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Abstract

The purpose of this work is to provide an efficient and accurate algorithm to calculate the
transport coefficients in mixtures of gases. This is specially important in combustion simu-
lations with large number of components. The main transport parameters are the diffusion
coeflicients and the thermal conductivity. Diffusion is the transport phenomenon responsible
for mixing at the molecular level, playing an important role in combustion. As is well known,
diffusion fluxes are proportional to species concentration and temperature gradients, with
Fick’s law multicomponent diffusion coefficients D;; (4,5 = 1,...,N) and thermal diffusion
coefficients Dp; being the corresponding respective transport coefficients. Hence, accurate
calculation of D;; and Dr; is the key for a correct evaluation of diffusion fluxes in multi-
component mixtures. The thermal conductivity is the main transport coefficient used in the
energy equation of mixtures of gases. Once all the relevant physical processes taking place
in a typical combustion environment are accurately represented (in particular multicompo-
nent transport and chemical kinetics), it is possible to perform Direct Numerical Simulations

(DNS) of laminar or turbulent flames, which may be considered as numerical experiments.



Resumen

El propésito de este trabajo es generar un algoritmo eficiente y preciso para calcular los coefi-
cientes de transporte en mezclas de gases. Esto es especialmente importante en simulaciones
de combustiéon con un nimero elevado de componentes. Los principales pardametros de trans-
porte son los coeficientes de difusién y la conductividad térmica. La difusién es el fenémeno
de transporte responsable de la mezcla a nivel molecular, jugando un papel importante en
combustién. Como es conocido, los flujos de difusién son proporcionales a los gradientes de
concentracién y gradientes de temperatura, con los coeficientes de difusién correspondientes
ala ley de Fick D;; (4,5 =1,...,N) y los coeficientes de difusion térmica Dr; (i =1,...,N).
Por tanto, un cdlculo preciso de D;; y Dr; es la llave para una correcta evaluaciéon de los flujos
de difusién en mezclas multicomponente. La conductividad térmica es el principal coeficiente
de transporte usado en la ecuacién de la energia de mezclas de gases. Una vez que todos los
procesos fisicos relevantes que tienen lugar en los procesos de combustiéon son simulados de
forma precisa (en particular el transporte multicomponente y la cinética quimica), es posible
realizar Simulaciones Numéricas Directas (DNS) de llamas laminares o turbulentas, las cuales

pueden ser consideradas como experimentos numéricos.



Contents

1 Introduction and objectives
1.1 Stateoftheart . . .. . . . . . . . . ... ..
1.2 Objectives . . . . . . . o e e

2 Summary of the classical kinetic theory of gases
2.1 Historical background . . . . . ... L o
2.2 Propertiesof agas . . . . . ...
2.3 Boltzmann’s equation and properties . . . . . . .. ..o
2.3.1 Fundamentals . . . . . . . . ...
2.3.2 Macroscopic conservation equations . . . . ... ..o
2.3.3 Boltzmann’s H theorem . . . . . .. ... ... .. ... ... .....
2.3.4 Maxwellian function distribution . . . . . .. .. ...
2.4 The non-uniform state of a simple gas . . . . . ... ... ... L.
2.4.1 Hilbert’s expansion . . . . . . . . . .. ..
2.4.2 Chapman-Enskog method . . . . . ... ... ... ... ... ...
2.4.3 Chapman-Enskog method: first order approximation . . . . . . .. ...
2.4.4 Calculation of the dynamic viscosity and thermal conductivity . . . . .
2.5 The non-uniform state of a gas mixture . . . . ... . ... ... ... ...
2.5.1 Zero order approximation . . . . .. ... 0 oL
2.5.2 First order approximation . . . . . . .. ... oL oo
2.5.3 Calculation of the multicomponent transport coefficients . . . . . . . . .
2.6 The transport coefficients. . . . . . . . .. ... L
2.6.1 Expressions of the integral collisions . . . . . ... ... ... ... ...
2.6.2 Expressions of the bracket integrals. . . . . . .. .. .. ... ...

2.6.3 Explicit expressions for the transport coefficients . . . . .. ... .. ..

3 Polyatomic modifications to the classical kinetic theory of gases
3.1 Boltzmann equation generalization . . . . . . . . ... ... ... ... ...

3.2 Thermal diffusion coefficients . . . . . . . . . . . ...

10
10
11
13
14
15
15
18
20
23
26
28
28
33
36
36
38
39



3.3 A coeflicients . . . . . .. e

3.4 Heat equation. Thermal conductivity . . . . . . . .. ... ... ... .. ....

Collision Integrals evaluation
4.1 Collision integrals mathematical description . . . . . . .. .. .. .. ... ...
4.2  Monchick and Mason tables validity discussion . . . . .. .. .. ... ... ..

4.3 Tabulated values and polynomial approximations . . . . . .. .. .. ... ...

Description of the multicomponent transport algorithm

5.1 Blockwise inversion strategy . . . . . . .. ... oL
5.2 Non-dimensionalization and scaling . . . . . . .. .. ... ... ... ...
5.3 Final solution . . . . . . . . .. L
5.4 Transport algorithm convergence . . . . . . . . ... .. .. ... ... ...,

5.4.1 Estimated values of the terms associated to parameters F' . . . . . . ..

5.4.2 Convergence analysis . . . . . . . .. ..o o
Transport algorithm efficiency
6.1 Operation count . . . . . . . .o
6.2 Comparison with existing methods . . . . . . . .. ... ... ... .......
Transport algorithm accuracy
7.1 Results for premixed hydrogen flames . . . . . . .. .. ... ... ... ..
7.2 Results for methane counterflow diffusion flames . . . . . . .. ... ... ...
Conclusions
8.1 Results summary . . . . . . . ...
8.2 Transport algorithm optimization. Recommendations for future works . . . . .
Bibliography
Nomenclature

A Mixture averaged diffusion approximation

B MuTLib Multicomponent Transport Library. Users’ guide, version 0.3

B.1 Introduction . . . . . . . . . . .. L
B.2 License. . . . . . . . e e
B.3 Imstallation . . . . . . . . . . . . e
B.4 Library structure and setup . . . . . . . .. ..o L
B.5 Units. . . . o e
B.6 Usageexample . . . . . . . . . .

50
50
53
53

57
57
59
61
62
64
70

71
71
72

74
75
84

92
92
94

94

99



List of Figures

21

2.2

4.1

4.2

4.3
4.4
4.5
4.6
4.7

5.1

5.2

5.3

6.1

Cylinder containing molecules with peculiar velocity C surface element d2S
during the time interval dt. Figure 2.1 from reference [1] . . . . . . .. ... ..
The geometry of a binary encounter; molecule 1 is at rest with its center at the

origin. Figure 3.2 from reference [1] . . . . . . . ... ... Lo

Scaled Stockmayer potential (12,6,3) ®/4e vs. the nondimensional distance
T/o for several values of the parameter ¢ that accounts for the dipole-dipole
interaction. . . . . . . . L L L L
Intermediate results to calculate the collision integrals, (d;; =0, ¢ =1). In
blue, the nondimensional distance between two colliding particles. In brown,
the y integral resultant in the collision dynamic. In gray, the function 1—cos
necessary to obtain the parameter QW*. . . . . .. L.
Chemkin scheme for the collision integrals calculation . . . . ... .. ... ..
Reduced integral Q1 Plot of the Monchick and Mason tables. . . . . . . . .
Reduced ratio A*. Plot of the Monchick and Mason tables. . . .. ... .. ..
Reduced ratio B*. Plot of the Monchick and Mason tables. . . . .. ... ...
Reduced ratio C*. Plot of the Monchick and Mason tables. . . . ... .. ...

Algorithm scheme for the calculation of vectors &y, , a0 and ap as
matrix-vector multiplications . . . . . . . ... o oo
Collision diameter vs. molar weight for the main species used in combustion,
extracted from tablesin [2]. . . . . ... ..o Lo Lo
Rotational relaxation collision index { vs. molar weight for the main species

used in combustion, extracted from tablesin [2] . . . . .. ... 0oL

Operation count needed to solve the transport system for IV species according
to MuTLib, a direct method LDTT, an iterative conjugate gradient method
(CG) and a preconditioned conjugate gradient method (PCG) as a function of

the number of species for numbers of iterations r=1,2,3. . . . ... ... ...



7.1

7.2

7.3

7.4

Results for the major species in a stoichiometric (¢ = 1) premixed hydrogen
flame vs. distance L. Left column (a): mole fraction and temperature profiles.
Center column (b): thermal diffusion coefficients. Right column (c): thermal
diffusion coefficients percentage errors. The results for Dp; (b) and 10% x
|ADTi/Drpicract| (¢) are shown for several maximal values of index r considered
in the truncated Neumann series expansion (Eq. (5.8)). The results for Dp; (b)
using the mixture averaged (MA) approximation are shown in yellow lines. The
results for 102 x |ADTi/Driepace| (¢) using the EGLib (EG) r = 3 approximation
are also shown using red lines. . . . . .. ... ... ... ... ... ......
Results for the intermediate species in a stoichiometric (¢ = 1) premixed hy-
drogen flame vs. distance L. Left column (a): mole fraction and temperature
profiles. Center column (b): thermal diffusion coefficients. Right column (c):
thermal diffusion coefficients percentage errors. The results for Dp; (b) and
102 x |ADTi/Drjeract| (¢) are shown for several maximal values of index r consid-
ered in the truncated Neumann series expansion (Eq. (5.8)). The results for
Dr; (b) using the mixture averaged (MA) approximation are shown in yellow
lines. The results for 102 x |ADTi/Dyjepae| () using the EGLib (EG) r = 3
approximation are also shown using red lines. . . .. . ... ... ... ....
Results for the major species in a stoichiometric (¢ = 1) premixed hydrogen
flame vs. distance L. Left column (a): mole fraction and temperature profiles.
Center column (b): thermal diffusion fluxes. Right column (c): thermal diffu-
sion fluxes absolute errors. The results for jp; (b) and Ajp; (¢) are shown for
several maximal values of index 7 considered in the truncated Neumann series
expansion (Eq. (5.8)). The results for jr; (b) using the mixture averaged (MA)
approximation are shown in yellow lines. The results for Ajp; (c) using the
EGLib (EG) r = 3 approximation are also shown using red lines. . . ... ..
Results for the intermediate species in a stoichiometric (¢ = 1) premixed hy-
drogen flame vs. distance L. Left column (a): mole fraction and temperature
profiles. Center column (b): thermal diffusion fluxes. Right column (c): ther-
mal diffusion fluxes absolute errors. The results for jp; (b) and Ajp; (c) are
shown for several maximal values of index r considered in the truncated Neu-
mann series expansion (Eq. (5.8)). The results for jr; (b) using the mixture
averaged (MA) approximation are shown in yellow lines. The results for Ajp;

(c) using the EGLib (EG) r = 3 approximation are also shown using red lines.

80



7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

Partial thermal conductivity in a stoichiometric (¢ = 1) premixed hydrogen
flame vs. distance L. Left column (a): partial thermal conductivity values.
Center column (b): partial thermal conductivity absolute errors . Right column
(c): partial thermal conductivity percentage errors. The results are shown
for several maximal values of index r considered in the truncated Neumann
series expansion (Eq. (5.8)). The results using the mixture averaged (MA)
approximation are shown in yellow lines. The results using the EGLib (EG)
r = 3 approximation are also shown using red lines. . . . ... ... ... ...
Normalized relative errors ¢; and e/ (Eq. (7.2)) found vs. maximal r considered
in the truncated Neumann series (Eq. (5.8)) for lean hydrogen premixed flames.
Dotted horizontal lines: corresponding results found with the mixture averaged
approximation. . . . . ... Lo L e e
Relative errors found vs. r for stoichiometric flames. Dotted horizontal lines
= Mixture Averaged Model. Continuous lines= present algorithm. . . . . . ..
Relative errors found vs. r for rich flames. Dotted horizontal lines = Mixture
Averaged Model. Continuous lines = present algorithm. . . . . .. ... .. ..
Results for maximal relative error ¢; fitted to the formula ¢ = Ele_a(r_l) vS. ¢
for all species. Left: 10? x first order term error £1. Right: exponent .
Results vs. axial distance L for the major species CH4, O, H20 and N2; mole
fraction = and temperature 7" (a), thermal diffusion coefficients (b) and thermal
diffusion coefficients percentage error (c) as compared to exact (KTG) values for
different approximation terms, mixture averaged approximation (yellow lines)
and EGLib with r =3 (red lines). . . . . .. ... ... ... ... ... ...
Results for species 02, CO2, H2 and CO vs. axial distance L; mole fraction x
and temperature T (a), thermal diffusion coefficients (b) and thermal diffusion
coefficients percentage error (c) as compared to exact (KTG) values for differ-
ent approximation terms, mixture averaged approximation (yellow lines) and
EGLib with 7 =3 (red lines). . . . . . . .. . ... ...
Major results vs. axial distance L for species CH4, O, H20 and N2; mole
fraction z and temperature 7' (a), diffusion flux j (b) and absolute diffusion
flux error Aj (c) as compared to exact (KTG) values for different approximation
terms, mixture averaged approximation (yellow lines) and EGLib (EG r = 3,
red lines). . . ...
Intermediate results vs. axial distance L for species 02, CO2, H2 and CO; mole
fraction = and temperature T' (a), diffusion flux j (b) and absolute diffusion flux
error Aj (c) as compared to exact (KTG) values for different approximation
terms, mixture averaged approximation (yellow lines) and EGLib (EG, r = 3,

red lines). . . ...

84



7.14

7.15

Partial thermal conductivity in a methane diffusion flame vs. distance L. Left
column (a): partial thermal conductivity values. Center column (b): partial
thermal conductivity absolute errors . Right column (c): partial thermal con-
ductivity percentage errors. The results are shown for several maximal values
of index r considered in the truncated Neumann series expansion. The results
using the mixture averaged (MA) approximation are shown in yellow lines. The
results using the EGLib (EG) r = 3 approximation are also shown using red
lines. . . . .o e
Normalized relative errors ¢; and ey (Eq. (7.2)) found vs. maximal r considered
in the truncated Neumann series (Eq. (5.8)) for methane counterflow diffusion
flames. Dotted horizontal lines: corresponding results found with the mixture

averaged approximation. . . . . . ... oL oL Lo



List of Tables

2.1 Bracket integrals ’* as function of the integral collisions for p,q = 0,1,2. Table
7.3 from reference [1]. . . . . ... 38
2.2 Bracket integrals ” as function of the integral collisions for p,q = 0, 1,2. Table

7.4 from reference [1]. . . . . ... 39

6.1 Number of operations needed to solve a system of N species for several iterative

algorithms as a function of the number of iterations . . . . . .. ... ... .. 73

7.1 Case of temperature conditions and mole fractions of fuel and oxidizer for a

methane counterflow diffusion flame. . . . . . . . . . . .. ... ... 85

12



Chapter 1

Introduction and objectives

1.1 State of the art

In the case of mixtures of dilute gases, the kinetic theory of gases (KTG) [3, 4, 1] provides
a general framework for the calculation of the multicomponent diffusion coefficients D;; and
Dr;, thermal conductivity and viscosity, based on the knowledge of the molecular character-
istics of all chemical species in the mixture (i.e., molecular masses, sizes and intermolecular
interaction potentials among all different species in the mixture). Classical theory provides
very good results on monatomic gases with low and medium density, assuming elastic in-
teractions between molecules. For dense gases, the classical kinetic theory of gases is not
so accurate. Within the kinetic theory of gases framework and based on the Chapman-
Enskog expansion, a step forward was given in reference [5] to account for polar interactions,
monopolar-polar interactions, non elastic interactions and polar resonant collisions. Based on
this, in references [6, 7, 8], a formal kinetic theory for polyatomic gases requires the resolution
of a linear system with 3N equations (or 2N + P, where P is the number of non monatomic
molecules). The solution of the aforementioned system poses no difficulty. However, since the
evaluation of the transport properties must be evaluated at every time step and every node in
the computational mesh, and the former linear system depends on mixture composition and
temperature, the evaluation of transport properties can become computationally expensive if
the number of components in the mixture is high, specially in unsteady 3D direct numerical
simulations (DNS). The former difficulty has motivated the development of useful simplified
approximations, such as mizture averaged transport properties, which becomes quite accu-
rate in the dilute limit, or the use of constant Lewis numbers, which is useful in theoretical
combustion analyses as it leads to simplified evolution equations [9, 10]. Recent works have
tested simplified models using Lewis number in the stabilization effect of premixed flames [11].
In reference [12], the authors show the validation of the mixture averaged approximation in

hydrogen flames with thermal diffusion. Although, the results of mixture averaged are valid
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for certain types of simulations, they are not accurate enough for the transport coefficient cal-
culation in detailed simulations. A proper evaluation of multicomponent transport properties
is critical in accurate DNS of reactive flows. For instance, detailed multicomponent transport
can have an important effect in turbulent flames in regions where the front experiences strong
curvature [13] and in cases with Reynolds numbers between 600 and 8000 [14].

Regarding accuracy, it must be noted that kinetic theory of gases does not match experi-
ments completely and this is the reason why iterative methods are so interesting. References
[15, 16, 17] shows that multicomponent transport properties and test measurements are in a
range of +5%. These results are found for several interaction potentials between particles and
the correspondent collision integrals. On the other hand, in some cases the differences be-
tween the results for transport coefficients based on the mixture averaged approximation and
the exact solution from the kinetic theory of gases can be quite significant, with errors over
+100% in some transport coefficients, which makes mixture averaged approximation clearly
not suitable for accurate simulations. Therefore, multicomponent transport with iterative
approximations are an adequate scope for the transport magnitudes calculation.

After the initial studies on multicomponent diffusion in combustion by Dixon-Lewis [18]
followed by Jones and Boris [19] and Oran and Boris [20], the general problem of multicom-
ponent transport is addressed in the well known works of Giovangigli (see, e.g., [21, 22, 23,
24, 25, 26]). In particular, the application of standard iterative methods for the calculation
of the transport properties of multicomponent mixtures is investigated in reference [26]. For
a review on the implementations for transport calculations available in 2011 see [15]. A dif-
ferent strategy is adopted by Xin et al. in a more recent work [27], based on a sensitivity
analysis which determines the group of species whose diffusive transport has strongest impact
on flame dynamics, thus allowing for a simplified treatment of the transport properties of the
remaining species.

The calculation of the multicomponent Fick diffusion coefficients was also analyzed by
Arias-Zugasti et al. [28], where two efficient new algorithms: Model 1 and Model 1+M, are
derived for the calculation of D;;. Both models are based on the KTG and make use of
dimensionless variables, conveniently scaled with the correct characteristic quantities, thus
allowing for an increased efficiency in the calculation of D;;. In Model 1, based on [29], the
multicomponent mixture is assumed to be dilute in 1 major species, and D;; is given as a
power series in terms of the remaining N — 1 mole fractions in the mixture. As a natural
extension of Model 1, in Model 1+M the mixture is assumed to contain a total of 1 + M
major species, and D;; are computed as a power series in terms of the remaining N — M —1
mole fractions, which are assumed to be close to the dilute limit, thus avoiding the use of
approximate methods regarding the major, non-dilute, species. The optimal implementation
of Model 1+M was subsequently analyzed by Naud and Arias-Zugasti [30]. When the number

of major species in the mixture is properly chosen, the leading order of Model 1+M provides



1.2. Objectives

accurate results at a computational cost which is even lower than the corresponding mixture
averaged approximation [30]. This extreme computational time reduction is a consequence of
the structure of Model 1+M, which in its leading order approximation involves the evaluation
of a reduced number of binary diffusion coefficients (i.e., only those involving at least one of
the major species).

