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campos donde no se habia aplicado estas metodologias hasta el momento.
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resuelven temas no contemplados hasta el momento, por lo que se cubre un vacio im-
portante en la materia y se identifican investigaciones adicionales necesarias para seguir
avanzando. Las aplicaciones desarrolladas pueden servir de inspiracién a equipos analiti-

cos interesados en sacar buen rendimiento de los datos.

Creo que para el desarrollo de una ciencia como esta, deben confluir ciertos elementos
con cierto grado de madurez como las técnicas de computacion, métodos matematicos,
almacenamiento de datos. Pero quizas el elemento més importante es la comunidad cienti-
fica que lo compone. Las personas definen el camino y en este camino yo me he encontrado
con extraordinarios conocedores de la materia pero infinitamente mejores personas. Todo
mi agradecimiento y admiracién a Fernando Lépez, catedratico de la Universidad Politéc-
nica de Cartagena por su constante empefio en incrementar la excelencia técnica y darme
la oportunidad de meterme en estas materias tan interesantes. Igualmente, destacar y

agradecer a la UNED que haya hecho posible todo esto.

Esta tesis estd dedicada a mi familia y amigos. Gracias a Pilar por su ayuda y dnimo
constante. En estos 6 anos de Tesis Doctoral hemos vivido afios increibles, han nacido
nuestros dos hijos Claudia y Alejandro que son lo mejor de nuestras vidas y nos recargan
con ilusién. A mis padres por su incansable y constante apoyo. Al resto de mi familia
y amigos que son muy grandes. A Fernando de nuevo que ademas de buen director, lo
considero companero y amigo y siempre es un placer hablar con él. A Ana que ayudod
incondicionalmente, para que quede su recuerdo en esta Tesis. Después de 6 afos creo

que estas son las ultimas frases de la Tesis Doctoral de la que estoy muy orgulloso.

Madrid, 8 de Marzo de 2022.






Resumen de la Tesis

Esta Tesis Doctoral la conforman cuatro estudios independientes enmarcados dentro de la
tematica de los modelos Probit espaciales. El objetivo que perseguimos en las siguientes
paginas es el de realizar una revision completa de los procesos dicotémicos seccion cruzada
con componente espacial a través de modelos Probit. A lo largo del documento mostramos
los numerosos avances en Econometria espacial durante los tltimos afios e incorporamos
novedosos estudios enfocados hacia la modelizacién de este tipo de procesos desde la
perspectiva de la seleccion de modelos y estudios aplicados al analisis del comportamiento
del consumidor desde la 6ptica espacial. Estas investigaciones muy especificas contribuyen
a robustecer la ya consolidada ciencia de la Econometria espacial. A continuacién, se
resumen los principales puntos y contribuciones de cada uno de los capitulos esta Tesis

Doctoral.

Hace més de 40 anos, en Paelinck and Klaassen (1979) se acuné el término de
Econometria espacial donde se especificaron las caracteristicas fundamentales de esta
ciencia, cuyos métodos tratan de resolver el problema de especificacion y estimacion
cuando el espacio o las interdependencias entre observaciones juegan un papel decisivo
en la explicacion de un fenémeno. Para la consolidacién de este conjunto de técnicas
no solo ha hecho falta el interés de una comunidad cientifica en busqueda de mejores
estimaciones, sino que ha tenido que venir acompanada de una creciente disponibilidad
de datos georreferenciados, capacidades de computacion mas elevadas y diseno de
algoritmos eficientes para la estimacion de modelos espaciales. En el Capitulo 1 se
habla de esta evolucién y los avances cientificos en la materia. La realidad es que
muy pronto se empezd a prestar atencion a los modelos dicotémicos tan presentes
en la economia (McMillen, 1992) y, de una manera mas bien intermitente, han ido
surgiendo métodos con los que estimar los coeficientes de un modelo Probit espacial
eficientemente. La estimacion del Probit espacial es un proceso complejo y requiere de
técnicas avanzadas para su correcto calculo. La interdependencia de las observaciones
conlleva la no esfericidad de los residuos y dado que la probabilidad de éxito de cada
observacion estda vinculada con la probabilidad de éxito del resto de observaciones, el
modelo no puede ser resuelto como producto de las N distribuciones marginales, sino que
se tendra que maximizar el logaritmo de una distribucién multivariante de dimension
N — Siendo N el tamano muestral. No hay solucion analitica para el computo de esta
integral multiple y hay que recurrir a otro tipo de técnicas. A lo largo del capitulo se
desarrollan las metodologias propuestas para la solucion del problema basandonos en los
articulos originales. Por orden cronoldgico, el algoritmo de FEzpectation-Maximization
(EM) propuesto en McMillen (1992), la Generalizacion del método de los momentos
(GMM) en Pinkse and Slade (1998), los métodos basados en muestreo primero Gibbs
bayesian sampling (Gibbs) por LeSage (2000a) y més adelante Recursive Importance

Sampling (RIS) por Beron and Vijverberg (2004a), luego una linealizacién del algoritmo
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GMM (LGMM) por Klier and McMillen (2008) y por dltimo en Martinetti and Geniaux
(2017) se resuelve el problema aproximando la funcién de verosimilitud (ML) con un

método numeérico.

Entre las aportaciones mas relevantes de este primer capitulo se encuentra la precisién
en las estimaciones de dichos algoritmos a través de un ejercicio de Monte Carlo ante
un modelo autorregresivo espacial. Las conclusiones extraidas complementan el trabajo
de Calabrese and Elkink (2014). En la presente tesis, se incorporan todos los algorit-
mos hasta la fecha, que por una cuestién temporal evidentemente no se contemplaban en
Calabrese and Elkink (2014), se incorpora una visién “no-ideal” de la especificacion in-
troduciendo endogeneidad y ademas utilizamos los algoritmos preparados y optimizados
en paquetes de R para su comparativa (Gibbs, LGMM y ML). La principal diferencia
entre los algoritmos es en el sesgo de los coeficientes y en el coste computacional. EM
y GMM proporcionan estimaciones pobres en cuanto a su exactitud en los pardametros.
RIS, por el contrario, funciona razonablemente bien en la estimacién, pero el tiempo de
computacién es desmesurado incluso para muestras de 400-900 observaciones. El algo-
ritmo mas rapido sin duda es LGMM, puesto que evita el problema de invertir matrices
de adyacencia, lo cual rebaja mucho la carga computacional. La principal desventaja de
LGMM es la infraestimaciéon de del parametro de dependencia espacial cuando esta es
elevada y que provoca un sesgo fuerte en los coeficientes y un descenso de la precision me-
dida con la curva ROC. Entre Gibbs y ML no hay diferencias significativas en precision.
La metodologia MCMC que utiliza Gibbs proporciona un ajuste lento hacia la solucién
del problema, sin embargo, después de la optimizaciéon de Wilhelm and de Matos (2015)
el proceso de convergencia es mas largo que ML pero dentro de unos limites razonables

de tiempo.

La principal razén, identificada en Arbia (2014), por la que las investigaciones con
Probit espacial hayan recibido menos atencion es precisamente por la complejidad técnica
del proceso de calculo. Recientemente se ha publicado un estudio que muestra la evolucién
de la modelizacion de procesos discretos en diferentes campos (Haghani et al., 2021). La
relevancia del factor espacial dentro de esta investigacion es practicamente nula. En Billé
and Arbia (2019) se reivindica la necesidad de utilizacion de estas técnicas en el terreno de
la economia de la salud. Por nuestra parte, en la tltima secciéon del capitulo hacemos una
valoracion del estado de estas técnicas en la modelizacion del comportamiento humano.
Queda todo un mundo por recorrer en cuanto a la aplicacién de estas técnicas a casos
especificos. Sin duda el comportamiento ante la decision sobre el uso del terreno es
el tépico que mas contribuciones ha recibido. Probablemente exista un efecto llamada
entre investigaciones a la hora de la elecciéon del tipo de modelizacién a emplear. Esto
debe extrapolarse a otras areas de estudio que necesitan mas contribuciones para la
explicacién y valoracion de fendémenos. Encontramos numerosos papers en los que se

analiza el comportamiento ante la decision de compra de un tipo de vehiculo o decisiones
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sobre el uso del transporte publico o privado sin tener en cuenta factores espaciales o
la interconexién entre individuos. Como se vera mas adelante en el ultimo capitulo de
la tesis, la no seleccion de una correcta especificacion tiene una importancia clave en
la correcta interpretacion de los resultados y posibles acciones detras de los modelos
econométricos. Por esta razon, con este capitulo también queremos de alguna manera
reivindicar la importancia de los modelos espaciales para explicar el comportamiento
humano que ya se ha tenido en cuenta en muchas investigaciones (Wang et al., 2015,
Holloway et al. (2002), Arima (2016), de la Llave Montiel and Lopez (2020) ....) y que

sin duda serd clave en anos venideros.

La utilizacion del modelo Probit espacial nos estara aportando estimaciones de la es-
tructura de correlacién condicionada entre un conjunto de variables independientes y una
variable dicotomica respuesta teniendo en cuenta el efecto espacial. La estimacion por
métodos espaciales resuelve el problema de la interconexion de observaciones, que apenas
tiene que ver con la causalidad del problema (Riittenauer, 2019) para la que habria que
recurrir a técnicas experimentales o a tests especificamente disenados para detectar la
direccion de la causalidad (Herrera-Gomez et al., 2021). El Capitulo 2 de la presente
Tesis basado en (De la Llave et al., 2019b), trata de resolver el problema de fuga de
clientes en una entidad de seguros a través de un modelo autorregresivo espacial. El
estudio se centra en resolver principalmente la correlacion entre un set de datos y la vari-
able endégena dicotomica encontrando una forma funcional idénea y teorizamos sobre las
posibles causas origen. El coeficiente autorregresivo del modelo final [0.215] nos dice que
un porcentaje significativo de la probabilidad final del cliente de abandonar la compania
viene por efectos marginales indirectos. En este caso especifico la causa raiz més probable
es el efecto boca a boca y las experiencias familiares y vecinales. La contribucién mas di-
recta de la investigacién es la solucion al problema de fuga con un método econométrico
espacial. Numerosas son las investigaciones anuales que abordan el problema de fuga
con modelos clésicos logit o con arboles de decisién (Gunther et al., 2014, Lemmens and
Croux (2006)..), aunque ganan protagonismo las nuevas metodologias més relacionadas
con métodos no interpretables (Hung et al., 2006, Xie et al. (2009)..). Dado que es un
problema ampliamente estudiado, la presente investigacion busca resaltar aquellos de-
talles mas importantes a tener en cuenta y que hasta ahora han pasado desapercibidos.
Uno de los principales es la invalidez del modelo Probit clasico en el que se rechaza
la hipétesis nula de que los residuos no tengan autocorrelacion (Kelejian and Prucha,
2001a), y por consiguiente proporciona estimadores sesgados e inconsistentes sobre los
que seria peligroso tomar decisiones. El modelo espacial final resultante del anélisis mues-
tra mejores estadisticos que el modelo clasico tanto en precision como en idoneidad de los
residuos. A partir de este modelo se aportan los efectos marginales tanto directos como
indirectos de cada una de las variables. Una de las variables mas notable y novedosa en
este tipo de modelos es la distancia entre observaciones y lugares relevantes. Se propor-

ciona la cuantificacién de la reduccion de probabilidad al establecer una sucursal cerca



de los clientes propios o por el contrario, cuando la competencia estrecha distancias con
clientes ajenos la desvinculacion de estos con su compania original es evidente. Este tipo
de variables no es comun en este tipo de literatura probablemente por las dificultades
que suponia, hasta hace unos afios, conseguir informaciéon georreferenciada. Sin duda
la incorporacién de factores geograficos urbanos junto con especificaciones mas realistas,
como la propuesta en el estudio, ayudara a tomar decisiones de negocio para las empresas

basadas en los datos de una manera més precisa y eficiente.

Los modelos econométricos quedan a la sombra del creciente boom de los modelos en-
samblados y de redes profundas. El mundo del Big Data ha traido un creciente interés
por tipos de modelizaciéon que buscan la mayor precision posible en el resultado. Esta
alta precision en busca de la mejor combinacién no lineal hace que la interpretabilidad
sea un punto fuerte a desarrollar (Gilpin et al., 2018). Somos conscientes, en relacién
al capitulo 2, de que la precisién global del fenémeno podria mejorar utilizando téc-
nicas del llamado “Deep-Learning”; sin embargo, nuestra propuesta es la de desmigar
a fondo la informacion, en busqueda de una forma funcional realista (modelo autorre-
gresivo) y unas variables correctamente adaptadas. Para ello introducimos dentro del
proceso de estimacion una fase de deslinealizacién a través de la técnica de Multivariate
Adaptive Regression Splines MARS) (Milborrow, 2011). Como se demuestra en la lit-
eratura académica, la edad es clave para entender la fuga. Pero con la técnica MARS
identificamos que la pendiente de la beta no es constante para todas las edades, habiendo
un punto de inflexiéon en 46 anos. Lo mismo ocurre con la prima pagada que tiene este

cambio en 549 euros.

Con el conjunto de técnicas que presentamos en el capitulo 2, cubrimos un importante
vacio existente en torno a la fuga de clientes aportando nuevas ideas y una vision hasta
ahora no tratadas. Aprovechando el conocimiento generado en esta investigacion surge
el Capitulo 3 de la Tesis basado en de la Llave Montiel and Lopez (2020), en la que
profundizamos en un tema de indiscutible actualidad. En este capitulo indagamos en los
factores que mueven al usuario de una aplicacién de compra por internet a permanecer
inactivo por una larga duracién (>4meses) después de un primer contacto con la App.
Este periodo va en linea con lo establecido investigaciones relacionadas con otro tipo de
servicios (Buckinx and Van den Poel, 2005, Lai and Zeng (2014)). Sin embargo, nada
hay escrito sobre la fidelizacion del cliente de comercio electrénico cuyo negocio esta
actualmente en expansion (Frasquet Deltoro et al., 2012). Una vez més el modelo Probit
espacial mejora los resultados del modelo clasico y por lo tanto es una evidencia mas
sobre los beneficios de este tipo de modelizacién y su empleabilidad en la gestiéon de
negocios. El comportamiento de la inactividad de clientes cercanos se demuestra estar
codeterminado, detectandose conductas miméticas entre ellos. El nimero de vecinos mas
relevante para el modelo se calcula a través del estadistico Join-Count (Cliff and Ord,

1981), seleccionado los 5 vecinos més cercanos, que es donde a priori la autocorrelacion
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espacial de la variable dicotémica es mas alta. Adicionalmente, testamos los residuos
del modelo clasico y modelo espacial con el I-Moran generalizado con 5,10 y 15 vecinos
mas cercanos para robustecer los resultados. La ROC conseguida en el modelo final
supera el 70%, lo cual es relevante dado que estas aplicaciones no hay mucha informacién
personal del usuario. Como consecuencia, ademéas de la informacion de inicio de sesion
en la aplicacion, primeros movimientos y compras realizadas, se ha anadido informacion
geografica muy importante. La distancia, medida en logaritmos, entre el cliente y el
centro comercial més préximo es esencial para medir la desvinculacién futura del cliente.
A mayor distancia menor probabilidad de que el usuario se inactive por larga duracion.
Ademas, a partir del primer kilémetro parece que hay un punto de inflexiéon en el que la
probabilidad de inactividad empieza a disminuir. En este caso, para contribuir con un
nuevo aporte en la materia, se han identificado las no-linealidades a través de un modelo
general aditivo (GAM) (Hastie and Tibshirani, 1986).

Los modelos con variables exdgenas retardadas espacialmente cobran importancia en
la literatura econométrica espacial. En Elhorst et al. (2014) y LeSage (2014a) se destaca
el atractivo de este tipo de modelos por su flexibilidad, interpretabilidad y facilidad en
la implementacion. Dentro del modelo econométrico propuesto en el capitulo 3, tiene
mucha relevancia la incorporacién de este tipo de variables. Una de las variables mas
decisivas para predecir la inactividad del usuario es la actividad registrada los primeros
dias de uso de la app. El efecto marginal directo mas indirecto del ntimero de 6rdenes
dadas durante la primera semana es superior a un 20% de reduccién de probabilidad. A
lo largo de la investigacion, observamos que esta variable retardada espacialmente con
la matriz de adyacencia de 5 vecinos, aporta un efecto marginal de un 5%. Ello quiere
decir que, para el caso de un cliente que no haga operaciones con la aplicacién una vez
descargada, y por lo tanto su probabilidad de inactividad crezca abruptamente; en el caso
de que sus vecinos si que la hayan utilizado, este incremento se rebaja sustancialmente.
Por lo tanto, el modelo propuesto resultante conjugara el efecto autorregresivo y el efecto
del retardo espacial de variables independientes, lo cual es un modelo econométrico por
consenso muy apropiado para realizar este tipo de estudios (Riittenauer, 2019). Podemos
decir que el capitulo abre una linea de investigacién para el estudio del comercio online
en la que escasean los datos y las contribuciones. Sin duda este foco de analisis ayudara
a empresas emergentes en comercio electronico a buscar soluciones para la mejora de

experiencia del consumidor.

Los modelos presentados en los capitulos anteriores pretenden hacer un analisis exhaus-
tivo de cada fenémeno dicotémico. Ademés de ser una potente herramienta de prediccion,
también nos sirven para explicar el pasado y valorar el efecto de acciones/politicas em-
presariales. En la investigacion econémica es muy importante estos tultimos dos puntos.
Por citar algunos ejemplos, Ortega-Garcia et al. (2017) realiza un andlisis de factores

que inciden en la aparicion de cancer infantil descubriendo una posible asociacién entre
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la aparicion de la enfermedad y la exposicion a la contaminacién producida por ciertas
industrias. LeSage et al. (2011), explora la recuperaciéon de la actividad comercial tras
la devastacion del huracan Katrina en Nueva Orleans. La incorrecta identificacion de la
correcta especificacion provoca inconsistencias y sesgos graves en los parametros como
demostramos en el Capitulo 4 (Paper en proceso de publicacién). Por lo tanto, las con-
clusiones o acciones derivadas de un modelo incorrectamente especificado serian més que
cuestionables. La busqueda de la correcta seleccion de modelos espaciales tiene escasas
contribuciones por el momento. Los principales articulos se centran en modelos espa-
ciales continuos (Florax et al., 2003; Mur and Angulo, 2009; Agiakloglou and Tsimpanos,
2021) y tan s6lo encontramos uno que aborda modelos Probit comparando solamente
tres tipos de modelos Beron and Vijverberg (2004b). La principal aportacion del capi-
tulo es la configuraciéon de dos algoritmos de seleccion de la verdadera especificacion
del modelo Probit espacial. Siguiendo la discusién del modelo continuo (Florax et al.,
2003; Mur and Angulo, 2009) proponemos una estrategia de lo especifico a lo general
(Stge) y otra estrategia de lo general a lo especifico (Gets). La comparativa entre ambas
técnicas la realizamos a través de una simulacién de Monte Carlo para 5 tipos de especi-
ficaciones reales: Modelo Independiente (SIM), Modelo Autorregresivo Espacial (SAR),
Modelo de Dependencia Espacial en el Error (SEM), Modelo con variable retardada espa-
cialmente (SLX) y Modelo autorregresivo con variable retardada espacialmente-Durbin
(SDM), 5 tamanos muestrales (100,400,900,1600,2500) y 5 pardmetros de dependencia
espacial (0.3,0.4,0.5,0.6,0.7). Las estrategias de seleccién presentan un rendimiento su-
perior al 85% de casos correctamente seleccionados para muestras superiores a 900 ob-
servaciones. Resulta dificil decidir contundentemente qué estrategia es la mejor. Bajo
condiciones ideales parece que Stge funciona ligeramente mejor que Gets. Sin embargo,
cuando introducimos simulaciones con condiciones no ideales como endogeneidad en el

modelo o falta de informacion entonces hay ciertas ocasiones que Gets es menos sensible.

En las investigaciones aplicadas, vemos como no existe un criterio homogéneo para
determinar la forma funcional de un modelo Probit espacial. Desde el uso del ratio de
verosimilitudes (LR) para comparar modelos (Mate-Sanchez-Val, 2021) hasta seleccionar
el modelo que mejor precisién ofrezca (Lapple et al., 2017). Nuestro capitulo demues-
tra que al combinar diferentes tests [I-Moran Generalizado, t-test, LR test, LR Confac]
podemos conseguir resultados bastante atractivos que determinen la procedencia de los
datos. Las estrategias mostradas siguen el principio de parsimonia y tienen un sentido
economeétrico estricto en cada paso. Reservamos una serie de tests que complicarian las
estrategias mas de lo necesario [Join Count, AIC, BIC]. La solucién que damos de que las
estrategias estan cerca de un 6ptimo con toda la bateria de tests disponibles es aplicando
un algoritmo Gradient Boosting (GBM) de clasificacion multinivel. La conclusién es que
no se aprecian diferencias notables entre las estrategias aportadas y el resultado del GBM

para muestras superiores a 400 observaciones.
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Cada uno de los capitulos presentados pretende continuar el estado de conocimiento
dentro del campo de la Econometria espacial. Con toda probabilidad, esta ciencia seguira
avanzando en cuestiones metodoldgicas, aplicaciones practicas, desarrollo de nuevos tests.
Hemos desarrollado esta Tesis para responder a algunas preguntas que quedaban pendi-

entes y servird como punto de apoyo para futuras investigaciones.

ible



Summary of the Thesis

This Thesis contains four independent studies framed within the theme of spatial Probit
models. The objective that we pursue in the following pages is to carry out a complete
review of dichotomous cross-section processes with a spatial component through Probit
models. Throughout the document we show the numerous advances in Spatial Economet-
rics in recent years and we incorporate new studies focused on the modeling of this type
of process from the perspective of model selection and studies applied to the analysis of
consumer behavior from the spatial perspective. These very specific investigations con-
tribute to strengthen the already consolidated science of Spatial Econometrics. The main

points and contributions of each of the chapters of this Thesis are summarized below.

More than 40 years ago, Paelinck and Klaassen (1979) coined the term Spatial Econo-
metrics where the fundamental characteristics of this science were specified, whose meth-
ods try to solve the problem of specification and estimation when space or the interde-
pendencies between observations play a decisive role in the explanation of a phenomenon.
The consolidation of this set of techniques has not only required the interest of a scien-
tific community in search of better estimates, but it has also had to be accompanied by a
growing availability of georeferenced data, higher computing capacities and the design of
efficient algorithms to estimate spatial models. Chapter 1 explains this evolution and
the scientific advances in the topic. The reality is that very soon, attention began to be
paid to the dichotomous models so present in the economy (McMillen, 1992) and, rather
intermittently, methods have emerged with which to estimate the coefficients of a spatial
Probit model efficiently. The estimation of the spatial Probit is a complex process and
requires advanced techniques for its correct calculation. The interdependence of the ob-
servations entails the non-sphericity of the residuals and since the probability of success of
each observation is linked to the probability of success of the rest of the observations, the
model cannot be solved as a product of the N marginal distributions, but rather you will
have to maximize the logarithm of a multivariate distribution of dimension N — N being
the sample size. There is no analytical solution for the computation of this multiple in-
tegral and it is necessary to resort to other types of techniques. Throughout the chapter,
the proposed methodologies for solving the problem are developed based on the original
articles. In chronological order, the Expectation-Mazimization (EM) algorithm proposed
in McMillen (1992), the Generalization of Moments Method (GMM) in Pinkse and Slade
(1998), Gibbs bayesian sampling (Gibbs) first sampling-based methods by LeSage (2000a)
and later Recursive Importance Sampling (RIS) by Beron and Vijverberg (2004a), then a
linearization of the GMM algorithm (LGMM) by Klier and McMillen (2008) and finally
in Martinetti and Geniaux (2017) the problem is solved by approximating the likelihood

function (ML) with a numerical method.

Among the most relevant contributions of this first chapter is the precision in the



estimations of the algorithms presented through a Monte Carlo exercise for a spatial
autoregressive model. The conclusions drawn complement the work of Calabrese and
Elkink (2014). In this thesis, all the algorithms to date are incorporated in the study,
which for a temporary reason were evidently not contemplated in Calabrese and Elkink
(2014). A “non-ideal” vision of the specification is incorporated by introducing endogene-
ity and we also use the algorithms prepared and optimized in R packages for comparison
(Gibbs, LGMM and ML). The main difference between the algorithms is in the bias of
the coefficients and in the computational cost. EM and GMM provide poor estimates in
terms of their parameter accuracy. RIS, on the other hand, performs reasonably well at
estimation, but computation time is very high even for samples of 400-900 observations.
The fastest algorithm is undoubtedly LGMM, since it avoids the problem of inverting ad-
jacency matrices, which greatly reduces the computational time. The main disadvantage
of LGMM is the underestimation of the spatial dependence parameter when it is high,
which causes a strong bias in the coefficients and a decrease in the precision measured
with the ROC curve. Between Gibbs and ML there are no significant differences in pre-
cision. The MCMC methodology used by Gibbs provides a slow adjustment towards the
solution of the problem, however after Wilhelm and de Matos (2015) optimization the

convergence process is longer than ML but within reasonable time limits.

The main reason, identified in Arbia (2014), why spatial Probit research has received
less attention is precisely because of the technical complexity of the calculation process.
A recent study published shows the evolution of discrete process modeling in different
fields (Haghani et al., 2021). The relevance of the spatial factor in this research is barely
significant. In Billé and Arbia (2019) the need to use these techniques in the field of
health economics is claimed. For our part, in the last section of the chapter we make an
assessment of the state of these techniques in the modeling of human behavior. There is
still a whole world to go in terms of the application of these techniques to specific cases.
Undoubtedly, the behavior before the decision on the use of the land is the topic that has
received the most contributions. There is probably a pull effect between investigations
when choosing the type of modeling to use. This must be extrapolated to other areas of
study that need more contributions for the explanation and assessment of phenomena.
We find numerous papers in which behavior is analyzed when deciding to purchase a type
of vehicle or decisions about the use of public or private transport without taking into
account spatial factors or the interconnection between individuals. As will be seen later
on, in the last chapter of the thesis, the non-selection of a correct specification has a key
importance in the correct interpretation of the results and possible actions behind the
econometric models. For this reason, with this chapter we also want in some way to claim
the importance of spatial models to explain human behavior that has already been taken
into account in many investigations (Wang et al., 2015, Holloway et al. (2002), Arima
(2016), de la Llave Montiel and Loépez (2020) ....) and that will undoubtedly be key in

years to come.
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The use of the spatial Probit model will be providing us with estimates of the con-
ditional correlation structure between a set of independent variables and a dichotomous
response variable, taking into account the spatial effect. Estimation by spatial methods
solves the problem of the interconnection of observations, which has little to do with the
causality of the problem (Rittenauer, 2019) for which it would be necessary to resort to
experimental techniques or tests specifically designed to detect the direction of causality
(Herrera-Gomez et al., 2021). Chapter 2 of this Thesis based on (De la Llave et al.,
2019b), tries to solve the problem of customer churn in an insurance entity through a spa-
tial autoregressive model. The study focuses mainly on solving the correlation between a
data set and the dichotomous endogenous variable by finding a suitable functional form
and theorizing about the possible root causes. The autoregressive coefficient of the fi-
nal model [0.215] tells us that a significant percentage of the client’s final probability of
leaving the company comes from indirect marginal effects. In this specific case, the most
likely root cause is word of mouth and family and neighborhood experiences. The most
direct contribution of the research is the solution to the leakage problem with a spatial
econometric method. There are numerous annual investigations that address the leakage
problem with classic logit models or with decision trees (Giinther et al., 2014, Lemmens
and Croux (2006)..), although new methodologies more related to non-interpretable meth-
ods (Hung et al., 2006, Xie et al. (2009)..) gain prominence. Since it is a widely studied
problem, this research seeks to highlight those details that are most important to take
into account and that until now have gone unnoticed. One of the main ones is the inva-
lidity of the classical Probit model in which the null hypothesis that the residuals have
no autocorrelation (Kelejian and Prucha, 2001a) is rejected, and therefore provides bi-
ased and inconsistent estimators on which it would be dangerous to make decisions. The
final spatial model resulting from the analysis shows better statistics than the classical
model both in terms of accuracy and suitability of the residuals. From this model, the
direct and indirect marginal effects of each of the variables are provided. One of the most
notable and novel variables in this type of model is the distance between observations
and relevant places. The quantification of the reduction in probability is provided when
establishing a branch near one’s own clients or, on the contrary, when the competition
closes distances with foreign clients, the disconnection of these with their original com-
pany is evident. This type of variable is not common in this type of literature, probably
due to the difficulties involved, until a few years ago, in obtaining georeferenced informa-
tion. Without a doubt, the incorporation of urban geographic factors together with more
realistic specifications, such as the one proposed in the study, will help make business

decisions for companies based on data in a more precise and efficient way.

Econometric models are overshadowed by the growing boom in assembled and deep
network models. The world of Big Data has brought a growing interest in types of mod-
eling that seek the highest possible precision in the result. This high precision in search of

the best non-linear combination makes interpretability a strong point to develop (Gilpin

Xii



et al., 2018). We are aware, in relation to chapter 2, that the global precision of the
phenomenon could be improved using techniques called “Deep-Learning”; however, our
proposal is to thoroughly dissect the information, in search of a realistic functional form
(autoregressive model) and correctly adapted variables. To do this, we introduce a de-
linearization phase within the estimation process through the Multivariate Adaptive Re-
gression Splines (MARS) (Milborrow, 2011) technique. As demonstrated in the academic
literature, age is key to understanding fugue. But with the MARS technique we identify
that the beta slope is not constant for all ages, with a turning point at 46 years. The

same happens with the paid premium that has this change at 549 euros.

