

TESIS DOCTORAL

AÑO 2023

Análisis del impacto de los procesos de fabricación del cok en la vida útil del refractario silíceo de los hornos y evaluación de las técnicas de reparación

DAVID ÁLVAREZ LÓPEZ

PROGRAMA DE DOCTORADO EN TECNOLOGÍAS INDUSTRIALES

DIRECTOR Y TUTOR: MANUEL GARCÍA GARCÍA

Agradecimientos

A mis padres, que pertenecen a una generación que por su contexto cronológico y entorno geográfico no tuvieron acceso a una educación superior y ya en su edad adulta se batieron el cobre y sacrificaron para que sus hijos se formaran adecuadamente, muchas gracias.

Agradecer a mi mujer e hijos su paciencia, comprensión y ayuda durante el desarrollo de mi Tesis Doctoral, y sobre todo por su apoyo incondicional.

A José Mª Domínguez Ibáñez y Margarita Álvarez Montes CEO y directora de R&D&I respectivamente de Refractarios Alfran, S.A. por brindarme la oportunidad de realizar una estancia investigadora en su empresa.

De manera muy especial me gustaría dar las gracias a mi director de Tesis, Manuel García García por sus sabios consejos, por el tiempo y el esfuerzo que me ha dedicado a lo largo de estos años y por su ayuda y disponibilidad en todo momento.

A todas aquellas personas que de alguna manera han hecho posible poder culminar esta andadura.

Resumen

En la fabricación del cok siderúrgico se dan una serie de circunstancias inherentes al proceso que pueden afectar negativamente al material refractario con el que se construyen los hornos de las baterías. En esta tesis se estudiará en primer lugar el impacto que tiene sobre el refractario, aspectos como el bloqueo de hornos y los deshornados con alta resistencia. Para tal fin se recopilarán datos de bloqueos de hornos, deshornados forzados y reparaciones en el refractario en una planta de cok de diseño Didier construida en los años 70 del siglo XX.

Posteriormente, el siguiente objetivo será analizar los tipos de reparaciones de hornos, definiendo los más adecuadas para cada zona del horno y tipo de daño en el refractario.

Las baterías de cok son una serie de hornos colocados uno al lado del otro, de ahí su nombre. Estos hornos están construidos en su totalidad con material refractario. Las únicas partes metálicas que nos encontramos en los hornos de cok son armaduras, puertas y tirantes. Es por ello, que el hecho de preservar la integridad del refractario tenga un claro impacto en la vida útil de las plantas de cok.

De los tipos de refractarios de que se componen las baterías de cok trataremos principalmente el material silíceo. Este es el tipo de refractario con el que se construyen casi en exclusividad las cámaras de combustión y coquización de los hornos. Sus características y comportamiento convierten a la sílice en un actor principal en la vida útil de una de una batería de cok. Es por ello, que cualquier aspecto del proceso que sea susceptible de dañar a este refractario tenga un gran impacto en la duración de los equipos de fabricación de cok.

Palabras Clave— Hornos de cok, refractario de sílice, soldadura cerámica, bloqueo de hornos, deshornados con alta resistencia.

Abstract

In the manufacture of steel coke, there are a series of circumstances inherent to the process which can affect the life of the refractory material with which the ovens of the batteries are built. This thesis will firstly deal with the impact of aspects such as sticky ovens and hard pushes on the refractory of the oven. For this purpose, data will be collected on sticky ovens, hard pushes and refractory repairs in a Didier design coke plant built in the 1970s. Subsequently, the next objective will be to analyse the types of refractory repairs, defining the most appropriate ones for each area of the oven and type of damage to the refractory.

Coke batteries are a series of ovens placed one after the other, hence the name. The ovens are made entirely of refractory material. The only metallic parts found in the cok ovens are armatures, doors and tie rods. That is why it is essential to prevent the refractory from deteriorating, since this would bring about the shortening of the useful life of the coke ovens.

Of the types of refractories of which coke batteries are composed, we will only deal with silica material. This is the type of refractory with which the combustion and coking chambers of the ovens are almost exclusively built. Its characteristics and behavior make silica a major player in the service life of a coke battery. Therefore, any aspect of the process that is susceptible to damage this refractory will have a great impact on the life of the coke manufacturing equipment.

Keywords— Coke ovens, silica refractory, ceramic welding, sticky ovens, hard pushes.

Índice general

indice de figuras	XII
Índice de tablas	XVII
Planteamiento y estructura de la Tesis	1
Capítulo 1. Cok y material refractario	7
1.1. Introducción y planteamiento del capítulo	8
1.2. El cok	8
1.3. Baterías de cok	9
1.4. Refractarios en las baterías de cok	12
1.4.1. Aislantes	13
1.4.2. Refractarios aluminosos	13
1.4.3. Refractarios silíceos y características	14
1.4.3.1. Sílice KN	14
1.4.3.2. Sílice KD	15
1.4.3.3. Sílice KS	16
1.4.3.4. Características y propiedades de los refractarios silíceos	16
1.4.4. Otros refractarios	24
1.4.4.1. Hormigón refractario	24
1.4.4.2. Ladrillos rojos	24
1.4.4.3. Refractario antiácido	24
1 4 4 4 Refractario resistente a la abrasión	24

1.4.4.5. Ladrillo klinker	24
1.4.4.6. Fibras aislantes	24
Capítulo 2. Deshornados con alta resistencia y bloqueo de hornos	25
2.1. Introducción	26
2.2. Aspectos inherentes al proceso	27
2.2.1. Deshornados forzados	27
2.2.1.1. Intensidades de deshornado	28
2.2.2. Bloqueo de hornos	40
2.2.3. Maniobras incorrectas	41
2.2.3.1. Máquinas de baterías	42
2.2.3.2. Uniformidad en la producción	42
2.2.3.3. Uniformidad térmica	43
2.2.3.4. Averías	44
Capítulo 3. Técnicas de reparación del refractario en hornos de cok	46
3.1. Introducción	47
3.2. Proyección de refractario monolítico	51
3.2.1. Gunitado	51
3.2.1.1. Modo de aplicación en hornos de cok	51
3.2.1.2. Zonas de aplicación en hornos de cok	52
3.2.1.3. Refractarios gunitables para hornos de cok	53
3.2.2. Shotcreting	53
3.2.2.1. Método de aplicación	53
3.2.2.2. Zonas de aplicación en hornos de cok	55
3.2.2.3. Refractarios por shotcreting para hornos de cok	55
3.3. Soldadura cerámica	55

3.3.1. Modo de aplicación	57
3.3.1.1. Adecuación del área a reparar	57
3.3.1.2. Proyección	60
3.3.1.3. Proyección combinada	61
3.3.2. Zonas de aplicación en hornos de cok	62
3.3.3. Refractarios para soldadura cerámica	62
3.4. Reconstrucción con sílice amorfa o cristalina	63
3.4.1. Áreas reparables por sustitución de refractario	64
3.4.1.1. Reconstrucción de extremos de hornos	64
3.4.1.2. Reconstrucción de paredes completas	68
3.4.2. Refractarios para reconstrucción con piezas conformadas	70
3.4.2.1. Sílice cristalina	70
3.4.2.2. Sílice fundida	71
3.5. Sellado de fisuras y juntas	71
3.5.1. Empolvado	72
3.5.2. Proyección líquida	73
Capítulo 4. Análisis de los efectos de los deshornados forzados y los bloqueos	75
4.1. Introducción	76
4.2. Metodología	76
4.2.1. Recopilación de datos	76
4.2.1.1. Datos estudio transversal	76
4.2.1.2. Datos estudio longitudinal	76
4.2.2. Procesamiento de datos	76
4.3. Resultados estudio transversal	77
4.3.1. Deshornados con alta resistencia	77

4.3.2. Bloqueos de hornos	80
4.3.2.1. Causas de los bloqueos de hornos	83
4.3.3. Hornos con reparaciones	84
4.3.4. Interpretación de resultados	87
4.3.4.1. Deshornados forzados versus reparaciones	87
4.3.4.2. Bloqueo de hornos versus reparaciones	98
4.4. Resultados estudio longitudinal	111
4.4.1. Deshornados con alta resistencia	111
4.4.2. Hornos con bloqueos	111
4.4.2.1. Causas de los bloqueos de hornos	112
4.4.3. Reparaciones del refractario de los hornos	113
4.4.4. Interpretación de resultados	122
4.4.4.1. Deshornados forzosos versus reparaciones	123
4.4.4.2. Bloqueos de hornos versus reparaciones	124
Capítulo 5. Evaluación de refractarios y técnicas de reparación	127
5.1. Introducción	128
5.2. Requerimientos de los refractarios de hornos de cok	128
5.2.1. Esfuerzos mecánicos	128
5.2.2. Temperatura de coquización	129
5.2.3. Resistencia al ataque químico	129
5.3. Refractarios proyectables	129
5.3.1. Refractarios aplicados por gunitado	129
5.3.1.1. Fortalezas y debilidades del gunitado	132
5.3.2. Refractarios aplicados por shotcreting	133
5.3.2.1. Fortalezas y debilidades del shotcreting	134

5.4. Refractarios aplicados por soldadura cerámica	135
5.4.1. Fortalezas y debilidades de la soldadura cerámica	138
5.5. Reparación con piezas conformadas de sílice fundida	139
5.5.1. Fortalezas y debilidades de la sílice fundida	141
5.6. Idoneidad de las técnicas de reparación	142
5.6.1. Estrategia de decisión	143
Capítulo 6. Conclusiones	147
6.1. Conclusiones de carácter general	148
6.2. Conclusiones de carácter particular	149
6.3. Limitaciones del trabajo	151
6.4. Desarrollo de trabajos futuros	151
Bibliografía	152
Anexo A. Intensidades de deshornados con alta resistencia	158
Anexo B. Mapa de reparaciones de refractario en hornos	176
Curriculum Vitae	200

Índice de figuras

Figura 1.1. Coquización y subproductos	9
Figura 1.2. Sección del bloque de hornos	11
Figura 1.3. Vista de una batería desde el lado cok	11
Figura 1.4. Comparativa conductividad térmica sílice y chamota	17
Figura 1.5. Curvas de deformación de varios materiales bajo carga	18
Figura 1.6. Comparativa de dilatación entre diferentes refractarios	19
Figura 1.7. Transformaciones polimórficas y variedades de la sílice	20
Figura 1.8. Diagrama de transformación del refractario silíceo	21
Figura 1.9. Resistencia de la sílice a las escorias	23
Figura 2.1. Fricción de la torta de cok con las paredes de los hornos	27
Figura 2.2. (a) Orificio causado por un deshornado forzado	28
Figura 2.2. (b) Daño causado por abrasión o por choque térmico	28
Figura 2.3. (a) Fuerza ejercida por la torta	28
Figura 2.3. (b) Rotura de la pared	28
Figura 2.4. Fases del dispositivo empujador	29
Figura 2.5. Potencia necesaria para el vaciado del cok	30
Figura 2.6. Puntos relevantes de la gráfica de intensidades	30
Figura 2.7. Zonas de la gráfica de intensidades	31
Figura 2.8. Anomalías de compresión en zona 1	32
Figura 2.9. Anomalías de compresión en zona 2	33
Figura 2.10. Anomalías de compresión en zona 3	34
Figura 2.11. Gráfica obtenida de deshornado real	35
Figura 2.12. Gráfica versus geometría del horno	35

Figura 2.13. Árbol de causas de deshornados con alta resistencia	38
Figura 2.14. Gráfico de intensidades de hornos	39
Figura 2.15. Datos de intensidades en un periodo de tiempo	39
Figura 2.16. Representación simultánea	40
Figura 2.17. (a) Pared con daños en el refractario	41
Figura 2.17. (b) Refractario reparado con soldadura cerámica	41
Figura 2.18. Temperaturas de cámaras de combustión	44
Figura 3.1. Máquina de gunitar	51
Figura 3.2. Proyección por gunitado	52
Figura 3.3. Gunitado de bocas de carga de horno	53
Figura 3.4. Esquema del proceso de shotcreting	54
Figura 3.5. Esquema de shotcreting y boquilla	55
Figura 3.6. Esquema del proceso de soldadura cerámica	57
Figura 3.7. Secuencia de proceso de limpieza	58
Figura 3.8. Martillo neumático	59
Figura 3.9. Ventajas y limitaciones de las técnicas de limpieza	59
Figura 3.10. Soldadura cerámica	60
Figura 3.11. Soldadura cerámica combinada	62
Figura 3.12. Preparación de zona de reparación	65
Figura 3.13. Arriostramiento de área de reparación	66
Figura 3.14. Refractario sustituido	67
Figura 3.15. Curva de calentamiento de la sílice fundida	68
Figura 3.16. Refuerzo de la cubierta de hornos	69
Figura 3.17. Aislamiento de zona de reparación	69
Figura 3.18. Curva de calentamiento de la sílice cristalina	70

Figura 3.19. Tipos de sellado	72
Figura 3.20. Empolvado	72
Figura 3.21. Sellado por proyección líquida	73
Figura 3.22. Resultado de proyección líquida	73
Figura 4.1. Causas de los bloqueos de hornos en el año 1	83
Figura 4.2. Causas de los bloqueos de hornos en el año 2	84
Figura 4.3. Deshornados Forzados y reparaciones en bat. A, primer año.	87
Figura 4.4. Deshornados forzados y reparaciones en bat. A, segundo año	88
Figura 4.5. Deshornados forzados y reparaciones en bat. B, primer año	89
Figura 4.6. Deshornados forzados y reparaciones en bat. B, segundo año	89
Figura 4.7. Deshornados forzados y reparaciones en bat. C, primer año	90
Figura 4.8. Deshornados forzados y reparaciones en bat. C, segundo año	90
Figura 4.9. Deshornados forzados y reparaciones en bat. D, primer año	91
Figura 4.10. Deshornados forzados y reparaciones en bat. D, segundo año	92
Figura 4.11. Deshornados forzados y reparaciones en bat. E, primer año	93
Figura 4.12. Deshornados forzados y reparaciones en bat. E, segundo año	93
Figura 4.13. Deshornados forzados y reparaciones en bat. F, primer año	94
Figura 4.14. Deshornados forzados y reparaciones en bat. F, segundo año	94
Figura 4.15. Deshornados forzados y reparaciones en bat. G, primer año	95
Figura 4.16. Deshornados forzados y reparaciones en bat. G, segundo año	96
Figura 4.17. Deshornados forzados y reparaciones en bat. H, primer año	97
Figura 4.18. Deshornados forzados y reparaciones en bat. H, segundo año	97
Figura 4.19. Hornos bloqueados y reparaciones en bat. A, primer año	98
Figura 4.20. Hornos bloqueados y reparaciones en bat. A, segundo año	99
Figura 4.21. Hornos bloqueados y reparaciones en bat. B, primer año	100

Figura 4.22. Hornos bloqueados y reparaciones en bat. B, segundo año	100
Figura 4.23. Hornos bloqueados y reparaciones en bat. C, primer año	102
Figura 4.24. Hornos bloqueados y reparaciones en bat. C, segundo año	102
Figura 4.25. Hornos bloqueados y reparaciones en bat. D, primer año	103
Figura 4.26. Hornos bloqueados y reparaciones en bat. D, segundo año	104
Figura 4.27. Hornos bloqueados y reparaciones en bat. E, primer año	105
Figura 4.28. Hornos bloqueados y reparaciones en bat. E, segundo año	105
Figura 4.29. Hornos bloqueados y reparaciones en bat. F, primer año	106
Figura 4.30. Hornos bloqueados y reparaciones en bat. F, segundo año	107
Figura 4.31. Hornos bloqueados y reparaciones en bat. G, primer año	108
Figura 4.32. Hornos bloqueados y reparaciones en bat. G, segundo año	108
Figura 4.33. Hornos bloqueados y reparaciones en bat. H, primer año	109
Figura 4.34. Hornos bloqueados y reparaciones en bat. H, segundo año	110
Figura 4.35. Causas de los bloqueos en horno B16	112
Figura 4.36. Causas de los bloqueos en horno F28	113
Figura 4.37. Mapa de reparación del horno B16 en año 1	114
Figura 4.38. Mapa de reparación del horno B16 en año 3	115
Figura 4.39. Mapa de reparación del horno B16 en año 5	115
Figura 4.40. Mapa de reparación del horno B16 en año 6	116
Figura 4.41. Mapa de reparación del horno B16 en año 7	117
Figura 4.42. Mapa de reparación del horno B16 en año 8	118
Figura 4.43. Mapa de reparación del horno B16 en año 9	119
Figura 4.44. Mapa de reparación del horno F28 en año 1	120
Figura 4.45. Mapa de reparación del horno F28 en año 5	121
Figura 4 46. Mana de reparación del horno F28 en año 9	122

Figura 4.47. Deshornados forzados y reparaciones de refractario en B16	123
Figura 4.48. Deshornados forzados y reparaciones de refractario en F28	124
Figura 4.49. Bloqueos y reparaciones de refractario en B16	125
Figura 4.50. Bloqueos y reparaciones de refractario en F28	126
Figura 5.1. Parámetros de calidad de la soldadura cerámica	138
Figura 5.2. Estado y condición de los hornos	142
Figura 5.3. Estrategia de decisión	143
Figura 5.4. Parámetros de los refractarios para reparación de hornos	146

Índice de tablas

Tabla 1.1. Refractarios versus zonas	12
Tabla 1.2. Características de los refractarios aluminosos	14
Tabla 1.3. Características de los refractarios silíceos KN	15
Tabla 1.4. Características de los refractarios silíceos KD	15
Tabla 1.5. Características de los refractarios silíceos KS	16
Tabla 1.6. Cambios volumétricos de la sílice	22
Tabla 4.1. Deshornados con alta resistencia en baterías A y B	78
Tabla 4.2. Deshornados con alta resistencia en baterías C y D	78
Tabla 4.3. Deshornados con alta resistencia en baterías E y F	79
Tabla 4.4. Deshornados con alta resistencia en baterías G y H	79
Tabla 4.5. Bloqueos en hornos en baterías A y B	80
Tabla 4.6. Bloqueos en hornos en baterías C y D	81
Tabla 4.7. Bloqueos en hornos en baterías E y F	81
Tabla 4.8. Bloqueos en hornos en baterías G y H	82
Tabla 4.9. Hornos reparados con soldadura cerámica y FSP en bat. A y B	85
Tabla 4.10. Hornos reparados con soldadura cerámica y FSP en bat. C y D	85
Tabla 4.11. Hornos reparados con soldadura cerámica y FSP en bat. E y F	86
Tabla 4.12. Hornos reparados con soldadura cerámica y FSP en bat. G y H	86
Tabla 4.13. Deshornados con alta resistencia en los hornos B16 y F28.	111
Tabla 4.14. Bloqueos en los hornos B16 y F28	111
Tabla 4.15. Reparaciones con soldadura cerámica y FSP en B16 y F28	113
Tabla 5.1. Características del refractario gunitable	130
Tabla 5.2. Análisis de muestras de refractario para gunitado	132

Tabla 5.3. Refractario gunitable versus sílice KD	132
Tabla 5.4. Características de refractario para shotcreting	133
Tabla 5.5. Análisis de muestras de refractario para shotcreting	134
Tabla 5.6. Refractario shotcreting versus sílice KD	134
Tabla 5.7. Características de soldadura cerámica	135
Tabla 5.8. Características de las piezas FSP	136
Tabla 5.9. Análisis de muestras de refractario para soldadura cerámica	137
Tabla 5.10. Análisis de muestras de piezas FSP	137
Tabla 5.11. Soldadura cerámica versus sílice KD	137
Tabla 5.12. Refractario FSP versus sílice KD	137
Tabla 5.13. Características de la sílice fundida o amorfa	139
Tabla 5.14. Análisis de muestras de sílice fundida prensada	140
Tabla 5.15. Análisis de muestras de sílice fundida vertida	140
Tabla 5.16. Piezas refractarias de sílice fundida prensada versus sílice KD	140
Tabla 5.17 Piezas refractarias de sílice fundida vertida versus sílice KD	140

Planteamiento y estructura de la Tesis

I. Planteamiento.

En el comienzo de un nuevo milenio el acero continúa siendo la base del desarrollo de la economía, además, su fabricación por medio del Horno Alto no parece tener una alternativa competitiva en el presente, o en un futuro inmediato [1,2]. El cok es fundamental para el funcionamiento de un Horno Alto, sin embargo, en los últimos años apenas se han construido unas pocas baterías nuevas, lo que ha provocado el envejecimiento de las infraestructuras existentes para la producción de cok. Por este motivo, la prolongación de la vida útil de los hornos de cok es un desafío al que tiene que hacer frente la industria siderúrgica en el nuevo milenio [3].

Las baterías de cok son una serie de hornos dispuestos uno al lado del otro con un sistema integral de calentamiento [4]. Una batería de cok (grupo de hornos), es en realidad una estructura compuesta exclusivamente de material refractario, contenida dentro de un exoesqueleto de acero. Dado que el deterioro del refractario acorta la vida útil de los hornos de cok, es fundamental conservarlo en buen estado.

Los tipos de refractario presentes en los hornos de cok son silíceos (SiO₂), aluminosos (Al₂O₃) y aislantes [5]. En este estudio trataremos principalmente los refractarios silíceos ya que son los que componen las cámaras afectadas por los bloqueos de hornos y los deshornados con alta resistencia. El material refractario silíceo por definición es aquel que tiene un contenido mayor o igual del 93% de SiO₂ [6]. La inmensa mayoría de los hornos de cok están construidos con material refractario silíceo (SiO₂), el motivo de utilizar este tipo de refractario es por sus favorables características termo- mecánicas y su alta resistencia al ataque químico en los rangos de temperatura del proceso de fabricación del cok [7].

En la literatura científica encontramos varios estudios acerca de la prolongación de la vida útil de los hornos de cok. Todos coinciden en que unas buenas prácticas respecto al diseño de la mezcla de hullas, a la regulación del calentamiento de la batería, al control de las operaciones y al mantenimiento del refractario son fundamentales para minimizar los daños con objeto de conseguir una larga vida útil [8]. Además de satisfacer las restricciones de calidad del coque, el diseño de la mezcla debe tener como objetivo evitar daños en las paredes por la alta presión contra el refractario durante el proceso de transformación en cok [9]. Para un empuje normal durante el deshornado, la torta de carbón debe sufrir una cierta contracción antes de su vaciado. Si no se produce tal

contracción, puede generarse un deshornado forzado, que puede provocar daños en las paredes refractarias [10].

Las cenizas de carbón pueden penetrar y atacar las paredes del horno, provocando en algunos casos desconchados. Los ensayos muestran que la penetración disminuye con un bajo contenido de óxidos básicos (Fe₂O₃ + CaO + MgO) en la ceniza [11]. La temperatura promedio de la batería debe mantenerse dentro de un rango seguro para evitar daños prematuros. La temperatura recomendada se encuentra entre 1100 °C y 1300 °C, cumpliendo con el rango de estabilidad de la tridimita (1470 °C a 870 °C) [12]. Es útil medir la temperatura de las cámaras de combustión de los hornos y de varios ejes longitudinales de la batería para poder evaluar la homogeneidad térmica del refractario, esto mostrará las zonas "normal", "fría" y "caliente" en la batería. Es una herramienta importante para la gestión y control del sistema de calentamiento [13]. La posible filtración de gas de la coquización del horno hacia las cámaras de combustión, a través de grietas o de juntas abiertas en las paredes, necesita inspeccionarse periódicamente porque tiene implicaciones negativas en el refractario de la pared, en la relación aire/gas en los canales de humos, en la disminución de la temperatura de la pared y en el aumento de las emisiones contaminantes por la chimenea hacia la atmósfera [8]. Desde el punto de vista de la vida útil del horno de coque, el control operativo es responsable de la uniformidad térmica y de la gestión de las variables técnicas que influyen en la integridad del refractario. El tiempo programado para cada ciclo (tiempo entre dos deshornados) debe ser constante. Es factible planificar determinadas paradas entre series de deshornados para trabajos de mantenimiento. Es recomendable el registro de retrasos y paradas no programadas con objeto del análisis de las causas y la posibilidad de reducirlos a lo largo del tiempo [13,14].

Para evaluar el estado de conservación de una batería de cok es habitual utilizar un método que compara su edad cronológica con el estado que presenta. Para ello se tiene en cuenta cuatro índices: la desviación de la temperatura media; las infiltraciones de gas de la coquización a través de las paredes del horno; los daños en las paredes refractarias; y la dilatación de la estructura del bloque de hornos. El diagnóstico que ofrece no predice la vida restante de la batería, pero da indicaciones de su situación para una adecuada gestión del calentamiento y del mantenimiento del refractario [12,15].

II. Innovaciones, objetivos y metodología.

Los estudios que aparecen en la literatura técnica y científica proporcionan instrucciones y consejos de buenas prácticas para prolongar la vida útil del refractario de los hornos de cok, pero sin considerar el impacto que pueden tener los deshornados con alta resistencia y los bloqueos de hornos.

Tradicionalmente los bloqueos de hornos se han tratado simplemente como un problema que puede ralentizar moderadamente la operativa, es decir, afectar al rendimiento en la producción de cok. Por otro lado, los deshornados con alta resistencia se han considerado como un posible foco de daños en el refractario de los hornos con efecto inmediato.

La relevancia de este estudio radica en determinar si los bloqueos y los deshornados con alta resistencia provocan daños en el refractario de los hornos a corto y medio plazo. Estos daños pueden requerir importantes reparaciones con lo que el horno en cuestión quedaría fuera de servicio el tiempo necesario para su puesta a punto con el impacto que esto supone para la productividad.

El siguiente objetivo será definir qué tipo de reparación del refractario es el más adecuado en función de la zona a reparar y del tipo de daño existente en el revestimiento refractario de los hornos de cok.

Para el desarrollo de este estudio se recopilarán datos referentes a los siguientes puntos:

- Bloqueos de hornos.
- Deshornados con alta resistencia.
- Reparaciones de refractario en los hornos.

Se compararán dichos datos y se determinará la relación existente entre los bloqueos y las altas resistencias en el deshornado con los daños producidos en el refractario.

La hipótesis inicial es que los bloqueos y los deshornados con alta resistencia causan daños en el refractario y mediante el análisis de los datos se obtendrán conclusiones al respecto que, de manera novedosa, ayuden a los técnicos de las plantas de cok a gestionar su operativa minimizando el impacto en el refractario del equipo.

Para la elección del tipo de reparación del refractario se hará una descripción de las diferentes técnicas disponibles y de las características de los productos que se utilizan. Se elegirá, como patrón de comparación los refractarios instalados en la fase de diseño y las condiciones de operación de los hornos.

III. Esquema organizativo y estructura de la tesis.

A continuación, se realiza un pequeño resumen del contenido de los capítulos que forman esta tesis.

Capítulo 1. Refractarios en los hornos de cok.

Para acotar el contexto del estudio se define el cok y las baterías donde se fabrica. Posteriormente se describirán los tipos de refractarios que se instalan en una planta de cok, sus propias características y las zonas en que van colocados. Se trata de entender su idoneidad para la fabricación del cok y porqué son susceptibles de deteriorarse ante determinados procesos de la operativa.

Capítulo 2. Aspectos inherentes al proceso que puedan afectar a la vida útil del refractario.

En este capítulo se abordarán los bloqueos de hornos y los deshornados con alta resistencia también llamados deshornados forzados. Se analizarán sus causas y los efectos que pueden causar en el refractario de los hornos.

Capítulo 3. Técnicas de reparación del refractario de los hornos de cok.

Se enumerarán las diferentes maneras de reparar el refractario de un horno de cok, por un lado, describiendo las técnicas y por otro los productos utilizados. Se revisará el estado del arte del proyectado en su versión de gunitado o de shotcreting, posteriormente la soldadura cerámica y por último la sustitución con piezas de sílice cristalina o fundida.

Capítulo 4. Análisis de los efectos de los deshornados con alta resistencia y de los bloqueos de hornos.

En este capítulo se recopilarán datos acerca de bloqueos de hornos y deshornados forzados para compararlos con las reparaciones llevadas a cabo en los hornos de cok. Se realizarán dos tipos de estudio, uno transversal en el cual se obtendrán datos de ocho

grupos de baterías (en total 240 hornos) durante dos años de operación y otro estudio, longitudinal con datos de dos hornos durante diez años de operación. Con ambas visiones se tratará de establecer una relación entre los bloqueos y los deshornados con alta resistencia y los daños causados en el refractario.

Capítulo 5. Evaluación de refractarios y técnicas de reparación.

En función de los datos recogidos en los capítulos tres y cuatro se valorará la viabilidad de las diferentes técnicas de reparación del refractario de los hornos de cok en función del tipo de material y procedimiento de ejecución. En última instancia se establecerá una estrategia para la decisión del tipo de reparación a utilizar según la zona del horno y el tipo de daño a reparar.

Capítulo 6. Conclusiones.

En este capítulo final se plantearán las conclusiones de la Tesis, las limitaciones encontradas y los trabajos futuros.

Capítulo 1 Cok y material refractario

1.1. Introducción.

Esta tesis trata sobre el efecto que causa en el refractario de los hornos algunos aspectos inherentes a la fabricación del cok (también llamado coque). Para contextualizar el estudio se comenzará definiendo el cok y describiendo las baterías donde se fabrica. Posteriormente se hará una descripción de los tipos de refractario que se utilizan en las baterías, así como sus características y las zonas donde se aplican cada uno.

El objetivo es describir las características y particularidades de los materiales refractarios, las cuales los hacen adecuado para su uso en baterías, especialmente en el caso de los silíceos. De esta manera poder entender cómo pueden ser dañados por los deshornados con alta resistencia y los bloqueos de hornos.

1.2. El cok.

El cok metalúrgico es el producto que se obtiene a partir de la destilación o pirólisis de determinados carbones, como es el caso de las hullas que poseen propiedades coquizantes, es decir capacidad de transformarse en cok después de haber pasado por una fase plástica [16]. En la práctica, para la fabricación del cok metalúrgico se utilizan mezclas complejas que pueden incluir varios tipos diferentes de carbones en distintas proporciones. El proceso de pirólisis mediante el cual se obtiene el cok se denomina coquización y consiste en un calentamiento (entre 1000 y 1300 °C) en ausencia de oxígeno hasta eliminar la práctica totalidad de la materia volátil de la mezcla de carbones [16-17]. Este proceso se lleva a cabo en una cámara cerrada revestida de material refractario (horno).

La mayoría del cok metalúrgico se usa en los altos hornos de la industria siderúrgica para la producción del acero (cok siderúrgico). El cok metalúrgico también se utiliza en la industria de la fundición del hierro (cok de fundición). En general, el cok de fundición suele ser de un tamaño mayor que el siderúrgico.

En este trabajo nos referimos al cok siderúrgico, especialmente producido para su empleo en el Horno Alto, dadas sus características de:

• Agente reductor, su alto contenido en carbono favorece la reducción de los óxidos de hierro.

• Agente térmico, su alto poder calorífico aporta calor para los requerimientos endotérmicos de las reacciones químicas y la fusión de escoria y metal.

• Agente mecánico, por su resistencia para soportar la carga del material, dotando a la carga de la permeabilidad necesaria para que la escoria y el metal fundido pasen al crisol y los gases se evacúen hacia el conducto de humos [4].

En la figura 1.1 se representa la secuencia de fabricación del cok en una batería, una mezcla de hullas se calienta a determinada temperatura en ausencia de aire y se transforma en cok. Durante la pirólisis del carbón, además del cok se produce un gas "bruto" que pasa a una planta de tratamiento de la cual se obtiene un gas de cok y varios subproductos como son alquitrán, amoniaco, azufre, naftalina y benceno entre otros.

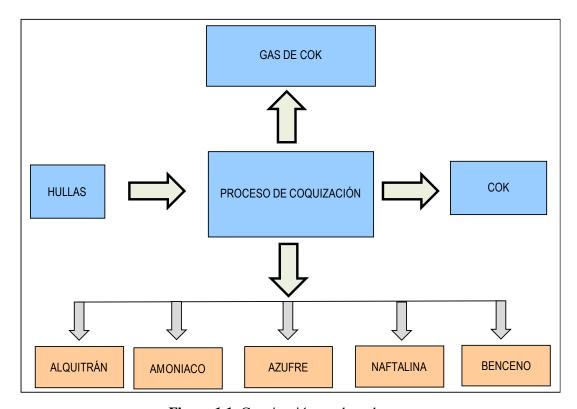


Figura 1.1. Coquización y subproductos.

1.3. Baterías de cok.

Las baterías de coque están compuestas por una serie de hornos estrechos, altos y profundos, colocados uno al lado del otro, de ahí su nombre [4].

La función de los hornos de cok es eliminar la materia volátil del carbón de hulla y aglutinarlo para obtener cok siderúrgico.

La pasta de carbón preparada previamente en un parque de almacenamiento se somete a un proceso de coquización, consistente en calentarla en ausencia de aire por encima de los 1.000° C. durante 16-17 horas aproximadamente [18].

Este calentamiento se realiza en unos hornos cerrados que reciben el calor a través de las paredes laterales, de unas cámaras de combustión donde se quema el gas [17]. El gas que se quema como combustible es el que se produce en la propia instalación como subproducto del cok.

Como consecuencia de este proceso de coquización, la materia volátil que contiene la hulla se desprende y se aglutinan los granos de carbono que forman la pasta de carbón.

Terminado el proceso de fabricación se saca el cok del horno, que arde espontáneamente al entrar en contacto con el oxígeno del aire. Para evitar que se consuma en esta combustión, se rocía con agua antes de ser enviado al Horno Alto [4].

Al final del proceso se obtiene un producto denominado cok siderúrgico, que es un material duro, poroso y con un contenido en carbono superior al 90%.

Como subproducto importante se obtiene, además, el gas "bruto" de baterías de cok, que posteriormente sufrirá una serie de depuraciones y tratamientos en el área de la planta de subproductos. Se elimina del gas el alquitrán, el amoníaco, los compuestos sulfurados, la naftalina y, en algunos casos, diversos tipos de hidrocarburos como el benceno (C₆H₆), que servirán como subproductos directamente comercializables o para la fabricación de otros compuestos como el sulfato amónico. Los objetivos de depuración del gas para la obtención de diferentes productos influirán en el diseño de las plantas de subproductos, que se asemejan a plantas químicas, determinan los tratamientos del gas realizados, así como el tratamiento y depuración de los efluentes [4].

En la figura 1.2 se puede apreciar una sección del bloque de hornos con sus zonas más representativas además de una sección transversal de la cámara de coquización de un horno.

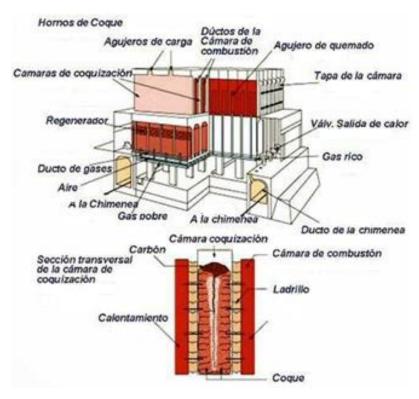


Figura 1.2. Sección del bloque de hornos. Fuente Oocities.

En la figura 1.3 se aprecia una fotografía del lado cok de una batería con un horno recién vaciado sobre el vagón para dirigirse a la torre de apagado.

Figura 1.3. Vista de una batería desde el lado cok. Fuente Oocities.

1.4. Refractarios en las baterías de cok.

Los tipos de refractario de los que se componen los hornos de cok son principalmente silíceos (SiO₂), aluminosos (Al2O₃) y aislantes [5]. Para la unión de estas piezas refractarias se usarán morteros fabricados con similar materia prima a la de aquellos ladrillos a los que se anexan. En este estudio dejaremos a parte los refractarios utilizados en los tubos montantes, los canales de humos y en las chimeneas centrándose el trabajo en aquellos refractarios en el bloque de hornos.

El principal refractario de los hornos de cok es la sílice, no obstante, haremos una pequeña referencia a los aluminosos y aislantes a pesar de no estar expuestos de la misma manera a los procesos de fabricación ni tampoco por ser actores importantes en la vida útil de las baterías de cok.

En la tabla 1.1 se puede apreciar las diferentes zonas de las baterías donde se instalan los diferentes tipos de materiales refractarios.

Tabla 1.1. Refractarios versus zonas

Refractarios
Aluminoso KA-40
Sílice KD
Aluminoso KA-40
Aislante
Sílice KN
Sílice KD
Sílice KS
Aislante
Andalucita
Aluminoso KA-40
Aislante
Sílice KN
Sílice KN
Aluminoso KA-40
Aluminoso KA-40
Aluminoso KA-40
Aislante
Antiácido
Antiácido
Aluminoso KA-40
Aislante

1.4.1. Aislantes.

Como se mencionó en la tabla 1.1 los refractarios aislantes van instalados en:

- Cubierta de los hornos o techo de la batería.
- Placa de protección.
- Cierres de los regeneradores.
- Canal de solera de regenerador.
- Puertas de hornos.
- Paredes piñón.

En todas estas zonas los aislantes van en contacto con otros refractarios y tienen la función de reducir el flujo calórico por convección, conducción y radiación para no afectar al confort de las personas que operan la batería y a la protección de las partes metálicas.

Se consideran refractarios aislantes cuando su porosidad es igual o superior al 45% de su volumen. No resisten la corrosión, abrasión o esfuerzos mecánicos.

El aislante tiene una estructura tipo colmena, de celdas diminutas y paredes muy delgadas llenas de aire y fabricado con un material de baja conductividad térmica.

En la elaboración del refractario aislante se mezclan las materias primas con elementos como kieselguhr, vermiculitas y perlitas. Durante la fabricación de los aislantes estos productos facilitan la generación de oquedades que confieren al ladrillo la debida porosidad y ligereza.

1.4.2. Refractarios aluminosos.

Estos productos tienen su aplicación en las siguientes zonas:

- Zona inferior de los regeneradores.
- Espejos de los regeneradores.
- Checkers.
- Frontal de las paredes.
- Paredes piñón.
- Cubierta de los hornos.
- Puertas de hornos.

Van regidos por los requerimientos de la norma DIN 1089 parte 2 [19]. Sus características físico-químicas son las que se muestran en la tabla 1.2.

Tabla1.2. Características de los refractarios aluminosos. Fuente DIN 1089.

Análisis químico	KA-35	KA-40
Al ₂ O ₃ (%)	≥ 35	≥ 40
Fe ₂ O ₃ (%)	≤ 2,5	≤ 2
SiO ₂ (%)	54 - 57	
Álcalis (%)	1,2-1,8	
Propiedades físicas		
Densidad (g/cm ³)	$2,17 \pm 0,05$	
Resistencia al choque térmico (ciclos)	< 20	
Porosidad aparente (%)	≤ 19	≤ 20
Resistencia a la compresión en frio (N/mm²)	≥ 30	≥ 35
Refractariedad bajo carga (°C)	≥ 1300	≥ 1350

1.4.3.- Refractarios silíceos y características.

Esos refractarios forman la totalidad de las cámaras de combustión y de coquización, así como la parte superior de los regeneradores, la ménsula (Corbel) y la zona inferior de la cubierta. Se van a emplear 3 tipos de sílice según la zona de aplicación correspondiente. Su composición química y características físicas vienen definidas en la norma DIN 1089- parte 1. Las diferencias más relevantes que nos encontraremos son en su composición de SiO₂, en su porosidad y en su resistencia a la compresión en frio. En aquellas zonas de los hornos con menos requerimientos se instalará la sílice KN, a medida que la exigencia aumente se pasará a la sílice KD y en aquellas áreas más restrictivas como son las soleras de los hornos se colocará sílice KS. El uso de uno u otro tipo por separado es la optimización económica de la construcción de una batería.

1.4.3.1 Sílice KN.

Este tipo de sílice se instala en las siguientes zonas de las baterías en las que el refractario no está en contacto con la mezcla de hullas, solamente con gases de combustión y humos:

- Regeneradores.
- Pared divisoria de los regeneradores.

- Ménsula (Corbel).
- Cámaras de combustión.
- Cubierta de los hornos.

Sus características son las que aparecen en la tabla 1.3.

Tabla 1.3. Características de los refractarios silíceos KN. Fuente DIN 1089.

Parámetro	Unidad	Valor
SiO ₂ (%)	%	≥ 94,5
Al ₂ O ₃ (%)	%	≤ 2,0
Fe ₂ O ₃ (%)	%	≤ 1,0
CaO	%	\leq 3,0
Na_2O+K_2O	%	≤ 0,35
Porosidad aparente	%	\leq 24,5
Resistencia a la comp. en frío	N/mm^2	≥ 28
Refractariedad bajo carga	°C	≥ 1640
Densidad	g/cm ³	1,82
Expansión térmica linear	%	1,26
Cuarzo residual	%	$1,5 \pm 0,5$

1.4.3.2 Sílice KD.

Este tipo de sílice se instala en aquellas zonas de las paredes de los hornos donde el material refractario está en contacto con la mezcla de carbones. Sus características son las que vienen reflejadas en la tabla 1.4.

Tabla 1.4. Características de los refractarios silíceos KD. Fuente DIN 1089.

Parámetro	Unidad	Valor
SiO ₂ (%)	%	≥ 95,0
Al_2O_3 (%)	%	≤ 1,5
Fe ₂ O ₃ (%)	%	≤ 1,0
CaO	%	≤ 3,0
Na_2O+K_2O	%	≤ 0,35
Porosidad aparente	%	≤ 22,0
Resistencia a la comp. en frío	N/mm^2	≥ 35
Refractariedad bajo carga	°C	≥ 1650
Densidad	g/cm ³	1,84
Expansión térmica linear	%	1,24
Cuarzo residual	%	$1,5 \pm 0,5$

Este tipo de material tiene unas prestaciones mayores que el anterior debido a que va a estar expuesto al efecto de las cenizas de las hullas, a mayores esfuerzos mecánicos durante la carga y sobre todo los vaciados de los hornos.

1.4.3.3 Sílice KS.

Este tipo de sílice se coloca en las soleras de los hornos ya que tiene un mejor comportamiento respecto a la abrasión que los anteriores a la par que soportar el peso de la torta y los esfuerzos mecánicos durante el deshornado. Sus características son las que aparecen en la tabla 1.5.

Tabla 1.5. Características de los refractarios silíceos KS. Fuente DIN 1089.

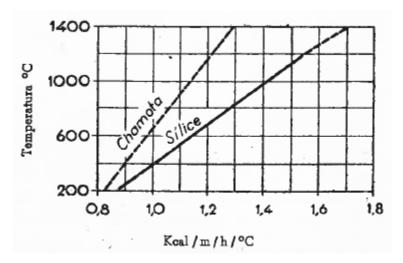
1 00000 2 11 (100) .			
Parámetro	Unidad	Valor	
SiO ₂ (%)	%	≥ 95,0	
Al ₂ O ₃ (%)	%	≤ 1,5	
Fe ₂ O ₃ (%)	%	≤ 1,0	
CaO	%	≤ 3,0	
Na_2O+K_2O	%	≤ 0,35	
Porosidad aparente	%	≤ 22,0	
Resistencia a la comp. en frío	N/mm^2	≥ 45	
Refractariedad bajo carga	°C	≥ 1650	
Densidad	g/cm ³	1,85	
Expansión térmica linear	%	1,25	
Cuarzo residual	%	$1,5 \pm 0,5$	

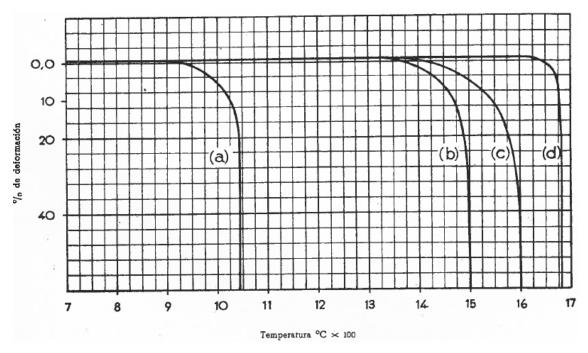
1.4.3.4. Características y propiedades de los refractarios silíceos.

a) Conductividad térmica.

La transformación del carbón en cok se realiza por temperatura y en ausencia de oxígeno en la cámara de coquización. En la cámara de calentamiento se produce la combustión del gas, pasando el calor al horno por conducción a través de una pared de refractario. La transmisión de calor a través del refractario debe ser adecuada para realizar la "coquización" en un tiempo razonablemente corto. El rango de trabajo de temperaturas oscila entre 1000°C y 1300°C, dependiendo de la zona y diseño de la batería con lo cual los refractarios silíceos son muy adecuados [20]. En la figura 1.4 se aprecia la mayor conductividad de los materiales silíceos respecto a los aluminosos

(chamota). Originalmente los primeros hornos de cok se construían con refractario aluminoso, de hecho, en la actualidad aún podemos encontrar casos muy puntuales de baterías de chamota. Al tener una menor conductividad térmica los aluminosos necesitan un mayor tiempo de permanencia en el horno de la pasta de carbón para su transformación en cok. Este incremento de tiempo redunda en un menor rendimiento productivo. Desde hace décadas todas las baterías de nueva construcción están erigidas con refractario silíceo.




Figura 1.4. Comparativa conductividad térmica sílice y chamota [Pérez, 1955].

b) Refractariedad.

Esta propiedad tiene que ver con el punto de fusión del material. El refractario silíceo al no ser un material puro, sino un compuesto por lo que no tiene un punto fijo de fusión. Al igual que en la mayoría de los refractarios existe un punto de reblandecimiento ya que los diferentes componentes o fases no funden al mismo tiempo. Esto genera una masa "plástica" que se deforma por su propio peso o por la carga que soporta [7].

Los ladrillos silíceos tienen la particularidad de que su punto de ablandamiento está cercano al de fusión. Esta característica es muy positiva ya que mantiene sus características mecánicas hasta cerca de su punto de fusión.

Ladrillos silíceos sometidos a una carga de 2 kg/cm² fácilmente dan valores de temperatura de reblandecimiento entre 1600 y 1700 °C. En la figura 1.5 se puede ver una comparativa entre diferentes refractarios y su deformación bajo carga a una presión constante y un aumento progresivo de la temperatura [5].

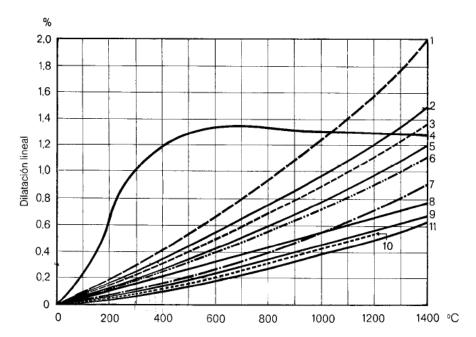
Figura 1.5. Curvas de deformación de varios materiales bajo carga de 2 kg/cm²; (a) ladrillo aislante 0,7; (b) ladrillo sílico-aluminoso de 20% Al₂O₃; (c) ladrillo sílico-aluminoso de 42/44 Al₂O₃; (d) ladrillo síliceo de 96 % de Si O₂ [Pérez, 1955].

El proceso de coquización tiene lugar a altas temperaturas, cercanas a 1300 °C y el material silíceo designado para los hornos de Cok por la norma DIN 1089-1 tiene un punto de reblandecimiento mayor de 1640 °C, con lo que resulta muy adecuado para esta aplicación. Es capaz de mantener sus propiedades físico- químicas hasta casi el punto de fusión a diferencia de los aluminosos donde el ablandamiento comienza bastante ante de su fusión, que además ocurre a menor temperatura.

c) Resistencia a la compresión en frio.

El refractario con el que se construyen los hornos tiene que ser lo suficientemente robusto para soportar el peso de su propia masonería y las cargas de los carros de carga, el carbón, armaduras y cierres metálicos.

Tres factores influyen en una buena resistencia a la compresión en frio de los materiales silíceos [21]:

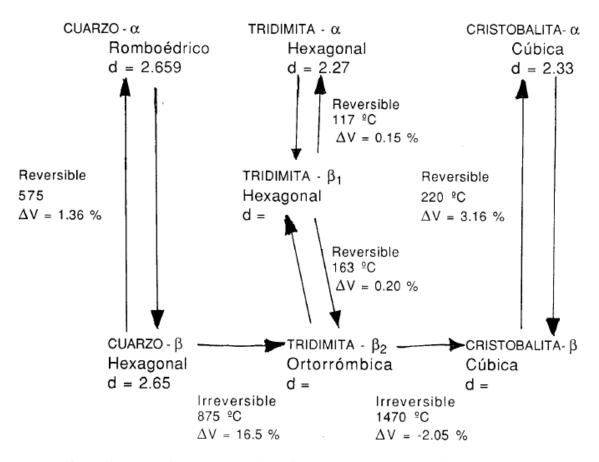

- Baja porosidad.
- Menor grado de vitrificación del constituyente matriz.
- Mayor viscosidad de la fase vítrea.

El material silíceo cumple con creces la resistencia mecánica requerida y es aún mayor que la de otros tipos de refractario utilizados en el pasado tales como el refractario aluminoso. La resistencia a la compresión en frío de los refractarios silíceos de aplicación en baterías es definida por la Norma DIN 1089-1 requiriendo que sea mayor de 35 MPa.

d) Dilatación.

Los refractarios silíceos experimentan una gran dilatación hasta 650 °C y a partir de esa temperatura permanecen casi constantes. Esto se produce por las transformaciones polimórficas con la temperatura.

En la figura 1.6 se aprecia la diferencia de dilatación entre diferentes refractarios.


Figura 1.6. Comparativa de dilatación entre diferentes refractarios. 1 Magnesia, 2 Cromo magnesia, 3 Cromita, 4 Sílice, 5 Óxido de circonio, 6 Corindón, 7 Corindón 90, 8 Chamota, 9 Silimanita, 10 Circonio, y 11 Carburo de silicio [Pérez, 1955].

Para aplicaciones como los hornos de cok que trabajan en un rango constante de temperatura entre 1000°C y 1400°C, esta característica de los materiales silíceos de mantener su volumen estable en ese intervalo, los hace muy atractivos para la fabricación de cok siderúrgico.

Los materiales silíceos son polimórficos, es decir, con una misma composición química tienen diferentes estructuras cristalinas. Posee tres formas polimórficas:

Cuarzo, tridimita y cristobalita, cada una de las cuales a su vez presenta distintas variedades (cuarzo alfa, beta, tridimita alfa, beta 1, beta 2- y cristobalita alfa y beta). Termodinámicamente la variedad más estable a temperatura ambiente de las formas polimórficas cristalinas es el cuarzo alfa, si bien en la naturaleza también se encuentran la tridimita alfa y la cristobalita alfa. Las transformaciones de una forma polimórfica a otra son de reordenación o dífusionales y, por tanto, lentas e irreversibles, mientras que las transformaciones entre variedades son de desplazamiento, luego son rápidas y de naturaleza reversible [5-21].

En el esquema de la figura 1.7 se presentan las temperaturas de transformación entre las distintas formas polimórficas y variedades de la sílice, las densidades, los cambios de volumen asociados a las transformaciones, así como el sistema cristalino en que se ordena cada forma polimórfica y variedad.

Figura 1.7. Transformaciones polimórficas y variedades de la sílice. Fuente ICV.

Como se aprecia en la figura 1.8 el cuarzo es la forma más estable por debajo de 870°C, la tridimita es estable entre 870 y 1470°C, la cristobalita desde 1470°C al punto de

fusión. Dadas las diferentes densidades de cada estructura las transformaciones se producen con un gran aumento de volumen [21].