Model 1+M improves considerably the performance of the existing algorithms for the Fick
diffusion coefficients calculations, such as mixture averaged or Ern Giovangigli method. The
extrapolation of these ideas to the rest of the transport parameters promises good results for

the thermal diffusion coefficients and thermal conductivity.

1.2 Objectives

The following list summarizes the objectives of this work:

e To review the kinetic theory of gases and to revisit the equations needed to obtain the

multicomponent transport coefficients of multicomponent mixtures of ideal gases.

o To reuse the results of [28] and to apply the same ideas for those transport parame-
ters not covered, i.e., the thermal diffusion coefficients and the thermal conductivity.
Based on this, to design an efficient and accurate algorithm to calculate the transport

coefficients of multicomponent mixtures.

e To implement and to validate the iterative algorithm for the transport coefficients cal-
culations. The algorithm efficiency is studied and the operations count is reviewed and
compared against a direct inversion algorithm and the conjugate gradients iterative

algorithm.
e To study the convergence and stability of the proposed algorithm.

o To review the algorithm accuracy comparing the results against the exact KTG solution
and the EGLib and mixture averaged approaches. To this end, two cases of interest in
combustion science are considered, including a premixed hydrogen flame as a function

of the equivalence ratio and a methane counterflow diffusion flame.

Summarizing the previous list, the purpose of this work is to provide a new simple, efficient and
accurate iterative algorithm for the evaluation of the multicomponent transport coefficients
of typical combustion gas mixtures. The general idea to achieve this goal is to formulate the
problem in terms of dimensionless variables, based on the correct characteristic scales. The
proposed solution makes use of the results shown in [28] and involves the inversion of new
sub-matrices which are diagonally dominant, thus allowing for an efficient inversion based on

the Neumann series.
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This work presents the theoretical details for the calculation of the multicomponent ther-
mal diffusion coefficients and the partial thermal conductivity. These new algorithms have
been implemented in the software library package MuTLib (Multicomponent Transport Li-
brary), available for the transport properties calculations in third party applications. The
algorithm performance improvements are shown in two different flames: a hydrogen premixed
flame and a methane diffusion flame. The results are successfully compared against the library
package EGLib (Ern Giovangigli Library, which considers the same physical effects as this
work), and to the well known mixture averaged approximation, which is also briefly described

in this work.



Chapter 2

Summary of the classical kinetic

theory of gases

The notes in this chapter are extracted mostly from the reference Ferziger-Kaper, 1972. “The

mathematical theory of transport processes in gases” [1].

2.1 Historical background

The kinetic theory of gases began in mid-19th century. The following are the most relevant

milestones:

e 1859, Maxwell introduced the statistical approach to non equilibrium gases and the

maxwellian velocity distribution.

— Maxwell, J.C. (1860 A): Illustrations of the dynamical theory of gases. Part I. On
the motions and collisions of perfectly elastic spheres. The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science, 4th Series, vol.19, pp.19-32,
https://doi.org/10.1080/14786446008642818.

e 1872, Boltzmann was the first author mentioning the H-theorem and molecular colli-
sions entropy increase. The Boltzmann H theorem relates the system entropy S with the
number of states accessible to the the system W, S = kpIn W, where kp is the Boltz-
mann constant (1.380649-10723-m? kg -s=2.K~!). Moreover, the evolution equation for
the joint (position and velocity) probability density function (PDF) in non-equilibrium
gases was derived from first principles (i.e., mass conservation and Newton’s equation)

by Boltzmann, and is known today as Boltzmann’s equation.

— Boltzmann, L. 1872, “Weitere Studien iiber das Wérmegleichgewicht unter Gas-
molekiilen”, Wiener Berichte , 66, 275-370;

5



2.1. Historical background

https://doi.org/10.1142/9781848161337_0015.
e 1887, Lorentz wrote a formal framework of the kinetic theory of nonuniform gases.

— H.A. Lorentz, 1887, Uber das Gleichgewicht der lebendigen Kraft unter Gas-
molekiilen Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien
95: 115-152.

e 1910, Hilbert proved the existence and uniqueness of solution to Boltzmann equation,

by reducing it to a certain linear integral equation of the second kind.

— Hilbert, David, 1912, Grundziige einer allgemeinen theorie der linearen integral-

gleichungen. Teubner, Leipzig, 1912;
https://doi.org/10.1007/978-3-322-84410-1_1.

e 1917, independently, Chapman and Eskog, going further than Hilbert’s work, deduced

the same expressions for the transport coefficients.

— Enskog, D., 1917, Kinetische theorie der vorgénge in méssig verdiinnten gasen,

Diss., Uppsala.
— Chapman, S., 1916, On the Law of Distribution of Molecular Velocities, and on the

Theory of Viscosity and Thermal Conduction, in a Non-Uniform Simple Monatomic
Gas, Phil. Trans. Roy. Soc. London 216, 279-341;

https://doi.org/10.1098/rsta.1916.0006.
— Chapman, S., 1916, The Kinetic Theory of Simple and Composite Monatomic

Gases: Viscosity, Thermal Conduction, and Diffusion, Phil. Trans. Roy. Soc.
London 217, 118-192;

https://doi.org/10.1098/rspa.1916.0046.

e 1935, Burnett deduced the second order approximation to Boltzmann equation’s solu-

tion. In fact, he generated a methodology to solve any order of accuracy.

— Burnett, D., 1935a, The distribution of velocities in a slightly non-uniform gas,
Proc London Math. Soc. 39, 385-430;

https://doi.org/10.1112/plms/s2-39.1.385.

— Burnett, D., 1935b, The distribution of molecular and the mean motion in a non-
uniform gas, Proc London Math. Soc. 40, 382-435;

https://doi.org/10.1112/plms/s2-40.1.382.

e 1946, Bogoliubov, used different time scales. He generalized the Boltzmann equation

for dense gases and liquids.
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— Bogoliubov, N. N.; 1946, Problems of a dynamical theory in statistical physics

(Russian), (Moscow).

e 1959, Wang-Chang, and Uhlenbeck established the basis for the KTG in polyatomic

gases.

— Wang-Chang, C. S. Uhlenbeck, G. E., 1959, Transport phenomena in polyatomic
gases. CM-681, University of Michigan;
https://hdl.handle.net/2027.42/8195.

e 1963. Monchick and Mason created the formal framework for polyatomic gases and

generated the corresponding data tables for the collision integrals.

— Monchick, L. Yun, K. S. Mason, E. A., 1963, Formal kinetic theory of transport
phenomena in polyatomic gas mixtures. The Journal of Chemical Physics. 39,
654-669;
https://doi.org/10.1063/1.1734304.

o After the Monchick and Mason works the Kinetic Theory of Gases is a well established
branch of the Statistical Mechanics. The results validity is beyond any doubt and appear

in two well known treatises:

— 1964, Hirschfelder, Curtis, Bird. A compilation of the existing know-how in Kinetic
Theory of Gases.

* The mathematical theory of gases and liquids. New York NY, second edition,
1964.

— 1972, Ferziger, Kaper. A modern and clear compilation about the state of the art

in Kinetic Theory of Gases.

* The mathematical theory of transport processes in gases. North Holland, 1972.

2.2 Properties of a gas

The starting point of the KTG is a statistical view of the particles existing in a fluid. The
velocity function distribution f (r,c,t) is defined in such way that f(r,c,t)d3rd3c is the
expected number of molecules in the volume element d3r located at r, whose velocities lie in
d3c about velocity c¢. The number density n (r,t) is the number of particles per unit volume

at point r at time t.

n(r,t) = /f(r,c,t) d3ec (2.1)
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Figure 2.1: Cylinder containing molecules with peculiar velocity C surface element d2S
during the time interval dt. Figure 2.1 from reference [1]

Since for a simple gas each particle has mass m, the mass density at r at time t is:

p(r,t) =mn(r,t) (2.2)

The hydrodynamic (i.e., barycentric) velocity is defined as:

_# mcc T,.C 3C
v(r,t)_p(m)/ F(r e t)d (2.3)

The peculiar velocity is defined as the difference with respect the hydrodynamic velocity

C = c —v. It is also important the definition of internal energy:

1

RNy

/ %mcaf (r,e,t)d3c (2.4)

and absolute temperature

3
pu = §nkBT kp Boltzmann constant. (2.5)
The average of any function of velocity may be defined by:

1
n(r,t)

(r.1) = / o(c) f (r,e.1) d (2.6)

Considering the variations over the hydrodynamic velocity (see Figure figure 2.1) the diffusion

flux vector associated to property ¢ is (2.7).

@:/aprdgc. (2.7)

For instance, for the transport of mass ¢ (C') = m. By definition, the diffusion velocity

average is zero.

®(rt) = m/f0d3c =nmC = 0. (2.8)

On the other hand, for the transport of the a component of momentum ¢ (C') = mC, is
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P (r,t) = mC, / fCd3c =nmC,C. (2.9)
The nine components of the pressure tensor are:
P = m/CCfd3c (2.10)
and the hydrostatic pressure is defined as the normal pressure across the orthogonal planes

1
p= gP o (2.11)

If the shear stresses are zero and the normal pressures are equal P = pI. Combining the

relations (2.4) and (2.5) the well known perfect gas law is obtained:

p =nkT. (2.12)
Finally, for the diffusive transport of kinetic energy ¢ (C') = %mC’2 we find
=5 C°fCd’c = inmC’QC. (2.13)

If now a mixture with N components is considered, the number of expected molecules of

species i which, at time ¢, are situated in the volume element d®r is f; (v, c;,t) d>rd3c;. The

K K K
number density is n = an and the mass density p = Z pi = anml The transport of
i=1 i=1 i=1

the different macroscopic physical magnitudes are expressed in similar way as it is done for

simple gas.

ng = nip = Z/fz‘(ﬂz’dsci- (2.14)

The diffusive transport of mass for a mixture is (2.15).

pv=> m; / ficidc;. (2.15)
i
The corresponding diffusive momentum flux for a multicomponent mixture is (2.16),
1
P = ;| CiCif;d%c; =-P:1I 2.16
;mz/ Cifid’c; p 3 ( )

and the heat flux equation is (2.17).

1
q= Z 2mi/cz‘20ifid3ci- (2.17)
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2.3 Boltzmann s equation and properties

2.3.1 Fundamentals

There are two basic assumptions for the Boltzmann’s equation derivation.

1. Only pairs of particles may interact simultaneously and collisions are short duration

events. As a consequence, this is only applicable for low density gases.

2. Stosszahlansatz or molecular chaos, means that particles are distributed in a statistical
manner. The position of each particle is independent of the position of the rest of the
particles. It permits calculation of the expected number of pairs of molecules which
collide during a given time interval. The probability density function for two particles is
the product of the two functions of each particlef (r,c1,co,t) = f1(r,c1,t) fo (r,c1,t).
As a consequence, this approximation makes Boltzmann’s equation irreversible in time,
whereas the evolution equations governing the microscopic (i.e., molecular) interactions

(Newton’s law, Schrodinger equation) are time reversible.

In the usual case of gas in which each molecule of type i is subject to an external force F;
per unit mass, which is a function of 7 and ¢, but not of ¢;, in absence of collisions we have

the probability conservation

fi (’I“ + c;dt,c; + Fdt, t + dt) = f; (’I“, C;, t) . (2.18)

With collisions the equality must be modified accordingly

fi(r+cidt,c; + Fidt,t +dt) = fi (r,ci,t) + (%{Z> dt (2.19)
coll

and dividing by dt and letting dt tend to zero

0 _ (9fi
<at te VY, + F; V,;i) fi(roeit) = (at )Co” (2.20)

Assuming the collision collision scheme shown in Fig. 2.2 with the geometric parameters b, y,
¢ and de where the velocities before and after are g and ¢’, the expected number of collisions
in d®r about r, during a small interval d¢, between molecules in the velocity ranges d3cy, d3co,

about c1, co with geometrical collision variables in the range db, de about b, € is
fi(r,c1,t) fo (r,c1,t) gbdbded®cid>cod®rdt, (2.21)

which is a quadratic term that multiplies the individual probability density functions (molec-
ular chaos) and introduce an irreversible term with respect to time. The rate at which the

velocity distribution function f; for molecules of species 1 being altered by collisions is

10
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Figure 2.2: The geometry of a binary encounter; molecule 1 is at rest with its center at the
origin. Figure 3.2 from reference [1]

(égj?)zcou - // (fi.f5 = f1f2) gbdbded®c (2.22)

Hence, the Boltzmann’s equation for a simple gas is

(E?t +c¢-V,+F-V )f(r,c, t) = // (f'fi — ff1) gbdbded®c; (2.23)
and the Boltzmann’s equation for a mixture is
9 3
5t V,+F;-Ve | fi(r,cit Z f fi—fi fj gbdbded®c; (2.24)

The Boltzmann equation in an abbreviated form is

D=3 J(fifj) (2:25)

where the streaming operator 2 and the collision operator J in (2.25) are defined as:

@ﬁ: 6fl +c;- \% fz+F vczfz

2.26
Tt = 1 (f1£; = fif;) gbdbded®e, (2:20)

2.3.2 Macroscopic conservation equations

With the Boltzmann equation, the conservation relations may be deduced. Assuming that &

b,
is an arbitrary function of r, ¢ and ¢ for each component of the mixture <¢Z> is defined
coll

ot

as

(5) a0 G o
o i 5

11
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If ¢ is a microscopic physical property, the integration with the velocity corresponds to the

macroscopic physical property. Similarly, for the whole mixture

(5 iEn () i e o
7 2Y)

Using the definition of the collision operator is derived.

(?;;) y ﬁ > //// (Qbi +¢5 — ¢+ ¢;) (f{f§- - fifj) gbdbded®c;d>c; (2.29)
co —

and multiplying Boltzmann equation by ¢; and integrate over ¢; expression (2.30) is obtained.

/¢i@ﬁd36i =n; (6;:-)60” (2.30)

Integrating by parts, equations of transfer are obtained

0 (midi)

:vr‘mqwm{@‘f“

ot

ot

ot coll

where the summation over ¢ verifies that

0 (n9) _ (% 00
5 = —Vy-nco+n {8t +c-Vip+F-Veo + (8t>coll} . (2.32)
If ¢ only depends on the velocity, then
9 (ng) R —
TR —Vy-nco+n {F-chb + <8t)coll} (2.33)

If the functions ® summed over the molecules involved in a collision do not change during
the collision then they are called summational invariants . In the case of binary collisions,

1 is a summational invariant if

@D,’ (Cl) + 1/}]- (Cj) = 1/JZ (C/z) + ¢j (C;) = (aaq;i))co” =0. (2.34)

The general conservation equation for a mixture is

(grorer)

ot

+ V- Z/d’icz’fidgci = ZF / fivciwifid?’ci (235)

From the physical point of view, the invariants are deduced from the conservation laws, mass,

12
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momentum and energy, so these are the parameters tried.

Y1r=m
g = Mmey 3 = mey g = me, . (2.36)
¥5 = gmc?

Inserting the invariants in (2.35) the conservation equations are obtained. Relation (2.37) is

obtained for the mass, relations (2.38) for the momentum conservation and (2.39) for energy.

1y, 2.37
sa = VY (2.37)
NS pF VP (2.38)
Par = &P '
du_ g ~P:Vv+ ) pFi-V; (2.39)
P = q : ipz i Vi :

where % = % + v - V is the substantial derivative. The mass conservation equation for each

individual specie is (2.40).

pliciipti:—V'(V—i-Vi)—plivi'Vpi Z'Zl,”-,K (2.40)

To summarize this section, the Boltzmann’s equation with the associated hypotheses allows
for the microscopic description of the system. With the help of the collision invariants, the
macroscopic laws corresponding to conservation of mass, momentum and energy may be

derived.

2.3.3 Boltzmann’s H theorem

An important physical law that can be derived from Boltzmann’s equation is the well known
second principle of thermodynamics. In this regard, the relation between entropy and the
number of accessible states of the system had been previously discovered by Boltzmann,
and from the Boltzmann’s equation the microscopic evolution of the system entropy may be
derived. The H theorem justifies that every irreversible process increases entropy such as

Clausius established previously.

Considering N identical molecules in a six dimensional space z; = (r;,¢;) i = 1,--- , I, the
probability of finding a certain set of occupation numbers (Ny,--- , Ny) is
N! N
Py=——"—(A : 2.41
v = T (O9) (2.41)

Taking logarithms and applying the Stirling’s formula when N — oo, logn! &~ nlogn —n

13
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log Py &~ — Y Nilog (N;i/N Ax). (2.42)

Expressing N; in terms of the distribution function and letting Az become dz = d®rd>c it is

obtained the Boltzmann H-function

log P (f) = —/ flog fdrd’c = H (f) = / flog fd3rd3c. (2.43)

In a gas mixture with functions f; independent of r and no external forces, the Boltzmann

equation reads as

%J;i =2 /// (f11; = fif;) gbdbded®e;. (2.44)
J

The Boltzmann H-function for a mixture is (2.45)

H = Z/fz log fidSCi. (2.45)
Hence, the derivative of the Boltzmann H-function is
dH Ofi 3
o Z/ (log fi +1) TR (2.46)

Using the previous relations in (2.28) and (2.29), the following relation is obtained

i (log fi+1) J (fif;) dPe; =
—L5 M (15— £:15) (tog £, = 10g fif;) gbdbded®e;

Thus, we find that Boltzmann’s H-theorem is equivalent to the second law of thermodynamics.

(2.47)

The Boltzmann H-function measures the approach to equilibrium. Entropy cannot decrease.

The expression (z — y) (logx — logy) is always positive except for z = y where it is zero.

dH
<0 2.48
dt — ( )

2.3.4 Maxwellian function distribution

The objective in this section is to deduce the expression of the probability density function

for a gas in equilibrium. The resultant normal distribution was discovered by Maxwell.

In equilibrium v 0 and due to the nature of the Boltzmann equation with a product

of two probability density functions the next expression must be fulfilled:
log fi + log f; = log fi + log f; (2.49)

14
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where log f is a summational invariant and therefore is a linear combination of the known

summational invariants, mass, momentum and energy.

log fi = mia?) + miciaf? — Imicdal’ (2.50)

1 (2 ®3)

The coefficients «; 7, ;™" and ;" must be independent of r and ¢ since the state of the gas

is uniform and steady. Moreover, through the collision must be satisfied the conservation of

momentum and energy

0 L eame®) (5D
i 2 a®)

Using the number density, hydrodynamic velocity and temperature, the coefficients of the

unknowns coefficients from relation (2.50) are:

3
2

n; = /fid?’ci =>n; = ago) (27r/mi04(3))
pv = Z / mici fid>c; = v = o Ja® (2.52)
ST = 112 L2 fidbe; = o® = 1/kpT
2 B n i 2 AT L) 7 B4 -

(1 (2)

Inserting the coefficients a;"’, a;™ and 041(3) in (2.51), expression (2.53) is obtained.

fi(e1) = far = mi (mi/27kpT)? exp (—miC?/2kpT) . (2.53)

The velocity distribution function at thermodynamic equilibrium is normally distributed

about its mean value with variance kg1 /m. This was first written by Maxwell in 1860.

