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Resumen 

Los tipos de industrias más afectados por accidentes, en la Unión Europea dentro del 
período 1979-2019, corresponden a los sectores químico-farmacéutico y petroquímico 
por causas que abarcan las incidencias en operaciones, los fallos en los equipos, 
explosiones e incendios y errores humanos en trabajos de producción y mantenimiento. 
A esta situación le sigue una accidentabilidad laboral que fué de 2 accidentes fatales por 
100,000 personas empleadas en el 2015. Para poder presentar una herramienta que 
permita gestionar las diferentes situaciones que puedan estar afectadas por riesgos tanto 
en los procesos industriales como en el trabajo, primero se realiza una revisión de las 
herramientas existentes teniendo en cuenta tres características: prevención, 
simultaneidad e inmediatez; como resultado, se presenta una nueva metodología 
dinámica denominada Control Estadístico de Riesgos (SRC) basada en la utilización de 
la inferencia Bayesiana, cuadros de control y análisis aplicando cadenas ocultas de 
Markov, para que a partir de las causas iniciales de incidencias y los fallos en las 
barreras de seguridad, sea posible detectar una situación fuera de límites con la 
suficiente antelación como para permitir acciones correctivas con el fin de reducir el 
riesgo antes de que ocurra un accidente. Se desarrollan varios casos aplicando diferentes 
modelos de inferencia Bayesiana. La metodología cubre riesgos industriales, accidentes 
laborales, fuga de material inflamable con posible efecto dominó y desviaciones en 
coste y tiempo. Se han utilizado un total de 12 modelos de inferencia con los que se 
realizan los análisis de las observaciones recopiladas a partir de las causas iniciales de 
riesgo y fallos en las barreras de seguridad, utilizando , cuando no hay solución 
analítica, una herramienta de muestreo basada en el algoritmo de Metrópolis-Hastings. 
Los valores recogidos se presentan en tablas o gráficos de control que visualizan si la 
situación está fuera de los límites. Los resultados muestran que la metodología ofrece 
un procedimiento formal, para obtener una valoración de las probabilidades de riesgo y 
para prevenir o mitigar accidentes y riesgos laborales en escenarios de fabricación y 
procesos industriales, advirtiendo de su existencia con el fin de poder actuar de 
antemano, corrigiendo sus causas y ofreciendo una visión del proceso analizado de la 
manera más simple y práctica y a la vez respondiendo a las tres características de 
prevención (P), simultaneidad (S) e inmediatez (I). 

Palabras Clave— Riesgo, Bayesiano, Evaluación, Control, Accidente laboral, Coste, 

Efecto dominó. 
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Abstract 
The most affected types of industries affected by accidents in the European Union  in 
the period of years 1979-2019 are chemical-pharmaceutical and petrochemical-refining 
with causes covering operations, failure in equipment, explosion and fire and human 
errors. This situation is followed by an occupational accidentability rate of 2 fatal 
accidents by 100,000 persons employed in 2015. To manage situations that affect risks 
in industrial processes and occupational risk at work, a review of existing tools is first 
carried out taking into account three prevention, simultaneity and immediacy 
characteristics. As a result, a new dynamic methodology called Statistical Risk Control 
(SRC) based on Bayesian inference, control charts and analysis applying hidden 
Markov chains for the initiating causes and safety barriers is presented. The objective is 
to detect the situation outside the limits early enough to allow corrective actions to 
reduce the risk before an accident occurs under the concept of immediacy. Several cases 
are developed testing different Bayesian inference models. The methodology covers 
industrial risks, occupational accidents, loss of containment with possible domino effect 
and deviations in cost-time  A total of 12 inference models have been tested performing 
the analysis of collected observations of initiating causes of risk and safety barriers 
failure using a Metropolis-Hastings sampling when it is needed. Collected values are 
presented in tables or control charts visualizing when the situation is out of limits. The 
results show that the methodology offers a formal procedure for to have a determination 
of failure probabilities that can prevent or mitigate accidents and occupational hazards 
in manufacturing scenarios and industrial processes warning of the existence of a risk to 
act in advance correcting causes and offering a complete vision in the simplest and most 
practical way possible and responding to the three characteristics of prevention (P), 
simultaneity (S) and immediacy (I). 

Keywords— Risk, Bayesian, Assessment, Control, Occupational accident, Cost, Domino 
effect 
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Chapter 1 

Introduction. 
Industrial and occupational accidents are produced by the use of materials that can be 
toxic, flammable and explosive; for the mistakes in human actuations; and for the 
equipment failure despite the controls and preventive maintenance interventions. 

Examining, for the European Union, the accident rate by types of industry in the years 
1979-2019, [1], it is found that the most affected industrial activities are: chemical-
pharmaceutical (36%); petrochemical-refining (22%); wholesale, retail, storage and 
distribution (including Liquefied Petroleum Gas (LPG)) (10%); metals processing 
(10%); pesticides, fungicides and fertilizers (6%); plastic and rubber (4%);  food and 
beverages (3%); agriculture (1%); waste treatment (3%); power generation and 
distribution (4%) and paper (2%), Figure 1. 

Figure 1.-  Rate of accidents by type of industry, years 1979-2019 (source: [1]).  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Analyzing the causes of accidents in the offshore oil and natural gas extraction sector 
[2], in the years 2013-2017, a sector which groups a set of operations in which chemical 
and petrochemical processes of extraction, treatment, conditioning and transport of 
toxic and flammable materials are used, it is obtained that the main causes of accident 
are generated from: production (64%); lifting operations (11%); failure in equipment or 
their damage (8%); explosion and fire (7%); human errors (4%); work-over and 
maintenance (3%); leakages (2%) and weather (storm, lightning) (0.15%), Figure 2. 

Figure 2.-  Causes of accidents in the oil&gas offshore sector, years 2013-2017 (source: [2]). 

The rate of occupational accidents in the European Union , according to the Eurostat 
information [3] for the EU-28 region, shows a value of 2 fatal accidents by 100,000 
persons employed in 2015 and being the most affected industrial activities: building 
(24%), manufacturing (19%), transportation and storage (19%), agriculture - fishing 
(15%), retail (9%), public administration (9%), water supply - waste management (3%) 
and mining (2%). The situation in Spain between years 2014-2018, is practically the 
same [4]. 

Also analyzing the main causes of occupational accidents in the Spanish country, for the 
same period 2014-2018, has been found in situations of human body movement 
involving lift, pushing-pulling and improper body turns under physical effort (33%), 
entrapment by machine elements, not coordinated less physical effort movements and 
sharp machine elements contact (22%), falls and slips (18%), loss of total or partial 
control of the machine (16%), support breakage and gliding (6%), leakage and spill 
(2%), aggressions (2%) and explosion - fire (1%) [4], Figure 3. 
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Figure 3.-  (a) Accident rate by activity in the year 2015 in the EU-28 (source: [1]); (b) Description of 
Origin of occupational accidents in Spain for years 2014-2018 (source: [4]). 

All of these causes have generated from the total of accidents a (99.1%) with minor 
consequences, with severe damage (0.8%) and fatal situations (0.1%).  

1.1. Background. 

This thesis has its origin in the experience and situations that its author has lived within 
the framework of professional projects and industrial works. And where, as a result of 
their realization, they were missing a procedure that could indicate, in parallel, through 
their own field or plant activity, when they could be close to an accident situation. 

1.2. Research process. 

With the idea of obtaining a formal procedure that can prevent or mitigate accidents and 
occupational hazards in manufacturing scenarios and industrial processes, warning of 
the existence of a risk well in advance to correct the situation that causes it, three 
characteristics are defined that the procedure must comply: 

• Prevention (P): being the process of avoiding or mitigate the risks by reducing their 
probability of occurrence and their impacts in human and social; geographical and 
landscape; economical and infrastructures; environmental and ecosystem 
preservation; accident and safety (human, assets, production); perception and 
expectations. 

EU-28 Occupational 
accidents by activity

9 %
9 %

15 %

2 %3 %
19 %

19 %

24 %

Building
Manufacturing
Logistics - storage
Waste management
Mining
Agriculture - fishing
Retail
Public administration

Spain - Origin of 
occupational accident

2 %2 %
6 %

16 % 18 %
1 %

22 %

33 %

Lifts, pushing-pulling,
Entrapment
Explosion-fire
Falls - slips
Machinery loss of control
Support structure break, glide
Leakage - spill 
Surprise, fear, threat, aggression

(a) (b)
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• Simultaneity (S): being the capacity for to update the risk evolution according to the 
real time operation. 

• Immediacy (I): being the capacity for to inform or infer of the existence of a risk with 
enough advance for making the needed corrections before the accident occurs. 

To do this, it is first necessary to review what are the current tools related to risk 
assessment, verifying which are the most appropriate and to what degree they meet 
these three characteristics. The proposed methodology arises as a result of this review 
by completing the aspects and characteristics that other tools do not include. 

1.3. Objective. 

After the revision of the existent methodologies the objective of this thesis is to develop 
and present a new dynamic tool called Statistical Risk Control (SRC) to manage and 
assess risk situations in industrial processes and occupational accidents, offering a 
complete view of the risk situation and the causes that generate it and warning of their 
existence enough in advance for correcting the situation and causes before it produces.  

Once the general procedure has been established, its application is particularized on the 
control of possible accidents in industrial and work environments. Additionally, its 
application is examined in the control of projects extending the concept of risk in the 
deviations in time and cost as a deviation in objectives, and in industrial situations 
where the domino effect may occur. 

1.4. Justification. 

There is a general need for to manage and assess the risk. Risk is a concept with many 
definitions for example in certain cases the risk arises from the occurrence of situations 
that occur with uncertainty [4], in others cases risk arises from the uncertainty in the 
objectives [5,6], or specifically risk is a measure of the lack of safety [7]. In the same 
consideration is the safety idea, that can simply be defined as a lack of accidents, or 
from an occupational point of view, how people are able to provide the required 
performance under expected and unexpected conditions [8], or describing safety as a 
numerical condition where the number of adverse outcomes is acceptably small [9] or 
from an analytical point of view defining it as the study of why things go wrong [10].  

For to manage risk and control the major hazards in industrial and occupational 
scenarios the European Union has issued an initial preventive framework based on the 
Directive 2012/18/EU of 4 July 2012 on the control of major accident hazards involving 
dangerous substances also known as Seveso III, [11]  which is the result of the initial 
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Directive 82/501/EEC of 24 June 1982 on the major-accident hazards of certain 
industrial activities [12]. 

Additionally the risk and occupational safety at work is treated also in the European 
Union through the Directive 89/391/EEC of 12 June 1989 on the introduction of 
measures to encourage improvements in the safety and health of workers at work [13] 
addressed to employers to establish basic principles of prevention with evaluation of 
risks and their avoidance. 

Also the European Union has established the Strategic Framework on Health and Safety 
at Work 2014-2020, with three key points focused on enhancing the health and safety, 
the prevention on work-diseases and aging of the workforce and additionally 
considering the growth of the new processes as green technologies, nano-materials and 
biotechnologies; to achieve this strategy seven key points have been defined, being 
among them the consideration of policy consolidation and coordination to simplify the 
international legislations and the need for focus on small enterprises; it is important the 
consideration for “Improving of the statistical data collection to have better evidence 
and developing monitoring tools”, [14]. But this key point has the aim of assess the 
quality of data on accidents at work transmitted by Member States and for to improve 
the availability and comparability of data on occupational diseases for creating a 
common data base on occupational exposures to allow the performing of occupational 
protection policies and performance indicators assessing their implementation.  

Based on this European Strategic Framework the Spanish Council of Ministers 
approved the Occupational Health and Safety Strategy 2015-2020 [15] being a priority 
the improvement of occupational safety and health conditions and the psychosocial and 
organizational factors included in the EU. 

In an analogous scheme the Spanish National Institute of Safety and Health at Work  
(NISHW), issued the actuation lines for 2018-2020, [16], with the goals of develop new 
methodologies of occupational risk assessment, to take in consideration the new work 
conditions and the health promoting by the detection of profesional diseases, 
ergonomics and limiting the chemical exposure. 

The International Organization for Standardization has also issued the ISO 45001:2018 
guideline with the aim to establish a framework for developing an occupational health 
and safety at work management system, [17]. 
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The general guidelines that cover and establishes a risk management process and a risk 
assessment are the ISO 31000:2018. Risk Management Guidelines [18] and the ISO/
IEC 31010:2019. Risk Management - Risk Assessment Techniques [19].  

 The ISO 31000:2018 and ISO/IEC 31010:2019 standards are based in the Deming 
cycle [20], consisting of a sequence of steps: “plan, do, check, act”; are the framework 
of the Risk Management and the Risk Assessment, (Figure 4). 

Figure 4.-  Risk management and Risk Assessment  process and Deming cycle equivalence (adapted from 
[18,19,20]). 

The Quantitative Risk Assessment (QRA) is a formal and systematic risk analysis 
approach to quantifying the risks associated with the industrial and human processes. 
The Risk Assessment, is the general procedure that covers initially the risk identification 
process which can be performed based on historical data, through a panel of experts or 
using inductive cause-effect techniques; followed by the risk analysis through the 
application of: qualitative methods, indicating the levels of importance of the risk and 
its consequences; semiquantitative methods, by indicating numerical risk rating scales 
and their consequences; and quantitative methods, defining the probabilities of risk 
generation and its consequences, [18,19,21,22,23] and finally their evaluation that 
implies determining the importance and prioritizing from the point of view of risk-
consequence or benefit-cost, [24]. 

In Spain the main occupational risk guidelines are supplied from the National Institute 
of Safety and Health at Work (NISHW), with the objective of analyze and study the 
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health and safety conditions in the workplace, as well as their improvement [25]. 
Additional but specific European regulations are applied to consider the maximum 
concentration of chemical agents at work [26] and for carcinogens and mutagens at 
work [27,28]. 

As previously indicated the European Strategic plan for health and safety at work 
presents, between the considerations of international coordination, the need for develop 
and improve the statistical techniques and monitoring tools related to the evaluation of 
occupational product exposures and the associated diseases.   

But in these significant methodologies and guidelines there is no consideration about 
the need to have tools that allow not only to quantify and analyze the risk and its 
impact, but to be able to measure it and acting at the moment when the generation of a 
possible accident can be immediate. 

1.5. Method. 

To achieve this objective, it is first necessary to perform a review for what are the 
current tools related to risk management, their field of application and its degree of 
fulfillment of the need for immediacy through the three defined characteristics. Based 
on this revision, the new Statistical Risk Control (SRC) methodology for to manage and 
assess the situations of risk, is presented. The development for industrial and 
occupational accidentes is performed and the application of different models is explored 
in order to verify its effectiveness using example cases. The analysis is extended to the 
deviations in time and cost and to the domino effect.   Accordingly this work is 
organized as follows: in chapter (2) the revision of the state of the existing tools; in 
chapter (3) the development of the SRC methodology in general for industrial 
processes, occupational accidents and the special cases of project management and 
domino effect; in chapter (4) the presentation of cases of study and their results; in 
chapter (5) the discussion of results; and in chapter (6) the conclusions and further 
research work.  
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Chapter 2 

Existing tools. 
The analysis is performed in three main groups:  

1. The first group is the corresponding to the standards, directives and regulations. 

2. The second group covers methodologies and models differentiating the traditional 
and the modern approaches [29]. The traditional approach includes the sequential and 
the epidemiological models. The modern approach has five models: the systematic; 
cloud based; the fuzzy based, formal based and safety barrier based.  

3.- The third group, which is encompassed in the modern methodologies, is specific for 
dynamic models. 

2.1. Standards, Directives and Regulations. 

2.1.1. Directive 89/391/EEC. 

Issued on 12 June 1989 is a framework directive for occupational accidents with the aim 
to establish the employers obligations for developing a prevention police oriented to the 
protection of safety and health, and for the prevention, assessment and elimination of 
risks and accident factors, and focused on workers and their representatives facilitating 
that they be informed, consulted, with a balanced participation in all aspects that affect 
safety and that they have adequate training [13]. It is applicable to industrial and public 
sectors of activity. This directive offers a definition of prevention on Article 3, “all the 
steps or measures taken or planned at all stages of work in the undertaking to prevent or 
reduce occupational risks”. 

2.1.2. ISO 45001:2018. 

This standard is aimed at providing rules that allow the implementation of a 
management system of safety and health at work (SHW) [17], also based on the Deming 
cycle concept [20], but does not establish specific criteria for the performance of the 
(SHW) or for the design of a (SHW) management system. 

!9



!  

!                                                                                                                  Existing tools 10

2.1.3. National Institute of Safety and Health at Work (NISHW). 

It is the Spanish governmental organization dependent from the Labour, Migrations and 
Social Security Office with the aim of analysis and study of health and safety conditions 
in the workplace, as well as the promotion and support to improve them. [16] 

This organization issues a series of documents and guidelines for work safety in the 
areas of materials and chemicals storage, emergencies actuation, maintenance and 
prevention in industrial installations, workplace design, risks and explosion avoidance, 
electrical risks, fire safety and communication; covering risks in chemicals, biologicals, 
ergonomics, psychosocial and physical as radiation, vibrations and noise. 

2.1.4. Law 31/1995 of prevention of occupational hazards. 

It is the Spanish regulation defining the rights and duties for employers and workers in 
concordance with the Directive 89/391/EEC and requiring, in the 16th article, the 
establishment of an occupational risk prevention plan, including the risk assessment and 
preventive activity planning. [30] 

2.1.5. Directives 98/24/EC and 2004/37/EC. 

The 98/24/EC Directive of 7 April 1998 on the risks related to chemical agents at work 
and the 2004/37/EC of 29 April 2004 on the carcinogens and mutagens at work [26,27], 
are extensions of the 89/391/EEC Directive. The aim is to determine whether any 
hazardous chemical  or mutagen agent is present at the workplace assessing any risk and 
performing the needed safety and health preventive and avoiding actions to reduce their 
concentration and presence at the limits of exposure established at Community and 
Member States. In the case of Spain the National Institute for Safety and Health at Work 
(NISHW) issues practically every year the Occupational exposure limits for chemical 
agents in Spain [31] and the Real Decreto 665/1997, of May 12, on the protection of 
workers against the risks related to exposure to carcinogens during work on the Annex 
III shows the exposure limit values for Benzene, Vinyl Chloride monomer`+´and wood 
dust [32].  

2.1.6. ISO 31000:2018 and ISO/IEC 31010:2019 standards. 

As previously anticipated the ISO 31000:2018 and ISO/IEC 31010:2019 provide a set 
of principles being a framework for managing and assess the risks. It is based in the 
“Deming” cycle [20], considering a sequence of steps: “plan, do, check, act”. That 
concisely are: plan, what it is needed to do; do, execute the previous plan; check, if the 
plan has achieved the objectives and act, identifying improvement areas to apply in the 



!  

!                                                                                                                  Existing tools 11

next cycle. In this guideline, the risk definition is based on uncertainty affecting the 
objectives that have been defined in the previous cycle. According to this cycle 
definition, and depending on the context and the set of circumstances that can occur, the 
deviation from the expected can be positive and then risk has a benefit or an opportunity 
for the organization or on the other hand it has a negative impact. 

If the ISO 31000:2018 contains general principles of the Risk Management, the ISO/
IEC 31010:21019 presents a detailed explanation about the Risk Assessment process 
and the applied tools, Figure 4.  

The context defines the situation within the risks exists and it has to be considered the 
cultural, political, regulatory or legal and economical aspects whether at international, 
national, regional or local levels as external influences. Also considering the internal 
influences from the organization as information flows and decision processes, 
objectives, policies, standards and models adopted, governance, roles, values and 
culture. Also in the context a previous determination of consequences are performed. 

The risk assessment comprises their: identification, analysis and evaluation and can be 
performed at different organizational levels. 

The identification has the aim of analyze what might happen or what situations might 
exist  into the form of possible causes and source of risk,  as events or situations which 
could have an impact over the objectives. The risk identification methods can include: 
evidence based on check lists and reviews of historical data, inductive reasoning 
techniques and supporting methodologies as brainstorming or Delphi. 

The analysis is performed to estimate the range of potential consequences that might 
arise from an event or situation with their associated probabilities, in order to measure 
the level of risk. The methods applied in this analysis can be qualitative or quantitative 
or a combination of both, in any case the obtained result is a ranking for the different 
levels of risk considered. This guideline considers that the level of risk is depending on 
the adequacy and effectiveness of existing controls based on proper documentation and 
assurance process in place. The event consequences is the consideration of nature and 
type of impact that can occur.  

This analysis has three considered aspects:  

1.- The consequence determines the nature and type of impact which could occur 
assuming that a particular event situation or circumstance has occurred and can be 
performed by using theoretical or empirical models to define the extension of the 
produced risk by affecting time, cost, life and environment, [29]. 
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2.- The probability can be estimated from historical data to identify events or situations 
previously occurred in the past making an extrapolation to this probability for the 
future; or by using predictive techniques like Fault Tree Analysis (FTA) or Event Tree 
Analysis (ETA) or/and by using the experts information or by the application of the 
Delphi methodology, [23]. 

3.- The level of risk by performing a sensitivity analysis to determine the variation, 
significance and magnitude of risk to changes to with individual input parameters. The 
evaluation process allows to compare the estimated levels of risk obtained with a 
criteria previously defined, in order to determine the significance of the level and type 
of risk and it is presented in form of a risk-consequence graph. 

The treatment of the risk has the purpose is to perform the corrective action according to 
the level of risk. 

The actions of monitoring and reviewing are applied to take in consideration the 
variation in time of external factors previously defined in the context and by updating 
accordingly the risk assessment. 

The communication and consult actions have the purpose to informatively extend into 
the organization the levels of risk and their originating events and situations together to 
with the corrective actions. [5,6] 

2.1.7. Directive 2012/18/EU and COMAH 2015. 

The actual Directive 2012/18/EU, known as Seveso III directive with an important 
evolution from this accident, and their British homonym for the Control of Major  
Hazards (COMAH) state the minimum rules for the prevention of major accidents 
which involve dangerous substances, and the limitation of their consequences for 
human health and the environment. There is no raised any specific risk assessment 
methodology and the efforts are focused on considering the dangerous substances by 
taking care of their chemical, health and physical hazard properties; the Directives 
require the existence of an emergency plan with the notification of a major accident 
prevention policy (MAPP) into the establishment; the consideration of the possible 
domino effects caused by proximity and storage of hazardous and flammable materials 
and the need for to perform a safety report, as stablished in Annex II, demonstrating 
that: a MAPP and a safety management system have been implemented; that the 
possible major accident scenarios have been identified and the necessary measures have 
been taken; that the safety and reliability framework is present into the design, 
construction, operation, maintenance, storage, facilities, equipment and infrastructure 
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and that there is implemented an internal emergency plan and a mechanism for to 
inform the authorities and population. The safety report has an initial realization in 
function of the new or already in operation establishments, but, in any case, there is 
needed an update review of the safety report every 5 years. In Spain the based  
regulation is supported on the Real Decreto 840/2015 from September 21, which 
approves measures to control the risks inherent to serious accidents involving dangerous 
substances. [11,33,34] 

2.1.8. PMBOK and PRINCE2. 

The Projects Management Institute and Prince2 are organizations oriented to the 
development of project management methodologies as PMBOK – Project Management 
Body of Knowledge and PRINCE2 – Projects In Controlled Environments. The 
PMBOK is a detailed framework of ten knowledge areas of project management: 
integration, scope, schedule, cost, quality, resource, communications, risk, procurement, 
and stakeholder; broken down into activities across five groups of processes considering 
the project life cycle: initiating, planning, executing, monitoring and controlling and 
closing; that are claimed to encompass the sum of knowledge generally recognized as 
good practice in the project management profession, and contemplated as an ANSI 
standard for project management [35,36,37]. A PRINCE2 project is driven by the 
project's business case, which describes the organization's justification, commitment 
and rationale for the deliverables or outcome. The business case is regularly reviewed 
during the project to ensure the business objectives, which often change during the 
lifecycle of the project, are still being met. PRINCE2 is designed to provide a common 
language across all the interested parties involved in a project.  

Both methodologies set documentation which must be tailored to suit the occasion 
project. As previously indicated for the PMBOK, are considered five groups of 
processes, while for the PRINCE2, 8 groups are considered. However, it is possible to 
find equivalences between processes. The PMBOK process of initiating, is equivalent to 
the first two processes of PRINCE2, Starting up and Directing. The PMBOK planning 
process embodies the initiating and planning processes on PRINCE2. The executing 
PMBOK process will be equivalent to the controlling a stage and managing product 
delivery in PRINCE2. The monitoring and controlling from PMBOK are equivalent to 
the product delivery and directing in PRINCE2 and finally the closing process are 
equivalent in both methodologies.  

The risk treatment for PMBOK and PRINCE2 in general follows the risk management 
steps as indicated by the ISO/IEC 31010, with the same cyclic structure: plan the risk 



!  

!                                                                                                                  Existing tools 14

management, identify risks, performing a qualitative and quantitative analysis, plan and 
implement risk responses and monitor risks, (Figure 4). [37,38].  

2.1.9. Center for Chemical Process Safety (CCPS). 

The Center for Chemical Process Safety is an organization dependent from the 
American Institute of Chemical Engineers (AIChE). The risk management procedures 
are mainly based on the ISO/IEC 31010:2019 approach and focused by the application 
of the Layer of Protection Analysis (LOPA) methodology. Conceptually, LOPA is used 
to understand how a process deviation can lead to a hazardous consequence if not 
interrupted by the successful operation of a safeguard called an independent protection 
layer (IPL). An IPL is a safeguard or safety barrier that can prevent a scenario from 
propagating to a consequence of concern without being adversely affected by either the 
initiating event or by the action (or inaction) of any other protection layer in the same 
scenario. [23,39,40,41] 

2.1.10. NORSOK. 

The “Norsk Sokkels Konkuranseposisjon” (NORSOK) standards are developed by the 
Norwegian petroleum industry to ensure adequate safety with a balanced cost for 
petroleum industry developments and operations. The main guideline Z-013 covers the 
traditional (QRA) steps and within the ISO/IEC 31010:2019 guideline framework. 
[42,43,44] 

2.1.11. CPR18E. 

The Netherlands advisory council of dangerous substances issued several publications 
from the old CPR (Commissie voor de Preventie van Rampenthat) still called CPR 
guidelines that are often used in the fields of occupational, transport and fire safety. This 
association offers a series of guidelines associated to one or grouped installations for 
analyzing the loss of containment events in chemical processes and the modeling of the 
associated flammable clouds, their dispersion and toxic effects. The CPR 18E 
Guidelines or “Purple Book” is applied for the quantitative risk assessment. [45] 

2.1.12. EN16991:2018. 

European standards for chemical, power generation and manufacturing providing 
guidance for the inspection and risk evaluation in operations and maintenance. [46,47] 

The Table 1 shows a summary and the compliance with the three characteristics.  



!  

!                                                                                                                  Existing tools 15

Table 1.- Standards, Directives and Regulations group summary with their compliance to with the P: 
preventive; S: simultaneity and I: immediacy characteristics. 

Taking in consideration that are standards or directives with the aim of avoiding or 
mitigate the risks by reducing their probability of occurrence and their impacts, all the  
components of this group cover the preventive characteristic indistinctly if it is applied 
for industrial processes or occupational accidents. 

Document Application P S I

89/391/EEC             
[13]

Occupational, framework - On the introduction of measures to encourage 
improvements in the safety and health of workers at work.

+ - -

ISO 
45001:2018       

[17]

Implementation of a system of safety and health at work (SHW). + - -

NISHW         
[16]

Spanish governmental organization of analysis and study for safety and 
health conditions in the workplace. 

+ - -

Law 31/1995            
[30]

Law 31/1995, of November 8, on Prevention of Occupational Hazards. To 
establish an occupational risk prevention plan, risk assessment and 
preventive activity planning.

+ - -

98/24/EC, 
2004/37/EC 

[26,27,31,32]

Occupational - Chemicals and carcinogens concentration. + - -

ISO/IEC 
31010:2019    

[5,6]

Risk management process, based on a iterative cycle. Risk assessment 
based on identification, analysis and evaluation.  General application of 
(QRA).

+ - -

2012/18EU 
COMAH 2015      

[11,33,34]

European and British Control of Major Hazards for Seveso III Directive. 
Emergency plan with major accident prevention policy and information 
mechanism to authorities and population. A 5 years safety report.

+ - -

PMBOK, 
PRINCE2 

[35,36,37,38]

Documentation tailored for project management. Initiating, planning, 
executing, monitoring and controlling and closing.

+ - -

CCPS         
[23,39,40,41]                        

Center for Chemical Process Safety. Layer of Protection Analysis (LOPA) 
methodology. A danger occurs if not interrupted by an independent 
protection layer (IPL).

+ - -

NORSOK 
2010 

[42,43,44]         

(Norsk Sokkels Konkuranseposisjon). Standards applied in the Norwegian 
petroleum industry, with the aim to follow the lifecycle of a project 
considering planning, execution and operation.

+ - -

CPR18E                   
[45]

Netherlands Commissie voor de Preventie van Rampenthat, (CPR). 
Applied in hazardous installations and transport analyzing the loss of 
containment events and the modeling of the associated flammable clouds, 
their dispersion and toxic effects.

+ - -

EN 
16991:2018    

[46,47]

European standards for chemical, power generation and manufacturing 
providing guidance for the inspection and risk evaluation in operations and 
maintenance.

+ - -
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2.2. Methodologies and models. Traditional approach. 

2.2.1. Sequential models. 

Sequential models are representative of the Risk Assessment (RA) process regarding 
accidents as outcomes of a chain of discrete events or factors that take place in a 
temporal order. The events or factors, may be associated with the social environment, 
unsafe acts or conditions, breakdowns, incidents; all of them are related in the sense that 
if the first factor falls, a chain of failures can occur until reaching the last.  