With the set of techniques that we present in Chapter 2, we fill an important gap
around customer churn by providing new ideas and insights hitherto untouched. Taking
advantage of the knowledge generated in this research, Chapter 3 of the Thesis based
on de la Llave Montiel and Lopez (2020) arises, in which we delve into an indisputably
current topic. In this chapter we investigate the factors that move the user of an online
shopping application to remain inactive for a long period of time (>4 months) after a first
contact with the App. This period is in line with what has been established in research
related to another type of services (Buckinx and Van den Poel, 2005, Lai and Zeng
(2014)). However, nothing is written about the loyalty of the e-commerce customer whose
business is currently expanding (Frasquet Deltoro et al., 2012). Once again, the spatial
Probit model improves the results of the classical model and is therefore further evidence
of the benefits of this type of modeling and its employability in business management.
The behavior of nearby clients is shown to be co-determined, detecting mimetic behaviors
between them. The most relevant number of neighbors for the model is calculated through
the Join-Count statistic (Cliff and Ord, 1981), selecting the 5 closest neighbors, which
is where the spatial autocorrelation of the dichotomous variable is higher. Additionally,
we test the residuals of the classical model and spatial model with the generalized I-
Moran with 5, 10 and 15 nearest neighbors to strengthen the results. The ROC achieved
in the final model exceeds 70%, which is relevant given that these applications do not
contain much personal user information. As a consequence, in addition to the login
information in the application, first movements and purchases made, very important
geographical information has been added. The distance, measured in logarithms, between
the customer and the nearest shopping center is essential to measure future customer
disengagement. The greater the distance, the less likely the user will be inactive for a
long time. In addition, from the first kilometer it seems that there is a turning point in
which the probability of inactivity begins to decrease. In this case, to contribute a new
contribution to the matter, non-linearities have been identified through a general additive
model (GAM) (Hastie and Tibshirani, 1986).

Models with spatially lagged exogenous variables gain importance in the spatial econo-
metric literature. Elhorst et al. (2014) and LeSage (2014a) highlight the attractiveness
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of this type of model due to its flexibility, interpretability and ease of implementation.
Within the econometric model proposed in chapter 3, the incorporation of this type of
variables is very important. One of the most decisive variables to predict user inactivity
is the activity registered the first days of use of the app. The direct plus indirect marginal
effect of the number of orders given during the first week is greater than a 20% prob-
ability reduction. Throughout the investigation, we observed that this spatially lagged
variable with the 5-neighbor adjacency matrix provides a marginal effect of 5%. This
means that, in the case of a client that does not perform operations with the application
once downloaded, and therefore its probability of inactivity increases abruptly; in the
event that their neighbors have used it, this increase is substantially reduced. Therefore,
the resulting proposed model will combine the autoregressive effect and the effect of the
spatial lag of independent variables, which is a very appropriate consensus econometric
model to carry out this type of study (Riittenauer, 2019). We can say that the chapter
opens a line of research for the study of online commerce in which data and contribu-
tions are scarce. Without a doubt, this focus of analysis will help emerging companies in

electronic commerce to look for solutions to improve the consumer experience.

The models presented in the previous chapters aim to make an exhaustive analysis of
each dichotomous phenomenon. In addition to being a powerful prediction tool, they also
serve to explain the past and assess the effect of business actions/policies. In economic
research, these last two points are very important. To cite a few examples, Ortega-Garcia
et al. (2017) performs an analysis of factors that affect the appearance of childhood cancer,
discovering a possible association between the appearance of the disease and exposure
to pollution produced by certain industries. LeSage et al. (2011), explores the recovery
of business after the devastation of Hurricane Katrina in New Orleans. The incorrect
identification of the correct specification causes inconsistencies and serious biases in the
parameters as we demonstrate in Chapter 4 (Paper in publication process). Therefore,
the conclusions or actions derived from an incorrectly specified model would be more than
questionable. The search for the correct selection of spatial models has few contributions
at the moment. The main articles focus on continuous spatial models (Florax et al.,
2003; Mur and Angulo, 2009; Agiakloglou and Tsimpanos, 2021) and we only found
one that addresses Probit models by comparing only three types of models Beron and
Vijverberg (2004b). The main contribution of the chapter is the configuration of two
selection algorithms of the true specification of the spatial Probit model. Following
the discussion of the continuous model (Florax et al., 2003; Mur and Angulo, 2009) we
propose a strategy from the specific to the general (Stge) and another strategy from the
general to the specific (Gets). The comparison between both techniques is carried out
through a Monte Carlo simulation for 5 types of real specifications: Independent Model
(SIM), Spatial Autoregressive Model (SAR), Spatial Error Dependence Model (SEM),
Model with lagged variable spatially (SLX) and Autoregressive Model with spatially
lagged variable-Durbin (SDM), 5 sample sizes (100,400,900,1600,2500) and 5 parameters
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of spatial dependence (0.3,0.4,0.5,0.6,0.7). The selection strategies present a performance
greater than 85% of correctly selected cases for samples greater than 900 observations.
It is difficult to decide decisively which strategy is the best. Under ideal conditions Stge
seems to perform slightly better than Gets. However, when we introduce simulations
with non-ideal conditions such as endogeneity in the model or lack of information, then

there are certain occasions that Gets is less sensitive.

In applied research, we see how there is no homogeneous criterion to determine the
functional form of a spatial Probit model. From the use of the likelihood ratio (LR)
to compare models (Mate-Sanchez-Val, 2021) to selecting the model that offers the best
accuracy (Lapple et al., 2017). Our chapter shows that by combining different tests
[Generalized I-Moran, t-Test, LR Test, LR Confac] we can get quite attractive results
that determine the origin of the data. The strategies shown follow the parsimony principle
and make strict econometric sense at each step. We reserved a series of tests that would
complicate the strategies more than necessary [Join Count, AIC, BIC]. The solution we
give that the strategies are close to an optimum with the entire battery of available
tests is by applying a multilevel classification Gradient Boosting (GBM) algorithm. The
conclusion is that there are no notable differences between the strategies provided and
the result of the GBM for samples greater than 400 observations.

Each of the chapters presented aims to continue the state of knowledge within the
field of Spatial Econometrics. In all likelihood, this science will continue to advance
in methodological issues, practical applications, development of new tests. We have
developed this Thesis to answer some questions that remained pending and will serve as

a point of support for future research.
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Chapter 1

Spatial probit models

1.1 Introduction

When we look around, we see an interconnected society. We live in family circles, in
neighboring communities, in areas consistent with our lifestyle. We work and study sur-
rounded by people with concerns similar to ours. Although technology advances fast and
provides new forms of communication, cultural traditions still endure. Social, family and
professional networks are present in decision-making. There are many areas interested in
modeling the social and economic phenomena. Linear models over the years have become
references to draw conclusions from the apparent randomness that surrounds us. These
classical econometric models assume, among other key hypotheses, independence of the
observations. If such independence is breached, then econometric models would provide
inconsistent and inefficient estimations (McMillen, 1992). Given the existence of a cer-
tain spatial relationship between the observations that conditions the dependent variable
of a model, then the need to go towards models that include spatial aspects would be
evidenced. Moreover, the new technological era allows us to store and manage new infor-
mation with our computers. Geospatial information has had a great increase of interest in
the last decades. Georeferencing has been gaining popularity among researchers. These
are some compelling reasons why during the last decades of the 20th century, spatial
econometrics suffered an explosion in terms of published papers and specialized books
(Anselin, 1988; Anselin and Florax, 2012; Cressie, 2015). It was the beginning of a new
field in quantitative economy that moved rapidly to other social sciences. Now, after al-
most 40 years, spatial econometrics has reached a good level of maturity (Anselin, 2010).
The scientific basis is well established, the properties of the estimators of the standard
models have been studied and tests for specification and spatial autocorrelation have been

developed over the years.

One topic within spatial econometrics that has received less attention are models where

the dependent variable is limited. However, models with binary response are frequently
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used in research in economy. When the making of a decision or the occurrence of an
event follows a Bernoulli process and there is also a certain spatial dependence between
observations, then logistic spatial regression is appropriate to model this behavior. The
difficulty of obtaining consistent and efficient estimators meant that spatial probit and
logit did not receive as much attention. At a slow but steady pace during the 90s, differ-
ent mathematical techniques were developed to find solution of the problem, especially
focused on the spatial probit. Additionally, the computational costs to calculate the es-
timators is very high, so the optimization of the algorithms has also been a key element
in the development of the research. Given the advances in the theoretical part and in
computer technology, it has been possible to study a great deal of topics. Here is a totally
arbitrary selection of some of the works carried out. Over the last few years there have
been studies focused on analyzing the generation of value through the use of the land
(McMillen and McDonald, 2002), the reopening of commercial businesses after Hurricane
Katrina (LeSage et al., 2011), the contagion effect in the banking crises of the late 90s in
Asia (Amaral et al., 2014), the policy enrollment of different schools in Ohio (Brasington
et al., 2016), mimetic spatial churn behaviors in online retail services (de la Llave Montiel
and Lopez, 2020), the probability of business failure in SMEs (Rodriguez et al., 2016).
However, there are still areas where the application of this type of algorithm is not very
widespread and can be very useful. This is the case of health economic issues. Billé and
Arbia (2019) identify this area with a low diffusion of this type of models. Given the
importance that it might have, the authors stress the need to popularize these algorithms
within this type of field.

We believe that spatial econometrics will bring us good and valuable insights to un-
derstand the world. The efficiency of processes and policies must be guided by rigorous
quantitative studies. This is only possible if the statistical models are sufficiently rigor-
ous and appropriate. Throughout the following chapters of this Thesis, we carry out an
in-depth analysis of the spatial probit model. Our intention is to continue contributing

to the foundations of this new spatial field that emerged 40 years ago.

1.2 Spatial Probit Models. The Origins

To establish an accurate historic framework, let us now reflect briefly on the origins of the
logistic regression. As Cramer (2002) brilliantly presents it, the invention of the logistic
function, as well as the logit and probit models has been a long and winding road, as the
Beatles would put it. It was at the end of the 18th century that the logistic function was
invented, to explain the growth of population. Although Malthus (1798) was the first
one to establish the exponential growth of population, it was a few years later when the
conclusion that exponential growth must find resistance at some point (Verhulst, 1838),

therefore introducing a term as a representation thereof. Velhurst had time to name
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the function courbe logistique, but died at a young age, not being able to gain enough
credit for his contributions to statistics. Still, sometimes randomness plays on the side
of science. A few years later, such function was independently rediscovered by two other
researchers (Pearl and Reed, 1920), while predicting the population growth of the United
States. Pearl and Reed failed to recognize Velhurst’s work and did not use the term
logistic. Who did use it and address all previous work on the matter was Yule (1925).
Such function is still used today to model quite disparate areas, from its original purpose
— population growth, to marketing. Let us now turn our attention to the roots of the
probit model. Although it is commonly attributed to Gaddum (1933) and Bliss in (Bliss,
1934), there is some evidence of a prototype of this method in Germany in the middle 19th
century. According to Cramer (2002), Fechner observed differences in the human response
to the same stimulus and was the first one to represent said differences in normal deviates.
However, it was Gaddum and Bliss who portray the normal distribution as commonplace
and establish the use of the logarithmic transformation. It was Bliss who coined the term
probit, as short for probability unit, and who also set the maximum likelihood estimation
for the model. The use of the probit model soon expanded: market research, economics,
etc. Such model was considered superior to others, as we will see in a moment, since
it was linked to the normal distribution curve. In 1944, Joseph Berckson, a physicist
and statistic prone to creating controversy, who had been co-author to one of Reed’s
papers on autocatalytic functions, proposed the use of the logistic function, naming this
model logit. His controversialist nature, together with the fact that he openly rejected
the maximum likelihood method in favor of the chi — squared estimation, turned other
scholars against him and his proposal. Despite having the academics against it, the
logit method quickly spread in the actual work environment, and by the end of the 20th
century both models were equally used in all areas of the social sciences. Many authors
advocated for the logit model, from Cox (1969) to Theil (1969). Furthermore, in the
year 2000 McFadden was awarded with a Nobel Prize for his works on the logit model.
The term logistic regression was created to define analysis with binary dependent variable.
Once computers and maximum likelihood calculator packages were widely available, logit
and probit models became and have since been business as usual, both in the academic
and work environment. Nowadays, probit models are probably one of the most common
ways along with logit models to solve problems where the response variable is binary
(Greene, 2012).

In 1979 Paelinck and Klaassen (1979) published Spatial Econometrics, highlighting the
relevance of space locations and spatial dependence in econometrics models. That year
became a turning point in this area, as research, methods, and use cases started to grow
rapidly to this day that it has been reached a significant degree of maturity (Anselin,
2010). At the beginning of the era all research was much focused on standard linear
regression models and tests to detect spatial dependency on model errors. However, the

applications of probit models to the spatial context were not long in coming. The first
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attempt to deal with the problem was in Avery et al. (1983) with a proposal of a Max-
imum Likelihood method to obtain estimators but assuming errors to be orthogonal to
explicative variables. McMillen (1992) raised this problem given that in economic aspects
heteroskedasticity is implicit in a multitude of phenomena, “if data vary spatially, it is
reasonable to think that variances may vary also”. McMillen proposes first solutions when
heteroskedasticity and autocorrelation are observed. Since then, quite a few studies using
probit method have been emerging and different ways of obtaining consistent estimators
with increasingly lower computational costs have been developed. These methods will be
reviewed in the 4th part of this document. On the other hand, logit spatial models seem
intractable according to Anselin (2002) and therefore have received much less attention

in recent years.

Throughout this chapter we are going to review from the classic probit model to the

most common spatial probit models.

1.2.1 Standard probit models

Probit models arise to solve regression models where the dependent variable (Y™*) is
continuous and unobservable called latent variable and to which a binary and observable

response (Y) is associated such that:

Y*=Xp+e
2 (1.1)
e~ N(0,0°1)
and
1 if Y*>0,
yo={ ] (1.2)

0 if otherwise

Then, let (Y) be a binary Nx1 vector that reflects information that can be summarized
in 0 when some event is failure and 1 for success. (Y) will be assumed to be explained
linearly by a set of explicative variables (X). And the function that links the explica-
tive variables (X) to the dependent variable (Y) is the cumulated density function of a

standardized normal.

8 CHAPTER 1. SPATIAL PROBIT MODELS



1.2. SPATIAL PROBIT MODELS. THE ORIGINS

Py, =1/x;)) = P(Y* > 0/x;) = P(x;f+e>0/x;) = Ple < x;5/x;) =

ziB 1
= ®(x;8) = - Ee

(1.3)

2
t
Tt

where ® refers to the cumulated density function of the normal distribution and S

refers to the parameters of the regression to be estimated.

contrary,

P(y; =0/xz;) = P(Y* < 0/x;) = P(x;f+e>0/x;) = Ple > x;5/x;) =
zif 1

—€
-0 \/ 2

iy (1.4)

Maximum likelihood was the original procedure to solve it by Bliss (1935) following
R. Fisher’s classical book “Statistical Methods for Research Workers” and nowadays is
probably the most common method to solve probit model. Since the endogenous variable
is binary and there is a sample of n independent instances, the likelihood function is set

as

£(9) = T 9xd) I 1~ @(0.0) (15)

yi=1

wich could be expressed as:

n

L(B/w:) = [[(@(:B)" (1 — ®(x:8)) ™ (1.6)

=1

And if natural logarithm is applied then:

n

(B/x:) = Y _(aln(@(@:B)) + (1 — yi) (1 — ©(x:3))) (1.7)

i=1

In order to solve the equation, the gradient of the log-likelihood function needs to be

calculated and it is called the score function and it is equaled to 0.
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M _ - yi — O(z:0) B (g 3) =
I ; D (2;8)(1 — () i@ (zif) =0 (1.8)

where
(I)/(xiﬂ )

is the density function of the normal distribution. And the second partial derivative is:

621(5/5’%)

23 Enj Ai(Ni + i)z (1.9)

yi=1

1" (B/x:) =

where ); is

\ = (@ (gwif))

T and) 10

where
¢ =2y — 1)

Since normal cumulated density equation has no closed form, a numeric approach is
needed to obtain the maximization. Newton-Raphson and Iteratively reweighted least

squares are the most common methods to obtain this solution. Both are as follows:

Newton — Raphson : B = B —"(B/z;) ' (B/x;) (1.11a)
Iteratively Reweighted Least Squares : By = (X'W, X) ' X'W,[X B, + W, X]
(1.11b)

where W is a diagonal matrix whose elements in the diagonal are

Wi = A\it (%ﬂt)\it)

Regarding the interpretation of the parameters in single probit is quite easy with just
the peculiarity that the marginal effect of a unitary increase of the exogenous variable on

the probability estimated is not constant because it changes depending on the value of
X.
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IE(Y/X)

S = ¥/(XB)B (112)

Although a common practice is to calculate the marginal effects based on the mean of

all explicative variables.

1.2.2 Spatial probit models

Spatial probit models arise to extend the classical probit model by introducing some kind
of spatial dependence. The outcome of the model not only depends on the characteristics
of each observation, such as in the classical model, but it also relates observations closed to
each other. The spatial structure can arise both by spatial dependence of the dependent
variable itself or spatial dependence immersed in the errors of the model (LeSage and
Pace, 2009a).

As in the classic spatial probit, let (Y*) be a binary Nx1 continuous stochastic vector of
the latent variable. The broader specification would cover all types of spatial dependency.

This model is the general nonlinear nesting model (GNNM)

Y*=XB+pW Y+ Z0+u
u=AWyu+e (1.13)
e~ N(0,0%1)

where X is a matrix containing the initial exogenous variables and Z the same variables
spatially lagged Z = W1 X. Then, W; and W5 are the adjacency matrices by which the

observations are linked to each other. Therefore,

1 If j represents one of the neighbours to i,
Wy = ] (1.14)
0 If i=j or j is not one of the neighbours to i,

The final W matrices are commonly row-standarized, so that

w;*j
! Zj:l Wy

which means that W matrices become frequently asymmetric. However, there are many

other specifications for weighted matrices. See Chasco (2003).
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The set of coefficients to be estimated are [ for each of the independent variables and
their spatially lagged and also (p , A\, #) which refer to the autoregressive parameters.
And finally, Y is the observable variable defined by

1 if Y* >0,
Y = ] (1.16)
0 if otherwise

The disturbance of the model (e) is a multivariate normal variable with mean equals

to 0 and finite variance, although in many theoretical research is established as 1.

Before starting with the most popular specific spatial models, it is important to high-
light the assumptions made in Kelejian and Prucha (2010) in the spatial contiguity ma-
trices and in the autoregressive parameters. The first assumption is related to the main
diagonal of W{1,2} which is supposed to be 0 in all the instances. It means that no
observation is a neighbor of itself. Second assumption states that the autoregressive pa-
rameters should be in the interval (—1/7,1/7). Where 7 is the spectral radius of the
adjacency matrices (W). The third assumption reflects that the aggregation of rows and
columns of Wy, Wa, (I — pW;)™! and (I — AW,)~! are bounded uniformly in absolute
value. Finally, the fourth hypothesis establishes X with full rank and (X’X) nonsingular.

By setting any of the spatial parameters to zero (p , A, f), we arrive at the specific mod-
els that have been studied in the academic literature. Next, we will study the specification

of these models.

1.2.2.1 Probit-SAR Model

If # and A are set to 0, then we obtain the so-called spatial autoregressive probit model
(SAR). In this model initially presented by Anselin (1988), the endogenous variable is
influenced by independent variables (X) and also depends on the lagged variable (WY*),

that is, on the value of the dependent variable in neighboring locations.

Y*"=XB+4+ pW1Y" +u

u~ N(0,0°1) (1.17)

So that, the dependent variable (Y*) located in (i), can be explained by exogenous

variables located in (i) and located in other locations through the spatial multiplier

(- PW1)71
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, as it is reflected in next equation

Y* = (1 —pW) "' XB+ (I — pWi)~lu

u~ N(0,0%1) (1.18)

In this model, a spatial process is obtained by which in the case that Y *> 0 and
therefore Y = 1 then the probability that neighboring observations have value 1 would

increase.

1.2.2.2 Probit-SEM Model

In this case, if # and p are set to 0, then we obtain the so called spatial error probit model
(SEM). This model has been widely used in research studies in the case of Gaussian
regression, unlike for probit regression. In this type of model, they assume that there
are variables with a certain spatial autocorrelation and correlated with the dependent
variable, and yet they are not contemplated in the model specification. Therefore, this

omission of variables in the specification goes to model residuals.

Y*=X(+u
u=A\Wou+e (1.19)
e~ N(0,0%1)

So that, the dependent variable (Y*) located in (i), can be explained by exogenous

variables located in (i) and the residuals of adjacent observations through the multiplier

(I — AWyt

Y*=XB+ (I = \Wy) e
e~ N(0,0%I)

1.2.3 A taxonomy of spatial probit models

The previous models presented (SAR and SEM) are the ones that first emerged in the
spatial econometrics literature and the most widely used in research. Both models present

global spillovers, as the autoregressive parameters affect the model globally. However, by
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starting from the general model we can arrive at many more different models, which are
those revealed by Florax and Folmer (1992).

The first specification worth addressing is the so-called Spatial Lag of X probit model
(SLX). It is based on setting A and p to zero. According to Elhorst and Halleck Vega
(2017), these types of models have received very little attention over the years. However,
they do deserve it since if a good specification is established with a good W adjacency
matrix, it can produce very significant flexible spillovers. These spillovers in this case are
considered local, given that since the diffusion effect of the spatial multiplier is less than
in global cases (Chasco, 2003).

Y*=XB+ 20 +u

u~ N(0,0°1) (1:21)

Where Z is the spatial lag of variable X. We would find this type of model in a probit
environment when the probability that Y = 1 in the locality (i) not only depends on the
characteristics of said locality but also depends on the characteristics of the neighboring

localities.

The next model to present is the one that only sets A = 0. This would be the so-called
spatial Durbin probit model (SDM). This model would be a combination of the previously
presented SAR and SLX models, which means that combines global and local spillovers.

This model introduced in LeSage and Pace (2009a) takes the following form.

Y*"=XB8+pW1 Y "+ 20+ u

u~ N(0,0°I) (1:22)

which can be expressed as,

Y*= (I —pW) ' XB+ (I —pWy) P20+ (I — pWy) tu

u~ N(0,0%1) (1.23)

In SDM the probability that Y*>0 in location (i) depends on features at location (i),

also depends on features located in other locations through the spatial multiplier
(I —pW)~

, and spatial lagged features on the points surrounding (i) with the same spatial multiplier.
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In case SAR and SEM models are combined, then we obtain the spatial autoregressive
model with autoregressive disturbances (SARAR). In this model, the parameter 6 is equal

to zero.

Y*=XB+pWiY" +u
u=A\Wou+e (1.24)
e~ N(0,0°1)

This is a very interesting model because of the nuances it contains. A considerable
aspect to note is that in this type of model the adjacency matrices W; and W5 should
not be exactly the same to avoid parameter estimation problems (Anselin, 1988). The

model can be written also as

Y5 = (1= pW) (XB + (I = AW2)'e)

e~ N(0,0°1) (1:25)

The last remarkable combination of space models is bringing together the SLX and
SEM models. This would lead us to set the rho parameter to zero and give rise to the

so-called modelSpatial Lag of X probit model with autoregressive disturbances.

Y*"=XpB+Z0+u
u=A\Wou+e (1.26)
e~ N(0,0°1)

which can be also written as

* -1
Y*=XB+2Z0+ (1 —\W,y) e (1.27)
e ~ N(0,0%])

To finalize the taxonomy of the main spatial models, it can be observed how the
introduction of different second-order spatial adjacency matrices would change the spec-
ification of the model. The spatial effect of spillovers would be enhanced. Although, this
would undoubtedly add an additional degree of difficulty to the subject.
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1.2.4 Other Alternatives:

There are many more specifications of probit models than those presented so far. De-
pending on the spatial lags considered, the global or local effect of the spillovers and the
shape of the adjacency matrix, a multitude of different models will be achieved. The
purpose of this section is to list some studies that go outside from traditional lines within

spatial econometrics.

There are some investigations which deal with the problem of heteroscedasticity in
spatial probit models (McMillen, 1992, and LeSage (2000a)). When heteroscedasticity is
present in a standard probit model, inconsistent and inefficient estimators are produced.
In spatial models, spatial autoregressive patterns frequently entail heteroskedasticity.
Therefore, proper algorithms to calculate estimators are needed. The estimation part

will be covered in section 4 of this document.

Another field of research is that which contemplates time within the spatial probit
model. Until now, in the models already presented, it is assumed that everything happens
in the same time frame. Dynamic Spatial Ordered Probit (DSOP) models assume that the
autoregressive effect does not occur at the same moment in time, therefore the modeling
should be dynamic. On this topic, Wang and Kockelman (2009) analyzed land use over
the years.

The specification of this model is as follows

Y =X\B+A\Y", +0,+¢
v =AY O (1.28)
e ~ N(0,0%I)
where A in this case is the temporal autocorrelation parameter and 6 is a vector that

contains the spatial autoregressive parameter and therefore the neighborhood influence.

The last extension of the probit models are the State transfers at different moments
in time proposed by Elhorst et al. (2013). This paper considers two spatially lagged
variables because it takes time into consideration in the model. It is considered that
those observations in which the observable dependent variable has become Y = 1, do not
affect the observations in which the continuous dependent variable Y = 0. Therefore, the
lagged spatial variable of those observations that are already Y = 1 can be considered

exogenous.

The specification of this model is as follows
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YO = X084 p WY+ GWS, + ¢f a0

er ~ N(0,021) ’
where WPV is the endogenous effect for those observations closed to each other
which remain in Y=0, then W?'$S_t $ which is the exogenous interaction effect for those

observations closed to each other with observations that moved to Y=1.

The reality is that there are not many studies with this type of structure given the
complexity of the subject or the availability of sufficient data. However, from a more
logical point of view, it makes sense that, for example, the behaviors of economic agents

influence each other at different points in time.

1.3 Testing Spatial dependence

One of the development points within spatial econometrics that generated a great deal
of interest was the development of tests to detect autocorrelation in the residuals from
classical models. Cliff and Ord (1973) demonstrate how the I-Moran statistic can be
used to assess the autocorrelation of the residuals from a classical regression estimated by
ordinary least squares. Obviously, this first investigation was carried out on a standard
Gaussian regression model. A decade later, tests for maximum likelihood estimation
began to be developed, specifically the Lagrange Multiplier test (LM test) (Anselin,
1988). The latter also for a standard Gaussian environment. Just before reaching the
21st century, robust LM tests were developed to test whether the residuals of a linear
model come from a spatial SEM or SAR structure (Anselin et al., 1996). At the same
time, and for the case that concerns us in this paper, tests were developed for those

models in which the dependent variable is limited.

In the next subsections, the most used tests both in the academic field and in the main
spatial econometric software, focused on binary variables, are briefly exposed. In the first
part, tests that analyzes the residuals of a probit model to detect the presence of spatial
dependence are presented. These tests are either global, affecting the entire map within
the scope or local, affecting very specific areas of the map. Secondly, the statistics that
work directly on the binary endogenous variable are exposed, determining the presence of
spatial autocorrelation both in the global and local framework. Finally, the generalized

algorithm to cluster search method is presented given a Bernoulli spatial process.
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1.3.1 Tests on Standard Probit Model Residuals

Spatial correlation is the relationship of what happens at a point i in space and what hap-
pens in adjacent places. A random variable is spatially autocorrelated when the values
observed in i depend on the values observed in contiguous areas. The standard linear pro-
bit model assumes independence between the observations and constant variance. When
we have a spatial autoregressive process, this independence is breached and inefficient

and inconsistent parameters are generated.

Probit Standard Model:
Py = 1/z;) = P(y; > 0/x;) = P(e; < x:3/x;)

Spatial Probit Model SAR:
I —pW) ™tz
0,1 /i)

Q = E(ec') = o*((I = pW1) ") (I = pP1)7"))

Py = 1/2:) = Py} > 0/a) = Ples < |

Spatial Probit Model SEM:

Py =1/x;) = P(y; > 0/z;) = P(e; <

50 )

g

Q = E(ee') = (I — A\W1)")((1 = AW,)7Y))

Since the correct specification of our model is not known a priori, nor whether the data
comes from a standard or spatial theoretical model. It is vitally necessary to have tests
that at least diagnose whether the errors evaluated in the standard model are spatially
correlated or not. Although, what these tests would not tell us is what kind of spatial

specification we would be talking about.

The tests developed to date will be presented below. Following the notation of Amaral
et al. (2013), in which the different autocorrelation tests for spatial probit for the SEM

models are compared. In all these test

Hy : Disturbances are Spatially Independent
H, : Disturbances are Spatially Dependent of each other

1.3.1.1 Pinske and Slade (1998)

The first test that emerged was that of Pinkse and Slade (1998). The authors follow the
robust LM test methodology that was being developed for standard Gaussian models.
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(e'We)?
tr(WW +W'W)

PS,est = ~ X%(1) (1.31)

Given that the measurement of the error is not as obvious as in the case of standard
models, throughout the academic literature different approaches have emerged as to what
should be the correct measurement of the error in the probit model. In this case the

authors choose the error in its most direct form corrected for its variance. Then,

Yi — (I)(Af)
V(@@ (1= 2(§)))))

€; =

(1.32)

1.3.1.2 Pinske (1999 and 2004)
The second variation to the problem would be made years later in (Pinkse, 1999, and

Pinkse (2004)) with a modification of the previous LM test that himself proposed.

(e'We)?
attr(WW + Wtiv)

Py = ~ X*(1) (1.33)

where,

o WP
o= G- 9@

and in this case the errors are written as

(4 — D)@ (32))
O ) (154

€, =

1.3.1.3 Generalized I-Moran (2001)

Kelejian and Prucha (2001a) generalizes de famous I-Moran test (Moran, 1950) in order

to be able to apply it to those problems in which the dependent variable is binary.

(e'We)?
Jir(WEWE + WISwy)

K Py = ~ N(0,1) (1.35)
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where
X = matriz(diag((®(9;)(1 — (3;)))))

And in this case the error takes its simplest form

e; =y — O(3;) (1.36)

1.3.2 Tests on Endogenous Variable

The tests that have been named so far are based on the analysis of the residuals of a
standard linear model. Tests have also been developed that directly assess the dependent
binary variable to determine its spatial autocorrelation. In this sub-section we will analyze
some of the most common tests in this area. This type of test, in addition to providing
information on the existence of global or local spatial dependence, also helps the researcher
when deciding on those adjacency matrices that are theoretically known, however in
practice they hide a very extensive background on which is the ideal W matrix that best

represents the spatial dependence of the data.