2.4 The non-uniform state of a simple gas

2.4.1 Hilbert’s expansion

In 1912 Hilbert proved a uniqueness theorem for the Boltzmann equation. If the macro-
scopic gradients are small, the molecules in a small region will induce variations only on the
macroscopic time scale and the dominant effect is that collisions drive the gas toward thermal
equilibrium. The small parameter € may introduce the Boltzmann equation as a perturbation

problem:

Pf = 1T(ff). (2.54)

15
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If € is small, the preceding equation is a singular perturbation problem for the function f

Fe fO 4 op® L 2p@) 4 (2.55)

Balancing the terms in the powers of €", the following relation is obtained for r = 0

J(FOF0) =o. (2.56)
Forr=1
J (f(l)f(O)) +J (f(O)f(l)) = (2. (2.57)
and forr=2,r=3,...
J (f(O)f(r)) +J (f(?")f(o)) — gf-1) _J (f(l)f(Tfl)) S (f(?“*l)f(l)) ' (2.58)

The solution of (2.56) has already been discussed and is (2.53):

3
7O (¢) = n® (m/27rkT(0)) * exp (—m02/2kBT(O)) . (2.59)

To obtain a solution Hilbert proposed solutions in the form ¢" = f() /f () and the expression
(2.58) is

T(FOFO) 47 (705O) = — (n©) 1 (7). (2.60)
where I (F) for a single gas is defined as:
I(F)= % // fafan (F+ Fy — F' — F{) gbdbded®c (2.61)
and for a mixture )
I; (F) = o // farifarj (Fi + Fj = F{ = F) gbdbded®e;. (2.62)

For a single gas, the bracket integral is defined as:

[F,G] = / GI (F)d3c. (2.63)

It may verified by symmetry of arguments that
1
[F.G] = o [ facfary (F+ F — F' — F)) (G+ Gy — G' — GY) gbdbded®cd®c;.  (2.64)

Additional I functions are required to define the bracket integral in a mixture

16
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Iij,i (F) = nilnj fff fM’LfM] (Fz — Fz,) gbdbdadgcj

Lijj (F) = n1n] I fazifarj (Fj - F]’) gbdbded3c;

and finally
[F,G); = [ Giliji (F) d*c;
[F,G)}; = [ Gilij; (F) d°c; (2.65)
[F,G) = 5., "5 ([F, Gl + [F,G) -
Hilbert showed that the problem may be reduced to a Fredholm integral equation of the
and the solution exits if and only if

—J(fe0 ) b dPe =0,

second kind, for r =1,2,---
/¢ {@f(r—l) _J (f(l)f(r—l)) _

The solution is in the form

(2.66)

o) = ¢ 4 o) ™) (2.67)

where ¢(") is a particular solution of the equation (2.58) and ¢(") is uniquely determined if

we require

[ Yo FOg3e =

1
e (2.68)
P = mey
mec,
%mC’2
For r =1, the compatibility condition is
/ W2 fOd3c =0 (2.69)
and the conservation equations lead to Euler equations
PO = pO1 p = O 70
q® =0
(2.70)

(1/p(0)) (dp(o)/dt) — _v.v®
p(©) (dv(o)/dt) — pOF — vp©
(d/dt) (p(O)/T(O)%) -0

The vectors with different moments are defined as:

17
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B = /¢f(”)d3c (2.71)

and using (2.67)

FO) = O {qg(r) +a. ¢} = B = /1pqpf(0)d3c -alr) (2.72)

The formal Hilbert expansion technique yields a unique solution to the Boltzmann equation
provided that initial values are assigned to all vectors (9, (1) ... In the Hilbert class
of normal solutions to the Boltzmann equation a velocity distribution function is uniquely
determined by the values of its first five velocity moments at any instant ¢t = ¢3. Although the
Hilbert’s method for order zero obtains the Euler equations it does not generate the Navier

Stokes equations in the first order and it is limited therefore.

2.4.2 Chapman-Enskog method

Based on Hilbert work, simultaneously, Chapman and Enskog tried a different perturbation
approach to the Boltzmann equation. Different hypotheses and ideas were tried to obtain the
Navier Stokes equations for the first order of approximation. Keeping in mind the definition
of the moment 8 = f’l,bfd3c, the Enskog hypotheses are:

o Time does not enter explicitly among the arguments of f and 983/dt
o Time enters implicitly through 8 and the spatial gradients of 8
® f(’f‘,C,t) = f(rac|ﬂav1”/37' : ')

« (0/0t)B(r,t) =®(r|B,V.B,--)
The dots indicate higher order spacial derivatives of 5. The reasoning behind these hypotheses

is that collisions do not affect to the macroscopic variables directly. They will stay constant in
a time of the order of the mean free time and in this sense they can be regarded as constants

of motion on the kinetic time scale. According to the singular perturbation scheme,

® =30 4004 203 ... (2.73)

Applying the chain rule for derivation next expression is obtained

0
U @ Vs (V) (Voaf) (2.74)
0; .
The operator o defined as:
290 . V4V, ®: Vy g+ - (2.75)

ot
18



2.4. The non-uniform state of a simple gas

and the streaming operator may be defined as:

. £(0) (i)
o _Gf WV 0 R, O
(gf)Enskog - ot +.o+ ot +c Vrf + F ch . (276)
The following equation contains the streaming operator for comparison with the Hilbert ex-
pansion
i o i i
(2F) itpers = 5 T V. fO+F- v 0. (2.77)

Again, the coefficients like powers of ¢ are equated in the Boltzmann equation (2.54). The
expression for r = 0 is again (2.56) and for » = 1 is (2.57). The resultant equation is soluble

if and only if ¥ the summational invariants and the orthogonality condition is given by

/ V(2" VdBe=o0. (2.78)

Operating with the different terms of the Boltzmann equation and the orthogonality conditions

the next expression is obtained:

%f+Vr~§sj/c¢f(j)d3c—§sj/c- (Vo) fDd e~

- (2.79)
F-Y & / (Vep) fDd3¢ = 0.
j=0
The particular solutions for the differential equation may be selected as follows:
O)Be = d3c =
JofOde= [ofdc=p 2.50)

[vfDde=0 r=1,2,...

After trivial manipulations, the following set of partial differential equations are obtained:

" . . (2.81)
el g () .
P (Zv q +2P .Vv)
7=0 7=0
PO — ej/mCCf(j)d?’c q¥ = 5j/;mC2Cf(j)d3c

The Hilbert’s method is formally equivalent to Chapman Enskog method but there are

two main drawbacks:

o The evaluation of the successive coefficients f(") involve the solution of an integral
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equation. In Chapman-Enskog method f (") is computed in terms of 8 (i.e., in terms of

macroscopic observable n, v and 7).
e The Navier Stokes fluid equations are not obtained explicitly.

Chapman Enskog method provides a unique method of determining successive approximations
to the solution of the Boltzmann equation and yields the equations of fluid dynamics in such

a form that they can be explicitly evaluated to each order of approximation.

2.4.3 Chapman-Enskog method: first order approximation

We have already shown that the zero-order approximation to f is a local Maxwellian function
and the conservation equations lead to Euler hydrodynamic equations. For the first order

approximation the following term of the Boltzmann equation must be satisfied:

J (f(l)f(o)) +J (f(O)f(1)> - (_@f)(o) ] (2.82)
Using fM) = £0¢1) the term of the Boltzmann equation is
_n2] (¢(1)) = (21O (2.83)
and the streaming operator is
21O =00 f Vot +¢-V, fO+ F.v 5O (2.84)

Instead of ¢, the peculiar velocity C, may be used. An equivalent expression with the help of

the substantial derivative definition is:

do log f(© dov
)0 = g )OS T oy, 1o FO 4 (F— > . V.log fO
2N =11 5 g/ dt s/ (2.85)
— (Vclogf(o)) C: Vv}.
From Maxwell distribution function

2
Using Euler equations obtained from the zero order approximation (Euler equations (2.70))

the next relation is obtained.

V.v. (2.87)

dolog /O _ Ldon  (mC? 3\ 1doT _ _mC?
dt  n dt 2kT 2T dt  3kgT

Further, one verifies easily that
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c? 3
log f© = V1 M 2 ) VlogT 2.
V., log f Vogn+<2kBT 5 V log (2.88)
and
(O J—
V. log f k:BTC' (2.89)
By substitution, the expression (2.85) becomes:
2
O _ () (M7 5 o YloeT m( —121)- 0
(2f) f {<2kBT 5 C-ViogT + T ccC 30 Vo, (2.90)

It must be noted that external force F' does not occur in this expression. Relation (2.83)

is then:

02T (¢<1>) — f(0) {(% - g) C-ViogT + ;2 (CC - 5021) : V'v} . (2.91)

Additional restrictions have to be added since to any particular solution one may add a
linear combination of the summational invariants which are the solutions of the homogeneous
equation. The particular solutions will fulfill [ fWd3¢ = 0 and looking at the integral

equation (2.91) the solution must be in the form

1 1
¢(1) — _EA -VilegT — EB Vo +all). . (2.92)

A and B are vector and a tensor functions of C, aV) is a vector independent of the velocity
variable. The components of VlogT and Vv are all linearly independent and therefore the

two following expressions have to be satisfied.

_ oy (mC* 5
nl (A) = f <2kBT 2) (2.93)
nl(B) = {02 (CC - 3C?I) . (2.94)

Accounting the additional constraint for the summational invariants may be showed that

1 1 1
oW =~ A(C)CVisT -~ B(C) (cc - 3021) . Vo (2.95)

/ FO4(C) C2dPe = 0 (2.96)
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1 1
Pl = —% / fOB(C) (CC - 3C2I> : (C’C - 3021> d3cS (2.97)

where S is the rate-of-shear tensor, symmetric traceless component of Vv

1 81}5 61;& 1
Saﬁ == 5 <8$a + 6@3) - gv . U(saﬁ (298)

PO — _;]gBT/B . [ (B)d*cS = —%kBT [B,B]S

and defining the coefficient of viscosity as

1
n = —kT [B, B] (2.99)
10
the Newton’s law is
P =pI —21S. (2.100)
In a similar way
=-1 / FOAC) 13 eV log T (2.101)
1
gV = ~3kT[A, A] VlogT. (2.102)

The thermal of conductivity is defined as

A= ék A, A] (2.103)

and the Fourier’s law is

q=—A\VT. (2.104)

The Chapman-FEnskog first order approximation results in the Navier Stokes equations:

1dp
T __vy. 2.105
ot V-v ( )
dv
P = pF —Vp+2nV -8 (2.106)
dT 2
P = —3%1 (~V -AVT +pV - v — 25 : Vo) (2.107)

The derivation of the Navier Stokes equations is what made so important the Chapman

Enskog method and it is why its use is so extensive. The kinetic theory of gases relies on
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the Chapman Enskog approximation to the solution of the Boltzmann equation to obtain the

transport variables.

2.4.4 Calculation of the dynamic viscosity and thermal conductivity

The expressions 2.93 and 2.94 represent the integral equations to solve the Boltzmann’s equa-
tion. This problem cannot be solved in the general case and approximation methods must be
used. Enskog, in his original work, tried to expand in powers of C? without completely suc-
cessful results. The use of Sonine polynomials and variational principles addressed this issue.
The advantages of Sonine polynomials (Nikolai Sonine) or associated Laguerre polynomials
were pointed out by Burnett [31, 32]. The Sonine polynomials S5 (x) of order n (integer)

and index v are defined as

v+n+1)

) () = ; I( —z)P
S ( )_pzz%](n—p)!plr(u—l—p—{—l)( ). (2.108)

In particular, for any value of the index v,

SO@y=1, SV (@) =v+1+z. (2.109)

These polynomials are the coefficients in the expansion

(1—s5)""texp <— T s) = nZ::OSl(,”) (z)s" (2.110)

and satisfy the orthogonality relation

/OO e8P (2) S (z) ¥ =0 ifp#q (2.111)
0

The use of variational methods is because we are not so much interested in the complete
solutions of A and B, but rather, in particular functions of the solutions, i.e., the bracket
integrals that occur in the definitions of 7 and A. Considering the local entropy density of the

gas

s = —k:B/flog fd3c (2.112)

The rate of change of s due to collisions is given by

(Ds/0t) o = {:1)) [A, A]|Vilog T|* + % [B,B|S : S} =\ |ViogT*+(2n/T) S : S. (2.113)

Supposing that vector a = a (C') C satisfies the condition
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2.4. The non-uniform state of a simple gas

[a,a] = [a, A] (2.114)

it follows that

[a,a] < [A, A]. (2.115)

Similarly if b= b(C) (CC - %CQI) satisfies the condition

[b,b] = [b, B] (2.116)

then

b,b] = B, B] (2.117)

The maximum principle for non-equilibrium systems is applied. The distribution of the molec-
ular velocities is such that, for given temperature and velocity gradients, the rate of change
of the entropy density due to collisions is as large as possible. An additional constraint will

be considered:

/f(o)a (C)C?d®c =0 (2.118)

The exact solution of A is given by the vector a which maximizes the bracket [a,a] with
respect to all the available parameters in the trial function a. The exact solution of B is
given by the tensor b which maximizes the bracket [b,b] with respect to all the available
parameters in the trial function b.

As the trial functions a in the computation of A = a (C) C we take a finite linear combi-

nation of Sonine polynomials,

L n
— __(_m )2 (n) o) (2
a=a(C)C = (%BT> S alis? (¢?) e (2.119)

where C is the dimensionless velocity variable.

C = (m/2kpT)% C (2.120)

To satisfy the additional constraint

1 3 (n
0= /f(%(C) C2d3c = _iag ), (2.121)
n
Thus, it is only necessary to require that a(()n) = 0. For a given n, the statement of the

variational criterion is
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2.4. The non-uniform state of a simple gas

59 =0 (2.122)

where g is the bracket integral formed from the trial function:

g= 75k Z ZAQT "a (" (2.123)
q=1r=1
The coeflicient A?"is
8m [ () (r)
qr __ q 2 2 qr __ ATq
= 2T S (c )c,sg (¢)e| A =am (2.124)

Minimizing with the help of the Lagrange multipliers method, the following system of linear

equation is obtained:

ZAan(” = 5k p=1,...,n. (2.125)

For the trial functions b

n—1
b=0b(0) (CC - ;021> = b;ms(%p) (e?) (cc - ;CZI) . (2.126)

In a similar way, the variational principle stands

n—1ln—1

g=bb = kaTZ ST HTBMp) (2.127)
q=0 r=0

where the coefficients H9" are defined as

r 2 (@) < 1 ) (r) (2 ( 1 )] . .
q q 2 _ 2 — — qar — q
H = 5T {5 (c) cc— o CI ,Sg (c) ce - CI HY = H™. (2.128)

Again, using the method of Lagrangian multipliers the coefficients bé") can be solved from the

following set of linear algebraic equations

ZHqu(” —k =00 p=1..n-1 (2.129)

The transport coefficients are

1
A, = k5 [a.a] = 2kpal™ (2.130)
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2.5. The non-uniform state of a gas mixture

(], = %kBT [b,b] = %kBTbé"). (2.131)
In particular, for n = 1 we find
5 1 -1
A, = Zkag "= (A1) (2.132)
— lszb(l) _ (oo 9133
[l = KT, (213)
and for n = 2
5 @) A12A21 1
My = ZkBal - (1 T ATIAZZ — AIZAZT | ALT (2.134)

(2.135)

1 H10H01 1
)y = k70" = (1 + )

HO0 11 — FO1 710 | FF00

Takingn = 1,2, ... it is generated a sequence of numerical approximations to the transport

coefficients A and 7.

2.5 The non-uniform state of a gas mixture

An extension to simple gases will be applied to multicomponent gases in this section. Back
to the Boltzmann equation, following the same procedure as for a simple gas, balancing the

same order terms in the perturbation approximations the next relations are obtained:

N
25 =Y 1 (ify) =10 e
j=1

fi (7’, Ci,t) = fz (’I", Ci’ﬁ, VT,B, .. )
(0/0t) B (r,t) =@ (r|B,V,B,...)

where the hypothesis of the Chapman-Enskog method are used in the same way as for simple

(2.136)

gases. The zero order approximation, » = 0 to the Boltzmann equation for multicomponent
gases is
N
Zj(fi(o)f}m) =0 i=1,...,N (2.137)
j=1

and the higher orders r =1,r =2,.. .,
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2.5. The non-uniform state of a gas mixture

N
> (i f(T)+ZJ( AR )= @R = (B0 =

Sy (D) =N

The solution follows the same steps as in the case of a simple gas

19 = ni (mi/2mkpT)? exp (—miC2/2kpT)  i=1,... K . (2.139)

)

The function ¢ is defined for a simpler notation.

o) = £ £ f}f( V57 + fj J(H770) = anj L; (67).  (2140)
j=1 Jj=1

Searching for the continuity equations, a similar analysis than the performed for a single gas

leads to the following:

1 dp; .
Eﬁ E,V V E,V —sz i=1,...,K
pdt E piFi — E V. pPU (2.141)
du " ;
_ LqP) _ () Z ()
P = E V.-qV E pY Vv—i-g piFi -V,

j=0 j=0 i=175=0

where VEJ ), PZ( ) and g are the jth order contributions to the diffusion velocity vector of

species i, the pressure tensor and the heat flow vector of the mixture, respectively,

ngV@) — o / Cif9 e (2.142)
pU) — sz'm — g Z/mz'CiCiff”dSci (2.143)
=1 =1
N N .
() = qu(ﬂ) = ¢l Z/micgcifimd%i (2.144)
=1 =1

where ¢ is merely a scaling factor for the density in the Boltzmann equation and eventually

it will be taken as unity.

As sz = 0 for all j, multiplying the mass conservation equation by p; and summing
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2.5. The non-uniform state of a gas mixture

over all i
Ndpi & o N U)o ) Ve
DD SAALED DA DDA aed D) DI iy (2.145)
i=1 i=1 j=0 i=1 j=0i=1 Pi
1dp
T rT-_Vv. 2.146
ol v (2.146)

The last equations account the mass conservation for multicomponent gases. The diffusion

velocity V; is a new concept which is absent in the case of a simple gas.

2.5.1 Zero order approximation

The general solution to the zero-order equation (2.137) is given by (2.139). Each f; is a local
Maxwellian corresponding to local conditions. Diffusion velocities, pressure tensor and heat

flow vector are:

vi? =0
PO =pI  p=nkgT (2.147)
q(O) -0

The substitution of these zero-order results in the general conservation equations satisfy

the Euler hydrodynamic equations.

1 dp;
—di:— t=1,...,N
% g
Sl R v i=1,...,N
p dt
g N (2.148)
N Fi -V
o ;p p

The last equation is expressed sometimes in the form pp? = cte, where v is the well known

adiabatic coefficient v = 2.

2.5.2 First order approximation

The expressions (2.149) are the integral equations from which the coefficients fl-(l) are to be

found .

