/2

)

N + 1

) . (F.7)

We can check that the terms responsible of the parity oscillations is symmetric under
the exchange n→ N − n as expected.

This procedure remains the same for PBC and ABC by just using the corre-
sponding eigenstates in each case.



Appendix G
Passive energy calculation

The passive energy ẼA can be written as

ẼA =
ℓ∑

k=1

νkε
A
k ., (G.1)

where εAk and νk are given by Eq. (7.35) and Eq. (7.36), respectively. Thus, the
passive energy for a general system of size N is given by

ẼA =
N∑

p=1

εAp ν
A
p ≈

N∑

p=1

−2 cos(πp/(N + 1))

1 + e−β(p−N/2)
. (G.2)

In order to compute this sum we need to take the continuum limit, making use
of the Sommerfeld expansion [158] and the Euler-Maclaurin formula given by Eq.
(3.34). The Sommerfeld expansion can be written as

∫ +∞

−∞

H(ε)

eβ(ε−µ)+1
dε =

∫ µ

−∞
H(ε)dε+

π2

6

(
1

β

)2

H ′(µ) +O

(
1

βµ

)4

. (G.3)

Therefore,

ẼA ≈ −2

[∫ N/2

1

cos

(
pπ

N + 1

)
dp− π3

6β(N + 1)
sin

(
πN

2(N + 1)

)]
(G.4)

It is straightforward to calculate the integral of the expression above as
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−2

∫ N/2

1

cos

(
pπ

N + 1

)
dp =

−2(N + 1)

π

[
sin

(
Nπ

2(N + 1)

)
− sin

(
π

N + 1

)]

=
−2(N + 1)

π

[
sin

(
π

2
− π

2(N + 1)

)
− sin

(
π

N + 1

)]

=
−2(N + 1)

π

[
cos

(
π

2(N + 1)

)
− sin

(
π

N + 1

)]

≈ −2N

π
−
(
2

π
− 2

)
+

π

4(N + 1)
.

(G.5)

However, when we approximate a sum by an integral we may have other contri-
butions which can be calculated by the Euler-MacLaurin formula previously used
given by Eq. (3.34). Thus,

f(N) + f(1)

2
≈ −1, (G.6)

B2

2

(
f ′(b)− f ′(a)

)
≈ π

6N
, (G.7)

where B2 = 1/6 still stands for one of the Bernouilli’s numbers.
Taking into account all the aforementioned contributions, we can write the pas-

sive energy as

ẼA ≈ −2N

π
−
(
2

π
− 2

)
+

5π

12N
+

π3

3Nβ2
. (G.8)

However, we are interested in considering a system of size N/2. For that aim,
we should replace N → N/2 in Eq. (G.8) and subtract the central link energy as
we have done previously to calculate the associated energy to block A, EA.

Finally, the expression for ẼA is given by

ẼA ≈ −c0
(
N

2
− 1

)
− cB − cπvF

12N
+

2π3

3Nβ2
, (G.9)

which can be also written as

ẼA ≈ −c0
(
N

2
− 1

)
− cB − π

6N
+

log2(γN)

6πN
, (G.10)

where β =
2π2

log(γN)
.
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