1.3.2.1 Joint-Count statistics

Join-Count statistics (Cliff and Ord, 1973) are used to test global spatial autocorrelation
pattern of both binomial and multinomial variables. Join-Count statistics tests the null of
the random co-localized pattern by counting the number of each possible joins between
neighbors. In the binomial context, possible joins are J11 (Black-Black), JOO (White-
White) and J10 (Black-White). The statistics J11, J00, and J10 count the observed
number of joins and compare them with the expected number under the null (J°11, J°00,
and J'10). In order to join elements, the binary weight matrix W is needed to establish a
connectivity criterion. In particular, the elements of W, wij (i,j=1,... n) have a value of

ws
1

1 if elements i and j are neighbors and 0 otherwise. Two elements and “j” are joined if
the j-element belonged to the set of k-nearest i-element. From this connectivity criterion,

the Join-Count statistics (J11, JOO, and J10) are defined in the following equations:

i=1j=1

1 n n
JI0 =53 > wijl0y; (1.37)

i=1j=1

J00 = ; SN wy; — (J11 4+ J10)

i=1j=1
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The statistics described are distributed as an asymptotic normal distribution. Spatial
co-localized patterns which result from the application of Join-Count tests can be positive
or negative. A positive co-localized pattern indicates a spatial structure in which there
is a high probability of finding customers who belong to category 1 or 0, surrounded by
customers who fall into the same category. A negative result reveals the spatial intercon-
nection of customers who fall into different categories and when the spatial distribution

is random, no spatial co-localized pattern can be ascertained.

1.3.2.2 Local Join-Count statistic

Local Join-Count statistic (Anselin and Li, 2019) is the local spatial correlation indicator
for binary variables. Following (Anselin, 1995), the test is based on the idea that the
global spatial correlation can be broken down into a number of local indicators. Unlike
the global join count test, the local test only makes sense for the cases 11 (Black-Black) in

W
1

which location “i” has an occurrence=1 (z;=1) comparing to the number of occurrences=1

of neighbors around. The test would be significative when locations around “i” have more
occurrences equal to one (z;=1) than a simply random pattern.

J=1

wan ws
1

where x; is the binary value at location and z; is the binary value at location “j”.

The problem with the local join count statistic is the methodology to assess the signi-

ficatively of each point. Depending on the size of the data set and the inbalance of binary
variable, the interpretation of local patterns should be treated carefully.
The procedure to calculate the probability of the existence of a local pattern, can be done
following properties of hypergeometric distribution or with a more traditional approach
which is based on the conditional permutation test proposed by Anselin in (Anselin, 1995)
for the LISA statistic.

1.3.2.3 Q statistic

Ruiz et al. (2010) uses symbolic dynamics to undertake the Q test. The Q test basically
determines both the strength and the significance of spatial associations. For a data set
of N elements, k is the number of categories of the variable to study. In the case studied
in this work, since it is a dichotomous variable k = 2. However, the authors establish the
Q test for k> = 2 in case of multinomial data. m-1 is defined as the number of neighbors
that each observation can have. X, therefore, is a vector of length m, which contains, in

a sorted way, the value of the studied variable at each point in space and the value of the
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closest m-1 observations. The symbols o; will be each unique combination of Xm. There
will be at most a number of k™ symbols. The probability of occurrence of each symbol p,,
will be the frequency of each symbol over the total number of observations.The entropy

function will be defined as

hm) = — " paln(p,) (1.39)

In such a way that the entropy varies between 0 when there is no entropy and [n(k™)
when the process is totally random. The more autocorrelation there is across the map,
the less entropy will be detected with symbolic use. And vice versa, the more random

the spatial process, the greater entropy there will be.

The Q test is defined as follows

+ D[In(k™) = h(m)] ~ Xjm (1.40)

where r is the overlapping degree of X.

Based on this Q test, it is proposed in Péez et al. (2013) an indicator of the spatial fit
of a model. When a probit model is built in which the endogenous variable has spatial
autocorrelation, it is interesting to verify that after modeling the endogenous expected

variable still contains this spatial pattern. The statistic constructed for the assessment is

(1.41)

Where Q(m) is the @ test on the endogenous variable and Q(m) is Q test on the
expected endogenous variable. The null hypothesis is that the vector with the estimated

value of Y contains the same level of spatial association as the real variable.

1.3.2.4 Scan statistic for binary data

The scan statistic is a very well-known method to detect spatial clusters in those areas
where there is a significant increase of a certain event. The spatial clustering was firstly
studied by Naus (1965) both in one and two dimensions. In Naus (1974), the problem is
extended to cover the Bernoulli process and then this algorithm is generalized in Kulldorff

(1997). The latter paper also allows for different types of cluster shapes and sizes which
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makes the algorithm very attractive in those research where the area of the cluster is

unknown. Following Kulldorff (1997) notation, the hypothesis tested are

Hy:p=q
Hy:p>gq
where p and q are the probabilities for the occurrence of certain event inside and outside

a window or potential cluster Z. This Z window is inside a total spatial scope under study

called G. The idea is to maximize the likelihood function

L(Z) = p®(1 — p)™q“ (1 — q)N =7 (C7e) (1.42)

where n, is the number of observations inside the window Z, ¢, is the number of positive
cases inside the window Z, C is the total number of cases in the scope G, N is the total

number of observations in G. The expression also can be written as

C, C—c,

7)nzfcz(N

ny Uz

)Cfcz(l - ¢ - Cz )anzf(Cfcz) (143)

—n, N —n,

In order to make statistical inference, the likelihood ratio is calculated as follows

(1.44)

By iterating the calculation through the different points of the map the most likely

cluster will be reached when the subset Z; maximizes the LR equation.

All the tests presented help the analyst to make a decision on the type of model
to apply to make a correct approach to reality. The construction of an econometric
model should be independent of the a priori judgment of the researcher. The detection
statistics of the presence of spatial autocorrelation objectify the entire process towards
the correct specification. Not to mention the guidance in the search for focused and

efficient estimators.

1.4 Probit Model Estimation

It was said at the beginning of the chapter that spatial probit models have not received

as much attention as classic regression models. One of the reasons why this fact occurs
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is due to the added complexity to solve these models and the high computational cost
which increases as the data grows. Over the last few years, algorithms capable of dealing
with the estimation of the parameters of these spatial probit models have emerged. The
first line of research was to obtain efficient and consistent estimators. And the second

line more focused on reducing the computing times necessary to solve the problem.

The algorithms that have been used to solve the problem were primarily the
Ezpectation-Mazimization (EM) proposed by McMillen (1992). In this paper, a problem
of spatial autocorrelation and heteroskedasticity is exposed. The way to solve it will be
through replacing the unobservable latent variable with the expected value and then
iterating until convergence. The problem with this method, admitted by its own author,
is the computational cost that it mainly involves. The method requires many iterations
and sub-iterations which make the process very slow. Pinkse and Slade (1998) proposed
the solution by using the Generalized method of moments (GMM), which provides
estimates in a very efficient time, however the estimates are not very precise as shown
in Calabrese and Elkink (2014), in a revision of the estimations of spatial probit models.
LeSage (2000a) uses GIBBS bayesian sampling to estimate a heteroskedastic spatial
autoregressive problem. As in the EM algorithm, the unobservable latent variable is
replaced by the expected value. In this model, the conditional probability of each of
the parameters is specified. Then, Beron and Vijverberg (2004a) proposed to use the
Recursive Importance Sampling (RIS) based on MonteCarlo simulations to capture
the true coefficients. According to Calabrese and Elkink (2014), GIBBS and RIS are
very accurate in the estimates, however for samples greater than 1500 observations the
computation time is very high. In Klier and McMillen (2008) a modification of GMM
algorithm is proposed by linearizing it around a starting point where autoregressive
parameters are set to zero (LGMM)!. In this case, the algorithm is prepared for logit
instead of probit. Similar to the standard GMM model, the model produces bias
estimators especially when there are not many observations or when the autoregressive
parameters are high. Last but not least, Martinetti and Geniaux (2017) proposed
directly to maximize the likelihood function by approximating it with an analytical
method.

1.4.1 Estimating spatial probit models by maximum likelihood

Now, paying attention to spatial autoregressive specification models (SAR). These models

appear when there is an endogenous spatial structure of dependency.

! Although this algorithm is focused on solving the problem using a logit, it has been included within
the brief description given its relevance
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Figure 1.1: Timeline of Spatial Probit Estimation Techniques

Y*= (I —pW) (XS +u) (1.45)

therefore the whole error term is
b= (I—pWi) " u

and it’s variance can be expressed as,

Q=E@Wy) =o*((I — pW1)" )T — pW1)71)) (1.46)

As we are in a probit environment, then we assume a multivariate normal distribution

for the likelihood function with a covariate structure.

L(ﬂ ) 1 /b1 /bz /bn *ttﬂgltdt (1 47)
= e .
) P (27T)n/2|Q’1/2 ar Ja o

The intervals of integrations depend on the value of the observable Y.

if y; = 1 then: a = —o0;b = ((I — pW;) 1) X3
if y; = 0 then: a = ((I — pW;) )X B;b= 00

Now, let’s examine spatial error model (SEM) which contains the spatial autoregressive

parameter in the error structure.
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Y*=XB+ (I - \Wy) e (1.48)

now, the whole error term is
V= (I — A\Wy) u

and it’s variance can be expressed as

Q= E@y) =o*((I = AW2)7)((1 = AW2) 1)) (1.49)

By maximizing the likelihood, the standard and autoregressive coefficients could be
obtained.

L(B.p) = oo | ' / : / K (1.50)
P) = (27T>n/2m|1/2 a Ja T Ja, :

The intervals of integrations depend on the value of the observable Y.

if y; =1 then: a = —o0;b= X3
if y; = 0 then: a = X3;b = o0

In case of combining both models, the spatial autoregressive model with autoregressive

disturbances (SARAR) is obtained.

Y*= (I —pW) " HXB+ (I —A\Wy) te) (1.51)
Therefore the error term is
b= (1 —pW) " (I = AW2)"lu

and it’s variance can be expressed as

Q= E@W) =a*((I — pW1) ) = AWo) ) (I — pW2) ")) (T = AW2) )" (1.52)
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The N-Integrals for computing the multivariate normal distribution is equivalent to

SAR and SEM case and the intervals for integrations

if y; = 1 then: a = —o0;b= ((I — pW;) " H X} 153
if y; = 0 then: a = ((I — pW;) )X B;b = 0 (1.53)
For each of the exposed models, the first derivatives would be taken with respect to the
parameters associated with exogenous variables with respect to the spatial autoregressive
parameters and they would be set equal to zero. Since there is no closed-formula for
the n-integral, one has to resort to numerical methods for its approximation. According
to (Wang et al., 2013) this task is an inordinate computational effort and unpractical
from a pragmatic point of view. This is mainly the reason why until Martinetti and
Geniaux (2017), only other type of options/methods had arisen instead of maximizing
the likelihood of the problem.

1.4.1.1 ML Approx - Martinetti and Geniaux’s (2017)

Martinetti and Geniaux (2017) proposed a conditional approximation method to obtain
consistent and efficient estimations of the parameters. The idea the authors develop is
based on the method of Mendell and Elston (1974b). The first part of the algorithm
treats to reconstruct the multivariate normal probabilities as a product of univariate

conditional probabilities.

P(ty € (a1,b1)....t,, € (an, b)) =

n b4
= P(tl € (al,bl)) Hp(tl € (az,bl)/(tl € ((al,bl) ...... tifl S ((ai,l,bi,l))) (1 ° )

=2

In order to compute the approximation, the algorithm uses the Cholesky decomposition,
so that,

tQt =t(CHo (1.55)

After making the transformation t=Cz, then the the limits of the integral change
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—1
/ Qp — Z?:n szm

a, =
Crn (1.56)
b/ — bn - Zi:n Omznz
" Cnn
which can be computed iteratively, while values of z are approximated.
®'(a) — @'(b3)
= d ‘ 1.57
() ) o0
(1.58)
The result of the algorithm is
P(tl S (ahbl)....tn € (an,bn)) ~ H q)(b;) — CI)(CL;) = H U; (159)

i=1 i=1

There are several computational aspects that make the process faster. The first is the
rearrangement of the values. Instead of using the natural order of the observations, it is
proposed to order descending based on the expected value. Although, as the authors cite,
few rearrangements are advisable. Next, a set of numerical and computational techniques
make the algorithm work much faster. The first is the use of sparse arrays since it frees up
a lot of internal memory when performing operations. Another is related to the inverse
of spatial multipliers. Instead of doing the inverse of large matrices, the Taylor expansion

can be used as an approximation.

T-X)"'~ T+ X+ X2+ X3 X

The final part of Martinetti and Geniaux’s algoritm estimates the coefficients. The
authors present four different options to estimate the coefficients. The most complete set
of options in terms of precision, although more expensive in time, is the one that estimates
the coefficients based on the partial derivatives of the built-in likelihood function with
respect to the parameters to be estimated using the gradient functions. The second set of
options calculates the value of the autoregressive parameter using the likelihood with just

this parameter to optimize and the rest of coefficients with the standard probit regression.
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1.4.2 Alternatives to estimate spatial probit models by maxi-

mum likelihood

As stated in the introduction of this section, there were some other methods developed
that solve the problem avoiding the maximization of the likelihood function. Next, the

main methods that have been suggested will be briefly presented.

1.4.2.1 EM Estimation - McMillen (1992)

The method was proposed originally by Dempster et al. (1977a) as a method to maximize
the likelihood of a model when missing data is present. McMillen (1992), uses this method
to maximize the likelihood expression of spatial autoregressive models. The algorithm
works with two steps, which are iterating until they converge and the model will have
finished. The first step (E-Step) calculates the expected likelihood given some initial
values. And the second step (M-step) maximizes the previous likelihood function.

Focusing on the probit case, in the E-Step the endogenous observable variable is replaced

by the expected value of the latent variable. Therefore:

For SAR Model:

(I = pW)~'XB)

e . V1 — (T —1
if y; =1 then: E(Y %, |Y =1) = (I — pW) X6+UCI>((]—pW)—1X5)

(1.60)
O'((I — -1x
For SEM Model:
if y; =1 then: E(Y %, |Y =1)= X5+ OZ/(());?))
B(X (161)
if y; =0 then: E(Y %, |Y =0) = X — 0-1_51)()6()6)

The next step (M-step) is to maximize the log-likelihood function to obtain new coef-

ficientes.

For SAR Model:

n

K — (n/2)in(07) = (200) (1 = pW1)Y = XB)'(I — pW1)Y = XB3) + > (1 = pwi)

)

(1.62)
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For SEM Model:

n

K — (n/2)In(c?) — (2621 (Y — XB)'(I — \Wo)' (I — AWL)(Y — XB) + 2(1 — w;)

)

(1.63)

where w; are the eigenvalues of the contiguity matrix. This process is repeated until

convergence.

The method obtains biased but consistent estimates; however the most important
disadvantage of this algorithm is the computational time required to estimate the coef-
ficients. Especially for samples larger than 1000 observations the computational cost is
quite high. The tests carried out in the Monte Carlo exercise in the following section
show, in addition to the mentioned high computational cost, how the algorithm tends
to underestimate the spatial autoregressive parameter. These results are consistent with
the results of Calabrese and Elkink (2014).

1.4.2.2 GMM Estimation - Pinkse and Slade (1998)

Pinkse and Slade (1998) developed a estimation method for Spatial Error Models (SEM)
based on the Generalized Method of Moments (GMM). This method uses the error term
le(parameters)| defined in 1.34. Obviously, the error depends on the parameters esti-
mated (8, p and A. Therefore, the problem lies in minimizing the error based on the

parameters.

Estimated Parameters = arg min e(parameters) Z M Z'e(parameters) (1.64)

where 7 is an instrument matrix Z = 1+ X + WX +W?2X +W3X and M a symmetric
positive matrix, although in Pinkse and Slade (1998) is equal to the identity matrix.

An extension of this method was proposed in Klier and McMillen (2008). The au-
thors made a change in the function to be minimized by defining M = (Z'Z)~!. There
are five main steps in the iteration convergence. First Step: Take first approximated
parametersy(f,p) initial estimators.Second Step: Calculate residuals (e_0) as in 1.36
and calculate the partial derivatives (G) of P over § and p. Where P is the logit model
P = exp(y?)/(1 + exp(9F)). Third Step: Propose the regression G~Z and calculate G.
Forth Step: Calculate new estimation parameters; = parametersg + (G’@)*lé’eo. Fifth

Step: Run until it converges.
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GMM gets a good approach in p, but just when it is low?. The accuracy for the
estimators of the independent variables in general is reasonable, but quite often it tends
to calculate quite biased estimators. However, the most negative aspect of the algorithm is
the time it takes to converge. When the sample size is greater than 1000, the computation
time is likely to be greater than 20 minutes (see Monte Carlo Section). With respect to
LGMM, it presents great accuracy, even improving GMM. Equivalently, when p is high,
it fails to estimate it correctly, causing the model to misfit. However, its main benefit is
the faster convergence speed.

1.4.2.3 GIBBS Estimation - LeSage (2000)

GIBBS sampling is a method based on Markov Chain Monte Carlo. This type of sam-
pling makes sense when there are two or more dimensions involved in the problem. When
sampling from original multivariate distribution is taught, a possible solution is GIBBS
sampling which proposes a simpler and faster method by sampling from conditional dis-
tributions. In LeSage (2000a) this algorithm is proposed to solve the spatial probit re-
gression problem. The first consideration made is the assumption that (Y) is observable.

So the conditional distribution given an observable (Y) and known W is

plp, B.o/y, W) o |I — pW o~ ezt (1.65)

By assuming that 8 and p are known, it is easy to see that o* ~ x2 to extract ran-
dom draws to perform the sampling for this estimator. For § assuming the rest of the

parameters known

p(B/y, W, p,,0) = N(B,0¢(X'C'CX) ™)
for SAR: C=I and B (X' X)"H(X"(I = pW)Y)

for SEM: C=(I — pW) and 3 = (X'(I — pW)' (I — pW)X) 1 (X'(I — pW)' (I — pW)Y)
(1.66)

Finally, the random draws for p are taken from expression 1.65 above. In order
to faster calculations, not all the draws are taken, the “Metropolis Sampling” is used
(Metropolis et al., 1953). Additionally, just the estimates consistent with the restriction
1/min(eigenvalue_of W) < p < 1/max(eigenvalue_of W) (Anselin, 1988) are taken

into account.

2The Monte Carlo experiment performed show that when p is higher than 0.5, the algorithm under-
estimates it.
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This method achieves a very good precision both in the adjustment of the exogenous
factors and in the autoregressive parameter. It must be said that the way the algorithm
is proposed through MCMC sampling, as indicated by Calabrese and Elkink (2014) and
Martinetti and Geniaux (2017), it could take a long time to converge. However, the
computational development carried out by Wilhelm and de Matos (2013) in R, makes the
algorithm much faster, achieving proper estimates in a few minutes when the sample is

less than 10 thousand records.

1.4.2.4 RIS Sampling - Beron and Vijverberg (2004)

In this case another technique of sampling is used to evaluate the n-dimensional normal
probability. Beron and Vijverberg (2004a) propose the Recursive Importance Sampling
to solve the spatial probit problem. RIS sampling is a method to simulate discrete choice
probabilities in a multivariate probit model. This algorithm is basically the same as GHK

Monte Carlo sampling.

Let’s create the diagonal matrix Z where the elements of the diagonal take the value
of 1 if ;=0 and the value of -1 if y;=1, so that:

diag(Z) =1-2y, (1.67)

The variance-covariance matrix for v=Ze would be Q2,= 7Z Q 7Z’. Where w is defined in
(1.46,1.49,1.52). Therefore v will be distributed as N(0,0,). Q! can be rewritten using
Cholesky as Q'=A’A and let n=Av. So, 7 is i.i.d standard normal. A~! will be an
upper triangular matrix whose principal diagonal is always positive B=A"!, thus, Bn=v.
The upper limit of v will be V=—Z(I — pW)~'X 3. Then, the recursive iterative process
to define 7 is

Va
T =3 < 0
n o 1.68
- VB - Zi:jJrl bji77i ;.0 ( )

77]'— b
J

Then, to evaluate Pr(v < V)
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K . | [ @ (n;)dn,...dn, = (1.69)
—in —in 1
e D' (1) /’72 ' (12)
- . O (1) (1)) ) 5 (1)l
/mf ) o g ) 2O () ) )g (1)

Where ¢°(n;)=g(n;)/G(n;).Being g the density function and G the cumulative distri-

bution function.

By generating a large number of random vectors of 7 and fulfilling n; < n;,. Given
Nno the rest of n can be calculated using 1.68. The final simulated parameters can be
obtained doing

S = NumberO fSimulations

Y5 (T, @ (n0,0) (1.70)
S

EstimatedParameters =

This method achieves good results of accuracy of the parameters. When p is high it
tends to underestimate it slightly. The main and clearest disadvantage of the algorithm
is the computation time. Without a doubt, it is the algorithm that we are presenting
in this work that takes the longest to converge. The authors themselves at Beron and
Vijverberg (2004a) carry out a Monte Carlo exercise in which they cannot use a large
sample size due to computational limitations. With an i7 computer with 8GB of RAM,
the algorithm could take an hour and a half to converge, which makes it unfeasible to

use in practical terms.

1.5 Marginal Effects in Probit Models

Interpreting the way in which changes in the explanatory variables impact on the prob-
ability of occurrence (Y=1) is easy for the classical probit models while requires more
care in the case of the autoregressive probit models. The reason is because of the spatial
lag of the latent dependent variable WY* of the SAR probit model, changes in the value
of the variable for observation j, influence observation i’s probability. That is, now, the
changes to the probability of Y=1 in location i are twofold: i) that induced by a change
in the own-value of the variable, which is denoted in literature as the direct effect; and ii)
that induced by a change in the value of the variable associated with another observation,

denoted as indirect effect. Finally, a global effect measure, denoted total effect, gathers
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the sum of the direct and all indirect effects associated with all observations different from
i. The total effect in the SAR spatial probit model is comparable with the only effect
derived from any standard probit model (and also the only effect derived from our first
type spatial probit model). In essence, the idea is that spatial dependence expands the
information set to include information on neighbouring individuals. A full description of
interpretation of direct, indirect and total effects can be found in Lacombe and LeSage
(2018).

1.6 R packages to estimate Probit Models

Over the last few years the popularity of spatial econometrics has grown. This has meant
that specific packages or software have been created to solve problems on the matter.
The first softwares with spatial econometric elements were SpaceStat developed by Luc
Anselin in 1992 and a little later Spatialstats developed by Stephen Kaluzny in 1996.
Later, thanks to the contributions of James LeSage or Paul Elhorst, specific modules
were created in Matlab, which In the first decade of the 21st century, it gave a lot of
visibility to this type of methodologies. Since then, both specific free software such
as GeoDa (Anselin, 2003) or commercial software such as ArcGIS (Scott and Janikas,
2010) or Stata (StataCorp, 2017) with toolboxes on spatial econometrics have emerged.
Undoubtedly, one of the languages that more researchers in spatial statistics have adopted
in recent years and that has received the most contributions has been R and according

to Bivand et al. (2021), it contains by far the richest variety of options.

The reference packages for purely geographic themes are sp and raster. In them the
user can access the creation of polygons, spatial structures or manipulation and writing
of different types of spatial objects. In fact, as can be seen in Bivand et al. (2008) (page
5), practically all the spatial packages developed to date depend on or directly import
the sp library. Focusing on more analytical aspects, the spdep library is one of the first
and great contributions that Roger Bivand has and many co-authors review and incorpo-
rate new features into this package. Its main functions are aimed at creating adjacency
matrices with polygons or points, it contains the main global and local autocorrelation
tests and various display functions. The best known library for spatial regression models
is spatialreg, in which we find the estimation functions for specifications of the models
that have been named in section 2. Although, the developments have been made only in

this package for the classical Gaussian environment.

The reality is that there is not much variety of packages in terms of models where the
dependent variable is limited like probit models. Several of the packages that exist are
linked to the methodological development provided in the academic literature and which
in turn makes the contribution to free software. The package McSpatial developed by
Daniel McMillen in McMillen (2013), contains the functions to solve the spatial probit
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and logit models using the Generalized Method of Moments(GMM), its linearized exten-
sion (LGMM) and also Maximum Likelihood (ML). The next package to appear is the
spatialprobit developed by Stefan Wilhelm and Miguel Godinho de Matos in Wilhelm
and de Matos (2015), in which the Bayesian estimation of the coefficients for probit and
tobit by using MCMC and GIBBS sampling. As previously reported, the use of sam-
pling techniques is quite efficient but extremely slow for large data samples. To mitigate
these computational restrictions, the package uses sparce arrays, compiles the code in
fortran, and uses parallelization. Another advantage of the package is that it allows to
obtain the direct average effects, the total effects and indirect effects as difference of
the two. The library calculates marginal effects quite fast by using QR-decomposition
instead of inverting the n x n matrix (I — pW) in each MCMC loop. This process is
explained in great detail in Wilhelm and de Matos (2013). Another Bayesian method
for solving spatial problems is based on the Integrated Nested Laplace Approximation
(INLA). INLA is implemented in the R-INLA package providing posterior marginals at
quite efficient times. Gémez-Rubio et al. (2021) has presented very recently the benefits
and accuracy of these methods for dichotomous spatial processes. Finally in our review,
the package ProbitSpatial which uses the method of Martinetti and Geniaux (2017) and it
was programmed by the authors as well. They propose to solve the spatial probit model
by maximum likelihood using approximation methods inspired by Mendell and Elston
(1974b). This last package presented, as far as we know, is the only one that includes the
SARAR model as an option to estimate its parameters. It allows the user to estimate
the coefficients with conditional and unconditional expectations, as well as, tpo change
the level of precission in order to minimize the time to converge. Additionally, in order
to speed up calculations, the code is programmed in R and C ++ using the Repp and

ReppEigen libraries. It also contains a function to show the marginal effects.

Without a doubt, this list of packages and features will continue to grow for years
to come. After three decades of contributions, it can be said that there is a robust
scientific community developing novel advances in spatial econometrics. Both in terms of
computational efficiency and new algorithms to give light on the vastness of georeferenced

data that is being captured today.

1.6.0.1 Comparisons between Estimations

Once the entire universe of the spatial probit has been presented, the objective of this
subsection is to perform an analysis of the estimation of the different algorithms in R.
Throughout a simple Monte Carlo experiment, both the bias in the estimated coefficients
and the execution time will be tested. Both the bias of the estimator and the time
consumed depend on the sample size and the degree of spatial dependence, so we will
vary these variables to see their impact.

The Monte Carlo experiment is to be performed on the specification of a SAR
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model (see Section 1.17). In each execution an independent variable distributed as a
Normal(u=1,0=2) is generated and a regular lattice of \/n x y/n is also created randomly.
The observations will be randomly distributed on these grids. The adjacency criterion of
the observations will be the “Rook” criterion and then the matrix will be standardized.
In order to create the vector of simulated Y*, the residuals will have a distribution of a
Normal(0,1), so we use ideal conditions to see the performance of these algorithms. The
final Y* will have the theorical beta parameters f=(1, -0.5). As said, in order to test
the algorithms different sample sizes are proposed n=(100,400,900,1600,2500). When
the sample size makes the algorithm not converge or the amount of time required is
disproportionate®, the Monte Carlo iteration stops and goes to the next iteration. The
p parameter is chosen between p=(0.3,0.5,0.7), to be able to see the influence that the
spatial dependency parameter has on the properties of the estimation algorithm. All
this study is undertaken with an Intel(R) Core(TM) i7-6500U CP @ 2.50GHz 2.59GHz
with 8GB of RAM with no parallel simulations.

Model Simulated:
Y*=1614+ XBs+ pWY™ +u (1.71)
u~ N(0,1)

Before going into all the details of the experiment, it must be said that the fastest*
and most imprecise way to model a phenomenon with a spatial delay of the dependent
variable is using the standard Probit. Bias for different p and sample size are contained
in Table 1.1. The function used to calculate standard probits is the glm core function
in R with family binomial and link “probit”. As expected, estimators are biased and

inconsistent, especially when p is high.

3Duration longer than 180 minutes
4The average for all the simulations presented in the analysis took less than a second to converge
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Table 1.1: Bias in ; and 35 using Standard Probit Algorithm

p=03 p=05 p=07
n = 100
Bias 8;  0.2097  0.4025  0.6623
Bias 8, -0.0064 0.0014  0.0588
n = 400
Bias 57 0.1936  0.3382  0.5754
Bias 8, -0.0115 0.0355  0.0936
n = 900
Bias 8;  0.1872  0.3329  0.5763
Bias 82 0.0101  0.034  0.0792
n=1600
Bias 8;  0.1549  0.343  0.5973
Bias 82 0.0184  0.0371  0.0825
n=2500
Bias 8; 0.1651  0.3313  0.5806
Bias 82 0.0145  0.0389  0.094

The algorithms presented above designed to estimate the spatial probit coefficients
will be tested. The algorithms that are optimized in public R functions are GMM,
LGMM in McSpatial package, GIBBS in spatialprobit package and ML in ProbitSpatial
package. Regarding EM and RIS, the implementation of Calabrese and Elkink (2014)
for their Monte Carlo design is taken. The hyperparameters necessary to launch the
algorithms are taken following the indications of the packages or papers that support
them. GIBBS sampling have been run with 1000 MCMC iterations and with 100 burn-
in discard. RIS sampling has been run with the same 1000 iterations based on Beron
and Vijverberg (2004a) where a Monte Carlo study is performed with 1000 and 2000
simulations®. The simulations necessary to reach the optimum in the EM algorithm are
also 1000 following indications from Calabrese and Elkink (2014) In the case of GMM and
LGMM, we take the default convergence criterion established in the package programmed
by Daniel McMillen. Finally, for the execution of the ProbitSpatial package we follow the
suggestions in Martinetti and Geniaux (2017). By taking the conditional optimization
method by which, it solves by standard probit methodology and then conditions on p.
For each of the combinations of sample size, p and estimation algorithm, 500 simulations

have been carried out.

1.6.0.1.1 Results under ideal conditions

The results of the bias of the estimator 5 and p are found in the Table 1.3 and Table
1.2 with the average of the iterations grouped by sample size and level of autocorrelation

parameter and in Figure 1.4 and a box plot in Figure 1.2 with the distribution for each

RIS sampling works reasonably well with 1000 iterations and obviously reduces computation times
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algorithm solving spatial probit. The algorithms have been arranged in the chronological
order in which their respective papers were published. EM in 1992, GMM in 1998, GIBBS
in 2000, RIS in 2004, LGMM in 2008 and ML in 2017.

The first relevant aspect in the tables is the high volatility of the estimator when the
sample size is equal to 100. Given such sample size, when p is small, we observe that
the algorithms capture properly the estimator of 5, and ;. For such sample size and
dependency factor, the algorithms that provide the best spatial dependence estimation
are GMM, LGMM and ML. As we increase the spatial dependency parameter to 0.5
for n=100, the algorithms achieve a similar bias except GIBBS and EM, which fail to
estimate the p parameter. All the algorithms tend to underestimate p except for LGMM
which slightly overestimate it. When the spatial dependence is high p=0.7, basically the
bias that we observe in more moderate p tends to be accentuated. Given the theorical
parameters chosen or any other aspect of the Monte Carlo experiment, the reality is that

EM algorithm achieves poor parameter fitting both for p, 51 and (,.