N

j=1
For each 7 the right member is:
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2.5. The non-uniform state of a gas mixture

(2£)© =00 ot + ¢; -V, fO + Fi v f O (2.150)

If fi(o) is regarded as a function of r, C; and t, instead of 7, ¢; and ¢

(0)
log
(-@fi)(o) _ fz‘(O) {dOngz +C; - log fi(O) + (Fz _ dov) V¢, log fi(O)

dt dt (2.151)
- (v1og f}“)) C;: vu}.
As for a simple gas
d() log f(o) ’I?”LZCY2
t = — LV - 2.152
dt ShpT ©° (2.152)
further,
2
0 _ (Ml 3 1
V. f;’ = Viogn; + <2kBT 2) ViegT (2.153)
and
) _ M~
Ve log ;7 = k:BTCZ' (2.154)
Hence

. . (2
(@fi)(o) = fi(o) {Ci' [Vlogm + T (—Vp-l-ZPka) L + <mZCz 3>VlogT]
N

okpT kT "\ 2kpT 2
e (C-C»—lc’QI) -Vu}
kgT \ " 3707

(2.155)

Using the mole fractions n;/n and the hydrostatic pressure p. Since p = nkpT', one has
Vlogn; = Vlog (ni/n) + Vlegp — Vleg T (2.156)

Equation (2.155) is equivalent to

2kpT 2

(2£) = fi(o) {:Cz d; + < > C; VlogT + T (C’iCi - 1C-2I> : V’u}

kT 37
(2.157)

where d;is the diffusion driving force
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2.5. The non-uniform state of a gas mixture

Since }_; (%) =1 and Y_; (%) = 1, the following identity is obtained

> di=0.
i
The equation (2.149) becomes

> il (6 )= _ ¢ nC‘ d: min 5 C. VioeT
jzlnzn] z]<¢ )—_fi 771 i di + 2]€BT_§ i’ 0og

+12% (CiCs = §CP) : Vv

The vector dy, ..., d; are linearly dependent dependent and therefore

di=df —v Y _dj

J

where 71, ..., vyyare arbitrary constants such that

dvi=1
i

A convenient choice is given by

Yi=pi/p i=1,...,N

As I is a linear rotationally invariant operator

qﬁ,(-l) :_EZDg.d;—lAi-VlogT—lBi : Vo
n n n

Df and A; are vector functions of C; and B; is a traceless tensor function of C;

D'=D'(C)C A=A(C)C B=B(0) (CC;C2I>

Comparing the coefficients of corresponding terms:

Z%L’j (D¥) :;fi(o) (5ik—ppi) C, ik=1,... N

J

ming o Lo (miCE 5\ o
; n2 I’L](A)infz <2kBT 2 Cl 1= 7"'7N
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(2.160)

(2.161)

(2.162)

(2.163)

(2.164)

(2.165)
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2.5. The non-uniform state of a gas mixture

nmj B m; (0) 12 L
%:n? I;; (B) = o Tf (CC’ CZI> i=1,...,N (2.168)

The set of vectors DF is such that the linear combination . (px/p) D¥is a summational

invariant.

> (pr/p) DF =0

K

The solution of (2.160) is given by
qﬁm:—EZDj-d~—1A'-VlogT—lB-:Vv (2.169)
) n - % J n g n ?

If d' and a are vector functions and b is a tensor function defined for each constituent of the

mixture, then

Dhd] =2 [ 104 udto— S [ 10d e (2am)
ko i

Z/f ( Vo8 —2) a; - Cid’c; (2.171)
1 (0) 1 3
[B,b] = W Zmz fz CZCZ — gC TI): bid C; (2.172)

From the vectorial calculus

Vgl) V=L ch d3cz _ Snn Z ff (0) CEng%idj
Z/f )C2A;dP¢;V log T (2.173)

3nnl

Comparing to the previous integral brackets expressions,

Dij= 5 [DZ’,DJ} (2.174)
Drp;i = 3in [Di,A] (2.175)

D;; are the multicomponent diffusion coefficients and D7; are the multicomponent thermal

diffusion coefficients. The expression for the diffusion velocity may be written as:

—Y Dyjdj — Dy Vg T (2.176)
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2.5. The non-uniform state of a gas mixture

where the term — Zj D;;d; is the Fick diffusion and the term —Dp;VlogT' is the thermal
diffusion.

Dij = Dﬂ
As Z (pi/p) D* = 0, not all the diffusion coefficients are independent. There are IN(N-1)

K
independent diffusion coefficients and N —1 independent thermal diffusion coefficients because

the compatibility equation must be fulfilled

> (pi/p) Dij = 0. (2.177)

(2

In principle, thermal diffusion could be considered as an unexpected phenomenon, al-
though it is fully compatible with Onsager reciprocal relations. Enskog [1911] was the first
to predict thermal diffusion on purely theoretical grounds. Chapman [1917] made the same
prediction. It was confirmed experimentally on a binary mixture by Chapman and Doot-
son [1917]. As in the Fick diffusion, the compatibility expression for the thermal diffusion

coeflicients is

> (pi/p) Dri =0 | (2.178)

7

In the evaluation of the pressure tensor from (2.143), the next expression is obtained.

1
P = —=kpT B, B| S. (2.179)
The coefficient of viscosity may be defined as
1
n= EkBT (B, B] (2.180)
and the first-order approximation to the pressure tensor is then

P =pI—-2nS (2.181)

The remaining magnitude to evaluate is the heat flow vector q. The definition of the

partial thermal conductivity is

1
N = ng [A, A]. (2.182)

Substituting in (2.144)

q=-NVT—p> Drd;+ ngZ niVi (2.183)
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2.5. The non-uniform state of a gas mixture

and eliminating d;

oM
q=-AVT+p) (lm + 22) V; (2.184)

The relation between the partial thermal conductivity and the thermal conductivity is

A=XN—nk> kp;Dr; (2.185)

where the values kr;are the thermal diffusion ratios

> Dijkrj=Dr; i=1,....N (2.186)
i

> kri=0 (2.187)

In this section, the derivation of the expressions for the first order of the Chapman Enskog
approximation to the solution of the Boltzmann’s equation for multicomponent gases has been

showed. The definition of the transport parameter has also been presented.

2.5.3 Calculation of the multicomponent transport coefficients

With the transport coefficients definition, more elaborated relations for practical transport
coefficients will be described. They will be expressed as systems of equations with terms
that are defined in terms of functions of the bracket integrals. The beginning is the entropy

production due to collisions.

0
< S) =nk Ei,j Dij (dl + k1;V log T) . (d]' + ijv10g T)
coll

ot (2.188)
+A|Vieg T + (27/T) S : S.
A similar analysis as that performed for a simple gas drives to the following relations:
d* =d"(C)C [dk,dl] < [Dk,Dl} (2.189)
a=a(C)C J[a,a] £[A,A] (2.190)
1
b=0b(C) (CC - 3021’) [b,b] < [B, B]. (2.191)

The maximum principle for multicomponent gases implies that the distribution of the
molecular velocities is such that, for given gradients of concentration, pressure, temperature

and velocity, the rate of change of the entropy density due to collision is as large as possible.
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2.5. The non-uniform state of a gas mixture

1

=d"(C) C; S 5
d;ﬂ:di (Cz)cz (2kT> Zdlp % (CQ)C

The variational principle stands

5{d"} =0

75k 7' n n
Kl _ [dk7dz} (OkB Zl ZOA;]J fg i
7.] q7r

with
ih

o [52‘” @)e,s9 (@) c} 2

These A coeflicients have the properties:

0
A =05 DAL =0 X AT
i i

Minimizing with the help of the Lagrange multipliers method

n n—1 .
qu Pi 7,:1,...,N
ZZAU Jq 25k: (5 - PO) Op0

Jj=14=0

The compatibility equation is

> (pi/p) dis? = 0.

i

In a similar way, the trial functions a;

p=0
75kB al r (n) (n
6{g}=0 g =|la, Z ZA;]J gq 57’
i,j=1q,r=0

The resultant systems of linear equations provides the coefficients az(j;)
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2.5. The non-uniform state of a gas mixture

YT T Bkgn Pt p=0,....n

Z(pl/p) 20 _O

7

i ) _ 4 i i=1,...,N
7j=1¢=0

For the trial functions b;

Loor) - S ) (2 1
30 I) = ,;)bi’p 54 (c?) (cici - 40 I)

dg=20 g=1[b,b] =

*kT Z Z HEH

1,j=1q,r=0

v 2 o e (@ (2 (o Loar) o) (02 (o La2\]
HY _M{@]an{s; (c)<czcz 361.1),5g (c)(c,cl 3Ci1>]ih

252 s (¢) (e i) o &) (e - S

ar _ gra
Hj; = Hj;.

(n)

The resultant systems of linear equations provides the coefficients bi,p

N n—1 ( 2 n. .
pg(n i
>0 HEY = b0,

21 4=0 ,n—1

(2.200)

(2.201)

(2.202)

(2.203)

(2.204)

(2.205)

The bracket integrals are the key for the multicomponent transport coefficients calculation

n n 1 n n
&k dl] = 3gH dhd] = 34™  pg = g dl( )
9 1,0 9 k,0 n l

on b0
3 1
{dk, a} = —5(1]({;’3 [DTk]n = —%(Ié’g
p 1 1Y k(n) 5 (n)
" a] = =23 (/) ;Y [Drely, = == (na/n) diy
=1 i=1
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2.6. The transport coefficients.

N
b, b] _52 (ni/n) b ., —szTZ (ns/n) b)) (2.210)
=1 i=1

2.6 The transport coefficients.

In this section, some issues related to the bracket integrals and integral collisions will be
addressed. With the evaluation of such integrals, the system of equations to derive the
transport coefficients from the kinetic theory of gases is completely defined. The expressions
of A parameters described in the previous chapter as a function of the integral collisions will
be showed.

2.6.1 Expressions of the integral collisions

The initial point is the dynamics of binary collision. The interaction force between F is derived

from the potential ¢, F = —V¢. The equations of motion for the two particles are
d’r; d’r;
miﬁ =F (Jr; — | m; dtzj =F(r; —rj|) (2.211)

It helps the use of the center of mass and relative coordinates,

m;r; + m;r;

R — ’ = — 2.212
m; +my; rEnT ( )
In this coordinates, the equations of motion are
d’R
— =0 2.213
d?r
where m;; is the reduced molecular mass
mgm;
P 2.215
g m; + m; ( )

The trajectory of a force, function of r, lies in a plane and polar coordinates can be used.

d
Taking the scalar product of (2.214) with ditr and integrating,

1 dr\? = 5 [dO\? 1,
o — .. 21
5 [(dt) +7r (dt) ] + o (r) 5 M9 (2.216)

where g = ¢; — ¢; is the center of mass velocity for a pair of species.

The angular momentum is constant in the motion

36



2.6. The transport coefficients.

2
m,;jr a = mijgb

where m;;gb is the constant in the infinite, figure 2.2. The motion equation is then

1 dr\? 1 my;g2b? 1

do
Dividing by 7 and rearranging

1
2

@ 2b290 (T’)

dr r4 9 ord
12" T g
ij

Taking into account the symmetry about the point of closest approach

dr/T2

=7 —2b ” 3
X / [L = (/) = 20 (r) /mijg?)2

For potentials given by

we have

d?"/rz

i=m—2b h
Xij / [1— (%/s2) =2 (9ii/r)” [mi;g°]

Introducing the variables

l/u
y:b/ra yozb/T()v = (b/glj) (mz]92/21/> )

Xij =T —2 - l—yz—u_l(y/z) 7%dy
[

T0

and taking into account that the dimensionless center of mass velocity is

NI

g = (m;;/2kT)% g

the integral @) is defined as

Al =@ @) =2n [ {1 o 0.} b

and the definition of the €2 integrals is
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2.6. The transport coefficients.

The partial bracket integral [S;”(%Z)‘K, S(€*)€];; for p,q=0,1,2

[SY(%)€, SP(€*)€];,

p=0,g=0 8;4,9“ =

p=0.g=1 Bl V-l ),

p=1,gq=1 8u,[5(6uF +5uP)Q ) V=53 Q1 P + u Q5 D 3y, Q4 ),

p= 0! q = 3(359(1 1) 79(! 2)+Q(l 3))

p=1,q=2 Su[33(12pf + Sp3)QY) ) — B (ap + 5p)Q ) P+ 1220l Y
‘ zu,Q“ D Ty AP =201, 97 ¥],

p=2q=2 S3(400F + 16847415 +35u,)9“ D — Fuj(84u] +3515)Q45

+413(108u] +133u)Q 3 — Ju Q) P + 4ty
+ 3 p(4ud +7/tj)9‘2 2’—14;1 u,Q‘Z D2 u’Q‘Z -
+2ui ;257

Table 2.1: Bracket integrals ’ as function of the integral collisions for p,q = 0,1,2. Table

7.3 from reference [1].

1 oo
_ [ kT > =2\ ~2r+3 ~(0) 5~
= (Wmij> /exp (—g )g Q;;dg (2.227)
0

2.6.2 Expressions of the bracket integrals

The bracket integrals may be written as function of the {2 integrals, see Table 2.1 for

|:S(3P) (C2) c7 Sé‘]) (CZ) c:|
2 2 i

luj = m; +m

"

mi+mj

and Table 2.2 for [S(gp) (C2) C, S(;) (CQ) C} , where p; = —— and
2 2

ij

’

. The tables for [sgm (€2) (cic; - 3e21) 547 (c?) (e - },)C?I)} and
2 2

ij

"

{S(SP) (C2) (CiCi — %C?I) aS(;) (02) (CiCi — éCfI)} may be also found in [1].
2 2 11

)

In general €2 integrals cannot be evaluated analytically due to the complicated dependence

of x on b and g. However, there are explicit expressions for the rigid sphere model,

o] - (AL)F ey

1
cos X = boj (2.228)

14 (-1

20T o (2.229)

L)

where o;; = % (0i + 0;) is the separation of the centers of the two molecules with diameters

o; and o;. It is possible to define the reduced values:
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2.6. The transport coefficients.

The partial bracket integral [SP(€2)€, S{(€%)€];; for p,q =0, 1,2

[S(p)(%ﬂ)(g S(q)((gz)(g]irj
p=0,q9=0 —8ufujQij-",
p=0,q=1 -8ufujGaj-"-Q;"?),
p=1q=1 -8ufd(32Q' V-5Q{}"» + Q}* ¥ -20}+?),
p=0,9 =2 —4uipjCQl -2 P + 2 Y),
p=1,q9=2 —8y; uj(.L"_SQ(,' D_ 18901204 Loqls3)_ 401 4)_70(2.2) | 302 )
p=2,q =92 —8;1:‘ (35059(1 1) _ aQ_JQ‘gJ!,2b+£g_l_Q§jl,3)_%Q}jl.4)

+3Q() V=00 Y+ 140 P - 207 ¥ +20 V).

Table 2.2: Bracket integrals ” as function of the integral collisions for p,q = 0,1,2. Table
7.4 from reference [1].

) = ltr) [Q(l:”} (2.230)

i i i
There are certain combinations of the reduced {2 integrals which occur frequently in trans-
port property calculations:
X (2,2)% ;+(1,1)%
L 1 2Q 7 /?3
By =[50 — 40 l /o)
X 1,2)% /(1,1
Cr =0l i /Q(
2 ,3) % 2 ,2) %
B =5V j0b?

Z—QSS)*/Q

(2.231)

2.6.3 Explicit expressions for the transport coefficients

The expression of the coefficient of viscosity of a simple gas in terms of a single Sonine

expansion coefficient for the nth approximation is

[, %kBTb(") (2.232)

The Sonine expansion coefficients b(()n) .. .bfﬁ)l must be calculated by the resolution of the
linear system of equations (2.205) with i = j = N = 1. To build the system, the values HPY
have to be known and they are defined in terms of the bracket integrals.

The first approximation to the coefficient of viscosity of a simple gas in terms of the

reduced 2 integrals is

. i(ﬂ'kaT)
bl = 16 wo2Q(2:2)*

(ST

(2.233)
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2.6. The transport coefficients.

The nth approximation of a simple gas in terms of single Sonine expansion coefficient is

(A

n

- ZkBaYL) (2.234)

where agn) is obtained from the solution of the system of linear equations (2.200) with i =

j = N =1, for the unknowns agn), ey a%n). The coefficients AP%are also defined in terms of

the bracket integral. The first approximation to the coefficient of thermal conductivity is

oL = 25 (rmkpT)? 3kp
1732 702022 2m

For analogy to simple gases, the following multicomponent quantities are defined

(2.235)

D=

! (27Tmijk‘BT)

16 7ro'l-2j Qg’m*

[mij], = (2.236)

1
95 (2mmiikpT)? 3k
gy = e ) (2.237)
32 WU%Q§§’2)* 2mi;

The Fick diffusion coefficients for a gas mixture are given by:

L kn
[Dril,, = [Dikl,, = %dfé ) (2.238)

where dﬁgn) are obtained from the system of equations (2.196). The coefficients Aqu are defined

in terms of partial bracket integrals and can be written as linear combinations of €2 integrals:

K
A% — L B . N )
E:l 245 ), ¥ 247 [Aijly (2.239)
(1 #1)
K
A=A = S I (60— 5) (2.240)
w u 4A2‘j [)‘il]l m; + my ‘
I=1
(I #1)
Tixj mg

A% = AL = (6c—5) (i #4) (2.241)

4A%; [Migly mi +m;

:
B [)\1]1

n i T %m? + %m% — 3m%BZ-*l + 4m;my A3
I 1 2‘4:]' [)‘il]l (mz + ml)2

(L #1)

(2.242)
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2.6. The transport coefficients.

_ TiTj mgm;
245 ily (ms +mj)°

55
Al (% -smy-143)  G#9) (2.243)

The thermal diffusion in a mixture are given by(2.207) and the values a,(:g are obtained

from the system of equations (2.200). The coefficients Aqu are defined in (2.239), (2.240),
(2.241), (2.242) and (2.243). From the system (2.200) may be also calculated the coefficients

a,(cill) to derive the partial thermal conductivity (2.209).
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Chapter 3

Polyatomic modifications to the

classical kinetic theory of gases

As in the previous chapter the main reference is [1]. However, the polyatomic modifications
are only developed for simple gases. The extension to mixtures has been written taking into

account the references [8, 18].

3.1 Boltzmann equation generalization

Although polyatomic effects are negligible for Fick diffusion coefficients calculation, it is impor-
tant in the thermal diffusion coefficients and thermal conductivity evaluation. The polyatomic

effects contributions are due to:

 Inelastic collisions
¢ Long relaxation times for the internal degrees of freedom

¢ Resonant exchange for rotational energy

The procedure to account for polyatomic effects follows the Chapman Enskog method, but
instead of considering only the translational velocity distribution function, we also consider
each quantum state of each species as a separate entity, thus considering also the internal
degrees of freedom of polyatomic molecules, rotational and vibrational. If Ej is the energy

associated with the internal state I, the average internal energy per unit mass, u, is

1
Pill; = Z/ (2mZC'22 + Ei]) fud3ci (31)
1

The distribution f;, (v, ¢;, Eir,t) for the velocity ¢; and the internal energy state E;r for
the species ¢ is the given in terms of the collision integrals by the generalized Boltzmann

equation.
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3.1. Boltzmann equation generalization

We let of]L (g, x,€) be the cross section for scattering molecules in internal states I and
J with respective speed g, that after the collision have the internal states K and L with the
relative velocity rotated a polar angle x and azimuthal angle e (molecules are not spherically
symmetric).