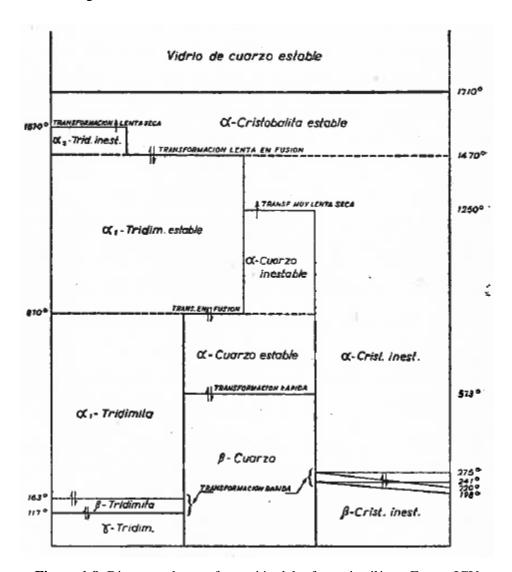


Figura 1.8. Diagrama de transformación del refractario silíceo. Fuente ICV.

Esta característica de grandes variaciones de volumen según su temperatura es muy relevante en el comportamiento del refractario en los hornos y en su vida útil como veremos más adelante. En la tabla 1.6 se definen las temperaturas a las que se experimentan los cambios de estructura y la modificación de su volumen.

Cambios ↔reversible →irreversible	T ^a de transformación °C	Cambio de volumen %
$\beta \leftrightarrow \alpha$ - cuarzo	573	0,8 - 1,3
α - cuarzo $\rightarrow \alpha$ - cristobalita	1250	17,4
$\beta \leftrightarrow \alpha$ - cristobalita	pprox 260	2,0 - 2,8
α - cuarzo $\rightarrow \alpha$ - tridimita	pprox 870	14,4
$\Upsilon \leftrightarrow \alpha$ - tridimita	170 - 163	0,5
α - tridimita \rightarrow α - cristobalita	1470	-

Tabla 1.6. Cambios volumétricos de la sílice. Fuente ICV.

e) Rotura al choque térmico.

La rotura al choque térmico depende del coeficiente de dilatación y de la rigidez. Varía según las diferencias de dilatación entre los constituyentes y las temperaturas a las que se exponen [5]. En el caso de los refractarios silíceos con valores altos de dilatación a temperaturas bajas, su comportamiento no es muy adecuado. En la comparativa con otros refractarios tales como la chamota sale en gran desventaja.

En operación y para salvaguardar la integridad del refractario no es conveniente que haya grandes variaciones de temperatura.

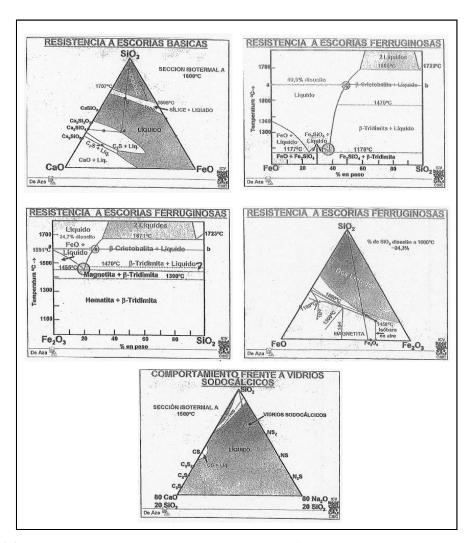
f) Resistencia a la abrasión.

Los ladrillos silíceos de los hornos de cok deben tener una buena resistencia a la abrasión para soportar la carga de carbón en cada ciclo y el rozamiento del cok durante su extracción del horno.

La norma DIN 1089-1 [19] define para los ladrillos silíceos KS, que van ubicados en las zonas más expuestas a la abrasión como son las soleras de los hornos, unos valores que deben ser menores de 4,5 aplicando la norma DIN 52108 [22].

g) Resistencia al ataque químico.

El refractario debe ser resistente a la acción de los componentes de la mezcla de carbones y al efecto de las adherencias de grafito en las paredes de los hornos.


El refractario silíceo tiene una porosidad baja, < 22 [6], que favorece la protección frente a las sales contenidas en la mezcla de carbones [5].

Tiene una excelente resistencia a las escorias ácidas.

Presenta una aceptable resistencia a las escorias básicas hasta 1550 °C.

Resiste bien al ataque por hierro, escorias ferruginosas y vidrios sodo-cálcicos. [21].

En atmósfera reductora el óxido de hierro reacciona con el refractario silíceo a 1200 °C produciéndose fayalita (2FeO.SiO₂) y dañándose el refractario [23]. Sin embargo, en condiciones oxidantes el refractario resiste muy bien el FeO [5]. En la figura 1.9 se muestran unos gráficos del Instituto de Cerámica y Vidrio donde se refleja el comportamiento de la sílice respecto a diferentes escorias.

Figura 1.9. Resistencia de la sílice a las escorias básicas, ferruginosas y a vidrios sodo-cálcicos. Fuente ICV.

1.4.4. Otros refractarios.

Hay más tipos de refractarios de aplicación en las baterías, aunque con un alcance mucho menor que los descritos en apartados anteriores, se enumeran a continuación:

1.4.4.1. Hormigón refractario.

Se utiliza en las placas de protección, en las rampas de descarga, en los tubos montantes.

1.4.4.2. Ladrillos rojos.

Se utiliza en los pasillos del bloque de hornos.

1.4.4.3. Refractario antiácido.

Se utiliza en los canales de humos, en las chimeneas.

1.4.4.4. Refractario resistente a la abrasión.

Este tipo de piezas refractarias se utiliza en las rampas de descarga del cok.

1.4.4.5. Ladrillo klinker.

Se utilizan en la cubierta de los hornos y en las torres de apagado del cok.

1.4.4.6 Fibras aislantes.

Tienen su aplicación en los tubos montantes, en los canales de humos, en las puertas de los hornos y en las juntas de dilatación.

Deshornados con alta resistencia y bloqueo de hornos

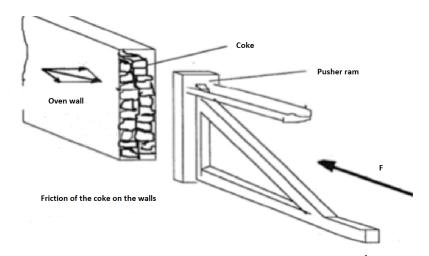
2.1.- Introducción.

Existen varios estudios acerca de la prolongación de la vida útil de los hornos de cok. Todos ellos están de acuerdo en que unas buenas prácticas con respecto a la mezcla de carbones coquizables, un adecuado calentamiento de las baterías, el buen control operativo y un meticuloso mantenimiento del refractario son fundamentales para minimizar los daños a fin de lograr una batería de larga duración [8]. No obstante, en la literatura no se recoge el daño que puede ocasionar en el revestimiento refractario los deshornados con alta resistencia o los bloqueos de hornos por lo que será uno de los temas de esta tesis.

En la fabricación del cok siderúrgico y de fundición se dan una serie de circunstancias inherentes al proceso que pueden afectar a la duración del material refractario con el que se construyen los hornos de las baterías [24]. En esta tesis se analizará el impacto que tiene sobre el refractario, aspectos como el bloqueo de hornos y los deshornados con alta resistencia o forzados.

En el mundo de la fabricación de cok los bloqueos se han tratado simplemente como un problema que puede generar pérdidas de tiempo y disminuir la productividad, es decir, afectar al rendimiento en la producción de cok. Paralelamente, los deshornados con alta resistencia se catalogaban como maniobras de extracción del cok peligrosas para la estabilidad mecánica de la pared refractaria y además con efecto inmediato.

La novedad de esta tesis se basa en la evaluación de los daños que son susceptibles de causar en el refractario de los hornos. Estos daños pueden requerir importantes reparaciones con lo que el horno en cuestión quedaría fuera de servicio el tiempo necesario para su puesta a punto con el impacto claro que esto supone para la productividad.


En este capítulo se hará mención, a la descripción de ambos fenómenos y las causas que los provocan para más adelante, en capítulos posteriores analizar su impacto en el revestimiento refractario.

2.2.- Aspectos inherentes al proceso que puedan afectar a la vida útil del refractario.

Durante la fabricación del cok se dan circunstancias que son susceptibles de deteriorar el refractario de los hornos como son los deshornados con alta resistencia y los bloqueos de hornos que serán analizados más adelante.

2.2.1. Deshornados forzados o con alta resistencia (esfuerzo mecánico y abrasión).

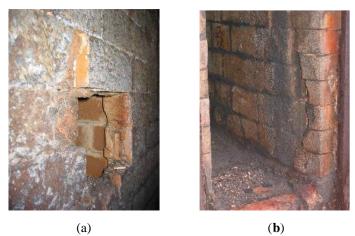

El cok se extrae del horno retirando las puertas de ambos lados y empujándolo a modo de pistón con un dispositivo de extracción de la máquina deshornadora. Para dicha extracción es necesario que, durante el tiempo de permanencia de la torta en el horno, ésta experimente una contracción que la separe moderadamente de las paredes del horno [18-10]. De esta manera, la salida del horno de la torta de cok ejerce menos resistencia en su rozamiento con las paredes [8]. En la figura 2.1 se representan las fuerzas ejercidas durante el deshornado.

Figura 2.1. Fricción de la torta de cok con las paredes de los hornos [Álvarez López et al., 2022].

Un deshornado forzado o "duro" supone un esfuerzo inadecuado sobre las paredes laterales del horno durante la extracción [25]. Estos esfuerzos mecánicos pueden deteriorar gravemente el refractario. A la par se produce una mayor fricción del cok con las paredes de refractario aumentando la abrasión del material silíceo. Además, si en la zona de la pared donde se produce una excesiva presión es una zona previamente reparada o con algún defecto su resistencia disminuye respecto al resto de zonas [25].

La figura 2.2 (a) muestra el daño causado en la pared de un horno por un deshornado forzado mientras que la figura 2.2 (b) muestra daños por abrasión o por choque térmico.

Figura 2.2. (a) Orificio causado por un deshornado forzado; (b) daño causado por abrasión o por choque térmico [Álvarez López et al., 2022].

También es posible analizar los esfuerzos generados por los deshornados forzados mediante el método de elementos finitos y así calcular el límite tolerable [26]. La figura 2.3 muestra como la fuerza ejercida por la torta durante su vaciado puede desplazar el refractario de la pared del horno.

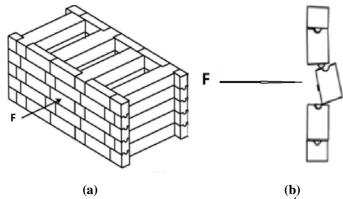


Figura 2.3. (a) Fuerza ejercida por la torta; (b) rotura de la pared [Álvarez López et al., 2022].

Son especialmente sensibles las uniones con mortero de las piezas refractarias con sus machos y hembras [27].

2.2.1.1. Intensidades de deshornado.

La manera de cuantificar la dificultad de deshornado es con la medición de la intensidad en el motor del dispositivo de extracción (normalmente medido en amperios) [8]. Es posible realizar esta medición mediante el diseño del dispositivo empujador de la máquina deshornadora [28].

Con la medición de la intensidad eléctrica que experimenta el motor que acciona el dispositivo empujador se puede tener una referencia si un deshornado es más o menos forzado. Este elemento antes del vaciado se posiciona apoyado en la torta y a continuación comienza el empuje hasta que la torta se despega de la solera para luego continuar a velocidad constante hasta su extracción por la puerta opuesta del horno. Esta operación puede durar entre 50 y 60 segundos y durante ese tiempo se mide en continuo la intensidad en el motor. La fuerza de empuje está en equilibrio con la reacción de la fricción con la solera y la fricción con la pared. A la par que las fuerzas de fricción mantienen el centro de gravedad de la torta en posición, el empujador comprime la torta de cok contra la pared. Si la compresión es muy alta, la pared puede dañarse. El índice de compresión está relacionado con el tamaño de grano del cok y con la temperatura de la masa [29].

Durante el deshornado el movimiento del dispositivo empujador presenta dos escenarios, la primera parte de aceleración y la segunda de velocidad constante. La máxima intensidad se alcanza al final de la fase de aceleración cuando la torta se empieza a mover a velocidad constante. En la figura 2.4 se muestra la gráfica con las diferentes fases del movimiento del dispositivo de empuje [30].

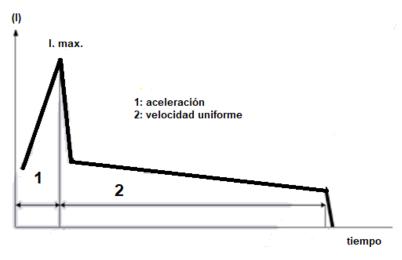


Figura 2.4. Fases del dispositivo empujador [Kroh et al., 2009].

La integración de la intensidad durante el tiempo de empuje nos da la potencia utilizada para expulsar el cok, para comprimir y para compensar las fricciones [29]. En la figura 2.5 se refleja el área bajo la función como la potencia ejercida durante el vaciado de un horno.

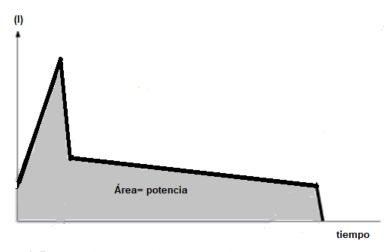


Figura 2.5. Potencia necesaria para el vaciado del cok [Kroh et al., 2009].

El deshornado es en sí mismo una maniobra agresiva sobre las paredes de los hornos de cok. En una operación normal la torta de cok en su contracción debe separarse de las paredes del horno para facilitar el deshornado [18-10]. Si la intensidad de deshornado es muy alta se puede superar el límite elástico de la pared y producirse daños o incluso un bloqueo. Se requiere fijar un máximo de intensidad en el motor que al superarlo pare el mismo para evitar daños [29]. No obstante, dependiendo del estado del horno en particular, quizás no sea suficiente por lo que es necesario monitorizar las intensidades a diario. De esta manera los técnicos serán capaces de adelantarse a futuros problemas.

La gráfica de intensidades durante el deshornado presenta las siguientes zonas según se refleja en las figuras 2.6 y 2.7.

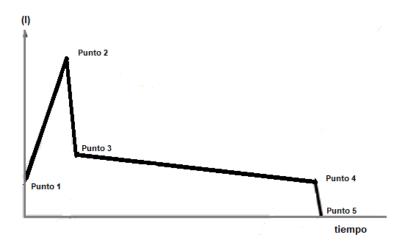


Figura 2.6. Puntos relevantes de la gráfica de intensidades. Fuente CPM.

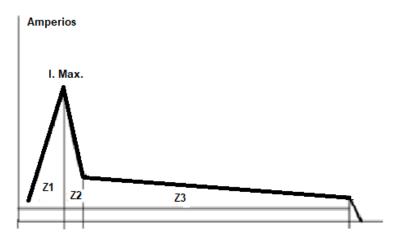


Figura 2.7. Zonas de la gráfica de intensidades. Fuente CPM.

- > Punto 1 representa el comienzo del movimiento del dispositivo empujador.
- Punto 2 es el fin de la aceleración del empujador y el máximo de intensidad en el motor.
- ➤ Punto 3 donde finaliza el despegue de la torta respecto de la solera.
- Punto 4 final del movimiento uniforme del dispositivo empujador y caída de la intensidad.
- > Punto 5 parada del dispositivo.
- Zona 1 es la de compresión de la torta de cok por el dispositivo empujador.
- Zona 2 es en la que se despega la torta de la solera y comienza su desplazamiento.
- Zona 3 es en la que la torta se mueve y experimenta fricción con la solera del horno.

Analizando la forma de las curvas en cada una de las zonas será posible determinar la causa del deshornado forzado e incluso la ubicación de un defecto del horno [30].

- ✓ Mezcla de hullas (baja contracción).
- ✓ Cok (pequeño tamaño ejerciendo mayor fricción).
- ✓ Mala coquización (baja temperatura).
- ✓ Daños en el refractario.

Zona 1

En la figura 2.8 se muestran posibles anomalías en la zona de compresión de la torta.

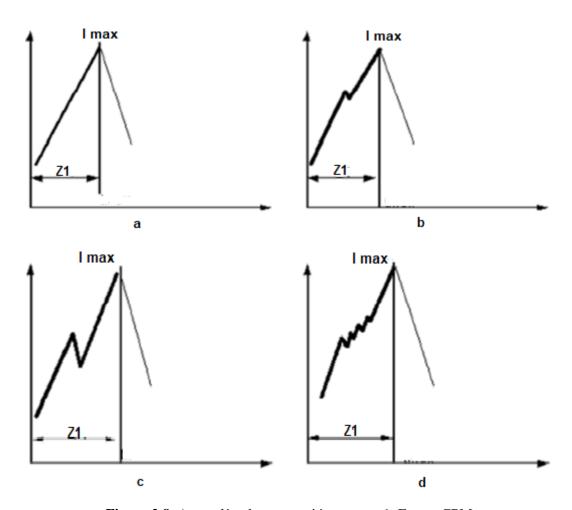
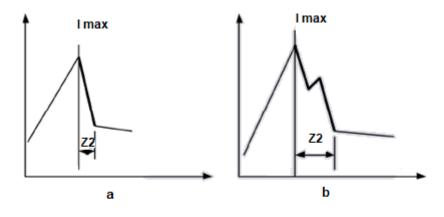


Figura 2.8. Anomalías de compresión en zona 1. Fuente CPM.

En la figura (a) la curva muestra una zona de compresión normal.

En la figura (b) se aprecia lo que puede ser una pequeña área de fricción.


En la figura (c) aparece una zona de fricción amplia que puede deberse al rascado de la torta contra depósitos de grafito en las paredes.

En la figura (d) tenemos muchos puntos de fricción y puede ser debido a una incorrecta coquización en el lado máquina.

Zona 2

Esta zona corresponde con el despegue de la torta respecto a la solera.

En la figura 2.9 se muestran posibles anomalías en la zona de compresión de la torta en la zona 2.

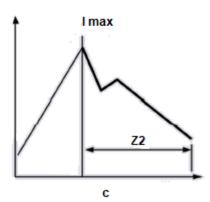
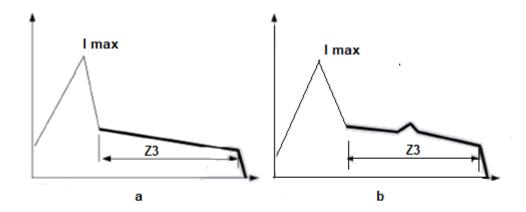


Figura 2.9. Anomalías de compresión en zona 2. Fuente CPM.

En la figura (a), aparece una normal zona de compresión.


En la figura (b) se aprecia lo que puede ser una pequeña área de fricción que puede ser producida por una deficiente coquización en el lado cok.

En la figura (c) aparece una zona de fricción amplia que puede deberse a una zona con el refractario recientemente reparado.

Zona 3

Esta zona corresponde normalmente con la intensidad por fricción contra la solera del horno durante el vaciado.

En la figura 2.10 se muestran posibles anomalías en la zona 3.

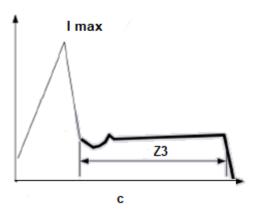


Figura 2.10. Anomalías de compresión en zona 3. Fuente CPM.

En la figura (a), se muestra una zona Z3 normal en un deshornado sin anomalías de ningún tipo.

En la figura (b) se aprecia un pico susceptible de ser producido por una excesiva fricción con la solera o también con adherencias de grafito en el techo del horno.

En la figura (c) aparece una zona donde hay una excesiva fricción entre la base del empujador y la solera del horno. En la figura 2.11 se puede ver la gráfica de un deshornado real.

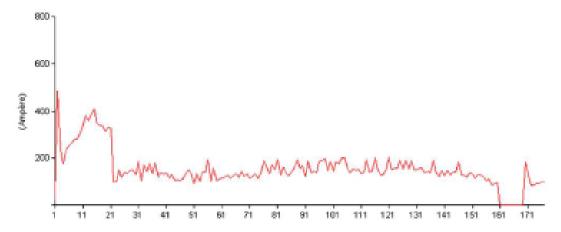


Figura 2.11. Gráfica obtenida de deshornado real [Lorenzo et al., 1989].

Determinación de la posición de un defecto en el horno.

Es posible conocer en todo momento la posición del dispositivo empujador en el interior del horno con lo que se puede ubicar la zona del defecto con bastante aproximación. En la figura 2.12 podemos ver una curva donde se relaciona los picos de intensidad con la geometría del horno.

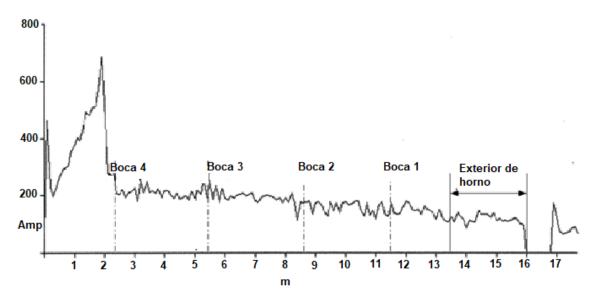


Figura 2.12. Gráfica versus geometría del horno [Lorenzo et al., 1989].

Las causas más habituales que generan dificultades de extracción del cok son:

- Una carga inadecuada de las hullas.

Una carga mayor de lo adecuado implica que no se transforme todo el carbón en cok, con lo cual no se produce la merma y se genera una mayor resistencia al vaciado del horno [4].

Una incorrecta densidad de carga.

El carbón lleva una cantidad de H₂O entre un 8 y 10% del peso total. Una variación de la cantidad de agua afecta a la densidad y a la energía térmica necesaria. Vuelve a darse el caso de verse comprometida la contracción de la torta de cok y provocar resistencia al vaciado [4].

- Baja temperatura.

Una incompleta transformación de la mezcla de carbones en cok por un mal calentamiento es una de las causas más frecuentes de deshornados con alta resistencia. Si hay un déficit de energía térmica aportada por las cámaras de combustión a las cámaras de coquización no se produce la transformación de la mezcla de carbones en cok al completo y, por ende, no se realiza la merma y separación de las paredes del horno [24].

- Alta temperatura.

Un aporte excesivo de energía a la mezcla de carbones adelanta la transformación del cok y en la fase final se reduce su tamaño haciendo que su consistencia mecánica disminuya y dificulte la extracción [24].

Daños en el refractario.

Deformaciones o daños en el refractario que impidan a modo de obstáculo el deslizamiento del cok por el horno. Una zona deteriorada del refractario puede desencadenar deshornados "duros" que desencadenen daños en otras zonas de los hornos.

- Acumulación de grafito en las paredes del horno.

El gas producido durante la coquización en ocasiones se craquea formado deposiciones de grafito sobre las paredes. Este grafito hace de obstáculo durante el vaciado del horno [4].

Desviación en el tiempo de coquización.

Para una determinada planificación de la producción de unas baterías se selecciona un tiempo de permanencia en el horno del carbón. En función de la temperatura media de

la batería, a su vez dependiente de las calorías aportadas en la combustión, se fija un tiempo desde la carga del carbón hasta la extracción del cok. Este tiempo es el mismo para todos los hornos de la batería, para una cantidad de carbón dada, una geometría del horno determinada y un aporte calórico fijo, el tiempo de permanencia debe ser el mismo. A este concepto se le llama "tiempo de coquización global (TCG)".

Si hay una desviación positiva del tiempo de permanencia, es decir, la carga permanece más tiempo en el interior del horno a la misma temperatura, se causa en el cok el mismo efecto que el comentado en el apartado anterior definido como "alta temperatura". Si la desviación es negativa se producirá el efecto descrito en el apartado de "baja temperatura" [4].

- Una mezcla de hullas no adecuada.

La mezcla de carbones debe estar compuesta de hullas que además de satisfacer los requerimientos de calidad del cok, debe evitar daños en la pared por la presión durante la coquización [9]. Así mismo debe tener características coquizables, es decir, que con un adecuado calentamiento la torta se contraiga y se separe de las paredes del horno para facilitar su extracción y no provocar daños en el revestimiento refractario [10-20]. Si previamente se ha producido un error en la mezcla de las hullas puede afectar a su comportamiento en el horno ejerciendo una gran resistencia durante su extracción.

En la figura 2.13 se sintetiza el árbol de causas de un deshornado forzoso.

ÁRBOL DE CAUSAS DE DESHORNADOS FORZADOS

Figura 2.13. Árbol de causas de deshornados con alta resistencia.

Control del proceso y recopilación de datos.

La tecnología de las plantas de cok permite recopilar la información necesaria sobre los deshornados forzados lo que permite sacar conclusiones sobre las causas y corregir el problema antes de que se causen daños en el refractario de los hornos. Se puede estudiar la información en diferentes escenarios.

Representación gráfica de los deshornados.
 Según se aprecia en la figura 2.14, se plasma en una gráfica los datos de intensidades del motor del dispositivo empujador para realizar una valoración del deshornado.

Curvas de intensidades

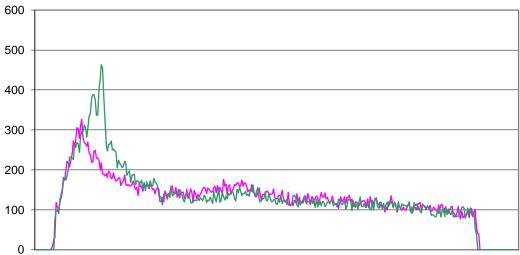


Figura 2.14. Gráfico de intensidades de hornos. Fuente Udhe GmbH.

Listado de los deshornados forzados.

En la figura 2.15 se muestra un ejemplo del listado de deshornados con sus datos particulares en un periodo determinado. Este enfoque permite tener un control de todos los deshornados de la batería.

Fecha	Hora	Horno	DH	CG	I. vacío	I. máxima	Par vacío	Par máximo
01/01/0001	9:19:50	D05	8	6	54,43	112,2	4,88	49,8
01/01/0001	9:28:54	D10	8	6	54,48	118,5	5,15	51,5
01/01/0001	9:38:21	D15	8	6	54,35	120,2	4,97	51,4
01/01/0001	9:48:33	D20	8	6	54,65	120,3	5,44	50,5
01/01/0001	10:08:20	D25	8	6	54,53	118,9	5,33	50,2
01/01/0001	10:21:23	D30	8	6	54,68	112,2	5,57	47,7
01/01/0001	10:30:23	E05	9	7	54,61	111,8	5,65	46,7
01/01/0001	10:40:27	E10	9	7	54,75	114,3	5,82	49,1
01/01/0001	10:53:22	E15	9	7	54,84	104,5	6,11	44,1
01/01/0001	11:02:26	E20	9	7	55,23	117,8	72,63	50,8
01/01/0001	11:11:11	E25	9	7	55,26	113,7	70,39	48,6
01/01/0001	11:23:40	E30	9	7	55,36	119,8	72,28	51,7

Figura 2.15. Datos de intensidades en un periodo de tiempo.

• Representación simultánea de los deshornados de un determinado periodo (figura 2.16).

Esta herramienta permite mostrar simultáneamente las intensidades de diferentes deshornados para darle una visión general a la tendencia de la batería, bien en modo de gráficas superpuestas o de mapa de colores.

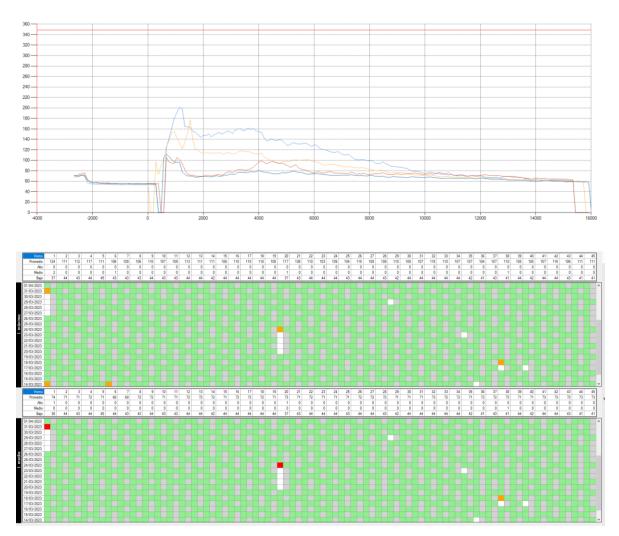
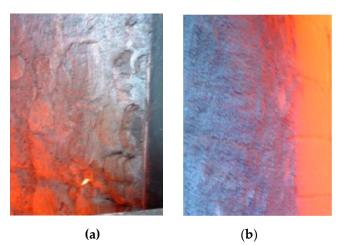


Figura 2.16. Representación simultánea. Fuente Udhe GmbH.

2.2.2. Bloqueo de hornos (esfuerzo mecánico, abrasión y choque térmico).


La definición de "horno bloqueado" es aquella maniobra en la que no es posible la extracción del cok al producirse una alta resistencia al empuje del dispositivo extractor [31]. En realidad, es un caso particular del punto "deshornados con alta resistencia", donde no se llega a producir la extracción del cok por la enorme resistencia que hace la torta de cok al empuje del dispositivo extractor.

Los motivos que producen los bloqueos de hornos son los mismos que se describieron en el apartado anterior, no obstante, este fenómeno requiere un apartado propio ya que sus consecuencias pueden ser muy dañinas para el refractario de los hornos.

Como en el caso de los deshornados forzados se puede dañar el refractario por esfuerzos mecánicos, a parte, durante su extracción se correrá el peligro de enfriar el horno,

bajando la temperatura de las piezas refractarias con la posibilidad de cambios de volumen bruscos y por consiguiente la rotura de las mismas.

Una vez se bloquee un horno la única manera de extraer el cok es de forma "manual", retirando las puertas y extrayendo el cok con herramientas manuales. Esta operación requiere mucho tiempo de actuación, exponiendo las zonas exteriores del horno a la temperatura ambiente. Como se comentó en el Capítulo 1 las piezas silíceas no se comportan bien frente al choque térmico. Son refractarios con unas excelentes prestaciones si se mantienen a altas temperaturas, las grandes oscilaciones térmicas son su talón de Aquiles. Lo ideal es mantener el refractario en la franja térmica donde la tridimita es estable, entre 870 y 1470 °C [12]. La figura 2.17 (a) muestra el daño causado en la pared de refractario por un bloqueo de horno. La figura 2.17 (b) nuestra la pared con posterioridad a ser reparada por medio de soldadura cerámica.

Figura 2.17. (a) Pared con daños en el refractario; (b) refractario reparado con soldadura cerámica. Fuente FIB Services.

2.2.3. Maniobras incorrectas.

En lo que se refiere a la operativa de una planta de cok se pueden dar situaciones anómalas que afecten a la marcha estable de cargas y deshornados y también a la uniformidad térmica. Esto puede incidir en daños en el refractario si ello implica variaciones de temperatura en un rango peligroso. Estos ítems que pueden afectar a la vida útil de la batería son los que se describen a continuación.

2.2.3.1. Máquinas de baterías.

Para la carga y el posterior vaciado de los hornos las baterías disponen de un equipo de máquinas que realizan estas tareas, bien en automático o bien manejadas por operadores. Como es obvio, disponer de unas máquinas con una buena fiabilidad permitirán una producción uniforme sin paros que afecten a la temperatura del refractario.

2.2.3.2. Uniformidad en la producción.

El programa de producción debe ser estable en cuanto a tiempos, por un lado, en el tiempo de coquización que debe ser el mismo para todos los hornos y por otro en el tiempo entre los vaciados de los mismos. Si se vacía un horno antes del tiempo fijado parte de la mezcla de hullas no se habrá transformado en cok con lo que se corre el riesgo de un deshornado forzado. Si se produce un retraso puede darse un calentamiento excesivo de las paredes de los hornos corriendo el peligro de alcanzar temperaturas cercanas a la de la refractariedad bajo carga de la sílice. Si se altera el tiempo entre vaciados también se pone en peligro el refractario, las paredes se calientan si el tiempo se espacia y en caso contrario se enfrían.

Después de un retraso, para reanudar la producción se debe asegurar que las temperaturas de las cámaras de combustión son estables y que las máquinas están en óptimas condiciones de operación. Después de una demora, los hornos se pueden vaciar en el tiempo mínimo de coquización, pero nunca tratar de reducir el tiempo de estancia de la carga en el horno por debajo de ese tiempo, con el objeto de recuperar la cantidad de producto.

Para retrasos inferiores a 8 h se deben tomar las siguientes medidas:

- Ajustar el calentamiento para tratar de mantener la temperatura de los canales de caldeo constante, especialmente los de los extremos de la cámara de combustión.
- Aislar del barrilete los hornos coquizados.
- Mantener la presión del barrilete y abrir el reciclaje de gas de cok al refrigerante primario.
- Mantener los hornos estancos: sellando las puertas y las tapas de las bocas de carga.

Para retrasos de más de 8h:

Considere la batería en parada "en caliente", aislar todos los hornos, cerrar la aspiración de gas desde la planta de subproductos y llenar el barrilete con nitrógeno.

Si el periodo de parada se alarga se corre el peligro de agotar las reservas de gas del gasómetro con lo que es necesario alimentar la batería con un gas alternativo tipo gas natural o gas propano licuado.

2.2.3.3. Uniformidad térmica.

La temperatura de las diferentes cámaras de combustión de una batería se debe mantener lo más estable posible, para ello es necesario realizar un control diario de las mismas para poder modificar los parámetros necesarios para corregir cualquier desviación. Esta variable debe mantenerse con un rango seguro para evitar daños tempranos. El valor máximo recomendado es del orden de 1300°C y valor mínimo 1100°C [12], cubriendo con amplitud el rango de estabilidad de la tridimita (1470°C a 870°C) [5]. Es la temperatura de los canales de caldeo de una determinada pared, medida al final de la coquización (tiempo neto de coquización) la que se tomará como referencia. Esta temperatura es útil para evaluar la homogeneidad térmica a lo largo del horno. La temperatura de la pared de una cámara de combustión debe medirse siempre al final de la coquización para obtener datos fiables. Después de cargar los datos, un sistema de procesamiento de los mismos puede mostrar la curva de temperatura real de cada pared y la desviación en comparación con el estándar. Posteriormente y teniendo en cuenta las desviaciones detectadas y las inspecciones realizadas se deben priorizar las acciones correctivas [8]. En la figura 2.18 se refleja el objetivo de temperatura de las cámaras de combustión con su límite inferior y superior y diferentes tomas en varias cámaras de una batería con marcadas desviaciones respecto a lo deseado.

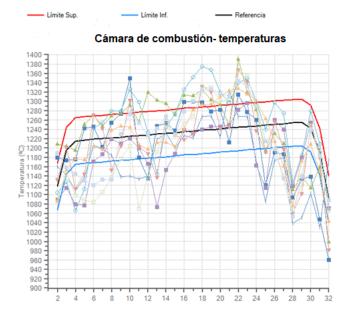


Figura 2.18. Temperaturas de cámaras de combustión. Fuente PWI.

El proceso de extracción del cok implica la apertura de las puertas del horno, el propio vaciado, la limpieza de los marcos y puertas y el cierre del horno. Este periodo de tiempo expone el refractario a la temperatura ambiente, con lo cual cualquier demora provocará un inadecuado enfriamiento del refractario. Si se diese el caso de retrasos inadecuados se debe proceder al cierre del horno mediante sus puertas y si no fuese posible será necesario colocar cierres provisionales fabricados con materiales aislantes.

2.2.3.4. Averías.

Determinadas averías pueden provocar cortes o merma en el suministro de gas a las cámaras de combustión. Una ausencia prolongada de aporte de gas provocará que la temperatura del refractario baje del rango recomendado.

Las incidencias o averías en las baterías de cok que son susceptibles de interrumpir el suministro de gas o la capacidad de carga y vaciado de los hornos son principalmente las ocurridas en:

- Deshornadoras, carros de carga y vagón locomotora.
- Torre de carbón.
- Torre de apagado.
- Circuitos de cintas, bien de carbón o de cok.
- Mecanismos de la Inversión de Calentamiento.
- Extractoras de gas.

- Acometidas eléctricas.
- Aporte de fluidos, aire comprimido, agua, nitrógeno, vapor.

Se hace necesario disponer de una buena fiabilidad en la instalación, así como un adecuado plan de mantenimiento preventivo y predictivo.

Técnicas de reparación del refractario en hornos de cok

3.1. Introducción.

El adecuado mantenimiento y reparación del refractario de los hornos de cok es fundamental dado el cambio en la filosofía sobre la duración de una batería de cok. Hasta hace varias décadas se esperaba de una batería de cok que estuviese operando entre 25 y 30 años, objetivo que ha cambiado en la actualidad para tratar de alcanzar una vida útil de 40 a 50 años. Esta exigencia tan ambiciosa pasa por varios factores a modificar en la operativa y por alcanzar la excelencia en el mantenimiento del refractario.

Desde el comienzo de funcionamiento de una planta de cok es necesario comenzar con el mantenimiento de los hornos. Las zonas más expuestas son los extremos de los propios hornos que están sometidos a cambios de temperatura y al contacto con partes metálicas. En un horno de cok es necesario prestar la máxima atención a cualquier desperfecto tanto en paredes como en soleras por insignificante que sea, incluso microgrietas. Entre las cámaras de combustión y los hornos existen diferentes presiones por lo que, si aparece alguna fisura se va a producir un flujo de gas desde el horno a la cámara de calentamiento en las primeras horas desde la carga del horno y luego se puede producir un flujo inverso pasando gas de combustión a los hornos. Este flujo incontrolado entre cámaras provoca áreas sobrecalentadas con lo que el cok que está en contacto con estas zonas entra en combustión generando cenizas. Estas cenizas, en combinación con la sílice forman un eutéctico de baja fusión lo que da lugar a un aumento considerable de dichas grietas [4]. Otro de los daños colaterales de las fisuras es que el gas de cok puede desviarse por los regeneradores y en contacto con el aire y altas temperaturas da lugar a combustiones incontroladas o a explosiones que dañarán los regeneradores.

A medida que el daño en los ladrillos de la pared del horno se hace cada vez mayor, hay una mayor incidencia de fallos por deshornados de alta resistencia y por bloqueos. Además, se facilita la proliferación de otros problemas que también impiden el funcionamiento estable del horno. Bajo estas condiciones, es necesario utilizar las técnicas más adecuadas para la reparación eficiente de los hornos de cok.

En una batería de cok encontramos refractario en las siguientes zonas:

1. Regeneradores: son un empilado de piezas refractarias cuya misión es la de recuperar el calor de los humos producidos en la combustión.

- 2. Cámaras de combustión y hornos: representan las zonas conde se produce la combustión de los gases de calentamiento y dónde se transforma la mezcla de hullas en cok.
- 3. Cubiertas: forman la parte del revestimiento que cubre las cámaras de combustión y coquización.
- 4. Puertas: ubicadas en ambos lados del horno se abren para el vaciado del cok, son una estructura metálica revestida con refractario.
- 5. Tubos montantes: son tuberías metálicas revestidas con refractario por los cuales se evacúan los volátiles del carbón producidos durante la coquización.
- 6. Canal de humos y chimeneas: los humos producidos en la combustión de los gases se evacúan hacia la atmósfera por estos conductos. Van revestidos interiormente por refractario antiácido.
- 7. Rampas de descarga: una vez apagado el cok producido se descarga sobre estos muelles para su posterior envío a la zona de cribado y clasificación.

De las zonas anteriores en ese estudio sólo se tratarán los daños en las cámaras de combustión y hornos que son las zonas más expuestas a los daños y con un impacto mayor en la vida útil de una batería.

<u>Tipos de daños en el refractario de los hornos de Cok.</u>

A continuación, se enumerarán los diferentes tipos de defectos que pueden aparecer en el revestimiento refractario de las paredes y cámaras de los hornos de cok.

Desconches.

Se definen como descamaciones o desintegración de parte de los ladrillos, normalmente producidos por choque térmico. En la limpieza de la zona afectada, antes de su reparación, deben eliminarse las aristas, restos de cok o grafito y mortero de las juntas de los ladrillos.

• Grietas.

Son fracturas largas y delgadas que habitualmente están a continuación de las juntas de mortero, aunque también pueden atravesar los ladrillos. Se producen por esfuerzos

térmicos y o mecánicos. La limpieza neumática de la zona debe realizarse haciendo una acanaladura a todo lo largo de la grieta para facilitar la posterior reparación. El ancho de la acanaladura debe oscilar entre 2,5 y 4 cm.

• Agujeros.

Son orificios en el revestimiento refractario de las paredes. Los agujeros son normalmente el resultado de otros daños más livianos no detectados previamente o mal reparados. También pueden producirse durante el saneo de otro tipo de defectos. En la mayor parte de los casos un agujero es un indicador de que hay restos de refractario en la cámara de combustión con lo que debe procederse a su retirada y limpieza. En función del tamaño del agujero se requiere diferentes formas de reparación. Para agujeros de pequeño tamaño, por debajo de 15 cm de diámetro la reparación se realizará exclusivamente con soldadura cerámica. Para agujeros mayores se combinará la colocación de piezas conformadas de sílice fundida o amorfa con la soldadura cerámica. En ambos casos se asegurará el saneo correcto de todo el área y la eliminación de aristas en la zona perimetral al agujero. Esta limpieza abarcará también la zona trasera de unión de la pared con los "binder" (en el caso de agujeros grandes). En el caso de que el agujero esté cerca de la solera del horno se dejarán las primeras hiladas sin reparar para posteriormente retirarlas para proceder a la limpieza de la cámara de combustión.

• Socavones.

Son daños con forma de acanaladuras que se producen entre la base de la primera hilada de ladrillos y la solera. Normalmente aparecen en la zona central del horno y hacia el lado cok. Son debidos a diversos factores mecánicos y químicos. Una causa típica es la erosión producida por el patín del dispositivo empujador. No repararlos puede provocar bloqueos del horno por enclavamiento del cok en dichos socavones. La forma de reparación seguirá el mismo proceso que los desconches, un saneo previo y posterior soldadura con la salvedad de que en el caso de haber impregnaciones de grafito tendrán que ser eliminadas antes del comienzo de los trabajos de reconstrucción.

Adherencias de grafito.

Antes de cualquier aplicación de soldadura es imprescindible retirar todo resto de grafito adherido al refractario. Si se suelda sobre grafito se pueden formar gases en la interfase de la soldadura y el refractario que provocarán el desprendimiento de la masa aplicada. Para la limpieza lo más adecuado es la eliminación por tiro natural, si no es

posible se utilizará el martillo neumático, soplado con aire y en el caso de grandes impregnaciones se utilizará oxígeno para su eliminación.

• Abombamientos.

En determinados hornos las paredes pierden su verticalidad debido a esfuerzos mecánicos durante los deshornados. En estos casos se fracturan las uniones de los ladrillos de la pared con los "binder". Esta situación repercute en la disminución del soporte de la estructura y el estrechamiento de los hornos con lo que se corre el riesgo de colapso de la pared o de bloqueos en el deshornado. Para la reparación se evaluará el grado de abombamiento para aplicar una u otra técnica. En caso de abombamientos leves se saneará la zona, en especial las juntas de mortero perimetrales para realizar una soldadura de refuerzo a dicha área, posteriormente se limará mediante martillos neumáticos la zona abombada para su soldadura. En el caso de abombamientos grandes será necesario colocar piezas de sílice fundida soldadas a los "binder", siempre previo refuerzo de la zona perimetral con soldadura.

• Restos de reparaciones anteriores (gunitados, soldaduras, etc.)

La reparación de estas zonas dañadas requiere una exhaustiva limpieza de todos los restos de reparaciones antiguas. Una vez efectuada se procederá a la reparación como en apartados anteriores, mediante soldadura o combinación de piezas de sílice fundida más soldadura.

Existe una gran variedad de técnicas para las reparaciones del refractario de unas baterías de cok a continuación pasamos a mencionar las más importantes y que son objeto de estudio en esta tesis.

- Proyección de refractario monolítico.
- Soldadura cerámica.
- Reconstrucción parcial con sílice amorfa o cristalina.
- Sellado.

El objetivo de este capítulo es describir las mejores técnicas disponibles para desarrollar una reparación óptima del refractario silíceo de los hornos. En un capítulo posterior se determinará qué técnica es la más adecuada para cada tipo de daño en las baterías de las que son objeto de estudio en esta tesis.

3.2 Proyección de refractario monolítico.

En cuanto a los tipos de proyección de refractario monolítico se encuentran principalmente el gunitado y el shotcreting. En los siguientes apartados se definirán las características de ambos.

3.2.1. Gunitado.

El material gunitable es un refractario monolítico seco diseñado para ser aplicado con una máquina de proyección. Normalmente a este refractario se le añaden aditivos para hacerlo más adhesivo. Se aplica con una máquina especial que usa aire a presión para enviar el árido hasta una boquilla donde se le añade agua para que se proyecte húmedo con objeto de facilitar su fraguado [32-33]. Es un método simple y utilizado desde hace mucho tiempo en los hornos de cok [34]. El material aplicado por este método en zonas de alta temperatura presenta una mayor porosidad y una necesidad mayor de adición de agua [35-36]. En la figura 3.1 aparece una fotografía de una típica máquina de proyectado por gunitado.

Figura 3.1. Máquina de gunitar. Fuente Gaodetec.

3.2.1.1. Modo de aplicación en hornos de cok.

Previamente a la proyección la superficie a reparar debe ser preparada, eliminando los restos de material en mal estado para asegurar la mayor adherencia posible entre los dos sustratos. Para ello se utilizan herramientas manuales tipo rasquetas o martillos neumáticos.

El refractario es enviado a presión (5-6 Kg/cm²) hasta la boquilla por mangueras desde la ubicación de la máquina de gunitar. El uso de mangueras permite que la máquina gunitadora no tenga que estar ubicada en la zona de proyección. En la boquilla de la

lanza se le añade una cantidad de agua regulable que puede oscilar entre un 10 y un 20 % del peso del material. Para su aplicación el operario orienta la boquilla con su válvula reguladora de agua hacia el área donde se desea instalar el refractario, normalmente entre 0,6 y 1,2 metros de distancia. El operador debe regular en la boquilla la cantidad de agua que se aporta con el objeto de controlar el rebote la proyección. El citado rebote o rechazo es inherente al propio proceso, será tanto mayor será cuanto menos agua lleve la mezcla y le influye el tipo de superficie sobre el que se aplica, en un techo el rebote es mayor que en una pared y en ésta a su vez mayor que en una solera. Por otro lado, hay que tener en cuenta que un exceso de agua disminuye las propiedades mecánicas del refractario y ejerce una reducción mayor en la temperatura del área sobre el que se aplica [34].

3.2.1.2. Zonas de aplicación en hornos de cok.

En el bloque de hornos en el cual se focaliza este estudio el gunitado tiene su aplicación en los extremos de los hornos de cok (cabezas de horno) y en la cubierta.

<u>Cabezas</u>

Los extremos de los hornos de cok y en especial las piezas refractarias que están en contacto con el marco de fundición de las puertas sufren daños prematuros al estar expuestos a cambios de temperatura durante el vaciado del cok. En la figura 3.1 puede observarse la reparación de esta zona con gunitado.

Figura 3.2. Proyección por gunitado. Fuente Daorje.

Bocas de carga

En la cubierta de los hornos se ubican las bocas de carga que son orificios por los que se introduce la mezcla de hullas para su transformación en cok. Estas bocas están

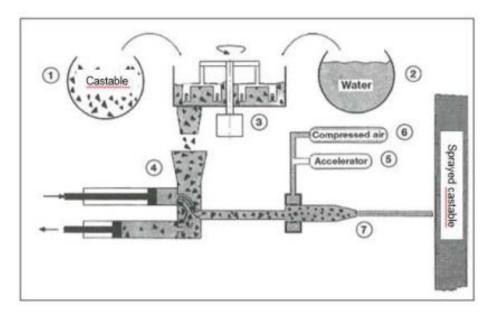
fabricadas con fundición y en su conexión con el refractario en ocasiones se producen daños que tienen que ser reparados [4]. En la figura 3.2 se puede apreciar la reparación mediante gunitado.

Figura 3.3. Gunitado de bocas de carga de horno. Fuente Pasek.

3.2.1.3. Refractarios gunitables para hornos de cok.

Son de aplicación gran variedad de refractarios con amplio espectro en su composición, desde refractarios con base de chamota hasta bauxitas y silíceos. El objetivo es una búsqueda de resistencia al choque térmico, adherencia y resistencia mecánica. Los refractarios aluminosos dan mejores resultados que los silíceos por su menor tiempo de fraguado y mayor dureza a bajas temperaturas. Sin embargo, cuando los aluminosos se aplican en paredes calientes se produce una menor adherencia al refractario de los hornos y una mayor deformación por fluencia que los materiales silíceos [37].

3.2.2. Shotcreting.


El material refractario para uso por shotcreting es normalmente un producto con bajo contenido en cemento y baja humedad el cual se mezcla con agua o aditivos previamente a ser enviado por tubería a la boquilla para ser proyectado. Para su proyección se utiliza una máquina de bombeo por pistones y agua para su proyección [38].

3.2.2.1. Método de aplicación.

Shotcreting" (o gunitado de alta presión con hormigón pre- humedecido) es un método de proyección en húmedo para la aplicación de materiales refractarios monolíticos especiales [39]. Una vez premezclados, el hormigón refractario bombeable es trasladado al lugar de aplicación con la ayuda de bombas de alta presión especiales (250 bar

aprox.) pudiendo superar distancias de más de 80 m de altura si fuera necesario. Los hormigones son proyectados con aire comprimido por una boquilla de proyección especial. Al mismo tiempo se le añade un acelerador para garantizar la unión y estabilidad del hormigón en las zonas dónde se aplica [40]. En comparación con la metodología más tradicional de hormigonado, el "shotcreting" logra prácticamente los mismos resultados.

El proceso de aplicación de hormigón proyectado por shotcreting es descrito esquemáticamente en la figura 3.4. Las principales características son: i) El agua se añade durante un paso previo de mezclado; ii) El proceso de instalación es continuo; iii) La mezcla húmeda se bombea con bombas de alta presión a través de una manguera hasta su zona de aplicación; iv) Se agrega un acelerador de fraguado al final de la tubería a través de la boquilla junto al aire a presión; v) La mezcla se pulveriza sobre una superficie y se consolida. A diferencia del gunitado en seco, el contenido de agua se controla estrictamente en el hormigón proyectado [40].

Figura 3.4. Esquema del proceso de shotcreting. Leyenda: 1 refractario, 2 agua, 3 mezcladora, 4 bombas de pistón, 5 acelerador, 6 aire comprimido, 7 boquilla. Fuente Calderys.

En la figura 3.5 se muestra un esquema en detalle de la boquilla de proyección. Es en esta boquilla donde se añade al refractario bombeado un acelerante para un fraguado más rápido y aire a presión para poder ejecutar la proyección del material.

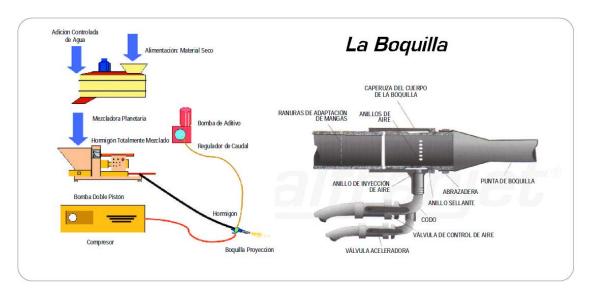


Figura 3.5. Esquema de shotcreting y boquilla. Fuente Refractarios Alfran, S.A.

3.2.2.2. Zonas de aplicación en hornos de cok.

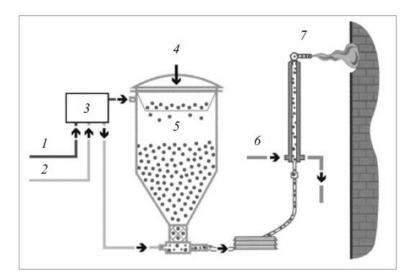
El shotcreting tiene las mismas zonas de aplicación que las vistas en el apartado anterior para el gunitado. Éstas son los extremos de los hornos de cok (cabezas de horno) y la cubierta.

3.2.2.3. Refractarios por shotcreting para hornos de cok.

Al igual que ocurre con los refractarios aplicados por gunitado son de aplicación gran variedad de tipos de refractarios monolíticos para el uso por shotcreting. En los hornos de Cok se han empleado diferentes productos de proyección, principalmente aluminosos con base de bauxita y andalucita por su buen comportamiento frente al choque térmico y una buena resistencia mecánica.