When the sample size varies between 400 and 900 observations, LGMM and RIS stop
providing good fits when p=0.7. ML stands out as the algorithm that provides most
centered estimations of the parameters. Especially when the sample size is increasing
and when the spatial autocorrelation is moderate. Finally, for larger sample sizes such
as n=1600, it can be seen that ML and GIBBS obtain centered results as a whole for
p, frand 5. For such sample size, the volatility of the estimators is lower than in the
other sample sizes. LGMM continue overestimating the value of the spatial dependence
specially when dependency is high and as a result, it generates bias in the independent
variable beta estimator. RIS produces centered estimates in y but underestimates p
which is compensated overestimating the intercept (). Finally, GMM produces very

accurate estimates on p although present bias in 3 and very volatile estimated [;.
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Bias in Rho. By Sample Size and Autorregresive Factor
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Figure 1.2: Bias in the p estimation under ideal conditions

Table 1.2: Bias in the p estimation under ideal conditions

p=03 p=05 p=07

n =100 1992 EM -0.1753  -0.3032 -0.4521
1998 GMM  -0.0325 -0.0483 -0.1808

2000 GIBBS -0.0751 -0.1221 -0.1982

2004 RIS -0.0284 -0.0700 -0.1090
2008 LGMM -0.0266  0.0423  0.0173
2017 ML -0.0341 -0.0726 -0.1105
n =400 1992 EM -0.1700 -0.2936 -0.4145

1998 GMM 0.0042 -0.0229 -0.0212
2000 GIBBS -0.0268 -0.0404 -0.0625

2004 RIS -0.0415 -0.0621 -0.1191
2008 LGMM  0.0155  0.036 0.134
2017 ML -0.0042  -0.0291 -0.0391
n =900 1992 EM -0.1705 -0.2752  -0.4079

1998 GMM 0.0080  0.0153 -0.0130
2000 GIBBS -0.0157 -0.0173 -0.0392

2004 RIS -0.0538 -0.0579 -0.1365
2008 LGMM  0.0066  0.0446  0.1249
2017 ML -0.0037 -0.0144 -0.0315
n = 1600 1992 EM -0.1666  -0.2836  -0.4092

1998 GMM 0.0083 -0.0051  0.0192
2000 GIBBS -0.0027 -0.0104 -0.0301

2004 RIS -0.0360 -0.0702 -0.1423
2008 LGMM  0.0225 0.0432  0.1264
2017 ML 0.0078 -0.0132 -0.0286
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Table 1.3: Bias in 4, and 35 under ideal conditions

p=03 p=0> p=0.7
n =100 1992 EM B, 0.1148  0.1908  0.4003
1992 EM s -0.0001  0.0218  0.0739
1998 GMM /3, 0.2854  0.5021  1.3431
1998 GMM 3, -0.137  -0.2332  -0.3903
2000 GIBBS 3, 0.1008  0.1481  0.269
2000 GIBBS g, -0.0328 -0.0413 -0.011
2004 RIS By 0.056  0.1089 0.24
2004 RIS ps -0.0244 -0.0413 -0.0631
2008 LGMM p;  0.0215  -0.1044 -0.1059
2008 LGMM 3, -0.0094  0.0167  0.0446
2017 ML 4 0.0715 0.1325  0.3169
2017 ML 5, -0.0262 -0.0475 -0.0749
n =400 1992 EM 3, 0.0926  0.1554 0.2531
1992 EM S5 -0.0002  0.0473  0.1036
1998 GMM /34 0.0229  0.0393  0.399
1998 GMM 3,  -0.0244 -0.0051 -0.2085
2000 GIBBS 3, 0.0335  0.0419  0.0573
2000 GIBBS 3, -0.0112 -0.0043 0.0106
2004 RIS By 0.0462  0.0412  0.1328
2004 RIS B, -0.0178  0.0127  0.0041
2008 LGMM j;  -0.0297 -0.1049 -0.3355
2008 LGMM 3,  0.0089  0.0243  0.0706
2017 ML 4 0.0207  0.0429  0.1125
2017 ML 5, -0.011  -0.0056 -0.0122
n =900 1992 EM 3, 0.097  0.1396  0.2438
1992 EM s 0.0127  0.0432  0.0968
1998 GMM /34 0.0041  0.0134  0.0497
1998 GMM 3, 0.003  -0.0172 -0.0307
2000 GIBBS 3, 0.0138  0.0192  0.028
2000 GIBBS B, -0.0006 -0.0041  0.0098
2004 RIS By 0.0527  0.0373  0.1186
2004 RIS B, 0 -0.0049  0.0123
2008 LGMM j;  -0.0383 -0.1226 -0.3345
2008 LGMM 3, 0.0124  0.0279  0.0743
2017 ML p4 0.008  0.0267  0.0903
2017 ML 5, -0.0006 -0.0057 -0.0063
n = 1600
n = 1600 1992 EM 3, 0.0647  0.1575  0.2617
1992 EM S5 0.0199  0.0447  0.1003
1998 GMM /3 0.0104  0.047  0.0193
1998 GMM 5,  -0.0117 -0.0164 -0.0264
2000 GIBBS 3, 0.002  0.0148  0.016
2000 GIBBS f, 0 -0.003  0.0121

2004 RIS B4 0.0219
2004 RIS B, -0.017
2008 LGMM 3, -0.044
2008 LGMM 35 0.0088

0.0524  0.1117
0.0044  0.0151
-0.121  -0.3388
0.0291 0.0754
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Bias in Beta1, By Sample Size and Autorregresive Factor
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Figure 1.3: Bias in $; under ideal conditions

The results of the computational time taken by the executions of the study are found in
Table 1.4 with the mean of the runs and in Figure 1.5 with the box plot with its distribu-
tion. The larger the actual spatial dependency in the data, the longer the computational
time is generally required for the algorithm to converge. This increase is especially rele-
vant in the Ris, GMM and EM algorithms. For these algorithms, the estimation becomes
especially long from databases of more than a thousand records, obtaining durations
greater than 20 minutes. However, the ML, LGMM and GIBBS algorithms, which are
the ones that also have implementation and optimization in R, have quite affordable

duration which makes them truly attractive for their use.
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Bias in Beta2. By Sample Size and Autorregresive Factor
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Figure 1.4: Bias in 5 under ideal conditions

Table 1.4: Average Time in running spatial probit models under ideal conditions

p=0.3  p=0.5  p=0.7

n = 100
1992 EM 0.0082  0.0078  0.0112
1998 GMM 0.0118  0.0138  0.0181
2000 GIBBS  0.0527  0.0532  0.0524

2004 RIS 0.0677  0.1456  0.2305

2008 LGMM  0.0009 0.0002  0.0002

2017 ML 0.0008  0.0008  0.0009
n = 400

1992 EM 0.1938 0.2202  0.2925

1998 GMM 0.5332  0.5521  0.7468
2000 GIBBS  0.0909  0.0912  0.091

2004 RIS 0.8298  2.1108  4.0725

2008 LGMM  0.0003  0.0003  0.0003

2017 ML 0.0043  0.0051  0.0054
n = 900

1992 EM 2.016  2.5239  2.9057

1998 GMM 7.054  7.3515  9.8168
2000 GIBBS  0.1754  0.1772  0.1788

2004 RIS 3.6207  7.5709 19.0616

2008 LGMM  0.0007  0.0007  0.0006

2017 ML 0.0173  0.0195 0.022
n = 1600

1992 EM 10.0955 13.3222 16.9005

1998 GMM  43.8724 45.2712 62.1566
2000 GIBBS  0.2924  0.2931  0.2965
2004 RIS 16.7811 19.975  26.003
2008 LGMM  0.0016  0.0012 (.001
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Time for Different Algorithm to Estimate Spatial Probit. By Sample Size and Autorregresive Factor
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Figure 1.5: Box plot with Time (in Minutes) in running spatial probit models under
ideal conditions

As the sample size increases, both ML, LGMM and GIBBS continue to show great
performance. The purpose of these new data contained in the table 1.5 is to see the
effects of notably increasing the sample size and also including the accuracy of each of
the models through the Area Under the Curve ROC. LGMM (R spprobit function) is
without a doubt the fastest in converging with the function’s default hyperparameters.
However, as it was the case with smaller sample sizes, it is the algorithm that provides
the least centered estimators, especially when the spatial lag is high. This inaccuracy in
the estimation of parameters is reflected in the ROC achieved by the algorithm, which is
certainly low for p=0.7. GIBBS sampling (R SAR_ probit_mcmc function) and ML (R
ProbitSpatialFit function) provide fairly similar unbiased estimators achieving identical
levels of accuracy. It could be said that the difference between both methods is the
time to converge, being ML algorithm much more efficient, although to be fair, GIBBS
sampling offers the possibility to change the number of draws to estimate the probability,
so by changing number of iteration it could be possible to decrease the computational

cost.
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Table 1.5: Estimation of Bias and Computational time increasing the number of obser-
vations (ML, LGMM and GIBBS)

p=03 p=0>5 p=07
n=2500

2000 GIBBS Bias 8y 0.008  0.0177  0.0087
Bias 8, -0.0012 -0.0049 0.0102
Bias p  -0.0046 -0.0096 -0.0247

Minutes 0.7164 0.7016  0.711

AUC 0.8397  0.8466  0.8558
2008 LGMM Bias 8, -0.0346 -0.1156 -0.3507
Bias 8,  0.0088  0.0254  0.0741

Bias p  0.0138 0.0449 0.1381

Minutes 0.2192  0.2152  0.2166

AUC 0.8398  0.8464  0.8358

2017 ML Bias 5, 0.0025  0.029  0.0774
Bias 8, -0.0015 -0.007 -0.0037
Bias p  0.0064 -0.0121 -0.0262

Minutes 0.3356  0.3329  0.3455

AUC 0.8397  0.8466  0.8558

n=6400

2000 GIBBS Bias 4 0.0021  0.0078  0.0038
Bias 8,  -0.001  0.0005 0.0116
Bias p  -0.0032 -0.0069 -0.0207

Minutes 5.1863  5.1742  5.4498

AUC 0.8403  0.8442  0.8559
2008 LGMM Bias 8, -0.0307 -0.116  -0.3525
Bias 8,  0.0088  0.0311  0.0757

Bias p  0.0014 0.0345 0.1349

Minutes 3.2847  3.3043  3.4166

AUC 0.8403  0.844  0.8473

2017 ML Bias 5, -0.003  0.0182  0.0732
Bias 8, -0.0006 0.0006 -0.001
Bias p 0.005  -0.0127 -0.0237

Minutes 3.9834  4.055  4.2414

AUC 0.8403  0.8442  0.8559

1.6.0.1.2 Results under non-ideal conditions

In real data, we always find data with measurement errors, lack of information, en-
dogeneity in the model and many other problems that make parameter estimation more
difficult. In Table 1.6 we propose the assessment of bias, time and accuracy of the mod-
els under non-ideal conditions. The proposed model contains endogeneity and a spatially
significant lagged variable X for the estimation of Y* but not included in the estimation.
Such that:
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Model Simulated:

Y5 =181 4+ X3y + pWY* +u
u=—0.15X +02WZ +e (1.72)

Where:

Z ~ N(1,2) and e ~ N(0,1)

There are no significant differences among the accuracy achieved by the models. Given
the simulated residual structure, the general precision tends to increase when the real p
parameter is higher. LGMM presents a significant bias in the estimation of p regardless
of the sample size. When the spatial dependence is moderate, the algorithm correctly
adjusts the coefficients. However, just like under ideal conditions, when p gets large it
introduces bias problems. As a result, LGMM shows a significant precision deficit. The
AUC is almost identical for any sample size and p when estimating with GIBBS or with
ML. Computational times increase by thirty percent when estimating with GIBBS for
n=6400. And the bias in § and p is very similar for p greater than 0.5. For lower p, the
bias presents greater volatility, making it difficult to choose between both models.
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Table 1.6: Bias, Computational time in minutes and ROC under No Ideal conditions
(ML, LGMM and GIBBS)

p=03 p=0>5 p=07
n = 2500

2000 GIBBS Bias 8 0.1523  0.1488  0.1365
Bias 8, -0.0513 -0.0466 -0.0173

Bias p  0.0014 -0.0008 -0.0302

Minutes 0.6967  0.691  0.6934

AUC 0.8568  0.8619  0.8751

2008 LGMM Bias 8 0.1028  0.0055 -0.2999
Bias 8, -0.038  -0.008  0.0501

Bias p  0.0134 0.0317  0.1483

Minutes 0.2168  0.2125 0.2116

AUC 0.8568  0.8618  0.8546

2017 ML Bias /1 0.1465  0.1592  0.2247
Bias 8, -0.0505 -0.045 -0.0429

Bias p 0.009  -0.0068 -0.0219

Minutes 0.3241  0.3376  0.3381

AUC 0.8568  0.8619  0.8753

n = 6400

2000 GIBBS Bias 4 0.1523  0.1508  0.1344
Bias 8, -0.0473 -0.0498 -0.0196

Bias p  -0.0043 0.0019 -0.0267

Minutes 5.3453  5.4326  5.5655

AUC 0.856 0.863  0.8744

2008 LGMM Bias 4;  0.1041  -0.0003 -0.2775
Bias 8, -0.0354 -0.0112 0.0484

Bias p  0.0095  0.042  0.1308

Minutes 3.4408  3.398  3.5013

AUC 0.856  0.8628  0.8651

2017 ML Bias 5, 0.1467 0.1637  0.217
Bias 8, -0.0472 -0.0492 -0.0407

Bias p  0.0039 -0.0044 -0.0196

Minutes 4.1482  4.2033  4.2848

AUC 0.856 0.863  0.8744

Therefore, as a conclusion, there are no relevant differences in precision or bias of the
estimator between ML and GIBBS.Both algorithms seem to be ideal for estimating the
spatial probit for any sample size or degree of spatial dependence. Only a significant
difference in time which, to be fair, can be adjusted through the number of draws in
GIBBS. The analyst must decide between all these methods described taking into account
these technical features. Currently, we can say that the estimation of the spatial probit
has reached a consolidated and robust level for its use in science. The inconvenience
of computational cost has been alleviated by the development of these highly optimized

algorithms. Furthermore, it seems that the econometric world in practice, is going towards
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Cloud Computing which provides instant access to different levels of RAM or number of
CORES. It is, without a doubt, the perfect combination for a boom in the field.

1.7 State of art focused on Human-Behavior

Another of the contributions of this first chapter is to indicate the progress of research
using spatial probit models. The algorithms for finding centered and efficient parameters
are sufficiently robust as seen in the previous section. Although, there are still two factors
that go against research with these algorithms. The first, computing times are still high
especially when the databases are large. And second, machine learning algorithms are
being developed producing very deep and accurate estimates and, despite being non-
interpretable, they are attracting the interest of a multitude of data scientists in recent

times.

The following paragraphs show the contributions of the spatial probit particularly in
consumer human-behavior research area. Our intention is not to make an exhaustive list
but to enumerate many relevant works on this topic. This field of research is supposed
to be quite broad, however, the low number of publications on the subject using spatial
econometrics is appreciated. Haghani et al. (2021) propose an in-depth analysis on the
diffusion of discrete choice econometric models. In fact, exponential growth in matter is
revealed throughout the 21st century. However, spatial phenomena are hardly considered
in this analysis. It seems that research on quantitative methods to solve spatial probit
regression is not currently accompanied by a growing number of findings. Billé and Arbia
(2019) highlighted this fact by focusing on the health-themed papers. In this latter paper,
the need for the application of spatial probit models is emphasized due to their potential
uses in the field of health. One of the main objectives of this chapter is to extend the

search carried out in Billé and Arbia (2019) to discrete choice human-behavior studies.

In 1973 Danniel MacFadden stated that “A fundamental concern of economics is un-
derstanding human choice behavior” (McFadden et al., 1973). Since then, the interest
of researchers in modeling human behavior has been increasing. Following the research
of Haghani et al. (2021), there are four themes around choice modeling. Apart from the
purely methodological, the papers focus mainly on health, transport, consumption or en-
vironmental issues. Health-related papers predominate over other topics. The weight of
spatial contributions on this topic are insignificant and it is analyzed in Billé and Arbia
(2019). The lack of use of spatial econometric techniques can lead to suboptimal models
in which the estimators are inconsistent and therefore cannot be extrapolated to other
use cases. Furthermore, in the case of estimation of variables” marginal effects on the en-
dogenous, there will be a latent bias caused by not having used the correct specification
of the model.
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Transportation also receives special interest in academic literature. The type of vehi-
cle used, the distinction between public / private transport or the route of the traveler
focuses analyst’s attention, see e.g. Baidoo and Nyarko (2015), Fiorio et al. (2013), An-
tonini et al. (2006). However, although spatial variables such as neighborhood or area
are present in these studies, the interdependence of the observations is not captured in
the models. Wang et al. (2015) propose a spatial autoregressive probit model in which
the propensity to use the bicycle as a form of transport is determined. In a similar line of
research, Goetzke and Andrade (2010) proposed a walkability model in New York City,
in which the neighborhood effect is shown. Both models show the technical superiority
of the probit autoregressive model and show the need to resort to these techniques for
the implementation of social and urban policies. The modeled reality indicates that both
the use of bicycles and the habit of walking become more attractive in those areas where
there are already more users of bicycles or walkers.

Within the title of “environmental” is the subtopic “land use” which is the one that cur-
rently has the most spatial references. In 2002, right at the time when algorithms for
solving spatial probit regression were taking off, Holloway et al. (2002) published a study
explaining the Bayesian algorithm (Metropolis-Hastings) and putting it into practice to
explain the adoption of High Yield Variety (HYV) rice in Bangladesh. Until then, there
had only been studies in which the problem was solved through the classic OLS without
considering spatial dependence. As a conclusion to the article, the authors present the
model with and without neighborhood effects, where the bias in the marginal effect of
certain variables is exactly appreciated, leading to different conclusions between both
models. After this analysis, several papers came up analyzing different technological
proposals for agriculture (Nazari Gooran and Borimnejad, 2015, Ommani and Noorol-
lah Noorivandi (2019), Skevas et al. (2021), Zheng et al. (2021)). In all of them spatial
probit models are specified and Bayesian framework is used for estimation. What is clear
is that neighborhood attitudes affect individual decision-making in agricultural land use.
Other references related to land use analyze, for example, deforestation in Latin American
countries. While (Arima, 2016) uses spatial methods to conclude which lands are more
likely to be deforested in the future depending on the distance to nearby roads and the
probability of deforestation from other adjacent lands. Other very present methodologies
to approach the problem are related to non-interpretable “machine-learning” techniques.
For example, Valle et al. (2020) establishes a random forest model and another general-
ized additive models to find a solution to the problem. As far as we know, there is still
no comparison between methods with assembled models versus spatial methods in terms
of precision and fit of the residuals.

The last group of papers belong to pure consumer behavior. It is reasonable to think
that behavior of individuals is marked among other factors by unobservable variables
related to space, by word of mouth or by social movements or trends within each neigh-

borhood. Therefore, the idea that each person forms their own preferences and based
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on these, makes their decisions is quite unrealistic. Yang and Allenby (2003a) demon-
strate these mimetic behaviors in the choice of car brand. The authors even indicate that
behavior influenced by proximity is more significant than due to demographic factors.
However, socioeconomic and demographic variables are much more common in the con-
sumer econometric literature. Giansoldati et al. (2020) carried out an interesting analysis
on the choice of electric vehicle versus fuel. One might think that environmental concern
could impact in this decision and complex spatial patterns could be behind this climate
thoughts. If spatial patterns exist, the estimated coefficients could be masking in some
way the spatial autocorrelation, causing that those decisions made, based on model re-
sults, might not be correct. In this sense, a widespread problem is the customer churn
detection and possible actions to retain, with a bast academic literature on this matter.
De la Llave et al. (2019b) is the first paper in which a spatial econometric model is speci-
fied to detect customer churn. In this case, the model gains slightly in accuracy, but what
is more relevant is the change in the marginal effects on the endogenous variable after
using a SAR model. Ferreira et al. (2019) also raises this issue by focusing its analysis
on customer churn associated with the behavior of each individual’s network of friends.
With this new approach, the calculation of the customer’s lifetime changes and therefore
the commercial strategy to retain customers changes. Similar strategies to build cus-
tomer loyalty in retail ecommerce are included in a spatial study in de la Llave Montiel
and Lépez (2020). In many cases, the loss of the customer hides a loss of competitive-
ness against their peers. Technological advances are a key piece in the market. These
advances are not random in space but often depend on zonal behaviors or imitative be-
haviors of SMEs (Autant-Bernard et al., 2007). The ability to handle geo-referenced data
is increasing rapidly and given the need to understand customer churn patterns to create
tailored actions, spatial techniques for extrapolation of micro-territorial data becomes a

fundamental tool to better approach the consumer behavior.

Let’s finish the state of the art by looking for the research that goes after the real
reasons why humans perform mimetic behaviors to those around them. As we have seen
above, there is mathematical evidence that models that take into account proximity be-
tween individuals have better properties in the investigation of human behavior. This is
simply the evidence of some much deeper biological, psychological or neuronal process.
Mirror neurons are cells found in the premotor cortex of the human being. According to
Rizzolatti and Craighero (2004), these neurons are activated in the cortex of the brain
by observing the performance of an action by another person. Recent research indicates
that imitation as social mirroring requires the connection between the core circuitry of
imitation and the mirror neuron system (Iacoboni, 2005). The mirror neural system is
responsible for transforming visual information into knowledge. This type of learning is
very useful for the neural system since it avoids consuming time and energy in carrying
out different tests to know the result. Therefore, in addition to pure knowledge, another

aspect in which mirror neurons play a key role is in accepting the result of the actions
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performed by others through pure visualization (Cattaneo and Rizzolatti, 2009). When
these actions made by a third person generate an outcome, it automatically feeds the
observer’s decision-making system. From a psychological point of view, imitative behav-
ior is a form of social communication. Through the imitation of behaviors there is a
greater connection between people and feelings of empathy are shared (Chartrand and
Bargh, 1999). Moreover, this communicative exchange is stronger when it is perceived to
be being imitated by another (Meltzoff and Decety, 2003). The reality is that there is a
very extensive literature on the neurological aspects of imitation. From the unconscious
behavior of infants to the most rational of adults. Currently there is an open line of
research to understand what mechanisms are activated in the brain in this complex pro-
cess. These processes can be the biological basis of what is found in spatial econometric

models: Human behavior can be better explained by knowing people’s surroundings.
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Chapter 2

The impact of geographical factors

on churn prediction

2.1 Introduction

The impact of geography on marketing science is an important topic of research for
business and management. A model becomes ‘spatial’ if the behaviour of one economic
agent is codetermined by nearby economic agents (Burridge et al., 2016). Spatial analysis
is a new and emerging research topic in marketing — one which has not yet revealed
its potential — that is receiving increasing interest due to the increasing availability of
georeferenced information. In the field of Customer Relationship Management (CRM),
taking advantage of the spatial correlation between customers can improve the predictive
performance of models. The main contributions to CRM (including spatial effects) are
in the subfield of customer acquisition (Baecke and den Poel, 2012; Millo and Carmeci,
2011); in relation to customer churn behaviour, however, no research that takes into

account geography and ‘space’ as explicative factors has yet been undertaken.

Customer churn prediction models aim to detect customers with a high propensity to
leave. Because there are many competing companies, customer loyalty to a particular
company has declined, and high percentages of customers cancel all their policies. The
percentage of churn ranges between 3.3% (Hung et al., 2006) and 15.7% (Keramati et al.,
2014), and in other cases is confidential (Giinther et al., 2014). Losing a customer has
several negative effects on the company. First, the churning has implications for sales
revenue. The cost of attracting new customers to replace those who have left is high.
Some research has shown that this costs between 6 (Verbeke et al., 2012) and 12 times
that of retaining the existing customer (Torkzadeh et al., 2006). Secondly, lost customers
have a negative effect on the company’s reputation and impact negatively on the brand’s
image. Churners tend to give negative feedback about the company, which may influ-

ence prospective customers (Saradhi and Palshikar, 2011). Therefore, predicting policy
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cancellation before the end date is a critical point for most companies. If those groups
of customers or policies can be detected, wherever the risk of churn is high, specific mar-
keting actions (e.g. customer retention programs) can be developed in order to keep the
customers. A small decrease in retention rates should therefore provide the company

with benefits; it is clear that customer retention is a critical point of CRM.

The phenomenon of customer churn can be frequently observed in volatile consumer
service markets such as telecommunications (Archaux et al., 2004; Hung et al., 2006;
Rosset et al., 2003), insurance (Gunther et al., 2014; Risselada et al., 2010; Morik and
K"opcke, 2004), subscription services (Coussement and den Poel, 2008), financial services
(Lariviere and den Poel, 2005) and banking (Xie et al., 2009). A huge variety of method-
ological approaches have been discussed in examinations of market independence. The
most popular of these approaches use classification trees (Lemmens and Croux, 2006) and
logistic regression (Giinther et al., 2014); multiple statistical techniques®’ have also been
developed in order to identify customers who are likely to churn based on their character-
istics: for example, survival analysis (e.g. Brockett et al., 2008); neural networks (Hung
et al., 2006); random forest (Lariviere and den Poel, 2005); support vector machines (Xie
et al., 2009); and more recently, machine learning (bagging; boosting; staking; voting) has
been applied (Risselada et al., 2010). Most of those techniques have resulted in limited
gains in accuracy and substantial increases in complexity (Risselada et al., 2010). This
statement is also supported by Neslin et al. (2006), who found that logistic regression

models and classification trees accounted for 68% of entries when churn modelling.

Most insurance companies collect very large data sets that provide invaluable business
information which may be analysed to develop a better understanding of customer be-
haviour. In some cases, the companies have several million customers, and they store
a huge number of attributes for the holder of each policy underwritten, mainly socio-
demographic characteristics (education level, age, sex, family size, social status) and
specific information about the company’s relation with the customer (number of policies,
discount program), and even relationships with another customers (social network, fam-
ily relations between customers). There is one piece of information, which is included
in all data banks that, to the best of our knowledge, has never previously been used in
models of churn prediction: the address of the customer. The address of a customer is
an important piece of information that enriches any churn model. First, if the insurance
company know the neighbourhood (or zip code) of the customer, then indirectly you
can gain information about the customer’s economic status, and it allows you to divide
customers into exclusive neighbourhoods. Some research that has been undertaken on
zip codes in churn prediction (Lochl et al., 2009; Verbeke et al., 2011; Huigevoort and

LA full description of methodologies used in the churn prediction model, besides the most important
contributions, is to be found in Table 1 in Verbeke et al. (2012); Table 1 in Soeini and Rodpysh (2012) ;
Table 1 in Keramati et al. (2014); Table 1 in Allahyari and Vahidy (2012); and Table 1 in Tsai and Lu
(2009). A comparative study is presented in Vafeiadis et al. (2015).
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Dijkman, 2015) showed ambiguous evidence. Verbeke et al. (2011) writes, “the number
of times a customer called the helpdesk will most probably be a better predictor of churn
behavior than the zip code”. Secondly, and directly related with our research, knowing
the exact location of a customer (latitude and longitude coordinates) makes it possible
to identify the proximity of other customers. Nearby customer churn behaviour probably
is codetermined, and some mimetic conduct between them can be noted. Pinheiro and
Helfert (2010) wrote, “Some events within the network can be influenced by activities of
other customers. In the example of churn, word of mouth, rumors, commentaries and
mostly activities of churn of other customers may create a chain process”. Along the
same lines, Haenlein (2013) presents evidences on the importance of social interaction in
customer churn decisions. Lastly, if the company knows the exact location of a customer,
it is easy to identify geographical factors (strategic geographical points) that could be
related to churning. Although there is a high degree of heterogeneity in insurance distri-
bution channels, proximity to a tied-agent (or insurance office) of the company (or the
competition) is probably a factor that influences churn. The predominant distribution
channel for the larger insurance companies in the individual market is often still the
tied-agent channel (Dumm and Hoyt, 2003, 28). Tied-agents are paid by a particular
insurance company to sell only its products. The presence of the agent of the company is
the only variable in the model which is directly controllable by the company’s managers;
they might have only indirect control over the market share of the broker and the direct
distribution channels (Lochl et al., 2009). In this sense, “a systematic analysis of spatial
information can identify profitable locations. Since the cost of analysis is relatively low,
it would appear worthwhile for financial service firms to invest in a systematic analysis

of locational and demographic factors” (Clapp et al., 1990, p. 447).

Taking into account the state of research, the main objective of this paper is to demon-
strate the impact of geographical factors on churn prediction. Using a portfolio of private
insurance customers from a major Spanish company, we will prove the power of using
geographical information to improve the classical probit regression models using Spa-
tial Regression Probit Models (LeSage and Pace, 2009b). We selected this methodology
based on the Spatial Autoregressive Probit model because the usual probit model is a
popular methodology that has been shown to perform well in churn analyses. Moreover,
the parameter estimates are easily interpretable. We would like to highlight that the geo-
graphical factors improve the performance of most aforementioned methods. This paper

fills an important lacuna in the literature, and it will be a turning point in churning.

The chapter is structured as follows: the second section describes the data and method-
ology. The third section presents the most important results and some potential compa-

nies’ strategies. The last section concludes this work.
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@ Churn
@ nNo churn
:5 Municipality

Figure 2.1: Georeferenced customers in the urban area of Madrid

2.2 Data and methodology

2.2.1 Data

The information used in the analysis comes from a large Spanish insurance company
which provides a wide range of insurance lines. Data analysed in this paper refer to
those customers that have taken out at least one policy through the company’s branches.
Customers who contracted their policies directly are excluded because their behaviour
tends to be different. For this work, we selected only customers located in the municipality
of Madrid (Spain). We selected Madrid because the company present the greatest insight
into that insurance market and because the number of policies in that area is the highest
of any urban environment. The addresses of all customers were obtained from original
data, and the exact coordinates (latitude, longitude) were integrated in the database. A
geo-referencing process was carried out using the R package ggmap (geocode function
in Kahle and Wickham, 2013). Observations non correctly localized or poor geocoding
addresses were excluded from the sample. As a result of the aforementioned filters, the
final dataset consists of a sample of 7,302 customers. Additionally, the addresses of all
insurance agencies of the analysed company (a total of 114 offices) and the more relevant
insurance competing agencies (a total of 250 offices) were obtained. The coordinates of
all agencies were obtained using similar procedure. Figure 2.1 shows the analysed urban

area and the spatial distribution of cases and agencies.