These models include, [23]: The Fault Tree Analysis (FTA) is a deductive graphical 
technique to quantify failure probability of human and technical systems. The Event 
Tree Analysis (ETA). Inductive and logic graphical technique for consequence analysis. 
It is used for human reliability assessment as part of THERP (Technique for Human 
Error Rate Prediction) a tool based on event-tree approach for evaluating human errors 
alone or in connection with equipment functioning, operational procedures and 
practices, or other system and human characteristics that influence system behavior; the 
aim of the tool is to demonstrate the effectiveness of protective systems, [48]. The 
BOW-TIE graphic is the integration of the FTA and ETA models to represent causes, 
designing or evaluating safe barriers, and conclude with the consequence events. The 
Failure Mode Effect Analysis (FMEA) it is a step-by-step analysis approach for 
identifying potential failures and then preventing them. The Failure modes, Effects and 
Criticality Analysis (FMECA), [49], is an upgrade of the previous model and it is used 
for preliminary hazard analysis (PHA) with the aim to identify potential failure or 
accident modes and how to avoid it. This analysis is generally previous to the 
performing of a risk assessment (RA). It is a process with six steps: definition of the 
scenario and scope of the analysis; constitution of a multidisciplinary team; 
identification or possible risks that can affect the process or the occupational activity; 
collect information; determination of the criticality and design avoidance measures and 
their implementation. The criticality is determined by associating an  estimated 
gradation (defined in an interval with extreme low to high critical values) for every 
potential failure and their consequences and finally, developing and implementing 
corrective actions and monitoring measures to the highest potential failures. The Check 
list-What if, it a systematic and scenario imaging revision of equipment and installation 
to find malfunctions and compliance with a list of requirements or collect data in an 
orderly and systematic manner [49]. The Reliability Assessment (RRA), with the aim to 
quantify the probability of failure in a system, [50]. The Block Diagrams, is a graphical 
procedure describing the function of the system and showing the logical connections of 
components needed to fulfill a specified system function, [51].  



!  

!                                                                                                                  Existing tools 17

The FTA and FMEA have been applied in cases study for occupational safety and health 
in risk analysis accidents for the textile industry, [52]. The FMECA is applied in a toxic 
exposure to contaminants in a drug industry work place, [53]. 

From this group the Bow-tie diagram is representative of the risk analysis of a system or 
process and for defining the preventive or proactive and mitigative or reactive barriers, 
[23], Figure 5. 

Figure 5.- Generic bow-tie. ic: initiating cause; IS: intermediate preventive safety barrier; AE: accident 
event; Mitigative: mitigative safety barrier; pi : fail probability for the mitigative safety barrier “i”; End 
State: impact, consequence, (adapted from [23]). 

The bow-tie is composed by the fault tree and the event tree, is a graphical presentation 
of which must be the causes that or by themselves or affecting the production of failures 
in preventive safety barriers can lead to the generation of an accident (AE) and if this 
occurs, what must be the safety barriers that avoid or mitigate its consequences. 
Mitigative safety barriers act in a chained manner, if a failure occurs in the first one, the 
second one is activated, and so on. 

In occupational risk the Bow-tie is applied to analyze the chemicals exposure,[9], falls 
from height, crane activities, interaction with machines moving parts and situations of 
risk due to falling objects [54,55,56,57], for occupational accidents related with 
construction, operation and maintenance in onshore wind farms, [58]. 

The Table 2 shows a summary for the analyzed methods and the compliance with the 
three characteristics.  



!  

!                                                                                                                  Existing tools 18

Table 2.- Sequential models summary with their compliance to with the P: preventive; S: simultaneity and 
I: immediacy characteristics. General application means: industrial / occupational. 

Following to with the sequential models, the HAZOP / HAZID methodologies are 
found,  the Hazard and Operability study (HAZOP) is a structured and systematic 
examination of a complex planned or existing process or operation in order to identify 
and evaluate problems that may represent risks to personnel or equipment. The intention 
of performing a HAZOP is to review the design to pick up design and engineering 
issues that may otherwise not have been found. The technique is based on breaking the 
overall complex design of the process into a number of simpler sections called 'nodes' 
which are then individually reviewed. It is carried out by a suitably experienced multi-
disciplinary team during a series of meetings. The HAZOP technique is qualitative, and 
methodically “brainstorms" aims to stimulate the imagination of participants to identify 
potential hazards and operability problems. 

Models Application P S I

Sequential Are representative of the Quantitative Risk Assessment (QRA) methodology 
regarding accidents as outcomes of a chain of discrete events or factors 
that take place in a temporal order. Analyzing causes and consequences of 
risk.

 FTA                     
[23,52]

Fault Tree Analysis. Causes of risks. General application. + +/- -

ETA                       
[23]

Event Tree Analysis. Consequence analysis. General application. + +/- -

THERP                
[48]

(Technique for Human Error Rate Prediction) a tool based on event-tree 
approach for evaluating human errors alone or in connection with 
equipment functioning, operational procedures and practices. General 
application.

+ +/- -

BOW-TIE             
[23,54,55,56,

57,58]

Graphic including FTA and ETA models to represent causes and 
consequence events. And what are the needed safety barriers. General 
application.

+ +/- -

FMEA                   
[49,52]

Failure Mode Effect Analysis. Step-by-step approach for identifying potential 
failures. General application.

+ +/- -

FMECA                
[49,53]

Failure modes, Effects and Criticality Analysis. Upgrade of the FMEA. The 
criticality is determined classifying the degree of potential failures. General 
application.

+ +/- -

Check list-
What if                     

[49]

Systematic revision to find malfunctions and compliance with a list of 
requirements. General application.

+ +/- -

RRA                        
[50]

Reliability Assessment. Quantification of the probability of failure in a 
system. General application.

+ +/- -

Block 
Diagrams      

[51]

Graphical procedure describing the function of the system and showing the 
logical connections of components needed to fulfill a specified system 
function. General application.

+ +/- -
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 The HAZID concept is a hazard identification technique for early identification of 
hazards usually applied at the conceptual or detailed design stage, the study is carried 
out also by an experienced multi-discipline team using a structured approach based on a 
checklist of potential hazards [59]. The Energy Barrier model (EBM), [60,61], is based 
on the safety barrier management  as “ the coordinated activities to establish and 
maintain safety barriers so that they maintain their function at all times” and stating that 
an accident occur when hazards succeed to penetrate the safety barriers consisting in 
defects or deficiencies in their functional activity, Figure 6.  

Figure 6.-  Fail in all the safety barriers can allow for an accident (adapted from [61]). 

The Management Oversight and Risk Tree (MORT), is a root cause analysis that 
identifies the set of multiple causes that together might create a potential accident. The 
analysis technique can performed using tree techniques and check list methods, [62]; the 
Systematic Cause Analysis Technique (SCAT) is a causal analysis by using a poster-
sized schematic which enables clear identification of the relevant corrective and 
preventive actions, [63]; the Sequential Time Events Plotting (STEP) a root cause 
analysis that identifies the set of multiple causes that together might create a potential  
occupational accident, [64]; the Man Technology and Organization (MTO) analysis 
method is also based on events and analyzing the safety barriers, the method applies 
checklists to identify root causes in occupational work affected by the organization, 
practice, management, procedures and deficiencies in: technology; communication; 
procedures, competence, and work environment, [65]; the Safety through 
Organizational Learning (SOL) is an event analysis in two steps: (1) the description of 
the actual event situation, and (2) the identification of contributing factors, [66]. 
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The sequential models applying the quantitative risk assessment and adding specific 
tools are applied to manage occupational health and safety risks such as the use of fuzzy 
analytic hierarchy process with a case application to the mining industry [67] and two 
manufacturing plants [68]. A model for detecting and evaluating risks in process 
industries and a methodology for detect and evaluate emerging risks in industrial 
processes [69,70]. The application of a multi-objective evolutionary algorithm taking in 
consideration operators tasks, activities, the associated hazards and their safety with 
case studies for falling from a fixed scaffold [71, 72]. The use of Bayesian networks 
applied in offshore harsh environments including work conditions to prevent slips, trips 
and falls [73]. Risk assessment cases applied in the mining industry [74], in building for 
falls, scaffold, falling objects and contact with moving machine parts and vehicles [75] 
and in an aluminum process industry for operators on press extruders, forklifts, cranes, 
painters and production [76]. The use of block diagrams to define falling risks from a 
mobile ladder [77].  An event graph is applied to analyze chemicals exposure [78], falls 
from height, crane activities, interaction with machines moving parts and situations of 
risk due to falling objects [79,80,81,82], and for occupational accidents related with 
construction, operation and maintenance in onshore wind farms [83]. 

2.2.2. Epidemiological models. 

In this group the propagation of the events are modeled using the analogy of a disease 
spreading consisting in the investigation of the health conditions and determinants for 
have a disease distribution in human populations. Accidents are the result of manifest 
and latent events that take place under epidemic contexts. Under this idea the risk 
scenario is analyzed searching trends and determinants of the accidents. Cases are 
reported for helicopter and road accidents, [84,85]. 

The Table 3 shows a summary for the traditional analyzed methods and their 
compliance with the three characteristics.  

From these two tables it is possible to see that sequential models have general 
application for assess risk in industrial production and occupational environments with 
specific application in occupational risk assessment using the failure modes FMEA and 
FMECA effects and criticality analysis, together with the fault tree, FTA and the BOW-
TIE.  But STEP and the MTO methodologies are the most specific in the occupational 
risk assessment.  

According to the definitions, the sequential and epidemiological models offer not only 
prevention (P),  also a degree of simultaneity (S), with possibility for update the risk 
evolution but with a delay caused by the own methodology being less based in real 
observational data and more in previous causal-effect analysis . 
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Table 3.- Traditional models summary with their compliance to with the P: preventive; S: simultaneity 
and I: immediacy characteristics. General application means: industrial / occupational. 

2.3. Methodologies and models. Modern approach. 

2.3.1. Systematic models. 

Systematic Models are applying a general risk framework based on the Rasmussen’s 
model, [86], that uses control theory concepts and considers that the social climate 
affects government policy and budgeting, regulatory associations, local area 
government planning and budgeting including the company and their organizational 
behavior, the company management, the staff and the work operational systems and 
their equipment and surroundings; for which their limitations and their interactions can 
get significantly preconditions for accidents, [87]. 

The most characteristic tools are the AcciMap, STAMP, CREAM, FRAM and AEB 
models.  

Models Application P S I

Sequential (cont.)

HAZOP/HAZID    
[59]

Technique for early identification of hazards usually applied in the 
design, the study is carried out by an experienced multi-discipline team 
using a checklist of potential hazards. General application.

+ +/- -

EBM                 
[60,61]

Energy Barrier Model defining a safety barrier management and 
considering that an accident occur when hazards succeed to penetrate 
the safety barriers deficiencies. General application.

+ +/- -

MORT                  
[62]

Management Oversight and Risk Tree. Root cause determination. 
General application.

+ +/- -

SCAT                   
[63]

Systematic Cause Analysis. Causal analysis using a poster schematic 
which enables the identification of relevant corrective and preventive 
actions. General application.

+ +/- -

STEP                   
[64]

Sequential Time Events Plotting. Identification of multiple causes in 
occupational accidents.

+ +/- -

MTO                     
[65]

Man Technology and Organization. Root causes in occupational work 
affected by the organization; practice; management; procedures and 
deficiencies in work environment.

+ +/- -

SOL                     
[66]

Safety through Organizational Learning. Event analysis in two steps: 
(1) description of the actual event situation, and (2) identification of 
contributing factors. Case for nuclear industry. General application.

+ +/- -

Epidemiological 
[84,85]

Propagation of events is analogous to a disease spreading considering 
their distribution and determinants. Accidents are caused by latent 
events under epidemic context. Cases for helicopter and road 
accidents.

+ +/- -
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The AcciMap is a cause event representation of the system interactions and focused on 
how to control the hazardous processes originated into of the organizational and socio - 
technical system. The method involves the construction of a multi-layered causal 
diagram in which the various causes of an accident are arranged between them 
according to their causal relations and layered according to Rasmussen’s classification, 
[88]. The Systems Theoretic Accident Model and Processes (STAMP), is based on the 
approach that systems are complex and dynamic subjected to external disturbances and 
can migrate toward the accident due to the physical, social and economic pressures 
together to with the inadequate control failures in safety barriers or due to safety-related 
constraints. The operating process actuation is supported by the human acting as 
controller and  supporting the actions of the system development and system operations 
at top and from the physical process at bottom, (Figure 7). To facilitate the identification 
of control failures, a taxonomy is proposed including: inadequate control of actions; 
inadequate execution of control actions; and inadequate or missing feedback, 
[89,90,91]. 

Figure 7.-  STAMP’s generic complex system and control failure taxonomy. (adapted from 89). 
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The Cognitive Reliability and Error Analysis Method (CREAM) model characterizes 
the human performance to asses the consequences of the human errors on systems, 
[92,93]. As a variation, the Driving Reliability and Error Analysis Method (DREAM) 
model is stablished for driving accident assessment, [94]. The Functional Resonance 
Accident Model, (FRAM), [95], this systemic model states that as a result of the 
functional couplings appears resonance; the procedure needs to determine first what are 
the functional entities or basic processes in a given risk scenario and defining for each 
of them what are the inputs, outputs, resources (assets, procedures, energy, materials, 
manpower), supervision controls, preconditions and the time needed for to perform the 
function. The potential variability is determined as a dependence between functions 
considering what are the conditions (named performance conditions) needed for to 
perform the function (as example: availability of resources, training and experience, 
quality of communication, access to procedures, support of the organization, conditions 
of work, overpressure, collaboration quality) and rating these conditions as stable 
adequate or inadequate and unpredictable. The potential resonance can appear in 
unpredictable situations. The last step is to identify or define barriers for damping the 
potential resonances and monitor the new status for the affected conditions. The 
Accident Evolution and Barrier Function (AEB) describes the interaction between 
technical and human-organizational systems which may lead to an accident, the model 
gives equal weight to both these types of systems and needs interactive accident 
analysis by engineers and human accidents specialists. It can be used in predictive 
safety analyses or in post hoc incident analyses, [96]. 

2.3.2. Cloud based models. 

Cloud models are applying the preliminary hazard analysis based on the FMECA tool 
by performing a cloud analysis of the critical hazards and establishing a hazard 
importance or grade with the scoring from the expert’s knowledge [97]. 

This group is applicable on general industrial or occupational situations but CREAM 
and DREAM are focused on human behavior and actuation. FRAM model has 
applications on aircraft, maritime and industrial manufacturing hazards [95]. And the 
Cloud based has general applicability and a case for a gasification station has been 
described [97].   

The Table 4 shows a summary for this systematic and cloudy based group and their 
compliance with the three characteristics.  
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Table 4.- Modern approach summary of the systematic and cloud based models with their compliance to 
with the P: preventive; S: simultaneity and I: immediacy characteristics. General application means: 
industrial / occupational. 

2.3.3. Fuzzy based models. 

Fuzzy models apply the fuzzy logical to define the human behavior in risk situations. 
Representative models of this group are the Human Error and Assessment Technique 
(HEART), [48], this fuzzy technique assumes that the reliability of any task 
performance may be modified by the influence of Error Promoting Conditions (EPCs). 
The procedure needs to previously identify the human operator tasks in a considered 
risk scenario; for every task a generic value of probability for human failure and what 
are the possible EPCs affecting are assigned by the assistance of a team of experts. The 
same team defines what are the strength affectation of every EPC into the generic task 
failure probability and this is transformed using fuzzy logic in an assessment factor that 

Models Application P S I

Systematic     
[86,87]

General risk framework based on the Rasmussen’s model using control 
theory concepts and considering that social climate is affected by 
government policy and budgeting, regulatory associations, organization, 
staff and the work operation systems for which their limitations and their 
interactions can get preconditions for accidents.

AcciMap               
[88]

Cause event representation of the system interactions and how to control 
the hazardous processes originated into of the organizational and socio - 
technical system. General application.

+ +/- -

STAMP       
[89,90,91]

Systems Theoretic Accident Model. Systems are subjected to external 
disturbances and can lead to accident due to the physical, social and 
economic pressures with inadequate control failures in safety barriers. 
Operation process is supported by human acting as controller and 
supporting the actions of the system. To identify failures a check is 
applied verifying: controls; execution of controls and missing feedback. 
General application.

+ +/- -

CREAM 
[92,93]

Cognitive Reliability and Error Analysis Method. Human performance is 
modeled to asses the consequences of the human errors. Focused in 
human actuation.

+ +/- -

DREAM                
[94]

Driving Reliability and Error Analysis Method. Stablished for driving 
accident assessment. Focused in human actuation.

+ +/- -

FRAM                  
[95]

Functional Resonance Accident Model. As a result of the functional 
couplings appears resonance. The functional or basic processes in a risk 
scenario are identified, defining for each of them what are the inputs 
needed; the outputs produced; the needed resources (equipment, 
procedures, energy, materials and manpower); the controls to supervise, 
the preconditions to be fulfilled to carry the process and the time. The 
resonance can appear in variability situations of dependence between 
processes. More focused in manufacturing and transportation.

+ +/- -

AEB                     
[96]

Accident Evolution and Barrier Function. Interaction between technical 
and human-organizational systems which may lead to an accident, the 
analysis needs work-team by engineers and human accidents specialists.

+ +/- -

 Cloud based      
[97]

Based on the FMECA . Performing a cloud analysis of the critical hazards 
by establishing a grade and the scoring from the expert’s knowledge. 
General application.

+ +/- -
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modifies accordingly the generic probability of failure, [98]. An additional 
representative model of this group is the CREAM-BN a modern upgrade of the 
systemic CREAM model for determine the probability of the human failure accordingly 
to the human cognition and action, by using a generic control mode distribution 
integrated by four human behavior components as: strategic, tactical, opportunistic or 
scramble every one following a discrete distribution function associated to a failure 
probability. These human behavior components are affected by common performance 
conditions (CPCs) defined as: adequacy of the organization, working conditions, 
adequacy of man-machine interface and operational support, availability of procedures 
and plans, number of simultaneous goals, available time, time of day, adequacy of 
training and experience and collaboration quality. The probability of human failure  due 
to their control mode behavior and their associated CPC’s probabilities, is determined 
by scoring the probability distribution of every CPC using the fuzzy logic; a bayesian 
network is applied integrating all the scored CPC’s, obtaining the human control modes 
risk probabilities. The tool can be applied to consolidate the behavior of crews, the 
workforce groups or for individual actuations. As expected, scramble and opportunistic 
human actuations allows for high failure probabilities, [99]. 

2.3.4. Formal models. 

Formal models apply the probabilistic approach for assess the scenarios of risk. Two 
basic tools are the Probabilistic model where the accident causation is assessed using 
probabilistic schemes and Bayesian networks to model the interaction between causes 
and effects. And the Why Because Analysis (WBA) model being also a probabilistic 
cause-effect relation supported by the use of Bayesian networks and stating that each 
component of the system is affected from the overall environment, [100]. 

2.3.5. Safety barrier models. 

Safety Barrier models. The representatives for this group are the Process Hazard 
Prevention Accident Models (PHPAM) and the System Hazard Identification Prediction 
and Prevention (SHIPP). Corresponding to the Process Hazard Prevention Accident 
Models (PHPAM) actually there are applications in the off-shore and oil-gas process 
industries for to analyze past  accidents or preventing them. This model is founded on 
the assumption that accidents in these facilities are initiated by hydrocarbon release, 
which then propagates into accidents, to avoid this risk it is needed to establish the 
safety barriers into five groups of prevention functions: release, ignition, escalation, 
harm and loss; the new risk probabilities are evaluated after the barriers implementation, 
[101]. The System Hazard Identification Prediction and Prevention (SHIPP) model is an 
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upgrade of the previous prevention (PHPAM) model also it is applied also for to 
identify, evaluate, and model the accident process, and establishing the corresponding 
safety barriers but, as a difference of the previous model, adding to the quantitative 
evaluation of risk probability the possibility for to actualize the initial probability values 
in concordance to with the real data collected from the plant with the application of 
Bayesian inference, [102,103]. 

The Table 5 shows a summary for the fuzzy based, formal based and safety barrier 
models and their compliance with the three characteristics.  

Table 5.- Modern approach summary of the fuzzy based, formal based and safety barrier models with 
their compliance to with the P: preventive; S: simultaneity and I: immediacy characteristics. General 
application means: industrial / occupational. 

Cases of CREAM-BN application are developed for nuclear industry, aircraft 
transportation, manufacturing, retail and chemicals, [99]. Application cases for WBA 
model have been found in transportation and aircraft accidents, [100]. Applications of 
the Process Hazard Prevention Accident Model (PHPAM) are mainly in the off-shore 

Models Application P S I

Fuzzy based Application of fuzzy logical for define human behavior in risk situations.

HEART                
[48,98]

Human Error and Assessment Technique. The reliability of any operator 
task performance may be modified by the influence of Error Promoting 
Conditions (EPCs). For every task a generic probability value for human 
failure and the (EPCs) affecting, and what are the strength of every 
(EPC) are defined by the assistance of a team of experts, then it is 
transformed using fuzzy logic in an assessment factor modifying the 
generic probability of failure. Human behavior in general applications.

+ +/- -

 CREAM-BN        
[99]

Upgrade of the systemic CREAM model. Human behavior has five 
components: strategic, tactical, opportunistic and scramble. And it is 
affected by common performance conditions (CPCs). Fuzzy logic is 
applied to every (CPC) and combined with human behavior applying a 
Bayesian network. Scramble and opportunistic human actuations allows 
for high failure probabilities. Human behavior and occupational accidents.

+ +/- -

Formal based Accident causation is approached using probabilistic schemes and 
Bayesian networks to model the interaction between causes and effects.

WBA                   
[100]

Why Because Analysis. Bayesian networks are applied considering that 
each component in a system is affected from the overall system 
environment. General application.

+ +/- -

Safety Barrier

PHPAM              
[101]

Process Hazard Prevention Accident Models. Accidents are initiated by 
hydrocarbon release and propagation, and it is needed to establish safety 
barriers into five groups of prevention: release, ignition, escalation, harm 
and loss. Risk probabilities are evaluated before and after barriers 
implementation. Chemical and petroleum industries.

+ +/- -

SHIPP         
[102,103]

System Hazard Identification Prediction and Prevention.Update of the 
initial probability of risk according to the actual data collected and 
application of Bayesian inference. General application.

+ + -
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and oil-gas process industries for to analyze past  accidents or preventing them, [101]; 
but the concept has general applicability. 

Also from these previous two tables it is possible to see that modern models have 
general application for assess risk in general for industrial production and occupational 
environments. With specific applications of the CREAM and DREAM and their fuzzy 
based HEART and CREAM-BN models in human hazard situations. 

Also according to the three characteristic definitions, the previous analyzed modern 
models offer not only prevention (P),  also a degree of simultaneity (S), with the same 
possibility for update the risk evolution but with the observational delay because of the 
importance of environmental causal-effects, and their possible application on post 
accident analysis situations, and the less based on the real and continuous updating. 

2.4. Methodologies and models. Dynamic models. 

This group  covers a dynamic risk analysis concept using sequential models like Fault 
Tree Analysis (FTA ), Event Tree Analysis (ETA) and the BOW-TIE graph approaches 
and performing a Bayesian inference analysis to update the failure probabilities from 
the information collected of the named accident precursors or precursor data. This group 
has five models; the Dynamic Risk Assessment (DRA) being the representative; the 
Dynamic Procedure for Atypical Scenarios Identification (DyPASI), the Dynamic Risk 
Analysis, the Risk Barometer methodology and the Dynamic Operational Risk 
Assessment, [104,105,106]. 

2.4.1. Dynamic Risk Assessment (DRA). 

The Dynamic Risk Assessment (DRA) is an extension of the Quantitative Risk 
Assessment (QRA) approach as presented on the ISO/IEC 31010:2019 guideline. The 
process needs to establish a prior function for the statistical parameter that models the 
risk probability. The precursors, events or causes that can lead to an accident are 
observed and formalized through the application of Bayesian inference to obtain the 
posterior function for the parameter that models the risk probability, [107,108,109, 
110,111,112]. 

On Figure 8 is presented the schematic equivalences between Risk Assessment and 
(DRA) processes. 
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Figure 8.-  Left  (a) Risk Assessment compared to right (b) Dynamic Risk Assessment (DRA). (adapted 
from [18,19]). 

The main highlights are;  

• Risk identification being similar as presented in the ISO/IEC 31010:2019 guideline. 
The identification of potential risks are performed by the application of HAZOP/
HAZID and FMEA, FMECA techniques, [113]. 

• Scenario consideration is similar to answer to the what if? question. Scenarios 
reflecting the ‘best case’, ‘worst case’ and ‘expected case’ may be used for 
quantifying the probability of potential consequences and obtain a sensitivity analysis. 

• After identification of causes of risk, their paths and sequences through the safety 
barriers are defined using the (ETA) or (FTA) methods under a bow-tie graph and 
ending at the final states. Reliability data bases can be applied for human, equipment 
or barriers failure, or using experts judgment, [114,115]. 

• Observation of precursor data, events and situations from the workplace or process 
under analysis. 
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• Posterior estimation is performed using Bayesian inference through the expression; 

    f(p/Data)∝g(Data/p)•f(p)        (1) 

Where p is the statistical parameter,  f(p) is the prior statistical distribution for the 
parameter p; g(Data/p) is corresponding to the observed precursor data and g(p/Data)  
is the posterior statistical distribution. 

This strategy has been applied to a number of case studies in petrochemical industry 
including the case for a storage tank containing hazardous chemicals, a refinery, and the 
oil spill accidents; or additionally performing the inference using Bayesian Networks 
applied in offshore oil & gas accidents, [116,117,118,119,120,121]. 

2.4.2. Dynamic Procedure for Atypical Scenarios Identification 

The Dynamic Procedure for Atypical Scenarios Identification (DyPASI) have been 
developed for to perform an identification and assessment of the potential hazards based 
on information from atypical accident scenarios or situations, which are not captured by 
conventional HAZID/HAZOP techniques, and the needed safety functions are 
incorporated to the safety barriers, [122,123].The main steps are: 

1.- Identification of relevant accident scenarios and safety barriers. A bow-tie analysis is 
performed. 

2.- Search for relevant information concerning undetected potential hazards for 
scenarios and safety barriers not considered in the previous bow-tie analysis. 

3.- An assessment of risk is performed based on a traditional quantitative risk 
assessment (QRA) or based on a dynamic risk assessment (DRA) approaches,  
[124,125]. 

4.- The risk relevant scenarios and safety barriers functions, are analyzed using a cause-
consequence scheme incorporating atypical situations. 

5.- From the cause-consequence analysis arises the final definition and design of safety 
measures and safety barriers. 

2.4.3. Dynamic Risk Analysis 

The Dynamic Risk Analysis (DRAn) is a part of the previous seen Dynamic Risk 
Assessment (DRA) a quantitative modern approach in which the frequency of accidents 
are updated by the application of the Bayesian inference, see Figure 9. 
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2.4.4. Risk Barometer methodology 

The Risk Barometer methodology is an iterative process with the aim to continuously 
monitor risk picture changes being based on an existing quantitative risk assessment 
(QRA) or a dynamic risk assessment (DRA) and on the Barrier and Operational Risk 
Analysis (BORA), [61,126,127,128,129,130]. The safety barriers are analyzed 
associating their performance to Risk Influencing Factors, (RIFs) based on human, 
operational, organizational and technical conditions. The main steps are: 

• Development of the scenario risk model and corresponding safety barriers.  

• Modeling the performance of safety barriers taking in consideration the attributes of: 
functionality, reliability/availability, response time, robustness and characteristics of 
the causes of possible failures. 

• Quantitative Risk Assessment (QRA) or Dynamic Risk Assessment (DRA) to assign 
the probabilities/frequencies of risk. Or in default assignation of the average industrial 
failure values, based on data bases as Offshore and Onshore Reliability Data 
(OREDA), [131], or human error probability data [132]. 

• Development of risk influence diagrams. The aim is to incorporate the effect of the 
conditions for human, operational, organizational, and technical RIFs on the fail 
occurrences and safety barrier performance. 

• Scoring of risk influencing factors (RIFs). The aim is to obtain for every safety 
barrier, a gradation of every RIF from best performed, medium performed to worst 
performed in a defined scale. 

• Weighting of risk influencing factors (RIFs). The weights of the RIFs correspond to 
the relative difference in the frequency of occurrence of a barrier fail if the status 
(score) of the RIF is changed from the best scoring value, previously defined, to the 
worst. A low change in a RIF producing a high variation in the probability of risk  and 
possible safety barrier fail, has higher weight or sensitivity. Usually the weighting of 
the RIFs is done by expert judgment. The basic method is: 

• Determination, for every safety barrier, of the most important RIF based on 
expert judgment. 

• Give this RIF a relative weight equal to 10.  

• Compare the importance of the other RIFs, affecting the safety barrier, and 
weight relative to the previous. 
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• Evaluate if the results are reasonable.  

• The weights are normalized as the sum of the weights for the RIFs influencing a 
basic event should be equal to 1.  

Another possibility is to perform, for the safety barrier j,  a sensitivity analysis 
by determining the rate of change of the safety barrier reliability as a result of 
changes on the reliability of a single component, [51]. This component can be a 
risk influencing factor (RIF). Mathematically this represents the partial 
derivative for the reliability of the safety barrier 𝑗 measured as change of risk 𝑅 

in a time interval t with respect to the reliability component 𝑞j of the safety 

barrier.    