3.3. Soldadura cerámica.

La soldadura cerámica es un método usado para la reparación en caliente del material refractario silíceo de los hornos de cok. Consiste en la proyección sobre el material a reparar de una mezcla de áridos, principalmente de sílice. El material se proyecta a presión mediante una corriente con oxígeno. La mezcla de áridos, a parte de la mencionada sílice, contiene partículas metálicas que actúan como agente exotérmico en el proceso [41]. Cuando las partículas combustibles impactan en la superficie caliente del refractario silíceo (1000-1300°C), reaccionan con el oxígeno liberando calor y alcanzando temperaturas de 2000-2500°C. Estas temperaturas producen la fusión parcial


tanto del refractario a reparar como de los áridos proyectados formándose una unión cerámica entre ambos [42-43].

Previamente a la aplicación de la soldadura es necesario sanear adecuadamente el refractario dañado [44].

Este método fue desarrollado y originalmente diseñado en los años 70 del siglo XX, por el grupo vidriero belga Glaverbel S.A. para la reparación de hornos de la industria del vidrio. En 1977 esta técnica se evaluó en hornos de cok en la industria del acero inglesa y en 1979 se introdujo en Estados Unidos como método de reparación de paredes de hornos de cok siderúrgico. Sin embargo, por sus elevados costos y la falta de experiencia en las técnicas de aplicación, su uso no se extendió al resto del mundo hasta finales de la década de los 80. Desde entonces, el proceso ha evolucionado para su aplicación en otras industrias tales como las del aluminio, cobre, cemento y fundiciones [42-45]. En la actualidad es la técnica de reparación de hornos de cok con mayor difusión y presencia mundial. Se calcula que se pueden aplicar 16 KTm de soldadura cerámica cada año.

Esta técnica permite reparar muchas clases de desperfectos en el refractario de los hornos de cok tales como el sellado de fisuras, grietas y juntas abiertas, corregir la falta de alineación de paredes, recargar piezas con desconches por choque térmico o por desgaste o por abrasión y el sellado de uniones de piezas viejas con nuevas.

En la figura 3.6 se plasma un esquema del proceso de soldadura cerámica. La máquina de soldadura tiene una tolva por donde se alimenta del árido y éste es enviado por oxígeno a presión hasta la boquilla de proyección. Para aquellas aplicaciones en zonas internas de los hornos que exijan la utilización de lanzas será necesario refrigerar las mismas con agua [46].

Figura 3.6. Esquema del proceso de soldadura cerámica. 1Nitrógeno, 2 oxígeno, 3 panel, 4 áridos, 5 tolva, 6 refrigeración por agua, 7 lanza [Shchepeteeva et al., 2011].

3.3.1. Modo de aplicación.

En este apartado se desarrollarán los pasos a seguir para la aplicación de la soldadura cerámica en hornos de cok.

3.3.1.1. Adecuación del área a reparar.

Antes de proceder a la sustitución del refractario por medio de la proyección es necesario sanear las piezas dañadas para eliminar aquellas partes que están en mal estado y generar una superficie adecuada [44]. El proceso de limpieza requiere que se elimine los depósitos de grafito, los restos de escorias y la parte de las piezas refractarias en mal estado. En la figura 3.7 se muestra la secuencia del proceso de limpieza del refractario en mal estado.

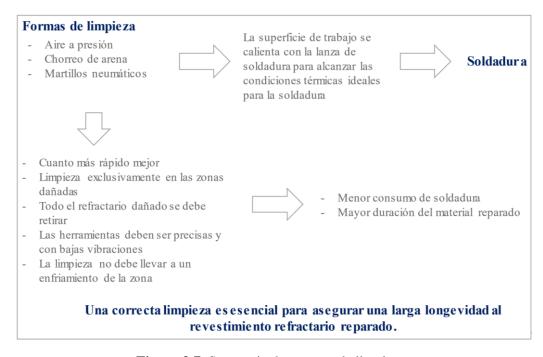


Figura 3.7. Secuencia de proceso de limpieza.

Para realizar esta limpieza del refractario en precarias condiciones existen tres métodos con sus características que se comentará a continuación.

Aire y oxígeno a presión.

Es la técnica de limpieza más básica, se utiliza para retirar las partículas pequeñas y finas. El oxígeno a presión, además, elimina el grafito adherido al refractario silíceo lo cual no es beneficioso para el revestimiento ya que la temperatura de combustión del citado grafito supera la de la refractariedad bajo carga de las piezas. Lo adecuado para eliminar el grafito es la descarbonización por tiro natural.

Chorreo de arena.

Normalmente esta técnica es usada en aquellas hiladas en contacto con el marco de fundición, no obstante, en algunas plantas se utiliza como procedimiento habitual para cualquier zona de las paredes de los hornos. Presenta las bondades de la combinación del aire a presión junto a la capacidad abrasiva de la arena. Como contrapartida esta técnica lleva a un enfriamiento local y a generar micro-grietas. Con el uso de la arena proyectada, ésta puede pasar por las grietas y juntas de las piezas hasta los regeneradores colmatándolos. Es recomendable su uso solamente en zonas muy localizadas y pequeñas y no como un método habitual de limpieza.

Martillo neumático.

Es el mejor proceso de limpieza, utiliza herramientas neumáticas especialmente adaptadas para eliminar todos los depósitos de grafito y favorece la correcta preparación de la superficie para la soldadura cerámica. En la figura 3.8 se muestra un martillo neumático y sus componentes.

- ✓ 4 Dientes
- ✓ Modo de operar: rotación

y vibración.

✓ Área de limpeza sin martilleo y sin daños al refractario anexo.

Figura 3.8. Martillo neumático. Fuente FIB Services.

En la figura 3.9 se muestran las ventajas e inconvenientes de cada técnica de limpieza.

Figura 3.9. Ventajas y limitaciones de las técnicas de limpieza.

3.3.1.2. Proyección.

Para la soldadura cerámica se utiliza un equipo que a grandes rasgos consta de una máquina de soldadura, mangueras de transporte de áridos y de fluidos y la lanza. La máquina tiene un tamaño que permite moverla con bastante facilidad por superficies planas, pudiendo estar ubicada en una zona próxima a la de reparación. El equipo de trabajo consta de una o dos personas que manejan la lanza y otra que está ubicada en la propia máquina abasteciéndola de material y al mando de los controles. En la figura 3.10 se puede apreciar uno de los diferentes modelos de máquinas de soldadura y un equipo soldando una pared. En este caso la soldadura se realiza en el centro del horno con lo que se requiere refrigerar la lanza, es posible observar la tubería de aporte de agua.

Figura 3.10. Soldadura cerámica. Fuente FIB Services.

Antes de comenzar la soldadura es necesario asegurarse de que la temperatura de la zona a reparar está por encima de 650 °C que es el umbral mínimo para la viabilidad del proceso.

En el caso de los desconches deben soldarse comenzando por la parte más profunda para evitar rechazo de material.

En cuanto a la reparación de las grietas se comenzará la soldadura por la parte inferior de la grieta saneada manteniendo el extremo de la lanza tan cerca como sea posible de la superficie de refractario para asegurar el rellenado completo de la grieta.

Para los socavones, antes del comienzo de la soldadura será imprescindible el soplado de la zona para eliminar restos de partículas. Se utilizará el mínimo aire posible para no enfriar la zona a soldar. La soldadura de los socavones debe comenzar en la zona más profunda de los mismos y avanzar hacia la dirección del soldador. Debe retirarse el rechazo producido a medida que avanza la soldadura. El resultado final debe conseguir una plenitud en la zona correspondiente a la unión de solera-pared.

Para agujeros pequeños o donde resulte imposible colocar una pieza de sílice fundida se procederá a cerrar el agujero sólo con soldadura. En este caso deberá empezar a soldarse por el lado fracturado del ladrillo empezando a rellenar hacia el soldador y alcanzando la profundidad del ladrillo. Si es necesario se utilizarán lanzas con diversos ángulos de boquillas (90°, 60°, 45°, 30°). Se reducirá en la medida de lo posible el caudal de soldadura para evitar el llenado precipitado del agujero dejando huecos, también acumulación de soldadura por encima del nivel de la pared [47].

3.3.1.3. Proyección combinada.

Este sistema será de aplicación en agujeros de gran tamaño en las paredes y para reconstrucción parcial de daños en los canales de caldeo "binder" de las cámaras de combustión. Consiste en la colocación de unas piezas conformadas de sílice fundida o amorfa con objeto de sellar los agujeros. Las piezas se colocan con útiles entre los "binder" de las cámaras de combustión y se aseguran mediante la soldadura cerámica. Antes de su colocación será imprescindible una buena limpieza de la zona y preparar correctamente la base sobre la que se asientan para conseguir una buena estabilidad final. Será aceptable la colocación de las piezas con temperaturas inferiores a 650 °C, pero teniendo en cuenta que para su soldadura la temperatura debe aumentar y ser la adecuada. Se asegurará la soldadura entre piezas dando una o dos pasadas a las juntas de unión. A su vez será necesario soldar el perímetro exterior, es decir la unión de las piezas con el refractario original.

Una vez colocadas las piezas de sílice fundida será necesario realizar un rellenado con soldadura sobre la última capa, la que va a quedar expuesta. Se reducirá el caudal para conseguir un mejor control del acabado final de la superficie. El objeto es conseguir una superficie plana y con la menor rugosidad posible. Es importante que se mantenga la lanza a una distancia constante del área soldada para un mejor acabado.

En la figura 3.11 se puede apreciar una típica aplicación de la proyección combinada, el agujero, las piezas de sílice fundida FSP colocadas y la soldadura superficial para su acabado final.

Figura 3.11. Soldadura cerámica combinada. Fuente FIB Services.

3.3.2. Zonas de aplicación en hornos de cok.

La soldadura cerámica a diferencia de los métodos desarrollados en apartados anteriores se puede aplicar en cualquier área de los hornos de cok, sin restricciones de distancia ni de altura. Las zonas de aplicación son:

- Paredes.
- Soleras.
- Techos.
- Bocas de carga y bases de tubos montantes.
- Regeneradores y parte "Corbel".

3.3.3. Refractarios para soldadura cerámica para hornos de cok.

Este tipo de refractario fue desarrollado exprofeso para la reparación de sílice en los hornos de vidrio, pero rápidamente su uso se extendió a las plantas de cok. Son áridos con un alto contenido en sílice amorfa y con partículas combustibles que pueden ser metálicas y no metálicas. Sus proporciones y tipo de combustible varían según el fabricante. En términos generales el contenido de SiO₂ suele ser el componente mayoritario superando en muchos casos el 90%.

3.4. Reconstrucción de hornos de cok con sílice amorfa o cristalina.

La reconstrucción "en caliente" de los hornos de cok es una práctica de gran utilidad para alargar la vida útil de las plantas de cok. Después de 10-15 años de operación de una batería de cok es habitual la necesidad de realizar reparaciones profundad en los hornos. Si a pesar de haber aplicado técnicas de reparación como la soldadura cerámica, en las inspecciones se continúan mostrando problemas como el deterioro de las paredes del horno y la deformación de las armaduras metálicas, quiere decir que el refractario está cerca del final de su vida útil. Si los regeneradores mantienen su integridad sin indicios de daños en sus muros o en la ménsula será conveniente proceder a la sustitución de las paredes dañadas [48].

La reparación de los hornos de cok sustituyendo el refractario ofrece una extensión de la vida útil de al menos otros 10 años. La reconstrucción puede ser parcial, es decir de un determinado número de canales de calentamiento o bien de una pared completa cuando los daños se encuentran en la zona central de los hornos [49]. Ambos tipos de reparaciones se pueden llevar a cabo desde la solera de los hornos hasta la cubierta o añadiendo además la sustitución de la ménsula "Corbel" si fuese necesario.

Estas reconstrucciones se llevan a cabo manteniendo el resto de los hornos de la batería en funcionamiento con la salvedad de los hornos vecinos a los reparados. Esta medida tiene por objeto asegurar la estabilidad mecánica de los citados hornos vecinos ya que en cada vaciado están sometidos a fuertes esfuerzos mecánicos.

Antes del comienzo de los trabajos debe aislarse térmicamente la zona para tratar de evitar la pérdida de calor en las paredes de combustión adyacentes. A la par es necesario reforzar la cubierta con vigas metálicas para permitir el paso de los carros de carga y a la vez encapsular la zona de trabajo.

Las reconstrucciones parciales o totales pueden ser llevadas a cabo de dos maneras, utilizando piezas de sílice cristalinas o de sílice fundida [50]. Con el fin de satisfacer las necesidades de la tecnología de reparación en caliente de hornos de cok, se han desarrollado los refractarios de sílice fundida con objeto de solventar el problema de la estabilidad térmica deficiente en el ladrillo de sílice cristalina. Este producto se puede usar después de una breve curva de calentamiento [51].

3.4.1. Áreas de los hornos reparables por sustitución de piezas refractarias.

Este tipo de reparación del refractario es apta para todas las zonas del bloque de hornos excepto para los muros de los regeneradores. A continuación, se enumeran las áreas de reparación.

- Extremos de paredes. Consiste en la sustitución de las partes de las cámaras de combustión cercanas a las puertas. Para cuantificar el alcance de la sustitución nos referiremos a canales de caldeo "flues" que en función del diseño de cada batería su número puede ser variable.
- Paredes completas. Es una sustitución de toda la cámara de combustión del horno de cok, desde el llamado "lado máquina" al "lado cok".
- Cubiertas. También llamada bóveda o techo de los hornos de cok. Pueden repararse individualmente o en conjunto con alguna de las reparaciones anteriores que sería lo más habitual. Forman el techo de los hornos donde van alojadas las bocas de carga y las mirillas de inspección.
- Zona de ménsula "Corbel". Por encima de los regeneradores se encuentra esta zona que está provista de conductos para el paso de fluidos y forma el cierre superior de los regeneradores donde se asentará la masonería de las cámaras de combustión y carbonización. Si no presenta daños no es necesario su sustitución durante la reparación de cabezas o paredes.

3.4.1.1. Reconstrucción de extremos de hornos (cabezas).

En muchas plantas se opta por esta opción que permite mantener el resto del revestimiento refractario del horno que no está dañado. Por su mayor exposición al choque térmico y a los deshornados forzados, son los extremos de los hornos los que se dañan prematuramente y se presentan los mayores daños.

Este tipo de trabajos en caliente implica llevar a cabo meticulosamente una serie de pasos, no solamente para realizar una correcta reparación, sino también para preservar el refractario anexo al sustituido en buenas condiciones [52]. Como se ha mencionado en apartados anteriores el material silíceo al experimentar cambios bruscos de temperatura se degrada.

- Labores previas.

Antes de comenzar con la retirada del material en mal estado se deben dejar los hornos adyacentes vacíos y con menor temperatura. Si se dejan en producción, su tiempo de coquización debe ser mayor con objeto de reducir la temperatura a un mínimo de 1000 °C.

Será necesario retirar las partes metálicas de la zona a reparar como los tubos montantes, los tirantes y las puertas. El carril del techo tiene que ser reforzado para permitir que el carro de carga pase sin riesgo de caída ya que durante la reparación la actividad productiva del resto de hornos continúa.

Para evitar el enfriamiento de las paredes de calentamiento anexas a la reparación es necesario cubrir toda la zona con un material aislante tipo "paneles de fibra cerámica". En la figura 3.12 se puede apreciar una vista en planta de la preparación de la reparación de dos "cabezas" con 4 canales de caldeo de profundidad. Se aprecia el aislamiento y las temperaturas objetivo de las cámaras aledañas.

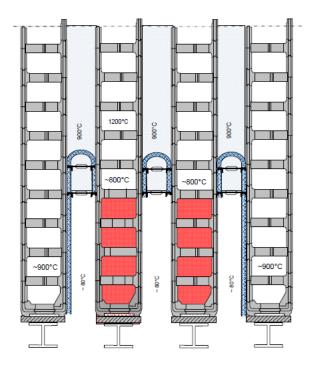


Figura 3.12. Preparación de zona de reparación. Fuente Fosbel GmbH.

- Demolición.

Existen diferentes procedimientos para retirar el material en mal estado, pero en todos ellos es necesario ir protegiendo los conductos para evitar que restos de refractario los

colapsen. A medida que se va evacuando el refractario se requiere colocar tensores para asegurar la estabilidad de las partes no demolidas como se aprecia en la figura 3.13.

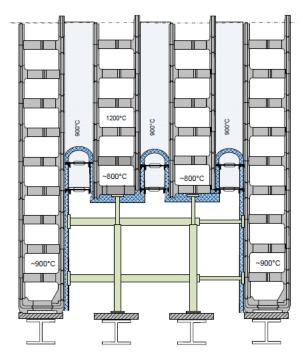


Figura 3.13. Arriostramiento de área de reparación. Fuente Fosbel GmbH.

- Instalación.

En función de si el nuevo refractario es de sílice cristalina o fundida es necesario calcular la posición de las nuevas piezas teniendo en cuenta la posterior dilatación y la merma del mortero para que el resultado final se ajuste a las correctas dimensiones de la batería. La junta de unión del ladrillo "viejo" y el "nuevo" es la parte más delicada al unir en cada hilada una pieza a alta temperatura y otra a temperatura ambiente. Es recomendable dejar una acanaladura por si fuese necesario tras la fase de calentamiento realizar una soldadura para reforzar la unión. En la figura 3.14 se representa el área revestida.

Figura 3.14. Refractario sustituido. Fuente Fosbel GmbH.

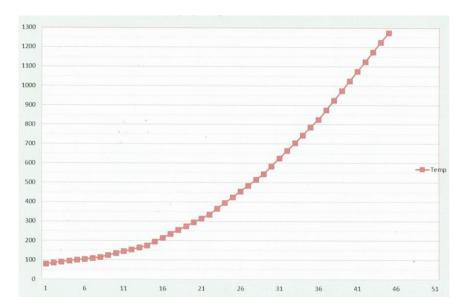
- Calentamiento.

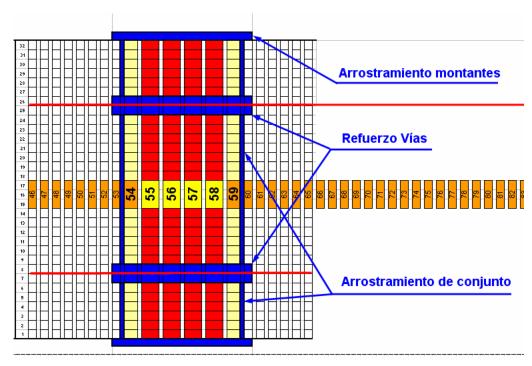
Para la puesta en marcha de los hornos reparados es necesario seguir una curva de calentamiento con una subida progresiva de la temperatura para no dañar el refractario por cambios bruscos de temperatura. En función del tipo de refractario repuesto la duración del calentamiento varía considerablemente. Este es uno de los factores más importantes a tener en cuenta por los técnicos de una planta de cok para optar por una reparación con sílice cristalina o bien con sílice fundida.

Para una reconstrucción llevada a cabo con sílice cristalina se ubican quemadores portátiles en las puertas de los hornos, se alimentan bien por gas natural o por gas de cok. Una vez alcanzados los 600 °C con los quemadores, el horno pasa a calentar con su propio sistema "underjet". El aumento de temperatura hasta los 300 °C es de 2 °C por hora, hasta los 600 °C la subida es de 3 °C por hora y a partir de 600 °C será de 4 °C por hora, siempre que la diferencia de temperatura entre el horno y los conductos de humos no superarán los 50 °C. En la figura 3.18 se puede apreciar la curva de calentamiento.

En el caso de una reparación con sílice fundida el calentamiento se realiza aprovechando el calor de los hornos vecinos. Para su control se juega con el aislamiento previamente colocado el cual se va liberando en función de las necesidades. Hasta los 200 °C la subida de temperatura será de 10 °C por hora, entre los 200 y 400 °C la subida

pasa a 30 °C por hora para posteriormente pasar a 50 °C por hora las siguientes 24 horas. Cuando la temperatura alcanza el rango de 750-800 °C el calentamiento para a realizarse por los canales de caldeo como en operación. En la tabla 3.15 se puede apreciar la curva de subida, el eje X corresponde al tiempo en horas y el eje Y a la temperatura en °C.




Figura 3.15. Curva de calentamiento de la sílice fundida. Fuente Fosbel GmbH.

3.4.1.2. Reconstrucción de paredes completas.

Cuando los daños en el refractario de las paredes se producen en la zona central del horno se requiere una reconstrucción completa de las cámaras. Esta opción presenta en su ejecución una serie de diferencias respecto a lo descrito en el caso de reparación de "cabezas" que se describirán a continuación.

- Refuerzo de la cubierta y los carriles del carro de carga.

Es posible reconstruir simultáneamente hasta 4 paredes de hornos lo cual requiere instalar un robusto entramado de refuerzo de los montantes y de las vías del carro de carga en el techo. En la imagen 3.16 podemos ver un croquis del refuerzo para una reparación completa de paredes en una batería cualquiera.

Figura 3.16. Refuerzo de la cubierta de hornos. Fuente Imasa.

- Aislamiento.

Dada la amplitud de la reparación es necesario colocar paneles de aislamiento en las paredes vecinas, para ello se recurre a las denominadas "cortinas". Para la instalación de estos elementos, previamente se ubica una carrilera de la que se suspenderán las piezas de los paneles. Para conseguir el aislamiento los paneles se fabricarán con fibra cerámica en capas de un espesor total de 90 mm como se puede ver en la figura 3.17.

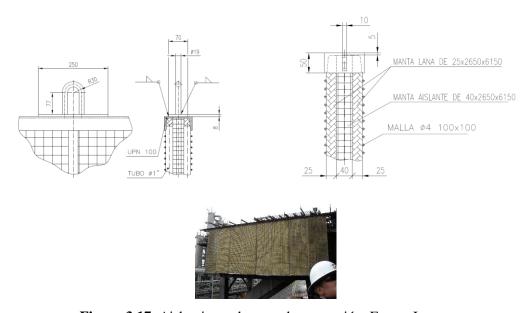


Figura 3.17. Aislamiento de zona de reparación. Fuente Imasa.

- Curva de calentamiento.

A diferencia del caso de reconstrucción de "cabezas" si la reparación se lleva a cabo en una pared completa y con sílice cristalina, la curva de calentamiento debe ser mayor con una duración de 23 días aumentando entre 10 y 20 °C por turno de 8 horas hasta alcanzar una temperatura de 1100 °C como se representa en la figura 3.18.

Figura 3.18. Curva de calentamiento de la sílice cristalina. Fuente Udhe GmbH.

3.4.2. Refractarios para reconstrucción con piezas conformadas.

Como se había mencionado la reparación tanto en su modalidad de "cabezas" como de paredes completas puede realizarse tanto con sílice cristalina como con sílice fundida. En el caso de ésta última en el mercado se encuentran dos opciones diferentes, las piezas fabricadas por prensado y los llamados "big blocks" que son piezas de grandes dimensiones fabricadas por vertido.

3.4.2.1. Sílice cristalina.

En las reparaciones se utilizan las mismas especificaciones para las piezas nuevas que para las originales, en cuanto a formato y a características físico-químicas.

Dentro de las ventajas de este material están:

- Diseño existente, no es necesaria una nueva ingeniería.
- Precios más asequibles.

Entre los inconvenientes están:

• Una gran variedad de diferentes posiciones y formatos con lo que su instalación es más lenta.

- Mayor dificultad en el control de la dilatación de las piezas en las zonas de conexión.
- Mayor periodo de fase de calentamiento

3.4.2.2. Sílice fundida.

En las últimas décadas está proliferando la utilización de piezas de sílice fundida en las reparaciones de hornos de cok, especialmente en las reparaciones parciales. En el mercado encontramos varias filosofías de elaboración de las piezas. Aquellas en que se reduce el número de posiciones para reducir costes de fabricación, pero de un tamaño adecuado para su instalación manual y fabricadas por prensado. Otras en que los formatos son grandes bloques para su instalación con grúa y su fabricación es por vertido [53].

Las características físico-químicas de la sílice fundida son similares a las de la sílice tradicional con la salvedad de su estructura que es amorfa y no presenta ninguna forma cristalina. Este aspecto redunda en que no experimenta apenas ninguna modificación en su volumen con los cambios de temperatura.

3.5. Sellado de fisuras y juntas.

La técnica de reparación de las paredes de los hornos denominada sellado es una tecnología para reducir las emisiones al aire de gas de cok.

Las emisiones al aire tienen diferentes orígenes como un deficiente aislado de las cámaras (puertas, bocas de carga, tubos montantes), las emisiones durante el deshornado, una mala regulación de los quemadores y por fugas entre las cámaras de coquización y las cámaras de combustión.

Este último tipo de emisión se puede reducir con soldadura cerámica cuando las grietas son visibles, pero para las micro-fisuras que no se pueden sellar individualmente el sellado es la técnica más eficiente.

Hay dos técnicas diferentes para realizar un sellado de fisuras o juntas, el empolvado y el sellado líquido (figura 3.19).

Figura 3.19. Tipos de sellado.

3.5.1. Empolvado.

Esta operativa se basa en el inyectado a presión en el horno de un árido de sílice a través de las bocas de carga (figura 3.20). Para ello se utiliza la denominada máquina de empolvado que es un dispositivo donde se introduce el árido y es enviado a presión al interior del horno. Antes de comenzar el proceso es necesario asegurarse de que el horno está aislado por las puertas y el tubo montante. Se introduce el producto a una presión de entre 4 y 5 bares, medidos a la entrada de la tolva de áridos. Pasados 30 minutos se comprueba por las mirillas de inspección si hay ausencia de fugas, en caso positivo el procedimiento estaría terminado.

Figura 3.20. Empolvado. Fuente FIB Services.

No se debe aplicar sin una reparación previa de las grietas mayores o agujeros, ya que se corre el riesgo de que el árido alcance los regeneradores y los colapse (provocando problemas en el calentamiento).

La presurización de los conductos nos ayuda a detectar grietas finas que quedan abiertas, incluso después de una reparación por soldadura cerámica. Sin la aplicación

posterior de la técnica de sellado, aparecerían picos de opacidad en la chimenea en las primeras horas posteriores al cargue del horno, sobrepasando los requisitos legales.

3.5.2. Proyección líquida.

Al igual que en el caso del empolvado el producto líquido se inyecta también por una boca de carga y a presión (figura 3.21 y 3.22).

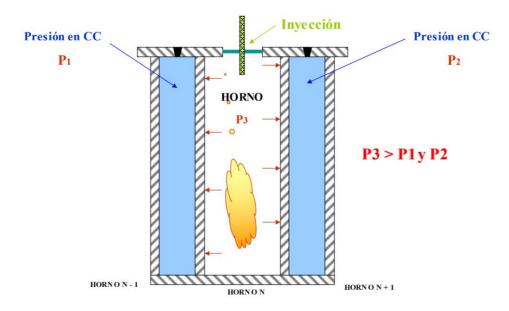


Figura 3.21. Sellado por proyección líquida. Fuente FIB Services.

Figura 3.22. Resultado de proyección líquida. Fuente FIB Services.

La mezcla combustible se enciende espontáneamente en contacto con la alta temperatura del horno produciéndose una "niebla de sílice" que se esparce por toda el área libre formando una capa silícea por toda la superficie del material refractario,

rellenando las pequeñas grietas, fisuras y juntas de mortero de los ladrillos. A la temperatura de servicio del horno la sílice se sinterizará convirtiéndose en un material lo suficientemente resistente para su duración en el tiempo.

Esta técnica facilita una buena uniformidad de temperatura dentro de la cámara del horno. Es fácil de aplicar y sólo requiere un equipo simple. El producto llega bien a todas las áreas del horno. Los resultados son eficientes e inmediatos y se puede realizar sin pérdidas de producción.

Análisis de los efectos de deshornados forzados y de bloqueos de hornos

4.1. Introducción.

El objetivo de este capítulo es analizar la repercusión que tiene en el refractario de los hornos de cok los deshornados con alta resistencia y los bloqueos. Para ello se estudiarán los datos recogidos de un grupo de baterías a lo largo de un tiempo determinado de operación. Se realizarán dos tipos de recopilación de datos, una transversal, con datos de ocho grupos de baterías durante dos años y una longitudinal con datos de dos hornos durante diez años.

Para el desarrollo de este estudio se recolectaron datos referentes a hornos bloqueados, deshornados con alta resistencia y reparaciones refractarias en hornos de cok. Los datos obtenidos se han comparado para ver si los deshornados forzados y los bloqueos de hornos tienen correlación con las reparaciones refractarias realizadas. La hipótesis inicial es que los hornos bloqueados y los deshornados forzados causan daños en el refractario.

Las conclusiones, extraídas tras el análisis de los datos, contribuirán a ayudar a los técnicos de la planta de cok a gestionar sus operaciones de tal manera que se minimice el impacto en el refractario del equipamiento y por tanto en la vida útil de los hornos.

4.2. Metodología.

4.2.1. Recopilación de datos.

Se realizan dos tipos de recogida de datos, una transversal de 8 baterías durante dos años y otra longitudinal de dos hornos durante 10 años.

4.2.1.1. Datos estudio transversal.

Los datos obtenidos para este estudio provienen de ocho baterías de cok construidas en la década de 1970 con diseño Didier, cada una de las baterías está compuesta de 30 hornos. El índice de marcha de las baterías está fijado para cada horno en 1,4 deshornados cada 24 horas, es decir, 511 deshornados al año.

La investigación abarca un período de funcionamiento de dos años, con el registro de: deshornados forzados, bloqueos de hornos y el alcance de las reparaciones en el refractario.

4.2.1.2. Datos estudio longitudinal.

Para este apartado se seleccionaron dos hornos cada uno de una batería diferente y se anotaron los datos de deshornados forzados, hornos bloqueados y reparaciones durante 10 años.

4.2.2. Procesamiento de datos.

A partir de los datos obtenidos se realiza una comparación, por una parte, de los hornos bloqueados y los deshornados con alta resistencia durante el período de estudio, y por otra si lo hubiere, del alcance de las reparaciones en su refractario.

Datos recolectados:

• Deshornados forzados.

Se definen como un deshornado forzado o con alta resistencia aquel en que se registra en el motor que acciona el dispositivo empujador una intensidad máxima mayor de 310 A.

• Bloqueos de hornos.

Este apartado trata de aquellos hornos cuya carga no se ha podido retirar con el dispositivo empujador de la máquina debido a que el cok se atasca en su interior.

• Reparación de hornos con refractario.

Las reparaciones de refractarios en los hornos se han realizado mediante soldadura cerámica o un combinado de la citada soldadura más unas piezas refractarias de sílice fundida que se denominarán FSP.

El alcance de las reparaciones con soldadura cerámica se cuantificará por su masa en Kg y de la cantidad de FSP instaladas en unidades. En el caso de existir reparaciones por sustitución de piezas se cuantificarían por el número de canales de caldeo reparados.

4.3. Resultados estudio transversal.

4.3.1. Deshornados con alta resistencia.

En las tablas ubicadas a continuación, se muestra el número de veces que el motor eléctrico del dispositivo empujador dio un dato de amperaje superior a 310 A durante la evacuación del cok de los hornos. También refleja el porcentaje de deshornados forzados en un horno con respecto al total anual.

En cada una de las tablas se reflejan los datos de un grupo de dos baterías de treinta hornos cada una. En columnas diferentes se ubicarán los datos del periodo de estudio transversal de dos años.

Los resultados serán interpretados posteriormente en el apartado 4.3.4.

En la tabla 4.1 se lista el número de deshornados con alta resistencia de las baterías A y B.

Tabla 4.1. Deshornados con alta resistencia en baterías A y B.

	Añ	io 1	Añ	io 2		Aî	io 1	Aí	io 2
Horno	N°	%	N°	%	Horno	N°	%	N°	%
A01	36	7	13	2,5	B01	36	7	19	3,72
A02	51	10	43	8,4	B02	35	6,8	9	1,76
A03	37	7,2	26	5,1	B03	38	7,4	8	1,57
A04	54	11	24	4,7	B04	29	5,7	11	2,15
A05	44	8,6	31	6,1	B05	21	4,1	8	1,57
A06	33	6,5	31	6,1	B06	13	2,5	2	0,39
A07	32	6,3	30	5,9	B07	23	4,5	5	0,98
A08	30	5,9	45	8,8	B08	23	4,5	1	0,2
A09	30	5,9	22	4,3	B09	33	6,5	19	3,72
A10	38	7,4	39	7,6	B10	19	3,7	6	1,17
A11	44	8,6	28	5,5	B11	11	2,2	7	1,37
A12	31	6,1	9	1,8	B12	7	1,4	2	0,39
A13	29	5,7	8	1,6	B13	9	1,8	7	1,37
A14	41	8	20	3,9	B14	30	5,9	6	1,17
A15	36	7	21	4,1	B15	45	8,8	34	6,65
A16	51	10	33	6,5	B16	39	7,6	66	12,92
A17	43	8,4	18	3,5	B17	37	7,2	16	3,13
A18	30	5,9	4	0,8	B18	42	8,2	14	2,74
A19	26	5,1	12	2,3	B19	33	6,5	13	2,54
A20	18	3,5	9	1,8	B20	16	3,1	6	1,17
A21	42	8,2	17	3,3	B21	29	5,7	4	0,78
A22	26	5,1	8	1,6	B22	36	7	8	1,57
A23	39	7,6	9	1,8	B23	25	5,3	2	0,39
A24	36	7	10	2	B24	25	4,9	13	2,54
A25	47	9,2	35	6,8	B25	65	13	119	23,29
A26	45	8,8	20	3,9	B26	32	6,3	28	5,48
A27	57	11	14	2,7	B27	26	5,1	16	3,13
A28	48	9,4	21	4,1	B28	56	11	56	10,96
A29	31	6,1	21	4,1	B29	29	5,7	17	3,33
A30	32	6,3	12	2,3	B30	43	8,4	26	5,09

En la tabla 4.2 se enumera el número de deshornados con alta resistencia de las baterías C y D.

Tabla 4.2. Deshornados con alta resistencia en baterías C y D.

	Λ÷	ĭo 1	Año	2		Λ;	ĭo 1	Λ÷	io 2
Horno	N°	%	N°	%	Horno	N°	%	N°	%
C01	42	8,22	9	1,76	D01	17	3,33	8	1,57
C02	38	7,44	8	1,57	D02	25	4,89	6	1,17
C03	13	2,54	9	1,76	D03	22	4,31	11	2,15
C04	20	3,91	27	5,28	D04	11	2,15	15	2,94
C05	17	3,33	5	0,98	D05	20	3,91	6	1,17
C06	12	2,35	9	1,76	D06	11	2,15	6	1,17
C07	17	3,33	7	1,37	D07	14	2,74	17	3,33
C08	18	3,52	9	1,76	D08	12	2,35	8	1,57
C09	17	3,33	21	4,11	D09	12	2,35	5	0.98
C10	19	3,72	33	6,46	D10	35	6,85	12	2,35
C11	23	4,50	18	3,52	D11	36	7,05	8	1,57
C12	11	2,15	13	2,54	D12	11	2,15	7	1,37
C13	19	3,72	11	2,15	D13	17	3,33	23	4,50
C14	25	4,89	27	5,28	D14	14	2,74	19	3,72
C15	25	4,89	15	2,94	D15	24	4,70	33	6,46
C16	14	2,74	15	2,94	D16	43	8,41	13	2,54
C17	17	3,33	48	9,39	D17	19	3,72	13	2,54
C18	8	1,57	13	2,54	D18	18	3,52	6	1,17
C19	16	3,13	8	1,57	D19	11	2,15	7	1,37
C20	16	3,13	13	2,54	D20	18	3,52	7	1,37
C21	11	2,15	59	11,55	D21	18	3,52	8	1,57
C22	13	2,54	11	2,15	D22	28	5,48	5	0,98
C23	18	3,52	8	1,57	D23	17	3,33	10	1,96
C24	18	3,52	8	1,57	D24	11	2,15	8	1,57
C25	17	3,33	13	2,54	D25	15	2,94	5	0,98
C26	15	2,94	17	3,33	D26	19	3,72	6	1,17
C27	47	9,20	18	3,52	D27	16	3,13	9	1,76
C28	23	4,50	29	5,68	D28	19	3,72	7	1,37
C29	26	5,09	90	17,61	D29	11	2,15	5	0,98
C30	28	5,48	60	11,74	D30	17	3,33	12	2,35

En la tabla 4.3 se lista el número de deshornados con alta resistencia de las baterías E y F.

Tabla 4.3. Deshornados con alta resistencia en baterías E y F.

	Aí	ño 1	Ai	ño 2		Aí	ĭo 1	Aí	io 2
Horno	N°	%	N°	%	Horno	Nº	%	N°	%
E01	46	9,00	52	10,18	F01	5	0,98	4	0,78
E02	3	0,59	10	1,96	F02	8	1,57	13	2,54
E03	23	4,50	7	1,37	F03	13	2,54	8	1,57
E04	42	8,22	11	2,15	F04	23	4,50	12	2,35
E05	25	4,89	25	4,89	F05	18	3,52	19	3,72
E06	25	4,89	10	1,96	F06	11	2,15	17	3,33
E07	20	3,91	16	3,13	F07	5	0,98	5	0,98
E08	16	3,13	5	0,98	F08	11	2,15	6	1,17
E09	20	3,91	7	1,37	F09	12	2,35	5	0,98
E10	30	5,87	43	8,41	F10	21	4,11	2	0,39
E11	12	2,35	32	6,26	F11	12	2,35	3	0,59
E12	12	2,35	36	7,05	F12	12	2,35	12	2,35
E13	14	2,74	17	3,33	F13	17	3,33	5	0,98
E14	16	3,13	18	3,52	F14	6	1,17	7	1,37
E15	16	3,13	31	6,07	F15	9	1,76	6	1,17
E16	20	3,91	36	7,05	F16	9	1,76	17	3,33
E17	7	1,37	8	1,57	F17	5	0,98	7	1,37
E18	53	10,37	10	1,96	F18	6	1,17	2	0,39
E19	14	2,74	25	4,89	F19	22	4,31	10	1,96
E20	29	5,68	14	2,74	F20	9	1,76	4	0,78
E21	11	2,15	18	3,52	F21	6	1,17	4	0,78
E22	5	0,98	6	1,17	F22	10	1,96	8	1,57
E23	11	2,15	10	1,96	F23	8	1,57	3	0,59
E24	6	1,17	8	1,57	F24	18	3,52	25	4,89
E25	12	2,35	13	2,54	F25	5	0,98	4	0,78
E26	14	2,74	8	1,57	F26	24	4,70	9	1,76
E27	14	2,74	4	0,78	F27	8	1,57	9	1,76
E28	19	3,72	19	3,72	F28	3	0,59	9	1,76
E29	14	2,74	12	2,35	F29	24	4,70	21	4,11
E30	9	1,76	22	4,31	F30	9	1,76	51	9,98

En la tabla 4.4 se contabiliza el número de deshornados con alta resistencia de las baterías G y H.

Tabla 4.4. Deshornados con alta resistencia en baterías G y H.

	Ai	ňo 1	Aí	ño 2		Aí	ĭo 1	Aí	ĭo 2
Horno	N°	%	N°	%	Horno	N°	%	N°	%
G01	35	6,85	25	4,89	H01	1	0,20	1	0,20
G02	2	0,39	12	2,35	H02	1	0,20	2	0,39
G03	28	5,48	17	3,33	H03			1	0,20
G04	11	2,15	3	0,59	H04	3	0,59	12	2,35
G05	3	0,59	11	2,15	H05	1	0,20	7	1,37
G06			4	0,78	H06	28	5,48	2	0,39
G07	8	1,57	2	0,39	H07	2	0,39	4	0,78
G08	8	1,57	33	6,46	H08			4	0,78
G09	14	2,74	6	1,17	H09	4	0,78	6	1,17
G10	33	6,46	3	0,59	H10	3	0,59	11	2,15
G11	3	0,59	2	0,39	H11	4	0,78	11	2,15
G12	3	0,59	4	0,78	H12	7	1,37	15	2,94
G13	19	3,72	2	0,39	H13	4	0,78	33	6,46
G14	3	0,59	5	0,98	H14	4	0,78	3	0,59
G15	52	10,18	1	0,20	H15	4	0,78	10	1,96
G16	7	1,37	8	1,57	H16	6	1,17	8	1,57
G17	2	0,39	2	0,39	H17	14	2,74	11	2,15
G18	4	0,78	7	1,37	H18	7	1,37	26	5,09
G19	5	0,98	1	0,20	H19	26	5,09	13	2,54
G20	17	3,33	3	0,59	H20	3	0,59	3	0,59
G21	2	0,39	21	4,11	H21	4	0,78	2	0,39
G22	22	4,31	3	0,59	H22	13	2,54	5	0,98
G23	5	0,98	1	0,20	H23	5	0,98	3	0,59
G24	9	1,76	5	0,98	H24	8	1,57	21	4,11
G25	1	0,20	1	0,20	H25	5	0,98	15	2,94
G26	33	6,46	1	0,20	H26	2	0,39	5	0,98
G27	36	7,05	4	0,78	H27	1	0,20	3	0,59
G28	9	1,76	14	2,74	H28	7	1,37	5	0,98
G29	11	2,15	2	0,39	H29	36	7,05	10	1,96
G30	1	0,20	4	0,78	H30	3	0,59	6	1,17

4.3.2. Bloqueos de hornos.

A continuación, se presentan los datos del número de bloqueos que experimentaron los hornos de las ocho baterías durante los dos años del periodo de estudio transversal.

Al igual que en el apartado anterior, en cada una de las tablas se anotan los datos de un grupo de dos baterías de treinta hornos cada una con datos separados para cada año.

En la tabla 4.5 se lista el número de bloqueos en los hornos de las baterías A y B.

Tabla 4.5. Bloqueos en hornos en baterías A y B.

	Año 1	Año 2		Año 1	Año 2
Horno	N°	Nº	Horno	N°	Nº
A01	1		B01		1
A02	7	3	B02	2	
A03			B03		
A04	3		B04		
A05	1		B05		
A06		1	B06		
A07	1	1	B07		
A08	2		B08		
A09		1	B09		
A10			B10		
A11	9		B11		
A12	4		B12		
A13	4		B13		
A14	14		B14		
A15			B15		
A16	1		B16	2	
A17			B17		
A18			B18		
A19	1		B19		
A20			B20		
A21	3		B21		
A22	2		B22		
A23	1		B23		
A24	1		B24		
A25	2		B25	2	8
A26	1		B26	2	
A27	1	1	B27		
A28	4		B28	4	
A29	1		B29		
A30		1	B30	1	

En la tabla 4.6 se contabiliza el número de bloqueos de hornos en las baterías C y D.

Tabla 4.6. Bloqueos en hornos en baterías C y D.

	Año 1	Año 2		Año 1	Año 2
Horno	N°	N°	Horno	N°	Nº
C01	8		D01		1
C02	9		D02		
C03			D03		
C04		5	D04		
C05			D05		
C06			D06		
C07			D07		
C08			D08		
C09			D09		
C10		1	D10	4	
C11			D11	5	
C12			D12		
C13			D13		
C14			D14		
C15			D15		
C16			D16	15	
C17			D17		
C18			D18	25	
C19			D19		
C20			D20		
C21		5	D21		
C22			D22	2	
C23			D23		
C24			D24		
C25	1	1	D25		
C26	1	1	D26		
C27	6		D27		
C28		2	D28		
C29			D29		
C30	7	4	D30	1	1

En la tabla 4.7 se enumeran los bloqueos de hornos en las baterías E y F.

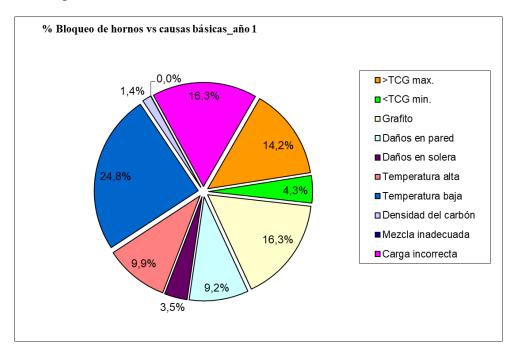
Tabla 4.7. Bloqueos en hornos en baterías E y F.

	Año 1	Año 2		Año 1	Año 2
Horno	N°	N°	Horno	Nº	N°
E01		8	F01		6
E02			F02		0
E03			F03		
E04	15		F04	1	

E05		3	F05	1	3
E06		1	F06	1	
E07		1	F07		
E08			F08	4	
E09			F09		
E10			F10		
E11		25	F11		
E12		12	F12		
E13		1	F13	8	
E14		1	F14		
E15		2	F15		
E16			F16		
E17			F17		
E18	21		F18		
E19		2	F19	1	1
E20	13		F20		
E21		1	F21		
E22			F22	11	
E23			F23		
E24			F24	9	1
E25		1	F25		
E26		8	F26		
E27			F27	14	
E28		1	F28		
E29			F29	1	8
E30		18	F30	6	15

En la tabla 4.8 se lista el número de bloqueos en los hornos de las baterías G y H.

Tabla 4.8. Bloqueos en hornos en baterías G y H.


Año 1	Año 2		Año 1	Año 2
N°	Nº	Horno	N°	N°
		H01	1	
	1	H02		
12	1	H03		
		H04		
		H05		
		H06	5	
		H07		
		H08		
		H09		
2	1	H10		
0		H11		
1	1	H12		
		H13		
	N° 12 2 0	N° N° 1 12 1 2 1 0	N° N° Horno H01 1 H02 12 1 H03 H04 H05 H06 H07 H08 H09 2 1 H10 0 H11 1 H12	N° Horno N° H01 1 1 H02 12 1 H03 H04 H05 H06 5 H07 H08 H09 H10 1 H1 1 H12

G14			H14	1	
G15	6	2	H15		
G16			H16	1	
G17	12		H17		
G18			H18	1	
G19			H19	3	
G20	1		H20		
G21	1	1	H21	1	
G22			H22	1	
G23			H23	2	
G24			H24	1	
G25			H25	1	
G26	5	1	H26	1	
G27	2		H27	1	
G28	2		H28		
G29			H29	12	
G30		14	H30	1	
•		•	•	•	

4.3.2.1. Causas de los bloqueos de hornos.

En las figuras inferiores 4.1 y 4.2 se puede apreciar la proporción de bloqueos de hornos en función de las causas que los provocan en los dos años en que se desarrolla el estudio transversal. Las causas con mayor repercusión en el primer año son una deficiente temperatura de los hornos, una carga incorrecta y adherencias de grafito en las paredes de refractario.

En el segundo año la causa principal en los bloqueos de los hornos es la adherencia de grafito en las paredes de los hornos.

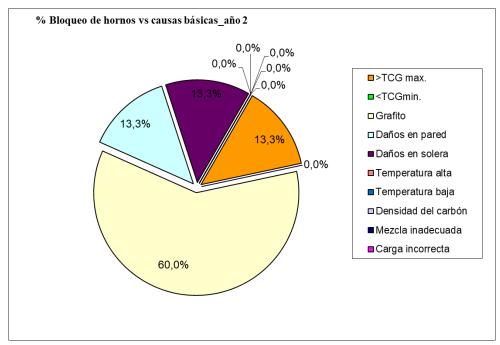


Figura 4.1. Causas de los bloqueos de hornos en el año 1.

Figura 4.2. Causas de los bloqueos de hornos en el año 2.

4.3.3. Hornos con reparaciones.

En las tablas inferiores se muestra el alcance de las reparaciones llevadas a cabo mediante soldadura cerámica (SC) y piezas de sílice fundida (FSP) durante los dos años de operación.

La soldadura cerámica aplicada vendrá expresada en kilogramos y las piezas de sílice fundida en unidades.

En cada tabla se anotarán los datos de un grupo de dos baterías en los dos años del periodo de estudio.

La tabla 4.9 refleja la cantidad de soldadura cerámica y las piezas FSP instaladas en las baterías A y B.

Tabla 4.9. Hornos reparados con soldadura cerámica y FSP en baterías A y B.

_	Añ	o 1	Añ	o 2		Añ	o 1	Añ	o 2
Horno	SC	FSP	SC	FSP	Horno	SC	FSP	SC	FSP
A01	2625		3850	74	B01				
A02					B02	1300	11	1625	
A03	1875				B03			3925	18
A04	2725	5			B04	3850	48	2500	
A05	3825	26			B05	2225	2		
A06	3275	4			B06			2400	
A07	1025		2375	15	B07			2100	
A08	900	4			B08			2400	
A09	2050	3			B09			5125	26
A10	2425		400		B10	2825	8		
A11	2575		5325	55	B11			825	
A12	3950	7			B12			2300	
A13	1150		3550	5	B13				
A14	2225				B14	1300	12	1800	
A15	1700	6	2325		B15	2300			
A16	3300	72			B16	2225	32	2425	
A17	5450	70	3325		B17	5125	67	100	
A18	750	4	75		B18	2725	31	275	
A19	75		25		B19	550	6		
A20	1900	6			B20	2325	11		
A21	1650				B21	1150	19		
A22	3400	10			B22			3675	28
A23	125	2	2450	2	B23	75	2		
A24			1875	15	B24	3325	10	100	
A25			3325		B25	1125	7	2550	6
A26	650				B26			350	
A27			375		B27			1950	
A28	1475	15	2825		B28	2600			
A29			3450		B29	2950			
A30					B30	2625		2000	

La tabla 4.10 informa de la cantidad de soldadura cerámica y las piezas FSP colocadas en las baterías C y D.

Tabla 4.10. Hornos reparados con soldadura cerámica y FSP en baterías C y D.

	Añ	o 1	Añ	o 2		Añ	o 1	Añ	0 2
Horno	SC	FSP	SC	FSP	Horno	SC	FSP	SC	FSP
C01	2950	49	1775	44	D01			2150	
C02	4575	39			D02				
C03	3250	51			D03				
C04			4275	20	D04	500			
C05					D05				
C06			1950		D06	1225			
C07			1525		D07				
C08					D08				
C09			2300		D09				
C10					D10	875			
C11			1500		D11	925		50	
C12	1150				D12			1575	
C13			2225		D13			1675	
C14			2550	6	D14				
C15	1025		1675		D15	1525			
C16	1000				D16			2250	
C17			2000		D17				
C18	825				D18	100		1950	
C19			2775		D19				
C20	2175	35			D20	700			
C21			3825	63	D21				
C22	50		1475		D22	950		150	
C23	1375		1050	12	D23				
C24	250				D24	2100			
C25	1175				D25				
C26	1400		2575		D26				
C27	2100	23	775		D27	1525			
C28	3400		975		D28	1600			
C29	400		1200		D29				
C30	3000	31	1300		D30	200		1875	9

La tabla 4.11 lista la cantidad de soldadura cerámica y las piezas FSP instaladas en las baterías E y F.

Tabla 4.11. Hornos reparados con soldadura cerámica y FSP en baterías E y F.

	Año 1		Año 2			Año 1		Año 2	
Horno	SC	FSP	SC	FSP	Horno	SC	FSP	SC	FSP
E01			2350		F01			1325	
E02					F02				
E03					F03				
E04	2325				F04				
E05			1050		F05			1100	
E06	625				F06				
E07	150				F07				
E08					F08	1350			
E09			125		F09	300			
E10			150		F10			1200	
E11			1400		F11				
E12			1775		F12				
E13			175		F13	2575			
E14					F14				
E15			1125		F15				
E16			775		F16				
E17					F17				
E18	2325				F18	1850			
E19			1150		F19				
E20	2775				F20			850	
E21			1325		F21			1100	
E22	1050				F22	2400		150	
E23					F23				
E24	75		1200		F24	2525			
E25			200		F25	2500			
E26			1875		F26			250	
E27					F27	2325			
E28					F28	825			
E29			1050		F29			1650	
E30	225	1	2400	20	F30	2450		1325	13

La tabla 4.12 refleja la cantidad de soldadura cerámica y las piezas FSP instaladas en las baterías G y H.