A customer churns if he leaves the company, cancelling all his policies with the company.
The overall lapse for the whole sample portfolio is 11.8% which is, according to statistics

published by the insurance institute ICEA | similar to figures for other companies in
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the Spanish insurance market. These cancellations mainly consist of non-payments or
voluntary surrenders. Reasons for cancellation are unknown because there is no any
further questionnaire for the relevant customers. In order to predict customer behaviour,
we selected a set of explicative factors. We included factors that have been considered
significant in similar studies (e.g. Gunther et al., 2014; Risselada et al., 2010). These
factors are mainly related to the socio-demographic characteristics of customers and the
contractual terms of their policies. Also, using information about the exact localisation
of customers and agencies, we noted other geographical variables that we think could be
relevant in this research. The description of all the analysed variables can be found in
Table 2.1.

As regards the socio-demographic characteristics of customers, our dataset collates in-
formation on gender, age and the customers’ familial status. Almost 60% of the customers
are male; the age of the client and the familial status is information which is gathered

when the customer signs his/her policy with the company.

Regarding the contractual terms of customers, we pay particular attention to the du-
ration of the customer-company linkage (Years), the number of active policies that the
customer had with the company at the beginning of 2015 (Policies), as well as the sum
of the premium of all of them (Premium). The average duration of the relationship be-
tween the customer and the company is 5.23 years. Most customers (68%) have only one
policy with the company. The average premium paid by the customers for their different

insurance policies is €487 per year.

Information provided by the insurance company is enriched by geographical information
such as the customers’ addresses. First, for each customer, we defined his/her distance
to the nearest analysed company agency (Dist-Own) as well as his/her distance to the
nearest competence agency (Dist-Compet). The average distance to an analysed company
agency was 964 meters whereas the average distance to a competence agency was 628

meters.

2.2.2 Methodology

Discrete choice models are popular tools to explain the effects of various factors on ob-
served choices. It is useful to begin with a brief discussion of general binary response
models before the addition of any spatial dependence pattern. In this subsection, we

present the methodology for classical probit and spatial probit models.

Let Y be a binary Nzl vector that reflects information on whether or not customers

have churned during a certain period; that is:
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Table 2.1: Description of the variables and descriptive statistics

Variable Definition Mean (std) Range
Dependent variable
Churn = 1 if the C}Jstomer cancelled all policies (in 20&‘51)2 (0.32) 0/1
= (0 otherwise
Independent variables

Socio-Demographic

Gender Gender of customer (1=female; 0=male) 0.60 (0.49) 0/1

. = 1 if the customer has children

Children = 0 if the customer has no children 025 (0.43) 0/1

Age Age of the customer 49.7 (12.2) [17-75]
Contractual terms

Policies Number of policies with the company 1.52 (0.96) [1-9]

Years Number of years as customer of the company  5.23 (2.73) [1-10]

Premium Total premium (in thousands €) 0.48 (0.52) [0.04-6.47]

Geographical variables

Dist-Own Distance in meters to the nearest analysed 964 (732) [0-7351]
company office

Dist-Compet Distance in meters to the nearest office of 628 (444) [0-7397]
competition insurance company

1 if Y*>0,
0 if otherwise

Note the difference in unobservable profits associated with the 1-0 choice indicators:
Mi — Noi , where np; represents customer i’s profit when leaving the company and 7y,
represents the customer’s profit when he/she stays with the company. Let us define such
differences as the unobservable (latent) variable y, which it is related to the observed

variable y;, as follows:

1 if yf =mi—no >0
Yi = . (2.2)
0 if yf=mi—1n0<0

That is, if the difference y; = n1; — no; is positive, the customer will leave the company
(y; = 1); if the difference is negative, he/she will stay with the company. Although ¥} is

not observable, it will be assumed that it is determined by a set of explicative variables.

As a starting model, we defined a non-spatial probit model, which assumes a lineal
relationship between the unobserved latent variable yf and a set of (k-1) non-spatial

explicative variables:
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Y =7+ Ty + o+ w4 (2.3)

In matrix term,

Y = X"y + €, (2.4)

where X™* denotes the corresponding (Nzk) matrix of covariates. It is also assumed
that the perturbance term €™ follows a standard normal distribution with a variance
equal to 1 for identification purpose, €** = N(0,1) (Vi) . The perturbance term is used

to denote that two customers with the same characteristics can make different choices.

Among the so-called ‘non-spatial’ explicative variables, we consider as variables the
socio-demographic characteristics of customers in Table 2.1 (Gender, Children and Age)
together with the contractual term variables also shown in the table: Policies, Years and

Premium.

As expressed in the Introduction, our hypothesis is that the geographical location of
customers plays a relevant role in choice outcomes. If this is the case, the omission of
such information in the model would lead to spatial dependence in the residuals of the
estimated model and, even more importantly, the obtained estimated parameters would
be inconsistent and inefficient (McMillen, 1992). The null of no spatial dependence in
residuals of the non-spatial probit model in (2) can be tested by generalised Moran’s I
statistic, as proposed by Kelejian and Prucha (2001b; see Amaral et al., 2013, for another
alternatives). If the null of no spatial dependence were rejected by the data, alternative

spatial probit specifications should be proposed.

2.2.3 Type I spatial probit model

Our first proposal is a spatial probit model which we denote as type I spatial probit,
and which in fact extends the previous specification proposal. To be precise, we propose
to extend model (3) using the geographical variables in Table 2.1: Dist-Own and Dist-
Compet which represent the distances between a customer and an analysed company
office and a competing one, respectively. The log of both variables will be included in
the model to reduce the level of heterogeneity. The extended model can be expressed as

follows:

yr=a ey al it e (2.5)
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In matrix terms,

Y*"=X(+e¢€ (2.6)

Model (3) is nested in the model expressed in (2.5). However, from an estimation
and interpretation point of view, they do not present any difference. For the notation of
model (2.5), customer i leaves the company with probability P;, which can be expressed

as follows:

P, = Py; = 1|z;) = ®(E[Y]]) = ®(x/8) = e "t (2.7)
where ®(.) refers to the cumulated distribution of the normal distribution; it introduces
a non-linear relationship between changes in the expected probability of churning and

changes in the explicative variables.

Estimation of the model was carried out using maximum likelihood, which in this case
deals with the search for those values of the g parameter vector that maximize the log

likelihood function, which is expressed as follows:

L= nL(B) = Y d(xB) + ¥ In(l - B(x}5)) (2.8)

yi=1 yi#l

Next, from the maximum-likelihood estimator, ﬁ, mainly two types of results can be
noted (Scott Long, 1997; Franses and Paap, 2001, among others). Firstly, the likelihood

of the churning of a customer i can be estimated using estimator vector , as follows:

A

Py = Py = 1|z;) = ©(ap) (2.9)

Secondly, the marginal effect of all explicative variables in the model can be estimated.
In the case of a non-factor variable z;, the marginal effect associated with a customer
i refers to the change in the consumer’s expected probability of churning due to an

infinitesimal change in the variable, as follows:

0P, _0d(aip) 1 e
bon ~ Omi van SO (2.10)

where ¢(.) denotes the standard normal density. As is also commonly the case in
literature, we use (2.10) as an approximation for the change in probability of churning
produced by a one-unit change in the variable. Furthermore, from (2.10) it can be
deduced that changes in the value of the variable for another customer j, x,; do not

influence customer i’s decision.
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A general conclusion related to the marginal effect of the variable x, itself, gx—i, will

relate to the average of all customer marginal effects.

By contrast, the marginal effect of a factor variable, said to be x¢, is defined as the
difference between the average probability of churning for the two possible values of the

variable (1/0), as follows?:

oP,
— = average(P{y; = l|zs; = 1}) — average(P{y; = 1|z = 0}) (2.11)
Ty

2.2.4 Type 1I spatial probit

Next, for a type II spatial probit proposal, we will discuss the Spatial Autoregressive
(SAR) probit model, proposed by LeSage and Pace (2009b). Following the notation for

model (2.5), it reads as follows:

Y*=pWY*"+ XB+¢€ e=N(0,Iy) (2.12)

where the spatial lag of the latent dependent variable WY % involves the NxN spatial
weight matrix W. From several definitions for W proposed in the existing literature,
the row-standardization of the m-nearest neighbour W matrix was adopted here. As is
well-known, using this approach, the W matrix contains elements of either 1/m or 0. If
customer j represents one of the m-nearest neighbours to customer i, the (i,j)th element
of W contains the value 1/m. Otherwise, a value of zero would be assigned to that W
element. This results in the (Nz1) vector WY™* consisting of an average of the m neigh-
bouring consumers’ utility, and it creates a mechanism for modelling interdependence in
consumer churn choices. In model (10), it should be observed that choices in one location
are likely to be quite similar to choices made at nearby locations. That is, the model
takes into account the possible spatial spillover among neighbouring consumer choices.
The scalar parameter measures the strength of dependence, with a value of 0 indicating

independence. Clearly the first type of spatial probit model emerges when

The reduced form of expression (2.12) can be written as follows:

2 Another possibility is the evaluation of the density term in (2.10), ¢(z}3), at the mean values of all
regressors. In this case, the marginal effect associated with variable x; is interpreted as the change in
the probability of churning associated with a change in the average (or typical sample observation) of
such a variable. Large N results are similar, although some differences can appear for small sample sizes.
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Y*=S(p) X5+ S(p)e (2.13a)

S(p) = (In — pW) ' = Iy + pW + p*W? + ... (2.13D)
k

XB=> zb (2.13c)
h=1

while the vector of probabilities of leaving the company can be obtained as follows:

P = Py = 1|z) = 2(E[Y")) = B(S(p) X 5) (2.14)

The SAR probit model has been revealed to be very useful in the fields of economics, po-
litical science, sociology, ecology, planning and even neurology. Nevertheless, its complex-
ity has resulted in a reduced number of applications in comparison with those generated
on the basis of the SAR continuous dependent variable model. Most of the applications
refer to the choice between alternatives: for instance, whether or not to adopt a new
farming technology (Case, 1992), increase tax rates in a district (Beron and Vijverberg,
2004b), reopen damaged infrastructure (LeSage et al., 2011), where to locate plants (Klier
and McMillen, 2008; Collingham et al., 2000), R&D labs (Autant-Bernard, 2006), harvest
trees (Fortin et al., 2013), defoliate (Heagerty and Lele, 1998) or deforest (Brun et al.,
2015).

Of the spatial SAR probit estimation proposals in the available literature, the Gener-
alised Method of Moment (GMM) estimators proposed by Pinkse and Slade (1998) and
Klier and McMillen (2008) will now be discussed. They are derived from a weighted
nonlinear version of the linear probability model associated with the observed variable.
According to Calabrese and Elkink (2014), although the GMM estimators present a high
computational speed, they suffer from poor accuracy, especially when the value of the
spatial dependence parameter is high. Alternative proposals are derived from the under-
lying latent equation expressed in (2.12). Within this group, we should note McMillen’s
proposal (1992), which provides estimates by means of the Expectation-Maximization
(EM) algorithm proposed by Dempster et al. (1977b). However, the main drawbacks of
this estimation procedure are the imprecision of the estimation of the spatial autoregres-
sive parameter, and its impracticability for large sample sizes. Next, the application of
the Bayesian Gibbs sample approach to the SAR probit model, which was proposed by
LeSage (2000b), solves most of the issues with McMillen’s proposal. According to Cal-
abrese and Elkink (2014), the Bayesian Gibbs estimator performs reasonably well in term
of accuracy, but its use is unfeasible for large samples (N > > 1000). Finally, other works
use Maximum Likelihood (ML) procedures, mainly because of the advantages associated
with, for instance, the use of Likelihood Ratio (LR) tests. Next, we proceed by analysing

a little further the main ML estimation proposals in the available literature.
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Let us now define the error term of the reduced expression in (11) by v = S(p)e. Taking

into account that e = N (0, Iy), the variance of the error term can be written as follows:

X = E/]=S(p)S(p) (2.15)

To obtain consistent and efficient estimates of the § and p parameters using the ML

procedure, it is necessary to evaluate the following N-dimensional normal probability:

1 .
1 2 N

where A = {Ai}i€{1,2 ..... N} = (azw bi>i€{1,2 ..... N}
being

S()XB if =0

and

b, — S(p)XB i yi=1 (2.18)

In this context, Beron and Vijverberg (2004b) proposed a Recursive Importance Sam-
pling (RIS) estimator, which allows for the evaluation of N-dimensional probit likelihood.
As in the case of the Bayesian Gibbs, the RIS estimators perform reasonably well in term
of accuracy, but their use is unfeasible for large samples (Wang et al., 2011; Calabrese
and Elkink, 2014). To solve this problem, Pace and LeSage (2017) and Martinetti and
Geniaux (2017) proposed to work on sparse variance-covariance matrices or the sparse
precision matrix (the inverse variance-covariance) to make this procedure feasible with
large bodies of data. However, while Pace and LeSage’s proposal (2017) uses the RIS
simulator (as Beron and Vijverberg, 2004b), Martinetti and Geniaux (2017)’s procedure
is based on a modified version of the Mendell and Elston approximation method (Mendell
and Elston, 1974a). The procedure developed by Martinetti and Geniaux (2017) is able
to approximate the full log-likelihood function, although they conclude that the use of
conditional log-likelihood (CL) is very efficient and reliable since conditional estimators

outperform the respective full-likelihood estimators. The CL uses intermediate estima-
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tions of the covariate parameters, which are conditional on the value of the spatial pa-
rameter, to improve the value of the log-likelihood. The application of CL estimations
requires a decision be made on whether to operate on the variance-covariance matrix of
the likelihood function (UC) or on the precision matrix (UP), which is usually sparser
and leads to faster computations. These alternatives give rise to the two conditional
estimation versions, named by authors as CLUC and CLUP. Among both estimators, the
CLUC estimator presents a higher level of accuracy at the expense of a lower estimation

speed.

2.3 Results and discussion

First, in this study a univariate approach has been used to explore any possible nonlinear
relationships between the independent variables and the churn frequency in the sample.
Figure 2.2 depicts the lapse rates for each of the continuous variables, which are split
into segments. Two variables exhibited a general positive relationship with churn rate
(Premium, Dist-Own) and four variables a general negative relationship (Age, Policies,
Year, Dist-Compet). However, there was a nonlinear tendency in several cases. For
example, a positive relationship was noted between lapse rate and premium paid by the
insured, mainly in the intermediate segments, and a constant or decreasing tendency
appears in the last segments. For the age variable, a strong negative tendency was noted
for younger consumers (approximately under 45), that changed to a constant tendency
for the consumers classed as being of medium age and older. That is, the percentage
of lapse rates decreased for older consumers. In the case of the number of policies in
the company, a clear pattern of convexity was found. Finally, a non-defined, but clearly
non-lineal, pattern was observed for the Year variable. With respect to the two distance

variables (in log), both results exhibit what is close to a linear pattern.

Secondly, taking into account the results depicted in Figure 2.2, the first step in the
specification process consisted of choosing the better functional form to capture the ob-
served non-linear effects. To achieve this objective, we selected the Multivariate Adap-
tive Regression Splines (MARS) (Friedman, 1991) approach (using the library earth of
R, Milborrow, 2011) in order to select the best specification for the baseline model (the
non-spatial probit model), considering that socio-demographic factors and contractual
policy variables are the only determinants of customer churning. The first column in
Table 2.2 describes the results.
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Premium Age Policies

Figure 2.2: Lapse rates and histograms (in segments) for the continuous explicative

variables.
Table 2.2: Probit and spatial probit: churn prediction (a), (b)
Non-spatial probit Spatial probit
Baseline Model Type I spatial probit SAR probit model
Coeff (z-value) Coeff (z-value) Coeff (z-value)
Tntercept 14207 (-13.2)  —1.448" (-12.8) —1.157" (-10.8)
Socio-Demographic variables
Gender —0.253"* (-5.9) —0.250** (-5.8) —0.251** (-5.8)
Children -0.038 (-0.7) -0.040 (-0.8) -0.037 (-0.7)
h(46-Age) 0.028** (6.7) 0.028** (6.7) 0.028"** (6.8)
h(Age-46) -0.005 (-1.6) -0.004 (-1.5) -0.004 (-1.5)
Contractual terms variables
h(2-Policies) 1.088*** (15.0) 1.089*** (14.9) 1.096** (15.0)
h(Policies-2) -0.417%* (-3.2) -0.417%* (-3.2) -0.424%* (-3.3)
Years -0.004 (-0.5) -0.004 (-0.5) -0.005 (-0.6)
h(0.549-Premium) —1.467"* (-10.3)  —1.455*** (-10.2) —1.470* (-10.4)
h(Premium-0.549) -0.029 (-0.5) -0.016 (-0.3) -0.027 (-0.5)
Geographical Variables
Log(Dist-Own) 0.093** (3.1) 0.041** (2.2)
Log(Dist-Compet) -0.122* (-2.5) -0.056** (-2.4)

p

0.215%%* (11.4)

Diagnostic tests of spatial dependence

I Moran(c) (W10nn) 84.16%** 72.85%H%

I Moran (W15nn) 61.37H%% 49.33%**

I Moran (W20nn) 47.50%** 33.63 %

Diagnostic tests

L test(d) 0.858 0.902 0.307
AIC 4651.2 4643.3 4634.54
LogLik 2315.6 2309.8 2305.3
LR test 10.6%** 9.0%**
Al 0753 0155 0-756

ITToOoO UTToOuU

the breakpomt detected using the MARS methodology.
(b) * indicates significance at 10%; ** indicates significance at 5%; and *** indicates significance at 1%.
(c) CGeneralised T Moran test.
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Specification diagnostics for the estimated model are shown at the bottom of Table
2.2. First, the area under the ROC curve (AUC) indicates that the model correctly
predicted 75.3% of the choices, and therefore the baseline model exhibited an acceptable
level of predictive performance. Furthermore, the null of a correct model specification,
tested using the Hosmer-Lemeshow (H-L) statistical test, cannot be rejected at a 5%
level of significance. In general, the results show that the selected socio-demographic
and contractual policy term variables are important when examining consumer churn

behaviour.

Regarding the sociodemographic variables, results are as follows. The gender variable
is significant, demonstrating that the presence of women tends to be more stable in the
company than that of men. This finding is in line with the common stereotype, based on
the widely published idea, that males exhibit lower levels of loyalty than females (Melnyk
et al., 2009). Analogous work can be found in Giinther et al. (2014), in which loyalty
to an insurance company was tested and similar results emerged. The results relating to
age imply that older customers become more loyal to the company, which newly confirms
the results showed in Giinther et al. (2014). An optimal breakpoint in this variable is
46 years old, based on MARS methodology. At this point the slope becomes less steep
in the regression model. This finding could be related to the fact that young people are
more active on the internet in terms of looking for cheaper alternatives, or it could be
related to the fact that differences in economic status by age could change the customer’s
aversion to changing his/her insurance company. However, when the client had children,
although this variable exerted a negative impact on churn probability, the effect was not

significant (at 5% level of significance).

Contractual term policy variables are also relevant when examining customer lapse
choices. Firstly, customers who pay a higher premium up to €549 are more likely to
cancel their policies. This is the inflexion point found using the MARS methodology.
From that point, when customers spend more money on insurance, they become less
likely to move to another company and thus the probability of churn begin to decrease.
In the same context, as the number of policies a customer holds in the company increases,
so the likelihood of that customer leaving the company is reduced. This can be explained
by the fact that the time spent on searching for better conditions in other companies
increases for expensive and/or higher policies. We should also note the two slopes; the
steeper slope covers the group of customers who hold just one policy, and a softer slope
is related to those customers who hold two policies or more. Finally, the number of years
as a customer (Years) was also linked to a negative effect on the likelihood of leaving the

company, although the effect is not significant — at the 5% level.

As previously stated, we hypothesize that geography could also play an important
role in consumer churn decisions. If that were the case, parameters in baseline models

would be biased owing to the omission of a relevant variable. The use of more detailed
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information would notably improve the explicative and predictive performance of the
model. In order to check spatial dependence in residuals of the baseline model, we used
the generalised I Moran test (Kelejian and Prucha, 2001b). In order to use this test to
check the hypothesis of spatial independence between customers preferences is necessary
previously define the connectivity criterion using the W matrix. We select the criterion
of k nearest neighbourhood (knn) connecting each observation with the k nearest (k
= 10, 15, 20) because the codeterminate behaviour has a local effect. The value of
this test, displayed at the bottom of Table 2.2 for different connectivity criteria (Wigun;
Wisnn; Woonn) indicates that spatial autocorrelation in the baseline model is noticeable.
Therefore, this model should benefit from the use of spatial information. Consequently,
we next propose the estimation of the so-called ‘type I spatial probit model’, and take into
consideration the effect of geographical distance on the customer and insurance agencies
(the analysed company’s own and the competition’s). The results, which are in the second
column of Table 2.2, are clear: the insurance company is more likely to lose a customer if
he/she is located near a competence agency or he/she is far from an analysed company
agency. The results are reasonable, since the agent plays an important role in customer
linkage. The net number of branches of an insurance company is essential to sell the
product and to keep it in the portfolio. Also, we think that these results are related to
the spatial positioning strategy of the company. Those areas where the company is not

located but the competing agency is, are potential churning zones.

The relevance of the two geographical variables included in the type I spatial probit
model can be deduced from the increase in the area under the ROC curve area. Also,
socio-demographic and contractual variables in the type I spatial probit model are in
accordance with those derived from the non-spatial probit model. However, the tests
for spatial independence reject the null. As explained in the methodological section, our
treatment of the autocorrelation problem in the data was based on the estimation of the
type II spatial probit model or, more precisely, the proposed SAR probit model. As previ-
ously stated, in this model the aim is to take into account that the decision of a customer
can be affected by the decision made by another nearby customer. The importance of
such effects is captured through the new estimated parameter (p in Table 2.2), which is
denoted “spatial autoregressive coefficient”. Results for the proposed SAR probit model,
considering the effects of the customer’s k = 15 nearest neighbours, are detailed in the
last column of Table 2.2. We use the ML methodology propose by Martinetti and Ge-
niaux (2017) The estimated spatial autoregressive coefficient is positive and significant.
Similar results have been obtained for different numbers of neighbours proposed. This
result confirms the existence of a positive and significance contagious effect, or spillover
effect. The significance of the new p parameter also means that Model 3 outperforms
the previous nested Model 2. The better performance of our final SAR probit model is
reflected in a higher value of the area under the ROC curve. Although it seems to be a

small increase, this improvement could represent large economic revenue for the company
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since, with the correct predictions, marketing managers can avoid the loss of some of the
company’s customers. The stability of the effects of socio-demographic and contractual

variables denotes a high level of robustness in our results.

Finally, from the selected SAR probit model we can draw important conclusions not
only on the effect of changes of a variable on a respective customer (direct effect) but

also on the rest of the customers (indirect effect).

2.3.1 Interpreting effects in a spatial probit model

Interpreting the way in which changes in the explanatory variables impact on the prob-
ability of churn is easy for the classical probit models (as shown in Section 2.2.1) while
requires more care in the case of the SAR probit model expressed in (10) (Lacombe and
LeSage, 2015). The reason is that, because of the spatial lag of the latent dependent
variable WY™ of the SAR probit model, changes in the value of the variable for customer
j, p; , influence customer i’s decision. That is, now, the changes to the probability of
the churn of consumer i are twofold: i) that induced by a change in the own-value of the
variable, OP;/0xy;, which is denoted in literature as the direct effect; and ii) that induced
by a change in the value of the variable associated with another consumer, 0F;/0xp;,
denoted as indirect effect. Finally, a global effect measure, denoted total effect, gathers
the sum of the direct and all indirect effects associated with all consumers who are not
consumer i. The total effect in the SAR spatial probit model is comparable with the only
effect derived from any standard probit model (and also the only effect derived from our
first type spatial probit model). In essence, the idea is that spatial dependence expands

the information set to include information on neighbouring individuals.

The (NxzN) matrix of the own- and cross-partial marginal effects, associated with

changes in the variable xj, can be obtained following the expression:

oP 9P OP 0P
31’% n 8xh1 (‘)xhgmath

= D(é(n))S(p)InBn (2.19)

where D(¢(n)) is an (NzN) diagonal matrix (with zeros outside the main di-
agonal). The whole main diagonal vector will be denoted as follows: d(¢(n)) =
[d(p(m)), d(d(n2)), -, d(d(nn))]’, where ¢(n;) element represents the probability density

function evaluated at the predictions for consumer i.

Next, we can expand the expression into component matrices gathered in (11), obtain-

ing the following expression:

op _

/
T

[D(6(n)) + pD(¢(m)W + p*D(¢(m)W* +...] B (2.20)
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from which, due to the definition of W as a row-standardised matrix, the Nx1 vector

of (cumulative) total effects can be written as follows:

(L,P = [D(¢(n))en + pD(d()Wen + p*D(¢()) Wiy + .| 5w = (2.21)

= D(¢(m)en(1 = p)~'Bu = d(é(n))(1 — p) "' Bn (2.22)

A scalar summary measure of Average Total Effect (ATE) is calculated as the average

of the vector of (cumulative) total effect:

d(¢(n)(X = p)~"' B

ATE =
N

(2.23)

To summarize the Average Direct Effect (ADE), following LeSage et al. (2011), the

following expression is used:

ADE = }Vt(ip) = [P0 + pir D)W + per DS IW?) + ] T (220

where the efficient computing of the term tr[D(¢(n))W?] for p = 1,2,... can be carried
out following several approaches proposed in LeSage and Pace (2009b).

Finally, the (cumulative) Average Indirect Effect (AIE) is derived by calculating the

difference between the previously mentioned effects, that is:

AIE = Average Total Ef fect — Average Direct Ef fect (2.25)

Following this methodology, Table 2.3 illustrates the direct and indirect effects of the
spatial probit model. First, it is important to highlight that the most relevant variable
when determining churning is the number of policies held by the insured. There is an
18% higher chance of losing a customer if he/she has just one policy. Cross-selling is vital
for companies, as it means good benefits and also because it makes customers more loyal.
Consistent with this, once the customer has more than one type of insurance, every new

policy signed reduces the direct probability of his/her churning by 7.3%.

Secondly, important information that the company should know about its customers
(e.g. age, gender and familial status) should be noted. These factors have a meaningful
impact on the probability of the customer leaving the company. For instance, every year
up to 46 years of age means extra premium retention (increasing at a rate of 0.63%
per year). This is clearly information which should be used to modulate and optimize

the premium renewal every year depending on the personal features of the customer.
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Premium is also a variable in the process of optimization. In our sample, we noted that
up to €549, every €100 euros paid by the customer increases the likelihood of lapses by
2.5%.

Table 2.3: Direct, indirect and total effect of the spatial probit model

Direct effect Indirect effect Total effect
Socio-Demographic variables

Gender -0.0434 -0.0117 -0.0551
Children -0.0064 -0.0017 -0.0081
h(46-Age)
h(Age-46) -0.0008 -0.0002 -0.0010
Contractual terms variables
h(2-Policies) 0.1897 0.0514 0.2411
h(Policies-2) -0.0734 -0.0199 -0.0933
Years
h(0.549-Premium) -0.2544 -0.0689 -0.3233
h(Premium-0.549) -0.0047 -0.0013 -0.0059
Geographical Variables
Log(Dist-Own) 0.0071 0.0019 0.0090
Log(Dist-Compet) -0.0097 -0.0026 -0.0124

Finally, in our research, we noted that the geographic position of the company plays a
key role in the sustainability of an insurance portfolio. As can be ascertained using the
information in Table 2.3, it is worth using geographic variables in the analysis, as it gives
a sense of how dominant branches are with regard to the competition. Thus, short dis-
tances between agents and customers are crucial to maintaining long relationships with
customers. In addition, in places where the company is not present, there is a potential
risk for disengagement amongst the customers. In our sample, an additional log (kilome-
ter) of distance among customers and tied-agent increases the probability of churning by
about 0.9%. This likelihood might be increased if competence has closer branches. An
additional log (kilometer) of distance between customers and the competence reduces the
churn probability to 1.2%.

2.4 Conclusions and business management implica-
tions
In order to better manage customer churn, companies need to fully understand the ef-

fect of the main determinants of churn customer choice. Although this important topic

has been the focus of some attention previously in the literature, we think that recent
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methodological improvements, in relation to spatial econometric techniques, can help us

to gain a better understanding of the problem.

Conventional econometric models for choices assume independence among consumer
decisions. This assumption could generate inexact estimations of parameters that may
have an economic impact on the results. In an urban environment, it seems unrealistic
that the individual choice of a customer to churn is not influenced by the decision of
his neighbour. Those spatial spillovers could be explained by direct interaction between
neighbouring customers or by the omission of relevant factors (with spatial structure in
the model that could exhibit spatial dependence; LeSage and Pace (2009b)).

Technological advances in geographic information systems (GIS) make collecting spatial
data easier than ever before. Consequently, the possibility of spatial correlation among
observations can be explored in order to achieve a better specification for a churn model.
This was the case in this present paper; by paying attention to geographical information
related to the addresses of the customers of a large insurance company in Madrid, we
have reached a final spatial churn model that outperforms the non-spatial one in terms of
both explicative and prediction power. Our results provide evidence that the probability
of customer churn significantly increases if nearby customers churn, due to the spillover
effect. Furthermore, the use of georeferenced insurance agencies has provided interest-
ing conclusions regarding the effect of the closeness of tied-agents. On the one hand,
an additional log (kilometer) of distance between customers and a company tied-agent
increases the probability of churning by about 0.9%. An additional log (kilometer) of
distance between customers and the competence reduces the churn probability by 1.2%.
Hence, spatial distribution of consumers and agencies can be a cause of great concern for

insurance managers.

As far as we know, the present paper is novel in that it pays attention to the non-
linearity effect of socio-demographic and contractual policy term variables in the model.
In accordance with the literature, our results indicate that, to cope with stable portfolios,
tied-agents of the company should focus on younger male consumers who have contracted
with the company more expensive and/or a higher number of insurance policies. Further-
more, the MARS methodology used in this paper reveals relevant additional information
not discussed previously in the literature. The age of 46 represents an important break-
point, since consumers below that age are more likely to leave the company by cancelling
all insurance policies. In this paper, we made an important breakthrough in relation to
the premium paid by consumers and to the number of contracted policies. Regarding
premium effects, the results have shown that, up to a premium of €549, every €100 paid
by the customer increases the likelihood of lapses by 2.5%. As for the number of policies,
the results indicate that the chances of losing a client increase by 18% if he has just one

policy.