       𝐼𝐵(𝑗/𝑡)=∂𝑅(𝑡)/∂𝑞j(𝑡)                                                          (2) 

This derivative can be linearized using a Taylor series; the change in risk 𝑅 at 

time 𝑡 as: 

   𝑅(𝑡)=𝑅₀ + ∑  𝐼𝐵(𝑗/𝑡)∆𝑞𝑗(𝑡) = 𝑅₀ + ∆𝑅(𝑡)                                (3) 

Where 𝑅₀ equals the risk value at time 𝑡=0, with parameter change ∆𝑞j = 𝑞j,t - 𝑞j,0 

the difference between values of the parameter 𝑞 at time 𝑡 and 𝟢 respectively.  

• Then from this sensitivity analysis, a series of risk influencing factors (RIFs) 
are determined for every one of the most sensitive safety barriers. 

• If there are more than one risk influencing factor (RIF) for the considered safety 
barrier 𝑗 an aggregation of them based on a scored weighted importance for 

each risk influencing factor is performed to obtain an overall affecting value to 
the safety barrier probability of failure depending on the influencing factors 
changes. 

• Finally the risk visualization of the probability of failure of the sensitive safety 
barriers according to the evolution of the considered risk influencing factors is 
performed by: (a) plotting the risk over time highlighting the risk trend or/and 
(b) performing an equivalent Risk Barometer diagram, consisting in a circular 
shape with an analog visualization to show changes in the safety barriers risk 
level. 
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On Figure 9 can be seen a schematic comparison between the DyPASI and Dynamic 
Risk Assessment (DRA) with the Risk Barometer methodologies. 

Figure 9.-  Left  (a) DyPASI /DRA methodologies  compared to right (b) Risk Barometer methodology 
(adapted from [125]). 

2.4.5. Dynamic Operational Risk Assessment 

The Dynamic Operational Risk Assessment is an extension of the Operational Risk 
Assessment approach, this last with the aim to follow the lifecycle of a project 
considering planning, execution and operation and including four types of decisions 
affecting risk as: strategic decisions with a long term horizon and evaluating alternatives 
in risks and cost/benefits, examples are the approval of major modifications, the change 
in maintenance strategy or the unexpected additional investment in a on going project; 
operational decisions are implemented in a short time, examples are the approval of 
works or initiate projects on a daily basis; instantaneous decisions are spontaneously 
made by sharp-end operators in a normal work, examples are the deviation in 
procedures, ignore or react to the deviations or avoid communication; and emergency 
decisions that are taken to manage and adapt to the hazardous situations and usually 
under pressure or stress situations, [43,44]. 
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 Dynamic Operational Risk Assessment has the greatest exponent in the risk analysis of 
a process following the traditional approach (QRA) and the dynamic approach using 
Markov and MonteCarlo chain simulations to analyze the incidence of events and 
causes in each component of a system-process and its behavior. The method simulates 
and analyzes visits in each of the four states, for every component of a system, in which 
they can be found: normal operation; abnormal not detected; abnormal detected and 
under repair, [133]. 

The Table 6 shows a summary for the dynamic models, and their compliance with the 
three characteristics.  

Table 6.- Summary of the dynamic models with their compliance to with the P: preventive; S: 
simultaneity and I: immediacy characteristics. 

These models have been originated mainly from the need in the offshore, chemical and 
petrochemical industries. According to the three characteristic definitions, models offer 
prevention (P), and simultaneity (S), due to the own characteristic of update the 
probability of risk according to the observations, only the dynamic operational risk 
assessment shows the less compliance with this characteristic because there is no an 

Models Application P S I

Dynamic Uses sequential models and the Bow-tie graph approach, performing a 
Bayesian inference analysis to update the failure probabilities from the 
information collected of the accident precursors.

Dynamic Risk 
Assessment 

(DRA)
[107,108,109]

A prior function for the statistical parameter that models the risk 
probability is defined. The precursors, events or causes that can lead to 
an accident are observed and formalized through the application of 
Bayesian inference to obtain the posterior function of the parameter.

+ + +/-

DyPASI       
[122,123,124,12

5]

Dynamic Procedure for Atypical Scenarios Identification. Identification 
and assessment of the potential hazards based on information from 
atypical accident scenarios or situations, which are not captured by 
conventional HAZOP/HAZID techniques.

+ + +/-

Dynamic Risk 
Analysis              
[124,125]

Analysis process as a step of the Dynamic Risk Assessment 
methodology being a quantitative modern approach in which the 
frequency of accidents are updated by the application of the Bayesian 
theory.

+ + +/-

Risk Barometer   
[61,126,127,128,

129, 130]

Iterative process with the aim to continuously monitor risk picture 
changes being based on an existing Quantitative Risk Assessment 
(QRA) and on the Barrier and Operational Risk Analysis (BORA). The 
safety barriers are analyzed through influencing factors, named Risk 
Influencing Factors, (RIFs), that are correlated to with the (QRA) 
estimated probabilities, and their visualization in an equivalent  
barometer graph.

+ + +/-

Dynamic 
Operational Risk 

Assessment 
[133]

Approach using Markov and MonteCarlo chain simulations applied to 
analyze the incidence of events and causes in each component of the 
process and its behavior. The method simulates and analyzes visits in 
each of the four states in which they can be found: normal operation; 
abnormal not detected; abnormal detected and under repair.

+ + -
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updating according to the observations that are matched with the simulated behavior of 
the system. These models show a certain degree of immediacy (I), being the Risk 
Barometer the one that comes closest to the immediacy characteristic definition, but 
there is a delay due to the scoring and weighting procedures applied to determine the 
most risk sensitive safety barriers. 



Chapter 3 

Statistical Risk Control (SRC) 
methodology. 
The methodology is presented first developing the general method and considering their  
application for assess and control the risk in industrial environments covering process 
and manufacturing and project management considering risk in deviations for cost, time 
and investment. And second for to assess and control the risk in occupational accidents. 

3.1. General application. 

The methodology is compatible with the ISO guidelines using the Bayesian inference 
and  hidden Monte Carlo - Markov chains  [134], Figure 10. 

Figure 10.- (a) Statistical Risk Control (SRC) methodology ; (b) Position into the risk assessment scheme 
(adapted from [19]).  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There is no literature in the use of the control charts for risk management but 
nevertheless they are applied in the earned value method in project management [135], 
in the environmental assessment [136] or for cost control and project duration [137]. 

Before describing the methodology, it is needed to expose the associated mathematical 
tools. In Annex A the Bayesian inference is presented with a description of the applied 
distributions. In Annex B the Metropolis-Hastings sampler is presented [138,139]. In 
Annex C the hidden time Markov Chains is also presented [140,141]. In Annex D the 
concept of control chart [142,143]. 

When the risk has been identified in a considered scenario, the following seven steps are 
applied: 

1.- A bow-tie analysis is performed to provide a visual representation of the initiating 
causes (ic) classified as basic, human and potential that affect preventive and mitigative 
safety barriers and the consequences or final states when an accident occurs. Figure 11. 

2.- The identification and definition of the initiating causes (ic's) which may be: basic 
events (ba) such as failures in control systems, equipment or processes; the human risk 
factors (ha) which are human errors and the potential causes (pot), which will be 
defined in the following subsection. The process is iterative between step 1 and step 2 
until the causes and consequences have been clearly established. 

In this scheme, the preventive or proactive safety barriers (ISn) have the function to 
avoid the accident event (AE) and have defined sub-functions (ISISnm) integrated by 
functional safety components of the main preventive safety barrier or procedures, 
automatisms, alarm indications, actuators of a control system or the organizational 
culture itself. These functions can be affected by the defined initiating causes (ic) or by 
own failures. The (SFISg) is a general  sub-function safety barrier integrated by 
procedures, protocols, guidelines, automatisms, control systems and operations 
management systems that guides the operation at each step of the process and does not 
let the next step be formalized if a number of conditions are not met. The mitigative or 
reactive safety barriers (SFn) have the function to avoid or mitigate the consequence of 
an accident event; these barriers have a chained action, if the first safety barrier fails the 
second is activated and so on, and also have defined sub-functions (SFnm) which can 
also be formed by functional safety components of the main mitigative or reactive 
safety barriers, or/and integrated also by procedures, automatisms, alarm indications, 
actuators from a control system or the organizational culture itself. The safety barriers 
and their sub-functions are also affected by the initiating causes (ic) and by their own 



!  

!                                                                             Statistical Risk Control methodology 37

failure. The final states represented are bounded at one end by the normal operation, if 
the first mitigative safety barrier acts correctly and the other by a total fail if the failure 

 

Figure 11.- General bow-tie of the SRC methodology. Safety barriers: ISn: preventive barrier (n); SFISnm: 
preventive barrier (n) sub-function (m); SFISg general sub-function safety barrier; SFn: mitigative barrier 
(n); SFnm: mitigative barrier (n) sub-function (m); ic: initiating causes (ba, ha, pot);  p,s,f : probability of 
success or fail in the mitigative safety barrier.  

of all mitigative safety barriers occurs. The graph must be taken as a framework and can 
be adapted according to the processes, and the scenarios that are being analyzed. 

3.- From the previous steps 1 and 2 the statistical parameter p that expresses the risk 
probability is also identified and the prior statistical distribution that reflects it can be 
established. Also can be defined the prior transition and emission matrices governing 
changes in the mitigative safety barriers. 

4.- The observation of the initiating causes (ic) and end states are effectuated in a time 
interval. 

5.- From the estimated prior f(p) and the observed initiating causes (ic), such as g(data/
p) and applying  equation (1), the posterior function for the statistical parameter (p) can 
be obtained and if not there is analytical expression, the Metropolis - Hastings sampling 
method is applied to obtain the posterior distribution and its associated parameters, 
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[138,139]. Also corresponding to the hidden Markov chain, the prior transition and 
emission matrices are defined for the mitigative safety barriers and the posterior 
transition and emission matrices are obtained using the Baum-Welch algorithm, 
[140,141].  

6.- Control chart presentation [142,143] to graph the evolution of the statistical 
parameter p, in a time interval. Chart determination has two modes: 

a.- Direct: Uses the observed data up to the analyzed interval time, but with two 
possibilities: the mean established in the prior function that defines the statistical 
parameter (p) is constant in every interval, and the standard deviation is determined 
using the observed data collected up to the analyzed interval, (Direct-Mean Prior) or by 
modifying the mean and the standard deviation also using the observed data collected 
up to the analyzed interval (Direct-Mean Posterior). 

b.- Recurrent: Uses the observed data in every interval time, also with two possibilities: 
maintaining the mean posterior constant, and the standard deviation obtained in every 
interval is the new prior in the following interval (Recurrent-Mean Prior), or the mean 
and the standard deviation obtained in every interval are the prior values in the 
following interval (Recurrent-Mean Posterior). 

Considering also the observed initiating causes (ic), and visualizing the bow-tie, there 
are two possibilities of analysis to include in the control chart: 

a.- For the complete bow-tie scheme. Figure 12. 

a.1.- Collecting the total of the initiating causes (ic) affecting all the preventive and 
mitigative safety barriers with their barrier sub-functions. 

a.2.- Collecting only the first level for initiating causes (ic) and failures in preventive 
safety barriers functions and the first level for functions and sub-functions of the 
mitigative safety barriers with their corresponding initiating causes (ic). 

b.- Observing the fault tree (FT) event tree (ET) and analyzing the response active (yes) 
or (no) for the preventive and mitigative safety barriers. 

7.- Analysis applying a hidden Monte Carlo Markov Chain for the mitigative safety 
barriers, also with two possibilities. Figure 13. 

a.- Analyzing the behavior of the mitigative safety barriers based on the end states. In 
this case a transition matrix is defined for the mitigative barriers and an emission matrix 
for the observed end states in function of the barriers transition. 
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b.- Analyzing the behavior of the end sates based on the action of the mitigative 
barriers. In this case a transition matrix is defined for the end sates and a emission 
matrix for the observed mitigative safety barriers in function of the end states. 

Figure 12.- Analysis modes. (a.1) collecting total of (ic´s) of preventive and mitigative barriers and their 
sub-functions (highlighted green and yellow); (a.2) collecting at the first level of (ic´s) and barriers sub-
functions (highlighted green and blue).     

Figure 13.- Analysis modes of the hidden Markov chain. (a) defining transition probabilities for the 
mitigative barriers (highlighted green) and emission probabilities for the observed end sates in function of 
the mitigative barriers (highlighted brown); (b) defining transition probabilities for the end states 
(highlighted green) and emission probabilities for the observed mitigative barriers states (highlighted 
brown) .     
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The Baum Welch algorithm is applied, from the observations, and the posterior 
transition and emission matrices can be obtained using a direct or recurrent method.  

3.2. Potential causes (pot). 

Some authors consider [144] that when unexpected deviations arise due to causes that 
are difficult to predict because of their randomness, they classify it as a special risk 
[145,146]. From the point of view of the methodology (SRC), these causes that can lead 
to unexpected risk situations are called potential causes, and are summarized in Table 7. 

Table 7.- Potential causes (pot) and their attributes defined in the SRC methodology. 

3.3. General risk assessment application in industrial processes. 

The application of the Statistical Risk Control (SRC) methodology in scenarios 
belonging to manufacturing or chemical processes, is based on the previous general 
scheme that must be taken as a framework and must be adapted according to the 
processes and studied scenarios. 

3.4. General risk assessment application in occupational accidents. 

In accordance with the SRC methodology, a bow-tie is defined in each particular 
scenario. In the case of occupational accidents before being able to work with different 

Potential Cause (pot) Attributes

Deviation from a procedure (DEF) Changes derived from operator decisions. Formal procedures that 
are stablished but not well applied.

Failed test (FTS) Test for integrity control, performance, safety operation, production.

Technical design failures (TFT) Incorrect design, big repair to adapt a mechanism or process.

Immediate errors after maintenance 
-safety - control

(IEC) After reparation, audit or control a new intervention is needed.

Concatenation or domino effect (RCD) In operations, maintenance. Or in projects.

Unplanned operations or 
application of a new technology 

(UNT) In operations, maintenance. Or in projects.

Lack in communication and 
information

(LCI) In operations, maintenance. Or in projects. Affecting procedures, 
messages, safety indications, rules of actuation, policies, Or 
defective in planning and scheduling. 

Human and social changes (HSC) Government changes, economical variations, migrations or 
immigration of people, social unrest and violence.

Investment modifications (planned 
or not)

(IMD) Affecting safety, with loss of social benefits, increasing work overtime 
and pressure. Poor cost control.

Extreme climatic situations (XCS) Despite historical weather and existent climate conditions. Planned 
work in rough weather and climate conditions.

Malicious acts derived from war or 
terrorism

(MAT) Social upheavals, threats.
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risk scenarios, it is necessary to analyze what human behavior is at work and what are 
the factors that affect it. Three views and organizations that cover the most critical have 
been considered. The first group compiled is general, [25,147,148]. The second group 
includes the factors considered critical of the 6th European Survey of Working 
Conditions [149], and the third group includes the emerging psychosocial risks related 
to occupational safety and health [150]. The aggregation of the three groups is presented 
in Table 8. 

Table 8.- Factors and attributes affecting human behavior at work. 

These critical factors must be taken into account as possible causes of initiation (ic) of 
an occupational accident and must be present in all scenarios. However, it is considered 
that there are four situations that occur as a consequence and symptom of these critical 
factors. These are: failure in the self-control of work (JSC); failure to supervise work 
(JSU); failure in safety self-control (SSC) and failure in safety supervision (SSU). In 
addition, these four situations that are easily observable arise in automated process and 
manufacturing environments, where workers additionally perform control and 
supervision tasks. Also these four situations, by their control and supervision function, 
are associated with safety barriers. The general bow-tie for occupational accidents, is 

From                    
(NISHW, 2018),   
(Baybutt 2013),   

(Kariuki and Löwe, 
2007) 

[25,147,148]

From           
(Eurofound, 2017) 

[149]

From                       
(EU-OSHA, 2009) 

[150]

Attributes

Organization (ORG) Social environment 
(SEN)

Emotional 
demands at work 

(EDW)

Safety policy, culture, learning policy, management 
supervision and quality, social behavior and 
support, stress

Job design (JBD) Working time 
quality (WTQ)                     
Work intensity 

(WKI)

Contract - job 
security (CJS)                        
Poor work - life 
balance (PWL) 

Work 
intensification 

(WIT)

Irregular scheduling, shifts and overtime. Low 
flexibility, atypical arrangements, quantitative and 
emotional demands, outsourcing, part-time, 
temporary situations, burn-out effects.

Operator 
environment (OPE)

Physical 
environment (PHE)

Ergonomics (noise, vibration, temperature, air), 
biological and chemical VOC’s. 

Operator 
characteristics 

(OPC)

Skills and 
discretion (SKD) 
Prospects (PRO)

Ageing (AGE) Cognitive, concentration, Expertise-aptitudes, 
decision level, responsibility, steadiness, 
participation, skills, training support, 

Human system 
interface (HSI)

Control design interface, displays, panels, 
actuators. Alarms.

Information (INF) Training procedures, labeling, communication, 
labeling.

Workplace design 
(WKD)

Layout and configuration, accesibility.

Earnings (EAG) Expectations
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equivalent to the general one presented above, with the differences in preventive 
barriers (ISn) integrated by the four safety barriers (ISJSC, ISJSU; ISSSC; ISSSU), Figure 14. 

Figure 14.- General bow-tie for occupational accidents. Safety barriers: ISn: preventive barrier (n) based 
on job self control (JSC); job supervision (JSU); safety self control (SSC) and safety supervision (SSU); 
SFISnm: preventive barrier (n) sub-function (m); SFISg general sub-function working parallel to the human 
actions; SFn: mitigative barrier (n); SFnm: mitigative barrier (n) sub-function (m); ic: initiating causes (ba, 
ha, pot);  p,s,f : probability of success or fail of the mitigative safety barrier.  

In this scheme, the (SFISnm) are sub-functions of the four safety barriers, which can be 
formed by a procedure, an automatism, an alarm indication, an actuator of a control 
system or the organizational culture itself. The general safety barrier (SFISg) works in 
parallel with the activity of the operators and may consist of automatic control systems, 
protections, alarms, actuators or an automated operations management that guides the 
operator at each step of the process and does not let the next step be formalized if a 
number of conditions are not met. Sub-function barrier (SFnm) covers the various 
functional components that integrate the mitigative safety barriers. The final states 
represented are bounded at one end by the absence of personal injuries, if the first 
mitigative safety barrier acts correctly and the other by a fatality if the failure of all 
mitigative safety barriers occurs. Also the graph must be taken as a framework and can 
be adapted according to the processes, the occupational works and the scenarios that are 
being analyzed. 
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3.5. General application in deviations of costs and time. 

The elaboration of budgets for cost and time, can follow a top-down or a bottom-up 
scheme; both systems have advantages and disadvantages, from the point of view of 
risk management, the top-down scheme allows to examine the environmental 
characteristics and the variables that can affect the evolution of the project from a global 
perspective; the bottom-up scheme allows incorporating the detail, knowledge and 
experience of the people who work on a day-to-day basis; on the other hand, 
organizations oriented to the generation of value, usually adopt both criteria. In all 
cases, we must bear in mind that budgeting is an activity that has a high consumption of 
effort and resources, so the development of the additional information to be achieved 
and its control must be balanced, with the necessary effort to define it and manage it 
[151]. 

When analyzing the deviation in cost it is important that the accounting numbers in the 
project cost be available and integrated into the own company accounting system to 
gain homogeneity. The cost allocation is based on group of expense accounts of the 
Spanish national accounting plan based on the International Financial Reporting 
Standards (IFRS) [152], adopted by the European Union in 2002 , in which the different 
groups of expenses are collected for each stage according to the Spanish RD 1514/2007, 
[153].  

3.5.1. A simple organizational model. 

To be able to manage the risks in the deviations of cost and time of the projects, it is 
necessary to establish previously a basic organizational model, in which the projects and 
industrial processes should be developed; a first idea is suggested by Gómez-Senent et 
al. [154] when dealing with the IPMA competency model [155], and the strategy [156]. 

The proposed scheme is presented in the Figure 15. The functions depicted are the 
support of the main activity, ( ! ), being physical and information the entries from 

previous activities ( ! ) and the result is also a physical and information out, ( ! ). 

The functions are defined in Table 9. The information result is checked continuously 
and must be corrected if it shows deviations with respect to the programmed values. 

 

activity j

inj−1 out j
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Figure 15.- A systemic basic scheme of organization in a project or industrial management units. 

Being: 

Main Process: main activity to be performed 

Physical In/Out: Energy, materials, equipment, spares, people. 

Information In/Out: Rules, policies, technical specifications, process parameters, 
material and energy balances, production, incidences, protocols, parameters, constraints, 
goals.  

Thus, into the concept of risk management are involved not only the main activities also 
the functional support activities and the feedback error measured as the discrepancy 
between the observed or measured values and the planned or specified values, has to be 
constantly updated. 

Planning (P)
Quality-Reliability (QR)
Human Ressources (HR)
Engineering-Maintenance (EM)
Administration-Cost Control (AC)
Logistics (L)
Communication-Documentation (CD)
Marketing (MK)
SHE
Research-Development-Innovation (RDI)

MAIN PROCESS-OPERATION 
ACTIVITYj

information outj
feedback

physical inj-1 physical outj

error

information inj-1
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Table 9.- Functions and attributes of the systemic basic scheme of organization. 

3.5.2. Deviations in cost and time. Previous concepts. 

The cost distribution are made to the different work centers and to the activities of the 
projects. The method by which the work centers collect the costs is not relevant for this 
thesis work. 

The planed income statement based on costs scheme is as presented on Figure 16. When 
elaborating the budget of costs, the following equality is true: 

  Planned Income Statement for Costs + Planned Idle capacity = 0      (4) 

The previous equation is valid since all the costs with the exception of the idle capacity, 
have to be applied to the product and service generating its cost of production. It is a 
also a consequence of a balance between the variable and fixed expenses and those that 
are attributed to the product or service as a result of the activities of the project or 
industrial process. If the idle capacity were zero, meaning that all work centers are at 
nominal occupation, all the expenses generated in the project or process, would be  

Function Attributes

Planning (PN) Programming and control of the activities and resources in the 
different stages of the project or industrial process.

Quality - Reliability (QR) Issuer of the quality plan, control for variability and risk. Supervisor 
and guarantor that the activities, both the main ones and the support 
activities, are under control.

Human Resources (HR) Guarantor of the skills and conditions of people teams.

Engineering - Maintenance (EM) Product design. Design and installation of assets and equipment. 
Guarantor of the adequacy and availability of them to the needs of 
the project or industrial process.

Administration - Cost control (AC) General and cost accounting. Administration procedures and 
business information system.

Logistics (LO) Storage management and control of inventories, purchasing, 
planning and management of the supply and distribution chain.

Communication - Documentation (CD) Management of information related to manuals, regulations, plans, 
designs, specifications, records and work and quality documents.

Marketing (MK) Covers the establishment of all the activities needed for present to 
the customer target the product in price, place and promotion.

Safety - Health - Environment (SHE) Management of risk protection, safety regulations and preparation of 
protocols, procedures and worksheets revision. Safety, health and 
environmental prevention, risk analysis and impact evaluation.

Research - Development - 
Innovation

(RDI) Search, characterization, creation and improvement of products, 
methods, protocols, processes and systematics.

Operations (OP) Activity and process realization according to the engineering design, 
quality specifications and with reliability and safety. 
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Figure 16.- Planned income statement based on costs. Being: work in process w.i.p. Provisions and 
contingencies: applied for environmental actuations, long-term personnel expenses, tributes, assets 
restructuring, stock deterioration. 

totally applied to the product or service obtaining their cost price and therefore the 
planned income statement based on costs would be 0. If, on the other hand, there is an 
inactive capacity other than zero, a part of the fixed costs cannot be applied to the 
product or service, which would increase its value. The product or service has a part of 
the costs applied, not all of them, the rest being the underutilization or idle capacity 
costs. 

The idle capacity is the fixed cost, which remain unabsorbed due to underutilization of 
capacity, and it should be measured as it is equivalent to a risk that must be known. This 
concept will be clear with a simple example, be a project organization that have to 
generate 10 units per year of an item, suppose that this project unit has fixed costs for 
200 monetary units and 100 monetary units of variable costs and suppose that its 
nominal capacity is precisely 10 units per year. When working at nominal capacity the 
resulting cost of the unit produced is: 

PLANNED INCOME STATEMENT 
based on COSTS on Date xx/xx/xxxx 

Planned products and services from project activity 
- Raw materials 
- Components and supplies 
+ Stock variation (Exf-Exi) 
= PRODUCT OR SERVICE GROSS MARGIN for COSTS 
-VARIABLE COSTS 

External works 
Repair and conservation 
External and professional services 
Transportation 
Advertising 
Supplies 
Use and aging losses 

= PRODUCT OR SERVICE NET MARGIN for COSTS 
-FIXED COSTS 

R&D expenses 
Leases 
Insurances 
Financial services 
Tributes 
Personnel expenses 
Financial expenses 
Depreciations 

= INCOME STATEMENT for COSTS 
+ Planned Idle capacity

COST 

Standard costs and w.i.p. at 
standard cost 
Standard costs 

 Planned Purchasing mix 

Planned costs 
Provisions and contingencies 

Planed costs 
Provisions and contingencies 
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 !    (5) 

In Table 10 are presented the comparison between a planned income statement by costs 
at nominal capacity, and at 80% and 120% capacity. 

Table 10.- Differences in planned idle costs due to under or over utilization. 

If the planned realization would have been done considering 20% idle capacity, that is 
working at 80% capacity, then it is possible to recover 2 units affecting practically only 
the variable expenses and keeping practically fixed planned costs. But working at 120% 
capacity it is needed to pay overloads. If for example 10 monetary units have been 
contributed impacting on fixed costs, the actual income cost of the activity at 120%  
would be 30 and from expression (4) is;  actual Income Statement for Costs + Actual 
Idle capacity = 30 -40 = -10 , that is the project or the activity has lost 10 monetary units 
in form of cost overruns, Table 11. 

Table 11.- Differences in actual costs considering the idle capacity and cost overruns. 

Citem =
fixed and variable costs∑

production∑ = 200 +100
10

= 30 monetaryunits
1 producedunit

Income statement based on costs Planned at 
100%

Planned at 80% Planned at 
120%

Units

Product from activity 10 units x 30 = 
300

8 units x 30 = 
240

12 units x 30 = 
360

monetary units 
absorbed by 
production at 
standard cost

- Variable expenses -100 -80 -120 monetary units

- Fixed expenses -200 -200 -200 monetary units

Income cost of the activity 0 -40 40 monetary units

Idle capacity 0 40 -40 monetary units

Income statement based on costs Planned at 80% Actual at 100% Actual at 120% Units

Product from activity 8 units x 30 = 
240

10 units x 30 = 
300

12 units x 30 = 
360

monetary units 
absorbed by 
production at 
standard cost

- Variable expenses -80 -100 -120 monetary units

- Fixed expenses -200 -200 -210 monetary units

Income cost of the activity -40 0 30 monetary units

Idle capacity 40 0 -40 monetary units
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3.5.3. General SRC methodology applied for risk in cost and time deviation. 

The application follows the general scheme as previously presented and requiring the 
realization of a bow-tie. Figure 17. 

Figure 17.- General bow-tie for risk in cost and time deviation. Safety barriers: ISn: preventive barrier (n); 
SFISnm: preventive or proactive barrier (n) sub-function (m); SFISg general parallel sub-function; SFn: 
mitigative barrier (n); SFnm: mitigative barrier (n) sub-function (m); ic: initiating causes (ba, ha, pot);  
p,s,f : probability of success or fail of the mitigative safety barrier.  

Where (ic) are the defined initiating causes (ba, ha, pot). ISn are the preventive safety 
barriers defined in Table 12. The (SFISnm) are sub-functions of the preventive safety 
barriers, integrated by procedures, an automatic or manual control system or the 
organizational culture itself. The general safety barrier (SFISg) works in parallel with the 
activity and may consist of automatic alarms or messages from information control 
systems or from organizational actuations. The general mitigative safety barriers (SFn) 
are defined in Table 13. The sub-function barrier (SFnm) covers the various functional 
components that integrate the mitigative safety barriers. The final states represented are 
bounded at one by targeted normal deviations, if the first mitigative safety barrier acts 
correctly and successive targeted partial deviations if the safety barriers fail  
consecutively. As previously stated the graph must be taken as a framework and can be 
adapted according to the scenarios that are being analyzed. 

To perform the risk analysis the seven steps from the general method can be applied,   
making the observations considering the initiating causes (ic), and safety barriers sub-
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functions fails, applying a hidden Monte Carlo Markov Chain for the mitigative safety 
barriers, but in this case an additional eighth step can be added as an additional 
possibility by analyzing the own deviations from planned in the cost and/or time 
situations. 

Table 12.- Preventive safety barriers (ISn) for cost and time deviation, attributes-failures. 

Table 13.- Mitigative safety barriers (SFn) for cost and time deviation, attributes-failures. 

Preventive Safety barrier (ISn) Attributes-Failures

Planning (IS1) Planning - scheduling mistakes (PMIS). 
Planning - scheduling deficiencies (PDEF).

Quality - Reliability (IS2) Quality mistakes (QMIS). 
Quality deficiencies (QDEF). 
Quality not acceptances (QNAC). 

Human Resources (IS3) Human Resources mistakes (HRMIS). 
Deficiencies (HRDEF).

Engineering - Maintenance (IS4) Engineering -maintenance mistakes (EMIS). 
Deficiencies (EDEF).

Administration - Cost control (IS5) Administration - control mistakes (AMIS).

Logistics (IS6) Logistics mistakes (LMIS). 
Supply-distribution delays (SDEL).

Communication - Documentation (IS7) Communication mistakes (CMIS).

Marketing (IS8) Marketing mistakes (MMIS). 
Marketing deficiencies (MDEF).