The number of collisions per unit volume and unit time involving molecules in state I with
velocities in d3c about ¢ and molecules in state J with velocities d®c; about ¢, such that
after collision, the molecules are in the states K and L respectively, and have their velocity
oriented in a direction in sin ydy about y and de about de with respect to their initial relative

velocity, is:

9ot F (9, x:¢) f1 (7, e,t) f1 (v, e1,t) d*cd’ey sin xdxds (3.2)

Using the relation

d*Q = sin ydxde (3.3)

the generalization of the Boltzmann equation is

(%—I_CZVT_‘_FVC) fiI(Tvciauifat) =

(3.4)
i Xk Jf (f{Kf{jL - fiIfljJ) gokF (g, x, ) d*Qdc;
which is known as the Wang Chang-Uhlenbeck equation. In abbreviated notation:
N
Dfir=_ Y IS (fify)- (3.5)

j=1JKL
When the internal energy states are considered, the equilibrium Boltzmann distribution

function is given by

T . ) exp [ (miC?/2k5T) — (Eyt/kpT)] 36)
i ’ 27Tk‘BT Z[ exp (*Ei[/kBT) '
The function
me‘ = Z exp (—Ei[/kBT) (37)
I
is recognized as the mechanical partition function for the internal degrees of freedom.
The internal energy for a species 7 is
3
pitl; = §nikBT + pitlint,i (3.8)

with
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3.1. Boltzmann equation generalization

— ZIEﬂeXp (—Ei]/k‘BT)

iUint,i = Nl = n; 3.9
p b E[exp(_EiI/kBT) ( )
The parameters y; and & are the dimensionless energy variables
E; = E; i —Eri
gp= B, g - B _ abricxp(“r) (3.10)
kBT kBT ZI exXp (_gli)
¢y and ¢, i are the coefficients of specific heat defined by
Ou;
Cyi = <81;> = (3]{73/2mi) =+ Cy,int (3.11)
i kg /— - kg 21 (Eri — &) exp (=En)
cmmt:(au’ t)ZB(EZ‘Q—&Q):B I< ) (3.12)
’ ot m; m; >orexp (=€)
The first order perturbation expansion for the Boltzmann equation is
fir = £ (L + 6ur) (3.13)
il ~ Jir il .
SIS fi(][))fj(f;) <¢i1¢1jJ - ¢;K¢'1]L) go il (g, x,e) d®QdPc; =
j JKL
— z(IO) {[(612 — %) + (glz — gl)} C,; - ViogT +2 (Czcz — %C?I) : Vo+ (3.14)
2 Coigint (g _ 3\ _Mfmi (o o ] "¢ }
{3 Cui (Ci 2) Cui (gh &) Vot n; Ci-d
with
bir = LAy VieeT— 1By : v lZDJ' d—10,v . (3.15)
il — n il og n il - n 4 il ' nz[ .

J

where the vector functions A;; and D;;, the tensor function B;; and the scalar function
I;; are to be determined. As in the classical Chapman Enskog theory A;; and Dg ; must
be proportional to C; while B;7, which is symmetric and traceless, must be proportional to
(CiCi — %CEI ) The functions expansion is this case is a double series (finite) of orthogonal

polynomials:
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3.2. Thermal diffusion coefficients

Air = it (Co 1) Ci = 323 a1 7 (cz) P e
Bir = By (Ci,Eir) (CC- —lerp ) Zzbdm ' (e?) (cici _ ;c;q)
Dk = Dk (C;, &) C; = ZZdz,pq ( )P@ (Ei1) Ci

FzI— il C'Lagzl Zz/}/ﬂpqsp C2 ()(5 )

(3.16)

where S (C?) is a Sonine polynomial and P(@ (&) is the gth order polynomial used by

Wang Chang and Uhlenbeck and by Waldman an Triibenbacher, with the two first expressions:

pO) — 1

_ 3.17
PO =& - (317

Application of the variational procedure for mixtures leads to sets of linear algebraic
equations for the expansion coefficients a; pq, birpq, dff,pq and v;r,p. We will focus on the
thermal diffusion coefficients and the thermal conductivity. In these transport coefficients
the second order terms are relevant and the impact of polyatomic effects is important. This
is because if the zero order is considered in the Chapman-Enskog expansion, the resultant
homogeneous system leads to the trivial solution for [Dr] and . Hence, at least the first

correction in the Chapman-FEnskog expansion must be used.

3.2 Thermal diffusion coefficients

Identifying the terms in V log T of 3.14 with the compatibility equation:
*Z Z ff ( irAvjg — A;KAlle) QUfJL (9, x:¢€) d2Qd3Cj =
j JKL ©
2_5 L _ £ .
£ (2 =3) + (- &)] & (3.18)
SovmiS_ [ D Air (€, i) C2dBe = 0
i I

After the minimization process with the help of the Lagrange multipliers method, the

following system of equations is obtained:

i=1,...,N
ZZAM " = (01 + Gs1) T3
=1mn rs,mn = 00,10, 01

il (1)
> _Yjiage; =0
=1

(3.19)
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3.3. A coefficients

The first Chapman Enskog approximation of the multicomponent diffusion coefficient Dy,

may be written as (3.20).

[Dri)1y = ———aly (3.20)

3.3 A coefficients

The coefficients Aj;"™" in Eq. (3.19) are given by mole fraction weighted sums of several
microscopic properties of the chemical species in the mixture (see [8]), depending on the
molecular sizes, masses, elastic collision integrals—defined in terms of the corresponding in-
teraction potentials, specific molecular heat, inelastic collision parameters and resonant self
diffusion parameters. As a consequence, these coefficients depend on mixture composition and
temperature. These A coefficients can be written in terms of the well known binary diffusion
coefficients (Z;;)

1/2
Zij = > T ( e ) (3:21)
8n0i2j Q,;’ 2mmy;
by means of
N
1 .
A D %E F5™5 rs,mn = 00,10,01 (3.22)
=1 "

where o;; is the differential collision cross-section of chemical species i and j, mi_j1 =

m[l + m;1 denotes the reduced mass. In the former expression Eq. (3.22) the dimensionless

functions Ffj‘zm” depend on temperature, but not on mixture composition. The expressions

of functions Fj;, are given by

Ff}%’oo = 0ij — 0 (3.23)
00,10 5 « ) Mie
Fi/ = (2 —3C% m; (0i5 — dj¢) (3.24)
10,00 Y « ) Mie
Fijz = (2 -3 M)Tni (0i5 — dje) (3.25)

25 m 15m; m2

10,10 . i} '

Ful = {4‘4“ (i +03e) + [<4 —omy) zmﬂ (6~ @-z)} TR
3.26

20 m?[ ( Ci,rot. C¢ rot. )
20 M g (5,54 650) 2 ’
3 mimy i (0i + 050) kB it * kB Cei
Cjint. 10,01 10mjA;'ﬁz Cj rot.
) Fro0 — 0 O s J 3.27
kg ijl (mz —I—ﬂ”Lg) ( je + 74) WkBCjZ ( )
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3.3. A coefficients

Ciint. ~01.10 1OmZA*€ Ci rot.
il Zgt b i £ S 0; s J 3.28
kp it (m; + my) ( it i) mkpCie ( )
(Cz‘,int.>2 0101 _ 25 | cijint.  Zi n 12m; AYy Cijrot. 5in (3.29)
kgp it 4\ kg Dimee D me mkple| 7

The dimensionless functions A;‘j, B;;, C7;, which appear in the former definitions, are given by
the corresponding ratios of reduced collision integrals (see [1]: Egs. (7.1-31)-(7.1-33)), with
values tabulated by (e.g.) reference [6]. These tables account for polar molecules and the

input parameters are reduced temperature 7™ and the reduced dipole moment ¢*, given by

ksT
T =2 (3.30)
61‘7
5. — L Mty (3.31)
R eijaf’j

where € is the Lennard Jones potential well depth (é) and p is the dipole moment. In the
case that species i,j are either both polar or both non polar, the Lennard Jones potential

well depth ¢;; and the differential collision cross-section o;; are given by

€ij = €i€5 (332)

1
Oij = 5 (Ui + O'j) (3.33)

In the case of interaction between a polar p and a nonpolar n molecule the expressions are:

* Hp
ty = (3.34)
,/epag
* e79)

1 . . /e
E=1+ 1k, /; (3.36)
enp = E2\/Epen (3.37)

1
Oup = 5 (O +0,) €70 (3.38)

where p, is the dipole moment of the polar molecule and «,, is the polarizability of the

nonpolar molecule.
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3.3. A coefficients

The internal component of the molecular heat capacities are defined based on the values

of ¢, according to

Ci int. = 0; for monoatomic species
1,int. p (339)

Ciint. = Cpi — g/{ B for non monoatomic species

The molecular specific heat at constant pressure cp; is part of the thermodynamic properties
required to perform transport calculations and should be available for the species present in
the system.

The values to account for the transference of rotational energy into translational energy on
colliding are c¢; ror. and (;;. These magnitudes and the expressions derived from experiments

are studied in detail in reference [7]. The values of ¢; 0. may be expressed as:

Cirot. = kB; for linear molecules (3.40)

Cirot. = %k B; for nonlinear molecules

where molecular linearity is assumed to be known a-priori, and has to be taken into account

during the transport properties calculation. The expressions for the relaxation collision num-

bers are:
Zirot (298)
ij = Gii = Gii (298) ———~~ 3.41
where
3 1 3
Zirot (T) T2 (Q’)Q 2 (61) 3 (Q’)Q
Zirot\L) _ T2 (4 i) (g il 3.42
Zx o \7) T\ ) \7) T\ 7 (342)

where the values (;; (298) are assumed to be known as part of the species database (guidelines
for these magnitudes evaluation are shown in [7]). The expression (3.42), which is an extension
of the expression Eq. (45) in [33], may be found in reference [34].

The remaining binary diffusion coefficients for the resonant exchange of internal energy

are given by the expressions Eq. (3.43):

Diint..j ~ Dij i FJ

Diint.i ~ Diis for non-polar gases (3.43)
..
Diinti = ———; for polar gases
’ (1+4)

Reference [7] provides details on the evaluation of parameter ¢, where distinction is made

of the different types of polar molecules: linear dipoles and symmetric top dipoles. Neverthe-
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3.4. Heat equation. Thermal conductivity

less, a more simplified expression (3.44) is used in this work, taken from [35] and [36].

r 2985

=75 (3.44)

where T is the temperature in K.

3.4 Heat equation. Thermal conductivity

The average flow of energy is described by heat flow vector g, which is made of the translational

energy q,, and the internal energy flux g;,,;.

q = qtr + qint (345)
=2 / %micgcifildgc (3.46)
i1
Tint = ) Z/Eilcifild3c (3.47)
T 1

Using the relation (3.15) by substitution and taking into account that integrands with odd
functions of the components of C' vanish and that only the perturbation part of f;; contributes

to the integral the heat flow becomes:

q = —ka [A, A]VT — pZDTzd + kBTZm i (3.48)
=1 =1
N —
Qint = kBT Y &V, (3.49)
i=1

g 1
where & = T is given by (3.10) and X = ng [A, A] is the partial coefficient of
B

thermal conductivity. The relation between the partial thermal conductivity and the thermal
conductivity is given by (2.185) where the parameter A’ is obtained in terms of the coefficients

a%)i and a(()ll)i.

fk:B Z zi (alor + afy)) (3.50)
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Chapter 4

Collision Integrals evaluation

In this chapter, some topics related to integral collisions will be addressed. As previously
described, they are an important issue in the transport properties evaluation. The integral
collisions appear during the solution of the dynamic collision between articles. Collision
integrals are necessary to generate the linear systems of equations to derive the transport

coefficients.

4.1 Collision integrals mathematical description

An interaction potential for the mathematical description of the forces exerted between
molecules is a key ingredient for the description of molecular collisions in the KTG. A very
widely used potential for polar gases, which will be used in this work, and the selected for

this work is the Stockmayer potential (12,6, 3),

¢ (r) = 4deij l(?)lz - <G;j>6 + 0y (?)3] (4.1)

where ¢;; is the Lennard-Jones potential well depth and o;; is the collision diameter. The
Stockmayer potential combines the well known Lennard-Jones (AKA 12 — 6) potential with

a dipole-dipole interaction potential. The parameter J;; accounts the gases polarity

1
0ij = ZMZ‘C (0:,05,0) (4.2)

where the definition of ( is

¢ = 2cosb;cosfl; —sinb; sin f; cos ¢. (4.3)

The parameters p; and p; are the dipole moments of the two interacting molecules with

ij = Mij/ (eijal-j)% . The angles ¢; and 6; are the angles of inclination of axes of the two
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4.1. Collision integrals mathematical description

15

. —6=-0.1
—&=-0.05
6=0
05 6=0.05
—6=0.1
—6=2

b/4e

0

"

r/c

Figure 4.1: Scaled Stockmayer potential (12,6,3) ®/4¢ vs. the nondimensional distance /o
for several values of the parameter § that accounts for the dipole-dipole interaction.

dipoles to the line joining the centers of the molecules, and ¢ is the azimuthal angle between
them.

The idea of Monchick and Mason [6], was to average the collision integrals for all the
possible fixed relative orientation. The probability of each orientation is assumed equally
probable and the collision integrals are

2= et [ (F) @) Q)

where

2 114 (
O+ — = |1
=S h- ey

/ l—cos X bdb (4.5)
0

cmrea [T () - o) o]

The parameter r. is the distance of the closest approach and it depends on d;; and 7. These

" (dryr?). (4.6)

integrals have to be computed numerically. Figure 4.2 is an example of intermediate results
(6 =0, ¢ = 1), to show the mathematical complexity and why analytical resolution is

not possible. The integrals and the intermediate results are calculated with nondimensional
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4.1. Collision integrals mathematical description

2 —Db/rc
—X
3 —1-cos(x)
-4
5
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

r(0)/r.(b)

Figure 4.2: Intermediate results to calculate the collision integrals, (6;; =0, ¢ =1). In
blue, the nondimensional distance between two colliding particles. In brown, the x integral
resultant in the collision dynamic. In gray, the function 1 — cosy, necessary to obtain the
parameter Q1*,

parameters as the x axis r.(0) /r. (b). Five points Gaussian integration formula for x has
been used. Further integration has to be done within the intervals where orbiting collision is
possible.

For each pair of indexes (¢, s), each dipole configuration d;;, reduced temperature 7* and

each dipole geometric position, the parameters QU= (4.5) and ’Q(Z’s)* 0,020 (4.4) integral are

1,V2,
obtained by numerical integration. The averaged value of the integral collision is obtained
integrating the angle ¢ between 0 and 27 and cos#1, cosfs between —1 and 1. The result

must be divided between 2 -2 - 27.

1 1 27

Q(ﬁ,s)* _ ;///‘Q(K,s)*
T

-1-10

61 020 dod (cosb;) d (cosb;) (4.7)

With (4.7) the following expressions may be calculated
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4.2. Monchick and Mason tables validity discussion

(1,1)% ~(2,2)% ~(1,2)x ~(1,3)x*
Ar = Qp */Qi.’ *

B — 8(172)* ! (1,3])* (1,1)* - (48)

ij — [5 g — A l/ng

v

v (1,2)x /(1,1
Cyi =5 /Qij

The above indexes and ratios appear in relations (3.23) to (3.29).

4.2 Monchick and Mason tables validity discussion

The collision integrals ngl-’l)* and QE?’Z)*, and the ratios A*, B*, C* were tabulated in [6] for
monatomic and polar gases. The collision integrals and ratios, used in this work and coded in
the software package MuTLib, are a direct electronic translation from the tables published in
[6]. For a more compact form of the the tables, the reduced parameters §* and 7%, defined in
3.30 and 3.31 respectively, are used as input variables. Future MuTLib versions may use more
accurate correlations which could be selected by the user from a collision integrals library.

The tables [6] were tested successfully against experiments in the normal range of com-
bustion temperatures for pure diatomic gases, with less of 5% error in the range 300-3000K,
[37]. However, further refinements in monatomic gases (specially noble gases) and extreme
temperatures have been published [38]. There are also special modifications in the case of
ionized gases, used in the astronomy field, for the study of planetary ionospheres, the solar
corona and the solar interior [39], [40].

The package Chemkin uses additional modifications to the original tables as showed in
Fig. 4.3. The polynomial approximations for A*, B* and C* are taken from the software
source code. However, a reference explaining the basis for the aforementioned polynomic
modifications is lacking in the Chemkin software package, in fact, some other authors reference
the software package itself when necessary.

In the package EGLib, Q1* values are imported from Chemkin calculations and the

ratios A*, B* and C* from Fig. 4.3 are recalculated using the polynomic approximations.

4.3 Tabulated values and polynomial approximations

In this sections the tables from [6] have been plotted in logarithmic scale for a better vi-
sualization. The polynomial approximations used in Chemkin package are also plotted for
comparison.

In Fig 4.4 the values Q(:D* are represented together the Chemkin correlation for high
reduced temperatures. Original values and the correlation are quite similar.

In Fig. 4.5 the ratio A* is plotted for tabulated data and the Chemkin polynomial curve.
The Chemkin curve fits reasonably in the interval 0.5 < T* < 5. Out of this interval the
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4.3. Tabulated values and polynomial approximations

Q"=OMEGI12(N=1.T".3) | | O Monchick Mason tables for Q.D* |

» If (6 ¢[0,2.5]or T* & [0.1,500] or (T* > 75 and § # 0)) m

—>| If (5 =0andT* > 75) |—>| QUD*=0.623 - 0.136e-2 - T* + 0.346¢-5 T*2-0.343¢-8 - T*3 |

> QUD*=INTERP(T*, §, O)

A=YiZg a;(logT™)! i a b c
0 1.10691E+00 1.19967E+00 8.38699E-01
1 -7.06552E-03 -1.14093E-01 4.74833E-02
B*=Zi:8 bl-(logT*)i 2 -1.67198E-02 -2.14764E-03 3.25010E-02
3 1.18871E-02 2.51297E-02 -1.62586E-02
4 7.56937E-04 -3.03037E-03 -2.26015E-03
; ; 5 -1.31400E-03 -1.44501E-03 1.84492E-03
C=Niz8 c;(logT*)?
i=0"~i 6 1.72085E-04 2.49295E-04 -2.11542E-04

Figure 4.3: Chemkin scheme for the collision integrals calculation

L. Monchick, E. A. Mason, Transport properties of polar gases
J. Chem. Phys. 35 (5) (1961) 1676-1697

6
5
—6=0
4 —&=0.25
. 6=0.5
33 6=0.75
G —6=1
2 —&=1.5
—6=2
1 —&=2.5
—Chemkin T*>75
0
0.1 1 10 100

T (K)

Figure 4.4: Reduced integral Q:D*, Plot of the Monchick and Mason tables.
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4.3. Tabulated values and polynomial approximations

L. Monchick, E. A. Mason, Transport properties of polar gases
J. Chem. Phys. 35 (5) (1961) 1676-1697

115
1.14
113
—6=0
112 —6=0.25
111 8=0.5
< 11 §=0.75
1.09 —6=1
—6=1.5
1.08
—6=2
1.07 P
1.06 —Chemkin
1.05
0.1 1 10 100

T (K)

Figure 4.5: Reduced ratio A*. Plot of the Monchick and Mason tables.

Monchick and Mason tables and the polynomial curve differ. For low values of T%, the
polynomial approximation is around a 4% over the tables values. For values 7% > 10 the
polynomial approximation is around a 4% lower than the values in the tables.

In Figs. 4.6 and 4.7 the ratios B* and C* are plotted. The polynomial used in Chemkin
lies in the middle of the Monchick and Mason tables for the most reduced temperatures in
the range 1 < T* < 10. Out of this temperatures range differences up to 2% may be found.