Finally, three points relating to this paper and future approaches should be noted.
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First, our research focused on customer behaviour in one specific year. Further investi-
gation is needed to introduce time level to the regression. Dynamism in people’s conduct
through time is not reflected in the analysis. Secondly, increasing the number of areas
studied could lead to other interesting findings. In order to do this, a great deal of geo-
referencing work on business premises needs to be undertaken. Lastly, in this paper we
have demonstrated the importance of distance (in meters) between customers and agents
when predicting churning. It might be a good approach to introduce time references to
measure the distance in hours from point to point on the map. There is scarce literature

on this topic and more research is required.
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Chapter 3

Spatial models in online retailer

churn

3.1 Introduction

Online retailing is revolutionizing the retail landscape (Wood, 2011). With the popularity
and high accessibility of the Internet, consumers have been actively using online channels
for their shopping. The consumers have multiple e-shopping alternatives (fashion, travels,
hotels, flights, technology, food, etc) and large companies like Amazon, AliExpress or
eBay are a real alternative to shopping. Like the rest of dot-coms, the new format
of selling groceries online has grown at a phenomenal pace. Online supermarkets have
been gaining popularity among consumers mainly in great urban areas, when the cost of
transport, in time, to access to hypermarket or large supermarket is high. The speed and
comfort to carry out the buying, without having to go to the physical store, attracts to

consumers that demand more free time (Martinez and Vazquez, 2008).

With the objective of increasing the customer portfolio, dot-com e-commerce companies
spend large amounts of resources trying to gain new customers each year, but many
of them consistently fail to retain such customers. An important topic of research of
traditional offline supermarket is the churn rate (Burez et al., 2009). In case of classical
supermarkets more than 25% of customers churn (Burez et al., 2009) and close to 90%
of grocery shoppers use two or more supermarket for their grocery shopping (Miguéis
et al., 2012). In case of dot-com companies the churn rates are higher than the traditional
supermarket due to the specific characteristic of this type of commerce that makes having
loyal customers an extremely complicated task. It is difficult to retain customers due to
increased competition and minimal customer switching costs in the online environment
(Srinivasan et al., 2002). Low transportation costs online allow shoppers to visit multiple
e-commerce sites for a purchase decision (Park, 2017). In the grocery retail environment

engaged customers create higher benefits than new ones (Reichheld and Sasser, 1990) but
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the cost of gaining a new customer overpasses the cost of retaining the same customer.
Some research has shown that this cost varies between six (Verbeke et al., 2011) and
twelve times that of retaining the existing customer (Torkzadeh et al., 2006). So it
seems only logical to avoid churning as much as possible in order to create a sustainable
business model and also to elude adverse effects such as negative company’s reputation
or negative feedback which may influence potential customers (Saradhi and Palshikar,
2011). Therefore, developing algorithms to identify the factors related with churn and
with power to predicting churning before it happens is a critical point for grocery e-
companies. If such group of customers can be detected, wherever the risk of churning is
high, specific marketing actions can be developed in order to retain such customers. In
summary, building models to explain and predict the churn, is crucial for companies to

conduct effective retention campaigns.

Dot-com companies collect large amount of information from their customers, which
can be analysed to find certain valuable patterns. For each customer, thousands, or
even millions of data objects are stored, enabling the analysis of the complete purchasing
history. They store data from the very first moment of the customer using the service.
The specific date when the customer signed up and all the events of that specific moment
could reveal something interesting about coming customer’s behaviour. Date might reveal
the economic balance situation of consumer’s bank accounts, so it plays a critical role
in behavioural purchasing models. In addition, channel of entrance (Facebook, e-mail,
etc) is decisive to discriminate between loyal customers to the ones who become inactive
in a short period of time Richards et al. (2014). Moreover, first user’s orders impact
meaningfully on the prediction of future behaviour of a customer, as probably is an
indicator of the willingness to buy things on the internet. Both total orders made and
variety of basket seem to us very powerful indicator of how linked the customer will be in
the future. These variables are commonly used, for instance in Miguéis et al. (2012). But
there is one piece of information, which is included in all data warehouses that has high
relevance in models of churn prediction: the address of the customer. This information

is critical for several reasons.

First, knowing the address it is possible have information about the neighbourhood of
the customer, then indirectly the economic position is revealed. This information is a key
to predict the probability of churn. Some research that has been undertaken on zip codes
in churn prediction (Lochl et al., 2009; Chu et al., 2007; Verbeke et al., 2012; Huigevoort
and Dijkman, 2015; Trivedi, 2011) showing ambiguous conclusions. Trivedi (2011) write,
“Retailers would benefit from understanding the spatial, demographic and attitudinal
effects that play into consumption behaviour, and such effects can be better understood
when studying choice at the category and region level”. In the opposite direction, Verbeke
et al. (2012) wrote, “the age of a customer turns out to have good predictive power, but

zip code or similar information on the other hand not at all, as might be expected”. But
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most of research about spatial customer behaviour that take account the geography is
analysed generally grouped into geographical units of variable size (municipalities, zip
codes, census tracks). Data aggregation involves some degree of arbitrariness, which
may lead to biased results (Modifiable Areal Unit Problem, MAUP). In case of dot-com
companies, the information is available at the greatest level of granularity (georeferenced
spatial point patterns), because it is necessary to take the purchase home. Then, the
question that naturally arises is the reason why data is analysed at group level when
same information is available in a disaggregated form, and precisely georeferenced. In

this research we will consider the exact localization of customer.

Secondly, and directly related to this research, one important aspect of grocery shop-
ping is distance to the store. If the e-grocery company knows the exact location of a
customer, it is easy to identify geographical factors (strategic geographical points) that
could be related to churning. Proximity to certain supermarket is probably an essential
factor that influences in churn performance (Elms et al., 2016). There is a huge literature
about the relationship between grocery shopping and distance (Hsu et al., 2010; Nilsson
et al., 2015). We will consider this information as relevant in our research and show how
there is a non-linear relationship between churn probability and distance to favourite

physic supermarket.

Lastly, by knowing the exact location of a customer (latitude and longitude) makes it
possible to identify the proximity of other customers. Nearby customer churn behaviour
is probably codetermined, and some mimetic conduct between them can be detected.
Pinheiro and Helfert (2010) wrote, “Some events within the network can be influenced
by activities of other customers. In the example of churn, word of mouth, rumours,
commentaries and mostly activities of churn from other customers may create a chain
process”. Along the same lines, Haenlein (2013) presents evidences on the importance
of social interaction in customer churn decisions. The emergence of relational networks
is inseparable from social communities. In the analysis of these networks, it must be
taken into consideration that the behaviour and beliefs of an individual are generally
influenced by the behaviour and beliefs of the rest of individuals, especially those with
whom they interact directly. These direct interaction among individuals have been re-
ferred by network-related literature in different ways: social contagion (Leenders, 2002);
social effect (Manski, 1993); pairwise or neighbourhood effect (Moffitt, 2001); consumer
preferences (Yang and Allenby, 2003b); homophily! (Zhang et al., 2012). With the evo-
lution of social networks considering social ties in churn prediction has proven to be a
promising approach (Droftina et al., 2015) and a few papers consider the network struc-
ture to improve the churn models. For example, the number of neighbouring churners and
the number of calls to neighbouring churners, or the effect of word of mouth on churn in
mobile phone market (Dierkes et al., 2011). Likewise, Yang and Allenby (2003b) stated

lUnfortunately, the methodology used in this research does not allow identifying the cause of the
interaction between customers and more research is necessary about this topic.
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that the geographical interdependence between individuals is important in explaining car
consumption. Therefore, taking advantage of the spatial correlation among customers can
improve the performance of models. However, in relation to customer churn behaviour,
no research that takes into account geography and ‘space’ as explicative factors has yet
been undertaken and only the research of (De la Llave et al., 2019a) include geographical

factors.

Although there has been much literature around prediction of customer churning in
the last years, none of it takes into account spatial models to do so. So, this paper is
based on the belief that spatial econometrics models can improve the results of classical

methodologies that do not consider geographical factors.

Taking into account the state of research, the main objective of this paper is to demon-
strate the impact of geographical factors on churn models and show the improvement
achieved on the prediction of churn. Using the experience of a dot-com e-commerce
startup business in Madrid (Spain), it is proved in this paper that the power of using
geographical data to improve the classical probit regression model using Spatial-Probit
Models (LeSage and Pace, 2009b). This paper proposes a new take on the classic churn-
ing prediction analysis, which may lead to an improvement in the business model of

companies and resource allocation thereof.

We thus contribute to the literature in several ways. In first place, as far as we know,
this paper is the first research that uses the exact localization of customer, as a statistical
points process, in an urban environment to improve the churn model. In second place,
we focus on the importance of mimetic performance of close customers in the retention
process within a directed social network. The paper is structured as follows: the second
section describes the data and methodology; the third section presents the most important

results and the last section conclude and suggest some potential e-companies’ strategies.

3.2 Data and methodology

3.2.1 Data

Our database comes from a dot-com company which provides the user to do the shopping
online in his favorite supermarket (chosen by the user) and receive it in a very few hours.
This dot-com company is an emerging startup business which operates in some regions
of Spain. Despite its small size, it is positioned among the most demanded internet
companies among the ones that provide a similar service. In this work, we selected users
in Madrid urban area, as this is the city where the firm is mostly consolidated. The geo-
referencing used to locate these customers is the address given by the customer to receive

the shopping, so the exact coordinates (latitude and longitude) were integrated into the
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Figure 3.2: Urban area with spatial distribution of favorite supermarkets

database. Figure 3.1 and 3.2 shows the analysis urban area and the spatial distribution

of individuals and supermarkets.

Additionally, addresses of supermarkets chosen by users (a total of 84 supermarkets)
and a list of all the supermarkets of the city (a total of 586) were included in the geospatial
information. Figure 2 shows the localization of supermarkets. All the customers taken
into account have ordered a shopping basket at least once during their first week after
registration. The customers who get registered into the company and do not start their
shopping in the first week are excluded from the database analyzed, although they are
not really material as they represent less than 1% of the database received from the
company. The period studied goes from January 2016 to February 2017. As a result of
the selection, our analysis will be built on 1731 observations to train the model and 306

(15% of the data) observations randomly chosen to test it.
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The rule to determine the churning event is applicable to those customers that after
their first week experience after registration with the company, remains inactive for at
least four months. After this period of time no customer has made an order again,
consequently these customers can be considered as lost. Similar approaches have been
taken in the literature, for instance, in a similar study Buckinx and Van den Poel (2005),
state that “Customers are considered to break their relationship when they interrupt their
loyal and stable purchasing pattern that they exhibit during a period of five months”,
and Lai and Zeng (2014) in a study of churning in libraries found that the churn hazard

was in the first three months after registration.

The description of the variables analyzed is depicted in Table 3.1. The overall churning
for the whole portfolio is 69.2% (1410 customers out of total 2037). Customer’s reasons
for inactivation are unknown because there is no any further questionnaire asking for

possible triggers.

Table 3.1: Description of the variables and statistics

Definition Mean (std) Range
Dependent variable
Churn =1 if customer became inactive. 0.69 (0.46) 0/1
Independent variables
Channel
Facebook = 1 if customer’s channel to the App was Facebook. 0.17 (0.38) 0/1
email = 1 if customer’s channel was via Email. 0.17 (0.38) 0/1
Social = 1 if customer’s channel was other Social Network. 0.03 (0.18) 0/1
Socioeconomic
Male = 1 if customer’s gender is male 0.03 (0.18) 0/1
Login Moment
Day Day of the month in first connection. 15.8 (8.79)  1-31
Month Month of the year in first connection. 15.8 (8.79)  1-12
App = 1 if customer’s logged with mobile App. 0.09 (0.28) 0/1
Temperature Maximum temperature in area the day of login. 19.4 (8.45) 4-39
First Week Experience
Orders Orders during first week using the App. 1.25 (0.57) 1-5
Av-Invoice Average invoice during first week. 70.8 (47.6)  5-400
Basket Number of type of products bought in first week. 9.57 (2.92) 1-16
Geographical
Log-Income Average income per census track. 6.84 (0.36)  9-11
Orders-Neighbors.  Five closest neighbours’ orders average. 1.24 (0.26) 1-3
Log-Distance Log Distance to the favourite customer’s supermarket. 0.07 (0.86)  (-3)-3

The customer’s information captured in this type of businesses is very limited, as cus-
tomers are reluctant to give much information, so for commercial purposes just essential
customer’s information is required by the company. Our database consists of the gender
of the client, information regarding the customer’s first connection (date, temperature,

device used), the channel whereby they found the dot-com company and the data about
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their orders during their first week after the registration in the company. Additionally,
the data base is enriched with geographical data regarding customer’s home location,
distance between nearest supermarkets and also the census track of log-income statis-
tic published by municipal institutions in order to distinguish between different levels of
wealth in Madrid.

3.2.2 Methodology: Spatial autocorrelation test for qualitative
data

The Join-Count statistic (Cliff and Ord, 1981) will be used to test the null of random co-
localized pattern of churn/loyal customers. The Join-Count statistic counts the number of
each of the possible “joins” between neighbours. Possible joints are CC' (churn-churn), LL
(loyal-loyal), and C'L (churn-loyal). The statistics Joe, Jor and Jep count the observed
number of joins and compare with the expected number under the null (J¢, J;, and
Jép). In order to join customers, we selected a binary weight matrix W to establish a
connectivity criterion. In particular, the elements of W, w;; (i,j=L1....,N) have a value of
1 if customers i and j are neighbours, and 0 if otherwise. We consider that two customers
“i” and “j” are joined if the j-customer belongs to the set of k-nearest i-customer. From
this connectivity criterion the Join-Count statistics (Joe, Jrr and Jop) are defined as

follows in equations:

1
JCC = izz:wUCC” (31&)
=1 j=1
1.
=1 j=1
1.nn
JLL = 5227%[*[’@7 (31C)
i=1j5=1

Spatial co-localised patterns which result from the application of Join-Count tests can
be positive or negative. Maps with different spatial configurations of a qualitative variable
could be as shown in Figure 3.3 using simulate data. A positive co-localised pattern
indicates a spatial structure in which there is a high probability of finding customers that
belong to the category C or L surrounded by customers which fall in the same category
(Figure 3.3, right), while a negative result reveals the spatial interconnection of customers
which fall in different categories (Figure 3.3, left). When the spatial distribution is
random, no spatial co-localized pattern can be attested (Figure 3.3, centre). The values
of Join-Count statistics including the expected values and z-values are included in the

bottom of Figure 3.3. The R package spdep was used to get the statistics.
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Figure 3.3: Urban area with spatial distribution of favorite supermarkets

3.2.3 Methodology: Spatial probit model

Discrete choice models are probably the most frequent methodology used in churn model.
In this subsection, we present the extension named spatial-probit models with interde-
pendence in the latent-variable (LeSage and Pace, 2009b) to take into account the spatial

effects between close customers.

Let Y be a binary nx1 vector that reflects information on whether or not customers

have churned during a certain period; that is:

1 if customer i leave company (customer i churns), | (32)
Yi = .
0 if customer i does not leave company (customer i does not churn)

where Y is the observed value of the limited-dependent variable, Y is the unobserved
latent dependent variable. As a Baseline model, we consider a classical non-spatial probit
model, which assumes a lineal relationship between the unobserved latent variable and a

set of non-spatial explicative variables:

Y*=XB+e; e=N(0,1,) (3.3)

where X denotes the corresponding (nzm) matrix of covariates and 5 a (mxl) vector

of coefficients.

The disturbance term is used to denote that two customers with the same character-
istics can make different choices. If close customers have similar choices, it is possible
to find spatial autocorrelation in the residual and therefore in the estimation of (6) we

obtained estimated parameters inconsistent and inefficient (McMillen, 1992). The null of
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no spatial dependence in residuals of the non-spatial probit model in (5) can be tested
by generalized Moran’s I test (Amaral et al., 2013). If the null of no spatial dependence
were rejected, two specifications would be adequate. In first place improving the model
specification by the inclusion of omitted variables related to the geography of the sample
(for example, the distance to supermarket or income of the neighborhood of customers
as a proxy of the income level. See Table 3.1) and check again the null of independence
in residuals. In case of the generalized Moran‘s I test rejecting the null a spatial-probit
model with interdependence in the latent-variable will be adequate. The spatial-probit

model is represented as follows,

Y*=pWY* "+ XB+¢€; e=N(0,1,) (3.4)

where the spatial lag of the latent dependent variable WY x involves the nxn spatial
weight matrix W?2. The row-standardisation of the k-nearest neighbour W matrix was
adopted in this research. As is well-known, using this approach, the W matrix contains
elements of either 1/k or 0. If customer j represents one of the k-nearest neighbours to
customer i, the (i,j)th element of W contains the value 1/k. Otherwise, a value of zero
would be assigned to that W element. This results in the (nzl) vector WY* consist-
ing of an average of the k neighbouring consumers’ utility, and it creates a mechanism
for modelling interdependence in consumer churn choices. In model 3.4, it should be
observed that choices in one location are likely to be quite similar to choices made at
nearby locations. That is, the model takes into account the possible spatial spillover
among neighbouring consumer choices. The scalar parameter p measures the strength
of dependence. If p = 0 the spatial probit model collapses to the standard binary pro-
bit model, otherwise, if p # 0, the (nxzl) vector WY x consisting of an average of the k
churn neighbouring customers and include a mechanism for modelling interdependence in
choices. For estimation of spatial-probit model we use the procedure based on Conditional
Maximum Likelihood developed by Martinetti and Geniaux (2017). The ProbitSpatial

R-package was used to estimate the model.

2 Alternative models could be selected to take account spatial correlation. The spatial error model is
the usual alternative to the model proposes in this paper (the spatial lag model). We follow the paper
of Trivedi (2011) who consider that the spatial lag specification is more appropriate, “where the impact
on the neighborhood is substantively affected by the adjoining neighborhoods”. This is also supported
by Baller et al. (2001), who argue that the former specification (spatial lag) suggests a possible diffusion
process while the latter (spatial error) suggests omitted variables. Moreover, the Join-Count test has
low power for spatial error process.
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3.3 Results and discussion

3.3.1 Descriptive statistics

Table 3.1 shows the main descriptive statistics of the dataset. The first remarkable
variable kept in the database is entrance channel, as it could determine future customer’s
behavior. Most of customer’s (70%) come into the company either from search engine
websites like google without any campaign to promote the App behind. However, directly
related to advertising campaigns, Facebook appears to be the channel where more new
users are captured (17%), followed by Email referrals (9%). The rest of users started
their experience through other specific campaigns in social networks such as Twitter,
Instagram, Linkedin and others (4%). The unique socioeconomic variable refers to the
gender of the customer which is generated taken the user’s name. Female customers

represent more than 60% of the portfolio.

The information regarding the first connection to the online grocery is also recorded.
A minority of customers used the mobile application to login (10%), the rest connected
directly through the company website. With reference to the date of registration it is
uniformly distributed both in the day of the week and in the month of the year. Both
variables have been treated as continuous in order to detect any time pattern related
to for instance, the balance of the user’s bank account during the month. Additionally,
maximum temperature in the area during the day of registration is included to the data,

to check for the potential relationship between weather and user’s inactivation.

As our aim is to infer customer’s behavior after a week (after registration) of experience
with the dot-com services, all the information of user activity in this period of time is used
to estimate future inactivity. Most of customers just order once during their first week
(80%) spending an average of 70 euros and order nine different types of products (out of
16). Finally, in order to enrich the analysis, locations of the favorite supermarkets declare
by the users are included and also other different shopping centers around them. So, 1.7
is the average distance in kilometers calculated between the customer and the favorite
supermarket. Also, the effect of number of orders made by closest neighbors of each
customer is explored. And the last geographical variable used to predict future inactivity
is the income of residential areas analyzed. This variable is published on a yearly basis
by public institutions in Madrid and in logarithm goes from one to ten, where ten is the

maximum income score. The average scoring for the areas analysed is 6.84.

3.3.2 Spatial co-localized pattern in churn

Table 3.2 shows the values of the three Join-Count tests. Several connectivity criteria
based on the k-nearest neighbour (k = 3, 5, 10, 15, 30, 40) will be used in order to identify

80 CHAPTER 3. SPATIAL MODELS IN ONLINE RETAILER CHURN



3.3. RESULTS AND DISCUSSION

the presence of spatial autocorrelation for different number of k-nearest neighbourhood.
The results indicate the existence of a positive spatial co-localised pattern in the variable
churn. The spatial autocorrelation is higher for k-nearest neighbour lower than k=10

showing that the mimetic performance of customers has a spatial pattern of proximity.

In case of k=3 and k=5, the number of pairs of connected churn customers (Jo¢)
is significantly higher than the expected values (J{). These results reveal that churn
customers are highly likely to be surrounded by other churn customers. Moreover, the
spatial co-localized pattern of customers that belong to different category yields significant
results with negative z-value. The observed number of joints CL (Jop) is lower than the
expected value (J/ ), showing a spatial structure churn-loyal in our sample. Finally, in
the case of loyal customers, the number of loyal customers located in the vicinity of other

loyal customers founded is higher than expected.

Table 3.2: Join-Count tests of spatial autocorrelation for churn

Join-Count test Jo¢ Join-Count test Jo, Join-Count test Jrr,
Joo Jtoo z-valuef Jor Jtor z-valuey JLL Jtrr z-valuef

k

3 14975  1463.67  2.22* 1233 1302.66 ~ —3.09"** 325 289.17  3.02**
5 2500.5  2439.45  2.98"** 2062 2171.10  —3.69*** 530 481.95  3.07**
10 4922 4878.90 1.40 4254.5 434219  —2.06"" 1008.5 963.90 1.96**
15 7387 7318.40 1.70* 6407.5  6513.30 —2.01** 1483  1445.90 1.30

30 147445 14636.70 1.58 12840.5 13026.60 —2.41** 2970 2891.70  1.80"

40 19536.5 19515.60 0.24 17281.5 17368.80 -0.96 3922 3855.00 1.26

1The Join-Count statistics are assumed to be asymptotically normally distributed under the null
hypothesis of no spatial autocorrelation. Similar results were founded using the bootstrap alternative.

In case of k=10, 20 and 30 the levels of spatial autocorrelation decrease severely. Only
a ‘repulsion’ effect is founded with significant and negative z-value. Finally, for k = 40,
the three tests do not reject the null and the spatial process could be considering as

random.

Those results show a clear pattern in the spatial distribution of customers and probably
some spatial structure must be included in the probit model to make a correct specification

of the model by taking into consideration the spatial spillovers.

3.3.3 The classical probit model

In first place, we performed an analysis of the explanatory variables known by the com-
pany just after one week logged in the company which would be our Baseline Model. The
results coming from the lineal probit model are depicted in Table 3.3. The first part of
Table 3.3 describes the results with the relevant split of the explicative variables for our
modelling purpose, whilst specification diagnostics for the estimated model are shown at

the bottom.
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Table 3.3: Probit and spatial-probit in churn prediction

Model 0:
Baseline Model

Model 1:
Linear Probit

Model 2:

Non-linear Probit

Non-linear
Spatial-Probit

Coeff. (z-value)

Coeff. (z-value)

Coeff. (z-value)

Coeff. (z-value)

Tntercept 1.802%%% (11.3)  3.477° (3.82) 3.204%% (3.37) 2.877FFF (3.24)
Channel
Facebook 0.161% (-1.95)  -0.145% (-1.77) 20.132% (-1.71) “0.114 (-1.40)
Email -0.800%** (-7.72)  -0.771%** (-7.45) -0.777FF* (-7.50) -0.779%F* (-7.53)
Social -0.051 (-0.30) (b) (b) (b)
Socioeconomic
Male -0.040 (-0.60) (b) (b) (b)
Login Moment
Day “0.007%% (-1.99)  -0.007** (-1.98) ~0.007% (-1.89) ~0.007% (-1.93)
Month -0.005 (-0.62) (b) (b) (b)
App [0.220%* (-2.08)  -0.220%* (-2.09) L0.218%% (-2.07)  -0.219%* (-2.09)
Temperature 0.006* (1.65) 0.007* (1.77) (a) (a)
First Week Experience
Orders “0.651%% (-10.65) -0.6437% (110.92)  -0.649%%* (-11.2)  -0.117%%* (-11.1)
Av-Invoice 0.000 (0.53) (b) (b) (b)
Basket [0.033%% (-2.51)  -0.032%** (-2.88) (a) (a)
Geographical
Log-Income - 20.136% (-1.70) “0.138% (1.82) “0.128% (-1.72)
Orders-Neighbors - -0.226* (-1.96) -0.231%* (-1.99) -0.117 (-1.07)
Log-Distance - -0.106*** (-2.93) (a) (a)

Transformed into non-linear (c)

h
t

—

Temperature,25)
Basket, 10)
Log-Distance,0)
Log-Distance,0)

—+
U‘_/-\/-\

0.022%% (2.40)
-0.051%% (-3.21)
-0.063 (-0.87)
-0.138%%* (-2.41)

0.023%F (2.47)
-0.050%** (-3.16)
(b)
-0.133%%* (-2.67)

Spatial autoregressive coefficient

P - - - 0.129%%% (4.39)
Diagnostic test of Spatial dependence (d)

I Moran (W05nn) 2.56%* 2.53%% 2.57*% -

I Moran (W10nn) 1.66 1.70 1.66 -

I Moran (W15nn) 1.00 0.95 0.93 -

Diagnostic tests

AIC 2276.05 2257.13 2253.11 2245.52

BIC 2343.48 2319.20 2320.81 2301.72

LogLik -1126.02 -1117.56 -1114.55 -1112.76

LR test - 16.9%%* 6.0%* 3.6%*

AUC(Train  Sam- 0.7131 0.7249 0.7250 0.7253

ple)

AUC(Test Sample) 0.6651 0.6789 0.6855 0.7034

* *3% k3K

significance at 10%; significance at 5%; significance at 1% ; (a) Variables transformed into
non-linear; (b) Variables removed from model with z-value under abs(1.5); (c¢) h(X,g)=max{X,g};
t(X,g)=min{X,g|, where X is the variable under analysis and ‘g‘ is the breakpoint detected using the
GAM methodology; (d) Generalised I Moran test @amaral2013.
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The performance of Baseline Model is satisfactory. The results indicate that the se-
lected variables are important when examining customer churn behavior. One of the
most relevant variables to explain churning is the customer’s entrance channel. Email
referrals and recommendations appear to be essential to evaluate the activity of the cus-
tomer. When the customer enters through this channel, the probability of inactivation
decreases sharply, probably due to the selection process that the referral makes when
decides to recommend the application. This finding is in line with Richards et al. (2014)
research, who evidenced that product recommendation, influences their peers to revise
their consumption preference choices. Similar results are found with relation to Facebook
entrance whose users become more loyal than customers who came into the application
with no known online campaign at all. Other social networks do not appear to be sig-
nificant to model customer behavior. Richards et al. (2014) also paid attention to these
social networks considering them a high valuable marketing tool to influence customer
choices. On the other hand, although academic literature indicates that female exhibits
higher levels of loyalty Melnyk et al. (2009), gender does not seem relevant in our model.
Even though the majority of the population is female, there is no significant difference in

probability of churning between them and male.

The moment when a customer signs up in the application might disclose much infor-
mation about their future actions. The fact that the customer registers through mobile
application instead of online website reveals proclivity to use the application service for
longer. The results relating to date imply that in warmer days there is more chance of
attracting customers less loyal or just for one use. Similar conclusions occur when this
happens during the first days of the month. However, the month of login does not seem
to be significant to predict further behavior, although this variable is obviously correlated
with temperature. Lastly, the user activity during his first week of application’s use is
vital to understand how involved they would be afterwards. Although the average invoice
does not give any insight whatsoever, the number of orders made and the categories of
products bought during the first week go in the same direction. There is a strong positive
relationship between having both a varied shopping cart and a great deal of orders and
remain active after a week registered in the data base of the company. This statement
connects with the propensity that people have to purchase things online. By having these
variables inside the model, we are implicitly distinguishing people who have experienced
online shopping before and those still with different degrees of distrust to it. Finally, the
area under the ROC curve (AUC) indicates that the model correctly predicted 70% of

the choices, and therefore exhibited an acceptable level of predictive performance.

As previously stated, we hypothesized that geography could also play an important
role in consumer churn decisions. The use of more detailed information would notably
improve the explicative and predictive performance of the model. In order to check

spatial dependence in residuals of the baseline model, we used the generalized I Moran
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test. Following the evidences obtain with the Join-Count tests we select the criterion
of k-nearest neighborhood connecting each observation with the k nearest (k=5, 10, 15)
because the codeterminate behavior has a local effect. The value of this test, displayed
at the bottom of Table 3.3 indicates that spatial autocorrelation in the baseline model is

noticeable. Therefore, this model should benefit from the use of spatial information.

Consequently, we propose the estimation of a second model, Model 1, taking into
consideration variables from Baseline model above 10% significance, in order not to in-
troduce non-explicative variables, plus geographical factors. The income of the census
track where the customer lives (Log-Income), the effect of geographical distance between
the customer and their favorite supermarket (Log-Distance) and the orders made by the
five closest neighbors (Orders-Neighbors) (removing non-significant variables in Baseline
model). The results, which are in the second column of Table 3.3, are clear: firstly, in-
dividuals living in economically depressed zip codes tend to be less loyal and stop using
the application more than in zip codes with higher income. Similar conclusions were
found in Ilhan and Iscioglu (2015) and Kee and Wan (2004) who conclude that as level
of income increases, the probability of making online grocery shopping increases. This is
evidence of the purchasing power of different areas of Madrid and the lifestyle of people
living in. So, they did not mind sacrificing price (paying the fee) to be released from
dull tasks such as grocery shopping. Additionally, we believe that opportunity cost is
something behind this conclusion, since the results show that higher income people find
more interesting the application which could help them to spend time in more rewarding
tasks. Secondly, the dot-com company is more likely to lose customers if they live close
to their favorite supermarket which is reasonable as the customer is not willing to pay
the application service cost if the market place is not that far. These results are in the
same line of Elms et al. (2016) research, who explains in his case study how the distance

and traffic congestions might encourage people to use online shopping services.

The last geographical-related variable to take into account is the orders made by the
five closest neighbors of each customer which appear to be a good predictor. So, apart
from the data from each customer, the neighbors’ information matters to predict future
connection between customer and the company. In this case, when a customer is being
surrounded by other users that in their first week using the application made quite a few

orders, this is an indicator that the customer probably will remain using the application.