Safety - Health - Environment (IS9) SHE mistakes (SHEMIS). 
SHE deficiencies (SHEDEF). 
Changes in regulations (SHECH). 
Sanctions (SHESAN).

Research - Development - 
Innovation

(IS10) Research development mistakes (RDIMIS). 
Deficiencies (RDIDEF).

Operations (IS11) Fail job self control (JSC). 
Fail safety self control (SSC). 
Fail job supervision (JSU). 
Fail safety supervision (SSU).

Mitigative Safety barrier (SFn) Attributes-Failures

Economic-Time controlling (SF1) (ic’s) especially JSC, JSU failures. 
No available idle capacity. No possibility for reschedule. 

Third’s based penalties (SF2) (ic’s) especially JSC, JSU failures. 
Undefined-incorrect agreement. Inability to reprogram with third 
parties. Not answer by third party. 

Sharing responsibilities (SFn-1) (ic’s) especially JSC, JSU failures. 
Partial capital funding not available due to bank credit failure. 
Undefined-incorrect agreement. Inability to share time with third 
parties. Not answered by counterparts.

Capital funding (SFn) (ic’s) especially JSC, JSU failures. 
Capital funding not available due to bank credit failure. 
Undefined-incorrect agreement. Incorrect time schedule definition.
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There is no previous scientific work considering risk of deviations in cost and time 
using chart control methodology. Some authors consider a risk indicator based on a 
weighted sum for to perform a comparison between the actual progress situation in front 
of the planned [157]. 

3.5.4. General SRC methodology applied to risks in industrial investments. 

As an extension of the analysis for risk of deviations in cost and time, also there is the 
situation of risk of deviations in industrial investments.  

Traditional project valuation methods comprises methodologies as the Payback Period 
(PBP), the Accounting Rate of Return (ARR), the Net Present Value (NPV) and the 
Internal Rate of Return (IRR), [158]. Before analyze the possible options it is needed to 
introduce the income statement based on sales definition according to the accounting 
standards, [152,153], Figure 18. 

The payback period (PBP) of a project represents the time it takes for an investment on 
that project to be recovered and it is determined by taking in consideration the number 
of years it takes until the initial investment for the project equals the sum of the 
forecasted cash flows (income plus depreciation). The advantage is their simplicity but 
possible problems after PBP period are ignored. Usually there is a metric application of 
3 years. In this method it is possible to consider the time value money depreciation. 

The accounting rate of return (ARR) method determines the ratio between the average 
project earnings after depreciation and taxes and the average investment value along the 
project life. The method is simple and can their accounting is based and available from 
the company accounting system. It is possible to take in consideration the time value 
money depreciation. 

The net present value (NPV) is determined by deducting the present value of the capital 
investments from the present value of the economical cash flow revenues. The general 
expression is; 

   !     (6) 

Where; 

n is the project time duration. 

t is the time period where a cash flow revenue Ct  or a capital investment It occurs. 

NPV = Ct

(1+ r)t
− It

(1+ r)tt=0

n

∑
t=1

n

∑
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Ct is the economical cash flow equal to; 

 Ct = Project Income after taxes + depreciations + provisions and contingencies 

r is the discount rate. 

Figure 18.- Planned income statement based on sales. Being: (1) work in process w.i.p.; (2) counterpart of 
the expenses made by the company for its fixed assets, using its equipment and its personnel, which are 
activated; also those carried out, on request, by other companies with research and development purposes, 
will also be accounted for. Provisions and contingencies: applied for environmental actuations, long-term 
personnel expenses, tributes, assets restructuring, commercial losses, stock deterioration. 

The decision rule is to invest in any project with a positive NPV. And if different 
projects are compared with each other, then the prior is to invest in the project with 
highest positive NPV. The account for a risk associated is considered by the addition of 
a risk premium value added to the discount rate r leading to a risk-adjusted rate which is 
higher than the risk-free discount rate. The estimation of this risk premium value can be 
difficult, [158]. 
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The internal rate of return (IRR) is closely related to the NPV method and is defined as 
the discount rate at which the NPV equals zero. The following equation has to be solved 
for (irr); 

    !    (7) 

The decision rule in this method, is to accept a project if its IRR is higher than the 
expected rate of return offered from other assets investment with the same amount of 
risk as the evaluated project. 

Both methods (NPV) and (IRR) take into consideration the time value of the money and 
account for a certain amount of risk, but the NPV method measures the absolute 
contribution of a project to the company goal to maximize revenue, [158]. 

To take in consideration the risks and uncertainties that can allow for unexpected 
investment changes it is needed to take in consideration the causes and safety barrier 
fails that can affect an investment project along its life. 

Because the evolution of the project cost affects directly to the NPV consecution, the 
reactive safety barriers are more related to this cost - time evolution and are the same as 
presented for previous deviation control of risk, Table 12 and Table 13. With general 
bow-tie, Figure 19. 

Figure 19.- General bow-tie for risk of deviations in industrial investment. 

0 = Ct

(1+ irr)t
− It

(1+ irr)tt=0

n

∑
t=1

n

∑
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3.6. General application in LOC-domino effect risk analysis. 

A review of some accidents involving the domino effect, as the case of France (1966), 
where eleven storage tanks were destroyed, covering a distance of 800 meters around 
the site. The Mexico accident (1984) involving a  storage and distribution facility for 
Liquefied Petroleum Gas (LPG) from a pressure excess involving Flash and VCE 
together with pool fire explosions and affecting 15 tanks of 16,000 m3 . The case of 
India (1997 where Flash and VCE and pool fire explosions affected the storage tanks at 
the refinery of the Hindustan Petroleum Corporation. Turkey (2014) from a LPG tanker. 
Louisiana (2015) the flash explosion and pool fire of a heat exchanger in a olefins plant. 
California (2015) the flash and vapor cloud explosions of a hydrofluoric acid unit used 
to increase the octane index in a refinery plant. Louisiana (2017), the explosion of a 
volatile liquids tank in a pulp mill plant after welding maintenance works in the above 
located pipe system. Shows the importance of this.  

There is no generally accepted definition of what constitutes loss of containment (LOC) 
domino effect in the context of accidents in the chemical processing industry, although 
various authors have provided suggestions. An overview of some definitions identified 
in a review of the relevant documents is as follows.  

Lees, [159], exposes two definitions: first as a factor to take into account of the hazards 
that can occur if leakage of a hazardous material and can lead to the escalation of the 
incident and second as an event whose consequence causes a separate event in a 
separate unit.  

Bagster and Pitblado, [160], defined the domino effect as a loss of containment of a 
plant item which results from a serious incident on a nearby plant unit.  

The AIChe-CCPS [23], defines the domino effect as an incident which starts in one item 
and may affect nearby items (e.g., vessels containing hazardous materials) by thermal, 
blast, or fragment impact causing an increase in consequence severity or in failure 
frequencies.  

Delvosalle et al. [161], defined domino effect as a primary accident in a primary 
installation (this event might not be a major accident), inducing one (or more) 
secondary accident(s), concerning secondary installation(s). This (these) secondary 
accident(s) must be a major one(s) and must extend the damage caused by the primary 
accident. Therefore, the domino effects act in a chain, involving a number of 
installations.  
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Necci et al. [162], defined the domino effect as the existence of a primary accident 
scenario that usually propagates due to the failure of storage or process units with direct 
damage causing the loss of the structural integrity in secondary equipment being the 
more frequent cause of accident propagation. There are also indirect effects that are 
responsible of the accident propagation (e.g. loss of control of the installation due to 
control room damage or evacuation. 

In Europe, the basic guidelines for preventing major accidents are stipulated in the 
Seveso  III directive [11]; the article 8 specifies the term domino effect to denote the 
existence of establishments or groups of establishments where the likelihood and the 
possibility or consequences of a major accident may be increased because of the 
location and the proximity of such establishments, and their inventories of dangerous 
substances.  

In terms of the regulations of the Committee on Control of Major Hazards HSE-
COMAH, [33], defines a domino event as a loss of containment incident on a major 
hazard installation which has resulted either directly or indirectly from a loss of 
containment incident at an adjacent or nearby major hazard installation. More recently 
several authors have explored patterns of domino effect generation, Hou et al. [163], 
define as primary contributors the existence of errors in human actuations, equipment 
failure, management, environmental and external - malicious acts. Others perform an 
exhaustive search of patterns, [164], or analyze the propagation thresholds  [165]. Fire 
is a major primary event in domino effects [166,167] and according to Khakzad et al. 
[168] a domino effect, also known as cascading event, is a sequence of events where an 
initial fire or explosion (primary event) causes damage to neighboring equipment or 
units and triggers other fires or explosions (secondary events), with overall 
consequences more severe than those of the primary event, [169]. The propagation 
(escalation) of a primary event to secondary events occurs by means of physical 
phenomena such as heat radiation, blast wave, or fragment projection. These are termed 
escalation vectors(e.g., magnitude of a tank fire's heat radiation) and the estimation of 
escalation probabilities (e.g., escalation probability of an atmospheric tank exposed to 
certain heat radiation) that some authors try to define using Bayesian networks [168]. 

From the previous analysis of the technical literature shows that all the accidental 
sequences where a relevant domino effect took place have the following common 
features:  

1. A primary event;  
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2. The propagation, due to the physical effects of the primary event, that results in the 
damage of at least one secondary equipment item;  

3. As consequence one or more secondary events appear (i.e. fire, explosion and toxic 
dispersion), involving the damaged equipment items. 

Darbra, Palacios and Casal, [170], stated that the domino effect is an important aspect in 
risk analysis, as knowledge of the main hazards and features that can be used to identify 
additional safety measures, such as the minimum safe distances between certain types of 
equipment considering the domino effect the action of a primary event that propagates 
to nearby equipment, triggering one or more secondary events resulting in overall 
consequences more severe than those of the primary event.  

In general the most analyzed scenario is the threshold and propagation in a tank farm, 
but domino effect can appear in other scenarios not only placed in process industries 
also in manufacturing environments as a consequence of the own activity that due to 
changes and modifications in the production process or in the maintenance 
performance, it may be located in spaces where flammable and toxic products are being 
used. 

Several models were developed for the assessment of domino effects in industrial or 
manufacturing plants [171]: domino effect generated by fire and overpressure, and 
domino effect caused by projection of fragments.  

3.6.1 Domino effect generated by fire and overpressure. 

a.- First models 

The more simple approach proposed for the assessment of damage to equipment caused 
by fires and explosions is to consider a threshold value for damage of 36 kPa. The 
probability of damage is zero if the physical effect is lower than the threshold value, and 
it is valued one if the physical effect is higher than the threshold value. 

A damage probability function can be defined based on the distance from the center of 
the explosion:  

                                 !     ( 8 )                      

Where !  is the damage probability, !  is the distance from explosion center (m) and !  

is the distance from explosion center at which a threshold value of static overpressure is 
reached (36 kPa).  

Fd = 1− r
rth

⎛
⎝⎜

⎞
⎠⎟

2

Fd r rth
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A quantitative study has been made describing possible approaches for quantifying the 
consequences of domino effects resulting from events giving rise to thermal radiation 
and from pressure equipment fragmentation, [172,173]. But a simplified model [174], 
assesses the damage probability of process equipment, caused by a blast overpressure 
defining a probit function to relate equipment damage to the peak static overpressure: 

     !     (9) 

Where Y is the probit function for equipment damage, P° is the peak static overpressure 
(Pa), a and b are the probit coefficients (a = -23.8 and b = 2.92). See Figure 20. 

Figure 20.- Probability function for equipment damage in function of the static pressure [174]. 

b.- Advanced models 

The probit approach was extended taking into account four categories of industrial 
equipments (atmospheric vessels, pressurized vessels, elongated vessels, and small 
equipments) [174]. The probit coefficients for overpressure damage probabilities for 
four equipment categories are represented in Table 14 and Figure 21. 

Table 14.- Probit coefficients and probability distribution for damage probability in four categories of 
industrial equipment. (Values in kPa). Adapted from [174]. 

Y = a + b ⋅ ln(P0 )

Equipment category a B Threshold

Atmospheric -18.96 +2.44 22 kPa

Pressurized -42.44 +4.33 16 kPa

Elongated -28.07 +3.16 31 kPa

Small -17.79 +2.18 37 kPa
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Figure 21.- Probit and probability function for equipment damage in function of the static pressure for 
atmospheric, pressurized, elongated and small equipment. Adapted from [174]. 

To improve these models, specific thresholds for domino effects were obtained for the 
different escalation vectors, taking into account the characteristics of different 
categories of industrial equipments.  

Also the same probit model is applied to estimate the time to failure (ttf) of industrial 
equipments exposed to fire, the Table 15 presents the thresholds and probit models for 
two equipment categories.  

Table 15.- Probit coefficients for time to failure (ttf) estimation due to fire. Y: probit function; ttf time to 
failure (s); V vessel volume (m3); I amount of heat radiation received (kW/m2). Adapted from [174] 

3.6.2 Domino effect generated by projection of fragments. 

In industrial plants, the projections generated by a primary explosion produced in tanks 
or equipment containing highly pressurized gas or liquids, with high internal energy, in 

Equipment category Threshold Correlation

Atmospheric 15 kW/m2 
t≥10 min

Y=12.54-1.847×ln(ttf) 
ln(ttf)=-1.128×ln(l)-2.667×10-5V+9.887

Pressurized 50 kW 
t≥10 min

Y=12.54-1.847×ln(ttf)  
ln(ttf)=-0.947×ln(l)+8.835V0.032
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general lead to catastrophic failures due to the successive explosions that are generated 
by the projection of the fragments, creating secondary accidents, even tertiary, ... until 
the process stops. Two main accident scenarios are responsible for primary accidents 
resulting in the projection of fragments [171] the internal explosions due to confined 
deflagrations, and the Boiling Liquid Expanding Vapor Explosion (BLEVE).  

Based on previous works, Djelosevic and Tepic and Sun et al. [172,173] developed a 
methodology to calculate the trajectories of fragments resulting from bursting spherical 
and cylindrical vessels containing gas at high pressure using the analytical solutions of 
the motion equations. Also, Nguyen et al. [175] proposed a probabilistic approach on 
the same subject; requiring three main steps:  

1. Probabilistic modeling of the probability of occurrence of the primary explosion, 
where the fragments number, mass, velocity, departure angles, the geometric shape, 
dimensions and construction material properties are described with probability 
distributions. 

2. Probabilistic modeling of the target where the number of projectiles, speed, angles, 
energy at the impact, construction materials, dimensions of the affected targets, and 
depths of penetration are described with probability distributions. 

3. Risk assessment for the second scenario explosion (domino effect). 

The application of momentum and energy equations for determining  the effect caused 
by projectiles is outside the scope of this thesis. 

3.6.3. General SRC methodology applied to scenarios of domino effect. 

The explosion in a industrial process is preceded by the hydrocarbons release or gas 
release due to a loss of containment event (such as the collapse of a tank, a hole in a 
pipe, etc.) [176,177]. In quantitative risk analysis (QRA), the initiating events leading to 
loss of containment are normally described using generic hypotheses, as the described 
in the CPR 18E guidelines of the Loss of Containment (LOC) [45,178] and the 
Handbook of Scenarios for Assessing Major Chemical Accident Risks [179].  

In Annex E, [45,174] are collected the Tables of LOC probabilities to apply, in general 
processes, transport and storage equipment, to assess the LOC in a process or 
manufacturing plant; with values considering the worst case. 
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3.6.4. General bow-tie. 

A review of some accidents involving the domino effect, as the case of France (1966), 
where eleven storage tanks were destroyed, covering a distance of 800 meters around 
the site; the Mexico accident (1984) involving a  storage and distribution facility for 
Liquefied Petroleum Gas (LPG) from a pressure excess involving flash and vapor cloud 
explosion (VCE) together with pool fire explosions and affecting 15 tanks of 16,000 
m3; the case of India (1997) where flash,VCE and pool fire explosions affected the 
storage tanks at the refinery of the Hindustan Petroleum Corporation; in Louisiana 
(2015) with a flash explosion and pool fire of a heat exchanger in a olefins plant; also in 
Louisiana (2017) the explosion of volatile liquids tank in a pulp mill plant after welding 
maintenance works in the pipe system. All these accidents show that the production of 
flash-fire, vapor cloud explosion (VCE), jet fire, all alone or together with the pool fire  
are involved in the LOC event [177].  

To model this evolution generic event trees have been proposed depending of the 
volatility  [180]. In all cases, the initiation is dependent on the state and the amount of 
component released its flammability and the formation of vapor clouds. The presence of 
sources of ignition around the equipment together with the existence of safety barriers 
modifies the probability of having a direct ignition. After accidental release, if the initial 
ignition has not occurred, delayed ignition may occur depending on the formation of 
vapor clouds and the presence of ignition sources. The acceleration of the flame is 
produced by igniting the flammable mixture of the vapor, gas, or aerosol cloud, 
producing overpressure, [181,182]. 

In this thesis two generic event trees are defined for vapor-gas and liquid worst cases. 

a.- Vapor - Gas. With preventive and mitigative safety barriers on Tables 16 and 17. 

Table 16.- Preventive safety barriers (ISn) attributes-failures in domino effect from vapor-gas. 

Preventive Safety barrier (ISn) Attributes-Failures

Shutdown (IS1) Shutdown failure (SHUTF)

Sprinkler (IS2) Local Sprinkler failure (SPKF)

Emergency level control (IS3) Level control failure (ELCF) 

Emergency pressure control (IS4) Pressure control failure (EPCF)

Corrosion monitoring (IS5) Deficiency - failure (CMDF)

Welding (IS6) Control failure (WCF)
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Table 17.- Reactive safety barriers (SFn) attributes-failures for vapor-gas domino effect and pf probability 
of safety barrier failure. 

Corresponding to the bow-tie of the following Figure 22: 

Figure 22.- General bow-tie in domino effect from vapor-gas loss of containment (LOC). Safety barriers: 
ISn: preventive barrier (n); SFISnm: preventive or proactive barrier (n) sub-function (m); SFISg general 
parallel sub-function; SFn: mitigative barrier (n); SFnm: mitigative barrier (n) sub-function (m); ic: 
initiating causes (ba, ha, pot);  p1,2,3 : probability of fail of the mitigative safety barriers.  

Mitigative Safety barrier 
(SFn)

pf Attributes-Failures

Complete Shutdown          
(avoid/delay ignition)

(SF1) 0.9 Emergency Shutdown failure (EMSHUTF) 
General Sprinkler/Spray failure (GSPKYF) 

Palliative 1                         
(avoid/delay local flame/ 
acceleration)

(SF2) 0.95 Local High pressure water curtain failure (LHPWCF) 
Local foam curtain failure (LFCF)

Palliative 2                         
(avoid/delay general flame/ 
acceleration)

(SF3) 0.95 Emergency High pressure water curtain failure (EMHPWCF) 
General foam curtain failure (GFCF)
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b.- Liquid. With preventive and mitigative safety barriers on Tables 18 and 19. 
Corresponding to the bow-tie of Figure 23. 

Table 18.- Preventive safety barriers (ISn) attributes-failures in liquid domino effect. 

Table 19.- Reactive safety barriers (SFn) attributes-failures for liquid domino effect and pf the probability 
of safety barrier failure. 

The probability of the various process equipment, mobile installations, devices or tanks 
to suffer a domino effect by being located at a certain distance from the element 
susceptible to suffering LOC can be modeled with the following relationship: 

   !     (10) 

Preventive Safety barrier (ISn) Attributes-Failures

Shutdown (IS1) Shutdown failure (SHUTF)

Containment (IS2) Liquid containment failure (LCMF) 
Liquid collector (LCLLF)

Sprinkler (IS3) Local Sprinkler failure (SPKF)

Emergency level control (IS4) Level control failure (ELCF) 

Emergency pressure control (IS5) Pressure control failure (EPCF)

Corrosion monitoring (IS6) Deficiency - failure (CMDF)

Welding (IS7) Control failure (WCF)

Mitigative Safety barrier 
(SFn)

pf Attributes-Failures

Complete Shutdown            
(avoid/delay ignition)

(SF1) 0.95 Emergency Shutdown failure (EMSHUTF) 
General Sprinkler/Spray failure (SPKYF) 
General liquid containment failure (GLCF)

Palliative 1                          
(avoid/delay local flame/
acceleration)

(SF2) 0.85 High pressure water curtain failure (HPWCF) 
Local foam curtain failure (LFCF)

Palliative 2                           
(avoid/delay general flame/
acceleration)

(SF3) 0.8 Emergency High pressure water curtain failure (EMHPWCF) 
General foam curtain failure (GFCF)

ProbDEi = ProbDamage ⋅ 1−
ri
rth,i

⎛
⎝⎜

⎞
⎠⎟

2
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Figure 23.- General bow-tie in domino effect from liquid loss of containment (LOC). Safety barriers: ISn: 
preventive barrier (n); SFISnm: preventive or proactive barrier (n) sub-function (m); SFISg general parallel 
sub-function; SFn: mitigative barrier (n); SFnm: mitigative barrier (n) sub-function (m); ic: initiating 
causes (ba, ha, pot);  p1,2,3: probability of fail of the mitigative safety barriers.  

Where; 

ProbDEi : for the equipment i,  is the probability for having a Domino effect. 

ProbDamage: is the probability for the initiation of a LOC episode.  

!  :  for the equipment i,  is the probability for to get affected by proximity being 

r the distance (m) from explosion center and !  is the distance from the explosion 

center at which a threshold value of static overpressure is estimated to be reached (36 
kPa) for light damage of buildings, [171]. 

As an alternative it is possible to apply, [160,183]. 

1− ri
rth,i

⎛
⎝⎜

⎞
⎠⎟

rth
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   !     (11) 

Where; 

!  is the radius of zone damage, based on the expression: 

   !     (12) 

With: 

G equivalent charge of TNT weight (kg). The detonation of 1 kg of TNT with specific 
heat of explosion of 5000 kJ/kg and packed in 1 m tube, results in a power of 30·106 
kW, that is the energy application in a time of 0.0002 s. And Kl coefficient according to 
the damage level, Table 20, being:  

Table 20.- Values for Kl according to the damage levels. 

The main objective of the application of the SRC methodology is to avoid the LOC 
event and mitigate if it is produced through the analysis of the initiating causes (ic) and 
the safety barriers. 

In parallel because the possible scenario is depending of the geometry and layout of the 
elements of equipment, and affected by the toxicity, operation status and flammability 
conforming the affectation of the main product; and by the weather in terms of storm 
days, precipitation value and wind over 55 km/h, conforming the influence of the 
weather, and by the installation behavior in terms of values of main critical process 
variables (flow, pressure, temperature, speed, rate of quantity, time,…). 

Taking into account these affectations, the general scheme of obtaining the final risk 
damage due to a LOC event, with a possible final state that depends on whether gas or 
liquid vapor has been emitted and at the distance !  is; 

ProbDEi = ProbDamage ⋅ 1−
ri
rsi

⎛
⎝⎜

⎞
⎠⎟

2

rsi

rsi = KlG
0.33 1+ 3180

G
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

−0.17

Damage level Value of Kl

I: complete demolition 3.8

II: buildings, walls and roofs destroyed 9.6

III: moderate damages 28

IV: reparable damages 55

r
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1.  Scenario consideration for gas-vapor or liquid. 

2. Loss of containment estimation (LOC) and their corresponding end state according to 
the selected bow-tie. 

3. Affectation to elements !  placed at distance !  using equations (11) and (12). 

Obtaining a   PLOC,distance  equal to the  ProbDEi  probability. 

4. Affectation due to the Toxicity, Operation and Flammability (TOF) dimensions for 
which, in percentage, its relative importance should be assessed in the considered 
scenario. A ponderation in concordance with their values, considering the worst case 
for multi-components is performed. The result is a modified PLOC,distance,TOF  

probability. 

5. Affectation due to the estimated storm days, precipitation value (mm) and wind speed 
over 55 km/h (SPW55) in days. Obtaining a fWeather,SPW55 factor. 

6. Affectation due to the installation behavior (IB) according to the main process 
variables affecting risk. Obtaining a fBehavior,IB  factor. 

In step 4 a linear multi criteria analysis is performed. And for steps 5 and 6 the fuzzy 
logic is applied [184,185,186], (Annex F) in which an output factor that modifies the 
probability of risk is obtained. 

And finally obtaining the damage probability value for the selected final state and 
distance. 

                            Pdamage,distance = PLOC,distance,TOF · fWeather,SPW55 · fBehavior,IB           (13) 

3.7. Theoretical considerations. 

In step 6 from the general SRC methodology and in all the previous cases: for industrial 
processes, occupational, deviations in cost and time, and in LOC events producing 
domino effect, when analyzing the initiating causes (ic) and the safety barriers the 
proposal for collecting the observations embracing the general process as a worst case 
obtaining a representative probability of risk for the overall installation has sense 
because observing the general bow-tie, of Figure 11, on the fault tree side, when the 
initiating causes (ic) affect the preventive safety barriers (ISn) and the general parallel 
sub-function (SFISg), the probability of risk for every one is a function of; 

i ri
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If there are ! preventive safety barriers; the risk for a safety barrier !  is 

 !    (14) 

For the general parallel sub-function system; 

 !    (15) 

With !  generic number of preventive barriers and !  generic number of sub-functions. 

With the hypothesis of independency of the safety barriers risk probabilities, the total 
probability for producing an accident event is; 

 !     (16) 

Showing that !  

Observing the bow-tie from the event tree side, when an accident event has been 
produced the mitigative barriers take action leading to an end state. 

For a mitigative safety !  barrier;  

 !    (14) 

Being ! the number of sub-functions of the mitigative !  safety barrier. 

If there are four end states, the probability of risk for the first end state is; 

!  

For the second end state; 

!  

For the third end state; 

!  

For the fourth end state; 

!  

n i

P(ISi ) = f (ic,SFISim ) = P(ici )+ P(SFISim )

P(SFISg ) = f (icsg ,SFISg ) = P(icsg )+ P(SFISg )

n m

P(AE) = P(ISi )
i=1

n

∑ + P(ic)+ P(SFISg )

P(AE) = f (ic, ISn ,SFISg )

j

P(SFj ) = f (ic,SFjn ) = P(icj )+ P(SFjn )

n j

P(end _ state1) = P(AE) ⋅(1− P(SF1))

P(end _ state2 ) = P(AE) ⋅P(SF1) ⋅(1− P(SF2 ))

P(end _ state3) = P(AE) ⋅P(SF1) ⋅P(SF2 ) ⋅(1− P(SF3))

P(end _ state4 ) = P(AE) ⋅P(SF1) ⋅P(SF2 ) ⋅P(SF3)
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For obtaining an end state ! ; if there are !  end states is; 

!   

And for the last state; 

!  

For obtaining any end state, that is the worst case situation for the overall installation is; 

!  

Showing that; 

  !    (15) 

Then, the general realization of the observations, in an examination of the most 
unfavorable situation, which includes the initial causes (ic) and the failures in the 
preventive and mitigative safety barriers; it allows to obtain a representative probability 
of general risk of the installation or process being a practical treatment of the previous 
expression (15). 

In addition, if necessary, the analysis can be performed only for either the fault tree or 
the event tree in order to obtain the probability failures of the safety barriers. Or it can 
focus on specific barriers in order to analyze the probability of risk and allow a 
sensitivity analysis with respect to obtaining which incidents affect their response. 

k o

P(end _ statek ) = P(AE) ⋅ P(SFk )
1

o−1

∏ ⋅(1− P(SFo ))

P(end _ stateo ) = P(AE) ⋅ P(SFk )
1

o

∏

P(overall _ risk) = P(end _ statek )+ P(end _ stateo ) =
1

o−1

∑

= [P(AE) ⋅ P(SFk )
1

o−1

∏ ⋅(1− P(SFo ))]+ P(AE) ⋅ P(SFk )
1

o

∏
1

o−1

∑ =

= P(ISi )
i=1

n

∑ + P(ic)+ P(SFISg )
⎛
⎝⎜

⎞
⎠⎟
⋅ P(SFk )

1

o−1

∏ ⋅(1− P(SFo ))
⎡

⎣
⎢

⎤

⎦
⎥ + P(ISi )

i=1

n

∑ + P(ic)+ P(SFISg )
⎛
⎝⎜

⎞
⎠⎟
⋅ P(SFk )

1

o

∏
1

o−1

∑

P(overall _ risk) = f (ic, ISn ,SFISg ,SFn )



                                                 

Chapter 4 

Results. 
Several cases of the process and manufacturing environment that cover the SRC models 
applied in industrial, occupational, time-cost and domino-effect environments are 
presented below. 

4.1. Industrial processes analysis. Separation unit 

A generic separation unit placed in a oil and gas offshore extraction platform is used as 
example see Figure 24. 

Figure 24.- Generic scheme for an oil/gas offshore separation unit.  

The main function of the separation unit is to extract the water from the oil-gas mix 
obtained in a well production. Further separations of the oil and gas currents are 
performed in separator-flash units from which the obtained water current is re-injected, 
the gas current is exported to a compression and dehydration gas plant and the oil 
current is conditioned for export. The bow-tie for the separation unit is presented on 
Figure 25, and the event to avoid is the overpressure (OPE). The mitigative safety 
barriers have the function to protect the installation and reduce the risk of have a total 
failure with break and possible emission. Every fail in the response of a safety reactive 
barrier concatenates the response of the following. From the success or fail actuation of 
the barriers and their concatenation four end states are obtained.  

!67



!  

!                                                                                        Results 68

 

Figure 25.- Bow-tie for the generic oil/gas offshore separation unit.  

The preventive safety barriers (ISn) are defined in the following Table 21. 

Table 21.- Preventive safety barriers, for the separation unit. 

The most critical safety barriers with the most important initiating causes (ic) affecting 
them are described. 

The mitigative safety barriers (SFn) are defined in the following Table 22. 