Tabla 4.12. Hornos reparados con soldadura cerámica y FSP en baterías G y H.

	Año 1		Año 2			Año 1		Año 2	
Horno	SC	FSP	SC	FSP	Horno	SC	FSP	SC	FSP
G01	2850		1825		H01				
G02					H02	750			
G03	2450				H03				
G04					H04			1175	
G05					H05				
G06					H06	2525			
G07					H07	1025			
G08			1050		H08				
G09	775				H09				
G10	2200				H10				
G11					H11			1025	
G12					H12				
G13	1300				H13			1675	
G14			300		H14				
G15	2500				H15	150			
G16					H16				
G17	2275				H17	525		175	
G18					H18				
G19					H19	1400			
G20	2150				H20				
G21			1425		H21	650			
G22	2275				H22	175			
G23	175				H23				
G24					H24			1075	
G25	2125				H25				
G26	2525				H26				
G27	2350				H27				
G28			1500		H28				
G29	200				H29	2150			
G30	1025	1	2525	20	H30	2875			13

4.3.4. Interpretación de resultados.

Este apartado establecerá la relación existente entre los deshornados forzados y los bloqueos con los posibles efectos en el refractario de los hornos. Como se mencionó en capítulos anteriores tanto los deshornados forzados como los bloqueos de hornos tienen un impacto negativo en el refractario silíceo. Con lo cual, un adecuado control del proceso que minimice la posibilidad de la aparición de deshornados con alta resistencia o bloqueos de hornos mantendrá el refractario en condiciones de operación por un periodo de tiempo mayor.

4.3.4.1 Deshornados forzados versus reparaciones.

Las siguientes figuras muestran ambos conceptos en los hornos de las distintas baterías en estudio.

En cada una de las figuras de este apartado se compara individualmente cada uno de los 30 hornos de la batería con los datos de deshornados con alta resistencia y el alcance de las reparaciones. En lo que respecta a las reparaciones se aporta por un lado el dato de la soldadura cerámica aplicada y por otro la colocación de piezas de sílice fundida si se diese el caso.

Las barras de color gris corresponden a los deshornados con alta resistencia ocurridos en cada horno durante un año. En azul se refleja la soldadura cerámica aplicada en el horno en sus reparaciones anuales. En naranja se muestran las piezas de sílice fundida instaladas como sustitución de piezas de la sílice original del horno de cok.

En las figuras 4.3 y 4.4 aparecen los datos de deshornados forzados, soldadura cerámica y piezas FSP, en los dos años de estudio en la batería A.

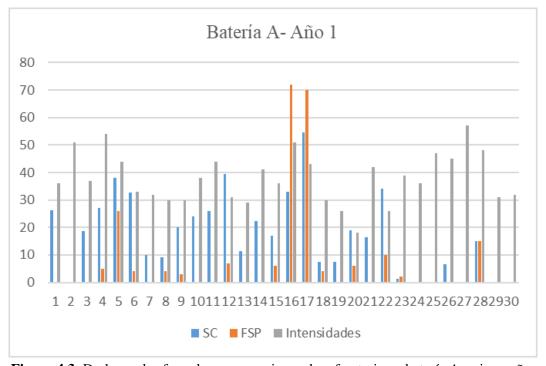


Figura 4.3. Deshornados forzados y reparaciones de refractario en batería A, primer año.

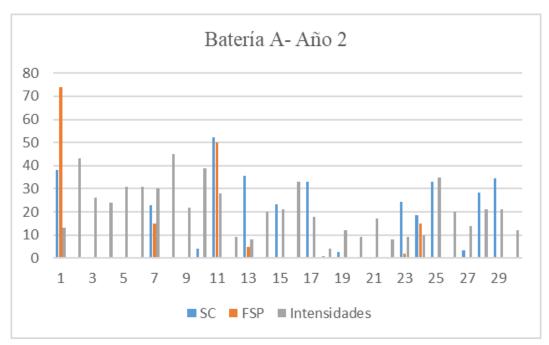


Figura 4.4. Deshornados forzados y reparaciones de refractario en batería A, segundo año.

Comparando los datos de los deshornados con alta resistencia con las reparaciones realizadas en el refractario del horno correspondiente, se pueden extraer las siguientes conclusiones:

Todos los hornos de la batería A estuvieron expuestos a deshornados forzados con un promedio de 7,43 % el primer año y un 4,13 % el segundo periodo: el primer año, el horno con menor número de deshornados forzosos (A20) tuvo 18, un 3,5 % y el que más forzados experimentó fue el A27 con 57, un 11 %. Durante el segundo año entre un 0,8 % el A18 con 4 y un 8,8 % el A08 con 45.

Los hornos donde se realizaron reparaciones presentaron un promedio de 7,21 % de deshornados forzados el primer año, mientras que el promedio durante el segundo año fue de un 3,68 %. Por lo tanto, se puede concluir que los hornos reparados estuvieron previamente expuestos a un alto número de deshornados forzados.

El segundo período revela niveles más bajos de deshornados forzados en aquellos hornos donde se llevó a cabo previamente una reparación del refractario.

A continuación, en las figuras 4.5 y 4.6 se muestran los datos de deshornados con alta resistencia, soldadura cerámica aplicada y piezas de sílice fundida colocadas, en los dos años de estudio en la batería B.

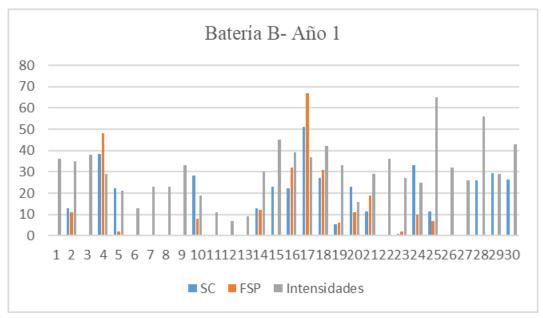


Figura 4.5. Deshornados forzados y reparaciones de refractario en batería B, primer año.

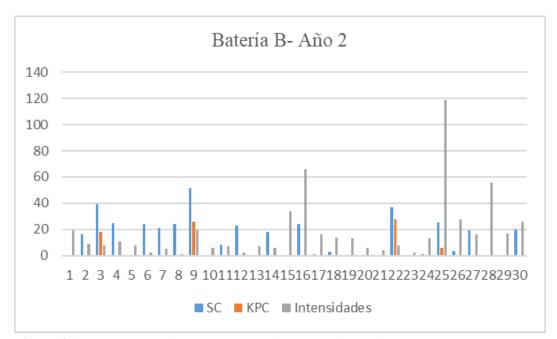


Figura 4.6. Deshornados forzados y reparaciones de refractario en batería B, segundo año.

Todos los hornos de la batería B estuvieron expuestos a deshornados forzados, durante el primer año entre un 1,4 % el B12 con 7 y un 13 % el B25 con 65 y el segundo año entre un 0,2 % el B08 con 1 y un 23,29 % el B25 con 119. El promedio de deshornados forzados el primer año fue de un 5,93 % y de un 3,57 % el segundo año.

Los hornos cuyo refractario fue reparado previamente estuvieron sometidos a un alto número de deshornados forzados.

El segundo año los hornos que habían sido reparados sufrieron muchos menos deshornados con alta resistencia excepto el B25 que necesitó reparar su refractario ambos ejercicios.

En las figuras 4.7 y 4.8 aparecen los datos de deshornados forzados, soldadura cerámica y piezas FSP instaladas, durante los dos años de estudio en la batería C.

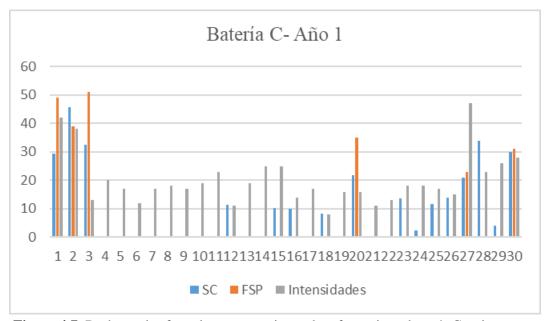


Figura 4.7. Deshornados forzados y reparaciones de refractario en batería C, primer año.

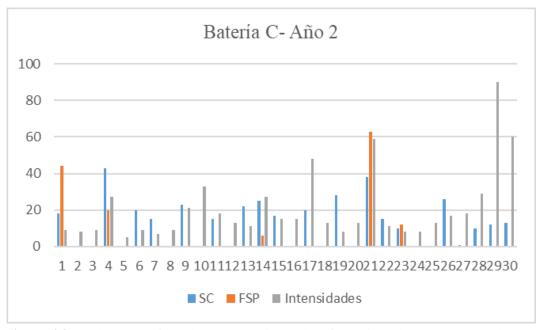


Figura 4.8. Deshornados forzados y reparaciones de refractario en batería C, segundo año.

Todos los hornos de la batería C estuvieron expuestos a deshornados forzados con un promedio de 3,93 % el primer año y un 4,12 % el segundo periodo: el primer año el horno con menor número de deshornados forzosos fue el C18 con 8, un 1,57 % y el que

más forzados experimentó fue el C27 con 47, un 9,2 %. Durante el segundo año el C05 fue el horno que sufrió menor número de deshornados con alta resistencia con 5, un 0,98 % y el que más fue el C29 con 90, un 17,61 %.

Los hornos donde se realizaron reparaciones presentaron un promedio de 6 % de deshornados forzados el primer año, mientras que el promedio durante el segundo año fue de un 5,02 %. De la misma manera que en casos anteriores, se puede concluir que los hornos reparados estuvieron previamente expuestos a un alto número de deshornados forzados.

El segundo período revela niveles más bajos de deshornados forzados en aquellos hornos donde se llevó a cabo previamente una reparación del refractario.

A continuación, en las figuras 4.9 y 4.10 se plasman los datos de deshornados con alta resistencia, soldadura cerámica aplicada y piezas de sílice fundida colocadas, en los dos años de estudio en la batería D.

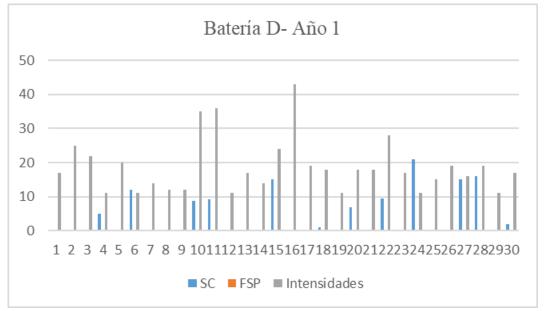


Figura 4.9. Deshornados forzados y reparaciones de refractario en batería D, primer año.

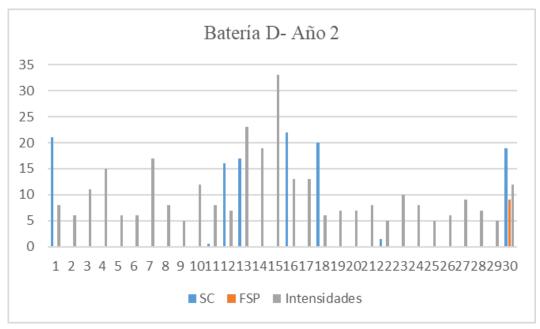


Figura 4.10. Deshornados forzados y reparaciones de refractario en batería D, segundo año.

También en la batería D todos los hornos tuvieron deshornados con alta resistencia con un promedio de 3,66 % el primer año y un 1,99 % el segundo periodo: el primer año los hornos con menos deshornados forzados tuvieron 11, un 2,15 % y el que más forzados experimentó fue el D16 con 43, un 8,41 %. Durante el segundo año los hornos con menor número de deshornados con alta resistencia experimentaron 6, un 1,17 % y el que más fue el D15 con 33, un 6,46 %.

Los hornos donde se realizaron reparaciones presentaron un promedio de 3,98 % de deshornados forzados el primer año, mientras que el promedio durante el segundo año fue de un 2 %. Los hornos reparados estuvieron previamente expuestos a un alto número de deshornados forzados.

En el segundo año los deshornados con alta resistencia, en aquellos hornos donde se llevó a cabo previamente una reparación del refractario, fueron menores.

En las figuras 4.11 y 4.12 aparecen los datos de deshornados forzados, soldadura cerámica y piezas FSP, en los dos años de estudio en la batería E.

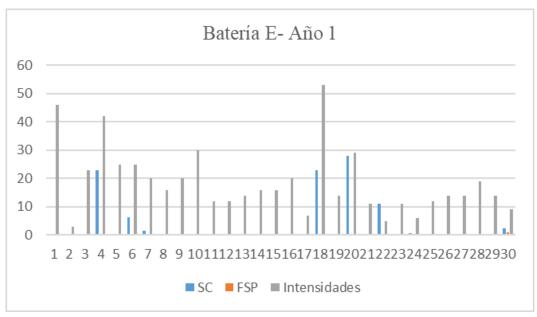


Figura 4.11. Deshornados forzados y reparaciones de refractario en batería E, primer año.

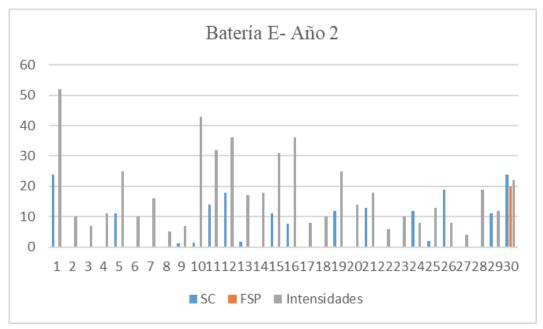


Figura 4.12. Deshornados forzados y reparaciones de refractario en batería E, segundo año.

Todos los hornos de la batería E estuvieron expuestos a deshornados forzados con un promedio de 3,64 % el primer año y un 3,48 % el segundo periodo: el primer año, el horno con menor número de deshornados con alta resistencia fue el E02 con 3, un 0,59 % y el que más forzados experimentó fue el E18 con 53, un 10,37 %. Durante el segundo año el E27 fue el horno que sufrió menor número de forzados con 4, un 0,78 % mientras que el E01 sufrió 52, un 10,18 %.

Los hornos donde se realizaron reparaciones presentaron un promedio de 4,6 % de deshornados con alta resistencia el primer año, mientras que el promedio durante el segundo año fue de un 4,7 %.

El segundo período revela niveles más bajos de deshornados forzados en aquellos hornos donde se llevó a cabo previamente una reparación del refractario excepto el E30 donde aumentaron de manera considerable.

A continuación, en las figuras 4.13 y 4.14 se muestran los datos de deshornados forzados, soldadura cerámica aplicada y piezas de sílice fundida instaladas, en los dos años de estudio en la batería F.

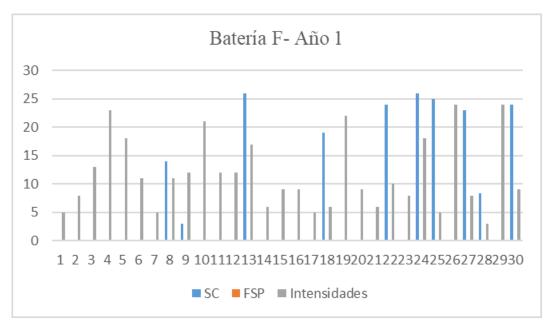
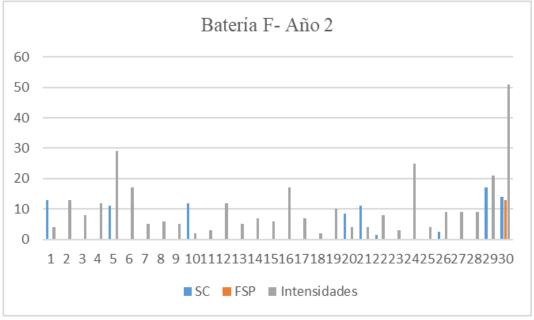
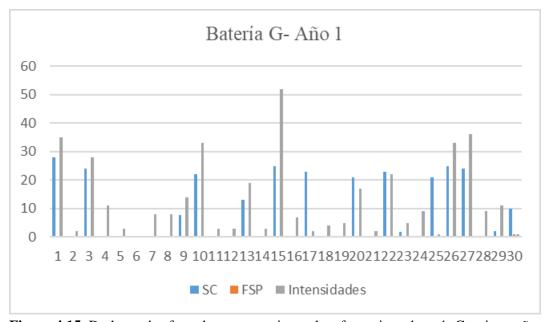


Figura 4.13. Deshornados forzados y reparaciones de refractario en batería F, primer año.




Figura 4.14. Deshornados forzados y reparaciones de refractario en batería F, segundo año.

También en la batería F todos los hornos tuvieron deshornados forzados con un promedio de 2,28 % el primer año y un 2 % el segundo periodo: el primer año el horno con menos deshornados con alta resistencia fue el F28 con 3, un 0,59 % y los que más forzados experimentaron fueron el F26 y F29 con 24 cada uno, un 4,7 %. Durante el segundo año el horno con menor número de forzados (F10) tuvo 2, un 0,39 % y el que más fue el F30 con 51, un 9,98 %.

Los hornos donde se realizaron reparaciones presentaron un promedio de 1,93 % de deshornados forzados el primer año, mientras que el promedio durante el segundo año fue de un 2,87 %. Los hornos reparados estuvieron previamente expuestos a un alto número de deshornados forzados.

En el segundo año los deshornados con alta resistencia en aquellos hornos donde se llevó a cabo una reparación del refractario previamente, fueron menores excepto el F24 y F30 en los cuales se llevaron reparaciones de refractario en ambos periodos. Los hornos F27 y F28 experimentaron un moderado aumento de forzados a pesar de ser reparados en el primer año.

En las figuras 4.15 y 4.16 aparecen los datos de deshornados con alta resistencia, soldadura cerámica aplicada y piezas FSP instaladas, en los dos años de estudio en la batería G.

Figura 4.15. Deshornados forzados y reparaciones de refractario en batería G, primer año.

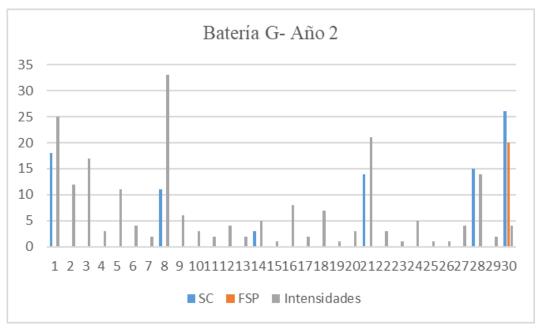


Figura 4.16. Deshornados forzados y reparaciones de refractario en batería G, segundo año.

Todos los hornos de la batería G excepto el G06 estuvieron expuestos a deshornados con alta resistencia con un promedio de 2,52 % el primer año y un 1,35 % el segundo periodo: el primer año el horno con menor número de deshornados forzados fue el G25 con 1, un 0.2 % y el que más forzados experimentó fue el G15 con 52, un 10,18 %. Durante el segundo año los hornos que sufrieron menor número de forzados tuvieron 1, un 0,2 % y el que más tuvo fue el G08 con 33, un 6,46 %.

Los hornos donde se realizaron reparaciones presentaron un promedio de 4 % de deshornados con alta resistencia el primer año, mientras que el promedio durante el segundo año fue de un 3,32 %.

El segundo período revela niveles más bajos de deshornados forzados en aquellos hornos donde se llevó a cabo previamente una reparación del refractario excepto el G30 donde se realizó reparación del refractario en los dos años de estudio.

A continuación, en las figuras 4.17 y 4.18 se muestran los datos de deshornados con alta resistencia, soldadura cerámica aplicada y piezas de sílice fundida colocadas, en los dos años de estudio en la batería H.

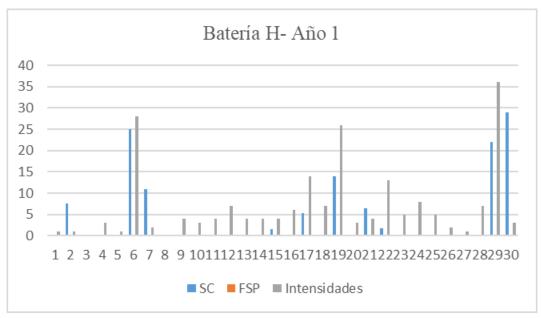


Figura 4.17. Deshornados forzados y reparaciones de refractario en batería H, primer año.

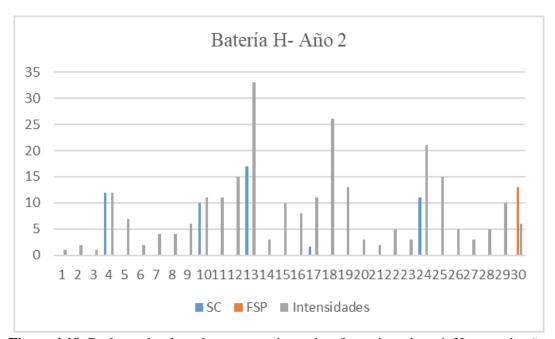


Figura 4.18. Deshornados forzados y reparaciones de refractario en batería H, segundo año.

Excepto el H03 y el H08 todos los hornos de la batería tuvieron deshornados forzados con un promedio de 1,34 % el primer año y un 1,68 % el segundo periodo: el primer año los hornos con menos deshornados con alta resistencia recibieron 1 cada uno, un 0,2 % y el que más forzados experimentó fue el H29 con 36, un 7,5 %. Durante el segundo año los hornos con menor número de forzados (H01, H03) tuvieron 1, un 0,2 % y el que más experimentó fue el H13 con 33, un 6,46 %.

Los hornos donde se realizaron reparaciones presentaron un promedio de 2,56 % de deshornados forzados el primer año, mientras que el promedio durante el segundo año

fue de un 3,03 %. Los hornos reparados estuvieron previamente expuestos a deshornados con alta resistencia.

En el segundo año los deshornados forzados en aquellos hornos donde se llevó a cabo previamente una reparación del refractario fueron menores excepto el H02, H07 y el H15 experimentaron un moderado aumento de forzados a pesar de ser reparados en el primer periodo.

4.3.4.2. Bloqueo de hornos versus reparaciones.

Los datos sobre bloqueos de hornos y reparaciones del refractario se muestran en las siguientes figuras. En las figuras de este apartado se refleja gráficamente para cada uno de los 30 hornos de la batería los bloqueos experimentados y el alcance de las reparaciones. Al igual que en el apartado anterior para las reparaciones se aporta por un lado el dato de la cantidad de soldadura cerámica aplicada y por otro el número de piezas de sílice fundida instaladas en caso de existir.

Las barras de color gris corresponden a los bloqueos ocurridos en cada horno durante un año. En azul se refleja la soldadura cerámica aplicada en el horno en sus reparaciones anuales. En naranja se muestran las piezas de sílice fundida instaladas como sustitución de piezas de la sílice original del horno de cok.

En las figuras 4.19 y 4.20 aparecen los datos de bloqueos de hornos, la soldadura cerámica aplicada y piezas FSP instaladas, en los dos años de estudio en la batería A.

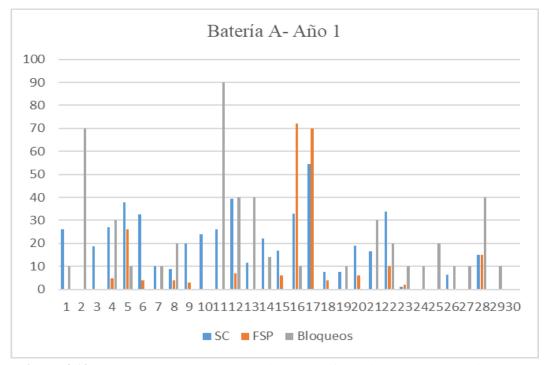


Figura 4.19. Hornos bloqueados y reparaciones de refractario en batería A, primer año.

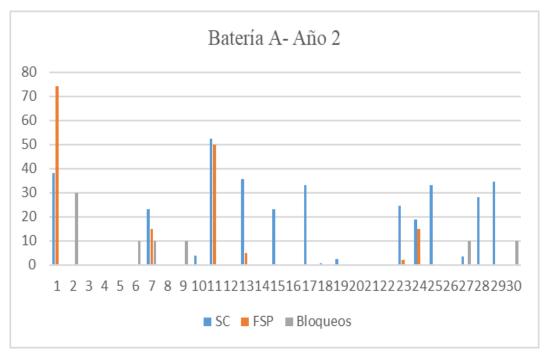


Figura 4.20. Hornos bloqueados y reparaciones de refractario en batería A, segundo año.

Hornos con bloqueos durante el período de estudio: 24 (80 %).

Hornos con bloqueos durante el primer año: 21 (70 %). Los hornos sufrieron 64 bloqueos.

Hornos con bloqueos durante el segundo año: 6 (20 %). Hubo 8 bloqueos, 3 de ellos en el horno A02.

La mayoría de los hornos con bloqueos se ocurrieron durante el primer año, representaron el 88,9 % del total.

Hornos con bloqueos durante los dos años de estudio: 3 (10 %). Hornos A02, A07 y A27.

Hornos con alto número de bloqueos: A02 (10), A11 (9), A12 (4), A13 (4), A14 (14) y A28 (4).

Hornos con reparaciones en ambos años:

A01 tuvo una reparación importante en el segundo año. La reparación realizada en el primer año fue anterior a la fecha del bloqueo.

A07 fue reparado en el segundo año mediante soldadura cerámica y reemplazo de partes con FSP's.

Al1 sufrió 9 bloqueos y fue reparado en el segundo año por soldadura cerámica, 5,3 toneladas y 55 FSP's.

A13 presentó bloqueos, 3,55 toneladas y 5 FSP's durante el segundo año.

A15 fue reparado con 2,3 TM, sin bloqueos previos.

A17 tuvo una reparación importante y ningún bloqueo anterior.

A23: la reparación en el segundo año fue mayor que la del primer año.

A28: la reparación en el segundo año fue mayor que la del primer año.

A continuación, en las figuras 4.21 y 4.22 se muestran los datos de hornos bloqueados, soldadura cerámica aplicada y piezas de sílice fundida colocadas, en los dos años de estudio en la batería B.

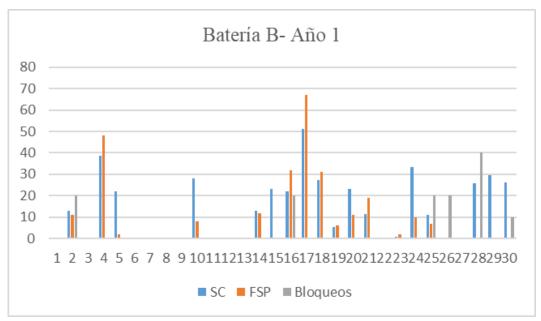


Figura 4.21. Hornos bloqueados y reparaciones de refractario en batería B, primer año.

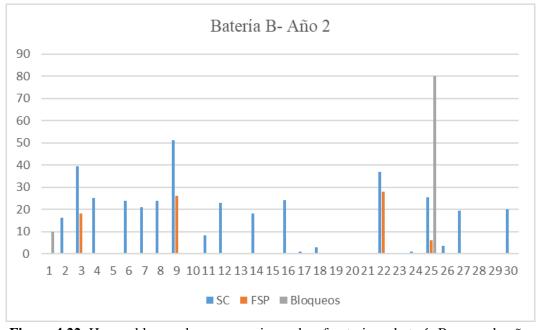


Figura 4.22. Hornos bloqueados y reparaciones de refractario en batería B, segundo año.

Hornos con bloqueos durante el período de estudio: 7 (23,3 %).

Hornos con bloqueos durante el primer año: 6 (20 %). Hubo 13 bloqueos.

Hornos con bloqueos durante el segundo año: 2 (6,6 %). Hubo 9 bloqueos, 8 de ellos en el horno B25.

La mayoría de los bloqueos ocurrieron durante el primer año (59,1 % del total). El horno B25 tuvo casi todos los bloqueos durante el segundo año.

Horno con bloqueos en los dos años de estudio: 1 (3,3 %). Horno B25.

Hornos con un elevado número de bloqueos: B25 (10), B28 (4).

Hornos con reparaciones en ambos años:

B02 se reparó en el segundo año después de tener 2 bloqueos el año anterior.

B04 recibió una reparación mayor en el primer año y necesitó reparación en el segundo año, aunque no presentaba bloqueos anteriores.

B16 fue reparado en el segundo año, después de tener 2 bloqueos en el año anterior.

B14, B17, B18 y B24 fueron reparados en el segundo año, sin bloqueos previos.

B25 fue reparado en el segundo año, después de tener 2 bloqueos en el año anterior y 8 en el segundo año.

B30 fue reparado en el segundo año, tras tener un horno bloqueado en el año anterior.

Los siguientes hornos solo tuvieron reparaciones en el segundo año: B03, B06, B07, B08, B09, B11, B12, B22, B26 y B27.

Solo el horno B26 sufrió bloqueos en el año anterior. Además, B03 y B09 recibieron reparaciones importantes.

En las figuras 4.23 y 4.24 aparecen los datos de bloqueos de hornos, la soldadura cerámica aplicada y piezas FSP colocadas, en los dos años de estudio en la batería C.

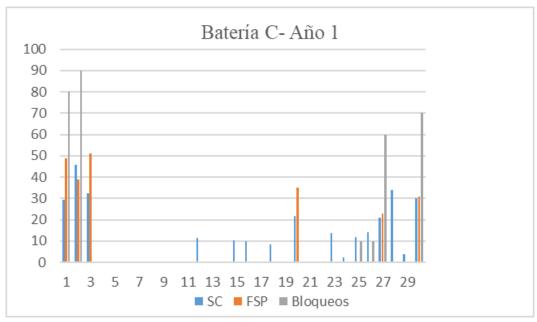


Figura 4.23. Hornos bloqueados y reparaciones de refractario en batería C, primer año.

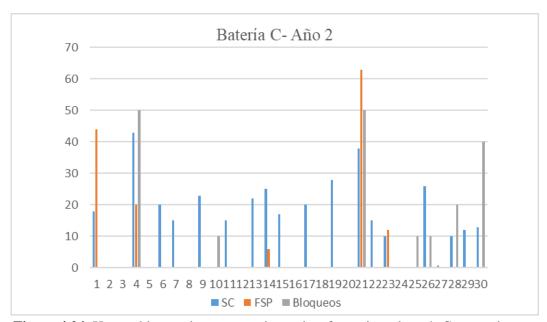


Figura 4.24. Hornos bloqueados y reparaciones de refractario en batería C, segundo año.

Durante el período de estudio 10 hornos tuvieron bloqueos, que es un 33,3 % del total.

Hornos con bloqueos durante el primer año: 6 (20 %). Los hornos sufrieron 32 bloqueos.

Hornos con bloqueos durante el segundo año: 7 (23,33 %). Hubo un total de 19 bloqueos.

Hornos con bloqueos durante los dos años de estudio: 3 (10 %). Hornos C25, C26 y C30.

Hornos con mayor número de bloqueos: C30 (11), C02 (9), C01 (8), C27 (6), C21 (5), y C04 (5).

Hornos con reparaciones en ambos años:

C01 tuvo reparaciones importantes en los dos años, pero ubicadas en zonas diferentes del revestimiento refractario. En ambos años a parte de la soldadura cerámica se colocaron FSP's. En el segundo periodo no hubo bloqueos.

C15, C22, C23 fueron reparados en ambos años mediante soldadura cerámica con un alcance menor y sin haber tenido bloqueos.

C26 se reparó con soldadura cerámica y sufrió un bloqueo en cada periodo.

C27 tuvo 6 bloqueos el primer año y recibió una importante reparación con soldadura cerámica y FSP's, en el segundo año la reparación fue menor y en una zona diferente a la del ejercicio anterior.

C28 se reparó en ambos periodos con 2 bloqueos el segundo año antes de su última reparación.

C29 recibió reparaciones menores sin haber experimentado bloqueos en el periodo de estudio.

C30 presenta bloqueos en ambos años, la reparación del primer año es importante.

En las figuras 4.25 y 4.26 se muestran los datos de bloqueos en hornos, soldadura cerámica aplicada y piezas de sílice fundida colocadas, en los dos años de estudio en la batería D.

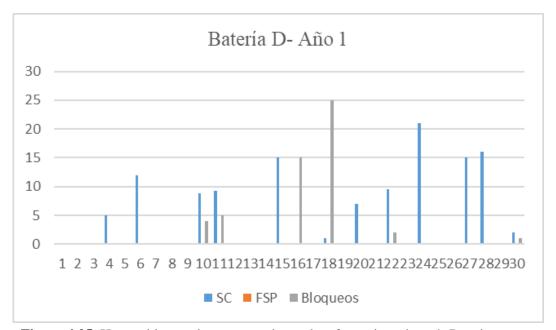


Figura 4.25. Hornos bloqueados y reparaciones de refractario en batería D, primer año.

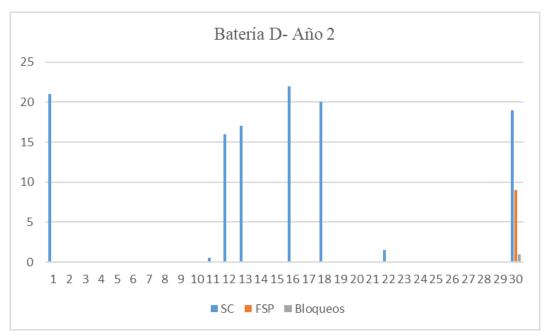


Figura 4.26. Hornos bloqueados y reparaciones de refractario en batería D, segundo año.

Hornos con bloqueos durante el período de estudio: 6 (20 %).

Hornos con bloqueos durante el primer año: 6 (20 %). Hubo 52 bloqueos.

Hornos con bloqueos durante el segundo año: 1 (3,33 %). Hubo 1 bloqueo en el horno D30 el cual también había tenido 1 el año anterior.

Casi todos los bloqueos ocurrieron durante el primer año (98,11 % del total). La mayoría de los bloqueos ocurrieron en los hornos D16 (15) y D18 (25).

El horno D30 es el único que tuvo bloqueos en los dos años de estudio: 1 (3,33 %).

Hornos con reparaciones en ambos años:

Los hornos D11, D18 y D22 recibieron reparaciones en ambos periodos habiendo tenido bloqueos en el primer año.

El horno D30 tiene el primer año una reparación leve y el segundo se aplican 1,9 toneladas de soldadura cerámica y 9 FSP's. En ambos periodos tiene un bloqueo.

Los hornos D10 y D16 experimentaron bloqueos el primer año y posteriormente en el segundo fueron reparados.

Los hornos D15, D24, D27 y D28 tuvieron reparaciones con soldadura cerámica a comienzos del primer año y posteriormente no presentaron bloqueos.

En las figuras 4.27 y 4.28 aparecen los datos de bloqueos de hornos, la soldadura cerámica aplicada y piezas FSP colocadas, en los dos años de estudio en la batería E.

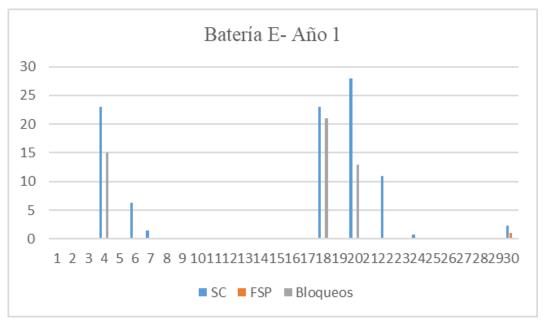


Figura 4.27. Hornos bloqueados y reparaciones de refractario en batería E, primer año.

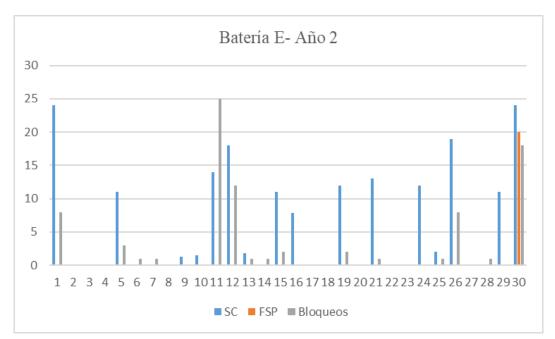


Figura 4.28. Hornos bloqueados y reparaciones de refractario en batería E, segundo año.

Hornos con bloqueos durante el período de estudio: 18 (60 %).

Hornos con bloqueos durante el primer año: 4 (13,33 %). Hubo 98 bloqueos, 49 de ellos en el horno E30.

Hornos con bloqueos durante el segundo año: 15 (50 %). Hubo 85 bloqueos, 25 de ellos en el horno E11.

Hornos con bloqueos en los dos años de estudio: 1 (3,33 %). Horno E30 que tubo 49 bloqueos el primer año y 18 el segundo.

Hornos con un elevado número de bloqueos: E30 (67), E11 (25), E18 (21).

Hornos con reparaciones en ambos años:

E24 en los dos periodos se le realizó una reparación de bajo alcance. Sin bloqueos en ambos años.

E30 recibió una amplia reparación mediante soldadura y piezas FSP's en los dos periodos del estudio. Con bloqueos en los dos años.

Los hornos E01, E05, E11, E12, E19 y E26 recibieron reparaciones con soldadura cerámica después de tener bloqueos en el segundo año.

A continuación, en las figuras 4.29 y 4.30 se muestran los datos de hornos bloqueados, soldadura cerámica aplicada y piezas de sílice fundida colocadas, en los dos años de estudio en la batería F.

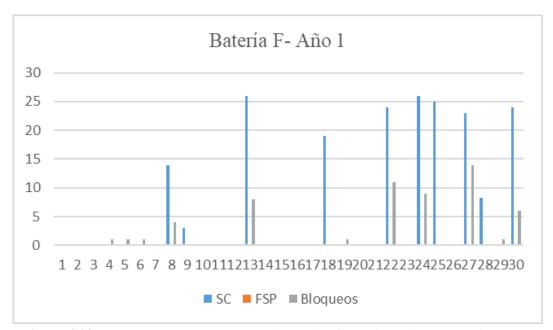


Figura 4.29. Hornos bloqueados y reparaciones de refractario en batería F, primer año.

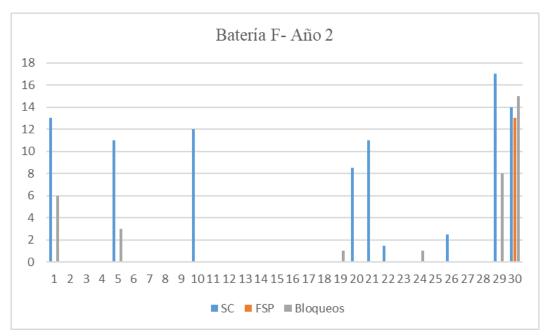


Figura 4.30. Hornos bloqueados y reparaciones de refractario en batería F, segundo año.

Hornos con bloqueos durante el período de estudio: 13 (43,33 %).

Hornos con bloqueos durante el primer año: 11 (36,66 %). Hubo 57 bloqueos.

Hornos con bloqueos durante el segundo año: 6 (20 %). Hubo 34 bloqueos, 15 de ellos en el horno F30.

La mayoría de los bloqueos ocurrieron durante el primer año (62,64 % del total).

Horno con bloqueos en los dos años de estudio: 5 (16,66 %). Hornos F05, F19, F24, F29 y F30.

Hornos con un elevado número de bloqueos: F27 (13), F30 (21).

Hornos con reparaciones en ambos años:

F22 tuvo una amplia reparación durante primer año y una leve intervención el segundo. En el primer periodo sufrió 11 bloqueos.

F30 recibió amplias reparaciones en ambos periodos habiendo experimentado bloqueos en los dos años.

Los hornos F08, F13, F24 y F27 fueron reparados en el primer año, siendo este mismo periodo en el que se produjeron los bloqueos en los mismos.

Los hornos F01, F05 y F17 fueron reparados en el segundo año, periodo en el que se produjeron los bloqueos en los mismos.

En las figuras 4.31 y 4.32 aparecen los datos de bloqueos de hornos, la soldadura cerámica aplicada y piezas FSP instaladas, en los dos años de estudio en la batería G.

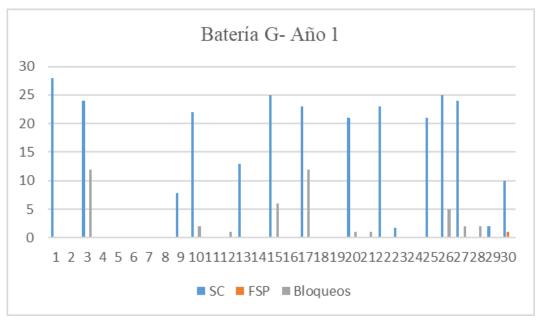


Figura 4.31. Hornos bloqueados y reparaciones de refractario en batería G, primer año.

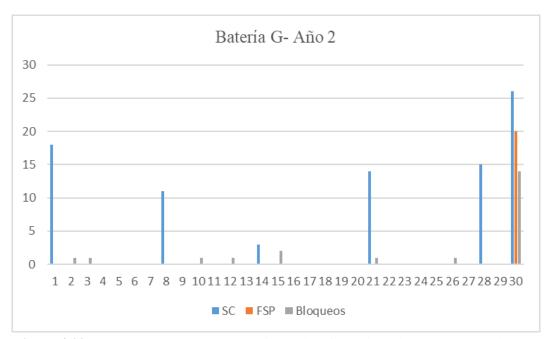


Figura 4.32. Hornos bloqueados y reparaciones de refractario en batería G, segundo año.

Hornos con bloqueos durante el período de estudio: 12 (40 %). Un total de 110 bloqueos en todo el periodo.

Hornos con bloqueos durante el primer año: 11 (36,66 %). Hubo 88 bloqueos, 44 en el horno G30.

Hornos con bloqueos durante el segundo año: 8 (26,66 %). Hubo 22 bloqueos, 14 de ellos en el horno G30.

La mayoría de los bloqueos ocurrieron durante el primer año (80 % del total). El horno G30 atesoró la mayoría de los bloqueos en ambos años.

Hornos con bloqueos en los dos años de estudio: 6 (20 %). Hornos G03, G10, G15, G21, G25 y G30.

Hornos con un elevado número de bloqueos: E03 (12), E17 (12) y E30 (58).

Hornos con reparaciones en ambos años:

El horno G01 tiene reparaciones con soldadura cerámica en ambos años sin presentar bloqueos durante el periodo de estudio.

El horno G30 es sometido a reparaciones importantes con soldadura y FSP's, especialmente en el segundo año. Tiene bloqueos en ambos periodos con mayor impacto en el primer año.

Los siguientes hornos solo tuvieron reparaciones en el primer año: G03, G09, G10, G13, G15, G17, G20, G22, G23, G25, G26 y G27. De los anteriores hornos las reparaciones donde el alcance fue mayor son los cinco que sufrieron bloqueos.

Al igual que en el caso anterior los hornos que solamente recibieron reparaciones el segundo año, aquellas más profundas se llevaron a cabo donde se habían producido bloqueos.

En las figuras 4.33 y 4.34 se muestran los datos de bloqueos en hornos, soldadura cerámica aplicada y piezas de sílice fundida colocadas, en los dos años de estudio en la batería H.

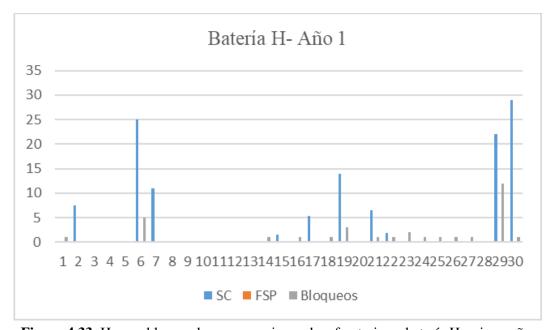


Figura 4.33. Hornos bloqueados y reparaciones de refractario en batería H, primer año.

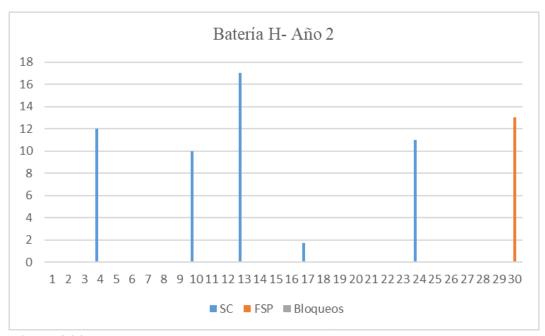


Figura 4.34. Hornos bloqueados y reparaciones de refractario en batería H, segundo año.

Hornos con bloqueos durante el período de estudio: 15 (50 %).

Hornos con bloqueos durante el primer año: 15 (50 %). Los hornos sufrieron 33 bloqueos.

Hornos con bloqueos durante el segundo año: 1 (3,33 %). Hubo 13 bloqueos en el horno H30.

La mayoría de los hornos con bloqueos se presentaron durante el primer año, 71,72 % del total.

El horno H30 es el único de la batería que sufrió bloqueos los dos años, 1 y 13 respectivamente, suponiendo el 28,26 % de los mismos en los dos periodos.

Hornos con reparaciones en ambos años:

El horno H17 es el único que se reparó en ambos años. La reparación más relevante fue en el primero. El horno no tuvo bloqueos en los dos periodos.

Hornos con reparaciones el primer año: H02, H06, H07, h15, H19, H21, H22, H29 y H30. De los anteriores solamente el H06, H29 y H30 recibieron reparaciones importantes y experimentaron repetidos bloqueos.

Los hornos H04, H10 y H13 fueron reparados el segundo año sin bloqueos previos.

El horno H24 se reparó el segundo año con un bloqueo previo.

4.4. Resultados estudio longitudinal.

Al igual que en el estudio anterior, para el longitudinal se recopilarán y analizarán datos de deshornados forzosos, bloqueos de hornos y reparaciones en los mismos con la salvedad de su focalización en los hornos B26 y F28 en un periodo de tiempo de diez años.

4.4.1. Deshornados con alta resistencia.

En la tabla 4.13 situada a continuación, se muestra el número de veces que el motor eléctrico del dispositivo empujador sobrepasó los 310 A, durante la evacuación del cok de los hornos B16 y F28. También refleja el porcentaje de deshornados forzosos en un horno.

	Но	orno B16		Horno F28		
Año	Nº	%	Año	N°	%	
1	7	1,4	1	2	0,39	
2	12	2,3	2	9	1,76	
3	11	2,15	3	2	0,39	
4	6	1,17	4	23	4,5	
5	17	3,3	5	13	2,5	
6	39	7,6	6	7	1,37	
7	21	4,1	7	10	1,96	
8	39	7,6	8	24	4,7	
9	66	12,92	9	21	4,1	
10	8	1,57	10	3	0,59	

Tabla 4.13. Deshornados con alta resistencia en los hornos B16 y F28.

4.4.2. Hornos con bloqueos.

En la siguiente tabla 4.14 se listan los bloqueos que experimentaron los hornos B16 y F28 durante los 10 años del periodo de estudio longitudinal.

	Horno B16		Horno F28
Año	N°	Año	N°
1		1	_
2		2	
3		3	
4	4	4	
5	6	5	1
6		6	
7	4	7	
8	2	8	1
9		9	8
10		10	

Tabla 4.14. Bloqueos en los hornos B16 y F28.

4.4.2.1. Causas de los bloqueos de hornos.

En las figuras inferiores 4.35 y 4.36 se representan la proporción y los tipos de causas que llevaron a los bloqueos de los hornos B16 y F28 en los 10 años que abarca el estudio longitudinal. Las causas con mayor impacto en el horno B16 son:

- Una deficiente temperatura de los hornos. Por una mala regulación o disminución en el paso libre de gas por los colectores no se alcanza la temperatura objetivo para una correcta coquización de todo el carbón del horno.
- Deformaciones en las paredes por daños en el refractario. Pueden dificultar la extracción al modificar la geometría del horno.
- Adherencias de grafito en las paredes de refractario. Al igual que el caso anterior obstaculizan el correcto vaciado del horno.

En el horno F28 los actores principales en los bloqueos fueron:

- Bajas temperaturas de coquización.
- Adherencias en las paredes de grafito.
- Cargas con cantidades de carbón inadecuadas son de los hornos. Si la cantidad de hullas que se cargan en el horno supera lo planificado necesitaría más tiempo de permanencia o mayor temperatura para no correr el riesgo de un bloqueo.

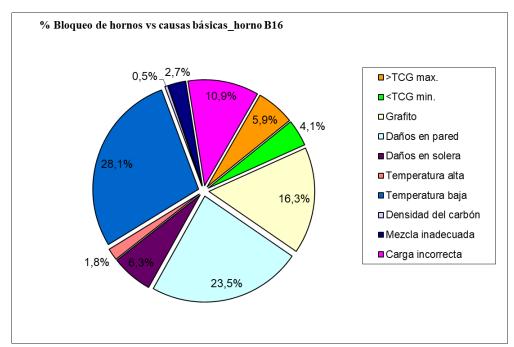


Figura 4.35. Causas de los bloqueos de hornos en horno B16.

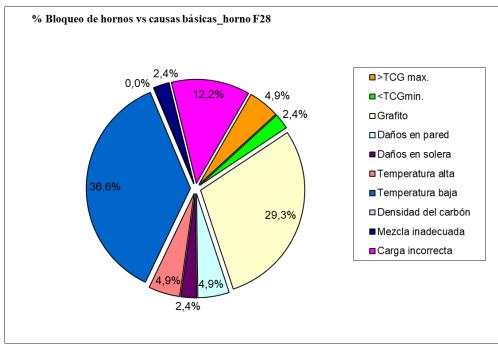


Figura 4.36. Causas de los bloqueos de hornos en horno F28.

4.4.3. Reparaciones del refractario de los hornos.

En la tabla 4.15 se muestra el alcance de las reparaciones llevadas a cabo mediante soldadura cerámica y piezas de sílice fundida (FSP) durante 10 años de operación. La soldadura cerámica aplicada se contabiliza en kg y las piezas de sílice fundida instaladas en unidades.

			Horno F28						
	SC		FSP's		•	SC		FSP's	
Año	LM	LC	LM	LC	Año	LM	LC	LM	LC
1	1.200	775			1	175			
2					2				
3		25			3				
4					4				
5	1.550	975			5	700	675		
6	100				6				
7	3.150	225	91		7				
8	2.225		32		8				
9	1.550	875			9	875	775		
10					10				

Tabla 4.15. Reparaciones con soldadura cerámica y FSP en los hornos B16 y F28.

Las figuras inferiores muestran las paredes de un horno abatidas sobre el plano para mapear la zona de reparaciones del refractario.

Mapa de reparaciones en el horno B16.

En la figura 4.37 se muestran las zonas de las paredes, bóveda y solera del horno B16 donde el refractario fue reparado durante el primer año del periodo de estudio.

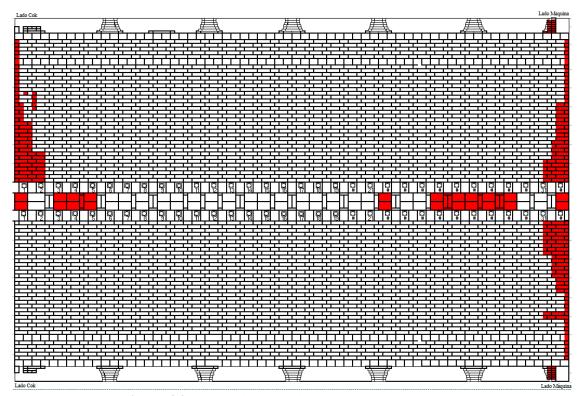


Figura 4.37. Mapa de reparación del horno B16 en año 1.

El horno presenta reparación tanto en el lado máquina como en el lado cok, así como en la solera. Para la ejecución de la reparación no fue necesario la utilización de piezas FSP´s. Los daños en esa parte de la solera son comúnmente producidos por la abrasión del cok. Estas reparaciones en los extremos tanto de entrada como de salida y sin reposición de piezas atienden a daños producidos por choque térmico.