To summarize, the Monchick and Mason approximation is adequate for the most common

problems of combustion science and it is implemented in MuTLib.
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4.3. Tabulated values and polynomial approximations

L. Monchick, E. A. Mason, Transport properties of polar gases
J. Chem. Phys. 35 (5) (1961) 1676-1697

1.35
1.3
—&=0
1.25 \
—6=0.25
1.2 6=0.5
) 6=0.75
1.15 —6=1
—&=1.5
1.1 — —06=2
1.05 —&=2.5
—Chemkin
1
0.1 1 10 100

T* (K)

Figure 4.6: Reduced ratio B*. Plot of the Monchick and Mason tables.

L. Monchick, E. A. Mason, Transport properties of polar gases
J. Chem. Phys. 35 (5) (1961) 1676-1697

1
0.95
—6=0
—6=0.25
0.9 6=0.5
8 §=0.75
0.85 —6=1
—8=1.5
= —5=2
0.8 —6=2.5
—Chemkin
0.75
0.1 1 10 100

T (K)

Figure 4.7: Reduced ratio C*. Plot of the Monchick and Mason tables.
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Chapter 5

Description of the multicomponent

transport algorithm

This chapter describes the mathematical approach followed to calculate the transport coeffi-
cients from the kinetic theory of gases, Fick diffusion coefficients, thermal diffusion coefficients
and thermal conductivity[41]. The strategy is an iterative algorithm that takes advantage of

the use of the correct physical scales and the blockwise inversion.

5.1 Blockwise inversion strategy

The system of equations (3.19) may be written in a matrix form as:

00,00 700,10 0 aéé)
A10,00  A10,10 710,01 a%) —{ x (5.1)
0 A0L,10 01,01 a(()ll)
N
> yjatg; =0 (5.2)
j=1

The main idea behind the present algorithm for the calculation of the thermal diffusion
coefficients has two parts. On one hand inspection of Eq. (5.1) shows that the coefficient
matrix in the first block in this linear system (i.e., A°*% supplemented by Eq. (5.2)) is the
same matrix that has to be inverted for the calculation of the Fick diffusion coefficients D;;.

Thus, the first part of the present algorithm is to solve Eqgs. (5.2, 5.1) using the blockwise
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5.1. Blockwise inversion strategy

matrix inversion formula

—1
A|B [ A'+A'B(D-CA'B)"'CA"!|-A"'B(D-CA'B)"!
Cc|D a —(D-CA'B)"lCA™! | (D-cAB)!
(5.3)

which holds for any square matrix with entries A, B, C, D, as long as sub-matrices A and

D — CA~'B are non-singular. In the present case, according to Eq. (5.1), the sub-matrices
A, B, C, D are defined by

A = A0000 (5.4)

B— { A0010 } (5.5)
A10,00

C= [ . ] (5.6)

(5.7)

AL010 710,01
D= l AOL10 701,01 1

In the application of this strategy to the linear system under consideration the inverse of the
first block (A%%% supplemented by Eq. (5.2), A in Eq. (5.3)) is already available from the
calculation of D;;.

The second part of the algorithm makes use of the observation that the second block that
needs to be inverted to solve Eq. (5.1), i.e., D—CA™'B in Eq. (5.3), is diagonally dominant.
Hence, by scaling this part of the system (blocks A1%:00 A10:10 - A10.01 “A0L1041q AOLOLY with
the corresponding diagonal terms, the block D — CA™!B is written as 1 + A7 (see Eq. (5.20)
below) and its inverse can be efficiently computed by means of the Neumann series [42] (i.e.,

the matrix version of the geometric series).

oo
(1+A7);" = <Z (—AT)”"> (5.8)
r=0 ij
where we define matrix Ar, Eq. (5.20), by analogy with matrix A in Model 1 of [28]. This
way the present algorithm makes full use of the information available from the calculation
of the Fick diffusion coefficients D;;, which is assumed to have been performed prior to the
calculation of the thermal diffusion coefficients. On the other hand, the solution for Drp; is
written in terms of a Neumann series, in a similar way as it is done in Model 1 of [28]. The

implementation of this general strategy is shown in full detail below.
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5.2. Non-dimensionalization and scaling

5.2 Non-dimensionalization and scaling
The system of equations (5.1) may be scaled according to the following expressions:

Frsmn _ )\rs mn 25anArs mn

(%) ]
1
jrsi - ATS
with:
Cjint
| ()
A0 —q MO = : i P ks 5 i=1,...,N;
25 BT 710,10 gy, 257<JBHA01 01 (Cz Jint. ) 2y
4 © 4 kp "
(5.10)

@.. (C],lnt.
-@'N D 713 k .
TV B NN (5.11)
J J J

where c¢; in¢ is the internal component of the molecular heat capacities for the species i. The
reference species N has been selected as the species with highest mole fraction, in the same
way as it is done in Model 1 and Model 1+M of [28]. This way we are able to make use of
the results available from the calculation of D;;. On the other hand, based on the observation
that the second block in Eq. (5.1) is diagonally dominant, instead of using the reference
species N to define the dimensionless variables, the reference scales in this part of the system

are given by the corresponding diagonal terms. Note that factor — is just a way to write

J
the equations in a compact way. From the computational point of view, there is no division

by magnitudes close to zero for vanishing mole fractions. Taking into account the nature of

. . . Ty TiTy
expressions Fj;; the resultant expressions related to the mole fractions are ! ——0;; and ! —0ji.

Lj Ly

it edl—xllf]—land

Tixy e .
In the first case Z—(Sij = x; if ¢ = j and zero otherwise. As well,
L Ty

. . . k:Bn ;T
zero otherwise. Note that for convenience the expressions 10 10 Z é ¢ 11]% 10 and

il

25kpn 0101 (Ciint.\> o= Tidig Cijint. 01,01
1 Ay T = E 7 k FUE have been used.
B =1 it B

Inserting the former definitions in Eq. (5.1), the KTG linear system is written in dimen-
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5.2. Non-dimensionalization and scaling

sionless form as

00,00 00,10 B00 0
F10,00 10,10 10,01 a0 ¢ =14 X0 (5.12)
0 FOL10 1 a1 X01

where the resultant last 2 x N equations have been scaled with the diagonal terms to
improve the convergence rate of the Neumann series used in the inversion of this part of
the system. Note that for monatomic species ¢;in. = 0 and the correspondent equation
Z;V:El Fgl’lodloj + dg1; = ZTo1; only makes sense if agy; = 0. In this case there are two options:
direct elimination of the former equations from system (5.12) or make them compatible with
(5.13) by means of

Féo,m -0
Fgl’m = §;; for monatomic species (5.13)
Zo1; =0

Before using the blockwise inversion formula Eq. (5.3), the N** equation in the linear
system Eq. (5.12) (i.e., the last equation in the first block, which can be expressed as a linear
combination of the N — 1 previous equations) is substituted by the overall mass conservation

condition Eq. (5.2), which is used to calculate the last entry of vector &g. Thus we find

aoo; (5.14)

d(;Oi = CNLOOi; 1= 1, .. .,N -1 (515)

Inserting this last result in Eq. (5.12), the KTG linear system for the thermal diffusion
coefficients is finally written as Eq. (5.16)

1+A FOO10 ¢ ag 0~
[10,00 (10,10 10,01 a0 — %10 (5.16)
0 FOl’lo 1 5.01 )~(01
where 2
0,00 m; iN 100,00 . .o
£10,00 _ 510,00 My ZiN 110,00, ; . _ _

Eq. (5.16) is the final expression for the KTG linear system for Dp; and X'. The solution
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5.3. Final solution

of this system can be computed by means of the blockwise inversion formula Eq. (5.3). In
this regard, the first sub-matrix that needs to be inverted is 1 + A, where, as can be easily
checked, A;; (defined in Eq. (5.17)) is the same matrix A;; given by Eq. (21) of [28]. Thus,
the inverse of this block is already known from the calculation of the Fick diffusion coefficients
(see Eq. (20) of [28]), since we are assuming that the calculation of D;; has been completed

prior to the calculation of Dp; and N.

5.3 Final solution

According to the scaling used to derive Eq. (5.16), the new block matrix to be inverted using

the blockwise matrix inversion formula (5.3) can be written as:

(1+ Ap)™* — (1 + Ap) F10.01

5.19
_ 01,10 (ﬂ +AT)_1 1 +F01’10 (ﬂ +AT)_1 110,01 ( )

[D-ca™'B] oo [

where, by analogy with matrix A in Model 1 of [28], we define matrix Ap by means of
:H. +AT — FlO,lO _ FI0,00 (1]_ _’_A)*l FOO,lO o F10,01F01,10 (520)

Since this matrix is close to the identity it is reasonable to expect that the Neumann series
inversion formula (Eq. (5.8)) can be used to define an approximate iterative algorithm with
fast convergence rate. With this idea in mind, the thermal diffusion coefficients are given by

means of
{ ag } =1+ A) " FO 14+ Ap) ! (F10’015<01 - 5(10) (5.21)

where (1 + A)f1 is known from the calculation of the Fick diffusion coefficients and where
(14 A7)~ can be computed in an iterative fashion using the Neumann series Eq. (5.8). For
instance, to leading order (i.e., for 7 = 0) (1 + A7p)~! =1 , whereas the first term (r = 1)
would give (1 —I—AT)_Z = 1 — Ar. Note that the first iteration does not involve matrix
multiplications.

Finally, the thermal diffusion coefficients can be easily calculated from the former result
recalling Eqs. (3.20, 3.50, 5.11, 5.14). On the other hand, the thermal diffusion fluxes can be

directly computed by means of

. mg ~
jri = —PE@%NGOMV InT (5.22)

The coeflicients a%)i and aéll)i may be derived from the scaled parameters ai9; and agi;

that may be computed using the expressions:
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5.4. Transport algorithm convergence

v, = 1:'10,015'(01
W = X109 — V1
5110 =W

loop for the number of iterations
vi = FOL10w
vy = Fl0,0lvl
vy = F00.10g
V4 = (]l + A)il V3
vy = 1000y,
vy = FlO,lOW
W=V]+Vy—V5+W
ajp=ajp+w

end of the loop

<~ _ 01,105
ag) = F7 " Magg

ap1 = X1 — ao1

vy = F00.105

2 -1
ag=—(1+4) vy

Figure 5.1: Algorithm scheme for the calculation of vectors a,, , ajp and ag; as matrix-
vector multiplications

{ ajo } = — (]1 + AT)_l (F10’01)~(01 — 5(10) (5.23)

{ 501 } = 5(01 + FOl’lo (IL + 14T)_1 (F10’01)~(01 — )~(10) (524)

It will be noted that aforementioned matrix inversion (1 + A)~*

is not strictly needed to
obtain the vectors { gy }, { aig } and { ap1 } with a desired level of convergence. From
the computational point of view it is more efficient to simply implement algorithms with
successive matrix-vector multiplications, see Figure 5.1. For that purpose the expressions

(5.20) and (5.8) must be taken into account.

5.4 Transport algorithm convergence

First of all, the matrix resultant in the scaled system of equations (5.12) will be studied. The
order of the different blocks will be analyzed. The diagonal blocks have to be not very far
from identity and the off-diagonal blocks have to be close to zero to ensure the procedure
convergence. The selected approach with Neumann series will be efficient as long as the
matrix to invert is close to identity.

The ratios between binary diffusion coefficients appear in the expressions for the system
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5.4. Transport algorithm convergence

Relevant species in combustion
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Figure 5.2: Collision diameter vs. molar weight for the main species used in combustion,
extracted from tables in [2].

coefficients. These ratios depend on, collision diameters, mole masses and collision integrals.
Data from reference [6] show that collision diameters values are around 2 — 7.54 for different
species commonly used in combustion. Also, for common ranges of temperature, the collision

integrals values Q(11* are in the range of 0.5 — 4 (this curves are shown in Figure 4.4).

The terms —2 may be expressed as (5.25).

J
Dre
2 *
iy _ (one) Q" e (5.25)
Dy Oij Qg;vl)* mg; '

The values of the collision diameter ¢ against the mole weight for most of the species used in

combustion has been plotted in Fig. 5.2.

The ratio between binary coefficients may be approximated by

memg

2 * _— 2 *
L A Vi e T W VR (5.26)
Dre Oij Q(l’l)* My Oij Q(l’l)* m; ’
ij m; +m; ij

with
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5.4. Transport algorithm convergence

(1,1)=
0.5 < —kt <4 (5.27)

(L1)=
Q;;
If the molecular weight of the species ¢,j,kand ¢ are similar the order of magnitude

75 Oy
Dt QLD
ij

(5.28)

7%
In the following derivations a chemical species will be considered dilute if z,,—2 — 0.
ke

‘@A .
The approximation to estimate orders of magnitude is that =2 ~ 1.
ke
5.4.1 Estimated values of the terms associated to parameters F

In this section the different blocks of the scaled system of equation will be analyzed. As
mentioned above the typical orders of magnitude will be checked to ensure that the resultant

matrix to invert is not very different from identity.

Estimated values of the terms associated to F%.%
0000 =TiN T .
By =3 2 0= 0 s G=1 N (5.29)
=1 it T

If ¢ = j. Approximations can be done in the case that Z;n ~ Y.

00,00 Y9 00,00 a
B = Ty Fi% o~ Y (5.30)
(=1 L=1
(£ # 1) (£ #1)
If the chemical species i is dilute x; ~ 1 the diagonal terms are around unity. If i # j
FP0 = —xigjf FO (5.31)

For a dilute species Fit;o,oo ~ 0. Hence, the resultant matrix row is almost a diagonal
matrix row for dilute species.

Estimated values of the terms associated to F°%!°
9
Values C7, are around T0 for every species, tables from [6], figure 4.7.
N

Diixixy (5 m;
F0 =320 ’Z<— >‘Z 8ij — 0j0) - 32
] = D T 9 3 74 m; ( J J) (53 )
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5.4. Transport algorithm convergence

If i = j
e Die 2(my +my) * 5 10 " '
=1 t=1
(0 %) (¢ # 1)
If i # j
FOOM0 -y i M (5 gewy pool0 | Ti (5.34)
i " Dij 2 (mi + mj) o 10 '

Hence, the values of matrix F%%10 will be small in a general way, independently if the

species is dilute or not.

Estimated values of the terms associated to F''0:%
The procedure in this case is similar to F%%10 but the scaling factor for each addend is ZiN
il
17
instead —22. Moreover, the global summation is scaled Withm.
% Din fcm<5 3 )mz 51— 5.
@M €y 2 it m; k J
g —
F00 = (5.35)
10,10
Y Fy;
and the scaling terms Féo’w are
L0 _ g g g: Di; {4A* n [(25 3B*> me 15 mzil} m?,
i (7 Aad? 91 {4 il 4 x4 m; 2 my mimy
{=1
0 #1q
s (£#4) N s A ; (5.36)
+@$i 3 Ci,rot. + @ Z Dii s < +0Ci,rot. i Z’gcé,rot.> myy '
3 mkpGr 3 P Div mkpGie kgl /) mimy
(£ #1)

The values of Af; are slightly over 1 as can be seen in Figure 4.5. The parameter ¢;; may

be approximated by the rotational collision index from figure 5.3 and takes values from 0 to
c; Axc; 1
1ot ZieTrot: -~ g an idea of the
mkgCye 6

order of magnitude. The values of B;; are around 1 from figure 4.6. Assuming m; ~ my and

3. The parameter is1or 5 Therefore the approximation

PDiN ~ Dy the order of magnitude of the scaling factor is
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5.4. Transport algorithm convergence

Relevant species in combustion
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Figure 5.3: Rotational relaxation collision index { vs. molar weight for the main species
used in combustion, extracted from tables in [2]
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5.4. Transport algorithm convergence

010 28 N 611
I g T + > Taa e (5.37)

(6 #1)
If i = j , the definition (5.35) drives to

N N
9; 5) my 1
S _30% ) —% =
Z Ty .@M (2 zﬁ) (mz + mg) 10 Z Ty
! = /=1
10,00 (£ #1) 10,00 (€#19)
Fii = 10,10 Fz‘z‘ ~ N .
Fy; L 3 611
9 144"
/=
(¢ # 1)
(5.38)
It is clear that Filio’oo‘ < 1. For the non diagonal elements i # j
Iin  m; ) " 1
10,00 i D (mi +mj)\2 3¢ 10,00 107
By = 0,10 Ey” i (5.39)
R B o
9 144™°
/=
(£ # 1)
Again, the expected values are lower than one Fibo’oo‘ <1
Estimated values of the terms associated to F'%1°

1
As in the case of F''%09 the global scaling factor is 1010 In this case, the scaling factor for
ii
each addend is %
il
1010 _ Y 9y vz AA (504§
FiliOJO ij = Z D 7 { iz( ij T jf) +
(=1
25 x 15 m; m
(% —3By,) me + S0 (85 — bj0) i (5.40)

20 L Dixivy m? Cix c
+§ Z 73 Lile il A;kﬁ (51] + 5]'[) < 7,rot. + £,rot. ) .
/=1

D¢ xj mymy wkpGie  TkpCey
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5.4. Transport algorithm convergence

Ifi=j
10,10
Fl10 =, (5.41)
Ifi  j
163
—
Fizo,lo - 14}3 (5.42)
B e
9" 1447
(=1
(¢ # 1)
The off diagonal terms are small and the matrix F''0% is closed to the identity.
Estimated values of the terms associated to F!00!
The expression for these terms are:
N o 9. xixy 10m,; A7 Cj rot
— Ji#@ﬂ*‘&j) j,rot.
Div xj (Mm; +my) kBCje
1001 _ t=1 (5.43)
ij 10,10 :
Y Fy
Ifi=j
2 Yoo
—T; + Z §$e
! =
10,01 (€#1)
L~ (5.44)
N
9" 144"
(=1
(£ #1)
Ifi ]
1 .
10,01 3"
F} - (5.45)
B e
9" 1447
(=1
(£ # i)

All the terms are small and therefore this matrix is closed to zero.
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5.4. Transport algorithm convergence

Estimated values of the terms associated to F°.1°
The expression for these terms are:
N .@jj T;Xp 1()mz-A;ké

Dy xj (mi+my)

Ci,rot.
Oip + 04s ;
(9¢ + 9%;) kB

01T

The scaling terms Fgl’m are

0101 _ Z Ciint. D _I_Bmz‘Afg Ci rot.
" .@ze 4 kB Diine.e 5 my TkpGy| -

i 5
The approximations 1 and St 2 may be considered. If i = j
Diint. 0 kp 2
Moo
%l‘i + Z 3%
{ =
oo (¢4 )
yo 1,
g Tt
(=1
If i # j
1 .
0110 3%
ij N
3 145
S 14
(=1

All the terms are small and therefore this matrix is close to zero.

Estimated values of the terms associated to FO-0'(1 + A)~

By definition, this matrix is the identity

N Dy wine 25 [ e, Due 12m; A}y Cirot.
S Lt L0 5

Dy xj 4 | kB Diiney 5 mu kG

FO1,01 _ ¢
K iv: %334% Ciint. Dt 12miAj, Cirot.
Dy 4 | kB Diiee 5 my mkpQy
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5.4. Transport algorithm convergence

If i = j

FOLOL — 1, (5.51)

)

If i j

FAHOL — 0, (5.52)

)

5.4.2 Convergence analysis

The described procedure contains two matrix inversions, (1 + A)™" and (14 A7)~'. The
convergence problem of (1 + A) ™! is analyzed in references [28, 30]. The inversion of matrices
close to identity may be done by the Neumann series approximation and (1 + A7)~ is suited
to it. The Neumann series inversion of (5.8) is convergent as long as the norm of matrix Ap
is ||Ar|| < 1, and has fast convergence rate if || Ap|| < 1.