Yet again, the generalized I Moran test rejects the null for Ws,,. As we note in
methodological section, the presence of spatial autocorrelation in the residuals lead to

inconsistent and inefficient estimations (McMillen, 1992).
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Figure 3.4: Churn rates and histograms (in segments) for the continuous explicative
variables

3.3.4 The non-lineal probit model

It is possible that the identification of spatial autocorrelation could be explained by
the omission of non-linear relationships between response variable and explicative factors
(Basile et al., 2014). With the objective to identify non-linarites the churning rate for each
continuous variable split into segments are depicted in Figure 3.4. However, it is barely
possible to conclude beyond the positive or negative correlations without a multivariate
analysis which can be found in Figure 3.5. A Generalized Additive Model (GAM) (Hastie
and Tibshirani, 1986) has been carried out to identify non-lineal relationships. The results
represented in Figure 3.5, show that temperature impact linearly in our model from 20
Celsius degrees onwards, basket of products has a direct effect up to 10 products and the
log-distance has clearly two slopes to be estimated from minimum to zero and from zero

on. Therefore, the Model 3 includes nonlinear patters found in these three variables.

The relevance of the three geographical variables included in the Model 3 can be de-
duced from the increase in the area under the ROC curve both in the training sample
and in the test one. However, the spatial autocorrelation in the residuals is persistent

and the Moran tests for spatial independence newly reject the null.

3.3.5 Spatial probit model with non-linearities

As previously stated, in this model the aim is to take into account that the decision of

a customer can be affected by the decision made by another nearby customer. Previous
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Figure 3.5: GAM multivariate analysis where inflection points were found
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Figure 3.6: Urban area with spatial distribution of individuals

models (Model 0, 1 and 2) have tried to incorporate the spatial effects found by the Join-
Count statistics but the presence of spatial autocorrelation in the residual is persistent.
The spatial-probit model includes expressly spatial spillover in the specification. The
importance of such effects is captured through the new estimated parameter (p in Table
3.3) considering the effects of the customer’s k = 5 nearest neighbors. The estimated

spatial autoregressive coefficient p=0.129 is positive and significant.

The better performance of our final spatial-probit model with nonlinearities is reflected
in a higher value of the area under the ROC curve. Figure 3.6 shows the improvements
in ROC curves both in train and test samples. This improvement could represent large
economic revenue for the company since, with the correct predictions, marketing man-
agers can avoid the loss of some of the company’s customers. Also, it proves the more
efficient modelling using the spatial probit technique. The stability of the effects of the

non-spatial variables denotes a high level of robustness in our results.
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3.3.6 Interpreting effects in a spatial probit model

Interpreting the way in which changes in the explanatory variables impact on the prob-
ability of churn is easy for the classical probit models while requires more care in the
case of the spatial-probit model. The reason is that, because of the spatial lag of the
latent dependent variable WY, changes in the value of the variable for customer j,z;,
influence customer i’s decision. That is, now, the changes to the probability of the churn

of consumer i are twofold: (i) that induced by a change in the own-value of the variable,

op;
61’}”'

which is denoted in literature as the direct effect; and (ii) that induced by a change

in the value of the variable associated with another consumer, gxi L denoted as indirect
J

effect. Finally, a global effect measure, denoted total effect, gathers the sum of the direct
and all indirect effects associated with all consumers who are not consumer i. The total
effect in the SAR spatial probit model is comparable with the only effect derived from
any standard probit model (and also the only effect derived from our first type spatial
probit model). In essence, the idea is that spatial dependence expands the information
set to include information on neighboring individuals. A full description of interpretation

of direct, indirect and total effects can be found in Lacombe and LeSage (2015).

Following this methodology, Table 3.4 illustrates the direct and indirect effects of the
spatial probit model. First, it is important to highlight that the number of orders made
during the first week experience with the company services and the entrance channel by
email referred by another user are the most relevant variables to determine churning. The
total marginal effects (direct 4 indirect) of both variables are over 20%. It means that
the best commercial strategy distributing the application has been carried out by its own
users recommending the application to other potential users. There is obviously no cost
for the recommendations and the likelihood to have these customers active more than
a week is over 20% higher than other channels. Additionally, creating a good plan for
the first impression to the customer is vital. If the company strengthen the connection
between the customer and the application during the first week by trying him to make
orders, there is over 20% of more chance by each of these orders that the customer remain

using the application in the long run.

Secondly, the users coming from Facebook’s adverts and those who login through the
mobile application are aspects with a meaningful impact on the probability of the cus-
tomer activity with the e-commerce service. Having a customer coming from Facebook
reduces the likelihood of churning in 4% and if the customer started using the service
through the mobile application makes it 7% further. This is clearly information which
should be used to modulate and optimize investments in marketing actions. Consistent
with these conclusions, e-companies might want to control their offers to customers sub-
ject to the date as it plays a significant part in defining how loyal to the company the

customers would be in future.
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Table 3.4: Direct, indirect and total effect of the spatial probit model

Direct effect Indirect effect Total effect

Channel
Facebook -0.0352 -0.0051 -0.0403
Email -0.2413 -0.0349 -0.2762
Login Moment
Day -0.0021 -0.0003 -0.0024
App -0.0676 -0.0098 -0.0774
First Week Experience

Orders -0.2012 -0.0291 -0.2303
Geographical Variables

Log-Income -0.0389 -0.0056 -0.0446
Orders-Neighbors -0.0429 -0.0062 -0.0491
Transformed into non-linear

h(Temperature,25) 0.0071 0.0010 0.0081
n(Basket,10) -0.0156 -0.0023 -0.0179
h(Log_ Distance,0) -0.0411 -0.0059 -0.0470

Finally, in our research, we noted that the geography plays a key role in the sustain-
ability of a customer portfolio. It is worth using geographic variables in the analysis, as
it gives a sense of how dominant the dot-com company would be in certain neighbors.
Those customers far from the relevant supermarket will have 4.7% per log-kilometer more
continuity using the application. Although, this relationship is not continuous but starts
from a log-1km. This information is a good indicator for the online company in order
to establish new business areas to operate. In addition, in places where log-income per
capita is lower, there is a potential risk for disengagement among the customers. In our
sample, an additional point in the Log-Income per capita variable decreases the probabil-
ity of churning by 4.4%. This likelihood might be decreased even more, if customer lives
in an area where high activity indicators of the application are registered. Specifically,
additional orders of closest neighbors reduce the churn probability by 4.9%.

3.4 Conclusions and business management implica-

tions

E-commerce offers companies an unparalleled capacity to expand and capture new busi-
ness. From customer point of view, it is a powerful instrument to reduce travel costs and
saving time. The application of electronic commerce has been growing over the last years
(Frasquet Deltoro et al., 2012). Nevertheless, as shown in Gallego et al. (2016), electronic
commerce in Spain shows a low growth where even a great percentage of population has
never used this type of services. These indicators are even worse focusing on supermarket

e-commerce where fresh and food products are sold.
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The data used in this study belongs to one of the top dot-com e-commerce companies
in Spain and even though for the given reasons the volume of data might not seem
very high, it indeed provides good insights and contributes greatly on customer behavior
exploration. Small revenues compared to consolidated traditional grocery distributors
do not necessarily mean that it is not worthwhile to study. In fact, these types of
analysis should give the understanding to expand these businesses which are in continuous
expansion, to know in which type of clients need to focus their commercial strategies and
obtain the vision to develop the sales activity.

All these facts make it essential to efficiently manage the relationship with the customer
to foment long term relationships, to offer attractive promotions and thereby achieve
beat one of the greatest barriers of this type of commerce that is linked to the fear of

dissatisfaction and the unknown.

In order to better manage grocery e-companies and have a long-term customer port-
folio, companies need to fully understand the effect of the main determinants of churn
customer choice. Controlling a positive net-inflow in active customers is something that
e-companies need to focus. Special promotions and marketing actions should put into
practice to make customers loyal. Mozer et al. (2000) confirm that incentives should be
offered to those customers whose probability is above a threshold. Churn customer predic-
tion has been discussed previously in literature; however we think that this methodological
improvement presented in this paper by introducing spatial econometrics techniques, will

help to gain a better understanding of the problem.

Traditional econometric models assume independence among customers’ decisions.
This assumption could generate inaccurate estimations of parameters that may have
an economic impact on the results. In an urban environment, customer decisions seem
unrealistic that are not influenced by the decisions of close people. Those spatial
spillovers could be explained by direct interaction between neighbors in customers or by
the omission of relevant factors (with spatial structure in the model that could exhibit

spatial dependence; LeSage and Pace, 2009b).

Technological advances in geographic information systems (GIS) make collecting spatial
data easier than ever before. Consequently, the possibility of spatial correlation among
observations can be explored in order to achieve a better specification for a churn model.
In this paper we explain the churning event by paying special attention to geographical
information of customers of a dot-com e-commerce company that provides its services
in the great urban area Madrid (Spain). Reaching to the conclusion that spatial model
outperforms the non-spatial in terms of prediction power. Our results provide evidence
that the probability of stopping using the application increases if nearby customers also
churn due to the spillover effects. Furthermore, the use of spatial information regarding
location of shopping centers in the city and also using information on the economic welfare

of Madrid’s areas, provide interesting conclusions about where to optimize the customer
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acquisition. An additional log-kilometer of distance between customer and supermarket
reduces the probability that such customer becomes inactive by 4.7%. In addition, if
customer lives in an opulent area the probability sharply decreases even more. Hence,
spatial distribution of the customer portfolio is a big deal for those startups companies
dedicated to e-commerce. Moreover, it is demonstrated that certain actions of neighbors
such as the orders requested, improve the model of churning. An additional order by
the five closest neighbors in the past, reduces the probability of leaving the company by
4.9%.

Another contribution of the present paper is the use of GAM methodology to reveal
behaviors and patters hidden in a linear model. Non-linearity effects are explored so
that the model has the best possible performance. Our results indicate that, e-commerce
shopping companies should focus on distances between customers and market stores.
When distances are very narrow, online company will have to make an extraordinary
effort to retain customers and those customers. An additional relevant point is that,
from the first kilometer on seems to be the inflection point whereby the churning begins
to decrease. Another non linearity found was in temperature the day of signing up. As
the atmospheric temperature increases from 25 degrees, customers tend to be less loyal
and probably will use the application once. Although our initial expectations were to find
correlation both in high and low temperatures (extremes). Finally, our finding reveals

that it only affects when temperature is really high.

In this paper, it is also quantified the effect on churning of customers coming from social
networks. Direct recommendations and Facebook apparently are vital to capture loyal
customers, so investments on advertisement on this platform and giving the customer the
possibility to share the application’s installation is economically worthwhile in the long
run. It is also demonstrated that first experience of e-customers using the application is
significant to infer future behavior, so a good offer strategy would lead to a sustainable
customer portfolio.

Finally, few areas of further research should be noted. First, this paper is focus on
churning in the very first moments of the e-customer. So, as these dot-com businesses are
expanding nowadays, more information will be available to understand patterns in future
stages. Moreover, as behavior dynamism through time should be tested introducing time
level to the spatial regression. Secondly, exploring other territories and compare results
to this paper’s findings would be interesting to see how estimators change depending
on regions or countries. Lastly, in this paper we have demonstrated the importance of
distance (in kilometers) between customers and supermarket when predicting churning.
It might be a good approach to introduce time references to measure the distance in
hours from point to point on the map. There is scarce literature on this topic and more

research is required.
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Figure 3.7:

3.5 Appendix

Box plot of cross validation estimators per variable

In order to validate the results obtain in Model 3 a cross validation has been made to

validate the estimations.

Figure 3.7 showed the results to save space. By taking 80% of

the training sample randomly for one thousand times, the variability of the estimators

in spatial-probit model is obtained. The results confirm the existence of a positive and

significance contagious effect, or spillover effect in all the simulations. The significance of

the new p parameter also

means that Model 4 outperforms the previous nested models.
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Chapter 4

Searching the correct specification in
Spatial Probit Model

4.1 Introduction

There is a well-known aphorism of Box (1980) that, although a little simplistic, reflects a
widespread position about how to specify an econometric model: “All models are wrong;
some models are useful”. In the case of spatial econometrics, the selection of the more
adequate model is an open problem and, as far as we know, only a reduced number of

papers has been oriented to give some light about this topic.

In the specific case of continuous spatial econometric models some contributions have
been trying to find the true data generating process (Florax et al., 2003; Mur and Angulo,
2009; Agiakloglou and Tsimpanos, 2021). Perhaps the Florax et al. (2003) paper is the
more relevant contribution (it is almost the most cited paper related with this topic)
where the authors use the well know Lagrange Multipliers (M) tests with the objective
of identify the most adequate spatial generation mechanism of an observed dataset. Two
strategies were proposed by Florax et al. (2003), the classical ‘Specific to general’ (Stge)
versus the ‘General to specific’ (Gets) approach or the Hendry approach (Hendry, 1979).
The main advantage of use the LM tests is that is not necessary estimate the models
under the alternative. This is relevant because in case of medium or big sample size, the
estimation by Maximum Likelihood (ML) of a spatial regression model is not a simple
task, especially in at the beginning of the 21st century where the power of computers
was much lower than the current and the available specific software was limited. The
second relevant contribution is the paper of Mur and Angulo (2009), where the authors
contemplate slight variations alternatives to Gets/Stge strategies through a Monte Carlo
experiment. In this paper, the authors consider four spatial processes, namely SAR, SEM
and SARAR and the non-spatial continuous model (spatial independence model, SIM).

The results are quite diffuse, in the sense that we do not find conclusive evidence in
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favour of either of these two approaches. However, it should be recognized that the Gets
strategy seems to be more robust to the existence of anomalies in the Data Generating
Process (DGP). Finally, in a recent paper, Agiakloglou and Tsimpanos (2021), develop
another Monte Carlo experiment to select the most appropriate spatial regression model
considering only the three most frequently applied in practice, such as, SAR, SMA, and
SARAR.

In case of spatial econometric models with limited dependent variable, or discrete choice
models, the spatial probit model has been the usual instrument to model choices of n
individuals under the assumption of spatial interaction. As in the case of continuous
spatial econometric models, several tests have been developed to evaluate the presence of
spatial correlation in the residuals of a non-spatial probit model (see by example, Amaral
et al., 2013), but those tests have been developed under a generic alternative hypothesis
and therefore when the null is rejected the researcher don’t have information about the
true spatial generation mechanism of an observed dataset. Distinguishing between the
different type of spillover effect in spatial probit model is essential as there is a serious
risk of making incorrect inferences when estimating a misspecified model. Since there
are no Monte Carlo experiments, like in case of continuous regression spatial models, to
shed any light on the true DGP, different authors of applied papers have been considered
different alternatives.

In mostly of cases, the author(s) selected a type of spatial model with the objective of
incorporate spatial effects after test the presence of spatial autocorrelation in the residual
of a non-spatial probit model using some diagnostic test like Moran test (Amaral et al.,
2013) or Join-Count tests (Cliff and Ord, 1981). The SAR probit specification is the most
frequently specification and no alternative spatial probit specifications like SDM, SEM
or SARAR has been proposed to incorporate spatial effects. The range of scientific fields
where the spatial probit models has been applied is enormous, from actuarial sciences
De la Llave et al. (2019a), health Ortega-Garcia et al. (2020) or e-commerce De la Llave
and Lopez (2020), just to list a few. Less frequently, other papers consider several spatial
probit specifications and compare them in different ways. For example, Lapple et al.
(2017) estimate SDM, SDEM, SLX and SIM and compares them in terms of predictive
power based on percentages correctly predicted outcomes in the sample. Yang and Knook
(2021) estimate an spatial Durbin probit model and the authors compare the non-spatial
probit model (SIM) with SDM based on the value of the likelihood and the McFadden
R? coefficient. In this paper the authors use a Wald test to confirm that the SDM probit
model should not be reduced to the model that includes one spatial effect, that is the
spatial autoregression (SAR) or spatial error (SEM) probit model. Yang and Sharp (2017)
compare four spatial probit model based on the highest posterior model probability (SAR;
SEM; SDM and SLX) estimated by the Bayesian Markov Chain Monte Carlo. Mate-
Sanchez-Val (2021) uses the Likelihood Ratio (LR) test to select the model between SAR
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and SEM selecting the specification with highest LR value.

All those evidences show that no information about the correct spatial DGP for spatial
probit model is available for the researches that uses this methodology and therefore,
it must be necessary to give some light to the correct selection of the model. Without
a process that verifies the specification of the spatial probit models, the validity of the
Axiom of Correct Specification Leamer and Leamer (1978) cannot be assured. Hence, it
could not be guaranteed that there is no correlation between the researcher’s beliefs and
the final model (Mur and Angulo, 2009). Therefore, the aim of this paper is to contribute
further evidence to the debate, outlined briefly above, about how to specify and develop
better spatial discrete choice models. At a time when only the investigation of Beron and

Vijverberg (2004b) show some evidence using the LR test.
This study conducts a comparison of five spatial probit models (SIM; SAR; SEM; SLX

and SDM) through several selection strategies, using an extensive Monte Carlo analysis.
Our findings show in the first instance that the misselection of an econometric model has
severe consequences. This produces bias the model parameters and therefore it affects the
final use of the probit model. This has been an open debate in previous studies carried
out with continuous spatial models (LeSage, 2014b; Riittenauer, 2019). This analysis
extends those investigations to the field of spatial probit. In line with previous papers,
SDM outperforms the most used models SAR and SEM. Another contribution is the
evaluation of a Stge and a Gets strategy for the correct selection of spatial probit models.
Since the academic debate on the probit environment has not started, our proposal is the
introduction of two selection flows, evaluating their ability to identify true DGPs under
ideal and non-ideal data conditions. The results are broken down into various levels
to see proportions of success. In addition, the proposed methodology is compared with
the result that a Gradient Boosting algorithm would blindly provide. In line with Mur
and Angulo (2009), it is difficult to decide between Stge and Gets strategies under ideal
conditions. Both strategies behave quite well, specifically when the sample is greater
than 900 observations or when the dependency is high. By introducing soft non-ideal
conditions such as endogeneity or lack of information in the specification, the strategies
slightly lower their performance. On the other hand, when the endogeneity is very severe,

the SEM identification becomes complicated.

Section 4.2 reflects the strategies to follow to choose the correct DGP and the tests used
for the process. Section 4.3 shows the designed Monte Carlo experiment. Subsection 4.4.1
gives evidence on the consequences on the model coefficients of not correctly selecting the
appropriate model. Section 4.4.2 contains the results of the Stge and Gets strategies, as
well as their comparison with a GBM algorithm. Finally in section 4.6 the conclusions

of the analysis.
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4.2 Model selection in a spatial probit context

The discussion focuses on finding the best way to identify the true functional form of
the model given some data. The idea in both Gets and Stge is to start with a suitable
specification and use different tests to assess its suitability. In principle there is no
preference for any strategy. Access to the evaluation tests is free and the estimation
of the models is much faster than it was years ago. In any case, for the design of the
algorithms, a simplification criterion has been followed (having a reasonable result with

few tests).

The detection of true DGP is a very complex task. The main problem is that tests
designed to detect spatial dependency in the response variable, like Join Count (JC test)
(Cliff, 1973), reject the null when in fact there is dependency on the disturbances or when a
spatially lagged variable is present to understand the phenomena. It also happens that the
t-test reacts for example detecting significance in spatially delayed independent variables
when in fact there is autocorrelation in the lag of the dependent variable or in the error.
When analyzing the residuals of a model, we obtain very relevant information on whether
the residuals are white noise or whether there is still spatial structure in the disturbances.
In Pinkse and Slade (1998), Kelejian and Prucha (2001b) (KP test) and Pinkse (2004),
there are three tests proposed focused on finding patterns in the residuals of the spatial
probit. All of them work well detecting SAR, SEM, SDM structures within SIM residues,
especially Kelejian and Prucha (2001b) according to Amaral et al. (2013). But all of
them leave open the type of spatial pattern that the residuals hide. Furthermore, when
applying these tests to the residuals of spatial specifications, we are unable to distinguish
those that eliminate completely the spatial dependency. Agiakloglou and Tsimpanos
(2021) performs Monte Carlo analysis via the Likelihood Ration (LR). LR is the most
widely used test to compare spatial probit models. This test, as shown in Agiakloglou
and Tsimpanos (2021), manages to correctly select 70%' of the cases only by deciding
between SIM, SAR and SEM. Finally, The most widespread methods for comparing
models are the Akaike Information Criteria (Akaike, 1998) and the Bayesian Information
Criteria (Schwarz, 1978). These methods provide simplicity and speed when choosing
between models. At the moment there is no evidence on the power for discriminating
spatial dichotomic models. However, on continuous spatial regressions, Agiakloglou and
Tsimpanos (2021) performs simulations, reaching accuracy levels close to 80% for SEM,
SAR and SARAR. All these tests have been taken into consideration to formulate selection
strategies Stge and Gets for spatial probit DGPs.

The main difference between both strategies as originally formulated by Florax et al.
(2003) is the starting point for the identification of the spatial structure. The broader

specification would cover all types of spatial dependency.

IFor sample sizes of 200 observations, parameter of autocorrelation equals to 0.5, the LR test obtains
a 75% of precission for SAR and 65% for SEM
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Figure 4.1: Flow for Specific to General (Stge) approach

Y*" =0+ XB+WXBs+pWY" +u (4.1)
u=\Wu-+e

When all the spatial parameters 3, p and A lose their significance, then we are talking
about a SIM model, which is the origin of the Stge strategy in which there is no spatial
dependency between observations. When A=0 is not rejected, then we speak of a SDM
model that combines spatial dependence on the dependent variable and spatial lag on the
exogenous variable. All other resulting models will be SLX when only (3 is significant.

Finally, SAR and SEM in which p and A will be significant respectively.

Figure 4.1 depicts the strategy Stge for probit model selection. The sequence begins
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with the analysis of the residuals of a SIM model. If Generalized IMoran test by Kelejian
and Prucha (2001b) is not rejected?, the possible DGP could only be SIM or SLX. In
order to distinguish them, we apply the LR test. On the other hand, if the SIM residuals
show a significant spatial pattern, then the next step is to estimate the SLX model.
Again, we compare through LR the SIM and SLX models. When we do not reject null in
favor of SIM, then we decide the estimated DGM as SEM. Finally, we estimate the SDM
model in which we will discriminate between SAR and SDM based on the significance of
the parameter 3. In case the parameter is significant, then the estimated DGP will be
SDM, otherwise SAR.

The Gets sequence is a bit more complex. It follows the flow in line with Mur and
Angulo (2009), although with slight changes, since in this analysis we incorporate the SLX
model. The flow is shown in Figure 4.2. The simplification process starts from the SDM
model. In the case of not rejecting the hypothesis of 83=0, we will have two possible
outcomes: SIM or SAR. Discrimination between them will be achieved by testing the
significance of p. In the case of being significant, the process will follow a SAR, otherwise
a SIM. When we reject that $3=0 then we have the full range of models (except SAR)
likely to be the estimated DGP. Here we must resort to the LR test between SEM and
SDM. This is the so-called likelihood ratio of common factors (LRCOM)? appropriate for
testing the validity of the SEM (Davidson et al., 2004). By not rejecting the LR, and if
definitely the parameter A of the SEM model is significant, then the final proposal will
be SEM, otherwise SIM. Rejecting the LR between SEM and SDM will depend on the
significance of the p parameter. If p is not significant, the process ends pointing to an
SLX, and if it is significant then this means that all the parameters of the model are

significant, so the original SDM model will be the valid one.

4.3 The design of the Monte Carlo study

This section describes the Monte Carlo process followed to evaluate both the backward
and forward methodology. We start from the five different model specifications presented
before (SIM, SEM, SLX, SAR and SDM models). The main objective of the study is to
compare the model selection methodologies, by evaluating the degree of recognition of
true DGP.

The first part of the analysis has been carried out under ideal conditions. This means
that there is no endogeneity in the model and all the variables that determine the de-

pendent variable are present in the specification. Furthermore, the simulated residuals

2For all the comparisons both in the Stge and the Gets approach, the Bonferroni correction for nested
contrasts has been applied in the definition of the p-values. However, results do not chance much if we
had applied cut-off p-values.

3The Comfac LR degrees of freedom are the model parameters
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Figure 4.2: Flow for General to Specific (Gets) approach

are distributed as a normal with mean equal to zero and variance equal to one. In a
second phase of the study, three different conditions have been introduced in the model,
two types of endogeneity have been incorporated at different levels of correlation [0.2%
and 0.9%] to see the performance of the selection methods. The third non ideal condition
contains simulations where the model specification does not contain a spatially lagged

variable which is significant for the model*

For our Monte Carlo study, we build the unobservable latent variable following the
model defined in 4.1. The response variable Y, object of the modeling, will be the ob-
servable part of Yx, which will take the value 1 when Y'* is positive and 0 when Y* is
negative. The parameter values selected for the model have been previously studied in
such a way that appropriate characteristics are fulfilled for the formulation of Monte-
Carlo’s work. The coefficients chosen are g1 =1; 8,=-0.5 and [3=-0.4. [, refers to the
intercept applicable for all models. [2 to the exogenous variable (X) randomly gener-
ated following a Normal(u=1,0=2) applicable for all models too. And f35 to the spatially
lagged exogenous variable (X) applicable to SLX and SDM models. These coefficients
guarantee a quite reasonable balancing of the dichotomous variable®. Furthermore, these
coefficients keep the Area Under the ROC Curve (AUC) of all models always greater than

4The variable simulated and omitted in the specification is W * V which is randomly generated
following a Normal(u=1,0=2). The coeflicient in the true specification is 0.2
5The resulting percentage of Y=1 is between 0.4 and 0.8
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0.78.

The number of observations (n) is defined as an element to be studied, so the sample
sizes 100, 400, 900, 1600, 2500 are proposed for the simulations. A regular grid division
of space has been considered (y/n x y/n). The real adjacency matrix W is assumed to be
known and follows the rook criteria. Then the W matrix is row-standardized. Given the
models to be evaluated, we have three types of parameter combinations (p,A). The first
combination (p=0,A=0) for SIM and SLX models. The second combination (p=t,A=0)
for SAR and SDM. And the third combination (p=0,A=¢) for the SEM model. For each
case, 5 values for ¢ have been simulated (from 0.3 to 0.7 by adding 0.1).

Each combination has been repeated 500 times. One of the main obstacles of the
analysis is obviously the execution time. The simulations have been carried out in R
language on the Microsoft Azure cloud platform using a Standard DS3 processor with 14
GB of RAM and 4 Cores. A full run with all combinations takes around 3.5 hours. For
estimation of spatial-probit model we use the procedure based on Conditional Maximum
Likelihood developed by Martinetti and Geniaux (2017). The ProbitSpatial R-package

(Martinetti and Geniaux, 2021) was used to estimate the model.

4.4 Results of the Monte Carlo study

4.4.1 Consequences of an incorrect model choice

The first question to ask is the consequences of an incorrect model choice. Very often,
econometric models are used both to explain past phenomena and to evaluate the effect
of certain actions on a socioeconomic variable. To cite a few examples, in LeSage et al.
(2011), he makes an evaluation of the government aids programs after Hurricane Katrina.
In Ortega-Garcia et al. (2017), the factors that affect childhood cancer are sought. In
Storm et al. (2015), it is analyzed how much direct payments affect farm survival. This
reveals that we must look for parameters that are as accurate as possible, otherwise it will
have consequences in the actions that are taken based on the data. Therefore, the analysis
of the data and the specification of the model must have a careful consideration. The
incorrect selection of the model might cause poor estimators not fully efficient producing
biases and when there is an obvious spatial lag, the estimators can be inconsistent. This

might cause a misidentification of the real factors involved in the modelling.

The purpose of this section is to show the deviation in the estimation of the parameters
when we model with a specification other than the true DGP. The entire simulation
process leaves us with a huge amount of data for analysis. Tables 4.1 and 4.2 show average

bias in parameters estimated, accuracy through ROC curve Area and their standard
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deviations for each. For the sake of brevity, only the Figures for sample sizes of 400 and

2500 are shown. p and A in the table take the value equal to 0.6.

Our simulations indicate that by selecting the correct DGP, the estimates for all cases
become very precise and consistent. The problems come up when the selection is incor-
rect. The first conclusion when looking at the data, is confirmation of the statement in
McMillen (1992), “Spatial autocorrelation reduces efficiency and can make OLS param-
eter estimates inconsistent”. When there is a certain spatial pattern in the real data,
both 3 and (35 in the SIM model present a relevant bias. In addition, it is noticeable the
decrease in the ROC in these models. On the contrary, SDM presents the best results in
terms of accuracy. SDM has also unbiased ; and (s estimators specially when sample
size is 2500. When real DGP is a SLX, SDM nails the coefficients without giving value
to the autoregressive parameter. In case of a DGP=SAR, the bias in p is positive but
quite small and compensates with 3 which has a negative bias. In case of DGP=SEM,

SDM has a significant bias in ; and solves the spatial problem giving value to £3 and p.

SAR and SEM models, which actually are the most used models in research, present
bias when the type of spatial dependency contained in the real data is incorrect. When
real DGP follows a SDM then SAR and SEM have relevant bias in a very similar way
each other. They tend to overestimate the dependency parameter and both £, and [
are underestimated. Finally, when the true DGP is an SLX, SAR and SEM are biased
in different directions at (5, however, just SAR modelling gives value to the spatial

dependency parameter.

Regarding modelling with SLX, it obtains a good performance in terms of accuracy.
The estimator s is quite centered for all DGPs. When DGP is SAR or SDM, (3 tends
to take on a relevant value, in turn decompensating the true value of ;. However, in

case of a DGP=SEM g3 it remains unchanged.

All these impacts have some modifications when the sample size changes or when the
spatial parameter varies. For further analysis on bias in ; and (,, Figures 4.3 and 4.4
have been generated. They represent the bias of each of the estimators given four types of
sample sizes and a small (0.3) and large (0.6) autocorrelation both in p and in A. It can be
seen how for 3; the bias remains constant for different sample sizes and obviously varies
depending on the autoregressive parameter. (s tends to have a constant bias for each
model not equal to the true DGP when sample size varies. However, when estimating
with SDM, it fails to fit the coefficient perfectly when the DGP follows a SAR or a SEM
and the sample size is high as well as the special dependency parameter. Again, it is clear
that SLX provides good estimates for 5 when DGPs equal to SAR or SEM, especially
if p and A are low. Furthermore, when we find a DGP SDM, SLX is the one that would

make the best estimate of 8, among the compared models.