La figura 4.38 representa la zona de la solera del horno B16 donde el refractario fue reparado durante el tercer año del periodo de estudio.

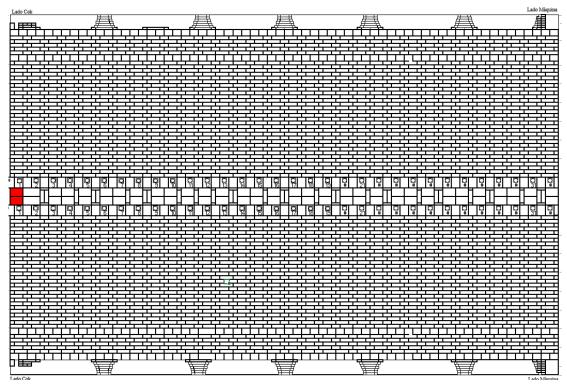


Figura 4.38. Mapa de reparación del horno B16 en año 3.

El horno presenta una leve reparación en la solera, cuyo daño con toda probabilidad haya producido deshornados forzados.

En la figura 4.39 se muestran las zonas de las paredes, bóveda y solera del horno B16 donde el refractario fue reparado durante el quinto año del periodo de estudio.

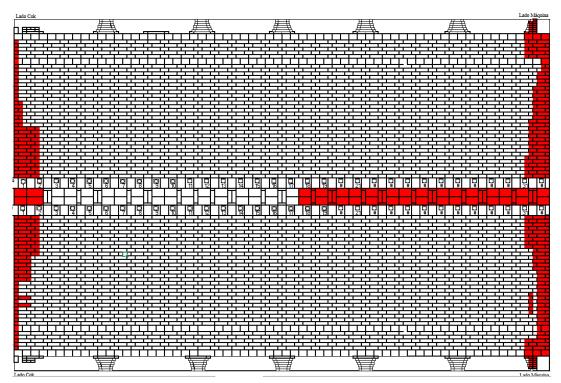


Figura 4.39. Mapa de reparación del horno B16 en año 5.

El horno presenta reparaciones en el lado máquina, en el lado cok y en la solera. Para la ejecución de la reparación se utilizó exclusivamente soldadura cerámica sin sustitución de piezas. Los daños de la solera probablemente fueron producidos por la abrasión en los vaciados del horno. Estas reparaciones en los extremos tanto de entrada como de salida y sin reposición de piezas atienden a daños producidos por choque térmico.

La figura 4.40 representa las zonas de las paredes del horno B16 donde el refractario fue reparado durante el sexto año del periodo de estudio.

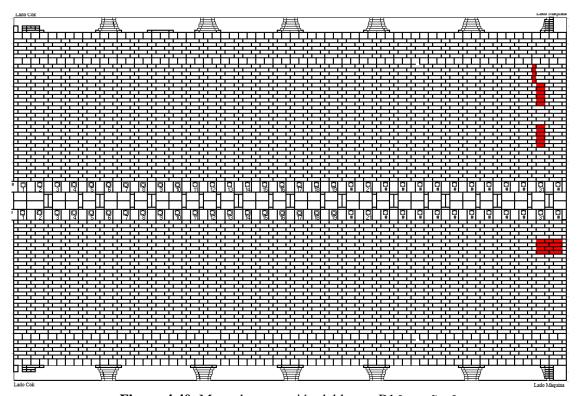


Figura 4.40. Mapa de reparación del horno B16 en año 6.

El horno se reparó con una cantidad menor de soldadura cerámica para el relleno de juntas abiertas de las piezas refractarias de la pared de lo horno. Normalmente por pérdida del mortero de unión del refractario.

La solera que fue reparada el año anterior no presenta ningún desperfecto con lo que su estado se mantiene operativo.

La zona de la cubierta por el lado máquina que también tuvo reparación en el ejercicio anterior no presenta desperfectos.

El lado cok conserva su integridad, siendo efectiva la reparación del año anterior en ambas paredes.

En la figura 4.41 se muestran las zonas de las paredes, bóveda y solera del horno B16 donde el refractario fue reparado durante el séptimo año del periodo de estudio.

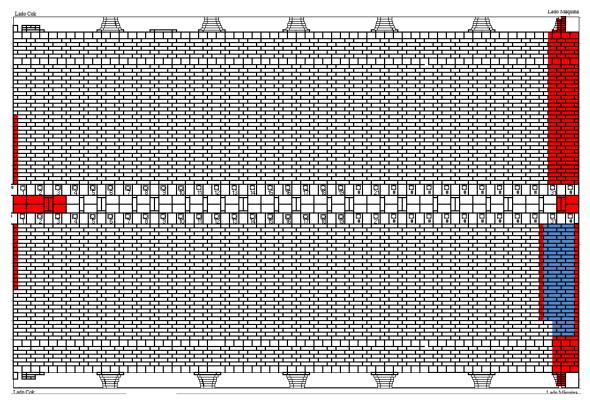


Figura 4.41. Mapa de reparación del horno B16 en año 7.

El horno presenta una importante reparación en el lado máquina con soldadura y la colocación de 91 piezas FSP's en la pared "N". La pared "N+1" también recibió de nuevo soldadura cerámica.

La cubierta tuvo que volver a ser reparada en la misma zona que en el año 5.

Los daños en la solera son reparados con soldadura por desgaste de la misma. El alcance fue algo superior que el llevado a cabo en la anterior intervención.

La reparación del lado cok se ejecutó sobre refractario ya reparado en años anteriores con soldadura cerámica, pero con un alcance mucho menor.

La figura 4.42 representa las zonas de las paredes y solera del horno B16 donde el refractario fue reparado durante el octavo año del periodo de estudio.

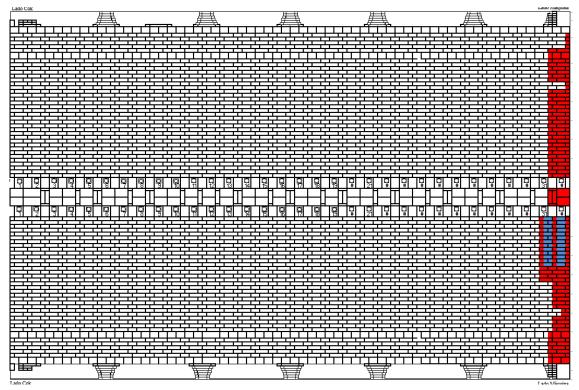


Figura 4.42. Mapa de reparación del horno B16 en año 8.

El horno vuelve a repararse en el lado máquina con soldadura y también es necesario colocar de 32 piezas FSP's en la pared "N". La zona de reparación es repetitiva y de nuevo con daños en el refractario por enfriamiento del mismo, probablemente durante la operación de vaciado de hornos bloqueados. La pared "N+1" de nuevo tiene que ser reparada con soldadura.

La solera por el lado cok está intacta mientras que por el lado máquina recibe soldadura cerámica en su extremo exterior.

El lado cok no presenta daños posteriormente a la reparación del año anterior.

En la figura 4.43 se muestran las zonas de las paredes y solera del horno B16 donde el refractario fue reparado durante el noveno año del periodo de estudio.

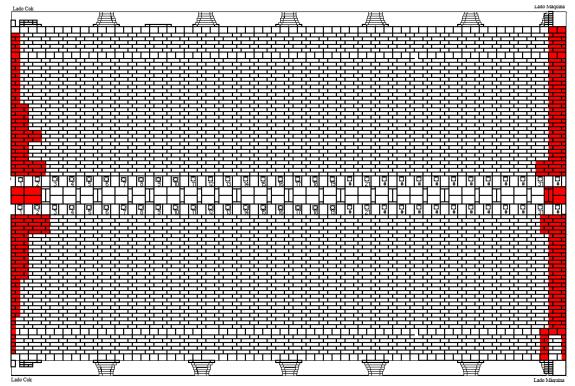


Figura 4.43. Mapa de reparación del horno B16 en año 9.

El horno presenta reparación en el lado máquina en ambas paredes, pero sin la necesidad de combinar la soldadura cerámica con piezas FSP como en los años 7 y 8 en la pared "N+1".

En el lado cok se le realiza una reparación en ambas paredes con mayor alcance en la zona inferior de las mismas.

La solera se repara tanto por el lado máquina como por el lado cok. En el caso del lado máquina es ya una reparación repetitiva.

Este horno requiere llevar a cabo una reconstrucción parcial de su refractario ya que se realizan en él repetitivas reparaciones con soldadura cerámica sin éxito. La esperanza de vida útil del refractario reparado está muy lejos de lo razonable después de una aplicación de esta naturaleza. Especialmente en el lado máquina se requiere una intervención para sustituir al menos seis canales de caldeo.

Mapa de reparaciones en el horno F28.

La figura 4.44 representa las zonas de las paredes y bóveda del horno F28 donde el refractario fue reparado durante el primer año del periodo de estudio.

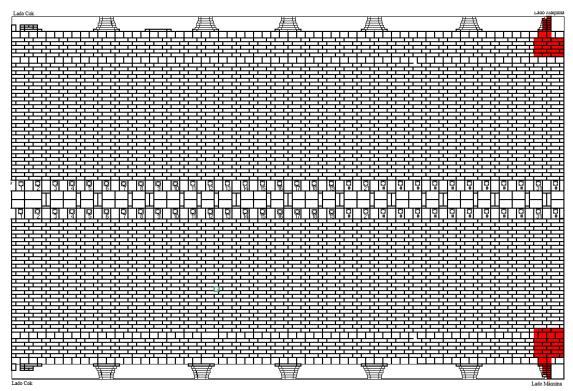


Figura 4.44. Mapa de reparación del horno F28 en año 1.

El horno tuvo una reparación leve con una cantidad de 175 kg de soldadura cerámica en la zona superior del lado máquina para el relleno de juntas abiertas de las piezas refractarias de la pared de lo horno. Intervención llevada a cabo por la pérdida del mortero de unión del refractario.

En la figura 4.45 se muestran las zonas de las paredes, techo y solera del horno F28 donde el refractario fue reparado durante el quinto año del periodo de estudio.

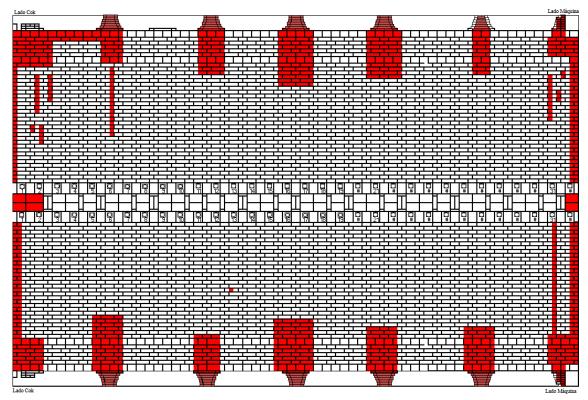


Figura 4.45. Mapa de reparación del horno F28 en año 5.

El horno fue reparado por el lado máquina, el lado cok, las bocas de carga y en la solera. Para la ejecución de la reparación se utilizó exclusivamente soldadura cerámica sin sustitución de piezas. Estos daños generalizados que presenta el horno son superficiales y como consecuencia de un choque térmico.

En el lado máquina los daños son leves, especialmente se reparan las piezas refractarias que se sitúan al lado del marco de fundición.

En el lado cok la reparación es por juntas abierta y por desconches superficiales del refractario de sílice.

La solera presenta desgaste seguramente por rozamiento del patín del dispositivo empujador. Se repara por ambos lados.

El horno fue reparado en la totalidad de las bocas de carga por juntas abiertas y falta de mortero. Es una zona donde es habitual que las uniones de las piezas refractarias pierdan el mortero debido al continuo rozamiento de la carga de hullas.

La figura 4.46 representa las zonas de las paredes, techo y solera del horno F28 donde el refractario fue reparado durante el noveno año del periodo de estudio.

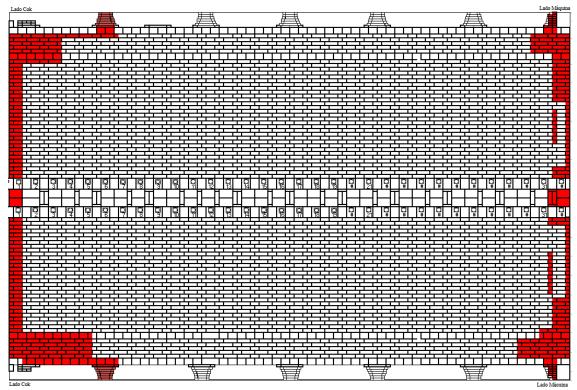


Figura 4.46. Mapa de reparación del horno F28 en año 9.

El horno presenta reparación en el lado máquina, en el lado cok, parte de la bóveda y en la solera. Se aplicó soldadura cerámica sin sustitución de piezas FSP´s. Estas reparaciones en los extremos, tanto de entrada como de salida fueron necesarios para subsanar daños por choque térmico.

4.4.4. Interpretación de resultados.

Al igual que en anteriores apartados se establecerá la relación existente entre los deshornados con alta resistencia y los bloqueos de hornos con los posibles efectos en el refractario de los hornos. En este caso se compararán los datos de los hornos elegidos para el estudio longitudinal, el D16 y el F28 durante 10 años de operación.

4.4.4.1. Deshornados forzosos versus reparaciones.

La figura 4.47 muestra ambos conceptos, los deshornados con alta intensidad y las reparaciones del refractario con soldadura cerámica y con piezas de sílice fundida, llevadas a cabo en los diferentes años del periodo de estudio del horno B16.

El color azul representa la soldadura cerámica aplicada.

El color naranja indica las piezas de sílice fundida instaladas durante las reparaciones.

Las barras grises muestran los deshornados con alta resistencia, es decir con datos de intensidades máximas por encima del límite establecido.

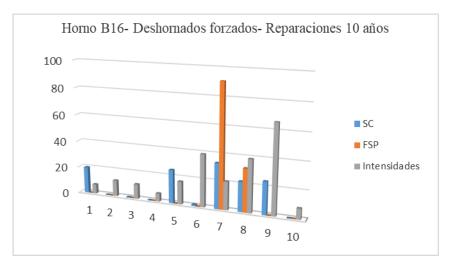


Figura 4.47. Deshornados forzados y reparaciones de refractario en B16.

El horno B16 estuvo expuesto a deshornados forzados durante todo el periodo de estudio, con un promedio de 4,43 % en los 10 años. El año con menor número de deshornados con alta resistencia fue el cuarto en el que tuvo 6, un 1,17 % y el que más forzados experimentó fue el noveno con 66, un 12,92 %.

En los periodos donde se realizaron reparaciones el horno tuvo un promedio de 6,15 % de deshornados forzados. Por lo tanto, se puede concluir que los periodos con reparaciones estuvieron previamente expuestos a un alto número de deshornados con alta resistencia, con la excepción del primer año donde se llevó a cabo una reparación y los deshornados forzados no fueron elevados.

Con la salvedad del primer año y del noveno, posteriormente a la reparación de refractario el horno B16 continuó teniendo deshornados forzados.

Al igual que en caso del horno anterior, la figura 4.48 representa con barras los deshornados con alta intensidad y las reparaciones del refractario con soldadura cerámica y con piezas FSP, llevadas a cabo en los diferentes años del periodo de estudio en el horno F28.

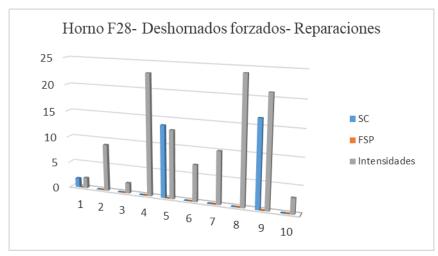


Figura 4.48. Deshornados forzados y reparaciones de refractario en F28.

Comparando los datos de los deshornados con alta resistencia con las reparaciones realizadas en el refractario del horno F28, se pueden extraer las siguientes conclusiones:

El horno F28 estuvo expuesto a un promedio de 2,23 % deshornados forzados en los 10 años de estudio. Los años con menor número de deshornados con alta resistencia fueron el primero y el tercero con 2 cada uno, un 0,39 % y el que más forzados experimentó fue el octavo con 24, un 4,7 %.

Los años donde se realizaron reparaciones presentaron un promedio de 2,33 %, que es un dato moderadamente mayor que el global de deshornados forzados.

4.4.4.2. Bloqueos de hornos versus reparaciones.

En este apartado la comparativa será realizada entre los bloqueos del horno y las reparaciones sufridas por el mismo. El objeto es encontrar una relación entre ambos factores.

Igual que en el apartado anterior el color azul representa la soldadura cerámica aplicada.

El color naranja indica las piezas de sílice fundida instaladas durante las reparaciones.

Las barras grises se refieren a los bloqueos experimentados por el horno correspondiente.

En la figura 4.49 se plasma los bloqueos del horno B16 y las reparaciones del refractario con soldadura cerámica y con piezas de sílice fundida, llevadas a cabo en los diferentes años del periodo de estudio.

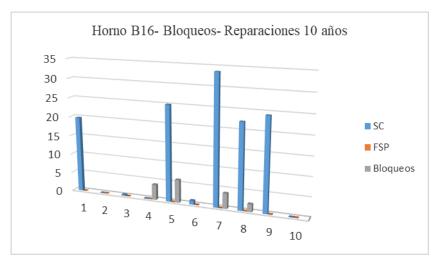


Figura 4.49. Bloqueos y reparaciones de refractario en B16.

Durante el período de estudio el horno B16 tuvo 22 bloqueos distribuidos entre el primer, cuarto, quinto, séptimo y octavo año.

El primer y el quinto año hubo 6 bloqueos cada periodo que supone un 27,27 % del total de los 10 años, el cuarto y séptimo año 4 (18,18 %) y el octavo 2 (9,09 %).

El horno sufrió reparaciones el primer, quinto, sexto, séptimo, octavo y noveno año. En el año 6 del periodo de estudio la reparación llevada a cabo fue apenas insignificante, con un alcance muy leve y sin posibilidad de relacionarla con aspectos inherentes al proceso de fabricación. En el resto de las ocasiones en que el horno fue reparado coincide cronológicamente con una previa sucesión de bloqueos tanto en ese año como en el anterior.

Los periodos sin reparaciones como los años segundo, tercero y decimo el horno no tuvo bloqueos. El año cuarto en que tampoco tuvo reparaciones si sufrió bloqueos que tuvieron su efecto en una reparación en el año posterior.

En general los daños reparados fueron causados por choque térmico lo cual vincula el proceso a los bloqueos.

Durante tres años, séptimo, octavo y noveno se realizan reparaciones en la misma zona lo cual indica el perjudicial efecto de los bloqueos incluso en zonas reparadas.

La figura 4.50 representa los bloqueos del horno F28 y las reparaciones del refractario con soldadura cerámica y con piezas de sílice fundida, llevadas a cabo en los diferentes años del periodo de estudio.

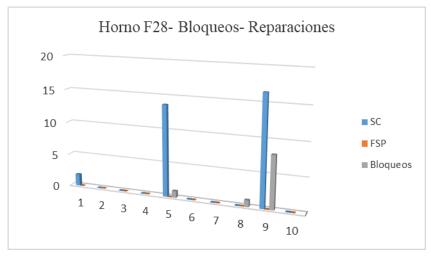


Figura 4.50. Bloqueos y reparaciones de refractario en F28.

El horno F28 tuvo 10 bloqueos distribuidos entre el quinto, octavo y noveno año.

En el quinto y octavo año hubo 1 bloqueo cada periodo que supone un 10 % del total de los 10 años, en el octavo el horno experimentó 8 (80 %).

El horno sufrió reparaciones el primer, quinto y noveno año. Excepto el primer año del que no tenemos datos anteriores los otros dos periodos de reparación presentan bloqueos, incluso en el año previo como es el caso del noveno año.

Los periodos sin reparaciones como los años segundo, tercero, cuarto, sexto, séptimo y decimo el horno no tuvo bloqueos. El año octavo en el que tampoco se realizaron reparaciones si sufrió un bloqueo con posible efecto en la reparación del año posterior.

La relación entre un bloqueo y daños en el refractario parece clara a tenor de los datos del histórico del horno.

Evaluación de refractarios y técnicas de reparación

5.1. Introducción.

Los hornos de cok están construidos con material refractario en su totalidad con lo que un adecuado mantenimiento del citado material es fundamental para alargar la vida útil de las baterías. Especialmente en el caso del material silíceo, una sustitución del mismo requiere tiempos prolongados que impactan en la productividad de la planta.

El material silíceo presenta unas muy buenas prestaciones para la aplicación en hornos de cok, sin embargo, no es del todo válido para las reparaciones posteriores durante la vida útil de la planta de cok. Por su naturaleza cristalina y las importantes transformaciones de volumen que experimenta durante su calentamiento no podría colocarse piezas silíceas nuevas en un horno ya operativo. Al tomar temperatura las piezas se quebrarían por los súbitos cambios de volumen. En una nueva construcción todo el bloque de refractario de una batería se calienta muy lentamente durante dos meses. Esto no es factible para la sustitución parcial con una puesta en marcha rápida. Este es el motivo de que en la práctica habitual se opte por otras alternativas para la reparación del refractario.

En este capítulo se analizará la viabilidad de técnicas como el proyectado, la soldadura cerámica y la instalación por sílice fundida como sustitutas del refractario original de los hornos de cok.

Para ello se describirán los requisitos a los que se someten los refractarios de los hornos, posteriormente se analizarán muestras de material proyectado, soldadura cerámica y sílice amorfa y por último compararemos sus características con las de la sílice KD.

Una vez analizados los materiales el último estadio será definir la idoneidad de las diferentes técnicas de reparación.

5.2. Requerimientos de los refractarios de hornos de cok.

La fabricación de cok consiste en introducir una determinada cantidad de una mezcla de carbones dentro de un horno a una temperatura determinada durante un tiempo determinado y en ausencia de oxígeno. El refractario de los hornos de cok va a estar expuesto durante el proceso de fabricación de cok a los siguientes requerimientos:

5.2.1 Esfuerzos mecánicos.

- Peso de la mezcla de carbón.

Debe soportar la carga de la mezcla de carbón, varía en función la dimensión del horno. Este peso no es relevante para la resistencia mecánica de los refractarios en estudio que es aproximadamente 100 veces mayor.

- Empuje de la masa de carbón sobre el refractario.

Hay un efecto de presión que surge como consecuencia de la dilatación de la masa plástica de la mezcla. El empuje depende de la propia naturaleza de los carbones. En la

práctica industrial el empuje que provocan los carbones sobre el refractario es del orden de 0.01 N/cm2 milibares resistiendo perfectamente por lo que el efecto pasa inadvertido. Solo tiene repercusión determinados carbones o mezclas que pueden causar daños importantes con empujes de hasta varias toneladas por metro cuadrado.

- Esfuerzos sobre el refractario durante el deshornado.

Durante la descarga del horno, una vez finalizada la transformación del carbón en cok, se producen esfuerzos sobre la solera al arrastrar la carga y también sobre las paredes.

- Abrasión durante el deshornado.

Durante el empuje que se hace para el deshornado se produce fricción especialmente entre el cok y la solera del horno.

5.2.2 Temperatura de coquización.

Para la transformación del carbón en cok se necesita mantener una temperatura media en las cámaras de combustión de entre 1000 y 1300 °C dependiendo del índice de marcha. El refractario debe tener unas propiedades que resistan ampliamente estas temperaturas a lo largo del tiempo.

5.2.3 Resistencia al ataque químico.

El carbón contiene sales que pueden deteriorar un refractario no adecuado. Ensayos realizados con sales alcalinas dan unos buenos resultados en contacto con sílice. Este tipo de refractario resisten bien los óxidos de hierro en condiciones oxidantes. En general los ladrillos con mayor proporción de sílice y menor contenido de Al2O3, MgO y álcalis darán mejor resultado desde el punto de vista de la corrosión.

5.3. Refractarios proyectables.

En este apartado se valorarán la proyección por gunitado y por shotcrteing.

5.3.1. Refractarios aplicados por gunitado.

En los hornos sujetos a estudio las reparaciones mediante gunitado se realizaron con un árido refractario de media alúmina con tamaño de grano grueso no mayor de 1 mm. Tiene como objeto minimizar el rebote durante la proyección. Las especificaciones técnicas para su aplicación por vertido aparecen reflejadas en la tabla 5.1.

Tabla 5.1. Características del refractario gunitable. Fuente Refractarios Alfran, S.A.

Parámetro	Unidad	Valor
SiO ₂	%	31
Al_2O_3	%	55
Fe_2O_3	%	1,4
CaO	%	6
Na ₂ O+K ₂ O	%	1
Porosidad aparente	%	35
Resistencia a la comp. en frío	N/mm^2	20
Refractariedad bajo carga	°C	1450
Densidad	g/cm ³	1,95
Expansión térmica linear a 1000 °C	%	-0,35

Se realizan análisis de 3 muestras del material aplicado por gunitado para una posterior comparación con el refractario de sílice original. Se analizarán para esta comparación su densidad aparente, su porosidad, su resistencia a la compresión en frio y su variación linear permanente.

- Densidad aparente (DA).

Para el ensayo es de aplicación la norma EN-993-1. [54].

Se define como ratio entre la masa de un cuerpo poroso y de su volumen aparente, el cual es la suma del volumen de la materia sólida más el volumen de los poros abiertos o externos más el volumen de los poros cerrados o interiores.

El resultado se expresa como DA= Masa de la probeta / volumen aparente

- Porosidad aparente (PA).

Para el ensayo es de aplicación la norma EN 993-1.

Se define la porosidad como ratio del volumen de los poros respecto al volumen aparente de la pieza refractaria. Los valores se calculan basándose en la densidad aparente hidrostática y la densidad real [54].

PA (%) = Volumen total de poros abiertos / volumen aparente de la pieza.

- Resistencia a la compresión en frio (RCF).

Para el ensayo es de aplicación la norma UNE-EN 993-5 [55].

Se define la resistencia a la compresión en frío como la carga máxima por unidad de superficie, aplicada en condiciones especificadas a temperatura ambiente, que puede resistir un producto refractario sin destruirse. La resistencia a la compresión en frio se calcula a partir del valor máximo de la carga cuando la probeta rompe y de la superficie media de la sección transversal sobre la que se aplica la carga.

Para el ensayo se utilizaron probetas en forma de cilindros 50 mm de diámetro y de otros 50 mm de altura cortados en la misma dirección en que fueron prensados. Si no fuese posible obtener probetas de estas dimensiones se utilizaría piezas en forma de cilindro de 36 mm de diámetro y 36 mm de altura [55].

El resultado se expresa mediante el resultado de dividir la carga máxima y la superficie media inicial sobre la que se ha aplicado la carga:

RCC = Fmax/A0

Variación lineal permanente.

Para el ensayo es de aplicación la norma EN 993-10 [56].

Se define como la dilatación o contracción que permanece en un producto refractario conformado que es calentado hasta una temperatura determinada durante un tiempo dado y, posteriormente, enfriado hasta temperatura ambiente.

Las probetas que se utilizarán pueden ser prismas de 50x50x60 mm o bien cilindros de 50 mm de diámetro y 60 mm de altura.

Para el ensayo será necesario medir la probeta en cuatro puntos con un pie de rey y medir su volumen. Se calentará la probeta hasta 1000 °C empezando desde temperatura ambiente e incrementado hasta 50 °C, posteriormente se subirá 10 °C/min. Los últimos 50 grados se subirán a 5 °C/min. Una vez llegamos al final de la subida se mantendrá esa temperatura durante 5 horas. Para el enfriamiento de la pieza se realizará a temperatura natural apagando el horno.

Una vez a temperatura ambiente se tomarán medidas de nuevo en los mismos 4 puntos que previamente al calentamiento, lo mismo con su volumen [56].

Los resultados obtenidos se reflejan en la tabla 5.2.

Parámetro	Unidad	Muestra 1	Muestra 2	Muestra 3	Media
DA	g/cm ³	1,8	1,82	1,84	1,82
PA	%	38	34	37	36,33
RCF	N/mm^2	11	9	14	11,33
VLP	%	0,12	0,14	0,17	0,14

Tabla 5.2. Análisis de muestras de refractario para gunitado.

En la tabla 5.3 se comparan los resultados obtenidos con las características del material silíceo de las paredes de los hornos, la sílice KD.

Tabla 5.3. Refractario gunitable versus sílice KD.

Parámetro	Unidad	Sílice KD	Gunitado
Densidad aparente	g/cm ³	1,82	1,82
Porosidad abierta	%	≤ 22	36,33
Resistencia comp. en frío	N/mm^2	≥ 35	11,33
VLP	%	1,25	0,14

El gunitado presenta una porosidad muy por encima de la sílice y una resistencia a la compresión en frío mucho menor, el resto de parámetros se ajustan a las expectativas.

5.3.1.1. Fortalezas y debilidades del gunitado.

- Fortalezas.

Esta mezcla no requiere de un encofrado o molde para su aplicación, lo que se traduce en un importante ahorro en tiempo de ejecución y en materiales.

Permite aplicar el refractario a una distancia razonable para mantener a los operarios alejados de los focos de calor.

Se puede realizar la colocación del refractario en "caliente" sin necesidad de parar y enfriar el conjunto del horno.

Es una intervención muy rápida, es decir, con mínimo impacto en la pérdida de producción del horno.

- Debilidades.

El refractario aplicado con esta técnica no presenta las características físico-químicas del original, su resistencia mecánica es menor, su porosidad es mayor, su resistencia a la abrasión es menor, etc. [34].

La unión es mecánica por lo que se generan tensiones de origen térmico en la interfase debido al desajuste entre los coeficientes de expansión térmica de las reparaciones y de los refractarios y también se producen fisuras originadas por la alta proporción de agua empleada (10-60%) [34].

La vida útil del refractario aplicado por gunitado es de meses, muchísimo menor que la de otras técnicas.

5.3.2. Refractarios aplicados por shotcreting.

En la tabla 5.4 podemos ver las características de uno de los refractarios comentados, obtenidos aplicando la norma ISO/CG 20182 [57].

Tabla 5.4. Características de refractario para shotcreting. Fuente Refractarios Alfran, S.A.

Tuchte Refrueturios 7 miran, 5.7 i.						
Parámetro	Unidad	Valor				
Al ₂ O ₃	%	69-74				
Fe ₂ O ₃	%	0,7-1,0				
CaO	%	1,60-1,90				
Porosidad aparente	%	28-32				
Resistencia a la comp. en frío	N/mm^2	16-18				
Refractariedad bajo carga	°C	1600				
Densidad	g/cm ³	2,55				
Expansión térmica linear a 1000 °C	%	-0,1				

Siguiendo la dinámica del punto anterior se realizan análisis de 3 muestras del refractario de shotcreting para una posterior comparación con las piezas de la pared original. Se analizará su densidad aparente, su porosidad, su resistencia a la compresión en frio y su variedad lineal permanente.

- Densidad aparente (DA).

Para el ensayo es de aplicación la norma EN-993-1. [54].

- Porosidad aparente (PA).

Para el ensayo es de aplicación la norma EN 993-1.

- Resistencia a la compresión en frio (RCF).

Para el ensayo es de aplicación la norma UNE-EN 993-5 [55].

- Variación lineal permanente.

Para el ensayo es de aplicación la norma EN 993-10[56].

Los resultados obtenidos se reflejan en la tabla 5.5.

Parámetro	Unidad	Muestra 1	Muestra 2	Muestra 3	Media	
DA	g/cm ³	2,48	2,51	2,49	2,49	
PA	%	33	31	33	32,33	
RCF	N/mm^2	15	15	17	15,66	
VLP	%	-0,1	-0,14	-0,11	-0,12	

Tabla 5.5. Análisis de muestras de refractario para shotcreting.

En la tabla 5.6 se comparan los resultados obtenidos con las características del material silíceo de las paredes de los hornos, la sílice KD.

Parámetro	Unidad	Sílice KD	Shotcreting
Densidad aparente	g/cm ³	1,82	2,49
Porosidad abierta	%	≤ 22	32,33
Resistencia compresión en frío	N/mm^2	≥ 35	15,66
VLP	%	1,25	-0,12

Tabla 5.6. Refractario shotcreting versus sílice KD.

El shotcreting tiene mayor densidad que la sílice lo cual no es un impedimento para su área de aplicación, presenta una porosidad mayor y una resistencia a la compresión en frío bastante menor.

5.3.2.1. Fortalezas y debilidades del shotcreting.

- Fortalezas.

La aplicación y el encofrado son más sencillos que lo métodos tradicionales lo que reduce en tiempo de las paradas y costes de producción derivados.

Aplicación muy rápida.

Menos cantidad de mano de obra requerida.

Sin emisiones de polvo en el lugar de la instalación.

Minimización del rebote o rechazo.

Reducción de los tiempos de fraguado y puesta en marcha.

El hormigón proyectado proporciona propiedades homogéneas y no genera polvo, tiene muy bajo rebote y alta eficiencia, con una producción de hasta 10-15 toneladas por hora [36].

- Debilidades.

No es apto para reparaciones de poco alcance, el coste es muy elevado y la unión es mecánica con el refractario original.

5.4. Refractarios aplicados por soldadura cerámica.

Los materiales utilizados para realizar la soldadura cerámica en las baterías de cok objeto de estudio en esta tesis son los áridos de sílice con partículas metálicas y las piezas conformadas de sílice fundida (FSP). Sus fichas técnicas se resumen en las tablas 5.7 y 5.8.

Tabla 5.7. Características de soldadura cerámica. Fuente Fosbel.

Parámetro	Unidad	Valor
SiO_2	%	≥ 92
MgO	%	\leq 0,10
Al_2O_3	%	3,60-5,80
Fe_2O_3	%	0,40-0,70
CaO	%	1,80-2,20
TiO_2	%	≤ 0,04
Na_2O+K_2O	%	≤ 0,20
Porosidad aparente	%	18-22
Resistencia a la comp. en frío	N/mm^2	14-21
Refractariedad bajo carga	°C	1650
Densidad	g/cm ³	1,8-2,0
Expansión térmica linear a 1000 °C	%	0,02

Tabla 5.8. Características de las piezas FSP. Fuente Fosbel.

Parámetro	Unidad	Valor
SiO_2	%	≥ 98
MgO	%	\leq 0,10
Al_2O_3	%	0,40-0,60
Fe_2O_3	%	0,40-0,70
CaO	%	\leq 0,04
TiO_2	%	\leq 0,03
Na_2O+K_2O	%	\leq 0,20
Porosidad aparente	%	12-16
Resistencia a la comp. en frío	N/mm^2	45-70
Refractariedad bajo carga	°C	1650
Densidad	g/cm ³	1,8- 2,0
Expansión térmica linear a 1000 °C	%	0,07

Al igual que lo descrito en apartados anteriores se realizarán análisis de 3 muestras del refractario de soldadura para una posterior comparación con las piezas de la pared original. Se analizarán para esta comparación su densidad aparente, su porosidad, su resistencia a la compresión en frio. En este caso no es relevante analizar la variación permanente lineal ya que el material soldado se convierte en un refractario sin estructura cristalina con lo que no presenta apenas variación en su volumen con los cambios de temperatura.

- Densidad aparente (DA).

Para el ensayo es de aplicación la norma EN-993-1. [54].

- Porosidad aparente (PA).

Para el ensayo es de aplicación la norma EN 993-1.

- Resistencia a la compresión en frio (RCF).

Para el ensayo es de aplicación la norma UNE-EN 993-5 [55].

Los resultados se plasman en la tabla 5.9 para la soldadura cerámica y en la 5.10 para las piezas FSP.

Tabla 5.9. Análisis de muestras de refractario para soldadura cerámica.

Parámetro	Unidad	Muestra 1	Muestra 2	Muestra 3	Media
DA	g/cm ³	1,82	1,83	1,78	1,81
PA	%	23	21	20	21,33
RCF	N/mm^2	15	14	16	15

Tabla 5.10. Análisis de muestras de piezas FSP.

Parámetro	Unidad	Muestra 1	Muestra 2	Muestra 3	Media
DA	g/cm ³	1,82	1,8	1,88	1,83
PA	%	15	16	16	15,66
RCF	N/mm^2	45	46	47	46

En la tabla 5.11 y 5.12 se comparan los resultados obtenidos con las características del material silíceo de las paredes de los hornos, la sílice KD.

Tabla 5.11. Soldadura cerámica versus sílice KD.

Parámetro	Unidad	Sílice KD	Soldadura
Densidad aparente	g/cm ³	1,82	1,81
Porosidad abierta	%	≤ 22	21,33
Resistencia compresión en frío	N/mm^2	≥ 35	15

El material refractario aplicado por soldadura cerámica tiene una densidad y una porosidad similar a las piezas de sílice, pero una resistencia a la compresión en frío menor.

Tabla 5.12. Refractario FSP versus sílice KD.

Parámetro	Unidad	Sílice KD	FSP
Densidad aparente	g/cm ³	1,82	1,83
Porosidad abierta	%	≤ 22	15,66
Resistencia compresión en frío	N/mm^2	≥ 35	46

Las piezas FSP analizadas tiene una densidad similar a las de la sílice original y mejores prestaciones en cuanto a porosidad y resistencia a la compresión en frío.

5.4.1. Fortalezas y debilidades de la soldadura cerámica.

La calidad y duración de una reparación mediante soldadura cerámica depende de varios factores como queda representado en la figura 5.1.

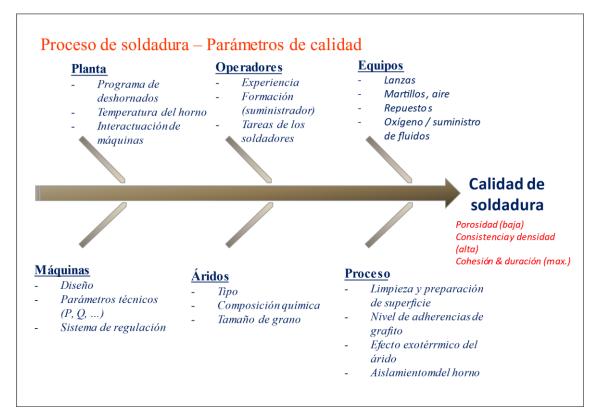


Figura 5.1. Parámetros de calidad de la soldadura cerámica.

- Fortalezas.

Con esta técnica se reducen mucho los tiempos de reparación del refractario de los hornos con la positiva implicación que esto tiene en la productividad de la planta.

El coste de la soldadura cerámica es mayor que otros métodos como el gunitado tradicional, no obstante, los resultados y la mayor variedad de zonas reparables compensan el mayor impacto económico. Las reparaciones con soldadura cerámica aportan una alta resistencia mecánica inmediatamente después de la aplicación de la mezcla y una duración del revestimiento no inferior a tres años [43].

En la aplicación de la soldadura se produce una fusión entre el material de reparación y el refractario original formando un sustrato de unión cerámico que es homogéneo y consistente.

No es necesario bajar la temperatura del horno durante la aplicación del producto. Esta situación protege el resto del refractario y permite poner en servicio el horno rápidamente.

Es una atractiva alternativa para aumentar la vida útil del refractario de un horno de cok.

- Debilidades.

Se genera rebote en la aplicación que va en menoscabo de la eficiencia y aprovechamiento del producto adquirido.

No es apto para reparar desperfectos de las uniones de las cámaras de combustión.

5.5. Reparación con piezas conformadas de sílice fundida.

Para este análisis se realizarán ensayos en piezas de sílice fundida de uso en reparación de extremos de hornos "cabezas". Su especificación técnica es la descrita en la tabla 5.13.

Tabla 5.13. Características de la sílice fundida o amorfa. Fuente Fosbel GmbH.

Parámetro	Unidad	Valor
SiO_2	%	≥ 94
MgO	%	\leq 0,10
Al_2O_3	%	≤ 1,0
Fe_2O_3	%	\leq 0,50
CaO	%	\leq 3,50
TiO_2	%	\leq 0,02
$Na_2O+K_2O+LiO_2$	%	\leq 0,20
Porosidad aparente	%	20/22
Resist. a la comp. en frio (prensada/vertida)	N/mm^2	25/10
Refractariedad bajo carga	$^{\circ}\mathrm{C}$	1650
Densidad (prensada / vertida)	g/cm ³	1,82- 1,72
Expansión térmica linear a 1000 °C	%	0,03

Siguiendo la dinámica de apartados anteriores se realizan análisis de 3 muestras del refractario conformado de sílice fundida tanto de fabricación por prensado como por vertido. Se analizarán la densidad aparente, la porosidad y resistencia a la compresión en frio. El procedimiento de ensayo será el mismo que el utilizado para materiales de apartados anteriores, EN-993-1 [54] para la densidad y la porosidad y UNE-EN 993-5 [55] para la resistencia a la compresión en frio. Los resultados se reflejan en la tabla

5.14 para las piezas fabricadas por prensado y en la 5.15 para aquellas manufacturadas mediante vertido.

Tabla 5.14. Análisis de muestras de sílice fundida prensada.

Parámetro	Unidad	Muestra 1	Muestra 2	Muestra 3	Media
DA	g/cm ³	1,85	1,92	1,95	1,91
PA	%	17	13	14	14,7
RCF	N/mm^2	37	35	36	36

Tabla 5.15. Análisis de muestras de sílice fundida vertida.

Parámetro	Unidad	Muestra 1	Muestra 2	Muestra 3	Media
DA	g/cm ³	1,75	1,71	1,69	1,72
PA	%	21	23	22	22
RCF	N/mm^2	12	13	12	12,33

En las tablas 5.16 y 5.17 se comparan los resultados obtenidos con las características del material silíceo de las paredes de los hornos, la sílice KD.

Tabla 5.16. Piezas refractarias de sílice fundida prensada versus sílice KD.

Parámetro	Unidad	Sílice KD	Prensadas
Densidad aparente	g/cm ³	1,82	1,91
Porosidad abierta	%	≤ 22	14,7
Resistencia compresión en frío	N/mm^2	≥ 35	36

Las piezas de sílice fundida fabricadas por prensado tienen una menor porosidad y una densidad y una resistencia a la compresión en frío similares que la sílice KD.

Tabla 5.17. Piezas refractarias de sílice fundida vertida versus sílice KD.

Parámetro	Unidad	Sílice KD	Vertidas
Densidad aparente	g/cm ³	1,82	1,72
Porosidad abierta	%	≤ 22	22
Resistencia compresión en frío	N/mm^2	≥ 35	12,33

En el caso de las piezas de sílice fundida fabricadas por vertido es la resistencia a la compresión en frío la propiedad que queda desfavorecida.

5.5.1. Fortalezas y debilidades de la sílice fundida.

Sus ventajas son:

Mayor rapidez en su instalación.

Apenas experimenta cambios de volumen.

El periodo de calentamiento antes de su puesta en marcha es mínimo.

La unión del nuevo refractario con el viejo es más estable y aporta una mayor estanqueidad.

La tasa de expansión lineal es baja, a 1000 °C es inferior al 0,16 % y su volumen a alta temperatura es estable. Durante el servicio, la estructura del horno no se desestabilizará debido a la expansión térmica.

El producto tiene una gran estabilidad de volumen. En circunstancias normales, no habrá grietas ni deformaciones.

Excelente estabilidad al choque térmico. Durante el proceso de servicio, el producto se coloca a una temperatura alta y no se rompe ni se descascarilla.

La refractariedad bajo carga es de hasta 1650 °C y la resistencia a la compresión supera los 30 MPa.

Alta pureza, con la fracción de masa de sílice superior al 99%. Fuerte capacidad antierosión, segura y fiable para uso a largo plazo.

En el caso de los denominados "Big blocks" o bloques modulares sus bondades son:

Puede eliminar hasta 2/3 de la mano de obra necesaria para la instalación por métodos tradicionales. Cada bloque reemplaza a casi 30 formatos tradicionales de sílice. Además, la instalación se puede realizar sin la necesidad de refractaristas cualificados, pudiendo abaratar el coste de instalación.

Aparte de ahorrar en mano de obra, los bloques ahorran tiempo. Un proceso de instalación de varios meses, que puede ser una penalización para la productividad de la planta, se reduce a meras semanas.

Los grandes bloques modulares, con el diseño machihembrado, ayudan a agilizar el proceso de instalación. Los propios bloques tienen integrado en su diseño la conicidad del horno con lo que también se facilita su instalación.

A diferencia de los ladrillos de sílice tradicionales las paredes reparadas con bloques requieren apenas 48 horas de curva de calentamiento antes de entrar en operación.

Los inconvenientes de los productos de sílice fundida son:

Mayor precio, en paredes completas no es rentable.

Necesidad de una nueva ingeniería para modificar los formatos.

Una menor conductividad térmica.

En el caso de los bloques modulares presentan un peor comportamiento frente a las presiones ejercidas por el proceso de coquización.

5.6. Idoneidad de las técnicas de reparación.

Una vez descritas en apartados anteriores las diferentes técnicas de reparación del refractario de los hornos de cok y de la valoración de las bondades y limitaciones de las mismas, resta analizar la elección de cada una en función de su idoneidad para cada tipo de reparación necesaria y la zona a realizarla.

En primer lugar, será necesario tener una visión del estado de la batería para evaluar si la reparación a llevar a cabo será la adecuada. En la figura 5.2 se aprecian los cuatro pilares a tener en cuenta, la calidad del calentamiento de las cámaras de combustión, el estado de las paredes, la deformación del bloque de hornos y las emisiones a la atmósfera. En función la necesidad se aplicará una determinada técnica de reparación.

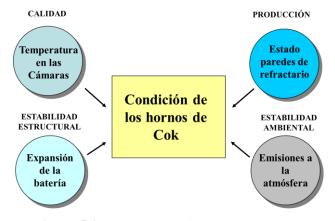


Figura 5.2. Estado y condición de los hornos.

La temperatura de las paredes se tendrá en cuenta cuando no sea posible alcanzar el objetivo por un problema en el refractario de las cámaras de combustión. Normalmente si las uniones de los canales de caldeo están destruidas la única opción posible de reparación es la reconstrucción con piezas de sílice.

La expansión, es decir la diferencia de dimensiones del bloque de hornos respecto al diseño original, nos aporta uno de los criterios para evaluar el envejecimiento de la batería, no obstante, esta desviación no es solucionable globalmente con la reparación parcial de hornos.

El estado de las paredes y las emisiones a la atmósfera por las chimeneas o bien por las armaduras si serán criterios a valorar en la estrategia de reparación.

5.6.1. Estrategia de decisión.

Para elegir el tipo de reparación a llevar a cabo se seguirá el guion descrito en la figura 5.3.

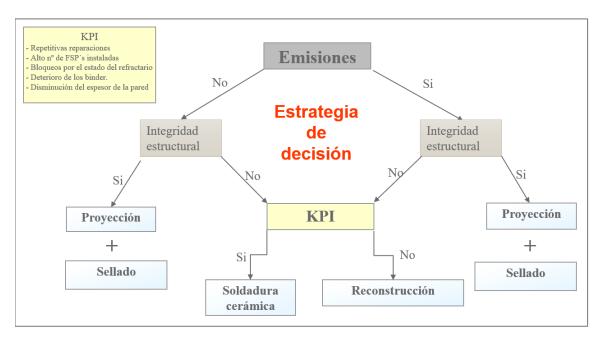


Figura 5.3. Estrategia de decisión.

Para la elección de la reparación a realizar se partirá de la existencia de emisiones de gases de cok a la atmósfera. Las emisiones son un indicador de desperfectos en el refractario. Si no se aprecian emisiones en el bloque de hornos y la estructura del refractario es estable la reparación se llevará a cabo por proyección. También en el caso de detectar emisiones, pero manteniendo el horno la estabilidad estructural. Este tipo de

aplicación se utiliza en la unión de las paredes de los hornos y el marco de fundición de las puertas, también bajo las bocas de carga en el techo. Son reparaciones con una expectativa de duración de meses.

A la proyección se añadirá el sellado para cerrar las fisuras de las paredes y las juntas de las piezas refractarias que hayan perdido parte de su mortero. En el caso de existir grietas amplias no es conveniente el uso de esta técnica ya que al ser inyectado a presión el producto, llegaría a los regeneradores con el consiguiente riesgo de obturación.

Si no tenemos integridad estructural se debe recurrir a la soldadura cerámica o a la combinación de ésta con las piezas FSP's, salvo que las inspecciones realizadas revelen que se cumple unos parámetros o indicadores de gravedad. Estos indicadores son:

1. Reparaciones repetitivas en la misma zona.

Una reparación llevada realizada con soldadura cerámica tiene una duración de varios años, si es necesario repetir a corto plazo la intervención implica que la técnica ya no tiene la efectividad adecuada.

2. Reparaciones con un alto número de FSP's instaladas.

En aquellas reparaciones donde se sustituyó un amplio número de piezas refractarias por FSP's la geometría interior de las cámaras de combustión con sus entradas y salidas tanto de gas como de aire queda modificada. Esta circunstancia altera la distribución térmica del horno. Es útil para mantener un horno en servicio, pero es recomendable atacar una reconstrucción en el corto o medio plazo.

3. Bloqueos en el horno debido al estado de las paredes refractarias.

En este caso los bloqueos son un detector de repetitivos daños en las paredes a pesar de las reparaciones previas.

4. Deterioro de las uniones de las cámaras de combustión "binder".

En el caso de la destrucción de los "binder" la única solución es la reconstrucción ya que con soldadura cerámica no es posible y el combinado con FSP's no siempre es factible y en caso de serlo no garantiza la calidad de combustión por lo comentado en el punto 2.

5. Disminución del espesor de la pared.

Las paredes de estos hornos tienen un espesor de 100 mm, cuando son reparadas se sanea la parte en mal estado y se "recarga" con soldadura. Como se desarrolló en apartados anteriores el revestimiento con soldadura cerámica tiene menos resistencia

mecánica que el refractario de sílice. Para evitar desmoronamientos de las paredes en recomendable que el ladrillo original no pierda más de un 40% de su espesor.

En los casos en que las inspecciones apunten a la existencia de algunos de los indicadores anteriores lo idóneo es acometer la reparación mediante la sustitución del refractario por medio de piezas de sílice cristalina o bien de sílice fundida.

En la figura 5.4 se puede apreciar algunas características técnicas relevantes de los diferentes materiales a utilizar en las reparaciones.

Densidad

Los valores son similares en todos los productos utilizados en las reparaciones, no representan resultados relevantes para la elección de una u otra técnica de reparación de hornos.

Porosidad

Tanto el proyectado por shotcreting y especialmente el gunitado tienen porosidades más altas que los refractarios aplicados mediante las otras técnicas.

La porosidad alta los hace más vulnerables al ataque por las escorias contenidas en la mezcla de hullas.

Resistencia a la compresión en frio

Solamente las piezas de sílice amorfa fabricadas por prensado y las piezas utilizadas con soldadura cerámica FSP tienen unos valores similares con los de la sílice del diseño original. Será necesario tenerlo en cuenta por los técnicos para aplicar el resto de refractarios en zonas que no requieran los valores de diseño.

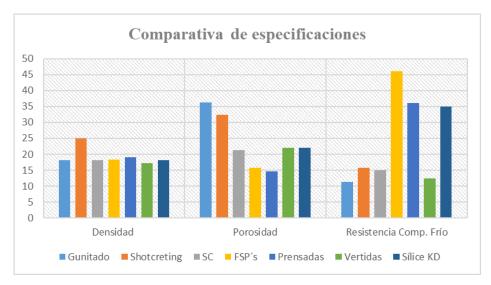


Figura 5.4. Parámetros de los refractarios para reparación de hornos de cok.

Capítulo 6 Conclusiones

6.1. Conclusiones de carácter general.

Tal y como se mencionó al principio de este trabajo, la presente tesis ha tenido como objetivo principal estudiar el impacto que tienen en el refractario de los hornos de cok, aspectos como el bloqueo de hornos y los deshornados con alta resistencia. Posteriormente, se han analizado los diferentes tipos posibles de reparaciones para los hornos, definiendo las más adecuadas para cada zona y tipo de daño en el refractario.

En este capítulo se recogen las conclusiones obtenidas en el estudio que validan la hipótesis de partida sobre el efecto negativo en la integridad del refractario de sílice que tienen los bloqueos de hornos y los deshornados forzados.