Preventive Safety barrier (ISn) Attributes-Failures

Local shutdown-recicling (IS1) Shutdown failure (SHUTF) 
ic: ba power supply; ha:safety supervision fail (SSU), job supervision 
fail (JSU); pot

Emergency cooling system (IS2) Cooling system failure (COOLSF) 
ic: ba pumping station; ha:safety supervision fail (SSU), job 
supervision fail (JSU) ; pot

Emergency level control (IS3) Level control failure (ELCF)  
ic: ba sensor fail; ha: safety supervision fail (SSU), job supervision 
fail (JSU); pot

Emergency pressure control (IS4) Pressure control failure (EPCF) 
ic: ba sensor fail; ha: safety supervision fail (SSU), job supervision 
fail (JSU); pot

Control system (SFISg) System control with deficiency - failure (SCDF) 
ic: ba: field equipment; ha: safety or job supervision fail (JSU)(SSU); 
pot
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Table 22.- Mitigative safety barriers, for the separation unit. 

The analysis covers the general process and the bow-tie presents four final states: 
normal operation, partial operation, short stop operation and total failure. If an 
overpressure event (OPE) is generated the mitigative safety barriers (SF1 SF2 SF3) are 
activated. The final states represented are bounded at one end by a normal operation, if 
the first mitigative safety barrier (SF1) acts correctly, in case of failure the second 
barrier (SF2) acts ending with a partial operation if it works correctly, or in case of 
failure the third barrier (SF3) acts leading to a short shutdown in case of correct 
actuation, or on the contrary there a total failure of the process. The sub-functions for 
preventive (SFIS11, SFIS21, SFIS31, SFIS41, SFIS51) and mitigative (SF11 SF21 SF31) belong 
to the main function of each of the preventive and mitigative safety barriers and 
correspond to the functional components of each of them, and that include equipment, 
actuators, automatisms, procedures, alarms and active or passive protections. The 
probabilities of failure for the three mitigative safety barriers p1,2,3 are not known a 
priori. 

The analysis is carried out at the first level, highlighted in yellow on the graph. The 
observations are made in the worst case taking the process in general, collecting data on 
the preventive safety barriers, the general safety barrier (SFISg) and their corresponding 
initiating causes (ic); and on the other hand, from each of the functions and sub-
functions of the mitigative barriers and their corresponding initiating causes, being the 
SF1-SF11 and its (ic) the group for the general manifold action and pressure correction 
with the general valve actuators, positioners and passive and active protections; the SF2-
SF21  and its (ic’s) the group of the recycling system with their general pump elements, 
actuators and passive and active protections, and the SF3-SF31 and its (ic’s) which group 
the general emergency shutdown and general actuators. The observations are done in a 
10 time intervals in a day, covering all shifts, Table 23 shows three observed causes in 
intervals 4, 7 and 8. 

Mitigative Safety barrier (SFn) Attributes-Failures

Manifold - pressure correction (SF1) Actuation through manifold failure (AMF) 
ic: ba failure in valves; ha: safety or job supervision fail (SSU) (JSU); 
pot

Recycling (SF2) Pumping failure (PRF) 
ic: ba pump-valve failure; ha: safety or job supervision fail  (SSU) 
(JSU); pot 

Shutdown (SF3) Emergency power failure (EMPF) 
ic: connection-actuator failure; ha: safety or job supervision fail 
(SSU) (JSU); pot
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Table 23.- Initiating causes (ic) and safety barrier failures in 10 intervals. 

Collecting observations and using equation (1) 

    f(p/Data)∝g(Data/p)•f(p)        (1) 

Where p is the statistical parameter,  f(p) is the prior statistical distribution for the 
parameter p; g(Data/p) is corresponding to the observed precursor data and g(p/Data)  
is the posterior statistical distribution. 

It is expected that can follow a Poisson, an exponential or a Weibull distributions, being 
the g(Data/p) in equation (1). The statistical parameter p is corresponding to the rate λ 
or frequency of events and the prior f(p) can be defined as a gamma or normal 
distributions. 

4.1.1. Poisson-gamma model. 

With a Poisson-Gamma model the expression (1) with parameter p= λ  is, (Annex A). 

!    (14) 

Being the posterior a gamma distribution; 

   !   (15) 

Where; 

    !     (16) 

Being !  number of interval and s the sum of initiating causes (ic’s) and safety barriers 

incidences as data !  in the corresponding time interval ! . The values !  and !  are the 

parameters of  the gamma distribution. 

Modes recurrent and direct with mean prior and posterior will be applied.  

Interval 1 2 3 4 5 6 7 8 9 10

Observations - - - 1 (ba) - - 1 (ha) 1 (FTS)

1 ba: valve failure affecting manifold SF11; 1 ha: fail in safety supervision (SSU) affecting IS2 cooling; 1 pot failed test 
affecting SF3 general emergency shutdown.

f (λ /Data)∝ g(Data / λ) f (λ) = βαλα−1e−βλ

Γ(α )
⋅ e−λλ yi

yi !
∝λ (α+ny )−1e−λ (β+n)

i=1

n

∏

f (λ /Data)∞λ (α+ny )−1e−λ (β+n)∞λ (α+s )−1e−λ (β+nt )

s = Datai = yi = nt y∑∑

nt
yi i α β
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a.- Recurrent method with mean prior. 

A recurrent method with mean prior and equal to a desired value as a target, is applied.  
In this case the target is for have zero accidents, then the parameters of the gamma prior 
are α=β=0.001. Working with +/-1σpost  the posterior values are, Table 24; 

Table 24.- Separation unit. Poisson-gamma model. Observations using a recurrent method with mean 
prior. Out-of-limits highlighted blue. 

With the following comments in every interval. 

Interval 1.- With zero incidences, is, yi=[0] and posterior density for λ; gam(α+s,β+Nt) 
= gam(0.001,1) with λpost=0 and  σpost=0.03. 

Interval 2.- With zero incidences, is, yi=[0] and posterior density for λ; gam(α+s,β+Nt) 
= gam(0.001,2) with λpost=0 and  σpost=0.02. 

Interval 3.- With zero incidences, is, yi=[0] and posterior density for λ; gam(α+s,β+Nt) 
= gam(0.001,3) with λpost=0 and  σpost=0.01. 

Interval 4.- With one incidence in one valve affecting the SF11 safety barrier sub-
function, is in this case, yi=[1] and posterior density for λ; gam(α+s,β+Nt) = gam(1,4) 
with  λpost=0.25 and σpost=0.25. Due to the no memory characteristic of the exponential, 
Poisson and Weibull distributions, the observed parameter value for 1 incidence in 4 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda sigma lambda LCL MEAN UCL

0 0.001 0.001 - - 0 0 0 - 0 -

1 0.001 0.001 0.001 1 0 0.03 0 0 0 0.03

2 0.001 1 0.001 2 0 0.02 0 0 0 0.02

3 0.001 2 0.001 3 0 0.01 0 0 0 0.01

4 0.001 3 1 4 0.25 0.25 0.25 0 0 0.25

5 1 4 1 5 0.20 0.20 0 0 0 0.20

6 1 5 1 6 0.17 0.17 0 0 0 0.17

7 1 6 2 7 0.29 0.20 0.33 0 0 0.20

8 2 7 3 8 0.38 0.22 1 0 0 0.22

9 3 8 3 9 0.33 0.19 0 0 0 0.19

10 3 9 3 10 0.30 0.17 0 0 0 0.17
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time intervals is 0.25 that is coincident with the posterior. The value is on the upper 
control limit (UCL). 

Interval 5.- With zero incidences, is, yi=[0] and  posterior density for λ; gam(α+s,β+Nt) 
= gam(1,5) with λpost=0.20 and σpost=0.20. As a characteristic of the Bayesian inference, 
the posterior distribution has a soft reduction of parameter 𝝀 from 0.25 to 0.20. 

Interval 6.- With zero incidences, is, yi=[0] posterior density for λ; gam(α+s,β+Nt) = 
gam(1,6) with λpost=0.17 and σpost=0.17. The Bayesian inference also responds softening 
the reduction of parameter λ from 0.20 to 0.17. 

Interval 7.- With one incidence affecting a safety supervision (SSU) in the IS2 cooling 
process, is yi=[1] and posterior density for λ; gam(α+s,β+Nt)= gam(2,7) with λpost=0.29 
and σpost=0.20. The observed parameter value for 1 incidence in 7-4=3 time intervals is 
0.33 that is practically coincident with the posterior. And showing an out-of-limits. 

Interval 8.- With one incidence affecting a failed test in the emergency shutdown SF3 
safety barrier, is, yi=[1] and posterior density for λ; gam(α+s,β+Nt) = gam(3,8) with 
λpost=0.38 and  σpost=0.22. The observed parameter value for 1 incidence in 8-7=1 time 
intervals is 1. And also shows and out-of-limits. 

Interval 9.- With zero incidences, is, yi=[0] and posterior density for λ; gam(α+s,β
+Nt )=  gam(3,9) with λ post=0.33 and  σpost=0.19. 

Interval 10.- With zero incidences, is, yi=[0] and posterior density for λ; gam(α+s,β+Nt) 
=  gam(3,10) with λ post=0.30 and  σpost=0.17. 

Charts for observed values in intervals 4 and 7 are presented on Figure 26. 

Figure 26.- Poisson-gamma model. Recurrent  with mean prior method. Charts based on observed  
lambda evolution for intervals 4 and 7. 
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b.- Recurrent method with mean posterior. 

A recurrent method with mean posterior is applied. With target for have zero accidents, 
parameters of the gamma prior α=β=0.001 and +/-1σpost. The posterior values are 
presented on Table 25; and charts for intervals 4 and 8 in Figure 27. 

Table 25.- Separation unit. Poisson-gamma model. Observations using a recurrent method with mean 
posterior. Out-of-limits highlighted blue. 

Figure 27.- Poisson-gamma model. Recurrent with mean posterior method. Charts based on observed  
lambda evolution for intervals 4 and 8. 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda sigma lambda LCL MEAN UCL

0 0.001 0.001 - - 0 0 0 - 0 -

1 0.001 0.001 0.001 1 0 0.03 0 0 0 0.03

2 0.001 1 0.001 2 0 0.02 0 0 0 0.02

3 0.001 2 0.001 3 0 0.01 0 0 0 0.01

4 0.001 3 1 4 0.25 0.25 0.25 0 0.25 0.50

5 1 4 1 5 0.20 0.20 0 0 0.20 0.40

6 1 5 1 6 0.17 0.17 0 0 0.17 0.33

7 1 6 2 7 0.29 0.20 0.33 0 0.29 0.49

8 2 7 3 8 0.38 0.22 1 0 0.38 0.59

9 3 8 3 9 0.33 0.19 0 0 0.33 0.53

10 3 9 3 10 0.30 0.17 0 0 0.30 0.47
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c.- Direct method with mean prior. 

A direct method with mean prior is applied. With the same target for have zero 
accidents, and gamma prior parameters α=β=0.001. Also working with +/-1σpost the 
posterior values are presented on Table 26; and charts for intervals 7 and 8 in Figure 28. 

Table 26.- Separation unit. Poisson-gamma model. Observations using a direct method with mean prior. 
Out-of-limits highlighted blue. 

With the following comments in every interval. 

Interval 1.- With zero incidences, is, yi=[0] and posterior density for λ; gam(α+s,β+Nt) 
= gam(0.001,1) with λpost=0 and  σpost=0.03. 

Interval 2.- With zero incidences, is, yi=[0 0] and posterior density for λ; gam(α+s,β
+Nt) = gam(0.001,2) with λpost=0 and  σpost=0.02. 

Interval 3.- With zero incidences, is, yi=[0 0 0] and posterior density for λ; gam(α+s,β
+Nt) = gam(0.001,3) with λpost=0 and  σpost=0.01. 

Interval 4.- With one incidence in one valve affecting the SF11 safety barrier sub-
function, is in this case, yi=[0 0 0 1] and posterior density for λ; gam(α+s,β+Nt) = 
gam(1,4) with  λpost=0.25 and σpost=0.25. Due to the no memory characteristic of the 
exponential, Poisson and Weibull distributions, the observed parameter value for 1 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda sigma lambda LCL MEAN UCL

0 0.001 0.001 - - 0 0 0 - 0 -

1 0.001 0.001 0.001 1 0 0.03 0 0 0 0.03

2 0.001 0.001 0.001 2 0 0.02 0 0 0 0.02

3 0.001 0.001 0.001 3 0 0.01 0 0 0 0.01

4 0.001 0.001 1 4 0.25 0.25 0.25 0 0 0.25

5 0.001 0.001 1 5 0.20 0.20 0 0 0 0.20

6 0.001 0.001 1 6 0.17 0.17 0 0 0 0.17

7 0.001 0.001 2 7 0.29 0.20 0.33 0 0 0.20

8 0.001 0.001 3 8 0.38 0.22 1 0 0 0.22

9 0.001 0.001 3 9 0.33 0.19 0 0 0 0.19

10 0.001 0.001 3 10 0.30 0.17 0 0 0 0.17



!  

!                                                                                        Results 75

incidence in 4 time intervals is 0.25 that is coincident with the posterior. The value is on 
the upper control limit (UCL). 

Interval 5.- With zero incidences, is, yi=[0 0 0 1 0] and posterior density for λ; gam(α
+s,β+Nt) = gam(1,5) with λpost=0.20 and σpost=0.20. The parameter 𝝀 has a soft 

reduction from 0.25 to 0.20. 

Interval 6.- With zero incidences, is, yi=[0 0 0 1 0 0] posterior density for λ; gam(α+s,β
+Nt) = gam(1,6) with λpost=0.17 and σpost=0.17. The Bayesian inference also responds 
softening the reduction of parameter λ from 0.20 to 0.17. 

Interval 7.- With one incidence affecting a safety supervision (SSU) in the IS2 cooling 
process, is yi=[0 0 0 1 0 0 1] and posterior density for λ; gam(α+s,β+Nt)= gam(2,7) 
with λpost=0.29 and σpost=0.20. The observed parameter value for 1 incidence in 7-4=3 
time intervals is 0.33 that is practically coincident with the posterior. And showing an 
out-of-limits. 

Interval 8.- With one incidence affecting a failed test in the emergency shutdown SF3 
safety barrier, is, yi=[0 0 0 1 0 0 1 1] and posterior density for λ; gam(α+s,β+Nt) = 
gam(3,8) with λpost=0.38 and  σpost=0.22. The observed parameter value for 1 incidence 
in 8-7=1 time intervals is 1. And also shows and out-of-limits. 

Interval 9.- With zero incidences, is, yi=[0 0 0 1 0 0 1 1 0] and posterior density for λ; 
gam(α+s,β+Nt) =  gam(3,9) with λ post=0.33 and  σpost=0.19. 

Interval 10.- With zero incidences, is, yi=[0 0 0 1 0 0 1 1 0 0] and posterior density for 
λ; gam(α+s,β+Nt) =  gam(3,10) with λ post=0.30 and  σpost=0.17. 

Figure 28.- Poisson-gamma model. Direct with mean prior method. Charts based on observed  lambda 
evolution for intervals 7 and 8. 
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d.- Direct method with mean posterior. 

A direct method with mean posterior is applied. With target for have zero accidents, 
parameters of the gamma prior α=β=0.001 and +/-1σpost. The posterior values are 
presented on Table 27; and charts for intervals 7 and 8 in Figure 29. 

Table 27.- Separation unit. Poisson-gamma model. Observations using a direct method with mean 
posterior. Out-of-limits highlighted blue. 

Figure 29.- Poisson-gamma model. Direct with mean posterior method. Charts based on observed lambda 
evolution for intervals 7 and 8. 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda sigma lambda LCL MEAN UCL

0 0.001 0.001 - - 0 0 0 - 0 -

1 0.001 0.001 0.001 1 0 0.03 0 0 0 0.03

2 0.001 0.001 0.001 2 0 0.02 0 0 0 0.02

3 0.001 0.001 0.001 3 0 0.01 0 0 0 0.01

4 0.001 0.001 1 4 0.25 0.25 0.25 0 0.25 0.50

5 0.001 0.001 1 5 0.20 0.20 0 0 0.20 0.40

6 0.001 0.001 1 6 0.17 0.17 0 0 0.17 0.33

7 0.001 0.001 2 7 0.29 0.20 0.33 0 0.29 0.49

8 0.001 0.001 3 8 0.38 0.22 1 0 0.38 0.59

9 0.001 0.001 3 9 0.33 0.19 0 0 0.33 0.53

10 0.001 0.001 3 10 0.30 0.17 0 0 0.30 0.47
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4.1.2. Exponential-gamma model. 

With an exponential-gamma model the expression (1) with parameter p= λ  is, (Annex 
A), is; 

!       (17) 

Being α and β the parameters of the gamma distribution and ! the data observed in the 

corresponding time interval ! . Also modes recurrent and direct with mean prior and 
posterior will be applied.  

a.- Recurrent method with mean prior. 

A recurrent method with mean prior and equal to a target, being in this example 
changed to a less restrictive value of 1 accident in 20 intervals being equal to 0.05,  with 
a sigma deviation also equal to 0.05 and with gamma prior parameters α=0.5 and β=10. 
Working with +/-1σpost and using the Metropolis-Hastings (MH) sampler, the Table 28 
shows the observed values and the (MH) sampling in Figures 30, 31 and 32. 

Table 28.- Separation unit. Exponential-gamma model. Observations using a recurrent method with mean 
prior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

f (λ /Data)∞g(Data / λ) f (λ)∞yi
α−1e− yi (β+λ )

yi
i

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.5 10 - - 0.05 - 0.05 0 - 0.05 -

1 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

2 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

3 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

4 0.5 10 3.8 23 0.16 0.15-0.17 0.08 0.25 0 0.05 0.13

5 3.8 23 3.8 23 0.16 0.15-0.17 0.08 0 0 0.05 0.13

6 3.8 23 3.8 23 0.16 0.15-0.17 0.08 0 0 0.05 0.13

7 3.8 23 6.9 34 0.20 0.19-0.21 0.08 0.33 0 0.05 0.13

8 6.9 34 13.4 48 0.28 0.27-0.29 0.08 1 0 0.05 0.13

9 13.4 48 13.4 48 0.28 0.27-0.29 0.08 0 0 0.05 0.13

10 13.4 48 13.4 48 0.28 0.27-0.29 0.08 0 0 0.05 0.13
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          Figure 30.- Exponential-gamma. Interval 4. Sampling n=4500, burn=500; 10 cycles. AR= 48.9%. 

 

Figure 31.- Exponential-gamma. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 51.9%. 

Figure 32.- Exponential-gamma. Interval 8. Sampling n=4500, burn=500; 10 cycles. AR= 52.7%. 
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b.- Recurrent method with mean posterior. 

The posterior values are presented on Table 29. 

Table 29.- Separation unit. Exponential-gamma model. Observations using a recurrent method with mean 
posterior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

With a target value of 1 accident in 20 time intervals equal to 0.05, and a sigma 
deviation also equal to 0.05 and gamma prior parameters α=0.5 and β=10. Working with 
+/-1σpost and using the Metropolis-Hastings (MH) sampler the posterior values are 
presented on Table 30 and the (MH) sampling in Figures 33 and 34. 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.5 10 - - 0.05 - 0.05 0 - 0.05 -

1 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

2 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

3 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

4 0.5 10 3.8 23 0.16 0.15-0.17 0.08 0.25 0 0.16 0.24

5 3.8 23 3.8 23 0.16 0.15-0.17 0.08 0 0 0.16 0.24

6 3.8 23 3.8 23 0.16 0.15-0.17 0.08 0 0 0.16 0.24

7 3.8 23 6.9 34 0.20 0.19-0.21 0.08 0.33 0 0.20 0.28

8 6.9 34 13.4 48 0.28 0.27-0.29 0.08 1 0 0.28 0.36

9 13.4 48 13.4 48 0.28 0.27-0.29 0.08 0 0 0.28 0.36

10 13.4 48 13.4 48 0.28 0.27-0.29 0.08 0 0 0.28 0.36
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Table 30.- Separation unit. Exponential-gamma model. Observations using a direct method with mean 
prior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

 

Figure 33.- Exponential-gamma. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 52.4%. 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.5 10 - - 0.05 - 0.05 0 - 0.05 -

1 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

2 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

3 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

4 0.5 10 3.8 23 0.16 0.15-0.17 0.08 0.25 0 0.05 0.13

5 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

6 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

7 0.5 10 4.3 23 0.18 0.17-0.19 0.09 0.33 0 0.05 0.14

8 0.5 10 7.2 23 0.32 0.31-0.33 0.12 1 0 0.05 0.17

9 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

10 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10
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Figure 34.- Exponential-gamma. Interval 8. Sampling n=4500, burn=500; 10 cycles. AR= 65.3%. 

d.- Direct method with mean posterior. 

The posterior values are presented on Table 31. 

Table 31.- Separation unit. Exponential-gamma model. Observations using a direct method with mean 
posterior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

4.1.3. Weibull-gamma model. 

With a Weibull-Gamma model the fatigue is considered in the analysis and the 
expression (1) with parameter p= λ, (Annex A), is; 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.5 10 - - 0.05 - 0.05 0 - 0.05 -

1 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

2 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

3 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

4 0.5 10 3.8 23 0.16 0.15-0.17 0.08 0.25 0 0.16 0.24

5 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

6 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

7 0.5 10 4.3 23 0.18 0.17-0.19 0.09 0.33 0 0.18 0.27

8 0.5 10 7.2 23 0.32 0.31-0.33 0.12 1 0 0.32 0.44

9 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

10 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10
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   !    (18) 

Being α and β the parameters of the gamma distribution and ! the data observed in the 

corresponding time interval ! and c is the fatigue parameter. When c=1 the failure rate 
function is constant being equivalent to an exponential-gamma model. If  c>1 the failure 
rate function is increasing. If 0<c<1 the failure rate function is decreasing. 

Also modes recurrent and direct with mean prior and posterior will be applied.  

a.- Recurrent method with mean prior. 

A recurrent method with mean prior and equal to the 0.05 target,  with a sigma deviation 
also equal to 0.05 and gamma prior parameters α=0.5 and β=10. Working with +/-1σpost 
and using the Metropolis-Hastings (MH) sampler, the Table 32 shows the observed 
values and the (MH) sampling in Figures 35, 36 and 37. 

Table 32.- Separation unit. Weibull-gamma model. Observations using a recurrent method with mean 
prior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

f (λ /Data)∞g(Data / λ) f (λ)∞yi
α−1 ⋅e−βyi ⋅ yi

λ
⎛
⎝⎜

⎞
⎠⎟
c−1

e
− yi

λ
⎛
⎝⎜

⎞
⎠⎟
c

yi
i

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.5 10 - - 0.05 - 0.05 0 - 0.05 -

1 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

2 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

3 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

4 0.5 10 6.3 32.7 0.195 0.19-0.20 0.08 0.25 0 0.05 0.13

5 6.3 32.7 6.3 32.7 0.195 0.19-0.20 0.08 0 0 0.05 0.13

6 6.3 32.7 6.3 32.7 0.195 0.19-0.20 0.08 0 0 0.05 0.13

7 6.3 32.7 11.9 50.6 0.237 0.24-0.25 0.07 0.33 0 0.05 0.12

8 11.9 50.6 28.6 79.6 0.355 0.35-0.36 0.07 1 0 0.05 0.12

9 28.6 79.6 28.6 79.6 0.355 0.35-0.36 0.07 0 0 0.05 0.12

10 28.6 79.6 28.6 79.6 0.355 0.35-0.36 0.07 0 0 0.05 0.12
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Figure 35.- Weibull-gamma. Interval 4. Sampling n=4500, burn=500; 10 cycles. AR= 49.2%. 

Figure 36.- Weibull-gamma. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 47.7%. 

Figure 37.- Weibull-gamma. Interval 8. Sampling n=4500, burn=500; 10 cycles. AR= 47.6%. 
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b.- Recurrent method with mean posterior. 

The posterior values are presented on Table 33. 

Table 33.- Separation unit. Weibull-gamma model. Observations using a recurrent method with mean 
posterior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

The Table 34 shows the observed values and the (MH) sampling in Figures 38 and 39. 

Figure 38.- Weibull-gamma. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 53.2%. 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.5 10 - - 0.05 - 0.05 0 - 0.05 -

1 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

2 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

3 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

4 0.5 10 6.3 32.7 0.195 0.19-0.20 0.08 0.25 0 0.195 0.27

5 6.3 32.7 6.3 32.7 0.195 0.19-0.20 0.08 0 0 0.195 0.27

6 6.3 32.7 6.3 32.7 0.195 0.19-0.20 0.08 0 0 0.195 0.27

7 6.3 32.7 11.9 50.6 0.237 0.24-0.25 0.07 0.33 0 0.237 0.31

8 11.9 50.6 28.6 79.6 0.355 0.35-0.36 0.07 1 0 0.355 0.43

9 28.6 79.6 28.6 79.6 0.355 0.35-0.36 0.07 0 0 0.335 0.43

10 28.6 79.6 28.6 79.6 0.355 0.35-0.36 0.07 0 0 0.335 0.43
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Table 34.- Separation unit. Weibull-gamma model. Observations using a direct method with mean prior. 
Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

Figure 39.- Weibull-gamma. Interval 8. Sampling n=4500, burn=500; 10 cycles. AR= 68.1%. 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.5 10 - - 0.05 - 0.05 0 - 0.05 -

1 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

2 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

3 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

4 0.5 10 6.3 32.7 0.195 0.19-0.20 0.08 0.25 0 0.05 0.13

5 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

6 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

7 0.5 10 6.8 29.2 0.235 0.23-0.24 0.09 0.33 0 0.05 0.14

8 0.5 10 13.8 30.5 0.458 0.45-0.46 0.12 1 0 0.05 0.17

9 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

10 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10
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d.- Direct method with mean posterior. 

The Table 35 shows the observed values. 

Table 35.- Separation unit. Weibull-gamma model. Observations using a direct method with mean 
posterior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

4.1.4. Exponential-normal model. 

With an exponential-normal model the expression (1) with parameter p= λ  is, (Annex 
A), is; 

!      (19) 

a.- Recurrent method with mean prior. 

The Table 36 shows the observed values and the (MH) sampling in Figures 40, 41 and 
42. 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.5 10 - - 0.05 - 0.05 0 - 0.05 -

1 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

2 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

3 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

4 0.5 10 6.3 32.7 0.195 0.19-0.20 0.08 0.25 0 0.195 0.28

5 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

6 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

7 0.5 10 6.8 29.2 0.235 0.23-0.24 0.09 0.33 0 0.235 0.33

8 0.5 10 13.8 30.5 0.458 0.45-0.46 0.12 1 0 0.458 0.58

9 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

10 0.5 10 0.5 10 0.05 - 0.05 0 0 0.05 0.10

f (λ /Data)∝ g(Data / λ) f (λ)∞λe−λyi ⋅e
−1
2

λ−µ
σ

⎛
⎝⎜

⎞
⎠⎟
2
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Table 36.- Separation unit. Exponential-normal model. Observations using a recurrent method with mean 
prior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

Figure 40.- Exponential-normal. Interval 4. Sampling n=4500, burn=500; 10 cycles. AR= 46.4%. 

 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.05 - 0.05 0 0 0.05 0.10

3 0.05 0.05 - 0.05 0 0 0.05 0.10

4 0.05 0.159 0.158-0.161 0.06 0.25 0 0.05 0.11

5 0.159 0.159 0.158-0.161 0.06 0 0 0.05 0.11

6 0.159 0.159 0.158-0.161 0.06 0 0 0.05 0.11

7 0.159 0.242 0.239-0.247 0.09 0.33 0 0.05 0.14

8 0.242 0.562 0.552-0.573 0.20 1 0 0.05 0.25

9 0.562 0.562 0.552-0.573 0.20 0 0 0.05 0.25

10 0.562 0.562 0.552-0.573 0.20 0 0 0.05 0.25
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Figure 41.- Exponential-normal. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 60.6%. 

Figure 42.- Exponential-normal. Interval 8. Sampling n=4500, burn=500; 10 cycles. AR= 80.5%. 

b.- Recurrent method with mean posterior. 

The Table 37 shows the observed values. 
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Table 37.- Separation unit. Exponential-normal model. Observations using a recurrent method with mean 
posterior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

The Table 38 shows the observed values and the (MH) sampling in Figures 43 and 44. 

 

Figure 43.- Exponential-normal. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 53.6%. 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.05 - 0.05 0 0 0.05 0.10

3 0.05 0.05 - 0.05 0 0 0.05 0.10

4 0.05 0.159 0.158-0.161 0.06 0.25 0 0.159 0.22

5 0.159 0.159 0.158-0.161 0.06 0 0 0.159 0.22

6 0.159 0.159 0.158-0.161 0.06 0 0 0.159 0.22

7 0.159 0.242 0.239-0.247 0.09 0.33 0 0.242 0.33

8 0.242 0.562 0.552-0.573 0.20 1 0 0.562 0.76

9 0.562 0.562 0.552-0.573 0.20 0 0 0.562 0.76

10 0.562 0.562 0.552-0.573 0.20 0 0 0.562 0.76
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Table 38.- Separation unit. Exponential-normal model. Observations using a direct method with mean 
prior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

 

Figure 44.- Exponential-normal. Interval 8. Sampling n=4500, burn=500; 10 cycles. AR= 78.4%. 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.05 - 0.05 0 0 0.05 0.10

3 0.05 0.05 - 0.05 0 0 0.05 0.10

4 0.05 0.159 0.158-0.161 0.06 0.25 0 0.05 0.11

5 0.05 0.05 - 0.05 0 0 0.05 0.10

6 0.05 0.05 - 0.05 0 0 0.05 0.10

7 0.05 0.199 0.197-0.201 0.08 0.33 0 0.05 0.13

8 0.05 0.497 0.489-0.505 0.19 1 0 0.05 0.24

9 0.05 0.05 - 0.05 0 0 0.05 0.10

10 0.05 0.05 - 0.05 0 0 0.05 0.10
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d.- Direct method with mean posterior. 