In conclusion, the analysis of the bias of the estimators and the precision of the models

shows SDM as the model in which, without prior knowledge of the type of spatial struc-
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ture, it obtains better results in terms of sensitivity and specificity. Also, if the sample

size is high, the estimators are centered. The main drawback is the interpretability of this

SDM model in terms of direct and indirect effects, which is more complex. It has also

been seen that SLX can be good. It is true that it produces biased estimators, especially

when the parameter p is high, but the main advantage is its simplicity of interpretation

and calculation.

Table 4.1: Bias, ROC and Standard deviation in brackets when estimating using differ-
ent specifications under ideal conditions. N=400

Model Bias ;=1 Bias 5=-0.5 Bias #3=-0.4 Bias p=0.6 Bias A=0.6 ROC
DGP: SIM
SIM 0.01 (0.10)  0.00 (0.05) 0.84 (0.02)
SLX 0.01 (0.13)  -0.01 (0.05) 0.00 (0.08) 0.84 (0.02)
SAR  0.01 (0.12) -0.01 (0.05) -0.01 (0.11) 0.84 (0.02)
SEM  0.02 (0.10) -0.01 (0.05) -0.01 (0.16) 0.84 (0.02)
SDM  0.03 (0.22) -0.01 (0.05)  -0.01 (0.11) -0.02 (0.16) 0.84 (0.02)
DGP: SLX
SIM -0.43 (0.09)  0.03 (0.05) 0.82 (0.02)
SLX 0.02 (0.13)  -0.01 (0.05)  -0.01 (0.08) 0.85 (0.02)
SAR  -0.40 (0.08) -0.03 (0.06) 0.37 (0.08) 0.84 (0.02)
SEM  -0.43 (0.10)  0.03 (0.05) 0.01 (0.17) 0.82 (0.02)
SDM  0.03 (0.17)  -0.01 (0.06)  -0.01 (0.10)  0.00 (0.14) 0.85 (0.02)
DGP: SAR
SIM 0.60 (0.22)  0.08 (0.05) 0.82 (0.03)
SLX 1.11 (0.27)  0.04 (0.06)  -0.38 (0.10) 0.85 (0.03)
SAR 0.12 (0.16)  -0.02 (0.08) 0.06 (0.08) 0.86 (0.03)
SEM  1.11 (0.33) -0.06 (0.09) 0.71 (0.10) 0.82 (0.03)
SDM  0.17 (0.21)  0.00 (0.07)  -0.06 (0.11)  0.04 (0.09) 0.86 (0.03)
DGP: SEM
SIM  -0.21 (0.17)  0.10 (0.05) 0.79 (0.02)
SLX  -0.21 (0.18)  0.10 (0.05) 0.01 (0.09) 0.79 (0.02)
SAR  -0.37 (0.14)  0.11 (0.05) 0.41 (0.11) 0.79 (0.03)
SEM  -0.04 (0.20)  0.01 (0.06) 0.02 (0.09) 0.79 (0.02)
SDM  -0.62 (0.12)  0.01 (0.06) 0.31 (0.11)  0.61 (0.08) 0.80 (0.02)
DGP: SDM
SIM  -0.42 (0.32) 0.11 (0.08) 0.79 (0.04)
SLX 0.51 (0.45)  0.00 (0.12)  -0.37 (0.21) 0.87 (0.04)
SAR  -0.20 (0.22) -0.20 (0.18) 0.24 (0.10) 0.89 (0.05)
SEM  -0.15 (0.47) -0.08 (0.15) 0.82 (0.14) 0.79 (0.04)
SDM  0.09 (0.33) -0.01 (0.14) -0.07 (0.22)  0.08 (0.15) 0.89 (0.04)
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Table 4.2: Bias, ROC and Standard deviation in brackets when estimating using differ-
ent specifications under ideal conditions. N=2500

Model Bias f;=1 Bias #;=-0.5 Bias §3=-0.4 Bias p=0.6 Bias A\=0.6 ROC
DGP: SIM
SIM  0.00 (0.04) 0.00 (0.02) 0.84 (0.01)
SLX  0.00 (0.05) 0.00 (0.02)  0.00 (0.03) 0.84 (0.01)
SAR  0.00 (0.05)  0.00 (0.02) 0.00 (0.04) 0.84 (0.01)
SEM  0.00 (0.04)  0.00 (0.02) 0.00 (0.07) 0.84 (0.01)
SDM  0.00 (0.08)  0.00 (0.02)  0.00 (0.04)  0.00 (0.07) 0.84 (0.01)
DGP: SLX
SIM  -0.44 (0.04) 0.04 (0.02) 0.82 (0.01)
SLX  0.00 (0.05) 0.00 (0.02)  0.00 (0.03) 0.85 (0.01)
SAR  -0.42 (0.03) -0.02 (0.02) 0.37 (0.04) 0.84 (0.01)
SEM  -0.44 (0.04)  0.04 (0.02) 0.00 (0.07) 0.82 (0.01)
SDM  0.00 (0.07)  0.00 (0.02)  0.00 (0.04)  0.00 (0.06) 0.85 (0.01)
DGP: SAR
SIM 059 (0.09) 0.09 (0.02) 0.82 (0.01)
SLX  1.09 (0.11)  0.06 (0.03)  -0.38 (0.04) 0.85 (0.01)
SAR  0.08 (0.06)  0.00 (0.03) 0.07 (0.03) 0.86 (0.01)
SEM  1.08 (0.11) -0.04 (0.03) 0.72 (0.04) 0.82 (0.01)
SDM  0.13 (0.08)  0.02 (0.03)  -0.06 (0.05)  0.06 (0.04) 0.86 (0.01)
DGP: SEM
SIM  -0.20 (0.07) 0.10 (0.03) 0.79 (0.01)
SLX  -0.20 (0.08) 0.10 (0.03)  0.00 (0.03) 0.79 (0.01)
SAR  -0.37 (0.06) 0.12 (0.03) 0.43 (0.05) 0.78 (0.02)
SEM  -0.03 (0.07)  0.02 (0.03) 0.03 (0.05) 0.79 (0.01)
SDM  -0.62 (0.06) 0.02 (0.02)  0.30 (0.05)  0.62 (0.05) 0.79 (0.01)
DGP: SDM
SIM  -0.44 (0.13) 0.11 (0.03) 0.79 (0.02)
SLX  0.47 (0.18)  0.01 (0.04)  -0.36 (0.09) 0.87 (0.02)
SAR  -0.24 (0.08) -0.18 (0.06) 0.24 (0.05) 0.88 (0.02)
SEM  -0.18 (0.19) -0.06 (0.06) 0.83 (0.05) 0.79 (0.02)
SDM  0.04 (0.12)  0.01 (0.05)  -0.04 (0.10)  0.09 (0.06) 0.89 (0.02)
4.4.2 Results of the selection strategies

The question to be resolved in this subsection is to know how much we can trust these two

strategies given different casuistries of the data. Table 4.3 summarizes the percentage of

simulations that correctly select the true DGP under ideal conditions. For both strategies,

there is a notable growth in the percentage of correct answers as the sample size increases.

From a size of 900 observations the performance is quite regular and reasonable. The

same occurs with the spatial dependency level. In the case of SIM and SLX there is no
spatial dependence within the model, but in the case of SAR, SEM and SDM there is

a more or less constant increase in the probability of success when the autocorrelation
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parameter increases.

Under ideal conditions, both strategies have a very similar level of performance. Only
Stge seems to outperform Gets in SEM identification. Both algorithms reach levels close
to 1 when the sample size is high (> 400) and when p or A show high level of spatial
dependency. Actually, the whole average of success is 97.08% for Gets and 97.46% for
Stge. SDM is the real DGP which is detected with almost 100% of accuracy. On the other
hand, for problems where there are not many records (< 400) and the spatial dependence
is low (< 0.4), it is difficult to select correctly the true DGP. The precision for Gets is
39.69% and for Stge is 41.84%, being SEM the model that is most difficult to be identify
for Gets with 12% of probability of success and SAR for Stge strategy with 20%. Finally,
if comparing both strategies when n=900 with p and A either 0 or 0.5, then Gets shows
and average of 91.63% and Stge 93.95%.

A point that also deserves special attention is when the algorithm fails. When the
algorithm goes wrong, given the structure of the strategies and the combinations of tests,
they make the strategy point to another specific model, instead of being distributed evenly
among the rest of the models. This can be seen in 4.5. For example, both strategies select
5% true SEM as SIM. However, Gets confuses true SEM much more with SAR (8% instead
of 2% Stge). SDM is the last Step in both strategies to be tested. Everything that has
not been selected already falls into SDM category. It works for both strategies quite well

and just 8% of the cases are selected as SDM when in reality they are not.

Table 4.3: Percentages of correct identification of the DGP under ideal conditions

n=100 n=400 n=900 n=1600 n=2500
DGP p A Stge (Gets) Stge (Gets) Stge (Gets) Stge (Gets) Stge (Gets)
SIM 0.0 0.0 0.94(0.98) 0.94(0.97) 0.94(0.97) 0.93(0.96) 0.95 (0.97)
SLX 00 0.0 0.57(0.31) 0.98(0.92) 0.98(0.97) 0.97 (0.96) 0.98 (0.97)
SAR 0.3 0.0 0.6 (0.08) 0.23(0.36) 0.59 (0.77) 0.91 (0.95) 0.97 (0.97)
04 00 005 (0.16) 0.46 (0.66) 0.88 (0.92) 0.99 (0.99) 0.98 (0.98)
05 0.0 0.14(0.29) 0.71(0.87) 0.98 (0.98) 0.97 (0.97) 0.98 (0.98)
0.6 0.0 022(0.35) 0.87(0.94) 0.97 (0.97) 0.96 (0.96) 0.94 (0.94)
0.7 0.0 0.33(0.53) 0.95(0.99) 0.99 (0.99) 0.93 (0.93) 0.93 (0.93)
SEM 0.0 0.3 0.07(0.03) 0.29 (0.11) 0.57 (0.39) 0.77 (0.58) 0.87 (0.73)
0.0 04 0.14(0.04) 0.54(0.31) 0.80 (0.66) 0.95 (0.86) 0.97 (0.96)
0.0 05 024(0.06) 0.77 (0.44) 0.98 (0.84) 0.97 (0.95) 0.98 (0.99)
0.0 06 042(0.16) 093 (0.71) 0.97 (0.93) 0.98 (0.98) 0.98 (0.98)
0.0 0.7 0.64(0.25) 095 (0.89) 0.97 (0.97) 0.98 (0.98) 0.97 (0.95)
SDM 0.3 0.0 0.03(0.03) 0.52 (0.51) 0.91 (0.88) 1.00 (0.99) 1.00 (1.00)
04 0.0 0.04(0.04) 0.83(0.83) 1.00(1.00) 1.00 (1.00) 1.0 (1.00)
05 0.0 0.14(0.14) 0.88(0.89) 1.00 (1.00) 1.00 (1.00) 1.0 (1.00)
0.6 0.0 0.16 (0.19) 0.90 (0.90) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
0.7 00 023(0.24) 082 (0.82) 098 (0.98) 1.00 (1.00) 1.00 (1.00)
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Performance of strategies under non ideal conditions
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Figure 4.5: Percentages of correct identification of the DGP under non ideal conditions

Ideal conditions hardly exist in real life. For this reason, simulations have been carried
out in the presence of real data problems. The first fairly common circumstance that can
occur to the analyst is not having all the information that determines a problem. The
lack of any significant variable causes a direct impact included in the disturbances of the
model. The omission of a relevant variable in the model specification produces a slight
decrease in the performance of the strategies. Figure 4.5 shows the degree of performance
against sample size and breaks down the graphs by degree of spatial dependence. The
decrease in performance is appreciated in the presence of misspecification, which mainly
affects the DGP=SAR, especially when p is less than 0.5 and also when sample size is
lower than 900 observations. The only DGP not impacted is when it follows a SDM which
means that all parameters remain significant (Gets Strategy) and KP’s null hypothesis
for SIM residuals is rejected and LR(SIM,SEM) is also rejected.

Another common problem is endogeneity. Figure 4.5 also shows the results of the Gets
and Stge strategies for some simulations in which a correlation between the error and the
exogenous variable has been introduced. The dark green and blue contain the correlation
at 20%. A general decrease in the probability of success of the strategies is observed.
Especially in the case of SEM where it is more prejudicial. These results are totally in
line with that mentioned by Mur and Angulo (2009). Generally speaking, Gets resists
better the endogeneity in the model, especially when the spatial dependency is high.
However, when the correlation is very high (90%), the Gets strategy decreases sharply its
success level in the case of the DGP=SLX and both strategies fail to identify the SEM.

In this instance, SEM is confused in favor of SIM.
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4.5 Play the machine: Gradient Boosting versus
Stge and Gets

The last point to cover is about whether with all this bunch of tests at our disposal, we
have chosen the best way to select the true DGP. All the decisions made for Stge and
Gets strategies make econometric sense to us. The tests used for each of the decisions
refer in some way to the DGP we are deciding on. However, we cannot guarantee a
global optimum as we have not tried all possible test combinations to see an optimal
diagnosis. Our intention now is to make a comparison between the strategies and a
Gradient Boosting Model (GBM). GBM is a powerful decision tree ensemble technique,
prepared to obtain very precise classifications. Being a non-interpretable technique, we
will only use it as a benchmark of successes rather than the strategy that has been
followed. By allowing the GBM algorithm to optimize the multinomial problem with a
database containing all available tests, we are going to check if there are more powerful
alternatives. Clearly, GBM does not pay attention to whether the tests used in each
decision make econometric sense, but instead will seek to minimize the function cost. We
consider 60% training database and 40% test data to avoid overfitting. The ghm package
of R has been used (Greenwell et al., 2020). The hyperparameters set are n.trees=100,
interaction.depth=1, n.minobsinnode=10 and shrinkage=0.1. The results of the GBM in
4.4 do not improve much those of the Stge and Gets strategies. GBM improves the results
of Stge under ideal conditions by 4.7%. Breaking down this percentage, we see how it
underperforms when identifying the independent model SIM. However, it has a better
performance in the cases of SAR and SEM when the sample size is less than 400. It is
difficult to really know all the crosses of variables and tests that GBM is doing behind.
We do not even know if these computed decisions make econometric sense. What is true
is that as the sample grows there is no evidence that the GBM offers better results than
Stge or Gets strategies. Speaking of non-ideal conditions (endogeneity in the model),
we see same effects in GBM results as those produced in the aforementioned selection
strategies presented. We believe that this comparison between GBM and strategies, is a
validation method to be aware of how close we are to an optimum. We can ensure that
having such battery of available tests, we could not have reached a much higher result.
There is no doubt that by increasing the number of tests, for example, the Vuong and
Clarke tests cited in Mur and Angulo (2009), the Q statistic (Ruiz et al., 2010) or the
binary scan test (Kulldorff, 1997), the result is likely to improve.

4.6 Conclusions

The search for the correct specification is one of the topics that has received less attention

within spatial econometrics. Over the last 40 years, different taxonomies have emerged
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Table 4.4: Percentage of correctly identified DGP using GBM algorithm. Comparition GBM with Gets and Stge strategies

P A n=100 n=400 n=900 n=1600 n=2500
DGP SIM
GBM 0.0 00  0.90 (0.89) (0.89) (0.86) 0.91 (0.92) (0.86) (0.90) 0.91 (0.91) (0.89) (0.89) 0.90 (0.93) (0.90) (0.90) 0.93 (0.90) (0.92) (0.92)
dif-Stge -0.04 (-0.03) (-0.06) (-0.06)  -0.03 (-0.03) (-0.05) (-0.03)  -0.03 (-0.04) (-0.05) (-0.05)  -0.03 (-0.02) (-0.02) (-0.03)  -0.02 (-0.03) (-0.01) (-0.01)
dif-Gets -0.08 (-0.09) (-0.10) (-0.10)  -0.06 (-0.07) (-0.09) (-0.08)  -0.06 (-0.07) (-0.08) (-0.07)  -0.06 (-0.04) (-0.06) (-0.05)  -0.04 (-0.06) (-0.03) (-0.02)
DGP SLX
GBM 00 00  0.43(0.69) (0.47) (0.63) 0.92 (0.92) (0.91) (0.93) 0.96 (0.93) (0.96) (0.92) 0.94 (0.92) (0.94) (0.93) 0.95 (0.95) (0.95) (0.93)
dif-Stge -0.14 (0.11) (0.14) (0.08)  -0.06 (-0.04) (-0.03) (-0.03) -0.02 (-0.05) (-0.03) (-0.04)  -0.03 (-0.04) (-0.03) (-0.04)  -0.03 (-0.04) (-0.02) (-0.04)
dif-Gets 0.12 (0.44) (0.44) (0.36) 0.00 (0.13) (0.75) (0.02)  -0.01 (-0.04) (0.61) (-0.04)  -0.02 (-0.04) (0.38) (-0.04)  -0.02 (-0.02) (0.18) (-0.03)
DGP SAR
GBM 03 0.0  0.20 (0.13) (0.09) (0.05) 0.62 (0.38) (0.25) (0.44) 0.89 (0.73) (0.49) (0.77) 0.98 (0.98) (0.60) (0.92) 0.97 (0.95) (0.85) (1.00)
dif-Stge 0.14 (0.08) (0.09) (0.03) 0.39 (0.16) (0.12) (0.24) 0.30 (0.13) (0.20) (0.27) 0.07 (0.03) (0.15) (0.09) 0.00 (0.00) (0.03) (0.00)
dif-Gets 0.12 (0.00) (0.04) (-0.02) 0.26 (0.02) (0.12) (0.14) 0.12 (0.00) (0.05) (0.04) 0.03 (0.00) (-0.05) (-0.01)  0.00 (0.00) (-0.04) (0.00)
GBM 05 0.0  0.57(0.31) (0.20) (0.41) 0.91 (0.95) (0.73) (0.90) 0.99 (0.98) (0.96) (0.98) 0.97 (0.98) (0.98) (0.97) 0.98 (0.98) (0.98) (1.00)
dif-Stge 0.43 (0.13) (0.15) (0.23) 0.20 (0.08) (0.08) (0.23) 0.01 (0.00) (-0.02) (0.02) 0.00 (0.00) (0.00) (-0.02) 0.00 (-0.02) (0.00) (0.00)
dif-Gets 0.28 (0.16) (-0.02) (0.15) 0.04 (0.04) (0.02) (0.10) 0.01 (0.00) (-0.02) (0.01) 0.00 (0.00) (0.00) (-0.02) 0.00 (-0.02) (0.00) (0.00)
GBM 0.7 0.0  0.71 (0.73) (0.78) (0.63) 0.98 (0.96) (1.00) (0.94) 0.99 (1.00) (1.00) (0.96) 0.93 (0.96) (0.95) (0.95) 0.92 (0.89) (0.95) (0.94)
dif-Stge 0.38 (0.24) (0.07) (0.40) 0.03 (0.00) (0.00) (0.09) 0.00 (0.00) (0.00) (0.00) 0.00 (0.00) (0.00) (-0.02)  -0.01 (-0.04) (-0.01) (0.00)
dif-Gets 0.18 (0.09) (0.02) (0.15) -0.01 (0.00) (0.00) (-0.01) 0.00 (0.00) (0.00) (0.00) 0.00 (0.00) (0.00) (-0.02)  -0.01 (-0.04) (-0.01) (0.00)
DGP SEM
GBM 0.0 0.3  0.14 (0.18) (0.07) (0.12) 0.39 (0.42) (0.09) (0.42) 0.73 (0.65) (0.04) (0.76) 0.88 (0.84) (0.00) (0.8 v 0.92 (0.80) (0.00) (0.89)
dif-Stge 0.07 (0.09) (0.05) (0.04) 0.10 (0.09) (0.04) (0.12) 0.16 (-0.04) (-0.01) (0.14)  0.11 (0.08) (-0.02) (-0.03)  0.05 (-0.07) (0.00) (-0.05)
dif-Gets 0.11 (0.16) (0.07) (0.09) 0.28 (0.22) (0.02) (0.27) 0.34 (0.27) (-0.01) (0.34) 0.30 (0.33) (0.00) (0.16) 0.19 (0.04) (0.00) (0.00)
GBM 0.0 0.5  0.31(0.25) (0.05) (0.33) 0.82 (0.67) (0.04) (0.84) 0.96 (0.65) (0.00) (0.94) 0.94 (0.58) (0.00) (0.93) 0.96 (0.44) (0.00) (0.97)
dif-Stge 0.07 (0.03) (0.01) (0.05) 0.05 (0.00) (0.02) (0.00) -0.02 (-0.06) (0.00) (0.00)  -0.03 (-0.07) (0.00) (-0.07)  -0.02 (-0.12) (0.00) (-0.03)
dif-Gets 0.25 (0.21) (0.05) (0.22) 0.38 (0.22) (0.02) (0.29) 0.12 (-0.06) (0.00) (0.07)  -0.01 (-0.20) (0.00) (-0.06)  -0.03 (-0.38) (0.00) (-0.03)
GBM 0.0 0.7  0.66 (0.56) (0. 08 (0.60) 0.91 (0.67) (0.04) (0.91) 0.93 (0.31) (0.00) (0.96) 0.95 (0.29) (0.00) (0.97) 0.94 (0.15) (0.00) (0.86)
dif-Stge 0.02 (-0.02) (-0.06) (0.04)  -0.04 (-0.09) (0.00) (-0.03)  -0.04 (-0.22) (0.00) (-0.04)  -0.03 (-0.11) (0.00) (0.00)  -0.03 (-0.05) (0.00) (-0.08)
dif-Gets 0.41 (0.49) (0.05) (0.41) 0.02 (-0.09) (0.00) (0.07)  -0.04 (-0.58) (0.00) (-0.04)  -0.03 (-0.66) (0.00) (0.02)  -0.01 (-0.34) (0.00) (-0.08)
DGP SDM
GBM 03 0.0 _ 0.05(0.02) (0.00) (0.05) 0.65 (0.33) (0.05) (0.60) 0.96 (0.95) (0.27) (0.93) 1.00 (0.98) (0.71) (1.00) 1.00 (1.00) (0.90) (1.00)
dif-Stge 0.02 (0.02) (0.00) (0.03) 0.13 (0.04) (0.03) (0.10) 0.05 (0.04) (0.11) (0.02) 0.00 (0.00) (0.09) (0.00) 0.00 (0.00) (0.00) (0.00)
dif-Gets 0.02 (0.02) (0.00) (0.04) 0.14 (0.00) (0.03) (0.12) 0.08 (-0.01) (0.03) (0.02) 0.01 (0.00) (0.07) (0.00) 0.00 (0.00) (-0.04) (0.00)
GBM 05 0.0  0.21 (0.15) (0.00) (0.20) 0.92 (0.78) (0.29) (0.90) 1.00 (1.00) (0.65) (1.00) 1.00 (1.00) (0.93) (1.00) 1.00 (0.98) (1.00) (1.00)
dif-Stge 0.07 (0.04) (0.00) (0.08) 0.04 (0.03) (0.07) (0.01) 0.00 (0.00) (0.01) (0.00) 0.00 (0.00) (0.00) (0.00) 0.00 (0.00) (0.00) (0.00)
dif-Gets 0.07 (0.04) (0.00) (0.09) 0.03 (0.07) (0.00) (0.02) 0.00 (0.00) (0.01) (0.00) 0.00 (0.00) (0.00) (0.00) 0.00 (0.00) (0.00) (0.00)
GBM 0.7 0.0  0.27(0.22) (0.07) (0.36) 0.85 (0.67) (0.35) (0.77) 0.99 (0.95) (0.45) (0.97) 1.00 (1.00) (0.82) (1.00) 1.00 (1.00) (0.96) (1.00)
dif-Stge 0.04 (0.06) (0.02) (0.08) 0.03 (0.05) (0.10) (0.01) 0.01 (0.02) (0.01) (0.00) 0.00 (0.00) (0.06) (0.00) 0.00 (0.00) (0.00) (0.00)
dif-Gets 0.03 (0.02) (0.02) (0.08) 0.03 (0.05) (0.10) (0.01) 0.01 (0.02) (0.01) (0.00) 0.00 (0.00) (0.06) (0.00) 0.00 (0.00) (0.00) (0.00)

The first Figure shows ...dif Stge... shows result of diff(GBM - Stge Strategy) and ...difGets... shows result of diff(GBM - Gets Strategy)
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4.6. CONCLUSIONS

which allow a better approach to reality. At the same time, advances in algorithms
and computational techniques make it possible to obtain accurate results in reasonable
times. The identification of the ideal specifications requires careful consideration in spatial

context and becomes very relevant for obtaining reliable models.

Our simulations highlight the dangers of an incorrect choice of model. Classical probit
models ignore spatial dependency effects which produce biased and inconsistent coeffi-
cients. The use of SAR and SEM models does not guarantee unbiased parameters, since
the presence of spatial structure in the exogenous variables would make us misinterpret
the outcomes of the model. Aligned with other researchers (LeSage, 2014b, and Riitte-
nauer (2019)), it seems that SDM provides the best results. This leads us to the second
part of the analysis carried out. One might then think that the best model to start track-
ing the true underlying generating mechanism behind a binomial variable is the SDP, and
therefore follow a General-to-Specific (Gets) strategy. In this research, we compare two
novel algorithms applied to spatial probit (General-to-Specific vs Specific-to-General).
The reality is that following both decision flows we reach similar and satisfactory accu-
racy ratio levels under ideal conditions. Only for SEM DGP, the strategy Stge seems to
be better. The sample size and the degree of spatial dependence are key in determining
the accuracy of the strategies. For sample sizes greater than 400 or spatial dependence

intensities greater than 0.4, the precision is in most cases greater than 80%.

The models have been built under a criterion of simplicity and econometric rigor.
Currently, in practice, the most used criterion to compare spatial probit models has been
the LR. Beron and Vijverberg (2004b) demonstrates the power of the LR in an analysis of
MC simulations. We have shown that by combining several tests we can achieve accuracy
ratios close to 100%. To guarantee that the chosen combinations are close to an optimum,
it is shown that a GBM algorithm with even more tests at its disposal obtains success rates
similar to the proposed strategies. Even under non-ideal conditions of endogeneity, GBM
shows the same weaknesses as the Stge and Gets strategies. Both strategies seem to resist
well the lack of some relevant variable. However, Stge is more sensitive to endogeneity
problems when identifying a DGP=SEM and Gets is more sensitive to this same problem
when identifying an SLX. In the end, it is hard to make a decision on whether a Gets
strategy is preferable to Stge (Florax et al., 2003) or the other way around (Hendry, 2006).
It should also be taken into account that Stge by definition requires less computational
cost or other aspects such as the analyst’s general assessment of the data to take one or

the other strategy.

This research aims to continue the debate on model selection in a spatial setting. We
open the debate to the spatial probit environment. Although, many questions remain
open to new research regarding other types of specifications, the inclusion of new spatial
presence detection tests, the setting of other non-ideal conditions or the use of non-

standardized adjacency matrices. There is no doubt that the spatial modeling community
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is growing and will answer all these questions soon.

4.7 Appendix: Confusion matrix between true DGP
and Estimated DGP

Table 4.5: Confusion matrix between true DGP and Estimated DGP for n>=900

Estimated DGP
SIM SLX SAR SEM SDM
Stge Strategy
SIM 096 0 0.02 0.01 0
SLX 0 097 0 0 0.03
True DGP SAR 0.02 0 0.95 0 0.02
SEM 0.05 0 0.08 0.85 0.01
SDM 0 0.01 0 0 0.99
Gets Strategy
SIM 094 0.01 0.02 0.03 0
SLX 0 097 0 0 0.03
True DGP SAR 0 0.02 093 0.02 0.03
SEM 0.05 0 0.02 091 0.02
SDM 0 0.01 0 0 0.99
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Concluding Remarks

Processes of a binary nature with spatial dependency require special consideration.
Throughout this Thesis we have seen the N-dimensional multivariate normal estimation
techniques to solve the spatial Probit problem. It is a complex task to solve, although
according to previous research (Calabrese and Elkink, 2014, Novkaniza et al. (2019))
and the results that we show in the first chapter, we can say that the academic solutions
provided present a high degree of robustness. The estimation methods detailed in
Martinetti and Geniaux (2017) (ML Algorithm) and @ LeSage (2000a) (Gibbs Algo-
rithm) present excellent properties and a very remarkable relationship between precision
and computation time. Our simulations indicate that for both ideal and non-ideal
conditions, these algorithms obtain centered estimators even when spatial dependence is

considerably high and estimation times are acceptable to the analyst.

It is especially important to have algorithms that provide accurate estimates, since it
directly impacts the results of the applications using the spatial Probit methodology. As
a result, there is an upward trend in publications that adopt this type of technique in
many fields. There is no doubt about the growing interest in spatial models. However,
the potential of these models still needs to be popularized to give proper answers to

problems in human-behavior analytics.

Our applied studies provide interesting discoveries and show the importance of the
spatial factor in the permanence of customers in a company. Without the autoregressive
component of spatial dependency, we would not achieve efficient results and the coeffi-
cients would have a significant bias that can lead to inaccurate and unfocused commercial
actions. The results also provide knowledge about the spatial effects on the relationship
between the client and the company. Together, they provide valuable information to

enable companies to design focused churn reduction.

Another fundamental aspect in the modeling process is the search for the correct spec-
ification. It does not have a predominant position in the academic literature. However, a
correct selection of the functional form of a model is vital, since the efficiency and unbi-
asedness of the estimated parameters depend on it. In practice, there is no uniform way
to select the true specification of the spatial Probit. It seems that there is no strategy
to follow for the selection, but the use of a certain statistic to compare models. The
designed strategies Stge and Gets provide a good degree of performance and open the
debate on which of them would be the best under non-ideal conditions in the data. In
the results of our Monte Carlo analysis there is no clear winner, but depending on the

scenario, one is better than the other.

Despite the advances, more research is pending for the future. Advances in comput-
ing, parallelization techniques, greater resources in the cloud will make spatial Probit

estimation algorithms more accessible. It will be necessary to measure these advances to
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shed light on the possibilities and strengthen these techniques. An increase in research
with these methods in different areas will also be necessary. Much remains to be said
in the field of human behavior. We will also have to put a lot of focus on the selection
of spatial Probit models. The sensitivity of the proposed algorithms to changes in W,
or the improvement of the strategies in the face of new tests, in all likelihood, will be of

great help to research in economics.
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