Inicialmente se han definido los tipos de refractario utilizados en las baterías de cok, se ha podido concluir que los refractarios silíceos son los principales componentes de las cámaras de combustión y coquización. Este tipo de refractario representa ser el actor principal en la vida útil de las baterías de cok. Cualquier aspecto de la operativa que dañe el refractario está acortando la expectativa de uso de los hornos. En el caso de los bloqueos y deshornados forzados, actúan deteriorando este material en particular ya que tienen lugar en las cámaras de coquización.

Se ha estudiado tanto las características como las causas que provocan o dan lugar a los bloqueos de hornos y a los deshornados con alta resistencia durante la operativa de fabricación del cok siderúrgico. Para determinar el impacto en el refractario silíceo se han realizado dos estudios, uno transversal durante dos años de operación que aporta datos de ocho baterías con 240 hornos en total y otro longitudinal que recopila las incidencias de dos hornos durante diez años. El estudio transversal nos da una idea y una tendencia general, mientras que el longitudinal nos da una visión particular de los efectos. La conclusión es que ambos aspectos, los bloqueos y los deshornados forzados son perjudiciales para el revestimiento refractario de sílice de los hornos. Los deshornados forzados pueden llegar a causar daños en la estructura especialmente cuando las paredes presentan cierta debilidad mecánica por haber perdido el mortero de unión, haber perdido espesor o simplemente por presentar daños previos. Respecto a los bloqueos, se ha determinado que causan daños por choque térmico si no se solventan, con especial precaución de no disminuir la temperatura de los hornos.

Respecto a las diferentes técnicas de reparación del refractario de los hornos de cok se han estudiado sus características para evaluar su eficiencia y expectativa de duración. Simultáneamente se ha valorado la idoneidad de las mismas según la zona a reparar. Se puede concluir que la proyección presenta una expectativa de duración de meses y sólo es apta para las uniones del refractario del horno con sus partes metálicas como son las bocas de carga y los marcos de fundición de las puertas. La soldadura cerámica aporta una prolongación de la vida útil del revestimiento de las paredes de años, convirtiéndose en una herramienta fundamental en el mantenimiento de los hornos de cok ya que además de eficaz, es una técnica de rápida aplicación. La reconstrucción mediante piezas de sílice cristalina o fundida se concluye que es la que aporta una mayor

duración, pudiendo estar entre 10 y 15 años su operatividad. Se debe recurrir a esta técnica en última instancia ya que tiene un gran impacto en la capacidad de producción de la planta al necesitar un largo periodo de tiempo para su realización con lo que los hornos reparados estarían semanas fuera de servicio.

6.2. Conclusiones de carácter particular.

El refractario silíceo es el utilizado para la construcción de las cámaras de combustión de los hornos por sus excelentes propiedades de resistencia mecánica, de conductividad térmica, de refractariedad bajo carga y de resistencia frente el ataque químico durante el proceso de coquización.

Es seleccionado respecto a otros tipos de refractario por ser el que aporta un mayor rendimiento en la producción del cok y una mayor duración. Su talón de Aquiles son los cambios de su estructura cristalina con modificaciones bruscas en su volumen ante determinados cambios de temperatura. Esta característica los hace muy vulnerables cuando la temperatura baja de 870 °C, ya que corren el peligro de debilitarse por la aparición de fisuras y grietas. Se concluye que para mantener la integridad de la sílice y por tanto la vida útil del horno de cok se debe mantener la temperatura por encima de la temperatura descrita en líneas anteriores y por debajo de su punto de ablandamiento.

Las conclusiones respecto al efecto en el refractario de los hornos de los bloqueos y los deshornados forzados coinciden, tanto las obtenidas en el estudio transversal como en el longitudinal. Los datos recogidos nos muestran una tendencia negativa en el comportamiento del refractario de los hornos expuestos a los bloqueos y a los deshornados con alta resistencia. Es importante aclarar que el material refractario de estos hornos recibe la influencia de los bloqueos y deshornados forzados, no solo de ese periodo sino de todo su historial de operación. Al mismo tiempo, existen otros factores de los que no hay datos recopilados, que pueden afectar a la integridad del refractario como pueden ser maniobras incorrectas, errores en las secuencias de deshornados, etc. Dicho esto, durante el periodo de estudio quedó patente la influencia de los bloqueos y los deshornados con alta resistencia en el revestimiento refractario de los hornos de cok.

En la fase de diseño, una batería se calcula con márgenes muy sobredimensionados en cuanto a su resistencia mecánica frente a los esfuerzos que sufren las paredes en los deshornados, soporte de máquinas, etc. No obstante, durante la operación de los hornos va perdiéndose poco a poco el mortero de unión de las piezas refractarias y como consecuencia su estabilidad mecánica disminuye quedando las paredes de los hornos más vulnerables a los esfuerzos producidos por los deshornados forzados. A su vez las zonas reparadas con soldadura cerámica pierden resistencia mecánica respecto a la construcción original, siendo menos capaces de soportar deshornados con alta resistencia.

Los datos nos dicen que en general, los hornos expuestos a menos deshornados forzados tienen menores daños en su refractario.

Posteriormente a la reparación de una pared mediante soldadura cerámica e incluso con piezas de sílice fundida los deshornados con alta resistencia disminuyen. Se elimina una de las causas de deshornados con alta resistencia, las deformaciones en las paredes o en las soleras de los hornos con lo que se facilita que haya menos deshornados forzados.

Vemos en los datos que el efecto no es inmediato, hay hornos con deshornados forzados que no son reparados hasta el año siguiente. Tampoco son proporcionales a su número, es decir, que por tener más deshornados con alta resistencia los daños en un horno no necesariamente son mayores, sino que lo que influye realmente es cuan de forzado es el deshornado.

Los hornos que han sufrido bloqueos recibieron reparaciones en su gran mayoría en los dos periodos de estudio, y prácticamente todos en el caso del estudio transversal. Los hornos no reparados venían de recibir una reparación importante en el periodo anterior o la recibieron en el posterior.

El efecto pernicioso de los bloqueos se manifiesta en la mayoría de los casos con retardo, no inmediatamente. La bajada de temperatura durante su extracción una vez bloqueado afecta a la proliferación de fisuras y desconches que debilitan la estructura.

Al igual que ocurre con los deshornados forzados, no todos los bloqueos tienen las mismas consecuencias. El proceso de extracción manual, si se alarga en el tiempo, expone al refractario de los hornos a la temperatura ambiente durante un mayor periodo con un riesgo de degradación del revestimiento mayor. Los hornos con bloqueos donde se minimiza el tiempo de extracción y/o la exposición a la temperatura ambiente sufren menos daños.

De los datos obtenidos se puede concluir que los deshornados con alta resistencia y en especial los bloqueos tienen un impacto negativo en la integridad del refractario silíceo de los hornos de cok.

Los deshornados forzados o "duros" provocan el fallo del refractario de forma mecánica y los bloqueos suman el fallo por choque térmico.

La mayor incidencia en la integridad del refractario se debe a los bloqueos de hornos. De este hecho, se puede concluir que la exposición del refractario al choque térmico es más dañina que los esfuerzos mecánicos de los deshornados con alta resistencia.

Los responsables de las plantas de cok deben gestionar su operativa para evitar estas circunstancias en la medida de lo posible. Un asunto importante en cuanto a los bloqueos que no aparece en la literatura es el método de subsanación. Cuando se produce un bloqueo es necesario la extracción "manual" del cok del horno. En este proceso se expone el refractario a la temperatura ambiente durante más tiempo del ordinario. Es en este aspecto, donde los técnicos de las plantas deben gestionar la elaboración de procedimientos de actuación, que minimicen al máximo las pérdidas de temperatura del refractario.

De las técnicas disponibles para la reparación del revestimiento refractario se concluye que la soldadura cerámica es la que ofrece unas mayores prestaciones para mantener los hornos de cok operativos a lo largo del tiempo con un impacto menor en el tiempo de mantenimiento. La unión del producto de soldadura con la pieza refractaria al fundirse forma un substrato cerámico dando una aceptable consistencia mecánica al área reparada de la pared. La soldadura aporta la posibilidad de combinarse con piezas de sílice fundida para sustituir tramos de pared que por su elevado daño serían irreparables solamente con aporte de áridos. Con esta técnica de reparación se consigue dejar operativo un horno en poco tiempo y con una expectativa de funcionamiento óptimo de entre tres y cinco años.

En el apartado de estudio longitudinal se observa la repetición consecutiva de reparaciones en el refractario de un horno con soldadura cerámica y sustitución de piezas de sílice fundida. Esta circunstancia hace que un horno cualquiera cumpla una de las condiciones para ser reparado mediante sustitución de piezas de sílice, haciendo recomendable realizar una reconstrucción parcial de "cabezas".

6.3. Limitaciones del trabajo.

La principal limitación es la falta de datos disponibles sobre deshornados forzados y bloqueos de hornos. Para esta tesis los datos accesibles se acotan a dos años para todos los grupos de baterías de la planta y a periodos mayores solamente para unos pocos hornos. Esta situación dificulta el análisis ya que cuanto mayor es el periodo más exactitud y menor margen de error se obtiene en las conclusiones.

Otra desventaja en el desarrollo de este estudio es la falta de automatización de los datos. En su momento los datos existentes fueron registrados de manera manual en documentos escritos por técnicos de la planta que sin existir una dinámica de estructura organizativa lo realizaron a título individual. Al no ser una práctica estandarizada en aquellos años se perdió una serie de información enriquecedora para el conocimiento.

6.4. Desarrollo de trabajos futuros.

El estudio realizado en esta tesis se centra en unos hornos de una altura de unos cuatro metros con piezas refractarias en las paredes de 100 mm de espesor. Para futuros estudios la idea es aplicarlo a las baterías de cok de última generación. Éstas disponen de hornos de más de seis metros de altura con piezas silíceas de 90 mm de espesor. Esta arquitectura los hace más esbeltos y, por consiguiente, con mayor posibilidad de exposición a los esfuerzos mecánicos de los deshornados forzados y al debilitamiento de las piezas refractarias por daños durante la extracción de un horno bloqueado.

[1] Nashan, G.; Rohde, W.; Wessiepe, K. Some figures and facts on the present status and new proposals for a future oriented cokemaking technology. Cokemak. Int. 2002, 12, 50 55.

- [2] Gudenau, H.W.; Senk, D.; Fukada, K.; Babich, A.; Froehling, C.; García, L.L.; Formoso, A.; Alguacil, F.J.; Cores, A. Coke, char and organic waste behaviour in the blast furnace with high injection rate. Rev. Metal. 2003, 39, 367–377.
- [3] Álvarez, R.; García-Cimadevilla, J.L.; Díez, M.A.; Barriocanal, C. La tecnología de producción de coque de horno alto ante el nuevo milenio. Rev. Metal. Madrid Vol. Extr. 2005, 41, 29–34.
- [4] Lorenzo, E.; García, J. Manual de Hornos de Cok y Subproductos; Empresa Nacional Siderúrgica, S.A.: Avilés, España, 1989.
- [5] Pérez, E. Materiales refractarios para hornos de coque. Boletín Inf. Inst. Nac. Carbón (INCAR) 1955, 4, 231–250.
- [6] UNE-EN 12475-1:1998; Clasificación de los Productos Refractarios Conformados Densos. Parte 1: Productos Sílico-Aluminosos. Comité Europeo para la Estandarización: Brussels, Belgium, 1998.
- [7] Brunk, F. Silica bricks for modern coke oven batteries. Cokemak. Int. 2000, 14, 37 40.
- [8] Córdova, M.; Madias, J. Coke Oven Life Prolongation. A Multi-Disciplinary Approach. In Proceedings of the 45th Ironmaking, 16th Iron Ore, Part of the ABMWeek, Rio de Janeiro, Brazil, 17–21 August 2015.
- [9] Lee, W.; Lee, Y. Internal gas pressure characteristics generated during coal carbonization in a coke oven. Energy Fuel 2001, 15, 618–623.
- [10] Crelling, J.C.; Suárez-Ruiz, I. The role of petrology in coal utilization. In Applied Coal Petrology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 173–192.
- [11] Harris, W. The reaction of coal ash with coke oven bricks. Ironmak. Proc. Metall. Soc. 1987, 45, 475–478.
- [12] Ishikawa, Y. Operational Strategy for Coke Ovens in Japan; World Steel Association: London, UK, 1985; pp. 88–96.
- [13] Arcuri, S.; Cordova, M.; Traglia, M. Improvements at SIDERAR's coke oven batteries to extend their useful life. In Proceedings of the 60th Ironmaking Conference, Baltimore, MD, USA, 25–28 March 2001.
- [14] Kelling, A. Continuous development for a longer battery life at the Rautaruukki Steel Coking Plant in Raahe. In Proceedings of the AISE Annual Convention and Exposition, Finland; 2001; pp. 1–22.

[15] Komaki, I.; Matsuo, T.; Kogushi, Y.; Nishimoto, K.; Yamamoto, H. Coke oven diagnosis and repair techniques. In Proceedings of the 60th Ironmaking Conference, Baltimore, MD, USA, 25–28 March 2001; pp. 595–605.

- [16] Loison, R.; Foch, P.; Boyer, A. El Coque, principios de la fabricación y relación con la calidad. Editions Technip, 75737 Paris. 1970; pp. 75-76.
- [17] Menéndez Díaz J. A. El coque de petróleo como aditivo en la producción de coques metalúrgicos. Tesis doctoral, Universidad de Oviedo. INCAR (Oviedo). 1994.
- [18] Álvarez, J.M. Manual de Carbones; Empresa Nacional Siderúrgica S.A.: Avilés, España, 1990.
- [19] Norma DIN 1089-1 (1995); Refractarios para uso en Hornos de Coke. Parte 1: Ladrillos Silíceos, Requisitos y Ensayos. DIN Instituto Alemán Para la Normalización: Berlin, Germany, 1995.
- [20] Shinohara, Y. Refractories Handbook; Japanese Association of Refractories: Tokyo, Japan, 1998.
- [21] De Aza, S. Jornadas Técnicas sobre el Diseño, Propiedades y Aplicaciones de los Materiales Refractarios; UAM: Madrid, Spain, 2004.
- [22] Norma DIN 52108:2006-01. Testing of inorganic non-metallic materials Wear test using the grinding wheel according to Böhme Grinding wheel method. Berlin, Germany, 2006.
- [23] Nomura, S.; Terashima, H.; Sato, E.; Naito, M. Some Fundamental Aspects of Highly Reactive Iron Coke Production. ISIJ Int. 2007, 47, 823–830.
- [24] Álvarez López, D.; García García, M. Analysis of the Impact of the Coke Manufacturing Process on the Service Life of Siliceous Refractory. Applied Sciences, 2022, vol. 12, no 24, p. 13015.
- [25] Shimoyama, I.; Yamamoto, T.; Fukada, K. Tolerable Limit of Localized Force on Damaged Coke Oven Wall Analyzed by Discrete Element Method. ISIJ Int. 2010, 50, 1048–1053. [1].
- [26] Gayle, J.B.; Eddy, W.H. Carbonizing Test with Tuscaloosa oven Studies of Pushing Pressures; US Dept. of the Interior, Bureau of Mines: Washington, DC, USA, 1961.

[27] Ruecki, R. Refractories Handbook; Schacht, C.A., Ed.; Marcel Decker Inc.: New York, NY, USA, 2004.

- [28] Badiuzzamah, M. Design Optimization of Coke Pusher Ram; Mcmaster University: Hamilton, ON, Canada, 1969.
- [29] Kroh, D., Isler, D., Hergalant, Y., Dumay, D., & Entringer, F. Pushing force measurement and transmission. Metallurgical Research & Technology, 2009, vol 106, no 11, pp. 499-507.
- [30] Chakraborty, B., et al. Implementation of an Integrated System for Coke Oven Battery Health Monitoring at Rourkela Steel Plant. Coke and Chemistry, 2021, vol. 64, no 5, pp. 218-225.
- [31] Jordan, P. Development of Small Scale Techniques Used to Study Coking Pressure Generation; Loughborough University of Technology: Loughborough, UK, 1992; p. 26.
- [32] Beimdiek, K. Wet-gunning technology: practical experience as a refractory system solution in cement plants. ZKG International, 58 (11) pp. 48-58 (2005).
- [33] Beimdiek K, Klischat H.J. Dry and wet gunning, technico-economic refractory concrete concepts for highly loaded cement plants. Proceedings of the Unified International Technical Conference on Refractories. UNITECR 2013. September 10-13, 2013 Victoria, British Columbia, Canada.
- [34] Menéndez J. Manual de Operaciones. Reparación de refractario en hornos de cok. Empresa Nacional Siderúrgica S.A.: Avilés, España, 1989.
- [35] Goto, K.; Hanagiri, S.; Kohno, K.; Matsui, T. Progress and perspective of refractory technology. K. Nippon Steel Technical Report No. 104 August 2013.
- [36] Tahaki, T; Honda, K. Introduction of refractory repair technology. Nippon steel technical report, no 125, December 2020.
- [37] Casillón, G. I.; Tomba Martínez, A. G.; Cavalieri, L.; de Córdova, M.; Topolevsky, R. Journal of Materials Research, Volume 18, Issue 2, February 2003, pp. 524 530.

[38] Pileggi, R. G.; Marqués, Y.; Vasques, D. Shotcrete perfomance of refractory castables. Refractory Applications and News, volume 8, number 3. May/June 2003.

- [39] Refractory Shotcrete Current State of the Art. I. L. Glassgold. American Concrete Institute. Concrete International, vol 3, pp 41-49 (1981). Detroit, USA.
- [40] Peng, H.; Myhre, B. Development of high-perfomance no-cement refractory shotcrete. Elken Silicon Materials, Kristiansand, Norway. 2017.
- [41] Lobato, H. E.; Camerucci, M. A. Soldadura cerámica: método de reparación de revestimientos refractarios de equipamiento industriales. Boletín de la Sociedad Española de Cerámica y Vidrio, Vol. 47, 2, pp. 95-100 (2008).
- [42] Fosbel Gmb, Principios técnicos: Soldadura Cerámica: Un sistema adelantado de arreglo en caliente, (1986).
- [43] Hamacher, A. R. Durable renovation of defective coke oven walls using the ceramic welding process, World Ceramics, 19-24 (1985).
- [44] Zvosec, C.; Briggs, J. Ceramic welding: A new approach to the production of refractory repair masses, I & SM, 9, 43-46 (1988).
- [45] Titterington, B. Coke oven repairs within British steel using silica welding, I & SM, 5, 67-78 (1992).
- [46] Effective method of service life extension for glass furnaces. Glass and Ceramics, vol 18, no 5-6, (2011).
- [47] Fosbel Ceramics Technologies, Coke Cleaning and Welding repair. WI 701, rev5, (2011).
- [48] Andreev, K., Wijngaarden, M.V., Put, P. et al. Refractories for Coke Oven Wall Operator's Perspective. Berg Huettenmaenn Monatsh 162, 20–27 (2017).
- [49] Thysenkrupp. Hot repairs in coke Batteries under operation. Steel Technology, vol. 65, no 1. (June-2021).
- [50] Kasi, K.; Tsutsui, Y. Recent Technology of Coke Oven Refractories. Nippon Steel Technical Report, no 98, July 2008.
- [51] Zhang, X. Development and Application of Zero Expansion Silica Brick of Hot Repairing of Coke Oven. China's Refractories, Vol. 12, N° 4. 2003.

[52] Method for building coke oven. European patent office. EP 3 279 290 A1. Bulletin 2018/06. 0/-02-2018.

- [53] Higashikawa, N.; Nishida, S.; Iida, M. Wide Variety in Monolithic Refractories and Precast Block for Coke Oven. Shinagawa Technical Report. Vol. 59. 2016.
- [54] Norma UNE-EN 993-1:2018. Métodos de ensayo para productos refractarios conformados densos. Parte 1: Determinación de la densidad aparente, de la porosidad abierta y de la porosidad total.
- [55] UNE-EN 993-5:2018. Métodos de ensayo para productos refractarios conformados densos. Parte 5: Determinación de la resistencia a la compresión en frío.
- [56] EN 993-10:2020. Métodos de ensayo para productos refractarios conformados densos. Parte 10: Determinación de la variación dimensional permanente por acción del calor.
- [57] Norma ISO/CG 20182 Refractory test-piece preparation- Gunning refractory panel by pneumatic-nozzle mixing type guns.

Intensidades de deshornados con alta resistencia

Intensidades en deshornados con alta resistencia en el primer año del periodo de estudio.

					Amperios										
A01 A01	404 400	B01 B01	411 407	C01 C01	411 410	D01 D01	412 411	E01 E01	410 409	F01 F01	411 383	G01 G01	408 397	H01 H04	411 335
A01	400	B01	398	C01	409	D01	409	E01	409	F01	352	G01	397	H04	320
A01	400	B01	390	C01	407	D01	409	E01	405	F01	351	G01	379	H05	348
A01	399	B01	388	C01	406	D01	409	E01	403	F01	350	G02	369	H05	320
A01	395	B01	387	C01	405	D01	408	E01	401	F01	345	G02	334	H06	408
A01	388 383	B01 B01	378 376	C01 C01	403 397	D01	406 406	E01 E01	399 398	F01 F02	330 412	G03 G03	383 353	H06 H07	407 339
A01 A01	383	B01	374	C01	397	D01 D01	404	E01	396	F02	412	G03	343	H09	327
A01	377	B01	373	C01	395	D01	403	E01	395	F02	399	G03	310	H09	321
A01	373	B01	373	C01	387	D01	403	E01	391	F02	378	G04	381	H09	311
A01	371	B01	373	C01	326	D01	400	E01	388	F02	375	G04	376	H10	332
A01 A01	364 354	B01 B01	372 372	C02 C02	412 410	D01 D01	396 390	E01 E01	388 388	F02 F02	350 318	G04 G04	370 358	H10 H11	316 407
A01	354	B01	369	C02	408	D01	381	E01	385	F03	395	G04	345	H11	362
A01	349	B01	353	C02	407	D01	359	E01	384	F03	382	G04	337	H11	323
A01	349	B01	352	C02	406	D02	411	E01	383	F03	379	G04	322	H12	412
A01	344	B01	350	C02	403	D02	411	E01	370	F03	359	G04	322	H12	409
A01 A01	342 341	B01 B01	349 346	C02 C02	395 375	D02 D02	410 410	E01 E01	370 369	F03 F03	354 334	G04 G04	317 314	H12 H12	405 369
A01	341	B01	346	C02	358	D02	410	E01	367	F03	331	G05	401	H12	358
A01	341	B01	343	C03	410	D02	410	E01	366	F03	330	G05	380	H12	349
A01	341	B01	340	C03	410	D02	410	E01	366	F03	326	G05	335	H13	371
A01	334	B01	340	C03	409	D02	409	E01	360	F03	319	G07	411	H13	367
A01	327	B01	340	C03	409	D02	409	E01	360	F03	311	G07	409	H13	347
A01 A01	325 323	B01 B01	336 333	C03 C03	407 406	D02 D02	405 404	E01 E01	356 355	F04 F04	411 405	G07 G07	404 394	H13 H14	314 394
A01	321	B01	332	C03	405	D02	404	E01	354	F04	400	G07	390	H14	380
A01	318	B01	328	C03	404	D02	404	E01	347	F04	398	G07	336	H14	314
A01	318	B01	328	C03	398	D02	395	E01	342	F04	395	G07	331	H14	310
A01	317	B01	325	C03	388	D02	340	E01	340	F04	393	G08	410	H15	367
A01 A01	314 314	B01 B01	319 316	C03 C03	381 375	D02 D02	340 311	E01 E01	339 339	F04 F04	382 367	G08 G08	401 387	H16 H16	393 346
A01	314	B01	313	C03	363	D02	412	E01	336	F04	363	G08	377	H16	337
A01	310	B01	312	C04	412	D03	411	E01	325	F04	362	G08	368	H16	327
A02	411	B01	312	C04	412	D03	411	E01	324	F04	352	G08	315	H16	320
A02	410	B01	311	C04	411	D03	411	E01	321	F04	349	G09	406	H16	317
A02	407	B01	311	C04	411	D03	411	E01	321	F04	336	G09	402	H17	408
A02 A02	406 405	B02 B02	403 401	C04 C04	410 410	D03 D03	410 410	E01 E01	317 313	F04 F04	334 329	G09 G09	367 357	H17 H17	401 399
A02	405	B02	395	C04	407	D03	410	E01	313	F04	315	G09	357	H17	396
A02	404	B02	384	C04	407	D03	409	E01	312	F04	312	G09	337	H17	392
A02	401	B02	381	C04	406	D03	409	E02	381	F04	311	G09	337	H17	380
A02	401	B02	381	C04	405	D03	408	E02	341	F05	409	G09	331	H17	378
A02 A02	398 396	B02 B02	376 372	C04 C04	401 399	D03 D03	408 408	E02 E02	337 328	F05 F05	398 387	G09 G09	329 327	H17 H17	358 352
A02	396	B02	372	C04	397	D03	407	E03	408	F05	375	G10	409	H17	344
A02	395	B02	369	C04	392	D03	407	E03	394	F05	370	G10	371	H17	330
A02	394	B02	368	C04	391	D03	406	E03	392	F05	370	G10	365	H17	325
A02	392	B02	366	C04	386	D03	399	E03	377	F05	363	G10	341	H17	325
A02 A02	390 389	B02 B02	356 354	C04 C04	373 362	D03 D03	399 397	E03 E03	374 371	F05 F05	363 361	G11 G11	407 356	H17 H17	319 312
A02	388	B02	350	C04	351	D03	397	E03	363	F05	352	G11	328	H18	342
A02	387	B02	341	C04	328	D03	397	E03	362	F05	329	G12	409	H18	335
A02	384	B02	340	C04	321	D03	397	E03	362	F05	328	G12	400	H18	335
A02	383	B02	339	C05	411	D03	388	E03	351	F05	320	G12	360	H18	331
A02	381	B02	338	C05	411	D03	338	E03	350	F05	314	G13	392	H18	321
A02 A02	381 380	B02 B02	337 336	C05 C05	411 410	D04 D04	411 409	E03 E03	347 344	F06 F06	411 395	G14 G14	386 314	H18 H19	316 387
A02	379	B02	335	C05	409	D04	408	E03	343	F06	365	G15	399	H19	369
A02	376	B02	334	C05	409	D04	403	E03	340	F06	340	G15	376	H19	364
A02	376	B02	328	C05	406	D04	398	E03	334	F06	335	G15	335	H20	405
A02	374	B02	327	C05	405	D04	396	E03	317	F06	313	G16	405	H20	323
A02 A02	368 367	B02 B02	321 321	C05 C05	405 404	D04 D04	391 386	E03 E03	313 310	F06 F07	310 358	G16 G16	377 351	H20 H21	314 376
A02 A02	362	B02	314	C05	404	D04 D04	384	E03	310	F07	354	G16	347	H21	346
A02	362	B02	314	C05	402	D04	384	E04	410	F07	339	G16	346	H21	331
A02	358	B02	314	C05	400	D04	381	E04	401	F07	339	G16	337	H22	400
A02	358	B02	313	C05	400	D04	377	E04	401	F07	335	G17	403	H22	396
A02	357	B02	311	C05	397	D05	412	E04	401	F08	412	G17	338	H22	393

A02	357	B03	394	C05	389	D05	411	E04	396	F08	399	G17	328	H22	392
A02	356	B03	393	C05	388	D05	410	E04	396	F08	391	G17	326	H22	383
A02	354	B03	390	C06	411	D05	408	E04	396	F08	331	G18	396	H22	379
A02	354	B03	373	C06	411	D05	408	E04	390	F08	329	G18	388	H22	371
A02	351	B03	371	C06	411	D05	408	E04	387	F08	321	G18	352	H22	364
A02	349	B03	371	C06	410	D05	408	E04	375	F08	314	G18	325	H22	336
A02	347	B03	366	C06	409	D05	408	E04	372	F09	411	G19	363	H22	332
A02	346	B03	366	C06	408	D05	408	E04	368	F09	376	G19	352	H22	323
A02	345	B03	365	C06	408	D05	408	E04	355	F09	376	G19	329	H22	317
A02	345	B03	365	C06	406	D05	408	E04	354	F09	376	G19	326	H23	408
A02	341	B03	361	C06	404	D05	408	E04	347	F09	366	G19	310	H23	404
A02	335	B03	361	C06	403	D05	406	E04	346	F09	354	G19	310	H23	344
A02	332	B03	361	C06	397	D05	405	E04	334	F09	353	G20	408	H23	331
A02	323	B03	355	C06	388	D05	405	E04	332	F09	311	G20	362	H24	412
A02	321	B03	352	C06	385	D05	404	E04	330	F10	403	G20	361	H24	404
A02	313	B03	351	C06	368	D05	403	E04	330	F10	401	G21	409	H24	401
A03	411	B03	350	C07	412	D05	402	E04	327	F10	389	G21	366	H24	372
A03	399	B03	349	C07	410	D05	398	E04	319	F10	384	G22	356	H24	328
A03	393	B03	347	C07	409	D05	398	E04	314	F10	382	G22	317	H24	317
A03	384	B03	345	C07	408	D05	387	E04	313	F10	376	G22 G23	396	H24	314
		B03		C07	408							G23			
A03	381		344			D05	319	E05	412	F10	364		355	H24	312
A03	377	B03	341	C07	407	D05	318	E05	411	F10	364	G23	322	H25	360
A03	375	B03	340	C07	406	D05	310	E05	407	F10	354	G24	393	H25	341
A03	371	B03	340	C07	404	D06	411	E05	406	F10	351	G24	371	H26	371
A03	366	B03	337	C07	404	D06	411	E05	401	F10	350	G24	363	H26	340
A03	365	B03	332	C07	403	D06	410	E05	398	F10	345	G24	327	H28	406
A03	364	B03	330	C07	403	D06	410	E05	395	F10	345	G24	318	H28	406
A03	364	B03	329	C07	401	D06	407	E05	391	F10	338	G24	317	H28	337
A03	359	B03	329	C07	400	D06	407	E05	381	F10	336	G24	316	H28	328
A03	353	B03	328	C07	394	D06	397	E05	367	F10	336	G24	312	H28	320
A03	352	B03	328	C07	394	D06	394	E05	361	F10	330	G24	311	H28	312
A03	350	B03	327	C07	394	D06	382	E05	360	F10	327	G25	338	H29	399
A03	349	B03	327	C07	381	D06	382	E05	357	F10	319	G26	405	H29	393
A03	349	B03	326	C07	345	D06	353	E05	356	F10	317	G26	378	H29	388
A03	345	B03	322	C08	412	D07	412	E05	352	F10	317	G26	366	H29	364
A03	343	B03	320	C08	411	D07	411	E05	351	F10	316	G27	408	H29	327
A03	341	B03	320	C08	411	D07	410	E05	348	F10	316	G28	403	H29	316
A03	333	B03	315	C08	411	D07	408	E05	342	F10	314	G28	365	H30	396
A03	330	B03	311	C08	410	D07	408	E05	336	F11	407	G28	352	H30	377
A03	330	B03	310	C08	408	D07	408	E05	336	F11	393	G28	349	H30	354
A03	328	B03	310	C08	407	D07	407	E05	330	F11	383	G28	334	H30	345
A03	327	B04	392	C08	402	D07	407	E05	317	F11	382	G28	322		
A03	326	B04	391	C08	400	D07	406	E05	315	F11	380	G28	316		
A03	325	B04	390	C08	400	D07	405	E05	312	F11	379	G29	370		
A03	325	B04	380	C08	397	D07	389	E05	310	F11	379	G29	369		
A03	324	B04	372	C08	396	D07	371	E06	410	F11	366	G29	369		
A03	321	B04	366	C08	395	D07	370	E06	406	F11	357	G29	362		
A03	320	B04	357	C08	393	D07	366	E06	396	F11	355	G29	359		
A03	320	B04	354	C08	391	D07	364	E06	390	F11	337	G29	342		
A03	319	B04	353	C08	380	D08	412	E06	388	F11	323	G29	333		
A03 A03	318 313	B04 B04	353 350	C08 C08	364 347	D08 D08	410 410	E06 E06	381 376	F12 F12	395 387	G29 G29	331 329		
A03	310	B04	346	C08	337	D08	409	E06	375	F12	387	G29	327		
A04	407	B04	346	C09	411	D08	408	E06	371	F12	382	G29	325		
A04	404	B04	344	C09	411	D08	407	E06	368	F12	376	G29	312		
A04	404	B04	344	C09	410	D08	403	E06	367	F12	368	G30	320		
A04	404	B04	341	C09	409	D08	402	E06	347	F12	364				
A04	403	B04	329	C09	408	D08	397	E06	337	F12	357				
A04	402	B04	318	C09	407	D08	379	E06	329	F12	353				
A04	400	B04	315	C09	403	D08	366	E06	328	F12	341				
A04	396	B04	315	C09	401	D09	411	E06	327	F12	325				
A04	394	B04	313	C09	400	D09	410	E06	325	F12	312				
A04	390	B04	312	C09	400	D09	409	E06	322	F12	310				
A04	388	B05	402	C09	399	D09	408	E06	318	F12	310				
A04 A04	387	B05	392	C09	397	D09	408	E06	318	F13	411				
A04 A04			392	C09			408			F13	399				
	382	B05			395	D09		E06	316						
A04	382	B05	371	C09	389	D09	407	E06	316	F13	397				
A04	380	B05	366	C09	386	D09	406	E06	316	F13	388				
A04	379	B05	360	C09	381	D09	401	E07	401	F13	367				
A04	378	B05	356	C09	368	D09	396	E07	392	F13	367				
A04	378	B05	356	C09	363	D09	391	E07	388	F13	355				

A04	375	B05	350	C09	352	D09	385	E07	385	F13	354
A04	375	B05	343	C10	411	D10	412	E07	380	F13	354
A04	373	B05	338	C10	411	D10	411	E07	376	F13	348
A04	369	B05	336	C10	411	D10	411	E07	366	F13	346
A04	369	B05	334	C10	410	D10	411	E07	360	F13	339
A04	365	B05	333	C10	409	D10	411	E07	358	F13	337
A04	365	B05	330	C10	409	D10	411	E07	357	F13	330
A04	362	B05	324	C10	408	D10	410	E07	350	F13	315
				C10			410				311
A04	362	B05	319		408	D10		E07	346	F13	
A04	362	B05	314	C10	406	D10	410	E07	333	F14	407
A04	361	B06	411	C10	405	D10	409	E07	327	F14	406
A04	360	B06	391	C10	404	D10	408	E07	323	F14	401
A04	359	B06	371	C10	402	D10	408	E07	322	F14	399
	356	B06		C10	401	D10	408	E07	314	F14	398
A04			369								
A04	349	B06	362	C10	400	D10	408	E08	406	F14	395
A04	346	B06	357	C10	398	D10	408	E08	397	F14	387
A04	346	B06	357	C10	398	D10	407	E08	390	F14	385
A04	345	B06	345	C10	391	D10	406	E08	363	F14	381
A04	342	B06	342	C10	372	D10	406	E08	349	F14	378
A04	341	B06	340	C10	369	D10	405	E08	345	F14	373
A04	339	B06	333	C10	362	D10	405	E08	336	F14	359
A04		B06	319			D10	404	E08	332	F14	357
	339			C10	319						
A04	338	B06	317	C11	412	D10	404	E08	331	F14	357
A04	337	B06	315	C11	412	D10	403	E08	325	F14	353
A04	336	B07	409	C11	411	D10	402	E08	322	F14	343
A04	335	B07	402	C11	411	D10	400	E09	412	F14	325
A04	334	B07	385	C11	409	D10	394	E09	405	F14	321
A04	331	B07	381	C11	409	D10	374	E09	404	F14	319
A04	329	B07	370	C11	409	D10	346	E09	395	F14	310
A04			369	C11			412	E09			394
	324	B07			408	D11			395	F15	
A04	324	B07	369	C11	408	D11	412	E09	390	F15	342
A04	322	B07	362	C11	404	D11	412	E09	383	F15	337
A04	322	B07	361	C11	401	D11	411	E09	383	F15	329
A04	320	B07	359	C11	397	D11	407	E09	380	F15	326
A04	318	B07	358	C11	396	D11	407	E09	378	F15	321
A04	317	B07	346	C11	392	D11	407	E09	378	F15	313
A04	316	B07	339	C11	388	D11	405	E09	351	F16	374
A04			338	C11			402	E09			372
	315	B07			388	D11			343	F16	
A04	315	B07	338	C11	384	D11	399	E09	336	F16	368
A04	315	B07	335	C11	379	D11	398	E09	331	F16	352
A04	313	B07	332	C11	379	D11	397	E09	315	F16	319
A05	412	B07	331	C11	361	D11	396	E10	410	F16	315
A05	410	B07	322	C11	346	D11	395	E10	406	F16	313
A05	410	B07	319	C11	343	D11	392	E10	404	F16	310
A05	406	B07	318	C11	319	D11	386	E10	400	F17	392
A05	404	B07	318	C11	317	D11	386	E10	399	F17	366
A05	403	B07	317	C12	412	D11	371	E10	380	F17	366
A05	400	B07	316	C12	412	D11	367	E10	363	F17	338
A05	400	B07	316	C12	411	D11	351	E10	363	F17	336
A05	398	B07	312	C12	411	D11	316	E10	360	F17	331
A05	397	B07	310	C12	408	D12	411	E10	356	F18	398
A05	396	B08	410	C12	408	D12	410	E10	354	F18	387
A05	395	B08	410	C12	408	D12	408	E10	351	F18	379
A05	394	B08	404	C12	406	D12	408	E10	350	F18	348
A05	390	B08	398	C12	406	D12	398	E10	346	F18	340
A05	387	B08	382	C12	403	D12	398	E10	346	F19	412
A05	386	B08	374	C12	403	D12	392	E10	342	F19	410
A05	385	B08	369	C12	402	D12	385	E10	334	F19	407
A05	379	B08	363	C12	391	D12	383	E10	333	F19	406
	377	B08	354	C12	384	D12	366	E10	325	F19	402
A05											
A05	374	B08	346	C12	356	D13	412	E10	321	F19	392
A05	374	B08	337	C12	335	D13	412	E10	318	F19	380
A05	373	B08	333	C13	412	D13	412	E10	315	F19	378
A05	373	B08	326	C13	411	D13	411	E10	314	F19	375
A05	370	B08	325	C13	411	D13	411	E10	314	F19	371
A05	369	B08	318	C13	410	D13	410	E11	411	F19	358
A05	367	B08	318	C13	410	D13	409	E11	407	F19	345
A05	362	B08	316	C13	409	D13	408	E11	397	F19	340
A05	359	B08	316	C13	409	D13	406	E11	395	F19	334
A05	357	B08	315	C13	409	D13	405	E11	384	F19	332
A05	357	B08	313	C13	406	D13	399	E11	365	F19	330

A05	356	B08	311	C13	404	D13	399	E11	354	F19	325
A05	356	B08	311	C13	403	D13	397	E11	353	F19	323
A05	353	B09	407	C13	401	D13	395	E11	351	F19	319
A05	353	B09	405	C13	397	D13	392	E12	402	F19	316
A05	349	B09	401	C13	396	D13	391	E12	395	F20	395
A05	349	B09	401	C13	391	D13	384	E12	392	F20	366
A05	349	B09	396	C13	387	D13	383	E12	391	F20	357
	348	B09	396	C13	375	D13	351	E12	382	F20	352
A05											
A05	346	B09	396	C13	340	D14	410	E12	376	F20	319
A05	346	B09	396	C13	340	D14	409	E12	372	F20	317
			388	C13			408				
A05	345	B09			313	D14		E12	340	F21	366
A05	344	B09	387	C13	312	D14	406	E12	318	F21	348
A05	343	B09	383	C14	411	D14	405	E12	315	F21	344
A05	341	B09	381	C14	410	D14	402	E12	310	F21	325
A05	340	B09	374	C14	410	D14	400	E13	409	F22	405
A05	339	B09	372	C14	409	D14	398	E13	405	F22	402
A05	338	B09	369	C14	409	D14	394	E13	403	F22	398
A05	338	B09	367	C14	408	D14	393	E13	402	F22	382
A05	337	B09	367	C14	408	D14	389	E13	390	F22	370
A05	334	B09	366	C14	408	D14	371	E13	384	F22	356
A05	330	B09	362	C14	408	D14	371	E13	352	F22	347
A05	327	B09	359	C14	407	D14	355	E13	340	F22	321
A05	327	B09	358	C14	406	D14	330	E13	333	F22	320
A05	320	B09	358	C14	404	D15	412	E13	333	F22	314
A05	317	B09	353	C14	404	D15	412	E13	331	F23	407
A05	314	B09	350	C14	403	D15	411	E13	331	F23	391
A05	313	B09	346	C14	400	D15	409	E13	319	F23	388
A05	312	B09	339	C14	399	D15	408	E14	411	F23	386
A05	310	B09	337	C14	398	D15	407	E14	400	F23	369
A06	403	B09	336	C14	398	D15	407	E14	397	F23	355
A06	397	B09	331	C14	398	D15	406	E14	394	F23	346
A06	396	B09	328	C14	395	D15	404	E14	367	F23	330
A06	396	B09	324	C14	381	D15	404	E14	350	F23	313
A06	396	B09	323	C14	371	D15	404	E14	348	F24	410
A06	396	B09	320	C14	366	D15	402	E14	339	F24	408
A06	393	B09	319	C14	365	D15	400	E14	333	F24	405
A06	392	B09	319	C14	365	D15	398	E14	328	F24	399
A06	388	B09	318	C14	336	D15	398	E14	324	F24	395
A06	386	B09	318	C14	335	D15	387	E14	318	F24	382
A06	383	B09	317	C14	324	D15	380	E14	310	F24	381
A06	381	B09	310	C15	412	D15	343	E14	310	F24	373
A06	373	B10	411	C15	411	D15	336	E15	412	F24	370
A06	366	B10	411	C15	410	D15	334	E15	408	F24	368
A06	365	B10	403	C15	410	D15	326	E15	384	F24	367
	359	B10	398	C15	410	D15	325	E15	384	F24	367
A06											
A06	355	B10	396	C15	409	D15	314	E15	365	F24	362
A06	355	B10	370	C15	408	D16	411	E15	362	F24	357
A06	354	B10	367	C15	407	D16	409	E15	348	F24	355
A06	354	B10	353	C15	407	D16	409	E15	344	F24	354
A06	352	B10	341	C15	406	D16	408	E15	339	F24	351
A06	350	B10	340	C15	406	D16	408	E15	323	F24	346
A06	349	B10	338	C15	403	D16	407	E15	318	F24	343
A06	349	B10	330	C15	403	D16	407	E15	318	F24	312
A06	346	B10	327	C15	403	D16	402	E15	318	F25	353
A06	343	B10	321	C15	400	D16	401	E16	400	F25	349
A06	338	B10	318	C15	400	D16	401	E16	399	F25	325
A06	337	B10	318	C15	398	D16	398	E16	376	F26	410
A06	334	B10	314	C15	397	D16	393	E16	368	F26	376
A06	333	B11	384	C15	395	D16	386	E16	367	F26	375
A06	329	B11	378	C15	394	D16	364	E16	366	F26	372
A06	329	B11	348	C15	390	D16	362	E16	362	F26	369
A06	326	B11	345	C15	388	D16	337	E16	359	F26	365
A06	324	B11	341	C15	378	D17	412	E16	345	F26	364
A06	323	B11	335	C15	377	D17	412	E16	337	F26	362
A06	322	B11	331	C15	376	D17	412	E16	333	F26	361
A06	312	B11	329	C15	368	D17	411	E16	325	F26	359
A06	312	B11	319	C15	355	D17	409	E16	323	F26	356
A07	408	B11				D17	409			F26	
			318	C15	353			E16	323		355
A07	406	B11	314	C15	319	D17	403	E16	320	F26	351
A07	400	B11	313	C16	412	D17	395	E16	314	F26	351
A07	398	B12	370	C16	411	D17	387	E16	310	F26	350
110/	370	D12	310	C10	711	ווע	307	E10	510	1.70	550

A07	398	B12	351	C16	411	D17	380	E17	408	F26	350
A07	394	B12	346	C16	409	D17	365	E17	370	F26	346
A07	388	B12	317	C16	409	D17	357	E17	325	F26	339
A07	386	B12	311	C16	408	D17	356	E18	325	F26	339
A07	386	B13	410	C16	407	D17	355	E18	404	F26	332
A07	382	B13	406	C16	407	D17	346	E18	393	F26	326
A07	376	B13	401	C16	405	D17	336	E18	343	F26	323
			401	C16				E18	338		
A07	374	B13			393	D17	328			F26	323
A07	374	B13	387	C16	391	D17	313	E18	332	F26	318
A07	374	B13	384	C16	388	D18	412	E18	324	F26	317
A07	371	B13	382	C16	381	D18	411	E18	317	F26	314
A07	370	B13	382	C16	336	D18	411	E18	314	F27	407
A07	366	B13	381	C16	330	D18	409	E19	401	F27	368
A07	363	B13	370	C17	411	D18	409	E19	366	F27	357
A07	360	B13	339	C17	411	D18	406	E19	361	F27	318
A07	360	B13	333	C17	410	D18	406	E19	357	F27	318
A07	359	B13	330	C17	408	D18	404	E19	347	F27	312
A07	358	B13	329	C17	408	D18	403	E19	342	F28	404
A07	358	B13	328	C17	407	D18	393	E19	342	F28	368
A07	357	B13	328	C17	406	D18	387	E19	335	F29	412
A07	357	B13	323	C17	406	D18	385	E19	333	F29	410
A07	355	B13	316	C17	406	D18	384	E19	325	F29	408
A07	349	B14	411	C17	405	D18	380	E19	321	F29	406
A07	347	B14	406	C17	405	D18	376	E19	314	F29	398
A07	346	B14	404	C17	404	D18	365	E19	310	F29	394
A07	336	B14	402	C17	403	D18	357	E20	412	F29	393
A07	333	B14	401	C17	401	D18	345	E20	410	F29	387
A07	330	B14	396	C17	400	D19	410	E20	407	F29	385
A07	330	B14	392	C17	398	D19	409	E20	402	F29	385
A07	310	B14	391	C17	381	D19	408	E20	389	F29	384
A08	410	B14	388	C17	376	D19	407	E20	376	F29	378
A08	405	B14	386	C17	338	D19	404	E20	372	F29	376
A08	392	B14	385	C18	411	D19	402	E20	363	F29	371
A08	385	B14	381	C18	411	D19	398	E20	356	F29	366
A08	382	B14	381	C18	409	D19	392	E20	353	F29	347
A08	377	B14	381	C18	408	D19	389	E20	322	F29	344
A08	371	B14	372	C18	407	D19	386	E20	313	F29	343
			363	C18				E20	312		336
A08	370	B14			407	D19	377			F29	
A08	362	B14	359	C18	406	D20	411	E20	310	F29	332
A08	361	B14	359	C18	397	D20	411	E21	404	F29	321
A08	360	B14	353	C19	412	D20	410	E21	404	F29	317
A08	355	B14	352	C19	411	D20	409	E21	404	F29	315
A08	354	B14	348	C19	410	D20	409	E21	400	F29	312
A08	354	B14	346	C19	410	D20	408	E21	365	F30	408
A08	354	B14	342	C19	410	D20	408	E21	362	F30	403
A08	346	B14	342	C19	410	D20	405	E21	347	F30	390
A08	342	B14	342	C19	408	D20	403	E21	346	F30	385
A08	340	B14	326	C19	408	D20	403	E21	327		
A08	340	B14	320	C19	406	D20	401	E21	321		
A08	340	B14	319	C19	404	D20	400	E21	311		
A08	338	B14	313	C19	403	D20	400	E22	376		
A08	337	B14	312	C19	396	D20	393	E22	355		
A08	332	B14	311	C19	390	D20	391	E22	348		
A08	330	B14	310	C19	388	D20	387	E22	348		
A08	330	B15	407	C19	387	D20	372	E22	312		
				C19							
A08	325	B15	404		387	D20	346	E23	370		
A08	325	B15	397	C19	317	D20	333	E23	353		
A08	324	B15	396	C20	411	D21	412	E23	349		
A08	323	B15	395	C20	411	D21	411	E23	337		
A08	320	B15	392	C20	411	D21	409	E23	330		
A08	319	B15	391	C20	410	D21	409	E23	330		
A08	314	B15	385	C20	408	D21	406	E23	329		
A08	313	B15	383	C20	408	D21	406	E23	329		
A09	412	B15	382	C20	408	D21	406	E23	316		
A09	410	B15	382	C20	407	D21	402	E23	310		
A09	407	B15	378	C20	404	D21	402	E24	372		
A09	404	B15	376	C20	401	D21	401	E24	371		
A09	404	B15	376	C20	400	D21	397	E24	363		
A09	401	B15	374	C20	400	D21	394	E24	319		
A09	392	B15	373	C20	398	D21	390	E24	317		
A09	381	B15	371	C20	396	D21	390	E25	381		
1107	501	213	3/1	220	370	221	370		301		

A09	379	B15	370	C20	392	D21	385	E25	376
A09	379	B15	365	C20	392	D21	366	E25	370
A09	378	B15	362	C20	391	D21	361	E25	358
A09	372	B15	362	C20	381	D21	312	E25	351
A09	372	B15	358	C21	412	D22	412	E25	346
A09	364	B15	358	C21	410	D22	412	E25	327
A09	363	B15	354	C21	409	D22	411	E25	313
A09	355	B15	351	C21	409	D22	409	E25	310
A09	342	B15	344	C21	405	D22	409	E26	408
A09	341	B15	343	C21	401	D22	408	E26	379
A09	340	B15	339	C21	396	D22	407	E26	356
A09	337	B15	332	C21	393	D22	405	E26	353
A09	335	B15	328	C21	392	D22	405	E26	352
A09	332	B15	327	C21	390	D22	405	E26	340
A09	329	B15	326	C21	390	D22	405	E26	339
A09	321	B15	325	C21	371	D22	401	E26	326
A09	321	B15	323	C21	351	D22	400	E26	326
A09	316	B15	322	C22	409	D22	400	E26	312
A09	314	B15	322	C22	408	D22	398	E26	310
A09	313	B15	322	C22	408	D22	397	E27	382
A09	312	B15	321	C22	402	D22	395	E27	367
A10	410	B15	319	C22	398	D22	392	E27	351
A10	409	B15	317	C22	398	D22	385	E27	333
A10	408	B15	317	C22	397	D22	378	E27	328
A10	402	B15	313	C22	390	D22	353	E27	327
A10	401	B15	311	C22	387	D22	340	E27	323
A10	399	B15	310	C22	379	D22	333	E28	401
A10	399	B16	410	C22	358	D22	325	E28	394
A10	397	B16	406	C22	356	D22	323	E28	392
A10						D23	412		
	396	B16	403	C22	342			E28	386
A10	396	B16	397	C23	411	D23	412	E28	382
A10	395	B16	395	C23	410	D23	411	E28	364
A10	388	B16	394	C23	410	D23	408	E28	351
A10	386	B16	390	C23	410	D23	408	E28	337
A10	382	B16	390	C23	408	D23	408	E28	334
A10	369	B16	389	C23	407	D23	406	E28	328
A10	361	B16	389	C23	407	D23	402	E28	323
A10	356	B16	388	C23	406	D23	401	E28	322
A10	352	B16	387	C23	406	D23	398	E28	321
A10	349	B16	384	C23	405	D23	397	E28	320
A10	349	B16	380	C23	405	D23	396	E28	320
A10	348	B16	377	C23	404	D23	394	E28	315
A10	339	B16	377	C23	402	D23	391	E29	383
A10	338	B16	373	C23	400	D23	388	E29	382
A10	337	B16	368	C23	400	D23	387	E29	382
A10	336	B16	367	C23	400	D23	387	E29	369
A10	333	B16	362	C23	396	D23	380	E29	368
A10	332	B16	361	C23	396	D23	349	E29	347
A10	330	B16	358	C23	389	D24	412	E29	324
A10	330	B16	355	C23		D24	411		318
					387			E29	
A10	330	B16	353	C24	412	D24	411	E29	312
A10	327	B16	350	C24	412	D24	409	E30	410
A10	322	B16	348	C24	411	D24	409	E30	404
A10	322	B16	347	C24	411	D24	408	E30	371
A10	320	B16	346	C24	411	D24	405	E30	341
A10	320	B16	340	C24	410	D24	404	E30	336
A10	318	B16	338	C24	410	D24	404	E30	336
A10	313	B16	338	C24	407	D24	402	E30	318
A10	312	B16	333	C24	406	D24	396	250	310
A11	412	B16	330	C24	406	D24	341		
A11	411	B16	329	C24	404	D25	412		
A11	406	B16	326	C24	403	D25	411		
A11	404	B16	320	C24	401	D25	411		
A11	402	B16	318	C24	395	D25	411		
A11	401	B16	318	C24	390	D25	410		
A11	400	B16	316	C24	387	D25	410		
A11	399	B16	314	C24	385	D25	409		
A11	399	B16	313	C24	385	D25	408		
A11	398	B17	407	C24	379	D25	406		
A11	394	B17	406	C24	371	D25	402		
A11	388	B17	403	C25	412	D25	400		