The Table 39 shows the observed values. 

Table 39.- Separation unit. Exponential-normal model. Observations using a direct method with mean 
posterior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

4.1.5. Poisson-normal model. 

With a Poisson-normal model the expression (1) with parameter p= λ  is, (Annex A), is; 

!     (20) 

a.- Recurrent method with mean prior. 

The Table 40 shows the observed values and the (MH) sampling in Figures 45, 46 and 
47. 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.05 - 0.05 0 0 0.05 0.10

3 0.05 0.05 - 0.05 0 0 0.05 0.10

4 0.05 0.159 0.158-0.161 0.06 0.25 0 0.159 0.22

5 0.05 0.05 - 0.05 0 0 0.05 0.10

6 0.05 0.05 - 0.05 0 0 0.05 0.10

7 0.05 0.199 0.197-0.201 0.08 0.33 0 0.199 0.28

8 0.05 0.497 0.489-0.505 0.19 1 0 0.497 0.69

9 0.05 0.05 - 0.05 0 0 0.05 0.10

10 0.05 0.05 - 0.05 0 0 0.05 0.10

f (λ /Data)∝ g(Data / λ) f (λ)∞ e−λλ yi

yi !i=1

n

∏ ⋅e
−1
2

λ−µ
σ

⎛
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⎞
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Table 40.- Separation unit. Poisson-normal model. Observations using a recurrent method with mean 
prior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

Figure 45.- Poisson-normal. Interval 4. Sampling n=4500, burn=500; 10 cycles. AR= 53.8%. 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.05 - 0.05 0 0 0.05 0.10

3 0.05 0.05 - 0.05 0 0 0.05 0.10

4 0.05 0.154 0.152-0.155 0.08 0.25 0 0.05 0.13

5 0.154 0.154 0.152-0.155 0.08 0 0 0.05 0.13

6 0.154 0.154 0.152-0.155 0.08 0 0 0.05 0.13

7 0.154 0.240 0.238-0.242 0.11 0.33 0 0.05 0.16

8 0.240 0.468 0.459-0.477 0.22 1 0 0.05 0.27

9 0.468 0.468 0.459-0.477 0.22 0 0 0.05 0.27

10 0.468 0.468 0.459-0.477 0.22 0 0 0.05 0.27
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Figure 46.- Poisson-normal. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 65.2%. 

Figure 47.- Poisson-normal. Interval 8. Sampling n=4500, burn=500; 10 cycles. AR= 83.7%. 

b.- Recurrent method with mean posterior. 

The Table 41 shows the observed values 
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Table 41.- Separation unit. Poisson-normal model. Observations using a recurrent method with mean 
posterior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

The Table 42 shows the observed values and the (MH) sampling in Figures 48 and 49. 

Figure 48.- Poisson-normal. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 60.6%. 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.05 - 0.05 0 0 0.05 0.10

3 0.05 0.05 - 0.05 0 0 0.05 0.10

4 0.05 0.154 0.152-0.155 0.08 0.25 0 0.154 0.23

5 0.154 0.154 0.152-0.155 0.08 0 0 0.154 0.23

6 0.154 0.154 0.152-0.155 0.08 0 0 0.154 0.23

7 0.154 0.240 0.238-0.242 0.11 0.33 0 0.240 0.35

8 0.240 0.468 0.459-0.477 0.22 1 0 0.468 0.69

9 0.468 0.468 0.459-0.477 0.22 0 0 0.468 0.69

10 0.468 0.468 0.459-0.477 0.22 0 0 0.468 0.69
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Table 42.- Separation unit. Poisson-normal model. Observations using a direct method with mean prior. 
Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

Figure 49.- Poisson-normal. Interval 8. Sampling n=4500, burn=500; 10 cycles. AR= 80.8%. 

d.- Direct method with mean posterior. 

The Table 43 shows the observed values. 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.05 - 0.05 0 0 0.05 0.10

3 0.05 0.05 - 0.05 0 0 0.05 0.10

4 0.05 0.153 0.151-0.155 0.07 0.25 0 0.05 0.12

5 0.05 0.05 - 0.05 0 0 0.05 0.10

6 0.05 0.05 - 0.05 0 0 0.05 0.10

7 0.05 0.181 0.178-0.185 0.09 0.33 0 0.05 0.14

8 0.05 0.387 0.376-0.399 0.19 1 0 0.05 0.24

9 0.05 0.05 - 0.05 0 0 0.05 0.10

10 0.05 0.05 - 0.05 0 0 0.05 0.10
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Table 43.- Separation unit. Poisson-normal model. Observations using a direct method with mean 
posterior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

The next step in the SRC methodology is the analysis of the safety barriers. This can be 
performed using a Poisson-gamma inference or applying a binomial-beta inference for 
the preventive and mitigative barriers or a hidden Markov chain analysis for the 
mitigative barriers. 

The application of a Poisson-gamma inference is equivalent in methodology to the 
previously seen. The procedure is to observe, in this case, the eight safety barriers 
taking the inactive barriers as causes with ! rate. 

For to apply a binomial-beta model it is needed to examine every one of the barriers, 
preventive or mitigative, independently of the others, to obtain the evolution of their 
probability of  failure. For a selected barrier it is needed to perform groups of 
observations in a certain number of intervals; for example for the first mitigative safety 
barrier (SF1) the valve-manifold actuation, 10 intervals with 5 observations every one, 
are performed collecting if the safety barrier is not active. The observed data are 
summarized in the following Table 44. 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.05 - 0.05 0 0 0.05 0.10

3 0.05 0.05 - 0.05 0 0 0.05 0.10

4 0.05 0.153 0.151-0.155 0.07 0.25 0 0.153 0.22

5 0.05 0.05 - 0.05 0 0 0.05 0.10

6 0.05 0.05 - 0.05 0 0 0.05 0.10

7 0.05 0.181 0.178-0.185 0.09 0.33 0 0.181 0.27

8 0.05 0.387 0.376-0.399 0.19 1 0 0.387 0.58

9 0.05 0.05 - 0.05 0 0 0.05 0.10

10 0.05 0.05 - 0.05 0 0 0.05 0.10

λ
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Table 44.- Separation unit. Collected data in the SF1 safety barrier. Ten intervals with 5 collected 
observations. 

4.1.6. Binomial-beta model. 

With a Binomial-beta model the expression (1) with parameter !  equal to 

probability of failure is, (Annex A), is; 

!  

! ,   for !   (22) 

And the posterior distribution of !  is given by a beta distribution. 

!          (23) 

Being !  the parameters of the beta distribution, !  the probability of failure, ! the 

total observations in a group and !  the not active barrier incidence counted in the 

group of observations. 

An estimated probability of failure value p=0.2 is applied with !  as a prior. 

Solving the equations; 

!           (24) 

!         (25) 

Interval 1 2 3 4 5 6 7 8 9 10

1 A A A A A A A A A A

2 A A A F A A F A A A

3 A A A A A A F A A A

4 A A A A A A A F A A

5 A A A A A A A A A A

Observed
probability 

Failed/
Collected

0/5 0/5 0/5 1/5 0/5 0/5 2/5 1/5 0/5 0/5

p = θ

f (p / yi )∝ f (p) f (yi / p) =
pα−1(1− p)β−1

B(α ,β )
n
yi

⎛
⎝⎜

⎞
⎠⎟
pyi (1− p)n−yi =

= pα−1(1− p)β−1 pyi (1− p)n−yi = p(α+yi )−1(1− p)(β+n−yi )−1 0 < p <1

p

(p / y) ∼ Beta(α + y,β + n − y)

α ,β p n

yi

σ = 0.1

0.2 = α
α + β

0.01= α ⋅β
α + β( )2 + α + β +1( )
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Prior values of !  and !  are obtained. The SRC methodology for safety barrier 

SF1 applying control charts with +/-1σpost  is presented in the following methods. 

a.- Recurrent method with mean prior. 

The Table 45 shows the observed values. With the following comments in every 
interval. 

Interval 1.- With zero incidences, is, n=5; y=0 and posterior density for p; is represented 
by beta(α+y,β+n-y) = beta(3+0,12+5-0) = beta(3,17) with ppost=0.15 and  σpost=0.08. 

Interval 2.- With zero incidences, is, n=5; y=0 and posterior density for p; represented 
by beta(α+y,β+n-y) = beta(3+0,17+5-0) with ppost=0.12 and  σpost=0.06. 

Interval 3.- With zero incidences, is, n=5; y=0 and posterior density for p; represented 
by beta(α+y,β+n-y) = beta(3,27) with ppost=0.10 and  σpost=0.05. 

Interval 4.- With one no activity, is, n=5; y=1 and posterior density for p; represented by 
beta(α+y,β+n-y) = beta(3+1,27+5-1) = beta(4,31) with  ppost=0.11 and σpost=0.05.  

Interval 5.- With zero incidences, is, n=5; y=0 and  posterior density for p; represented 
by beta(α+y,β+n-y) = beta(4,36) with ppost=0.10 and σpost=0.05.  

Interval 6.- With zero incidences, is, n=5; y=0 and posterior density for p; represented 
by beta(α+y,β+n-y) = beta(4,41) with ppost=0.09 and σpost=0.04.  

Interval 7.- With two no activities detected, is, n=5; y=2 and posterior density for p; 
represented by beta(α+y,β+n-y)= beta(6,44) with ppost=0.12 and σpost=0.05.  

Interval 8.- With one no activity detected, is, n=5 y=1 and posterior density for p; 
represented by beta(α+y,β+n-y) = beta(7,48) with posterior parameter ppost=0.13 and  
σpost=0.04.  

Interval 9.- With zero incidences, is, n=5; y=0 and posterior density for p; represented 
gam(α+y,β+n-y) =  beta(7,53) with p post=0.12 and  σpost=0.04. 

Interval 10.- With zero incidences, is, n=5 y=0 and posterior density for p; represented 
by beta(α+y,β+n-y) =  beta(7,58) with p post=0.11 and  σpost=0.04. 

α = 3 β = 12
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Table 45.- Separation unit. Binomial-beta model. Observations for SF1 using a recurrent method with 
mean prior. Out-of-limits highlighted blue. 

Charts for observed values in intervals 4 and 7 are presented on Figure 50. 

Figure 50.- Binomial-beta model. Recurrent with mean prior method. Charts based on observed failure 
probability evolution for intervals 4 and 7. 

b.- Recurrent method with mean posterior. 

The Table 46 shows the observed values. 

Prior Posterior Observed

Time 
interval

alfa beta alfa+y beta+n-y p sigma p LCL MEAN UCL

0 3 12 - - 0.2 0.1 0 0.1 0.2 0.3

1 3 12 3 17 0.15 0.08 0 0.12 0.2 0.28

2 3 17 3 22 0.12 0.06 0 0.14 0.2 0.26

3 3 22 3 27 0.10 0.05 0 0.15 0.2 0.25

4 3 27 4 31 0.11 0.05 0.20 0.15 0.2 0.25

5 4 31 4 36 0.10 0.05 0 0.15 0.2 0.25

6 4 36 4 41 0.09 0.04 0 0.16 0.2 0.24

7 4 41 6 44 0.12 0.05 0.40 0.15 0.2 0.25

8 6 44 7 48 0.13 0.04 0.20 0.16 0.2 0.24

9 7 48 7 53 0.12 0.04 0 0.16 0.2 0.24

10 7 53 7 58 0.11 0.04 0 0.16 0.2 0.24
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Table 46.- Separation unit. Binomial-beta model. Observations for SF1 using a recurrent method with 
mean posterior. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

With the same target probability of failure value p=0.2 is applied with !  as a prior 
and beta prior parameters α=3; β=12. Working with +/-1σpost the posterior values are 
presented on Table 47.  

With the following comments in every interval. 

Interval 1.- With zero incidences, is, n=5; y=0 and posterior density for p; is represented 
by beta(α+y,β+n-y) = beta(3+0,12+5-0) = beta(3,17) with ppost=0.15 and  σpost=0.08. 

Interval 2.- With zero incidences, is, n=10; y=0 and posterior density for p; represented 
by beta(α+y,β+n-y) = beta(3+0,12+10-0) = beta(3,22) with ppost=0.12 and  σpost=0.06. 

Interval 3.- With zero incidences, is, n=15; y=0 and posterior density for p; represented 
by beta(α+y,β+n-y) = beta(3,27) with ppost=0.10 and  σpost=0.05. 

Interval 4.- With one no activity, is, n=20; y=1 and posterior density for p; represented 
by beta(α+y,β+n-y) = beta(3+1,12+20-1) = beta(4,31) with  ppost=0.11 and σpost=0.05.  

Prior Posterior Observed

Time 
interval

alfa beta alfa+y beta+n-y p sigma p LCL MEAN UCL

0 3 12 - - 0.2 0.1 0 0.1 0.2 0.3

1 3 12 3 17 0.15 0.08 0 0.07 0.15 0.23

2 3 17 3 22 0.12 0.06 0 0.06 0.12 0.18

3 3 22 3 27 0.10 0.05 0 0.05 0.10 0.15

4 3 27 4 31 0.11 0.05 0.20 0.06 0.11 0.16

5 4 31 4 36 0.10 0.05 0 0.05 0.10 0.15

6 4 36 4 41 0.09 0.04 0 0.05 0.09 0.13

7 4 41 6 44 0.12 0.05 0.40 0.07 0.12 0.17

8 6 44 7 48 0.13 0.04 0.20 0.09 0.13 0.17

9 7 48 7 53 0.12 0.04 0 0.08 0.12 0.16

10 7 53 7 58 0.11 0.04 0 0.07 0.11 0.15

σ = 0.1
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Interval 5.- With zero incidences, is, n=25; y=0 and  posterior density for p; represented 
by beta(α+y,β+n-y) = beta(4,36) with ppost=0.10 and σpost=0.05.  

Interval 6.- With zero incidences, is, n=30; y=0 and posterior density for p; represented 
by beta(α+y,β+n-y) = beta(4,41) with ppost=0.09 and σpost=0.04.  

Interval 7.- With two no activities detected, is, n=35; y=3 and posterior density for p; 
represented by beta(α+y,β+n-y)= beta(6,44) with ppost=0.12 and σpost=0.05.  

Interval 8.- With one no activity detected, is, n=40 y=4 and posterior density for p; 
represented by beta(α+y,β+n-y) = beta(7,48) with posterior parameter ppost=0.13 and  
σpost=0.04.  

Interval 9.- With zero incidences, is, n=45; y=4 and posterior density for p; represented 
gam(α+y,β+n-y) =  beta(7,53) with p post=0.12 and  σpost=0.04. 

Interval 10.- With zero incidences, is, n=50 y=4 and posterior density for p; represented 
by beta(α+y,β+n-y) =  beta(7,58) with p post=0.11 and  σpost=0.04. 

Table 47.- Separation unit. Binomial-beta model. Observations for SF1 using a direct method with mean 
prior. Out-of-limits highlighted blue. 

And charts for intervals 7 and 8 in Figure 51. 

Prior Posterior Observed

Time 
interval

alfa beta alfa+y beta+n-y p sigma p LCL MEAN UCL

0 3 12 - - 0.2 0.1 0 0.1 0.2 0.3

1 3 12 3 17 0.15 0.08 0 0.12 0.2 0.28

2 3 12 3 22 0.12 0.06 0 0.14 0.2 0.26

3 3 12 3 27 0.10 0.05 0 0.15 0.2 0.25

4 3 12 4 31 0.11 0.05 0.20 0.15 0.2 0.25

5 3 12 4 36 0.10 0.05 0 0.15 0.2 0.25

6 3 12 4 41 0.09 0.04 0 0.16 0.2 0.24

7 3 12 6 44 0.12 0.05 0.40 0.15 0.2 0.25

8 3 12 7 48 0.13 0.04 0.20 0.16 0.2 0.24

9 3 12 7 53 0.12 0.04 0 0.16 0.2 0.24

10 3 12 7 58 0.11 0.04 0 0.16 0.2 0.24
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Figure 51.- Binomial-beta model. Direct with mean prior method. Charts based on observed failure 
probability evolution for intervals 7 and 8. 

d.- Direct method with mean posterior. 

The posterior values are presented on Table 48.  

Table 48.- Separation unit. Binomial-beta model. Observations for SF1 using a direct method with mean 
prior. Out-of-limits highlighted blue. 

And charts for intervals 7 and 8 in Figure 52. 

Prior Posterior Observed

Time 
interval

alfa beta alfa+y beta+n-y p sigma p LCL MEAN UCL

0 3 12 - - 0.2 0.1 0 0.1 0.2 0.3

1 3 12 3 17 0.15 0.08 0 0.07 0.15 0.23

2 3 12 3 22 0.12 0.06 0 0.06 0.12 0.18

3 3 12 3 27 0.10 0.05 0 0.05 0.10 0.15

4 3 12 4 31 0.11 0.05 0.20 0.06 0.11 0.16

5 3 12 4 36 0.10 0.05 0 0.05 0.10 0.15

6 3 12 4 41 0.09 0.04 0 0.05 0.09 0.13

7 3 12 6 44 0.12 0.05 0.40 0.07 0.12 0.17

8 3 12 7 48 0.13 0.04 0.20 0.09 0.13 0.17

9 3 12 7 53 0.12 0.04 0 0.08 0.12 0.16

10 3 12 7 58 0.11 0.04 0 0.07 0.11 0.15
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Figure 52.- Binomial-beta model. Direct with mean posterior method. Charts based on observed failure 
probability evolution for intervals 7 and 8. 

4.1.7. Poisson-gamma model 

The procedure is analogous to the previous, it is needed to examine every one of the 
barriers, preventive or mitigative, independently of the others, to obtain the evolution of 
their incidences rate 𝝀, also through groups of observations, when an incidence is 

produced for the analyzed barrier in a certain number of intervals, the observed data are 
summarized in the following Table 49. 

Table 49.- Separation unit. Collected data in the SF1 safety barrier. Ten intervals with 5 collected 
observations of incidences. 

The application of the Poisson-gamma inference model is the same as the previously 
seen.  

Interval 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 1 0 0 0

3 0 0 0 0 0 0 1 0 0 0

4 0 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 0 0 0

Observed 
rate 𝝀

0 0 0 1 0 0 2 1 0 0
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4.1.8. Analysis of the mitigative safety barriers observing the end states. 

a.- Recurrent method 

If “0” is defined as a barrier is “correct” and active and “1” is in “fail” the possible end 
states are defined in Table 50. Where “000” means that the first, second and third 
barriers are active and the end state is V1 = Normal operation; and the same logic with 
the rest. 

Table 50.- End states in function of the mitigative safety barriers situation. 

A prior transition matrix is defined for the three safety barriers. Being p11  the 
probability for the SF1 barrier to stay active in state 1; p12 the probability of transition 
from SF1 to SF2 because SF1 has failed; p13 is the probability of transition from SF1 to 
SF3 because SF1 and SF2 have failed, and so on. Additionally an emission matrix is 
defined to indicate the probabilities that a mitigative barrier SFn is active based on the 
observed end states (V1 V2 V3 V4). 

!

!  

In concordance with the previous defined transition and emission matrices the expected 
use of the mitigative safety barriers and the end states are presented in the Figure 53. 

Mitigative 
barrier 

situation

End state Mitigative 
barrier 

situation

End state

000 Normal operation (V1) 100 Partial operation (V2)

001 Normal operation (V1) 101 Partial operation (V2)

010 Normal operation (V1) 110 Short stop operation (V3)

011 Normal operation (V1) 111 Total failure (V4)

Tran =
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0.8 0.15 0.05
0.55 0.4 0.05
0.2 0.4 0.4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Emiss =

V1 V2 V3 V4
S1 0.8 0.1 0.05 0.05
S2 0.4 0.2 0.2 0.2
S3 0.3 0.4 0.2 0.1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Figure 53.- Separation unit. Initial transitions of the safety barriers and emission states. 

The observations are made by creating a group of ten and following a first in first out 
(FIFO) order. Each new one is added to the group and the oldest one disappears. The 
observed sequence is seqobs=[1 1 1 1 1 1 2 3 1 1] indicating that in the six first 
observations times normal operation has been sampled, one partial operation in the 
seventh, one short stop operation in the eighth, and normal operation in the next two 
observations. Performing a Baum-Welch algorithm (Annex C) the posterior transition 
and emission  matrices are obtained from the observed sequence. 

!    !  

Being the relative occupancies of the safety barriers at steady state SF1=80%; SF2=10%   
and SF3=10%,  Figure 54. 

Figure 54.- Separation unit. Posterior transitions of the safety barriers and emission matrices according to 
the first sequence observation. 

Transobs =
0.875 0 0.1250
1 0 0
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ Emisobs =

V1 V2 V3 V4
S1 1 0 0 0
S2 0 0 1 0
S3 0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Thus in this 10 intervals the number of visits to every transition state for the three safety 
barriers are;  

!  

It is important also to know what will be the next passage, in observations intervals, 
from the SF1 and SF2 safety barriers to the most critical SF3 barrier. In this case is 
m1=8 and m2=9, meaning that, according to the observations, is expected that from SF1 
a transition to SF3 can be produced in 8 intervals, and from SF2 to SF3 in 9 intervals.   

As a recurrent method the posterior transition and emission matrices (Transobs and 
Emisobs), can be the new prior in the next sampling, in this case has been observed a 
partial operation (V2); then seqobs=[1 1 1 1 1 2 3 1 1 2] and a new posterior for 
transition and emission matrices is obtained.  

!      !  

Being the relative occupancies of the safety barriers at steady state SF1=66.6%; 
SF2=16.7%   and SF3=16.7%, Figure 55. 

Figure 55.- Separation unit. Posterior transitions of the safety barriers and emission matrices, using a 
recurrent method, according to the second sequence observation. 

And the number of visits to every transition state in these 10 intervals for the three 
safety barriers are;  

M (10) =
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

8.04 0.93 1.03
8.24 0.83 0.93
7.44 1.73 0.83

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Transobs =
0.75 0 0.25
1 0 0
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ Emisobs =

V1 V2 V3 V4
S1 1 0 0 0
S2 0 0 1 0
S3 0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟



!  

!                                                                                        Results 107

!  

The next passage values for the third safety barrier are m1=4 and m2=5, meaning that, 
according to the observations, is expected that from SF1 a transition to SF3 can be 
produced in 4 intervals, and from SF2 to SF3 in 5 intervals. The values are lower than 
the previous ones because the sampled observation has been for state V2 , a partial 
operation, which reduces the number of normal operation, state V1, making more critical 
the possible use of  the third  barrier. 

b.- Direct method 

The same values are obtained using a direct method for the second observation. 

4.1.9. Analysis of the end states observing the mitigative safety barriers. 

a.- Recurrent method 

The prior matrices are defined being the transition matrix for the four end sates and the 
emission matrix indicating the probabilities to stay in an end state Sn being: S1=Normal 
operation; S2=Partial operation; S3=Short stop operation and S4=Total failure;  in 
function of the observed three active mitigative barriers (V1 V2 V3). 

A prior transition matrix is defined for the four end states. Being p11  the probability for 
the S1 state (normal operation) to stay active in this state 1; p12 the probability of 
transition from S1 (normal operation) to S2 (partial operation) because S1 has failed; p13 
is the probability of transition from S1 (normal operation) to S3 (short stop operation) 
because S1 and S2 have failed, p14 is the probability of transition from S1 (normal 
operation) to S4 (total failure) because S1, S2 and S3 have failed, and so on. Additionally 
an emission matrix is defined to indicate the probabilities that an end state be active 
based on the observed safety barriers. (V1 V2 V3 ). 

!  

M (10) =
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

6.67 1.58 1.75
7.00 1.42 1.58
6.33 2.25 1.42

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Tran =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0.8 0.15 0.03 0.02
0.50 0.4 0.05 0.05
0.2 0.3 0.4 0.1
0.15 0.4 0.4 0.05

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
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!  

In concordance with the previous defined transition and emission matrices the expected 
use of the end states and the observed safety barrier are presented in the Figure 56. 

Figure 56.- Separation unit. Initial transitions of the end states and emission matrices. 

The sampling is obtained by sequentially observing the barriers, if the first is active, 
then its value is 1, if it fails and the second barrier is active, then the value is 2 and so 
on; a group of ten observations is also maintained. The sampled sequence of the safety 
barriers is seqobs=[1 1 1 2 1 1 2 2 1 1].  And the posterior transition and emission 
matrices are. 

!    !  

Being the relative occupancies S1=0%, S2=43%, S3=29% and S4=28% at steady state,  
Figure 57. 

 

Emiss =

V1 V2 V3
S1 0.7 0.2 0.1
S2 0.4 0.4 0.2
S3 0.3 0.3 0.4
S4 0.2 0.2 0.6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Transobs =

0.5 0 0 0.5
0 0.33 0 0.67
0 1 0 0
0 0 1 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Emisobs =

V1 V2 V3
S1 1 0 0
S2 0 1 0
S3 1 0 0
S4 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Figure 57.- Separation unit. Transitions of the end states and emission matrices according to the first 
sequence observation of safety barriers. 

And the number of visits or transitions, in 10 intervals. 

!  

The next passage values for the fourth state, are m1=2, m2=1.5 and m3=2.5. 

Using a recurrent method the posterior transition and emission matrices (Transobs and 
Emisobs), can be the new prior in the next sampling, being seqobs=[1 1 2 1 1 2 2 1 1 2] 
showing an increase of the use of the safety barrier SF2,  a new posterior for transition 
and emission matrices is obtained. 

!   !  

Being the steady state occupations S1=0%, S2=43%, S3=28% and S4=29%, Figure 58. 

M (10) =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0.9955 3.3950 2.6549 2.9545
0 4.1196 2.7840 3.0963
0 4.6397 2.5752 2.7851
0 4.1732 3.2504 2.5764

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Transobs =

0 0 0 1
0 0.33 0 0.67
0 1 0 0
0 0 1 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Emisobs =

V1 V2 V3
S1 0 0 0
S2 0 1 0
S3 1 0 0
S4 1 0 0

⎛

⎝

⎜
⎜
⎜
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⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Figure 58.- Separation unit. Transitions of the end states and emission matrices, using a recurrent method, 
according to the second sequence observation of safety barriers. 

And the number of visits or transitions, in 10 intervals. 

!  

With next passage values for the fourth state; m1=1, m2=1.5 and m3=2.5. 

b.- Direct method 

Applying a direct method the initially defined transition and emission matrices (Tran 
and Emiss), are the prior in the next sampling with seqobs=[1 1 2 1 1 2 2 1 1 2]. And the 
posterior matrices are, 

!   !  

Being the steady state occupations S1=25%, S2=25%, S3=25% and S4=25%, Figure 59. 

M (10) =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0 3.8619 2.8875 3.2506
0 4.1220 2.7832 3.0948
0 4.6422 2.5746 2.7832
0 4.1748 3.2506 2.5746

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Transobs =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Emisobs =

V1 V2 V3
S1 1 0 0
S2 0 1 0
S3 0.33 0.67 0
S4 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
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⎞

⎠

⎟
⎟
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⎟
⎟
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Figure 59.- Separation unit. Transitions of the end states and emission matrices, using a direct method, 
according to the second sequence observation of safety barriers. 

And the number of visits or transitions, in 10 intervals. 

!  

With next passage values for the fourth state; m1=1, m2=2 and m3=3.  

The difference with the recurrent and direct methods is due to the value of the transition 
and emission matrices that are used as prior, because the algorithm convergence is 
depending on the initial values [187, 188]. 

4.2. Occupational analysis. MDF process. 

The occupational analysis can be performed using any of the Bayesian inference models 
described above since its application is based on the same scheme of analysis of 
initiating causes (ic), incidents in preventive and mitigative safety barriers and the 
analysis of the general safety barriers using Bayesian inference or the mitigative safety 
barriers and their end states applying hidden Markov chains. 

Then, using the generic scheme of Figure 14 the same inference models following 
Poisson, exponential or Weibull distributions, with the statistical parameter p 
corresponding to the rate λ or frequency of events and defining gamma or normal 
distributions as the prior f(p) can be applied. Also the same Binomial-Beta model for the 
safety barriers analysis, in any of their methodologies, direct or recurrent with prior or 
posterior values. And the same consideration for the use of the hidden Markov chains. 
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But to expose the functionality of the method will affect a case of a manufacturing 
process. 

The general process scheme is depicted in Figure 60. And its goal is to produce urea-
melamine medium density fiber (MDF) board elements using as basic raw materials: 
paper, wood, melamine, urea, a resin (such as a polyamide or vinyl chloroacetate) and 
formaldehyde. The paper is subjected to a surface printing treatment continuing with the 
impregnation phase performed with melamine-formaldehyde. A drying and a cooling 
process are executed next in a single step if only the melamine-formaldehyde polymer is 
added or with one additional step if the urea-formaldehyde polymer is added, and with 
the same impregnation, drying and subsequent cooling steps. The process continues 
with the cutting and winding of the paper and its stacking. At the same time, the wood is 
splintered by subsequently drying the material at 180°C to reduce moisture. The dry 
material (8% moisture) is impregnated with the urea-formaldehyde solution and the 
resin. It follows a stage of forming and pressing at 200°C. The board thus obtained is 
subjected to a curing process, and is completed in a union-pressing stage of the board 
formed with the sheet of paper. 

In plant there are 42 workers distributed in two shifts. The plant is highly automated 
with robots for handling, feeding, palletizing and control systems in every step. The 
finishing area is made up of panel sectioning machines composed of vertical bar and 
pressure sawing machines, as well as circular saws of one or several discs, in addition to 
a final sanding and calibration zone. Also in the work areas and in order to maintain the 
correct level of particles and VOC’s emissions, there is a centralized air aspiration 
system with subsequent filtration an purification processes prior to its emission to the 
environment. Quality and safety policies are established. Workers wear personal 
protective equipment and there are periodic safety checks at the process plant. 