If the previous estimations are correct (section §5.4), the matrices , F1%10, 13'10’00, F00,10,

F100L 1 pOLI0 and £10:10 from (5.53) are close to zero and the norm is small.

FL1010 — 7 4 £10,10 (5.53)

The matrix A7 is therefore expected to be reasonably small, because is derived with

operations involving small matrices.

Ap = £1010 _ (10,00 (1 + A)—l 00,10 _ £210,01 701,10 (5.54)

Thus, the fast inversion convergence rate is then reached as a consequence of the scaling

procedure.
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Chapter 6
Transport algorithm efficiency

This chapter tries to cope the operations count of the presented algorithm. In general, this
an iterative approach and the speed is very competitive. What is valuable is that the global
number of operations be the lowest for a desired level of accuracy. In this chapter the operation
count of the present algorithm is analyzed. It is important to have in mind that, regarding
the algorithm performance, it is not necessary to be the fastest at each iteration if accuracy

is reached at a lower number of iterations.

6.1 Operation count

The number of operations implied in the present algorithm is addressed below. It will be
compared against other well known algorithms, including a direct LDL”and two iterative
conjugate gradient algorithms, with and without preconditioning. It will be assumed that the
matrix system and the right hand side of the linear system are given. No considerations are
made about the operations needed to build the linear system of equations, only the number
of operations needed to reach the solution is accounted for. The approach is very generic
and the numbers of operations are estimated approximately, although minor order numbers
of operations will be kept. Any of the algorithms used for comparison may be optimized or
customized for the current problem and the number of operations may differ slightly. Thus,
the main purpose here is only to provide a general idea of the algorithm cost in terms of
the different numbers of additions and multiplications needed in each case. For instance,
for preconditioning we have considered a left matrix-vector multiplication, where a dense
preconditioning matrix is assumed and no sparsity issues are taken into account.

F1001%4) are

The sequence of matrix-vector multiplications in (5.23) (1 4+ Ar) ™" (%19 —
repeated in the expressions (5.21) and (5.24) from right to left. A single matrix-vector mul-
tiplication of order N takes MV = 2N? — N operations. The computation of the vector

F1001%4; — %10 requires N + MV operations. Taking into account the expression (5.20),
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6.2. Comparison with existing methods

the resultant vector — (1 + Ar) (F109%g — %¢) requires ca. TMV + 4N operations. The
value is approximated because some matrix and vector dimensions are of order N — 1 in
(5.20). Thus, for a number of Neumann steps r the number of operations needed to obtain
(1+ AT)_1 (F107015’<01 —Xj0) is ca. 6rMV +3rN + MV + N, and to get the solution for the
three vectors ag, , ajp and ag; around 6rMV +4MV +3rN +3N operations are necessary.

6.2 Comparison with existing methods

A direct inversion of a system of 3N equations with LDL” factorization takes (3];[)3 =9N?
operations [43]. In the case of a matrix multiplication for the whole 3N system, the matrix-
vector multiplication takes 12N? — N, avoiding the null terms. A general iterative conjugate
gradient algorithm (not optimized for this particular system) requires 30rN + 7 (12N? — N)
operations for the solution of a 3N system of equations (see, e.g., [43] (10.2.16)). With pre-
conditioning, an additional 3N matrix-vector multiplication for the right hand side and one
additional 3N matrix-vector multiplication in each iteration are considered. The operation
count results for each of the aforementioned solution algorithms are summarized in Table 6.1,
as a function of the number of iterations r. The expressions shown in Table table 6.1 are
plotted in Figure figure 6.1. It is important to remark that the conjugate gradient opera-
tion count shown in this work corresponds to a generic conjugate gradients (CG) algorithm,
not to EGLib, which is specifically optimized for this particular system, leading to a lower
computational load. As can be seen, the performance of the present algorithm (see orange
lines) is better than the direct method. With the first iteration r = 1, the direct algorithm is
slower than MuTLib algorithm for any number of species. For higher levels of iteration r = 2
and r = 3, direct method (blue lines) is better for small numbers of species, under 10. The
operation count of MuTLib is slightly better than a generic conjugate gradient algorithm for
low numbers of species and slightly worse for high numbers of species. However, the opera-
tion count of MuTLib with the recommended iteration level r = 1, is better than conjugate
gradient for r > 2 for any number of species. On the other hand Figure 6.1 shows that the
performance of MuTLib is better than a generic preconditioned conjugate gradient regardless

of iteration level and number of species.
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6.2. Comparison with existing methods

Algorithm Number of operations
MuTLib algorithm 12rN? 4+ 8N? —3rN — N
LDLT 9N3

Conjugate gradient

12rN?2 + 29rN

Preconditioned conjugate gradient

30rN? + 18 N2 + 26rN — 3N

Table 6.1: Number of operations needed to solve a system of N species for several iterative
algorithms as a function of the number of iterations r.
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Figure 6.1: Operation count needed to solve the transport system for IV species according
to MuTLib, a direct method LDTT, an iterative conjugate gradient method (CG) and a
preconditioned conjugate gradient method (PCG) as a function of the number of species for
numbers of iterations r =1, 2, 3.
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Chapter 7
Transport algorithm accuracy

The performance of the present approximate method is illustrated below in two particular
cases of interest in combustion: a hydrogen premixed flame and a methane counterflow diffu-
sion flame. We will focus on the accuracy of the results for the thermal diffusion fluxes Dyp;
and partial thermal conductivity A’ vs. number of terms included in the iterative algorithm.
To this end the package Chemkin with full multicomponent transport description (including
Soret transport) has been used to determine the mole fraction and temperature profiles as a
function of position in each flame configuration. Thus, the transport properties in the mix-
ture are computed by Chemkin according to KT G [6] and provide the rigorous results for Dp;
and X" as functions of position (termed Dr; (exact KTG) and X (exact KTG) below). Then,
based on the mole fraction and temperature profiles provided by Chemkin, the thermal dif-
fusion coefficients Dp; and partial thermal conductivity A are re-calculated according to the
present iterative algorithm and the corresponding results (termed Drp; (approximate model)
and )\ (approximate model) below) are compared to the corresponding rigorous KTG values.

To this end we define the absolute error in Dp; and )\ as

ADry; = |Dp; (approximate model) — Drp; (exact KTG)|

7.1
AN = | X (approximate model) — X (exact KTG)| (7.1)

and will base our accuracy analysis in terms of the maximal absolute errors as a function

of position, normalized by the maximal value of each corresponding rigorous KTG magnitude

. max (ADTz)

~ max |Dr; (exact KTG)|
max (AN)
max |\ (exact KTG)|

(7.2)

EN —

The same accuracy analysis will be also performed with the thermal diffusion fluxes and

partial thermal conductivity computed by means of the mixture averaged approximation
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7.1. Results for premixed hydrogen flames

(Appendix A from additional material), and the corresponding normalized errors €; and &y
are also shown.

The calculation of the thermal diffusion coefficients and partial thermal conductivity in-
volves the calculation of the Fick diffusion coefficients. Hence, to focus on the accuracy of the
Neumann series used for the inversion of the new sub-matrix 14+ A7 (Eq. (5.20)), in the results
shown below the calculation of the Fick diffusion coefficients has been performed in an analytic
way. As a consequence the inverse of matrix 1+ A is given by the corresponding exact result,
which is equivalent to the leading order result of model 1+M in the optimized implementation
shown in [30]. Thus, in the convergence analysis shown below the normalized relative errors
€; and €y are shown as a function of the number of terms included in the Neumann series
expansion used to calculate the inverse of the thermal diffusion sub-matrix (1+ Ar) according
to the present approximate algorithm (i.e., the maximal finite value considered for index r in

Eq. (5.8)).

7.1 Results for premixed hydrogen flames

We consider a uni-dimensional hydrogen flame deflagration in air at latm and 300K as a func-
tion of the equivalence ratio ¢, with chemical kinetics described by the seven-step combustion
mechanism [44]. As a consequence only 8 species are present, numbered according to: H2, O2,
H20, O, OH, H, HO2, N2, with nitrogen as the reference species. As a particular case, Fig.
7.1 (major species) and Fig. 7.2 (radicals) show the results found for each chemical species as
a function of position in a stoichiometric (¢ = 1) premixed hydrogen flame. Figures 7.1(a),
7.2(a) show the mole fraction and temperature profiles. Figures 7.1(b) and 7.2(b) show the
thermal diffusion coefficients as a function of position for different algorithm approximations
and mixture averaged. Figures 7.1(c), 7.2(c) show the relative errors found for different MuT-
Lib algorithm approximations, mixture averaged and the available EGLib approximation. As
can be seen in Figs. 7.1(c), 7.2(c), the convergence rate of the present algorithm is remark-
able, yielding results which are quite accurate including only the first order term (r = 1) in
the Neumann series expansion (Eq. (5.8)). On the other hand, Figs. 7.1(c), 7.2(c) also show
that the mixture averaged approximation is quite inaccurate in this particular case (errors of
MA approximation are out of range in Figs. 7.1(c), 7.2(c)). This result could be expected,
since the mixture averaged approximation is a good approximation only in the dilute limit.
Regarding the accuracy of EGLib, although for some species (H2, O, OH, H) the differences
are almost as good as the MuTLib approximation for » = 2, the results for O2, H20, HO2
and N2 with EGLib are similar to the MuTLib approximation for » = 1.
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Figure 7.1: Results for the major species in a stoichiometric (¢ = 1) premixed hydrogen
flame vs. distance L. Left column (a): mole fraction and temperature profiles. Center column
(b): thermal diffusion coefficients. Right column (c): thermal diffusion coefficients percentage
errors. The results for Dp; (b) and 10? x |AD7i/Driepaee| () are shown for several maximal
values of index r considered in the truncated Neumann series expansion (Eq. (5.8)). The
results for Dp; (b) using the mixture averaged (MA) approximation are shown in yellow lines.
The results for 102 x |ADTi/Dyiepae| () using the EGLib (EG) r = 3 approximation are also
shown using red lines. 76
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Figure 7.2: Results for the intermediate species in a stoichiometric (¢ = 1) premixed hydro-
gen flame vs. distance L. Left column (a): mole fraction and temperature profiles. Center
column (b): thermal diffusion coefficients. Right column (c): thermal diffusion coefficients
percentage errors. The results for Dp; (b) and 10? X |AD7i/Drjerae| (c) are shown for several
maximal values of index r considered in the truncated Neumann series expansion (Eq. (5.8)).
The results for Dp; (b) using the mixture averaged (MA) approximation are shown in yellow
lines. The results for 10?2 x |AD7i/Dyiepac| (c) using the EGLib (EG) r = 3 approximation are
7

also shown using red lines.



7.1. Results for premixed hydrogen flames

In addition to the thermal diffusion coefficients, the thermal diffusion fluxes may be plotted
as presented in Figs. 7.3 and 7.4. In this case the right column represents the fluxes difference

in absolute values.
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Figure 7.3: Results for the major species in a stoichiometric (¢ = 1) premixed hydrogen
flame vs. distance L. Left column (a): mole fraction and temperature profiles. Center column
(b): thermal diffusion fluxes. Right column (c): thermal diffusion fluxes absolute errors. The
results for jr; (b) and Ajr; (c) are shown for several maximal values of index r considered
in the truncated Neumann series expansion (Eq. (5.8)). The results for jp; (b) using the
mixture averaged (MA) approximation are shown in yellow lines. The results for Ajp; (c)
using the EGLib (EG) r = 3 approximation are also shown using red lines.
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Figure 7.4: Results for the intermediate species in a stoichiometric (¢ = 1) premixed hydro-
gen flame vs. distance L. Left column (a): mole fraction and temperature profiles. Center

column (b): thermal diffusion fluxes. Right column (c):

thermal diffusion fluxes absolute

errors. The results for jp; (b) and Ajr; (c) are shown for several maximal values of index r
considered in the truncated Neumann series expansion (Eq. (5.8)). The results for jp; (b)
using the mixture averaged (MA) approximation are shown in yellow lines. The results for
Ajr; (c) using the EGLib (EG) r = 3 approximation are also shown using red lines.
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Figure 7.5: Partial thermal conductivity in a stoichiometric (¢ = 1) premixed hydrogen
flame vs. distance L. Left column (a): partial thermal conductivity values. Center column (b):
partial thermal conductivity absolute errors . Right column (c): partial thermal conductivity
percentage errors. The results are shown for several maximal values of index r considered in
the truncated Neumann series expansion (Eq. (5.8)). The results using the mixture averaged
(MA) approximation are shown in yellow lines. The results using the EGLib (EG) r = 3
approximation are also shown using red lines.

Figure (7.5) shows the results for the partial thermal conductivity. As in the former results,
we find that the mixture averaged approximation is again quite inaccurate, while the EGLib
results for three conjugate gradient iterations (with preconditioning in the last one) provide
almost the exact values. In this case the results found with the present MuTLib algorithm
are not as accurate as those found using EGLib. However, the accuracy of MuTLib for the
partial thermal conductivity is around 2% for » = 1, which is remarkably accurate.

Figures 7.6, 7.7 and 7.8 show the normalized relative errors ¢; and ey (Eq. (7.2)) vs.
maximal value of r in Eq. (5.8) found according to the present algorithm, as well as the
mixture averaged approximation. In the present analysis we have considered values of the
equivalence ratio ¢ covering the whole range between the lean-flame (Fig. 7.6) and the rich-
flame (Fig. 7.8) limits, while the results for a stoichiometric flame are shown in Fig. 7.7. As
can be seen, the present algorithm is quite accurate and has very fast convergence rate. In all
the cases considered the first order term of the Neumann series (Eq. (5.8)) provides maximal
relative errors of order 10% (often lower than 10%), and this error decreases by ca. an order
of magnitude with each new term included in the truncated Neumann series.

Figures 7.6, 7.7 and 7.8 also show that the present iterative algorithm is considerably more
accurate than the mixture averaged approximation, even if the Neumann series is truncated at
the first order term (r = 1). Regarding the comparison of relative errors among the different
species, it should be noted that the present definition of the normalized relative errors €; (Eq.
(7.2)) penalizes those species with lowest thermal diffusion coefficients. Therefore the species
H2 and H have lower relative errors in Figs. 7.6, 7.7, 7.8 according to both, the present model

and the mixture averaged approximation.
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Figure 7.6: Normalized relative errors €; and £y (Eq. (7.2)) found vs. maximal r considered
in the truncated Neumann series (Eq. (5.8)) for lean hydrogen premixed flames. Dotted
horizontal lines: corresponding results found with the mixture averaged approximation.
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Figure 7.7: Relative errors found vs. r for stoichiometric flames. Dotted horizontal lines =
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Figure 7.8: Relative errors found vs. r for rich flames. Dotted horizontal lines = Mixture
Averaged Model. Continuous lines = present algorithm.

We recall that an apparent linear decrease of €; and )/ vs. 7 in the semi-log Figs. 7.6,
7.7, 7.8 corresponds to an exponential convergence rate of the present algorithm. Hence, the
results for the normalized relative errors ¢; and ey, in Figs. 7.6, 7.7, 7.8 seem to fit to the

general exponential decrease formula

e =g Y (7.3)
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where the prefactor €1 provides the accuracy of the present model truncated at the first
order term (r = 1), while the exponent « provides the convergence rate. The results of this fit
are shown in Fig. 7.9 for each particular chemical species vs. the equivalence ratio. The most
relevant feature of the present algorithm that can be seen in Fig. 7.9 is an overall relative
error of order 10% at the first order term and an exponential convergence rate with a relative
error reduction close to an order of magnitude for each new term included in the truncated
Neumann expansion (Eq. (5.8)). We also remark that the accuracy and convergence rate
of the present algorithm is not as dependent on equivalence ratio as it happens to Model 1
and Model 1+M of [28] for the Fick diffusion fluxes. In the present algorithm this has been
accomplished by means of the diagonal term scaling of the KT G system (Eqs. ((5.10)-(5.11))).
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Figure 7.9: Results for maximal relative error ¢; fitted to the formula ¢ = gre~(r=1) yg. 10}
for all species. Left: 10? x first order term error 1. Right: exponent a.

7.2 Results for methane counterflow diffusion flames

To show the performance of the present algorithm in the case of a diffusion flame we consider
a counterflow diffusion flame configuration. Two counterflow jets are simulated, with methane
as fuel at x = Omm and air as oxidizer at x = 20mm. The initial compositions are summarized
in Table 7.1. The chemical mechanism of [2] is used, involving 58 species and 270 reactions.
The stagnation point is fixed at # = 10mm with strain rate a = 100s~!. The Chemkin
boundary conditions must be iterated to simulate the desired condition and to obtain the
mole fractions and temperature as a function of distance. The basis of the steady flame

model used in this section is described in reference [45].

Figure 7.10 shows the results for the species with higher thermal diffusion flux, CH4,
O, H20 and N2. According to the present results we find that in this case the first order
term of the present iterative algorithm is already more accurate than both, mixture averaged

approximation and EGLib package.
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Fuel Oxidizer
Temperature T = 320K T = 1350K
TCH4 — 0.33 TH20 — 0.15
Mole fractions zo2 = 0.15 ro2 = 0.12
IN2 = 0.52 IN2 = 0.73

Table 7.1: Case of temperature conditions and mole fractions of fuel and oxidizer for a
methane counterflow diffusion flame.
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Figure 7.10: Results vs. axial distance L for the major species CH4, O, H20 and N2; mole
fraction x and temperature T' (a), thermal diffusion coefficients (b) and thermal diffusion co-
efficients percentage error (c) as compared to exact (KTG) values for different approximation



7.2. Results for methane counterflow diffusion flames

Figure 7.11 presents the results for the species 02, H2, CO2 and CO with meaningful
thermal diffusion flux. The accuracy increases with the number of iterations considered in the
truncated Neumann series expansion (Eq. (5.8)), as could be expected. As can be seen, the
shape of the curves is similar in all the cases, which could also be expected since the thermal

diffusion fluxes are proportional to the temperature gradient in all the cases.
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Figure 7.11: Results for species 02, CO2, H2 and CO vs. axial distance L; mole fraction
x and temperature 7' (a), thermal diffusion coefficients (b) and thermal diffusion coefficients
percentage error (¢) as compared to exact (KTG) values for different approximation terms,
mixture averaged approximation (yellow lines) and EGLib with » = 3 (red lines).

The figures for the thermal diffusion fluxes are Figs. 7.12 and 7.13.
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Figure 7.12: Major results vs. axial distance L for species CH4, O, H20 and N2; mole
fraction x and temperature T' (a), diffusion flux j (b) and absolute diffusion flux error Aj
(c) as compared to exact (KTG) values for different approximation terms, mixture averaged
approximation (yellow lines) and EGLib (EG r = 3, red lines).
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Figure 7.13: Intermediate results vs. axial distance L for species 02, CO2, H2 and CO;
mole fraction x and temperature 7" (a), diffusion flux j (b) and absolute diffusion flux error Aj
(c) as compared to exact (KTG) values for different approximation terms, mixture averaged

approximation (yellow lines) and EGLib (EG, r = 3, red lines).