A11	386	B17	402	C25	411	D25	397	A13	356	B18	318	C28	409	D28	384
A11	385	B17	402	C25	411	D25	396	A13	349	B18	315	C28	408	D28	382
A11	385	B17	401	C25	410	D25	390	A13	343	B18	311	C28	406	D28	379
A11	379	B17	401	C25	410			A13		B18	311	C28	403	D28	361
						D25	363		343						
A11	375	B17	396	C25	407	D25	357	A13	341	B19	411	C28	400	D29	412
A11	374	B17	392	C25	407	D25	342	A13	338	B19	410	C28	400	D29	411
A11	369	B17	391	C25	406	D26	410	A13	337	B19	406	C28	400	D29	411
A11	369	B17	389	C25	406	D26	410	A13	335	B19	405	C28	399	D29	410
A11	368	B17	382	C25	405	D26	409	A13	334	B19	395	C28	389	D29	410
A11	366	B17	381	C25	401	D26	409	A13	331	B19	386	C28	389	D29	407
A11	366	B17	376	C25	395	D26	408	A13	325	B19	371	C28	388	D29	404
A11	364	B17	374	C25	383	D26	408	A13	324	B19	371	C28	375	D29	403
A11	359	B17	372	C25	377	D26	407	A13	323	B19	365	C28	374	D29	397
A11	358	B17	372	C25	376	D26	406	A13	322	B19	364	C29	412	D29	343
A11	353	B17	372	C25	342	D26	405	A13	322	B19	363	C29	412	D29	336
					411								411		
A11	352	B17	371	C26		D26	405	A13	320	B19	357	C29		D30	412
A11	352	B17	370	C26	411	D26	400	A13	320	B19	352	C29	411	D30	412
A11	352	B17	366	C26	410	D26	398	A13	314	B19	346	C29	411	D30	411
A11	351	B17	366	C26	408	D26	397	A13	313	B19	343	C29	410	D30	411
A11	351	B17	363	C26	407	D26	396	A13	311	B19	341	C29	409	D30	410
A11	349	B17	361	C26	406	D26	396	A13	310	B19	340	C29	409	D30	410
A11	345	B17	354	C26	404	D26	396	A14	410	B19	339	C29	407	D30	409
A11	341	B17	352	C26	402	D26	395	A14	409	B19	337	C29	407	D30	409
A11	340	B17	347	C26	394	D26	393	A14	409	B19	326	C29	407	D30	409
A11	338	B17	344	C26	392	D26	392	A14	408	B19	323	C29	405	D30	408
A11	334	B17	341	C26	392	D26	372	A14	407	B19	323	C29	404	D30	408
A11	333	B17	339	C26	392	D26	371	A14	402	B19	322	C29	402	D30	406
A11	329	B17	337	C26	382	D26	345	A14	401	B19	317	C29	402	D30	405
A11	326	B17	333	C26	364	D27	412	A14	398	B19	313	C29	398	D30	405
A11	325	B17	331	C26	357	D27	411	A14	396	B19	312	C29	396	D30	400
A11	321	B17	330	C26	350	D27	411	A14	395	B19	310	C29	393	D30	398
A11	314	B17	326	C26	321	D27	411	A14	393	B20	398	C29	392	D30	384
A11	311	B17	325	C26	318	D27	410	A14	393	B20	398	C29	391	D30	383
A12	407	B17	320	C27	411	D27	410	A14	392	B20	392	C29	390	D30	383
	396	B17	317	C27	410		408	A14		B20	387		388	D30	331
A12						D27			391			C29		D30	331
A12	392	B18	409	C27	410	D27	406	A14	391	B20	386	C29	388		
A12	391	B18	404	C27	408	D27	406	A14	389	B20	374	C29	387		
A12	383	B18	400	C27	408	D27	403	A14	388	B20	368	C29	384		
A12	383	B18	397	C27	407	D27	402	A14	387	B20	364	C29	373		
A12	370	B18	397	C27	406	D27	399	A14	382	B20	356	C29	329		
A12	369	B18	396	C27	406	D27	389	A14	380	B20	351	C30	411		
A12	368	B18	393	C27	405	D27	388	A14	378	B20	351	C30	408		
A12	365	B18	389	C27	402	D27	387	A14	378	B20	345	C30	407		
A12	365	B18	381	C27	400	D27	354	A14	373	B20	341	C30	407		
A12	354	B18	379	C27	399	D28	412	A14	363	B20	315	C30	407		
A12	353	B18	373	C27	397	D28	411	A14	362	B20	314	C30	406		
A12	349	B18	367	C27	397	D28	411	A14	361	B21	410	C30	406		
A12	348	B18	361	C27	396	D28	411	A14	356	B21	408	C30	406		
A12	345	B18	357	C27	393	D28	410	A14	355	B21	407	C30	404		
A12	345	B18	352	C27	390	D28	410	A14	354	B21	405	C30	404		
A12	343	B18	347	C27	390	D28	408	A14	354	B21	403	C30	403		
A12	341	B18	345	C27	390	D28	408	A14	353	B21	401	C30	403		
A12	340	B18	344	C27	386	D28	408	A14	346	B21	392	C30	401		
A12	339	B18	340	C27	376	D28	408	A14	344	B21	372	C30	400		
A12	334	B18	339	C27	366	D28	407	A14	341	B21	369	C30	397		
A12	329	B18	338	C27	359	D28	405	A14	335	B21	367	C30	391		
A12	328	B18	336	C27	354	D28	405	A14	335	B21	365	C30	390		
A12	326	B18	336	C27	340	D28	405	A14	334	B21	365	C30	388		
A12	323	B18	336	C27	326	D28	404	A14	334	B21	361	C30	386		
A12	323	B18	332	C27	326	D28	403	A14	325	B21	360	C30	384		
													384		
A12	322	B18	330	C28	412	D28	402	A14	324	B21	352	C30			
A12	319	B18	330	C28	412	D28	401	A14	316	B21	346	C30	382		
A12	317	B18	330	C28	411	D28	401	A15	412	B21	345	C30	382		
A12	315	B18	329	C28	411	D28	401	A15	410	B21	342	C30	380		
A12	312	B18	326	C28	411	D28	398	A15	407	B21	342	C30	374		
A13	387	B18	326	C28	411	D28	398	A15	406	B21	341	C30	373		
A13	385	B18	325	C28	411	D28	396	A15	404	B21	340	C30	362		
A13	384	B18	323	C28	411	D28	394	A15	401	B21	336	C30	355		
A13	373	B18	323	C28	410	D28	392	A15	399	B21	334	C30	351		
A13	366	B18	323	C28	409	D28	391	A15	398	B21	334	C30	347		
A13	363	B18	319	C28	409	D28	391	A15	385	B21	327	C30	347		

A15	378	B21	318	C30	339	A16	335	B24	380
A15	377	B21	317	C30	317	A16	329	B24	377
A15	373	B21	317	C30	312	A16	328	B24	377
A15	372	B21	315			A16	326	B24	376
A15	372	B21	312			A16	324	B24	372
A15	371	B22	410			A16	323	B24	372
A15	363	B22	406			A16	320	B24	372
A15	362	B22	399			A16	318	B24	372
A15	361	B22	398			A16	315	B24	364
A15	358	B22	377			A16	310	B24	363
A15	357	B22	375			A17	412	B24	358
A15	356	B22	374			A17	406	B24	358
A15	355	B22	374			A17	405	B24	351
A15	352	B22	374			A17	399	B24	344
A15	348	B22	373			A17	399	B24	343
A15	348	B22	373			A17	399	B24	341
A15	342	B22	368			A17	398	B24	340
A15	338	B22	367			A17	392	B24	333
A15	337	B22	362			A17	382	B24	331
A15	336	B22	357			A17	369	B24	330
A15	333	B22	354			A17	369	B24	328
A15	333	B22	352			A17	368	B24	327
A15	333	B22	348			A17	365	B24	319
A15	330	B22	347			A17	364	B24	316
A15	329	B22	342			A17	364	B25	411
A15	329	B22	338			A17	360	B25	411
A15	324	B22	338			A17	356	B25	409
A15	312	B22	332			A17	352	B25	409
A16	410	B22	332			A17	352	B25	409
A16	408		330				352	B25	407
		B22				A17			
A16	406	B22	325			A17	347	B25	406
A16	405	B22	324			A17	347	B25	405
A16	405	B22	323			A17	346	B25	403
A16	404	B22	322			A17	346	B25	403
A16	402	B22	317			A17	345	B25	402
A16	399	B22	317			A17	341	B25	400
A16	399	B22	314			A17	341	B25	400
A16	396	B22	311			A17	341	B25	400
A16	393	B22	311			A17	336	B25	400
A16	391	B23	405			A17	336	B25	400
A16	386	B23	398			A17	331	B25	397
A16		B23	397			A17	330	B25	395
	386								
A16	386	B23	395			A17	328	B25	393
A16	385	B23	391			A17	327	B25	392
A16	384	B23	385			A17	325	B25	391
A16	383	B23	371			A17	324	B25	388
A16	383	B23	368			A17	321	B25	385
A16	379	B23	361			A17	321	B25	385
A16	378	B23	361			A17	320	B25	384
A16	372	B23	357			A17	320	B25	384
A16	371	B23	355			A17	318	B25	384
A16	371	B23	350			A17	315	B25	383
A16	370	B23	348			A18	409	B25	381
						A18			
A16	369	B23	344				396	B25	377
A16	369	B23	340			A18	395	B25	377
A16	366	B23	339			A18	387	B25	373
A16	364	B23	337			A18	386	B25	373
A16	363	B23	336			A18	381	B25	372
A16	363	B23	336			A18	380	B25	369
A16	361	B23	336			A18	376	B25	369
A16	360	B23	321			A18	370	B25	367
A16	358	B23	319			A18	368	B25	366
A16	355	B23	316			A18	365	B25	366
A16	354	B23	316			A18	364	B25	366
A16	352	B23	313			A18	362	B25	364
A16	352	B23	311			A18	354	B25	361
A16	345	B24	409			A18	352	B25	359
A16	342	B24	400			A18	349	B25	355
A16	340	B24	389			A18	342	B25	355
A16	340	B24	385			A18	341	B25	353
A16	336	B24	383			A18	336	B25	353
AIU	220	D24	203			A10	550	D23	333

A18	332	B25	353	A21	354	B27	341	A23	331	B28	319	A25	343	B30	316
A18	329	B25	352	A21	352	B27	339	A23	321	B28	316	A25	341	B30	316
A18	328	B25	350	A21	351	B27	335	A23	320	B28	312	A25	340	B30	316
A18	327	B25	349	A21	349	B27	334	A23	318	B28	311	A25	339		
A18	324	B25	349	A21	346	B27	333	A23	317	B29	411	A25	339		
A18	324	B25	344	A21	346	B27	329	A23	315	B29	408	A25	337		
A18	324	B25	343	A21	344	B27	329	A23	315	B29	402	A25	333		
A18	319	B25	341	A21	342	B27	326	A23	312	B29	399	A25	332		
A18	315	B25	340	A21	341	B27	324	A23	312	B29	394	A25	332		
A18	315	B25	338	A21	341	B27	319	A23	311	B29	385	A25	328		
A18	312	B25	337	A21	341	B27	317	A23	310	B29	384	A25	327		
A19	409	B25	336	A21	340	B27	314	A24	411	B29	379	A25	325		
A19	408	B25	330	A21	339	B27	314	A24	395	B29	374	A25	324		
A19	404	B25	328	A21	338	B27	314	A24	385	B29	373	A25	320		
A19	394	B25	328	A21	336	B27	314	A24	382	B29	371	A25	319		
A19	394	B25	326	A21	335	B27	312	A24	379	B29	371	A25	314		
A19	393	B25	322	A21	332	B28	412	A24	374	B29	368	A25	311		
A19	392	B25	319	A21	325	B28	411	A24	370	B29	368	A26	412		
A19	386	B25	318	A21	324	B28	410	A24	367	B29	364	A26	403		
A19	386	B25	317	A21	324	B28	408	A24	364	B29	364	A26	399		
A19	381	B25	314	A21	311	B28	407	A24	361	B29	362	A26	397		
A19	377	B25	310	A22	401	B28	405	A24	360	B29	357	A26	389		
A19	373	B26	410	A22	389	B28	404	A24	359	B29	356	A26	388		
A19	366	B26	399	A22	387	B28	404	A24	355	B29	351	A26	387		
A19	365	B26	397	A22	382	B28	403	A24	354	B29	348	A26	385		
A19	362	B26	395	A22	378	B28	402	A24	352	B29	341	A26	381		
A19	362	B26	390	A22	356	B28	402	A24	349	B29	336	A26	381		
A19	335	B26	387	A22	356	B28	401	A24	349	B29	330	A26	379		
A19	335	B26	387	A22	354	B28	400	A24	347	B29	328	A26	377		
A19	334	B26	386	A22	345	B28	400	A24	347	B29	324	A26	376		
A19	323	B26	386	A22	343	B28	398	A24	342	B29	322	A26	373		
A19	316	B26	386	A22	338	B28	398	A24	340	B29	316	A26	367		
A19	314	B26	386	A22	337	B28	398	A24	337	B29	316	A26	367		
A19	311	B26	386	A22	335	B28	398	A24	336	B30	406	A26	365		
A20	407	B26	381	A22	331	B28	397	A24	334	B30	400	A26	365		
A20	388	B26	379	A22	329	B28	397	A24	334	B30	395	A26	365		
A20	386	B26	377	A22	321	B28	396	A24	333	B30	391	A26	364		
A20 A20	379 362	B26 B26	372	A22 A22	318 318	B28 B28	395 395	A24 A24	328 327	B30 B30	388	A26	361 360		
A20 A20	347	B26	368 366	A22	316	B28	394	A24 A24	323	B30	387 383	A26 A26	358		
A20 A20	343	B26	359	A22	313	B28	394	A24 A24	317	B30	383	A26	357		
A20	339	B26	358	A22	310	B28	392	A24	314	B30	381	A26	357		
A20	339	B26	357	A22	310	B28	392	A24	313	B30	380	A26	356		
A20	334	B26	345	A23	399	B28	392	A25	410	B30	378	A26	355		
A20	334	B26	331	A23	397	B28	387	A25	408	B30	378	A26	350		
A20	332	B26	331	A23	392	B28	385	A25	403	B30	376	A26	349		
A20	317	B26	330	A23	388	B28	382	A25	398	B30	375	A26	346		
A20	315	B26	330	A23	385	B28	377	A25	398	B30	373	A26	344		
A20	313	B26	329	A23	379	B28	372	A25	396	B30	371	A26	341		
A21	407	B26	328	A23	376	B28	372	A25	392	B30	371	A26	337		
A21	405	B26	326	A23	375	B28	368	A25	381	B30	371	A26	335		
A21	405	B26	323	A23	374	B28	367	A25	381	B30	370	A26	334		
A21	403	B26	322	A23	374	B28	365	A25	380	B30	368	A26	333		
A21	402	B26	322	A23	373	B28	360	A25	378	B30	361	A26	332		
A21	401	B26	320	A23	372	B28	355	A25	375	B30	361	A26	329		
A21	398	B26	320	A23	366	B28	355	A25	368	B30	359	A26	329		
A21	398	B26	312	A23	366	B28	355	A25	365	B30	356	A26	328		
A21	397	B26	312	A23	364	B28	351	A25	365	B30	356	A26	325		
A21	383	B26	311	A23	359	B28	347	A25	364	B30	354	A26	317		
A21	381	B27	401	A23	359	B28	347	A25	364	B30	352	A26	316		
A21	380	B27	399	A23	358	B28	345	A25	363	B30	352	A26	315		
A21	373	B27	382	A23	354	B28	344	A25	360	B30	350	A26	315		
A21	372	B27	380	A23	353	B28	344	A25	360	B30	345	A26	315		
A21	371	B27	373	A23	353	B28	343	A25	355	B30	344	A26	314		
A21	368	B27	370	A23	341	B28	342	A25	354	B30	344	A26	314		
A21	366	B27	366	A23	338	B28	339	A25	351	B30	341	A27	407		
A21	366	B27	364	A23	333	B28	334	A25	351	B30	341	A27	406		
A21	364	B27	359	A23	333	B28	333	A25	350	B30	339	A27	406		
A21	360	B27	356	A23	332	B28	330	A25	349	B30	338	A27	405		
A21	359	B27	356	A23	331	B28	325	A25	347	B30	333	A27	404		
A21	356	B27	354	A23	331	B28	325	A25	344	B30	321	A27	403		

A27	400	A28	354	A30	344
A27	400	A28	352	A30	333
A27	392	A28	351	A30	328
A27	392	A28	351	A30	328
A27	391	A28	351	A30	325
				A30	
A27	391	A28	350		322
A27	388	A28	349	A30	320
A27	387	A28	348	A30	320
A27	385	A28	347	A30	318
A27	384	A28	347	A30	315
A27	383	A28	339	A30	315
A27	382	A28	335	A30	313
A27	376	A28	334		
A27	372	A28	334		
A27	367	A28	333		
A27	365	A28	330		
A27	365	A28	325		
A27	364	A28	325		
A27	361	A28	323		
A27	361	A28	323		
A27	359	A28	320		
A27	357	A28	319		
A27	357	A28	319		
A27	356	A28	312		
A27	356	A28	310		
A27	354	A29	411		
A27	353	A29	407		
A27	346	A29	407		
A27	343	A29	406		
		A29 A29	400		
A27	343				
A27	342	A29	392		
A27	341	A29	391		
A27	336	A29	390		
A27	335	A29	389		
A27	331	A29	387		
A27	330	A29	379		
A27	326	A29	377		
A27	324	A29	377		
A27	324	A29	374		
A27	324	A29	374		
A27	324	A29	372		
A27	322	A29	371		
A27	320	A29	359		
A27	320	A29	354		
A27	317	A29	345		
A27	317	A29	344		
A27	316	A29	339		
A27	316	A29	329		
A27	315	A29	326		
A27	314	A29	325		
A27	312	A29	324		
A27	310	A29	323		
A28	411	A29	322		
A28	398	A29	320		
A28					
	396	A29	314		
A28	395	A30	407		
A28	390	A30	403		
A28	387	A30	395		
A28	384	A30	384		
A28	384	A30	382		
A28	381	A30	376		
A28	378	A30	376		
A28	376	A30	370		
A28	370	A30	368		
A28	366	A30	365		
A28	366	A30	360		
A28	365	A30	359		
A28		A30	355		
	363				
A28	358	A30	352		
A28	357	A30	348		
A28	356	A30	347		

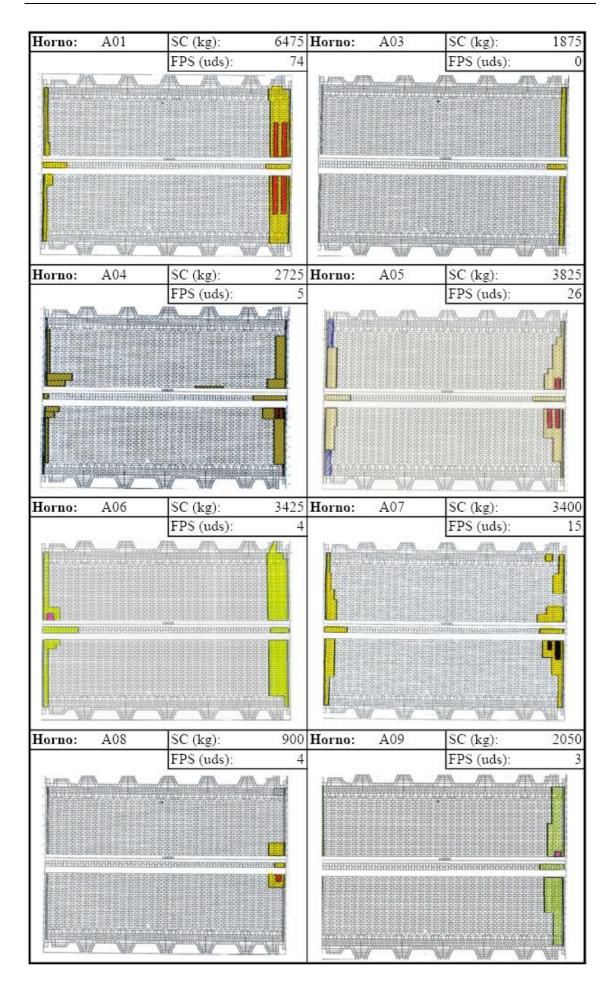
Intensidades en deshornados con alta resistencia en el segundo año del periodo de estudio.

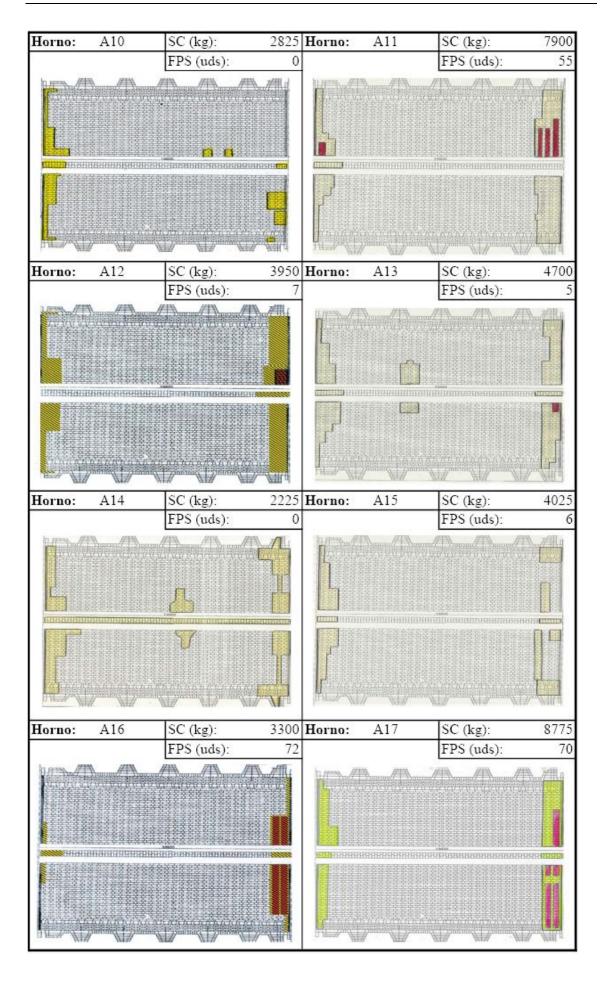
mperios Horno Amperios Horno Amperios

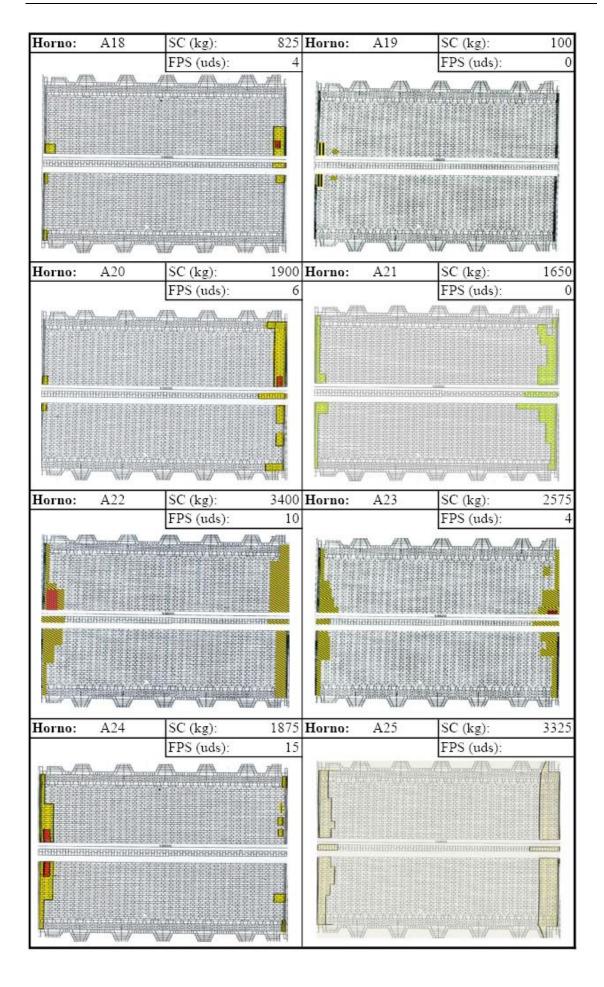
	Amperios														
A01 A01	344 337	B01 B01	405 397	C01 C01	414 413	D01 D01	416 415	E01 E01	411 410	F01 F01	416 388	G01 G01	413 402	H01 H02	416 340
A01	330	B01	395	C01	412	D01	413	E01	407	F01	357	G01	397	H02	317
A01	328	B01	394	C01	410	D01	413	E01	406	F01	356	G01	384	H03	411
A01 A01	326 324	B01 B01	385 383	C01 C01	409 408	D01 D01	413 412	E01 E01	404 402	F02 F02	417 417	G01 G01	381 375	H04 H04	325 316
A01	324	B01	381	C01	406	D01	410	E01	400	F02	404	G01	363	H04	337
A01	321	B01	380	C01	400	D01	410	E01	399	F02	383	G01	350	H04	321
A01	320	B01	380	C01	399	D02	415	E01	397	F02	380	G01	342	H04	412
A01 A01	317 317	B01 B01	380 379	C02 C02	415 413	D02 D02	415 414	E01 E01	396 392	F02 F02	355 323	G01 G01	327 327	H04 H04	367 328
A01	314	B01	379	C02	411	D02	414	E01	389	F02	359	G01	322	H04	417
A01	313	B01	376	C02	410	D02	414	E01	389	F02	339	G01	319	H04	414
A02 A02	414 413	B01	360	C02 C02	409 406	D02	414	E01	389	F02 F02	336	G01	406 385	H04 H04	410 374
A02	410	B01 B01	359 357	C02	398	D03 D03	416 415	E01 E01	386 385	F02	335 331	G01 G01	340	H04	363
A02	409	B01	356	C02	378	D03	415	E01	384	F02	324	G01	416	H05	353
A02	408	B01	353	C03	413	D03	415	E01	371	F03	400	G01	414	H05	325
A02 A02	408 407	B01 B02	353 410	C03 C03	413 412	D03 D03	415 414	E01 E01	371 370	F03 F03	387 384	G01 G01	409 399	H05 H05	417 414
A02	404	B02	408	C03	412	D03	414	E01	368	F03	364	G01	395	H05	410
A02	404	B02	402	C03	410	D03	414	E01	367	F03	359	G01	341	H05	374
A02	401	B02	391	C03	409	D03	413	E01	367	F03	339	G01	338	H05	363
A02 A02	399 399	B02 B02	388 388	C03 C03	408 407	D03 D03	413 412	E01 E01	361 361	F03 F03	336 335	G01 G01	329 317	H06 H06	353 412
A02	398	B02	383	C03	401	D04	415	E01	357	F04	416	G02	374	H07	344
A02	397	B02	379	C04	415	D04	413	E01	356	F04	410	G02	339	H07	321
A02	395	B02	377	C04 C04	415	D04	412	E01	355	F04	405	G02	342	H07	412
A02 A02	393 392	B03 B03	401 400	C04	414 414	D04 D04	407 402	E01 E01	348 343	F04 F04	403 400	G02 G02	327 327	H07 H08	367 325
A02	391	B03	397	C04	413	D04	400	E01	341	F04	398	G02	322	H08	316
A02	390	B03	380	C04	413	D04	395	E01	340	F04	387	G02	319	H08	337
A02 A02	387	B03 B03	378 378	C04 C04	410 410	D04 D04	390 388	E01 E01	340 337	F04 F04	372 368	G02 G02	406 385	H08 H09	321 332
A02	386 384	B03	373	C04	409	D04 D04	388	E01	326	F04	367	G02	340	H09	324
A02	384	B03	373	C04	408	D04	385	E01	325	F04	357	G02	416	H09	314
A02	383	B04	399	C04	404	D04	381	E01	322	F04	354	G02	393	H09	405
A02 A02	382 379	B04 B04	398 397	C04 C04	402 400	D04 D04	407 402	E01 E01	322 318	F05 F05	414 403	G03 G03	388 358	H09 H09	336 320
A02	379	B04	387	C04	395	D04	400	E01	314	F05	392	G03	348	H10	335
A02	377	B04	379	C04	394	D05	416	E01	314	F05	380	G03	315	H10	361
A02	371	B04	373	C04	389	D05	415	E01	313	F05	375	G03	395	H10	352
A02 A02	370 365	B04 B04	364 361	C04 C04	376 365	D05 D05	414 412	E01 E01	375 372	F05 F05	375 368	G03 G03	341 338	H10 H10	374 370
A02	365	B04	360	C04	354	D05	412	E01	364	F05	368	G03	329	H10	350
A02	361	B04	360	C04	331	D05	412	E01	363	F05	366	G03	317	H10	317
A02	361 360	B04 B05	357 409	C04 C04	324 406	D06	415 415	E01 E01	363	F05	357 334	G03	374 339	H10	397
A02 A02	360	B05	399	C04	405	D06 D06	413	E01	352 351	F05 F05	333	G03 G03	342	H10 H10	383 317
A02	359	B05	397	C04	403	D06	414	E01	348	F05	325	G03	327	H10	313
A02	357	B05	378	C04	403	D06	411	E01	345	F05	319	G03	327	H11	410
A02 A02	357 354	B05 B05	373 367	C04 C04	400 392	D06 D07	411 416	E01 E02	344 341	F05 F05	363 359	G03 G03	322 319	H11 H11	365 326
A02	352	B05	363	C05	414	D07	415	E02	335	F05	344	G03	406	H11	370
A02	350	B05	363	C05	414	D07	414	E02	318	F05	344	G04	386	H11	396
A02	349	B06	418	C05	414	D07	412	E02	329	F05	340	G04	381	H11	349
A02 A02	348 348	B06 B07	398 416	C05 C05	413 412	D07 D07	412 412	E02 E02	348 343	F06 F06	416 400	G04 G05	375 406	H11 H11	340 330
A02	344	B07	409	C06	414	D07	411	E02	341	F06	370	G05	385	H11	323
A02	338	B07	392	C06	414	D07	411	E02	340	F06	345	G05	340	H11	320
A02	335	B07	388	C06	414	D07	410	E02	340	F06	340	G05	341	H11	411
A02 A02	326 324	B07 B08	377 417	C06 C06	413 412	D07 D07	409 393	E02 E03	337 409	F06 F06	318 315	G05 G05	338 329	H12 H12	415 412
A02	316	B09	414	C06	411	D07	375	E03	395	F06	340	G05	317	H12	408
A03	414	B09	412	C06	411	D07	374	E03	393	F06	417	G05	374	H12	399
A03	402	B09	408	C06	409	D07	370	E03	378	F06	404	G05	339	H12	395
A03 A03	396 387	B09 B09	408 403	C06 C07	407 415	D07 D07	368 393	E03 E03	375 372	F06 F06	396 336	G05 G05	342 327	H12 H12	383 381
A03	384	B09	403	C07	413	D07	375	E03	364	F06	334	G06	395	H12	361
A03	380	B09	403	C07	412	D08	416	E04	411	F06	326	G06	341	H12	355

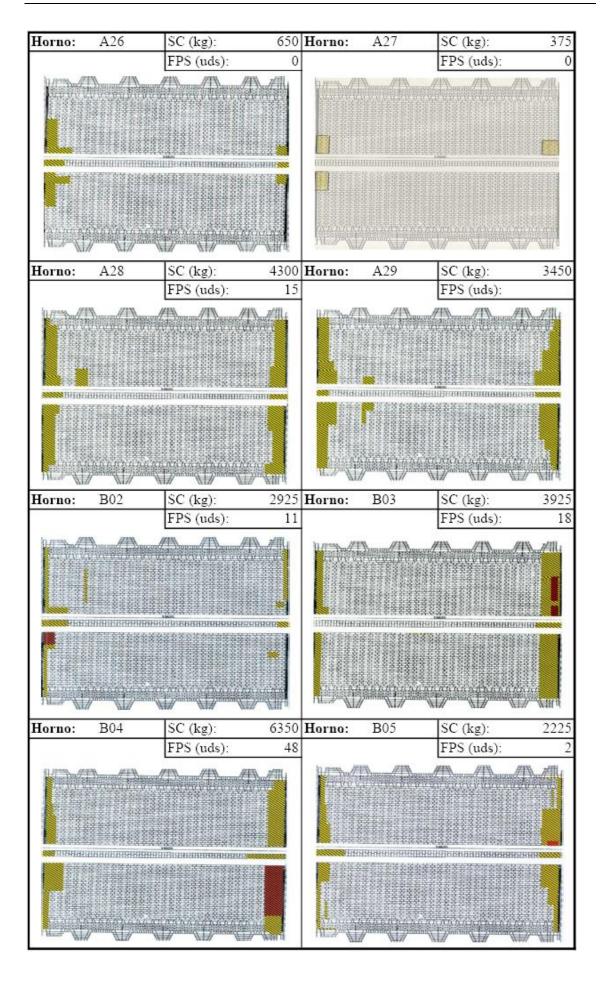
A03	378	B09	403	C07	411	D08	414	E04	402	F06	319	G06	336	H12	347
A03	374	B09	395	C07	411	D08	414	E04	402	F06	315	G06	415	H12	333
A03	369	B09	394	C07	410	D08	413	E04	402	F06	315	G07	416	H12	328
A03	368	B09	390	C07	409	D08	412	E04	397	F07	363	G07	414	H12	350
A03	367	B09	388	C08	415	D08	411	E04	397	F07	359	G08	415	H12	317
A03	367	B09	381	C08	414	D08	407	E04	397	F07	344	G08	406	H12	397
A03	362	B09	379	C08	414	D08	406	E04	391	F07	344	G08	392	H13	328
A03	356	B09	376	C08	414	D09	415	E04	388	F07	340	G08	382	H13	322
A03	355	B09	374	C08	413	D09	414	E04	376	F08	417	G08	373	H13	350
A03	353	B09	374	C08	411	D09	413	E04	373	F08	404	G08	320	H13	317
A03	352	B09	373	C08	410	D09	412	E05	413	F08	396	G08	414	H13	366
A03	352	B09	369	C08	405	D09	412	E05	412	F08	336	G08	376	H13	411
A03	348	B10	418	C08	403	D10	416	E05	408	F08	334	G08	370	H13	365
A03	346	B10	418	C09	414	D10	415	E05	407	F08	326	G08	346	H13	364
A03	344	B10	410	C09	414	D10	415	E05	402	F09	416	G08	412	H13	412
A03	336	B10	405	C09	413	D10	415	E05	399	F09	381	G08	361	H13	369
A03	333	B10	403	C09	412	D10	415	E05	396	F09	381	G08	333	H13	399
A03	333	B10	377	C09	411	D10	415	E05	392	F09	381	G08	414	H13	358
A03	331	B11	391	C09	410	D10	414	E05	382	F09	371	G08	405	H13	325
A03	330	B11	385	C09	406	D10	414	E05	368	F10	408	G08	365	H13	396
				C09	404					F10		G08	397		374
A04	410	B11	355			D10	414	E05	362		406			H13	
A04	407	B11	352	C09	403	D10	413	E05	361	F11	412	G08	391	H13	366
A04	407	B11	348	C09	403	D10	412	E05	358	F11	398	G08	319	H13	330
A04	407	B11	342	C09	402	D10	412	E05	357	F11	388	G08	404	H13	321
A04	406	B11	338	C09	400	D11	416	E05	353	F11	387	G08	381	H13	320
A04	405	B12	377	C09	398	D11	416	E05	352	F11	385	G08	340	H13	319
A04	403	B12	358	C09	392	D11	416	E05	349	F11	384	G08	410	H13	315
A04	399	B13	417	C09	389	D11	415	E05	343	F11	384	G08	382	H13	314
A04	397	B13	413	C09	384	D11	411	E05	337	F11	371	G08	356	H13	341
A04	393	B13	408	C09	371	D11	411	E05	337	F11	362	G08	352	H13	408
A04	391	B13	408	C09	366	D11	411	E05	331	F11	360	G08	351	H13	381
A04	390	B13	394	C09	355	D11	409	E05	318	F11	342	G08	342	H13	369
A04	385	B13	391	C09	402	D12	415	E05	316	F11	328	G08	408	H13	347
A04	385	B13	389	C09	400	D12	414	E05	313	F13	416	G08	343	H13	325
A04	383	B14	418	C10	414	D12	412	E05	311	F13	404	G08	333	H13	314
A04	382	B14	413	C10	414	D12	412	E06	411	F13	402	G08	331	H13	359
A04	381	B14	411	C10	414	D12	402	E06	407	F13	393	G08	401	H13	328
A04	381	B14	409	C10	413	D12	402	E06	397	F13	372	G09	411	H13	320
A04	378	B14	408	C10	412	D12	396	E06	391	F14	412	G09	407	H13	399
A04	378	B14	403	C10	412	D13	416	E06	389	F14	411	G09	372	H14	396
A04	376	B15	414	C10	411	D13	416	E06	382	F14	406	G09	362	H14	383
A04	372	B15	411	C10	411	D13	416	E06	377	F14	404	G09	362	H14	317
A04	372	B15	404	C10	409	D13	415	E06	376	F14	403	G09	342	H15	370
A04	368	B15	403	C10	408	D13	415	E06	372	F14	400	G10	414	H15	363
A05	415	B15	402	C10	407	D13	414	E06	369	F14	392	G10	376	H15	349
A05	413	B15	399	C10	405	D13	413	E07	402	F15	399	G10	370	H15	393
A05	413	B15	398	C10	404	D13	412	E07	393	F15	347	G11	412	H15	395
A05	409	B15	392	C10	403	D13	410	E07	389	F15	342	G11	361	H15	389
A05	407	B15	390	C10	401	D13	409	E07	386	F15	334	G12	414	H15	317
				C10								G12			
A05	406	B15	389		401	D13	403	E07	381	F15	331		405	H15	327
A05	403	B15	389	C10	394	D13	403	E07	377	F15	326	G12	365	H15	321
A05	403	B15	385	C10	375	D13	401	E07	367	F16	379	G12	351	H15	317
A05	401	B15	383	C10	372	D13	399	E07	361	F16	377	G13	395	H16	396
A05	400	B15	383	C10	365	D13	396	E07	359	F16	373	G13	397	H16	349
A05	399	B15	381	C10	322	D13	395	E07	358	F16	357	G14	391	H16	340
A05	398	B15	380	C10	410	D13	388	E07	351	F16	324	G14	319	H16	330
A05	397	B15	378	C10	406	D13	387	E07	347	F16	320	G14	329	H16	323
A05	393	B15	377	C10	404	D13	355	E07	334	F16	318	G14	323	H16	320
A05	390	B15	372	C10	403	D13	404	E07	328	F16	315	G14	319	H16	317
A05	389	B15	369	C10	403	D13	402	E07	324	F16	403	G15	404	H16	315
A05	388	B15	369	C10	402	D13	398	E07	323	F16	392	G16	410	H17	411
A05	382	B15	365	C10	400	D13	397	E08	407	F16	384	G16	382	H17	404
A05	380	B15	365	C10	398	D14	414	E08	398	F16	353	G16	356	H17	402
A05	377	B15	361	C10	392	D14	413	E08	391	F16	345	G16	330	H17	399
A05	377	B15	358	C10	389	D14	412	E08	364	F16	417	G16	329	H17	395
A05	376	B15	351	C10	384	D14	410	E08	350	F16	415	G16	352	H17	383
A05	376	B15	350	C10	379	D14	409	E09	413	F16	412	G16	351	H17	381
A05	373	B15	346	C11	415	D14	406	E09	406	F16	411	G16	342	H17	361
A05	372	B15	339	C11	415	D14	404	E09	405	F17	397	G17	408	H17	355
A05	370	B15	335	C11	414	D14	402	E09	396	F17	371	G17	343	H17	347
A05	365	B15	334	C11	414	D14	398	E09	396	F17	371	G18	350	H17	333

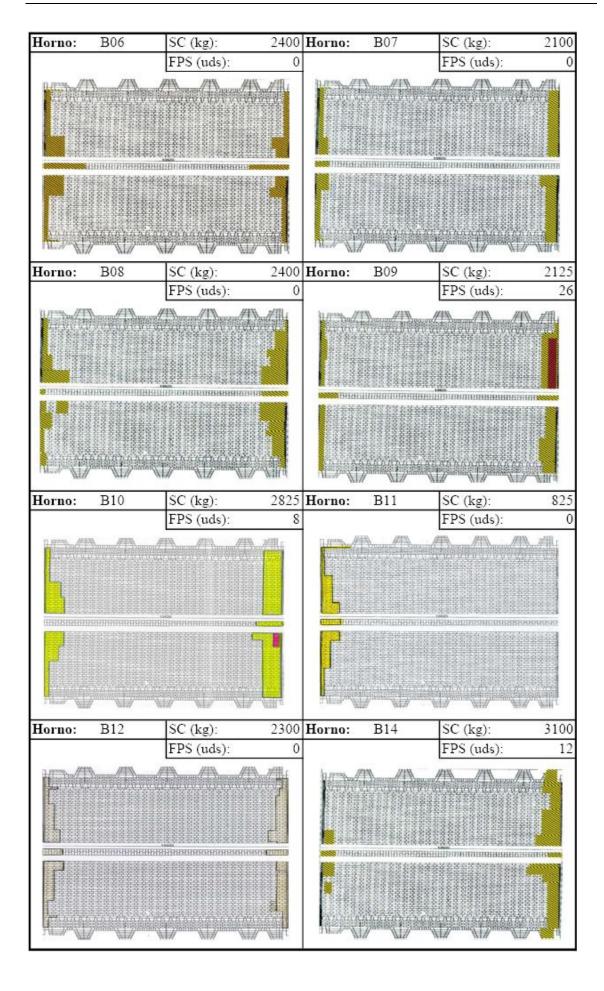
A05	362	B15	333	C11	412	D14	397	E09	391	F17	343	G18	362	H18	345
A05	360	B15	332	C11	412	D14	393	E09	384	F17	341	G18	381	H18	338
A05	360	B15	330	C11	412	D14	375	E10	411	F17	336	G18	401	H18	338
A05	359	B16	417	C11	411	D14	375	E10	407	F17	329	G18	393	H18	334
A06	406	B16	413	C11	411	D14	359	E10	405	F18	403	G18	357	H18	324
A06	400	B16	410	C11	407	D14	334	E10	401	F18	392	G18	330	H18	319
A06	399	B16	404	C11	404	D14	397	E10	400	F19	417	G19	368	H18	321
A06	399	B16	402	C11	400	D14	393	E10	381	F19	415	G20	413	H18	317
A06	399	B16	401	C11	399	D14	375	E10	364	F19	412	G20	367	H18	396
	399		397	C11			375	E10	364	F19		G20			349
A06		B16			395	D14					411		366	H18	
A06	396	B16	397	C11	391	D15	416	E10	361	F19	407	G21	414	H18	340
A06	395	B16	396	C11	391	D15	416	E10	357	F19	397	G21	371	H18	330
A06	391	B16	396	C11	387	D15	415	E10	355	F19	385	G21	401	H18	345
A06	389	B16	395	C11	382	D15	413	E10	352	F19	383	G21	360	H18	338
A06	386	B16	394	C12	415	D15	412	E10	351	F19	380	G21	327	H18	338
A06	384	B16	391	C12	415	D15	411	E10	347	F19	376	G21	398	H18	334
A06	376	B16	387	C12	414	D15	411	E10	347	F20	400	G21	376	H18	324
A06	369	B16	384	C12	414	D15	410	E10	343	F20	371	G21	368	H18	319
A06	368	B16	384	C12	411	D15	408	E10	335	F20	362	G21	332	H18	403
A06	362	B16	380	C12	411	D15	408	E10	334	F20	357	G21	323	H18	399
A06	358	B16	375	C12	411	D15	408	E10	326	F21	371	G21	322	H18	396
A06	358	B16	374	C12	409	D15	405	E10	322	F21	353	G21	321	H18	395
A06	357	B16	369	C12	409	D15	403	E10	321	F21	349	G21	317	H18	386
A06	357	B16	368	C12	406	D15	401	E10	318	F21	330	G21	316	H18	382
A06	355	B16	365	C12	406	D15	401	E10	317	F22	410	G21	343	H18	368
A06	353	B16	362	C12	405	D15	390	E10	317	F22	407	G21	410	H18	381
A06	352	B16	360	C12	394	D15	383	E10	366	F22	403	G21	383	H19	390
A06	352	B16	357	C13	415	D15	346	E10	352	F22	387	G21	371	H19	372
A06	349	B16	355	C13	414	D15	339	E10	415	F22	375	G21	349	H19	367
A06	346	B16	354	C13	414	D15	337	E10	410	F22	361	G21	327	H19	317
A06	341	B16	353	C13	413	D15	329	E10	409	F22	352	G21	316	H19	315
A06	340	B16	347	C13	413	D15	328	E10	400	F22	326	G22	361	H19	363
A06	337	B16	345	C13	412	D15	317	E10	400	F23	412	G22	330	H19	344
A06	336	B16	345	C13	412	D15	405	E10	395	F23	396	G22	322	H19	374
A06	332	B16	340	C13	412	D15	404	E10	388	F23	393	G23	401	H19	343
A07	411	B16	337	C13	409	D15	404	E10	415	F24	415	G24	398	H19	409
A07	409	B16	336	C13	407	D15	401	E10	411	F24	413	G24	376	H19	409
A07	403	B16	333	C13	406	D15	396	E10	409	F24	410	G24	368	H19	340
A07	401	B16	327	C14	414	D15	389	E10	405	F24	404	G24	332	H19	331
A07	401	B16	325	C14	413	D15	367	E10	404	F24	400	G24	323	H20	408
A07	397	B16	325	C14	413	D15	365	E10	385	F24	387	G25	343	H20	326
A07	391	B16	323	C14	412	D15	340	E10	368	F24	386	G26	410	H20	317
A07	389		321	C14			415	E10		F24		G27	413		379
		B16			412	D15			365		378			H21	
A07	389	B16	320	C14	411	D16	414	E10	353	F24	375	G27	407	H21	349
A07	385	B16	318	C14	411	D16	412	E10	349	F24	373	G27	403	H22	403
A07	379	B16	317	C14	411	D16	412	E11	416	F24	372	G27	383	H22	399
A07	377	B16	365	C14	411	D16	411	E11	412	F24	372	G28	408	H22	396
A07	377	B16	362	C14	410	D16	411	E11	402	F24	367	G28	370	H22	395
A07	377	B16	360	C14	409	D16	410	E11	400	F24	362	G28	357	H22	386
A07	374	B16	357	C14	407	D16	410	E11	389	F24	360	G28	354	H23	411
A07	373	B16	355	C14	407	D16	405	E11	370	F24	359	G28	339	H23	407
A07	369	B16	354	C14	406	D16	404	E11	359	F24	356	G28	327	H23	347
A07	366	B16	353	C14	403	D16	404	E11	358	F24	351	G28	321	H24	415
A07	363	B16	347	C14	402	D16	401	E11	356	F24	348	G28	383	H24	407
A07	363	B16	345	C14	401	D16	396	E11	395	F24	317	G28	408	H24	404
A07	362	B16	345	C14	401	D16	389	E11	389	F24	377	G28	370	H24	375
A07	361	B16	389	C14	401	D17	415	E11	357	F24	374	G28	357	H24	331
A07	361	B16	385	C14	398	D17	415	E11	345	F24	370	G28	354	H24	320
A07	360	B16	383	C14	384	D17	415	E11	338	F24	369	G28	339	H24	317
A07	360	B16	383	C14	374	D17	414	E11	338	F24	367	G28	327	H24	315
A07	358	B16	381	C14	369	D17	412	E11	336	F25	358	G29	375	H24	327
A07	352	B16	380	C14	368	D17	412	E11	336	F25	354	G29	374	H24	350
A07	350	B16	377	C14	368	D17	406	E11	324	F25	330	G30	325	H24	349
A07	349	B16	358	C14	339	D17	398	E11	416	F26	415	G30	412	H24	340
A07	339	B16	417	C14	338	D17	390	E11	405	F26	373	G30	344	H24	406
A08	413	B16	413	C15	415	D17	383	E11	402	F26	417	G30	332	H24	341
A08	408	B16	408	C15	414	D17	366	E11	399	F26	415	G30	326	H24	348
A08	395	B16	408	C15	413	D17	358	E11	372	F26	413	G30	316	H24	360
A08	388	B16	357	C15	413	D17	357	E11	355	F26	411			H24	379
A08	385	B17	414	C15	413	D18	413	E11	353	F26	403			H24	399
A08	380	B17	413	C15	412	D18	412	E11	344	F26	399			H24	391
1100	200	D1/	713	C13	T14	210	T14	-11	577	1 20	377			1144	3/1