Figure 60.- General production scheme of a medium density fiber (MDF) urea-melamine plant. 
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The analysis covers the general plant and the bow tie is presented in Figure 61 with five 
final states: no injuries, minor, serious and fatal [189]. If an accident event (AE) is 
generated, the mitigating safety barriers (SF1 SF2 SF3  SF4) are activated. The final states 
represented are bounded at one end by the absence of personal injuries, if the first 
mitigating safety barrier (SF1) acts correctly, in case of failure the second barrier (SF2) 
acts ending with a minor injury if it works correctly, in case of failure the third barrier 
(SF3) acts leading to a serious problem in case of correct operation, or in case of failure 
the fourth barrier activates (SF4) leading to a very serious if acts correctly of a fatality in 
case of failure. The sub-functions (SF11 SF21 SF31 SF41) correspond to automatisms, 
procedures, alarms and active or passive protections belonging to the main function of 
each of the mitigative safety barriers. 

Figure 61.- Bow-tie for occupational accident performed at first level in the MDF process plant. 

The preventive safety barriers (ISn) are defined in concordance to the general scheme 
from Figure 14 and their definition together to with the mitigative safety barriers are 
collected in the following Table 51. 

The analysis is carried out at the first level, highlighted in yellow on the graph. The 
observations are made in the worst case taking the plant in general, which means that 
the observations are collected on the one hand for the preventive barriers, the general 
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safety barrier (SFISg) and the initiating causes (ic) that collect all workers in one shift; 
and on the other hand, from each of the mitigative barriers. Being SF1-SF11 and its (ic) 
which group the personal equipment protection at place and located in each workplace 
of the plant; the SF2-SF21  and its (ic’s) which group the work in place and local safety 
systems, fire extinction, alarms and the automated or manual shutdown of every 
workplace; the SF3-SF31 and its (ic’s) which group the general plant protections for 
shutdown, light, power and fire, and the SF4-SF41 and its (ic’s) which group the 
emergency interventions at own plant with rescue and first medical aid and the 
explosion-fire protections. The observations are done in a 10 time intervals in a day, 
covering all shifts. 

Table 51.- Preventive and mitigative safety barriers definition for the occupational analysis of the MDF 
process plant. 

Table 52 shows the observed causes in different intervals in a working day. 

Table 52.- Initiating causes (ic) and safety barrier failures in 10 intervals. 

Preventive Safety barrier (ISn) Attributes-Failures

ISJSC JSC Job Self Control

ISJSU JSU Job Supervision

ISSSC SSC Safety Self Control

ISSSU SSU Safety Supervision

SFISg Automated actuators and control systems. Process 
operations control. 

SFSP Safety sub-functions: Organization (ORG), Job Design 
(JBD), Operator environment (OPE), Operator 
characteristics (OPC), Human system interface (HSI), 
Information (INF), Work place design (WKD).

SF1 - SF11 Personal Protection Equipment. Equipment condition and 
state.

SF2 - SF21 Work in place safety system. Automated local protections. 
Local fire system. Local shutdown.

SF3 - SF31 General control safety system. Automated general 
protections. General fire system. General Shutdown.

SF4 - SF41 Emergency intervention. First aid and medical. General 
rescue actuations. General passive-active for fire and 
explosion protections. 

Interval 1 2 3 4 5 6 7 8 9 10

Observations - - 1 ISJSC 1 SF1-
SF11

- 1SF2-
SF21

1 ISSSC 1 (FTS)

1 JSC job self control failure, 1 personal equipment protection defect in impregnation, 1 automation failure in hot 
pressing, 1 SSC safety self control fail, 1 FTS failed test of the emergency power system.
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4.2.1. Poisson-gamma model. 

Applying this model with parameter p= λ , (Annex A) and with a recurrent with mean 
prior method and equal to a desired value as a target, is applied.  In this case the target is 
for have zero accidents, then the parameters of the gamma prior are α=β=0.001. 
Working with +/-1σpost  the posterior values are, Table 53. 

Table 53.- MDF plant. Poisson-gamma model. Observations using a recurrent method with mean prior. 
Out-of-limits highlighted blue. 

And charts in intervals 6 and 7 on Figure 62. 

Figure 62.- Poisson-gamma model. Recurrent with mean prior method. Charts based on observed causes 
for intervals 6 and 7. 

Prior Posterior Observed

Time 
interval

alfa beta alfa beta lambda sigma lambda LCL MEAN UCL

0 0.001 0.001 - - 0 0 0 - 0 -

1 0.001 0.001 0.001 1 0 0.03 0 0 0 0.03

2 0.001 1 0.001 2 0 0.02 0 0 0 0.02

3 0.001 2 1 3 0.3 0.3 0.3 0 0 0.3

4 1 3 2 4 0.5 0.35 1 0 0 0.35

5 2 4 2 5 0.4 0.3 0 0 0 0.3

6 2 5 3 6 0.5 0.3 0.5 0 0 0.3

7 3 6 4 7 0.6 0.3 1 0 0 0.3

8 4 7 5 8 0.6 0.3 1 0 0 0.3

9 5 8 5 9 0.56 0.25 0 0 0 0.25

10 5 9 5 10 0.5 0.2 0 0 0 0.2
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4.2.2. Analysis of the end states observing the mitigative safety barriers. 

a.- Recurrent method 

It is of interest to monitor the mitigative safety barriers activity in order to infer the 
evolution of the possible end states. 

The prior matrices are defined being the transition matrix for the five end sates and the 
emission matrix indicating the probabilities to stay in an end state Sn being: S1=No 
injury; S2=Minor injury; S3=Serious injury; S4=Very serious injury and S5=Fatality;  in 
function of the observed four active mitigative barriers (V1 V2 V3 V4). 

A prior transition matrix is defined for the five end states and additionally an emission 
matrix is defined to indicate the probabilities that an end state be active based on the 
observed safety barriers. (V1 V2 V3 V4). 

! !  

In concordance with the previous defined transition and emission matrices the expected 
use of the end states and the observed safety barrier are presented in the Figure 63. 

Figure 63.- MDF plant. Initial transitions of the end states and emission matrices. 

As the previous case, the sampling is obtained by sequentially observing the barriers, if 
the first is active, then its value is 1, if it fails and the second barrier is active, then the 
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value is 2 and so on; a group of ten observations is also maintained. The sampled 
sequence of the safety barriers is seqobs=[1 1 1 1 1 1 2 3 1 1].  And the posterior 
transition and emission matrices are. 

!    !  

Being the relative occupancies S1=69.65%, S2=10.44%, S3=9.95%, S4=5.26% and 
S5=4.69% at steady state,  Figure 64. 

Figure 64.- MDF plant. Transitions of the end states and emission matrices according to the first sequence 
observation of safety barriers. 

And number of visits or transitions, in 10 intervals. 

!  

The next passage values for the fifth state, are m1=18.25, m2=19.30, m3=20.30 and 
m4=21.30. 
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Using a recurrent method the posterior transition and emission matrices (Transobs and 
Emisobs), can be the new prior in the next sampling, being seqobs=[1 1 1 1 1 2 3 1 1 2] 
showing an increase of the use of the safety barrier SF2,  a new posterior for transition 
and emission matrices is obtained. 

!    !  

Being the steady state occupations S1=41%, S2=28.2%, S3=15.4%, S4=8.1% and S5=7.3, 
Figure 65. 

Figure 65.- MDF plant. Transitions of the end states and emission matrices, using a recurrent method, 
according to the second sequence observation of safety barriers. 

And the number of visits or transitions, in 10 intervals. 

!  

With next passage values for the fourth state; m1=10.8, m2=11.8, m3=12.8 and m4=13.8. 

b.- Direct method 

Transobs =

0.31 0.31 0 0.20 0.18
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Emisobs =

V1 V2 V3 V4
S1 1 0 0 0
S2 1 0 0 0
S3 0 0 1 0
S4 0 1 0 0
S5 0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

M (10) =

3.9555 2.7958 1.5517 0.8965 0.8005
4.5223 2.5474 1.3786 0.8197 0.7320
4.1351 3.2347 1.2515 0.7283 0.6503
3.6739 2.9912 2.0834 0.6611 0.5904
3.6739 2.9912 2.0834 0.6611 0.5904

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟



!  

!                                                                                        Results 119

Applying a direct method the initially defined transition and emission matrices (Tran 
and Emiss), are the prior in the next sampling with seqobs=[1 1 1 1 1 2 3 1 1 2]. And the 
posterior matrices are, 

!    !  

Being the steady state occupations S1=0%, S2=25%, S3=25%, S4=25% and S5=25, 
Figure 66. 

Figure 66.- MDF plant. Transitions of the end states and emission matrices, using a direct method, 
according to the second sequence observation of safety barriers. 

And the number of visits or transitions, in 10 intervals. 

!  

The next passage values for the fifth state, are m1=5, m2=1, m3=2 and m4=3. 
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4.3. Cost-time deviations analysis. Cogeneration and compression 
units. 

The same considerations set out in the previous section apply using the generic scheme 
of Figure 17 and therefore the same inference models and the same parameter p 
corresponding to the rate λ or frequency of events as regards the analysis of events 
apply. The same binomial-beta model is also applicable to carry out the analysis of 
safety barriers together with the use of hidden Markov chains. 

But this is a case where the own deviations are applied as data collected and applied 
into the inference model to perform the SRC analysis. 

The following case corresponds to an installation of energy cogeneration placed in a 
waste recovery plant.  

This is a 24-7 uninterrupted power turbine unit of 1 MW producing electricity and 
steam. Figure 67. 

Figure 67.- Cogeneration unit 

The project lasted 7 weeks. And the generic bow-tie diagram exposed in Figure 17 can 
be applied. 

From Figure 16, the sum of raw materials + components + supplies + variable + fixed 
costs for the planned project planned and the actual costs, by period and their 
accumulated, are shown in the following Table 54. 
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Table 54.- Cogeneration unit project. Variable plus fixed costs evolution. 

In order to evaluate whether it is possible to apply an inference model based on the data 
in a normal function, it is examined whether these correspond to this type of 
distribution, Figure 68. 

Figure 68.-Adjustment verification to a normal distribution for the planned and actual costs of the 
cogeneration project. 

4.3.1. Normal-normal model. 

With a Normal-normal model the expression (1) with parameter p=𝜇 , (Annex A) offers 

a posterior normal distribution   !   with;     

!             (26) 

Time interval / 
activity

Planned Costs 
(k€)

Accumulated 
planned costs 

(k€)

Actual Costs 
(k€)

Accumulated    
actual costs 

(k€)

1 68 68 69 69

2 74 142 73 142

3 82 224 85 227

4 110 334 115 342

5 115 449 125 467

6 93 542 90 557

7 86 628 79 636

Totals 628 - 636 -

(µ / y) ∼ N(µ∗,σ ∗
2 )

µ∗ = (1− k)µ0 + ky
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!           (27) 

with !          (28) 

Where the data ! follow a normal probability function, with a sample mean  

!   and being !  the parameters of the prior normal distribution for 

!  and !  the standard distribution of the ! data. 

Considering the planned costs as a prior with mean prior ! and sigma prior 

! . The SRC methodology for cost deviation applying control charts working 

with +/-3σpost  has the following results.  

a.- Recurrent method with mean prior. 

The Table 55 shows the observed values. With the following comments in every 
interval. 

Interval 1.- With value yi=[69] , is, n=1; 𝜇=69; 𝝈=0. Then from equations (27), (28) and 

(29) values of  are obtained and with +/-3σpost the control 

limits are: LCL = 89.7; MEAN = 89.7 and UCL = 89.7.    

Interval 2. With value y=73; the data vector is  yi=[69 73], with n=2; 𝜇=71; 𝝈=2. Values 

of !  are obtained, with control limits LCL = 85.5; MEAN 

= 89.7 and UCL = 93.9. 

Interval 3. With value y=85; the data vector is yi=[69 73 85], with n=3; 𝜇=75.7; 𝝈=6.8. 

Values of !  are obtained, with control limits LCL = 

85.7; MEAN = 89.7 and UCL = 93.7. 

Interval 4. With value y=115, and data vector yi=[69 73 85 115], with n=4; 𝜇=85.5; 

𝝈=18. Values of !  are obtained, with control limits 

LCL = 85.8; MEAN = 89.7 and UCL = 93.7. 

σ ∗
2 = kσ

2

n

k = n

n + σ
2

σ 0
2

y

y = (y1 + ...+ yn )
n

µ0;σ 0
2

µ σ 2 n

µ0 = 89.7

σ 0 = 17.6

k = 1; µpost = 69; σ post = 0

k = 1; µpost = 71; σ post = 1.4

k = 0.1; µpost = 71.5; σ post = 1.3

k = 0.02; µpost = 71.8; σ post = 1.3
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Interval 5. With value y=125, and data vector yi=[69 73 85 115 125], with n=5; 𝜇=93.5; 

𝝈=22.6. Values of !  are obtained, with control limits 

LCL = 85.8; MEAN = 89.7 and UCL = 93.6. 

Interval 6. With value y=90, and data vector yi=[69 73 85 115 125 90], with n=6; 
𝜇=92.8; 𝝈=20.6. Values of !  are obtained, with 

control limits LCL = 85.9; MEAN = 89.7 and UCL = 93.6. 

Interval 7. With value y=79, and data vector yi=[69 73 85 115 125 90 79], with n=7; 
𝜇=90.9; 𝝈=19.7. Values of !  are obtained, with 

control limits LCL = 85.9; MEAN = 89.7 and UCL = 93.5. 

Table 55.- Cogeneration unit. Normal-normal model. Observations for cost deviation using a recurrent 
method with mean prior. Out-of-limits highlighted blue. 

And charts for intervals 4 and 5 in Figure 69. 

k = 0.02; µpost = 72.2; σ post = 1.3

k = 0.02; µpost = 72.7; σ post = 1.3

k = 0.03; µpost = 73.2; σ post = 1.3

Normal Prior Normal Posterior Observed

Time 
interval

mu sigma mu sigma y LCL MEAN UCL

1 89.7 17.6 69 0 69 89.7 89.7 89.7

2 69 17.6 71 1.4 73 85.5 89.7 93.9

3 71 1.4 71.5 1.3 85 85.7 89.7 93.7

4 71.5 1.3 71.8 1.3 115 85.8 89.7 93.7

5 71.8 1.3 72.2 1.3 125 85.8 89.7 93.6

6 72.2 1.3 72.7 1.3 90 85.9 89.7 93.6

7 72.7 1.3 73.2 1.3 79 85.9 89.7 93.5
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Figure 69.- Normal-normal model. Recurrent with mean prior method. Charts based on observed values 
in intervals 4 and 5. 

b.- Recurrent method with mean posterior. 

The Table 56 shows the observed values. 

Table 56.- Cogeneration unit. Normal-normal model. Observations for cost deviation using a recurrent 
method with mean posterior. Out-of-limits highlighted blue. 

c.- Direct method with mean prior.  

The Table 57 shows the observed values. 

Normal Prior Normal Posterior Observed

Time 
interval

mu sigma mu sigma y LCL MEAN UCL

1 89.7 17.6 69 0 69 69 69 69

2 69 17.6 71 1.4 73 66.8 71 75.2

3 71 1.4 71.5 1.3 85 67.5 71.5 75.5

4 71.5 1.3 71.8 1.3 115 67.9 71.8 75.8

5 71.8 1.3 72.2 1.3 125 68.3 72.2 76.1

6 72.2 1.3 72.7 1.3 90 68.8 72.7 76.5

7 72.7 1.3 73.2 1.3 79 69.4 73.2 77.0
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Table 57.- Cogeneration unit. Normal-normal model. Observations for cost deviation using a direct 
method with mean prior. Out-of-limits highlighted blue. 

d.- Direct method with mean posterior. 

The Table 58 shows the observed values. 

Table 58.- Cogeneration unit. Normal-normal model. Observations for cost deviation using a direct 
method with mean posterior. Out-of-limits highlighted blue. 

The possibility of applying a LogNormal distribution function to the planned and actual 
cost data can now be examined if they are adjusted after the examination of the 
probability graph, Figure 70. 

Normal Prior Normal Posterior Observed

Time 
interval

mu sigma mu sigma y LCL MEAN UCL

1 89.7 17.6 69 0 69 89.7 89.7 89.7

2 89.7 17.6 71.1 1.4 73 85.5 89.7 93.9

3 89.7 17.6 76.3 3.8 85 78.2 89.7 101.2

4 89.7 17.6 86.4 8 115 65.7 89.7 113.8

5 89.7 17.6 92.5 8.8 125 63.5 89.7 115.9

6 89.7 17.6 92.3 7.6 90 66.9 89.7 112.5

7 89.7 17.6 90.7 6.9 79 69.1 89.7 110.3

Normal Prior Normal Posterior Observed

Time 
interval

mu sigma mu sigma y LCL MEAN UCL

1 89.7 17.6 69 0 69 69 69 69

2 89.7 17.6 71.1 1.4 73 66.9 71.1 75.3

3 89.7 17.6 76.3 3.8 85 64.8 76.3 87.8

4 89.7 17.6 86.4 8 115 62.3 86.4 110.4

5 89.7 17.6 92.5 8.8 125 66.2 92.5 118.7

6 89.7 17.6 92.3 7.6 90 69.5 92.3 115

7 89.7 17.6 90.7 6.9 79 70.1 90.7 111.3
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Figure 70.-Adjustment verification to a lognormal distribution for the planned and actual costs of the 
cogeneration project. 

4.3.2. Lognormal-lognormal model. 

With a Lognormal-lognormal model the expression (1) with parameter p=𝜇  is, (Annex 

A). 

!  (29) 

This expression needs to be solved using the Metropolis-Hastings sampler. Also 
considering the planned costs as a prior with mean prior ! and sigma prior 

! . The SRC methodology for cost deviation applying control charts working 

with +/-3σpost  has the following results.  

a.- Recurrent method with mean prior. 

The Table 59 shows the observed values. An Figures 71 and 72 the Metropolis - 
Hastings values in intervals 4 and 5. 
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Table 59.- Cogeneration unit. Lognormal-lognormal model. Observations for cost deviation using a 
recurrent method with mean prior. Out-of-limits highlighted blue. 

Figure 71.- Lognormal-lognormal. Interval 4. Sampling n=4500, burn=500; 10 cycles. AR= 25.8%. 

Figure 72.- Lognormal-lognormal. Interval 5. Sampling n=4500, burn=500; 10 cycles. AR= 25.7%. 

LogNormal Prior LogNormal Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 89.7 17.6 79.4 79.1-79.8 10.5 69 58.2 89.7 121.2

2 79.4 10.5 76.9 76.6-77.3 8.3 73 64.8 89.7 114.6

3 76.9 8.3 76.4 76.3-76.7 6.0 85 71.7 89.7 107.7

4 76.4 6.0 77.7 77.5-77.8 5.8 115 72.3 89.7 107.1

5 77.7 5.8 78.9 78.8-79 5.8 125 72.3 89.7 107.1

6 78.9 5.8 80.2 80-80.4 5.5 90 73.2 89.7 106.2

7 80.2 5.5 81.2 81.1-81.4 5.3 79 73.8 89.7 105.6
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b.- Recurrent method with mean posterior. 

The Table 60 shows the observed values. 

Table 60.- Cogeneration unit. Lognormal-lognormal model. Observations for cost deviation using a 
recurrent method with mean posterior. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

The Table 61 shows the observed values. 

Table 61.- Cogeneration unit. Lognormal-lognormal model. Observations for cost deviation using a direct 
method with mean prior. Out-of-limits highlighted blue. 

The Figure 73 show the Metropolis-Hastings sampling execution for interval 7. 

 

LogNormal Prior LogNormal Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 89.7 17.6 79.4 79.1-79.8 10.5 69 47.9 79.4 110.9

2 79.4 10.5 76.9 76.6-77.3 8.3 73 52 76.9 101.8

3 76.9 8.3 76.4 76.3-76.7 6.0 85 58.4 76.4 94.4

4 76.4 6.0 77.7 77.5-77.8 5.8 115 60.3 77.7 95.1

5 77.7 5.8 78.9 78.8-79 5.8 125 61.5 78.9 96.3

6 78.9 5.8 80.2 80-80.4 5.5 90 63.7 80.2 96.7

7 80.2 5.5 81.2 81.1-81.4 5.3 79 65.3 81.2 97.1

LogNormal Prior LogNormal Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 89.7 17.6 79.4 79.1-79.8 10.5 69 58.2 89.7 121.2

2 89.7 17.6 80.3 80.1-80.6 11 73 56.7 89.7 122.7

3 89.7 17.6 79.1 78.9-79.3 7.7 85 66.6 89.7 112.8

4 89.7 17.6 88.9 88.5-89.3 13.7 115 48.6 89.7 130.8

5 89.7 17.6 92.3 91.9-92.6 14.4 125 46.5 89.7 132.9

6 89.7 17.6 92 91.6-92.4 14 90 46.5 89.7 131,7

7 89.7 17.6 91.4 91.2-91.7 14.1 79 47.4 89.7 132
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Figure 73.- Lognormal-lognormal. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 53.4%. 

d.- Direct method with mean posterior. 

The Table 62 shows the observed values. 

Table 62.- Cogeneration unit. Lognormal-lognormal model. Observations for cost deviation using a direct 
method with mean posterior. Out-of-limits highlighted blue. 

4.3.3. Lognormal-gamma model. 

With a LogNormal-gamma model the expression (1) with parameter p=𝜇  is, (Annex A). 

               !       (30) 

LogNormal Prior LogNormal Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 89.7 17.6 79.4 79.1-79.8 10.5 69 47.9 79.4 110.9

2 89.7 17.6 80.3 80.1-80.6 11 73 47.3 80.3 113.3

3 89.7 17.6 79.1 78.9-79.3 7.7 85 56 79.1 102.2

4 89.7 17.6 88.9 88.5-89.3 13.7 115 47.8 88.9 130

5 89.7 17.6 92.3 91.9-92.6 14.4 125 49.1 92.3 135.5

6 89.7 17.6 92 91.6-92.4 14 90 50 92 134

7 89.7 17.6 91.4 91.2-91.7 14.1 79 49.1 91.4 133.7

f (µ / y)∝ f (µ) f (y / µ)∝ µα−1e
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This expression also needs to be solved using the Metropolis-Hastings sampler. With 
the same consideration of planned costs as a prior with mean prior ! and sigma 

prior ! , the values for gamma are ! and ! . The SRC 

methodology for cost deviation applying control charts working with +/-3σpost  has the 
following results.  

a.- Recurrent method with mean prior. 

The Table 63 shows the observed values. 

Table 63.- Cogeneration unit. Lognormal-gamma model. Observations for cost deviation using a recurrent 
method with mean prior. Out-of-limits highlighted blue. 

The Figures 74 and 75 show the Metropolis-Hastings sampling execution for intervals 4 
and 5. 

Figure 74.- Lognormal-gamma. Interval 4. Sampling n=4500, burn=500; 10 cycles. AR= 52.5%. 

µ0 = 89.7
σ 0 = 17.6 α 0 = 26.1237 β0 = 3.434

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 89.7 17.6 78.7 78.4-78.9 10.8 69 57.3 89.7 122.1

2 78.7 10.8 76.5 76.3-76.6 8.8 73 63.3 89.7 116.1

3 76.5 8.8 76.2 76.1-76.3 5.7 85 72.6 89.7 106.8

4 76.2 5.7 76.9 76.8-77 5.7 115 72.6 89.7 106.8

5 76.9 5.7 77.9 77.85-78 5.8 125 72.3 89.7 107.1

6 77.9 5.8 79.2 79.4-79.7 5.6 90 72.9 89.7 106.5

7 79.2 5.6 80.1 79.9-80.3 5.3 79 73.8 89.7 105.6
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Figure 75.- Lognormal-gamma. Interval 5. Sampling n=4500, burn=500; 10 cycles. AR= 53.1%. 

b.- Recurrent method with mean posterior. 

The Table 64 shows the observed values. 

Table 64.- Cogeneration unit. Lognormal-gamma model. Observations for cost deviation using a recurrent 
method with mean posterior. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

The Table 65 shows the observed values. 

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 89.7 17.6 78.7 78.4-78.9 10.8 69 46.3 78.7 111.1

2 78.7 10.8 76.5 76.3-76.6 8.8 73 50.1 76.5 102.9

3 76.5 8.8 76.2 76.1-76.3 5.7 85 59.1 76.2 93.3

4 76.2 5.7 76.9 76.8-77 5.7 115 59.8 76.9 94

5 76.9 5.7 77.9 77.85-78 5.8 125 60.5 77.9 95.3

6 77.9 5.8 79.2 79.4-79.7 5.6 90 62.4 79.2 96

7 79.2 5.6 80.1 79.9-80.3 5.3 79 64.2 80.1 96
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Table 65.- Cogeneration unit. Lognormal-gamma model. Observations for cost deviation using a direct 
method with mean prior. Out-of-limits highlighted blue. 

The Figure 76 show the Metropolis-Hastings sampling execution for interval 7. 

Figure 76.- Lognormal-gamma. Interval 7. Sampling n=4500, burn=500; 10 cycles. AR= 77.6%. 

d.- Direct method with mean posterior. 

The Table 66 shows the observed values. 

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 89.7 17.6 78.7 78.5-79 10.9 69 57 89.7 122.4

2 89.7 17.6 79.8 79.4-80.2 11.3 73 55.8 89.7 123.6

3 89.7 17.6 78.7 78.5-78.9 7.6 85 66.9 89.7 112.5

4 89.7 17.6 88.2 87.9-88.5 13.3 115 49.8 89.7 129.6

5 89.7 17.6 91.5 90.9-92.1 14.1 125 47.4 89.7 132

6 89.7 17.6 91.1 90.4-91.8 14.2 90 47.1 89.7 132.3

7 89.7 17.6 90.3 89.8-90.9 13.3 79 49.8 89.7 129.6
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Table 66.- Cogeneration unit. Lognormal-gamma model. Observations for cost deviation using a direct 
method with mean posterior. Out-of-limits highlighted blue. 

4.3.4. Lognormal-uniform model. 

With a LogNormal-uniform model the expression (1) with parameter p=𝜇 is, (Annex A). 

                       !             (31) 

This expression can be solved using the Metropolis-Hastings sampler. With this model 
of inference the SRC methodology considering the planned costs with mean prior 

and sigma prior and working with +/-1σpost  the methodology group 

the recurrent into only one and has not direct method. 

a.- Mean prior 

The Table 67 shows the observed values. Figures 77 and 78 show the sampling in the 
intervals 4 and 5. 

   

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 89.7 17.6 78.7 78.5-79 10.9 69 46 78.7 111.4

2 89.7 17.6 79.8 79.4-80.2 11.3 73 45.9 79.8 113.7

3 89.7 17.6 78.7 78.5-78.9 7.6 85 55.9 78.7 101.5

4 89.7 17.6 88.2 87.9-88.5 13.3 115 48.3 88.2 128.1

5 89.7 17.6 91.5 90.9-92.1 14.1 125 49.2 91.5 133.8

6 89.7 17.6 91.1 90.4-91.8 14.2 90 48.5 91.1 133.7

7 89.7 17.6 90.3 89.8-90.9 13.3 79 50.4 90.3 130.2
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Table 67.- Cogeneration unit. Lognormal-uniform model. Observations for cost deviation with mean 
prior. Out-of-limits highlighted blue. 

Figure 77.- Lognormal-uniform. Interval 4. Sampling n=4500, burn=500; 10 cycles. AR= 65.9%. 

Figure 78.- Lognormal-uniform. Interval 5. Sampling n=4500, burn=500; 10 cycles. AR= 72.3%. 

Posterior Observed

Time 
interval

mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 70.4 70.2-70.6 14.2 69 75.5 89.7 103.9

2 72.3 71.9-72.6 14.3 73 75.4 89.7 104

3 76.1 75.9-76.3 8 85 81.7 89.7 97.7

4 88.3 87.9-88.7 20.6 115 69.1 89.7 110.3

5 96.9 95.9-98 26.2 125 63.5 89.7 115.9

6 95.3 94.6-96.1 23.2 90 66.5 89.7 112.9

7 92.9 91.8-94 21.6 79 68.1 89.7 111.3
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b.- Mean posterior 

The Table 68 shows the observed values. 

Table 68.- Cogeneration unit. Lognormal-uniform model. Observations for cost deviation with mean 
posterior. Out-of-limits highlighted blue. 

Until now the application of the SRC methodology has been carried out in a case of 
costs, now its application will be seen in a case of time deviation. The following case 
corresponds to an installation of a gas compression unit in an offshore platform. The gas 
stream from the separation unit goes to a recompression unit before their treatment, 
Figure 79. 

Figure 79.- General scheme of the recompression unit of gas in an offshore platform. 

The objective of the project is to replace one of the compressors, the schedule in days of 
the activities and their actual duration, are shown in the Table 69. 

Posterior Observed

Time 
interval

mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 70.4 70.2-70.6 14.2 69 56.2 70.4 84.6

2 72.3 71.9-72.6 14.3 73 58 72.3 86.6

3 76.1 75.9-76.3 8 85 68.1 76.1 84.1

4 88.3 87.9-88.7 20.6 115 67.7 88.3 108.9

5 96.9 95.9-98 26.2 125 70.7 96.9 123.1

6 95.3 94.6-96.1 23.2 90 72.1 95.3 118.5

7 92.9 91.8-94 21.6 79 71.3 92.9 114.5
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Table 69.- Planned and actual realization of the compressor project substitution. 

Although the extent of the data is reduced, it can be estimated if the distribution of 
planned and current days approximates a normal and lognormal distribution. For a 
normal distribution see Figure 80 and Figure 81 for a lognormal distribution. 