89



7.2. Results for methane counterflow diffusion flames

Methane X' [erg/(cmeseK)] Methane A)' [erg/(cmeseK)] Methane 102x | A" /A, |
20000 2500 25
18000 F
16000 F 2000 | 20 F
14000 (b) (c)
12000 F 1500 | MA 15 b MA
—EG —EG
10000 F
......... r=1 evasveres =]
8000 00 / ____. re2 of o S ____ o2
6000 F r=3 r=3
4000 E 500 e eaeseneans LI e
000 0 =3 | P @ T T e T
0 0 = 0 ===
0 5 10 15 0 5 10 15 0 5 10 15
L [mm] L [mm] L [mm]

Figure 7.14: Partial thermal conductivity in a methane diffusion flame vs. distance L.
Left column (a): partial thermal conductivity values. Center column (b): partial thermal
conductivity absolute errors . Right column (c): partial thermal conductivity percentage
errors. The results are shown for several maximal values of index r considered in the truncated
Neumann series expansion. The results using the mixture averaged (MA) approximation are
shown in yellow lines. The results using the EGLib (EG) r = 3 approximation are also shown
using red lines.

Figure (7.14) shows the results for the partial thermal conductivity. As can be seen,
the mixture averaged approximation is very inaccurate, while EGLib (which includes three
preconditioned conjugate gradient iterations) provides results which are indistinguishable from
the exact values. As can be seen in Fig. 7.14, the results found with the present algorithm
(with = 1,2, 3) are not as accurate as those found with EGLib. However, the relative errors
found with MuTLib including only the first Neumann series iteration (r=1) is less than 5%
(remaining around 3% in most of the integration domain), which is a remarkable result.

Figure 7.15 shows the relative errors for the species CH4, O, H20, N2, 02, CO2, H2, CO
and the thermal conductivity for the present iterative algorithm and mixture averaged. As
in the case of the premixed hydrogen flame, the error decays exponentially and therefore the
error curves look linear in semi-logarithmic scales. As can be seen in Fig. 7.15, the relative
errors may be fitted to the exponential decrease formula Eq. (7.3), in a similar way as it was
done in the case of a premixed hydrogen flame. The results from this fit show that £; values
range from 1.11% (H2) to 14.8% (N2). In the case of the convergence rate exponent «, the
results are very similar for all species, ranging between 1.35 (\') and 1.53 (H2). Hence, the
accuracy and convergence rate of the present algorithm in the methane counterflow diffusion
flame configuration is comparable to the corresponding results found in the premixed hydrogen

flame configuration.
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Figure 7.15: Normalized relative errors ¢; and eys (Eq. (7.2)) found vs. maximal r considered
in the truncated Neumann series (Eq. (5.8)) for methane counterflow diffusion flames. Dotted
horizontal lines: corresponding results found with the mixture averaged approximation.
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Chapter 8

Conclusions

8.1 Results summary

An algorithm for an efficient and accurate multicomponent thermal diffusion coefficients cal-
culation based on the kinetic theory of gases (KTG) is described. This is possible by using
the proper scaled parameters and a detailed examination of the different matrices that must
be inverted in the resultant system of linear equations, derived from the KTG. The terms
involving inelastic collisions and relaxation times for the internal degrees of freedom in poly-
atomic gases are considered and the resonant exchange of rotational energy is also accounted
for in the case of polar gases, in addition to the classical Chapman-Enskog expressions. Thus,
the present model considers the same physical effects included in the full multicomponent
transport description considered in the Chemkin package.

In the case of a multicomponent mixture with N chemical species, the proposed algorithm
makes use of the N — 1 x N — 1 matrix inversion needed for the calculation of the Fick’s
diffusion coefficients, a problem addressed in Model 1 and Model 1+M of reference [28]. Based
on these results, the calculation of the thermal diffusion coefficients involves a new 2N x 2N
(or (N 4+ P)x (N + P), where P is the number of non monatomic molecules) matrix inversion,
which is diagonally dominant. As a consequence, scaling this system by the corresponding
diagonal terms allows for a fast convergence rate iterative algorithm, based on the Neumann
series.

The accuracy and convergence rate of this new algorithm have been successfully analyzed.
The results are compared against the mixture averaged calculations and the transport package
developed by Ern and Giovangigli, EGLib, for two examples of practical interest: a premixed
hydrogen flame and a methane counterflow diffusion flame. We show that the proposed new
iterative algorithm at the first order term is already more accurate than the mixture average
approximation in all the cases considered. On the other hand, it is shown that the first order

term of the present algorithm (i.e., without the need of additional matrices multiplication)

92



8.1. Results summary

is comparable to the results based on the EGLib library including three conjugate gradient
iterations (the iteration level provided in the library) for the hydrogen combustion example,
and much more accurate for the methane combustion flame. Regarding convergence rate
beyond the first order term, we find that each new term in the new iterative algorithm
provides a relative error reduction in thermal diffusion fluxes close to an order of magnitude,
making it a very accurate and efficient algorithm.

During the preparation of this work different presentations have been performed to show

the progress in the field to the combustion community:

e 0. Cérdoba and M. Arias-Zugasti
Efficient Calculation of Multicomponent Thermal Diffusion Coefficients based on Kinetic
Theory
Oral presentation at the 11th Mediterranean Combustion Symposium, MCS11. Tenerife,
Espafia, 16/06/2019-20/06,/2019. urlhttps://mcsl1l.unizar.es

e 0. Cérdoba and M. Arias-Zugasti
Accurate and efficient calculation of multicomponent thermal diffusion fluxes based on
kinetic theory

Oral presentation at the 3rd HPC Spanish Combustion Workshop. Barcelona, Espaifia,
02/07/2021.

e B. Naud, O. Cérdoba and M. Arias-Zugasti
Application of an efficient and accurate multicomponent transport approximation
Oral presentation at the 1st Spanish Fluid Mechanics Conference. Cadiz, Espana,
19/06,/2022-22/06,/2022. urlhttps://https://sfmc22.uca.es/

e 0. Cérdoba and M. Arias-Zugasti
Convergence rate and dependence on polyatomic effects of recent accurate and efficient
multicomponent transport iterative algorithm

Oral presentation at the 1st Spanish Fluid Mechanics Conference. Céadiz, Espana,
19/06,/2022-22/06,/2022. urlhttps://https://sfmc22.uca.es/

A paper with the core of this work has also been published

e 0. Cérdoba and M. Arias-Zugasti
Accurate and efficient calculation of multicomponent thermal diffusion coefficients and

partial thermal conductivity based on kinetic theory,

https://doi.org/10.1016/j.combustflame.2022.112202. Combustion and Flame 244,
112202-1-15, 2022. Reference [41].

As a general conclusion the present algorithm for the thermal diffusion coefficients, together

with the results shown in [28] for the Fick’s diffusion coefficients, provide an extremely efficient
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and accurate method for the calculation of molecular mass transport coefficients in mixtures
with large numbers of components, which will be of interest for the numerical simulation of
detailed combustion mechanisms involving large numbers of chemical species. The aforemen-
tioned new algorithms have been implemented in the C++ software library package MuTLib
(Multicomponent Transport Library) for the transport properties calculations in third party

applications, which is available as additional material of [41].

8.2 Transport algorithm optimization. Recommendations for

future works

During the investigation presented a few issues that may improve the efficiency and accuracy
of the obtained results have been found .

The first issue is related to the collision integrals. The only option implemented in MuTLib
is the direct reading of Monchick and Mason tables. A future improvement is the implemen-
tation of more accurate curves, tables or correlations. The idea is to provide the library user
with multiple options to cope different necessities for transport calculations.

The second issue is to check the nature of the system of equations and, provided the mole
fraction dependency, search for simplifications. For the species with mole fractions under a
threshold many terms could be automatically equaled to zero and faster calculations may be
performed. Related to this, a Model 1+M in the same way it was done for the Fick diffusion
[28] may increase the algorithm efficiency.

The last issue is the study of the blocks in the resultant system of linear equations when
there are values with different orders of magnitude. In particular, something similar to 5.4
when there are species with very different molecular weight and meaningful mole fractions.

The mentioned investigation areas will be the subject of a forthcoming publication.
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Nomenclature

Abbreviations

A perturbation matrix for Fick’s diffusion calculation
Ap perturbation matrix for thermal diffusion calculation
Cint. internal component of the molecular heat capacity
Cp molecular heat capacity at constant pressure

Crot. rotational component of the molecular heat capacity
Cy molecular heat capacity at constant volume

D Fick difussion coefficient

9 binary diffusion coefficient

Dint. binary diffusion coefficient for internal energy

DNS Direct Numerical Simulation

Dr thermal difussion coefficient

EGLib Ern Giovangigli Library

jT thermal diffusion flux

KTG Kinetic Theory of Gases

m molecular mass

MA Mixture Averaged

MuTLib Multicomponent Transport Library

n number density
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Nomenclature

v

X

pressure

universal gas constant

rigid sphere

absolute temperature

mixture hydrodynamic velocity (barycentric)

mole fraction

Greek Symbols

C

o

t

¢

Subscripts

(n)

particule velocity

Kronecker delta function
well depth Lennard Jones potential
dynamic viscosity

adiabatic coefficient
thermal conductivity
partial thermal conductivity
dipole moment

equivalence ratio
equivalence ratio

position

collision cross section

time

collision number

Chapman-Enskog approximation index

Superscripts

(n)

Magnitude average

Chapman-Enskog approximation index
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Appendix A

Mixture averaged diffusion

approximation

The general formulas used in the calculation of the diffusion coefficients according to this

simplified model are quoted below. As is well known, the mixture averaged approximation

allows for the calculation of the transport properties in multicomponent mixtures avoiding

the need to solve the several linear systems that arise from the KTG. The calculation of

the thermal diffusion coefficients according to this simplified model makes use of the mixture

averaged Fick diffusion coefficients. These coefficients were originally defined as shown in Eq.

(A.1) [46, 47, 48]

Di—mix = (1 - ‘rz)

N
> 5
j=1
| A

Although this formula is still in wide use (see, e.g., [9, 48]), the slightly simplified definition

provided later by [3]

Dimix=0-w)| >
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Appendix A. Mixture averaged diffusion approximation

has become more common in combustion (see, e.g., [49, 12]). Both expressions are totally
equivalent and are related by

D 1wy
i—mix — T

T D;_mix. (A.3)
For a more comprehensive discussion on the different conventions for the multicomponent
diffusion coefficients see [28]. In this work we will make use of Eq. (A.2). With this choice in
mind, the mixture averaged thermal diffusion coefficients are given by [49]

D7y _nix = @Dzemix (A4)

T

where kp; is the thermal diffusion ratio for species ¢ in the mixture. Nevertheless, the reader
should be warned that many authors define kp; as in Eq. (A.4) including an additional factor
given by the local mass density p;, to avoid the corresponding singularity found in the dilute
limit [3, 49, 12]. In those cases the expression for the flux vector is modified accordingly.

Following [3, 12], the mixture averaged thermal diffusion ratios kp; are given by

2 N 1.2C% — 1 4:b. iy
m -4 Yi0; + Y;0;
kri = — A5
Ti Rp Jzzl @z ] m; + m; ( )
where b; is given by i .
N
1.065
j=1
i J#i
In the former expression the pure species thermal conductivity A; may be approximated by
15 'Rm
A= — A7
’ 4 m; ( )

where the viscosity 7; is given by

E vV WmikBT

16 WJZZQE?’Q)* (4.8)

i =

22 _ A=V which

[z 21" Y1

are provided by [6] for most species of interest in combustion. Finally, the values ®;; are given

The former expression depends on the reduced collision integrals €2
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e (@) (@)

Py = }1/2

(A.9)
L

As can be seen, the evaluation of the mixture averaged thermal diffusion coefficients is con-
siderably more involved than the corresponding mixture averaged Fick diffusion coefficients,

but it is still considerably simpler than the rigorous evaluation of these transport properties
according to KTG.
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Appendix B

MuTLib Multicomponent Transport

Library. Users’ guide, version 0.3

B.1 Introduction

MutLib is a C++ library with classes and functions to calculate transport variables. The
ideas behind the implemented algorithms may be found in references [28, 30] and “Accurate
and efficient calculation of multicomponent thermal diffusion coefficients and partial thermal

conductivity based on kinetic theory”, pending to be published.

B.2 License

MutLib is a freely-available software package. It can be included in commercial software
packages. We only ask that that proper credit be given to the authors, for example by citing
the MutLib Users’ Guide. The license used for the software is the modified BSD license.
Like all software, it is copyrighted. It is not trademarked, but we do ask the following: if
you modify the source for these routines we ask that you change the name of the routine and
comment the changes made to the original.
We will gladly answer any questions regarding the software. If a modification is done,

however, it is the responsibility of the person who modified the routine to provide support.

B.3 Installation

The source code of the library is supplied for customized compilations. For this purpose a
makefile is provided to create a libMutLib.a file. This file is a group of the different object files
generated during the compilation. The installation has been successfully tested in Ubuntu OS
and Windows 10, with GNU gcc compiler (mingw-w64 in the case of Windows) The LAPACK
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library is required for direct matrix inversion when needed, [50]. Therefore, the third party
executables must be linked to MutLib and LAPACK libraries.

The package is delivered in a compressed tar file MutLib.tar. Any software to extract files
is valid. In a console the following command may work:

tar — zvfMutLib.tar

The list of the compressed files is as follows:

example.cpp

kineticdata.cpp

kineticdata.h

LICENSE

Makefile.example

Makefile. MutLib

omega.cpp

species.cpp

species.h

thermodata.cpp

thermodata.h

transport.cpp

transport.h

tran.dat

therm.dat

To build the library the following command generates the file libMutLib.a

make — fMakefile. MutLib

The file therm.datcontains the necessary coefficients to calculate the thermodynamic prop-
erties, such as the specific heat at constant pressure c,. It must be written in NASA format
for thermo mechanical tables. The file tran.dat contains data relevant in kinetic theory fore
the different species usually present in mixtures. Examples of these files may be found in [2] .
The files in this site contain data for usual species used in combustion, however, the files can

be edited to add more species.

B.4 Library structure and setup

There are four main classes to perform transport calculations:

1. class Species. Contains the relevant information in the mixture. The name of the
species, the molar weight, the mole fractions, pressure and temperature. The class

prototype may be viewed in the file species.h.
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2. class Thermodata. Contains the information related to the NASA thermodynamic poly-
nomials. The methods deliver thermodynamic data of the desired species. The class

prototype may be viewed in the file thermodata.h.

3. class Kineticdata. Contains data related to the kinetic theory of gases. The class

prototype may be viewed in the file kineticdata.h.

4. class Transport. Stores the the transport properties of the mixture. The methods
provide calculated Fick and Soret diffusion fluxes and the partial thermal conductivity.

The class prototype may be viewed in the file transport.h.

The classes Kineticdata and Thermodata are set by a file reading. The following sentences
must be executed only once at the beginning of the program.

thermodata. ReadF'ile(”therm.dat”);

kineticdata. ReadF'ile(” tran.dat”);

The mixture definition is the next step. Each species may be added to the Species class.
It is necessary to search for the indexes in the kinetic and thermodynamic databases.

indexK = kineticdata. CheckName(speciesName);

indexT = thermodata.CheckName(speciesName);

species. AddSpecie(speciesName, molarMass, indexK , indexT);

Temperature and pressure is also setup in the Species class:

species.temp=288.15;

species.press=101325;

The next step is to pass the generated information to the Transport class:

transport.SetUp(species, kineticdata, thermodata);

The Transport class is now ready to calculate and recover the desired information:

transport. Calculate();

Depending on the user interest the required information may be different. Next code
instructions will deliver Fick diffusion fluxes, Soret diffusion fluxes and partial thermal con-
ductivity.

transport. GetFickFluzes(vectorOfMoleFractionGradients);

transport. GetSoretFluzes(gradientOf Temperature Logarithm);

transport. Get ThCond();

The function Calculate may not use default values and different arguments are available

to fit the calculation. The next is the method prototype.
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//Main driver
void Calculate(

bool exact=talse, //boolean to set exact Fick diffusion
//coefficients

unsigned int Fickr=1, //Fick diffusion Neumann steps

int FickM=0, //M number of species in model 1+M for
//Fick diffusion coefficients

double FickThr=.1, //Molar fraction threshold in model 1+M

//for Fick diffusion coefficients
//activated with FickM<@
unsigned int Soretr=1); //soret diffusion Neumann steps

B.5 Units

The following units have been considered during the development and must be taken into

account by the user.

Magnitude ‘ Units ‘
Temperature K
Pressure Pa
Molar weight g/mol
Flux wng/s
Mole fraction gradient 1/mm
Temperature gradient K/mm
Thermal conductivity | J/(m-s- K)

B.6 Usage example

In this section a very simple case of a binary mixture is presented. The diffusion fluxes
are printed in two different conditions of the mixture.To build the example executable the
following command generates the file example.eze.

make — f Makefile.example

The call to the executable produces the next output:
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The next figures show the source code of the file example.cpp

#include <iostream>
#include <transport.h>

[V N

using namespace std;
5 v Ant main(){
8 Species species:

ThermoData thermodata:
10 KineticData kineticdata:

w

11 Transport transport;
13 ~ if (lkineticdata.ReadFile("tran.dat")){
14 cout<<"Error reading file tran.dat"<<endl;
15 exit(@);
16 1
17 ~ if (lthermodata.ReadFile("therm.dat")){
18 cout<<"Error reading file therm.dat"<<endl;
9 exit(@);
) 3

string name}
int dindexK:
int dindexT;

WM = o

(I g RN £9

name="H2"; //Molar weight lg/mol Mole fraction 0.5
indexK=kineticdata.CheckName(name) ;
indexT=thermodata.CheckName(name) ;
~ if (indexK==-1 || dindexT==-1){
cout<<"Error, species "<<name<<" not fbund”((endl;
exit(@);

L e e T o T I I I e

w o

W
@

3

species.AddSpecie(name, .5, indexK, indexT);

VSIS

name="02"3 //Molar weight 32g/mol Mole fraction 0.5
indexK=kineticdata.CheckName(name) :
indexT=thermodata.CheckName(name) :
if (indexK==-1 && indexT==-1){
cout<<"Error, species "<<name<<" not found"<<endl;
exit(@);

w m
Ll

JES Y TS S W R W B WV R WV I WV R S

SV N I N )

}

species.AddSpecie(name, .5, indexK, indexT);
44 //Sets pressure and temperature
45 species.temp=288.15; //teperature in K

46 species.press=101325;//pressure in Pa

48 //Sets up the transport class
49 transport.SetUp(&species, &kineticdata, &thermodata)
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51 transport.Calculate();

52

53 vector<double>drive;

54 drive.resize(2,1.);

55 double gradlLogT=1;

56

57 vector<double> FickFluxes;

58 vector<double> SoretFluxes:

59 FickFluxes=transport.GetFickFluxes(drive);

SoretFluxes=transport.GetSoretFluxes(gradlLogT)

cout<<species.GetName(@) <<" "<<FickFluxes[@]<<" "¢<SoretFluxes[@]<<endl;
cout<<species.GetName(l)<<" "<<FickFluxes[1]<<" "<<SoretFluxes[1]<<endl;

cout<<endl;

species.temp=1000.;

species.SetMolFrac(0,0.7);

species.SetMolFrac(1,0.3);

transport.Calculate();

0] FickFluxes=transport.GetFickFluxes(drive);
SoretFluxes=transport.GetSoretFluxes(gradlLogT);
cout<<species.GetName(@) <<" "<<FickFluxes[@]<<" "<<SoretFluxes[@]<<endl;
cout<<species.GetName(l)<<" "<<FickFluxes[1]<<" "<<SoretFluxes[1]<<endl;

76 return 9;
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