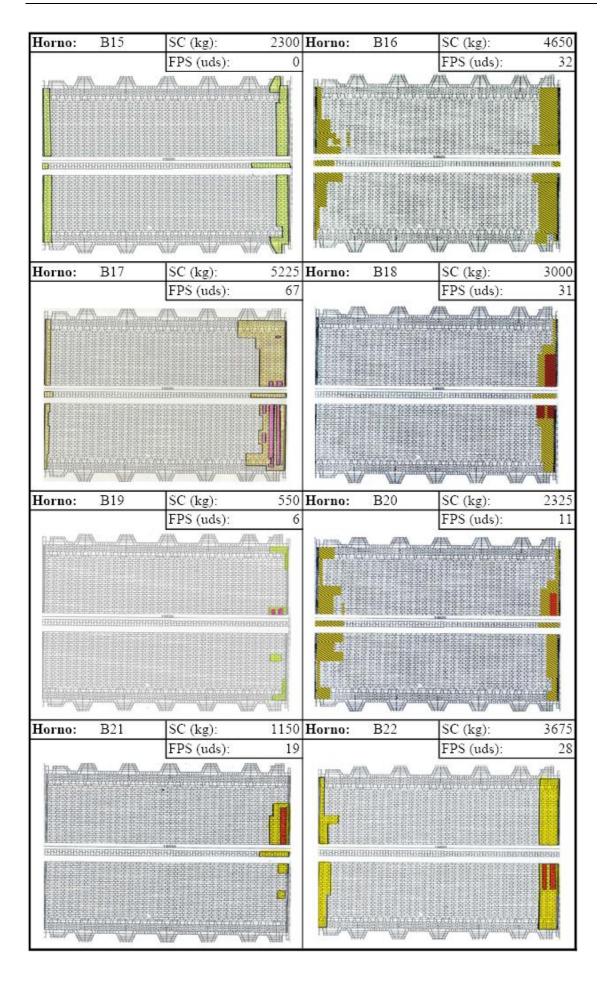

A08	374	B17	410	C15	411	D18	412	E11	338	F26	398	C29	395	H24	355
A08	373	B17	409	C15	410	D18	410	E11	333	F27	392	C29	394	H24	328
A08	365	B17	409	C15	410	D18	410	E11	329	F27	412	C29	392	H25	363
A08	364	B17	408	C15	409	D18	407			F27		C29	390	H25	344
								E11	323		373				
A08	363	B17	408	C15	409	D19	411	E11	315	F27	362	C30	415	H25	347
A08	358	B17	403	C15	406	D19	410	E11	315	F27	323	C30	412	H25	415
A08	357	B17	399	C15	406	D19	409	E12	417	F27	323	C30	411	H25	407
A08	357	B17	398	C15	406	D19	408	E12	400	F27	317	C30	411	H25	404
A08	357	B17	396	C15	403	D19	405	E12	397	F27	409	C30	411	H25	375
A08	349	B17	389	C16	415	D19	403	E12	396	F27	373	C30	410	H25	331
A08	345	B17	388	C16	414	D19	399	E12	387	F28	415	C30	410	H25	320
A08	343	B17	383	C16	414	D20	412	E12	381	F28	373	C30	410	H25	317
A08	343	B17	381	C16	412	D20	412	E12	377	F28	417	C30	408	H25	315
A08	343	B17	379	C16	412	D20	411	E12	345	F28	415	C30	408	H25	327
A08	341	B18	416	C16	411	D20	410	E12	323	F28	413	C30	407	H25	350
A08	340	B18	411	C16	410	D20	410	E12	320	F28	411	C30	407	H25	349
A08	335	B18	407	C16	410	D20	409	E12	315	F28	403	C30	405	H25	340
A08	333	B18	404	C16	408	D20	409	E12	405	F28	399	C30	404	H26	374
A08	333	B18	404	C16	396	D21	413	E12	402	F28	381	C30	401	H26	343
A08	328	B18	403	C16	394	D21	412	E12	399	F29	417	C30	395	H26	323
A08	328	B18	400	C16	391	D21	410	E12	372	F29	415	C30	394	H26	315
A08	327	B18	396	C16	384	D21	410	E12	355	F29	413	C30	392	H26	402
A08	326	B18	388	C16	339	D21	407	E12	353	F29	411	C30	390	H27	329
A08	323	B18	386	C16	333	D21	407	E12	344	F29	403	C30	388	H27	409
A08	322	B18	380	C17	414	D21	407	E12	338	F29	399	C30	388	H27	392
A08	317	B18	374	C17	414	D21	403	E12	333	F29	398	C30	386	H28	409
A08	316	B18	368	C17	413	D22	413	E12	329	F29	392	C30	386	H28	409
		B18		C17			413	E12		F29		C30			340
A08	312		364		411	D22			323		390		384	H28	
A08	319	B19	418	C17	411	D22	412	E12	315	F29	390	C30	378	H28	331
A08	340	B19	417	C17	410	D22	410	E12	315	F29	389	C30	377	H28	323
A08	347	B19	413	C17	409	D22	410	E12	417	F29	383	C30	366	H29	402
A08	400	B19	412	C17	409	D23	413	E12	413	F29	381	C30	359	H29	396
A08	408	B19	402	C17	409	D23	413	E12	389	F29	376	C30	355	H29	391
A08	408	B19	393	C17	408	D23	412	E12	389	F29	371	C30	351	H29	367
A08	407	B19	378	C17	408	D23	409	E12	370	F29	352	C30	351	H29	330
A08	406	B19	378	C17	407	D23	409	E12	367	F29	349	C30	343	H29	319
A08	413	B19	372	C17	406	D23	409	E12	353	F29	348	C30	321	H29	348
A08	412	B19	371	C17	404	D23	407	E12	349	F29	341	C30	316	H29	379
A08	412	B19	370	C17	403	D23	403	E12	330	F29	337	C30	403	H29	332
A09	410	B19	364	C17	401	D23	402	E12	327	F29	326	C30	403	H29	403
A09	410	B19	359	C17	384	D23	399	E12	323	F30	413	C30	403	H30	399
A09	410	B20	405	C17	379	D24	413	E12	317	F30	408	C30	407	H30	380
A09	407	B20	405	C17	341	D24	412	E13	414	F30	395	C30	405	H30	357
	407	B20	399		409		412	E13		F30		C30	404		348
A09				C17		D24			410		390			H30	
A09	404	B20	394	C17	407	D24	410	E13	408	F30	381	C30	401	H30	338
A09	395	B20	393	C17	408	D24	410	E13	407	F30	375	C30	395	H30	388
A09	384	B20	381	C17	407	D24	409	E13	395	F30	363	C30	394	E19	315
A09	382	B21	417	C17	404	D24	406	E13	389	F30	350	C30	392	E19	368
A09	382	B21	415	C17	403	D24	405	E13	357	F30	342	C30	390	E19	361
A09	381	B21	414	C17	402	D25	413	E13	345	F30	327	C30	415	E19	358
A09	375	B21	412	C17	402	D25	412	E13	338	F30	327	C30	412	E19	327
A09	375	B22	417	C17	402	D25	412	E13	338	F30	322	C30	411	E19	318
A09	367	B22	413	C17	399	D25	412	E13	336	F30	319	C30	411	E19	317
A09	366	B22	406	C17	385	D25	411	E13	336	F30	406	C30	411	E19	315
A09	358	B22	405	C17	375	D26	411	E13	324	F30	385	C30	410	E19	409
A09	345	B22	384	C17	370	D26	411	E13	317	F30	340	C30	410	E19	409
A09	344	B22	382	C17	369	D26	410	E13	316	F30	416	C30	410	E19	409
A09	343	B22	381	C17	369	D26	410	E13	315	F30	414	C30	408	E19	405
A09	340	B22	381	C17	340	D26	409	E13	315	F30	409	C30	408	E19	370
A09	338	B23	412	C17	339	D26	409	E14	416	F30	399	C30	407	E20	417
A09	335	B23	405	C17	416	D27	413	E14	405	F30	395	C30	407	E20	415
A10	413	B24	416	C17	415	D27	412	E14	402	F30	341	C30	405	E20	412
A10	412	B24	407	C17	414	D27	412	E14	399	F30	336	C30	432	E20	407
A10	411	B24	396	C17	414	D27	412	E14	372	F30	415	C30	429	E20	394
A10	405	B24	392	C17	414	D27	411	E14	355	F30	406	E30	341	E20	381
A10	404	B24	390	C17	414	D27	411	E14	353	F30	392	E30	323	E20	377
A10	402	B24	387	C17	412	D27	409	E14	344	F30	382	E30	400	E20	368
A10	402	B24	384	C17	412	D27	407	E14	338	F30	373	E30	387	E20	361
A10	400	B24	384	C17	410	D27	407	E14	333	F30	320	E30	384	E20	358
A10	399	B24	383	C17	408	D28	413	E14	329	F30	411	E30	364	E20	327
A10	399	B24	379	C17	407	D28	412	E14	323	F30	407	E30	359	E20	318

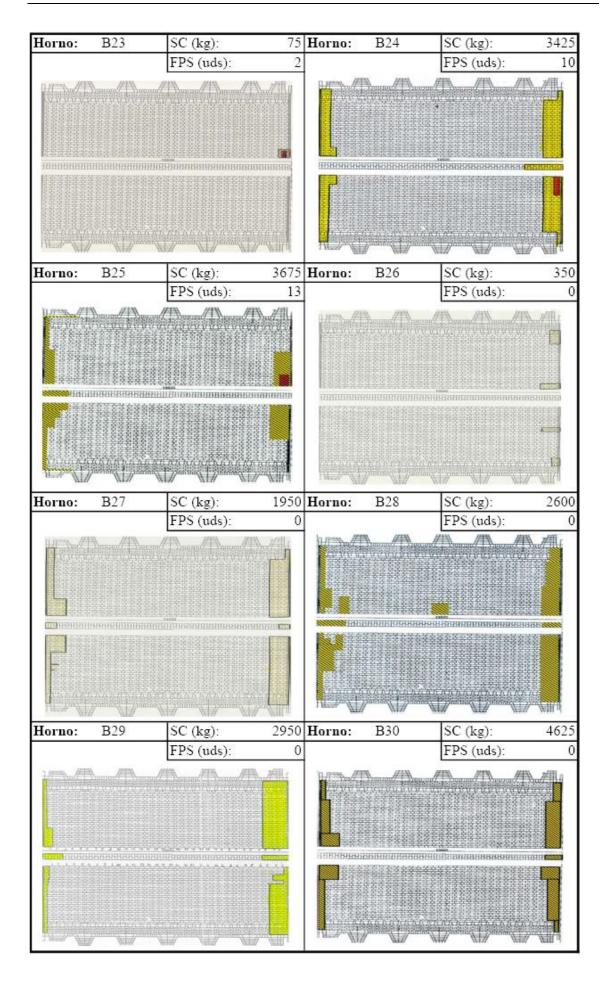

A10	398	B24	379	C17	400	D28	412	E14	315	F30	372	E30	339	E20	317
A10	391	B24	379	C17	415	D28	412	E14	315	F30	362	E30	336	E20	317
															409
A10	389	B24	379	C18	415	D28	411	E14	344	F30	354	E30	335	E21	409
A10	385	B25	418	C18	413	D28	411	E14	338	F30	330	E30	331	E21	
A10	372	B25	418	C18	412	D28	409	E14	333	F30	415	E30	324	E21	409
A10	364	B25	416	C18	411	D29	413	E14	329	F30	373	E30	316	E21	405
A10	359	B25	416	C18	411	D29	412	E15	417	F30	417	E30	316	E21	370
A10	355	B25	416	C18	410	D29	412	E15	413	F30	415	E30	315	E21	367
A10	352	B25	414	C18	401	D29	411	E15	389	F30	413	E30	315	E21	352
A10	352	B25	413	C18	394	D29	411	E15	389	F30	411	E30	315	E21	351
A10	351	B25	412	C18	392	D30	413	E15	370	F30	403			E21	332
A10	342	B25	410	C18	391	D30	413	E15	367	F30	399			E21	326
A10	341	B25	410	C18	391	D30	412	E15	353	F30	398			E21	316
A10	340	B25	409	C18	321	D30	412	E15	349	F30	392			E21	335
A10	339	B25	407	C19	416	D30	411	E15	344	F30	373			E21	335
A10	336	B25	407	C19	415	D30	411	E15	328	F30	320			E21	334
A10	335	B25	407	C19	414	D30	410	E15	323	F30	411			E21	334
A10	333	B25	407	C19	414	D30	410	E15	323	F30	407			E21	321
A10	333	B25	407	C19	414	D30	410	E15	323	F30	360			E21	315
A10	333	B25	404	C19	414	D30	409	E15	364	F30	328			E21	377
A10	330	B25	402	C19	412	D30	409	E15	350	E22	317			E22	381
A10	325	B25	400	C19	412	D30	407	E15	342	E23	375			E22	360
A10	325	B25	399	C20	415	A26	370	E15	338	E24	377			E22	353
A10	323	B25	398	C20	415	A26	370	E15	330	E24	376			E22	353
A10	323	B25	395	C20	415	A26	368	E15	328	E24	368	B28	346	C29	402
A10	321	B25	392	C20	414	A26	368	E15	328	E24	324	B28	345	C29	400
A10	316	B25	392	C20	412	A26	368	E15	325	E24	322	B28	342	C29	397
A10	315	B25	391	C20	412	A26	367	E15	319	E24	356	B28	337	C29	396
A10	323	B25	391	C20	412	A27	410	E15	315	E24	351	B28	336	C29	395
A11	415	B25	391	C20	411	A27	409	E15	413	E24	332	B28	333	C29	394
A11	414	B25	390	C20	408	A27	409	E15	375	E25	386	B28	328	C29	392
A11	409	B25	388	C20	405	A27	408	E15	330	E25	381	B28	328	C29	392
A11	407	B25	384	C20	404	A27	407	E15	330	E25	375	B28	322	C29	391
A11	405	B25	384	C20	404	A27	406	E15	409	E25	363	B28	319	C29	388
A11	404	B25	380	C20	402	A27	403	E15	398	E25	356	B28	315	C29	377
A11	403	B25	380	C21	416	A27	403	E15	348	E25	351	B28	314	C29	333
A11	402	B25	379	C21	414	A27	395	E15	343	E25	332	B29	414	C29	410
A11	402	B25	376	C21	413	A27	395	E16	420	E25	318	B29	411	C29	410
A11	401	B25	376	C21	413	A27	394	E16	417	E25	315	B29	405	C29	408
A11	397	B25	374	C21	409	A27	394	E16	381	E25	345	B29	402	C29	408
A11	391	B25	373	C21	405	A27	391	E16	373	E25	344	B29	397	C29	407
A11	389	B25	373	C21	400	A27	390	E16	372	E25	331	B29	388	C29	407
A11	388	B25	373	C21	397	A28	414	E16	371	E25	331	B29	387	C29	405
A11	388	B25	371	C21	396	A28	401	E16	367	E26	413	B29	382	C29	404
A11	382	B25	368	C21	394	A28	399	E16	364	E26	384	B29	377	C29	401
A11	378	B25	366	C21	394	A28	398	E16	350	E26	361	B29	376 374	C29	395 394
A11 A11	377	B25 B25	362 362	C21 C21	375 355	A28	393 390	E16 E16	342	E26 E26	358 357	B29 B29	374	C29 C29	394
A11	372 372	B25	360	C21	410	A28 A28	387	E16	338 330	E26	345	B29	374	C29	392
A11	371	B25	360	C21	408	A28	387	E16	328	E26	344	B29	371	C29	388
A11	369	B25	360	C21	407	A28	384	E16	328	E26	331	B30	409	C29	388
A11	369	B25	359	C21	405	A28	381	E16	325	E27	387	B30	403	C29	386
A11	367	B25	357	C21	399	A28	379	E16	319	E27	372	B30	398	C29	386
A11	362	B25	356	C21	394	A28	373	E16	315	E27	356	B30	394	C29	384
A11	361	B25	356	C21	391	A28	369	E16	330	E27	338	B30	391	C29	378
A11	356	B25	351	C21	389	A28	369	E16	330	E28	406	B30	390	C29	377
A11	355	B25	350	C21	389	A28	368	E16	409	E28	399	B30	386	C29	366
A12	410	B25	348	C21	383	A28	366	E16	398	E28	397	B30	386	C29	359
A12	399	B25	347	C21	375	A28	361	E16	348	E28	391	B30	384	C29	355
A12	395	B25	345	C21	416	A28	360	E16	343	E28	387	B30	383	C29	351
A12	394	B25	344	C21	415	A28	359	E16	337	E28	369	B30	381	C29	351
A12	386	B25	343	C21	415	A28	357	E16	329	E28	356	B30	381	C29	343
A12	386	B25	337	C21	414	A28	355	E16	322	E28	342	B30	379	C29	321
A12	373	B25	335	C21	414	A29	414	E16	319	E28	339	B30	378	C29	316
A12	372	B25	335	C21	411	A29	410	E16	406	E28	333	B30	376	C29	416
A12	371	B25	333	C21	411	A29	410	E16	371	E28	328	B30	374	C29	415
A13	390	B25	329	C21	410	A29	409	E16	366	E28	327	B30	374	C29	413
A13	388	B25	326	C21	410	A29	403	E16	362	E28	326	B30	374	C29	413
A13	387	B25	325	C21	409	A29	395	E16	352	E28	325	B30	373	C29	413
A13	376	B25	324	C21	405	A29	394	E16	347	E28	325	B30	371	C29	412
A13	369	B25	321	C21	399	A29	393	E16	347	E28	320	B30	364	C29	410
	237			C21	2//		273	210	517		520	250	231	02)	.10

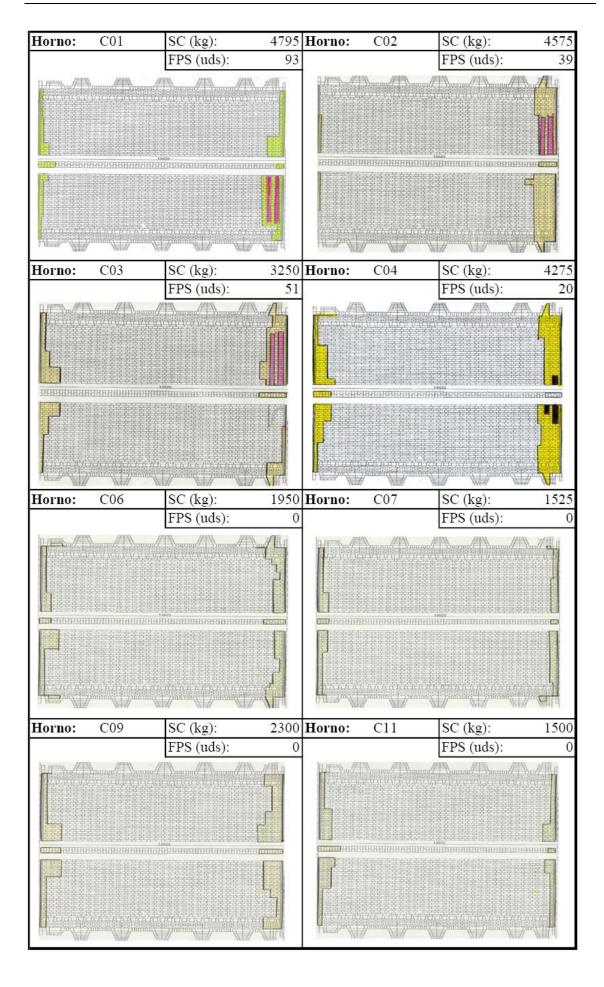

A13	366	B25	389	C21	387	A29	392	E16	340	E28	374	B30	364	C29	415
A13	359	B25	389	C21	381	A29	390	E16	338	E28	373	B30	362	C29	407
A13	352	B25	385	C21	380	A29	382	E17	413	E28	352	B30	359	C29	405
A14	413	B25	383	C21	346	A29	380	E17	375	E29	388	B30	359	C29	404
A14	412	B25	383	C21	415	A29	380	E17	330	E29	387	B30	357	C29	401
A14	412	B25	381	C21	415	A29	377	E18	330	E29	387	A30	368	C29	395
A14	411	B25	380	C21	414	A29	377	E18	409	E29	374	A30	363	C29	394
A14	410	B25	378	C21	412	A29	375	E18	398	E29	373	A30	362	C29	392
A14	405	B25	377	C21	411	A29	374	E18	348	E29	352	A22	359	C29	390
A14	404	B25	372	C21	410	A29	362	E18	343	E29	329	A22	359	C29	413
A14	401	B25	369	C21	408	A29	357	E19	406	E29	323	A22	357	C29	412
A14	399	B25	369	C21	406	A29	348	E19	371	E29	317	A23	402	C29	410
A14	398	B25	365	C21	398	A29	347	E19	366	E29	388	A23	400	C29	407
A14	396	B25	365	C21	396	A30	410	E19	362	E29	387	A23	395	C29	404
A14	396	B25	361	C21	396	A30	406	E19	352	E29	387	A23	391	C29	404
A14	395	B25	358	C21	396	A30	398	E19	347	E30	415	A23	388	C29	404
A14	394	B25	347	C21	386	A30	387	E19	347	E30	409	A23	382	C29	403
A14	394	B25	346	C21	368	A30	385	E19	340	E30	376	A23	379	C29	403
A14	392	B25	342	C21	361	A30	379	E19	338	E30	346		378	C29	403
A14	392	B25	335	C21	354		379	E19		E30	341	A23	377	C29	403
						A30			330	E30	341	A23			
A14	390	B25	331	C21	325	A30	373	E19	326			A24	414	C29	407
A14	385	B25	330	C21	324	A30	371	E19	319	C26	200	A24	398	C29	405
A14	383	B25	329	C21	319	A16	369	B26	360	C26	398	A24	388	C29	404
A15	415	B25	328	C22	413	A16	367	B26	348	C26	396	A24	385	C29	401
A15	413	B25	326	C22	412	A16	366	B26	334	C26	396	A24	382		
A15	410	B25	413	C22	412	A16	366	B26	334	C26	396	A24	377		
A15	409	B25	390	C22	406	A16	364	B26	333	C26	386	A24	373		
A15	407	B25	389	C22	402	A16	363	B26	333	C26	368	A24	370		
A15	404	B25	389	C22	402	A17	415	B26	332	C26	361	A24	367		
A15	402	B25	389	C22	401	A17	409	B26	331	C26	354	A24	364		
A15	401	B25	389	C22	394	A17	408	B26	329	C26	325	A25	413		
A15	388	B25	389	C22	391	A17	402	B26	326	C27	415	A25	411		
A15	381	B25	384	C22	383	A17	402	B27	404	C27	414	A25	406		
A15	380	B25	382	C22	362	A17	402	B27	402	C27	414	A25	401		
A15	376	B25	380	C23	415	A17	401	B27	385	C27	412	A25	401		
A15	375	B25	375	C23	414	A17	395	B27	383	C27	412	A25	399		
A15	375	B25	410	C23	414	A17	385	B27	376	C27	411	A25	395		
A15	374	B25	408	C23	414	A17	372	B27	373	C27	410	A25	384		
A15	366	B25	407	C23	412	A17	372	B27	369	C27	410	A25	384		
A15	365	B25	407	C23	411	A17	371	B27	367	C27	409	A25	383		
A15	364	B25	406	C23	411	A17	368	B27	362	C27	406	A25	381		
A15	361	B25	405	C23	410	A17	367	B27	359	C27	404	A25	378		
A15	360	B25	405	C24	416	A17	367	B27	359	C27	403	A25	371		
A15	359	B25	404	C24	416	A17	363	B27	357	C27	401	A25	368		
A16	413	B25	403	C24	415	A17	359	B27	344	C27	401	A25	368		
A16	411	B25	403	C24	415	A17	355	B27	342	C27	400	A25	367		
A16	409	B25	401	C24	415	A18	412	B28	415	C27	397	A25	367		
A16	408	B25	401	C24	414	A18	399	B28	414	C27	394	A25	366		
A16	408	B25	401	C24	414	A18	398	B28	413	C27	394	A25	363		
A16	407	B25	401	C24	411	A18	390	B28	411	C28	416	A25	363		
A16	405	B25	400	C25	416	A19	412	B28	410	C28	416	A25	358		
A16	402	B26	413	C25	415	A19	411	B28	408	C28	415	A25	357		
A16	402	B26	402	C25	415	A19	407	B28	407	C28	415	A25	354		
A16	399	B26	400	C25	414	A19	397	B28	407	C28	415	A25	354		
A16	396	B26	398	C25	414	A19	397	B28	406	C28	415	A25	353		
A16	394	B26	393	C25	411	A19	396	B28	405	C28	415	A25	352		
A16	389	B26	390	C25	411	A19	395	B28	405	C28	415	A25	350		
A16	389	B26	390	C25	410	A19	389	B28	404	C28	414	A25	347		
A16	389	B26	389	C25	410	A19	389	B28	403	C28	413	A25	346		
A16	388	B26	389	C25	409	A19	384	B28	403	C28	413	A25	344		
A16	387	B26	389	C25	405	A19	380	B28	401	C28	413	A25	343		
A16	386	B26	389	C25	399	A19	376	B28	401	C28	412	A25	342		
A16	386	B26	389	C25	387	A20	410	B28	401	C28	410	A25	342		
A16	382	B26	384	C26	415	A20	391	B28	401	C28	407	A25	340		
A16	381	B26	382	C26	415	A20	389	B28	400	C28	404	A25	336		
A16	375	B26	380	C26	414	A20	382	B28	400	C28	404	A26	415		
A16	374	B26	375	C26	412	A20	365	B28	399	C28	404	A26	406		
A16	374	B26	371	C26	411	A20	350	B28	398	C28	403	A26	402		
A16	373	B26	369	C26	410	A20	346	B28	398	C28	393	A26	400		
A16	372	B26	362	C26	408	A20	342	B28	397	C28	393	A26	392		
A16	372	B26	361	C26	406	A20	342	B28	397	C28	392	A26	391		

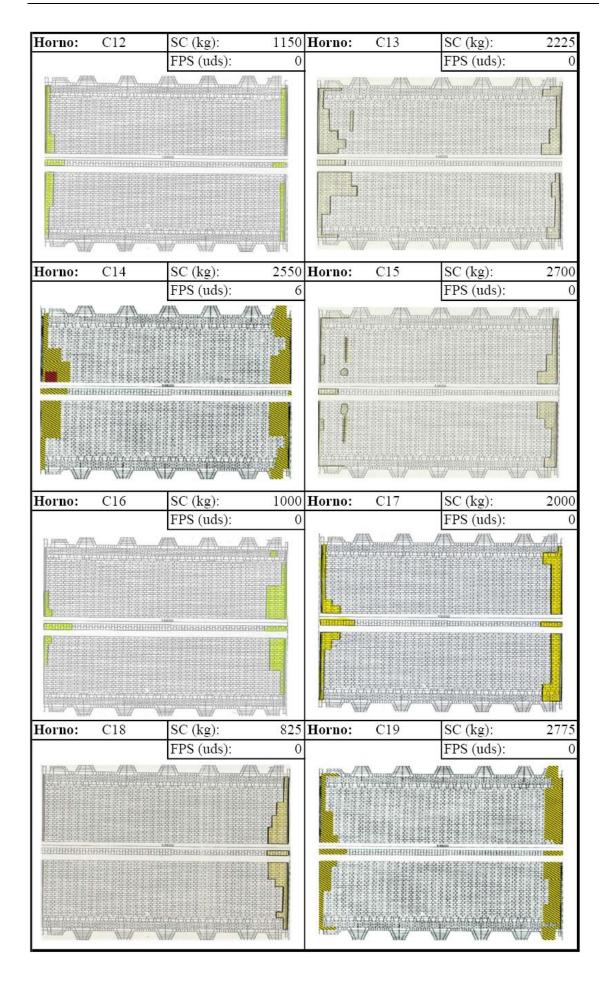

A21	383	B28	368	C29	415	A21	410	B28	395	C28	379	A26	390
A21	376	B28	363	C29	414	A21	408	B28	395	C28	378	A26	388
A21	375	B28	358	C29	413	A21	408	B28	395	C28	408	A26	384
A21	374	B28	358	C29	413	A21	406	B28	390	C28	406	A26	384
A21	371	B28	358	C29	411	A21	405	B28	388	C28	406	A26	382
A21	369	B28	354	C29	411	A21	404	B28	385	C28	402	A26	380
A22	404	B28	350	C29	411	A21	401	B28	380	C28	400	A26	379
A22	392	B28	350	C29	409	A21	401	B28	375	C29	416	A26	376
A22	390	B28	348	C29	408	A21	400	B28	375	C29	416		
A22	385	B28	347	C29	406	A21	386	B28	371	C29	415		
A22	381	B28	347	C29	406	A21	384	B28	370	C29	415		

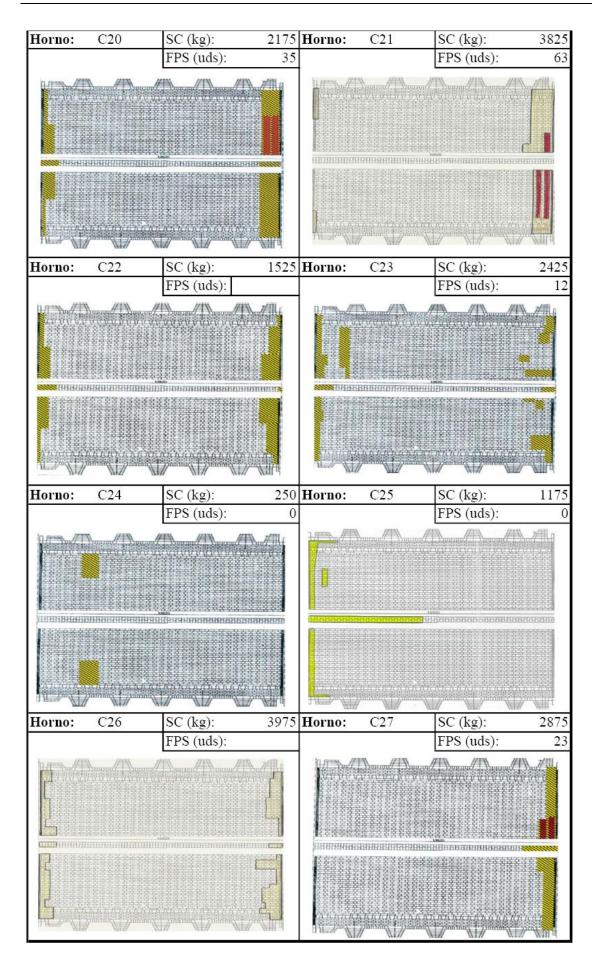

Mapa de reparaciones en refractario de hornos

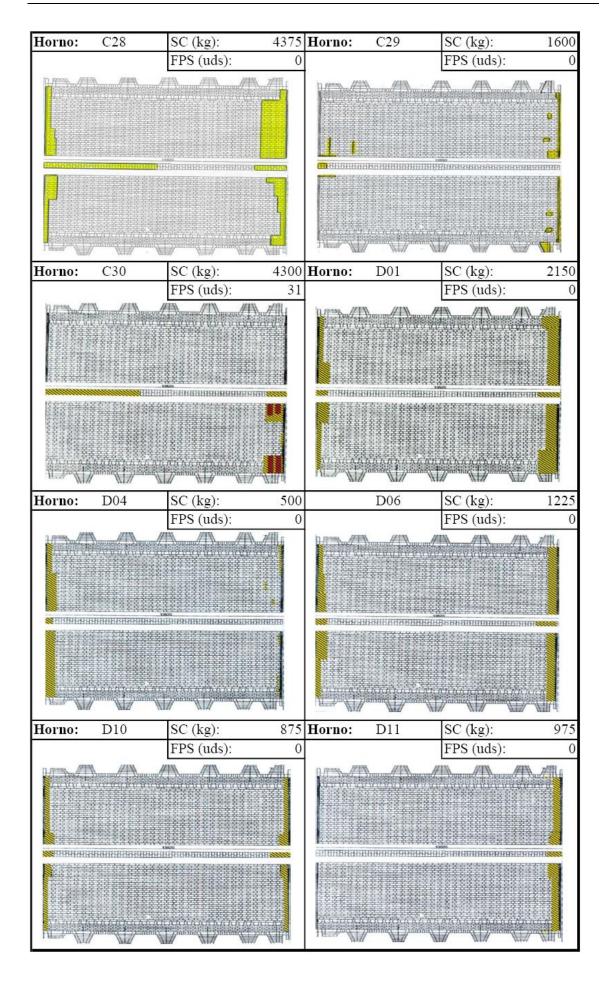


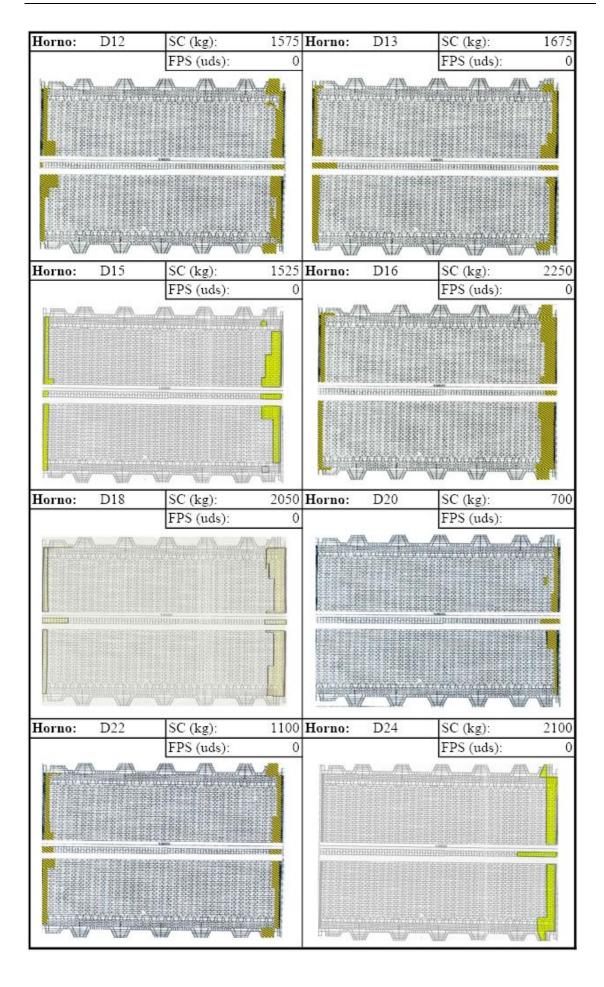


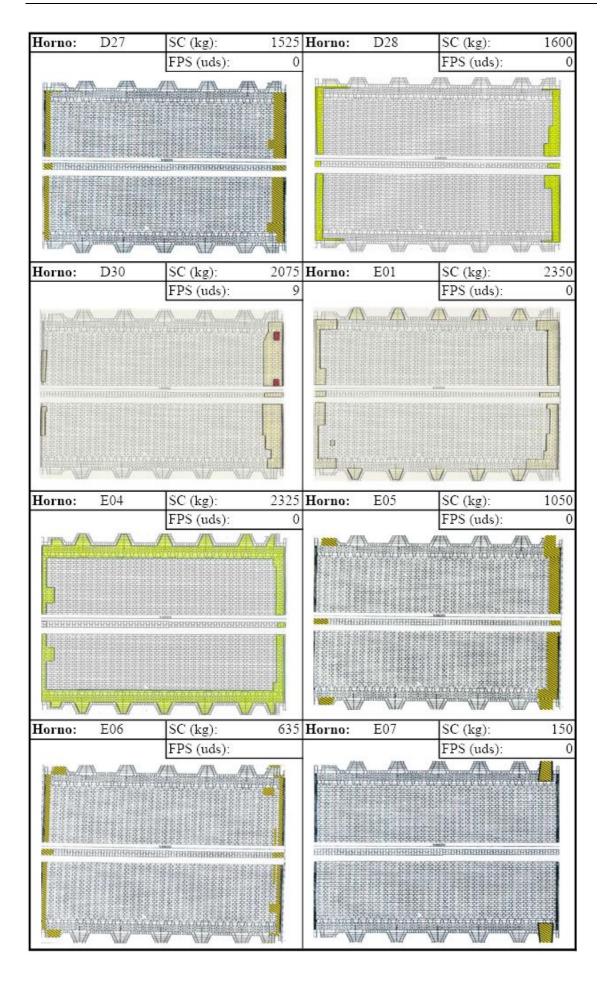


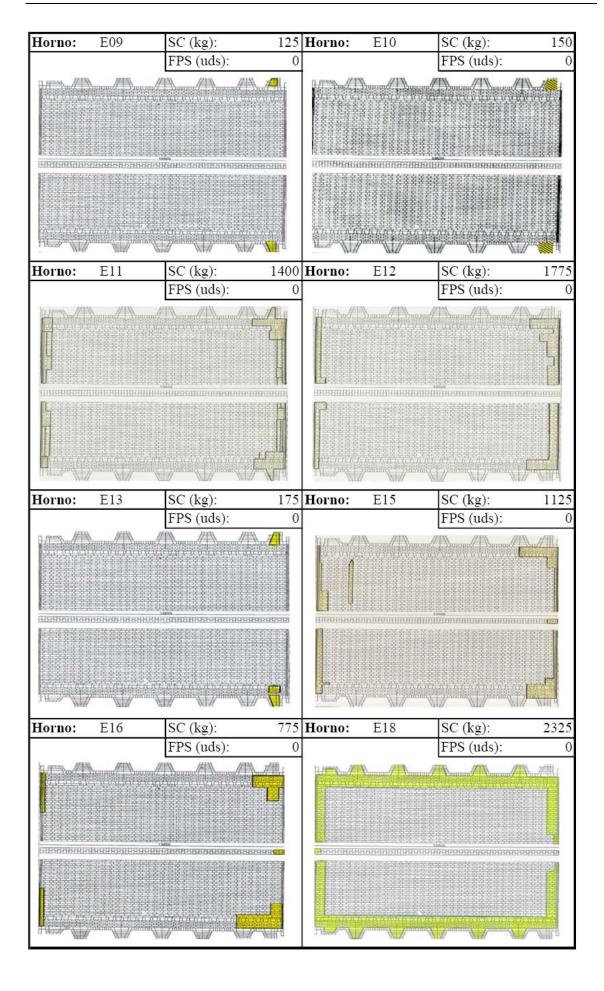


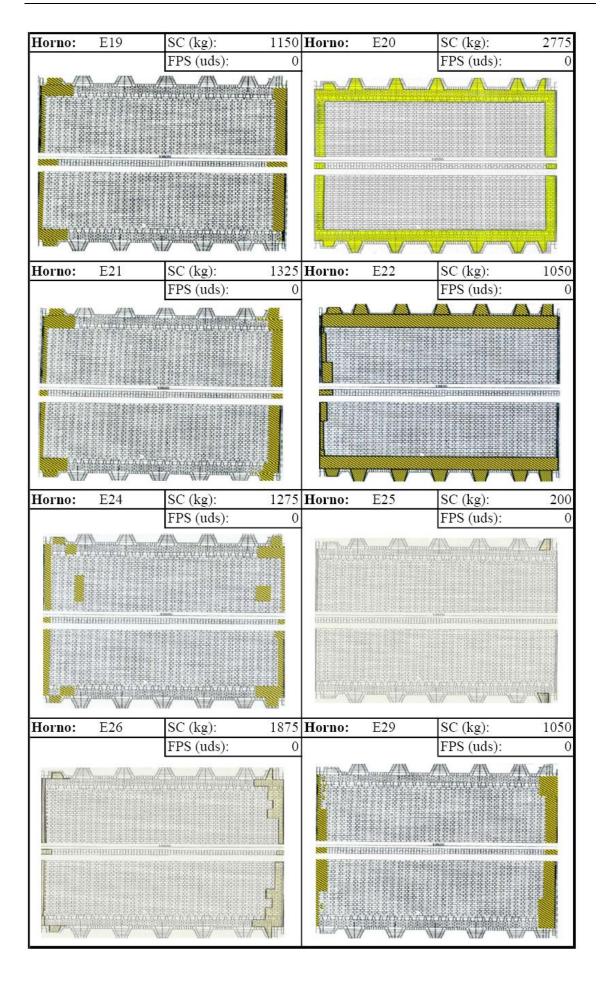


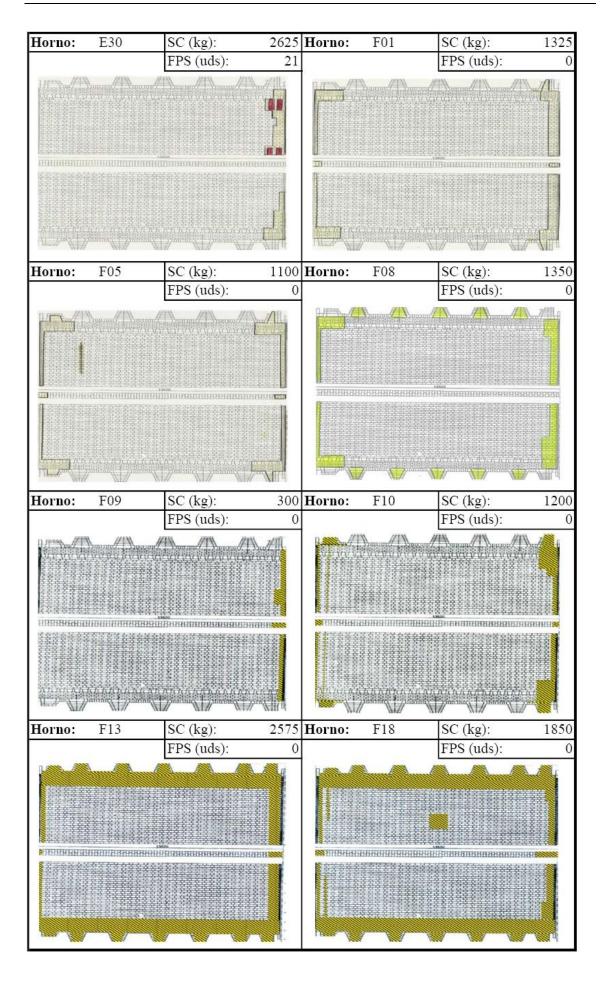


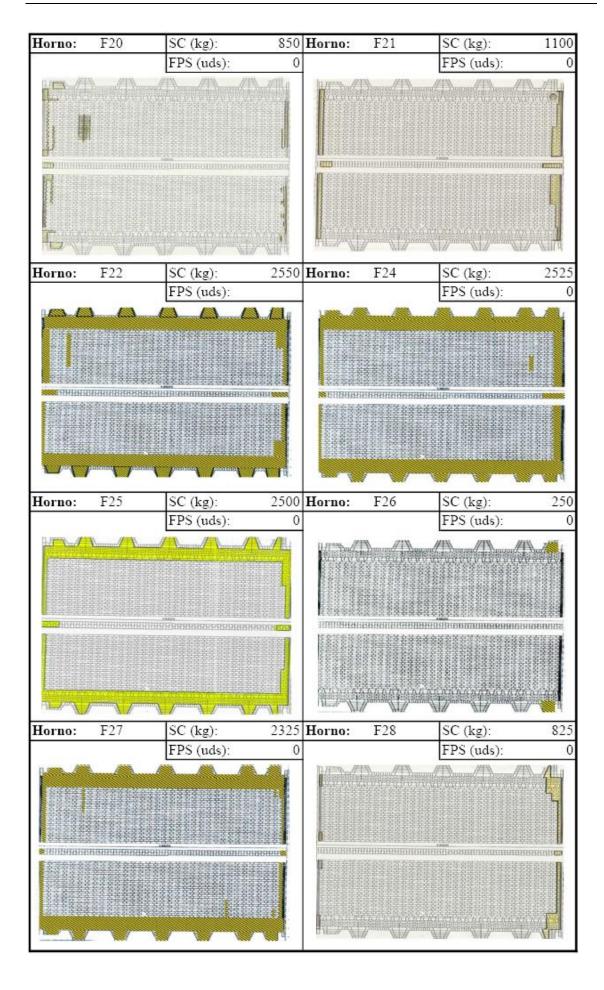


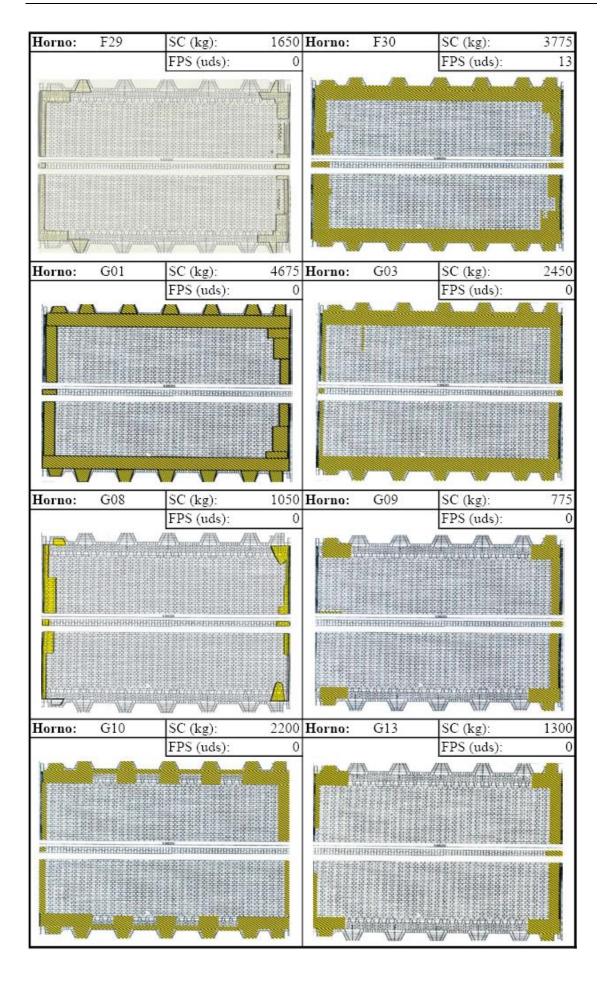


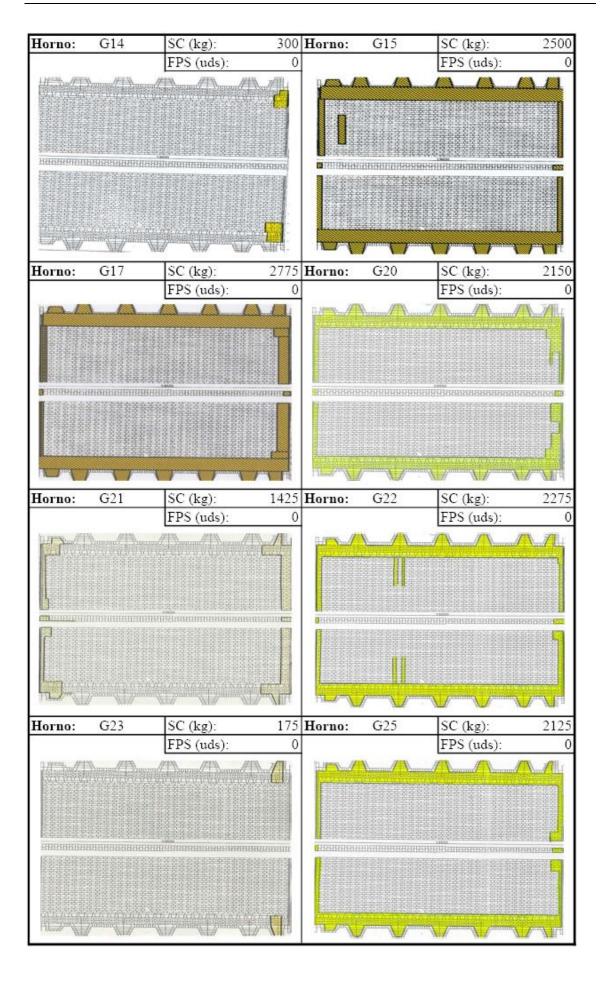


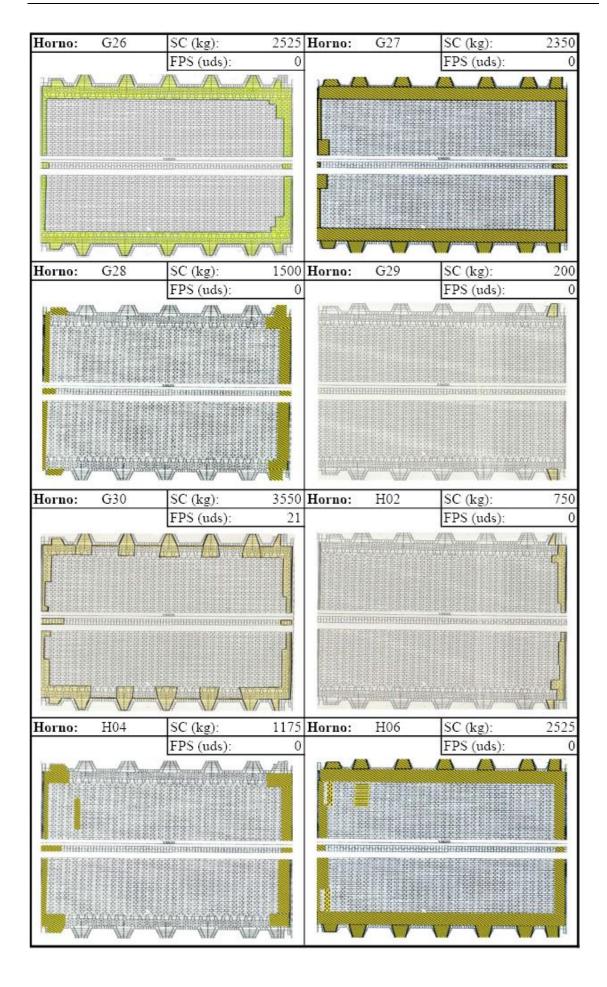


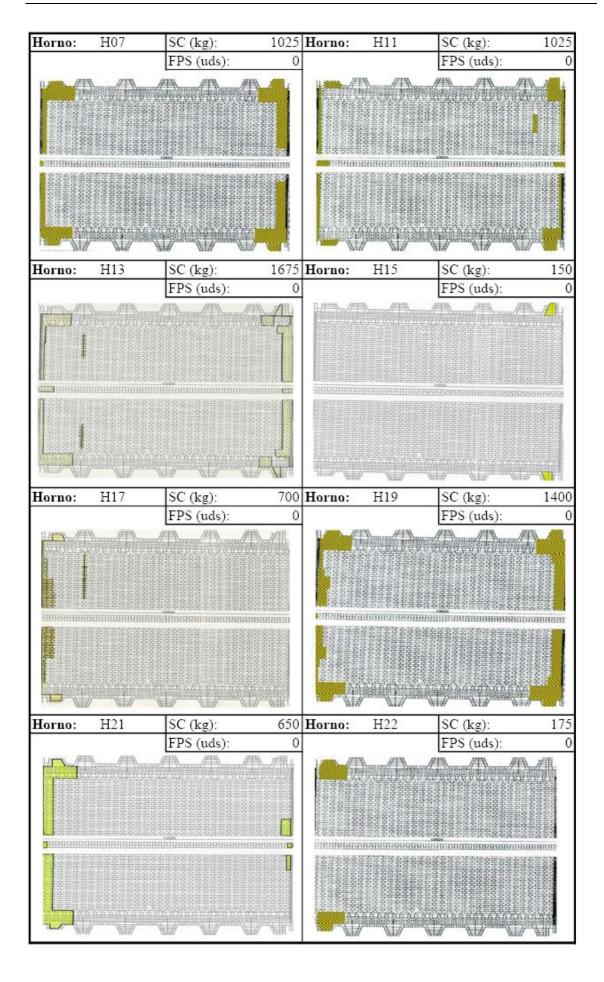


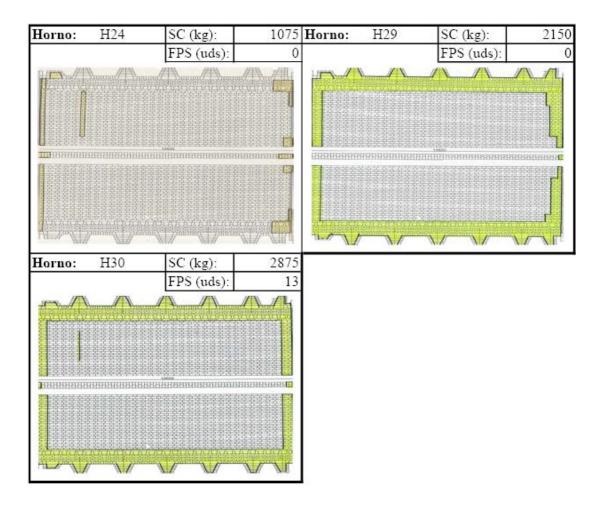












Curriculum vitae

200 Curriculum Vitae

DATOS PERSONALES

Nombre: David Álvarez López. Teléfono: +34 608 35 40 89.

Correo: david.alvarez08@gmail.com

FORMACIÓN ACADÉMICA

• **Ingeniería Mecánica.** Universidad de León.

 Máster en Ingeniería Avanzada de Fabricación. UNED.

EXPERIENCIA PROFESIONAL INDUSTRIAL

1. Montajes Térmicos, S.L. (Grupo Aldomer)

- Sector: Fabricación y Montaje de Productos Refractarios.
- Funciones:
 - Director Técnico: (1996-2005).
 - Responsable de Producto y Montaje para el sector Energía: (2006-2008)

2. ArcelorMittal

- Sector: Siderúrgico.
- Funciones:
 - Apoyo Técnico Cok (2008-2009).
 - Jefe de Calentamiento y Refractario Cok (2009-2011).
 - Apoyo técnico Proyecto B-3 (2011-2012).
 - Responsable de Calentamiento Avilés (2012-2014).
 - Responsable de refractario en Proyecto Batería (2015-2020).
 - Responsable de Cto y refractario Cok Veriña (2020- actualidad).