Figure 80.-Adjustment verification to a normal distribution for the planned and actual days of the 
compressor unit project. 

Figure 81.-Adjustment verification to a lognormal distribution for the planned and actual days of the 
compressor unit project. 

Activity 
ID

1 2 3 4 5 6 7 8 9 10

PLAN 1 2 2 4 3 3 3 2 1 1

ACTUAL 1 3 3 3 2 4 4 2 1 1

A-P 0 1 1 -1 -1 1 1 0 0 0
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It is not definitive, but it is quite approximate, the inference models seen above could be 
applied; the normal-normal, lognormal-lognormal, lognormal-gamma and lognormal-
uniform. 

4.3.5. Normal-normal model. 

For example applying a normal-normal model of inference working with the planned 
time as a prior with  and  . Working with +/-3σpost  the Table 70 shows 

the results for the direct method with mean posterior. 

Table 70.- Compression unit. Normal-normal model. Observations for days deviation using a direct 
method with mean posterior. Out-of-limits highlighted blue. 

4.3.6. Exponential-normal model. 

As an additional possibility, the positive difference in days from Table 69 can be seen as 
number of incidences that are producing in different intervals with rate 𝝀, if for example 

not more than 1 day of difference is admissible in 20 intervals, leads for the same rate 
0.05 value as the previous examples. Applying an exponential-normal model with 
+/-3σpost  the Table 71 shows the results for the recurrent with mean prior method. 

µ0 = 2.2 σ 0 = 1

Normal Prior Normal Posterior Observed

Time 
interval

mu sigma mu sigma y LCL MEAN UCL

1 2.2 1 1 0 1 1 1 1

2 2.2 1 2.1 0.6 3 0.3 2.1 3.8

3 2.2 1 2.3 0.5 3 0.9 2.3 3.7

4 2.2 1 2.5 0.4 3 1.3 2.5 3.7

5 2.2 1 2.4 0.3 2 1.4 2.4 3.4

6 2.2 1 2.6 0.4 4 1.5 2.6 3.7

7 2.2 1 2.8 0.4 4 1.7 2.8 3.8

8 2.2 1 2.7 0.3 2 1.7 2.7 3.7

9 2.2 1 2.5 0.3 1 1.5 2.5 3.5

10 2.2 1 2.4 0.3 1 1.4 2.4 3.4



!  

!                                                                                        Results 138

Table 71.- Compression unit.  Exponential-normal model. Observations for days deviation using a 
recurrent method with mean prior. Confidence interval (CI) [5%-95%]. Out-of-limits highlighted blue. 

4.3.7. Normal-gamma I model. 

With a Normal-gamma I model the expression (1) with parameter p=𝝈2=1/𝝀 is, (Annex 

A) allows to obtain a posterior !  being a gamma distribution, 

where, the posterior parameters are,  

!               (32)  

!               (33) 

And 

!             (34) 

Prior Posterior Observed

Time 
interval

lambda lambda CI 
[5%-95%]

sigma lambda LCL MEAN UCL

0 0.05 0.05 - 0.05 0 - 0.05 -

1 0.05 0.05 - 0.05 0 0 0.05 0.10

2 0.05 0.33 0.32-0.34 0.135 0.5 0 0.05 0.45

3 0.33 0.67 0.65-0.69 0.256 1 0 0.05 0.82

4 0.67 0.67 0.65-0.69 0.256 0 0 0.05 0.82

5 0.67 0.67 0.65-0.69 0.256 0 0 0.05 0.82

6 0.67 0.66 0.64-0.68 0.28 0.33 0 0.05 0.89

7 0.66 0.83 0.81-0.85 0.30 1 0 0.05 0.95

8 0.83 0.83 0.81-0.85 0.30 0 0 0.05 0.95

9 0.83 0.83 0.81-0.85 0.30 0 0 0.05 0.95

10 0.83 0.83 0.81-0.85 0.30 0 0 0.05 0.95

f (λ / y) ∼Gamma(a,b)

a =α + n
2

b = β + n
2
sµ
2

sµ
2 = 1

n
(yi − µ)2
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n
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Being, 𝛼,𝛽 the prior parameters of the gamma distribution, n the number of data from 

the vector (y1,y2,…yn). The Plan is a Normal with population mean and 

! ; then the parameters for the prior distribution are calculated from 

                 !                   (35) 

This model examines de standard deviation as parameter, due to this only it is possible 
to apply the direct method. With 𝝀0=1 and a variance of 0.5 defined the gamma prior 

parameters are 𝛼= 2 and 𝛽=2, working with +/-1/2σpost the results are the following. 

a.- Direct method with mean prior. 

The Table 72 shows the observed values. 

Table 72.- Compression unit. Normal-gamma I model. Observations for days deviation using a direct 
method with mean prior. Out-of-limits highlighted blue. 

b.- Direct method with mean posterior. 

The Table 73 shows the observed values. 

µ0 = µ = 2.2

σ 0 = 1

σ 0
2 = 1

λ
→12 = 1

λ
→ λ = 1

Gamma Prior Gamma Posterior Observed

Time 
interval

lambda sigma lambda sigma lambda LCL MEAN UCL

1 1 0.7 0.92 0.58 - 0.71 1 1.29

2 1 0.7 0.99 0.57 1 0.72 1 1.28

3 1 0.7 1.04 0.56 1.13 0.72 1 1.28

4 1 0.7 1.09 0.54 1.33 0.73 1 1.27

5 1 0.7 1.22 0.57 1.56 0.71 1 1.29

6 1 0.7 0.94 0.42 1.13 0.79 1 1.21

7 1 0.7 0.79 0.34 1.02 0.83 1 1.17

8 1 0.7 0.86 0.35 1.07 0.82 1 1.18

9 1 0.7 0.85 0.33 0.9 0.83 1 1.17

10 1 0.7 0.83 0.32 0.8 0.84 1 1.16
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Table 73.- Compression unit. Normal-gamma I model. Observations for days deviation using a direct 
method with mean posterior. Out-of-limits highlighted blue. 

4.4. LOC-domino effect analysis. Separation unit. 

The separation unit is considered In this case the primary element that can be origin of 
the LOC event is a heat exchanger for LPG and oil. The scenario application is then for 
liquids and the bow-tie of application corresponds to the one in Figure 23. The SRC 
analysis follows the previously examined inference models considering the analysis of 
initiating causes (ic) and incidences in the safety barriers, the analysis of the safety 
barriers and the application of the hidden Markov chain analysis for the mitigative 
safety barriers. 

But when maintenance works or equipment modifications are scheduled near to 
equipment that is likely to suffer a LOC event is necessary to consider when the 
situation of risks exceeds a certain limit and a special case of the application of the SRC 
methodology following the general scheme of obtaining the final risk damage due to a 
LOC event is applied. Remembering the general scheme is; 

1.  Scenario consideration for gas-vapor or liquid. 

2. Loss of containment estimation (LOC) and their corresponding end state according to 
the selected bow-tie. 

Gamma Prior Gamma Posterior Observed

Time 
interval

lambda sigma lambda sigma lambda LCL MEAN UCL

1 1 0.7 0.92 0.58 - 0.63 0.92 1.21

2 1 0.7 0.99 0.57 1 0.70 0.99 1.27

3 1 0.7 1.04 0.56 1.13 0.76 1.04 1.32

4 1 0.7 1.09 0.54 1.33 0.82 1.09 1.36

5 1 0.7 1.22 0.57 1.56 0.93 1.22 1.50

6 1 0.7 0.94 0.42 1.13 0.73 0.94 1.15

7 1 0.7 0.79 0.34 1.02 0.62 0.79 0.96

8 1 0.7 0.86 0.35 1.07 0.69 0.86 1.04

9 1 0.7 0.85 0.33 0.9 0.68 0.85 1.01

10 1 0.7 0.83 0.32 0.8 0.68 0.83 0.99
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3. Affectation to elements !  placed at distance !  using equations (11) and (12). 

Obtaining a   PLOC,distance  equal to the  ProbDEi  probability. 

4. Affectation due to the Toxicity, Operation and Flammability (TOF) dimensions for 
which, in percentage, its relative importance should be assessed in the considered 
scenario. A ponderation in concordance with their values, considering the worst case 
for multi-components is performed. The result is a modified PLOC,distance,TOF  

probability. 

5. Affectation due to the estimated storm days, precipitation value (mm) and wind speed 
over 55 km/h (SPW55) in days. Obtaining a fWeather,SPW55 factor. 

6. Affectation due to the installation behavior (IB) according to the main process 
variables affecting risk. Obtaining a fBehavior,IB  factor. 

In concordance with Annex E, Table E.4.1, the worst case probability of LOC  for this 
type of equipment is  1.2·10-3 [45]. From the general bow-tie scheme and from the Table 
19, the following Figure 82 is obtained.  

Figure 82.- General bow-tie in domino effect for a loss event (LE) from liquid loss of containment 
(LOC). 

If the primary origin is a flash explosion or/and a VCE plus a pool fire,  the worst case 
has a  ProbDamage = 1.9·10-4. Near of the heat exchanger will be available 4 vessels - 
tanks, or mobil elements located at distances of 15, 18, 20 and 30 meters. 

i ri

1.2·10-3

0.95

0.05

0.85

0.05

0.80

0.20

6·10-5

5.7·10-5

7.8·10-4

1.9·10-4
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Applying equations (11) and (12), the PLOC,distance probability is obtained. Then for an 
equivalent of 500 kg of TNT the radius of affectation rsi for a II level of damage, see 
Table 20, is; 

!  

All the elements are inside the affectation with probabilities, Table 74. 

Table 74.- Separation unit. Probabilities of damage due to LOC event in a heat exchanger. 

These PLOC,distance  probabilities can be affected not only for the distance also for the 
exchanger operation status, and the worst value for flammability and toxicity of the 
components into the exchanger process. This situation defines three ponderations based 
on Toxicity (T), Operation (O) and Flammability (F). 

The toxicity ponderation [190] is based on the following Table 75, where components 
are assigned to one of the five toxicity categories on the basis of LD50 (oral, dermal) or 
LC50 (inhalation) with the units of LD50 and LC50 are listed as follows: 

• LD50: in mg/kg/bw. mg/kg bw/d stands for mg of substance per kg of body weight 
administered per day. 

• LC50: in mg/L. mg/L is the estimated air concentration of a substance administered 
via inhalation route. 

rsi = KlG
0.33 1+ 3180

G
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= 40  (m)

Distance ri (m) PLOC,distance · 10-4

0 1.9000

15 0.7338

18 0.5659

20 0.4660

30 0.1121
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Table 75.- Separation unit. Exchanger. Toxicity ponderation. Source [190]. 

The operation status ponderation is presented in the following Table 76. 

Table 76.- Separation unit. Exchanger. Operation status ponderation. 

Ponderation Toxicity
(LD50 Oral and Dermal mg/kg

Gas (ppm)
(LC50 Vapour, dust and mist mg/l)

0

1 Oral = 5000 mg/kg
Dermal = 5000 mg/kg
Gas > 20000 ppm
Vapour > 20 mg/l
Dust, mist > 5 mg/l

2 Oral = 2000 mg/kg
Dermal = 2000 mg/kg
Gas = 20000 ppm
Vapour = 20 mg/l
Dust, mist = 5 mg/l

3 Oral = 300 mg/kg
Dermal = 1000 mg/kg
Gas = 2500 ppm
Vapour = 10 mg/l
Dust, mist = 1 mg/l

4 Oral = 50 mg/kg
Dermal = 200 mg/kg
Gas = 500 ppm
Vapour = 2 mg/l
Dust, mist = 0.5 mg/l

5 Oral = 5 mg/kg
Dermal = 50 mg/kg
Gas = 100 ppm
Vapour = 0.5 mg/l
Dust, mist = 0.05 mg/l

Ponderation Status (process capability)

0 No operation

1 25 %

2 50 %

3 75 %

4 100 %
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The flammability ponderation, [45,190] is presented on the following Table 77. 

Table 77.- Separation unit. Exchanger. Flammability ponderation. Sources [45,190]. 

The relative importance of every of these three dimensions is stablished in this scenario 
in: 25% Toxicity; 40% Operation and 35% Flammability. Their application allows for a 
corrected value of  PLOC,distance,TOF  probability. 

Ponderation Gases Liquids
Flash point (FP)

Initial Boiling point 
(IBP)

Aerosols Under pressure

0 - - - -

1 Chemically unstable 
at a temperature 
higher than 20°C or a 
pressure greater than 
101.3 kPa 

- In the foam test, the 
flame height is 
>=20cm and the 
flame duration >=2s; 
or the flame height is 
>=4cm and the flame 
duration >=7s. 

atmospheric 
pressure

2 Chemically unstable 
at 20°C and a 
standard pressure of 
101.3 kPa 

FP > 60ºC and ≤ 
93ºC

Ignition occurs at a 
distance <75cm in an 
ignition test. 
However, the heat of 
combustion is >20kJ/
g or ignition distance 
is >=15cm or the 
space ignition test 
shows that the time 
equivalent <=300s/
m3 or the deflation 
density <300g/m3; 

Totally disolved in a 
solvent

3 Ignite spontaneously 
in air at a 
temperature of 54°C 
or below

FP ≥ 23ºC and ≤ 
60ºC

Ignition occurs at a 
distance >=75cm in 
an ignition test. 

Partially disolved in a 
solvent

4 At 20°C and a 
standard pressure of 
101.3 kPa (14.7 psi), 
have a flammable 
range while mixed in 
air. 

FP <  23ºC
IBP > 35ºC

Concentration of the 
flammable 
components >85% 
and the heat of 
combustion is ≥ 30 
kJ/g. 

Partially liquid above 
-50ºC 

5 At 20°C and a 
standard pressure of 
101.3 kPa (14.7 psi) 
that: (a) are ignitable 
when in a mixture of 
13% or less by 
volume in air; or (b) 
have a flammable 
range with air of at 
least 12 percentage 
points regardless of 
the lower flammable 
limit. 

FP <  23ºC
IBP ≤ 35ºC

Concentration of the 
flammable 
components ≤ 1% 
and the heat of 
combustion is < 20 
kJ/ 

Gaseous at -50ºC 
including all gases 
with critical 
temperature less 
than -50ºC
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An important element that affects the probability of risk in situations of domino effect 
are the weather conditions in this case based on the storm days, precipitation value 
(mm) and wind speed over 55 km/h (SPW55) in days [191,192]. These values are 
obtained from the meteorological statistics. The Spain statistics, for precipitation, wind 
and storms in 2016, 2017 and 2018, [193] are presented in the following Table 78. 

Table 78.- Separation unit. Exchanger. Precipitation (mm), Wind days and Storm days for 2016, 2017 and 
2018 years in the Spanish country. Source [193]. 

Month 1 2 3 4 5 6 7 8 9 10 11 12 total

Precip max 
(mm) 2016

17,48 21,69 55,86 18,91 14,78 6,39 4,96 3,85 15,12 22,38 31,25 21,35 234,03

Precip max 
(mm) 2017

18,68 18,67 21,78 13,64 13 11,32 11,61 14,95 8,74 13,96 16,65 20,25 183,24

Precip max 
(mm) 2018

21,72 23,89 21,40 20,85 17,09 16,96 8,97 10,41 15,51 32,60 26,21 10,14 225,73

Wind
(km/h)
 2016 

11,63 15,11 13,29 13,25 13,03 12,76 11,82 12,01 10,70 8,64 9,97 8,38 10,86

Days wind 
55

5,68 8,83 5,13 3,96 3,20 2,05 1,32 2,28 1,44 1,06 2,72 1,34 23,73

Days wind 
91

0,20 0,42 0,15 0,07 0,05 0 0,04 0,02 0,02 0,04 0,07 0,09 0,09

Wind
(km/h)
 2017 

10,15 12,78 12,47 12,56 12,35 13,09 13,07 12,03 10,94 9,04 9,09 11,95 10,65

Days wind 
55

3,59 6,09 5,20 3,17 2,36 4,08 2,46 1,79 1,28 1,72 2,12 5,49 34

Days wind 
91

0,12 0,67 0,11 0,11 0,05 0,08 0,02 0,02 0 0,07 0,11 0,35 1,5

Wind
(km/h)
 2018

11,63 11,56 16,61 14,01 12,42 12,04 12,55 11,62 10,43 10,84 11,09 9,19 11

Days wind 
55

4,29 3,20 11,92 4,89 2,22 1,50 1,48 2,33 1,35 2,71 3,35 2,55 33,07

Days wind 
91

0,17 0,05 0,70 0,16 0 0 0,02 0,03 0,02 0,06 0,08 0,06 0,93

Storm days
2016

0,23 0,29 0,50 0,67 1,51 1,12 1,68 0,99 1,24 0,98 0,92 0,27 10,11

Storm days
2017

0,48 0,52 0,72 0,46 2,19 2,85 1,57 2 0,51 0,55 0,61 0,28 12,57

Storm days
2018

0,52 0,31 0,92 1,31 3,80 2,70 2,06 2,42 3,29 1,61 0,48 0,08 19,11
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A probability of affected domino risk is dependent of the situation for precipitation, 
wind and storm, but there is no a lineal correlation, and then a fuzzy correlation is 
needed to obtain a ponderation  fWeather,SPW55 factor. 

The first step is to take the inputs and determine the degree to which they belong to each 
of the appropriate fuzzy sets via membership functions. In Fuzzy logic, the input is 
always a numerical value limited to the input variable interval, Annex E. In this case is 
between: 3.85 and 55.86 mm for precipitation value, but values can be higher in 24 
hours; 1.06 and 11.92 days for wind greater or equal to 55 km/h; 0.08 and 3.80 days for 
storm and the output is a fuzzy degree always the interval between 1 and 2. The 
membership functions are presented in the following Figure 83 and the surfaces for the 
corresponding entries; Figure 84. 

Figure 83.- Separation unit. Exchanger. Fuzzy membership functions for the three inputs: Storm (days), 
Precipitation (mm), Wind over 55 km/h (days). 

Figure 84.- Separation unit. Exchanger. Fuzzy surfaces for the three inputs: Storm (days), Precipitation 
(mm), Wind over 55 km/h (days) and the output ponderation factor. 
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The next affectation corresponds to the behavior of the installation, that is what is the 
situation of main streams, and pressures which by its characteristics, is understood to 
affect the risk of a LOC at the moment to perform the maintenance actuation or 
equipment modification. Data of the main flows and pressures are obtained from the 
system control and data acquisition (SCADA) system. From the data of currents and 
pressures affecting flash separators and exchangers, a main current affecting the 
exchanger with pressure input and the output exchanger pressure have been selected. 
Also a fuzzy logic is applied to determine the influence of these values for determine a 
fBehavior,IB  factor. The membership functions are presented in the following Figure 85 
and the surfaces for the corresponding entries in Figure 86. 

Figure 85.- Separation unit. Exchanger. Fuzzy membership functions for the three inputs: Q1 (kg/s), Pin 
(bar) and Pout (bar). 

Figure 86.- Separation unit. Exchanger. Fuzzy surfaces for the three inputs:  Q1 (kg/s), Pin (bar) and Pout 
(bar) and the output ponderation factor. 

And finally obtaining the damage probability value for the selected final state and 
distance. 
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                            Pdamage,distance = PLOC,distance,TOF · fWeather,SPW55 · fBehavior,IB           (13) 

4.4.1. Normal-gamma II model. 

This value can be modeled through a normal-gamma II inference model, being a 
variation of the previously applied, where data follow a normal distribution with a mean 
𝜇 = Pdamage,distance  and this value following a gamma probability, (Annex A). 

But before it is needed to define the probability damage value in the average conditions. 
That is to perform the calibration of the data for the considered location. Previously the 
value obtained for a LOC in a heat exchanger, from the bow-tie , Figure 82, selecting 
the worst end state case from producing primary flash explosion or/and a VCE plus a 
pool fire is 1.9·10-4  at distance of 0 m. 

In normal operation at 0 m., the Toxicity, Operation and Flammability (TOF) conditions 
are: Toxicity = 2;  Operation = 3 (75%) and  Flammability = 3. With their relative 
importance previously stablished, is PLOC,distance,TOF = 5.23·10-4 , see Figure 87. 

Figure 87.- Separation unit. Exchanger. PLOC,distance,TOF probability in function of the toxicity equal to 2, 
operation and flammability. 

And with middle conditions of storm (days), precipitation (mm) and wind55 (days) 
(SPW) of  (1 20 1) a factor 1.2 is obtained , being the new probability is; 

P *damage,distance = PLOC,distance,TOF · fWeather,SPW55 =  5.23·10-4 · 1.2 = 6.28·10-4  
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According to the installation behavior (IB), with a Q1 flow of 4 (kg/s) middle pressure 
of 25 (bar) an exit pressure of 7.5 (bar) is obtained a factor fBehavior,IB = 1.5 and the 
probability is then; 

Pdamage,distance = PLOC,distance,TOF · fWeather,SPW55 · fBehavior,IB  =  5.23·10-4 · 1.2 · 1.5 = 9.42·10-4 . 

This is the mean probability in middle circumstances for the plant location, in units of 
10-4 is Mean = 9.4  and sigma of 1 is considered enough variation; with control limits 
+/-2σpost and applying a Metropolis - Hastings procedure, for values taken in the worst 
case at 0 m, that is for the primary evolution, is; 

Interval 1: With the same TOF conditions, PLOC,distance,TOF=5.23; 1 days of storm, 50 mm 
precipitation and 3.5 days wind are forecasted, being storm (days), precipitation (mm) 
and wind55 (days) (SPW), (1 50 3.5) with a factor is fWeather,SPW55=1.4,  and with a 
installation behavior (IB) change to Q3 =1 (kg/s); Pin = 5 (bar) and Pout = 3.5 (bar) due 
to maintenance a factor of the plant behavior fBehavior,IB=1.3, then is; 

Pdamage,distance = PLOC,distance,TOF · fWeather,SPW55 · fBehavior,IB  =  5.23 · 1.35 · 1.32 = 9.3 . 

Interval 2: With the same toxicity code 2, changes in TOF conditions to operation code 
4 and flammability 4, being the PLOC,distance,TOF=6.65; and 1 days of storm, 30 mm 
precipitation and 2 days wind are forecasted, being storm (days), precipitation (mm) and 
wind55 (days) (SPW), (1 30 2) with a factor is fWeather,SPW55=1.24,  and with a installation 
behavior (IB) returning to Q3 =4 (kg/s); Pin = 25 (bar) and Pout = 7.5 (bar) with a 
factor of the plant behavior  fBehavior,IB=1.5, then is; 

Pdamage,distance = PLOC,distance,TOF · fWeather,SPW55 · fBehavior,IB  =  6.65 · 1.24 · 1.5 = 12.4. 

Interval 3: With the same previous values of TOF conditions, being the 
PLOC,distance,TOF=6.65; and 4 days of storm, 80 mm precipitation and 2 days wind are 
forecasted, being storm (days), precipitation (mm) and wind55 (days) (SPW), (4 80 2) 
with a factor is fWeather,SPW55=1.63,  and with the same installation behavior (IB) of Q3 =4 
(kg/s); Pin = 25 (bar) and Pout = 7.5 (bar) with a factor of the plant behavior  
fBehavior,IB=1.5, then is; 

Pdamage,distance = PLOC,distance,TOF · fWeather,SPW55 · fBehavior,IB  =  6.65 · 1.63 · 1.5 = 16.3. 
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a.- Recurrent method with mean prior. 

Values are presented on Table 79. 

Table 79.- Separation unit. Exchanger. Normal-gamma II model. Observations for Pdamage,distance 

probability using a recurrent method with mean prior. Out-of-limits highlighted blue. 

And the Metropolis-Hastings obtention in interval 2 on Figure 88. 

Figure 88.- Normal-gamma II. Interval 2. Sampling n=4500, burn=500; 10 cycles. AR= 47.0%. 

b.- Recurrent method with mean posterior. 

Values are presented on Table 80. 

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 9.4 1 9.32 9.31-9.33 0.4 9.3 8.5 9.4 10.3

2 9.32 0.4 9.80 9.78-9.81 0.4 12.4 8.5 9.4 10.3

3 9.8 0.4 10.07 10.06-10.09 0.4 16.3 8.5 9.4 10.3
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Table 80.- Separation unit. Exchanger. Normal-gamma II model. Observations for Pdamage,distance 

probability using a recurrent method with mean posterior. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

The Table 81 shows the observed values. 

Table 81.- Separation unit. Exchanger. Normal-gamma II model. Observations for Pdamage,distance 

probability using a direct method with mean prior. Out-of-limits highlighted blue. 

And the Metropolis-Hastings obtention in interval 3 on Figure 89. 

Figure 89.- Normal-gamma II. Interval 2. Sampling n=4500, burn=500; 10 cycles. AR= 61.9%. 

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 9.4 1 9.32 9.31-9.33 0.4 9.3 8.5 9.32 10.1

2 9.32 0.4 9.80 9.78-9.81 0.4 12.4 9.0 9.80 10.6

3 9.8 0.4 10.07 10.06-10.09 0.4 16.3 9.3 10.07 10.9

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 9.4 1 9.33 9.31-9.35 0.5 9.3 8.4 9.4 10.4

2 9.4 1 10.27 10.25-10.30 0.74 12.4 7.9 9.4 10.9

3 9.4 1 10.14 10.10-10.18 0.9 16.3 7.6 9.4 11.2
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d.- Direct method with mean posterior. 

The Table 82 shows the observed values. 

Table 82.- Separation unit. Exchanger. Normal-gamma II model. Observations for Pdamage,distance 

probability using a direct method with mean posterior. Out-of-limits highlighted blue. 

Another possibility is to apply a LogNormal-gamma model of inference, (Annex A). 

4.4.2. Lognormal-gamma model. 

The results are; 

a.- Recurrent method with mean prior. 

Values are presented on Table 83. 

Table 83.- Separation unit. Exchanger. Lognormal-gamma model. Observations for Pdamage,distance 

probability using a recurrent method with mean prior. Out-of-limits highlighted blue. 

b.- Recurrent method with mean posterior. 

Values are presented on Table 84. 

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 9.4 1 9.33 9.31-9.35 0.5 9.3 8.33 9.33 10.33

2 9.4 1 10.27 10.25-10.30 0.74 12.4 8.79 10.27 11.75

3 9.4 1 10.14 10.10-10.18 0.9 16.3 8.34 10.14 11.94

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 9.4 1 9.37 9.35-9.40 0.7 9.3 8.0 9.4 10.8

2 9.37 0.7 9.59 9.58-9.60 0.7 12.4 8.0 9.4 10.8

3 9.59 0.7 9.74 9.72-9.75 0.6 16.3 8.2 9.4 10.6
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Table 84.- Separation unit. Exchanger. Lognormal-gamma model. Observations for Pdamage,distance 

probability using a recurrent method with mean posterior. Out-of-limits highlighted blue. 

c.- Direct method with mean prior. 

The Table 85 shows the observed values. 

Table 85.- Separation unit. Exchanger. Lognormal-gamma model. Observations for Pdamage,distance 

probability using a direct method with mean prior. Out-of-limits highlighted blue. 

d.- Direct method with mean posterior. 

The Table 86 shows the observed values. 

Table 86.- Separation unit. Exchanger. Lognormal-gamma model. Observations for Pdamage,distance 

probability using a direct method with mean posterior. Out-of-limits highlighted blue. 

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 9.4 1 9.37 9.35-9.40 0.7 9.3 8.0 9.37 10.8

2 9.37 0.7 9.59 9.58-9.60 0.7 12.4 8.2 9.59 11

3 9.59 0.7 9.74 9.72-9.75 0.6 16.3 8.5 9.74 10.9

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 9.4 1 9.35 9.33-9.38 0.7 9.3 8.0 9.4 10.8

2 9.4 1 9.69 9.66-9.72 0.86 12.4 7.7 9.4 11.1

3 9.4 1 9.75 9.72-9.78 0.9 16.3 7.6 9.4 11.2

Gamma Prior Gamma Posterior Observed

Time 
interval

mu sigma mu CI 
[5%-95%]

sigma y LCL MEAN UCL

1 9.4 1 9.35 9.33-9.38 0.7 9.3 8.0 9.35 10.8

2 9.4 1 9.69 9.66-9.72 0.86 12.4 7.97 9.69 11.4

3 9.4 1 9.75 9.72-9.78 0.9 16.3 7.95 9.75 11.6
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The analysis of the mitigative safety barriers through the application of the hidden 
Markov chain, can be performed for the mode of observing the state of the safety 
barriers to deduce the future transitions on the end states. 

4.4.3. Analysis of the end states observing the mitigative safety barriers. 

From the prior probabilities of failure of the mitigative safety barriers of the general 
bow-tie for liquid LOC, Table 19, the following end probabilities are deduced, Table 87. 

Table 87.- Separation unit. Exchanger. Probabilities of end states after a LOC event. 

a.- Recurrent method 

The prior matrices are defined being the transition matrix for the four end sates and the 
emission matrix indicating the probabilities to stay in an end state Sn being: 
S1=Environmental damage liquid; S2=Flash+Pool fire; S3=VCE+Pool fire and S4=Pool 
fire;  in function of the observed three active mitigative barriers (V1 V2 V3). 

A prior transition matrix is defined for the four end states. Being p11  the probability for 
the S1 state (environmental damage liquid) to stay active in this state 1; p12 the 
probability of transition from S1 to S2 (Flash+Pool fire) because S1 has failed; p13 is the 
probability of transition from S1 to S3 (VCE+Pool fire) because S1 and S2 have failed, 
p14 is the probability of transition from S1 to S4 (Pool fire) because S1, S2 and S3 have 
failed, and so on. Additionally an emission matrix is defined to indicate the probabilities 
that an end state be active based on the observed safety barriers. (V1 V2 V3 ). 

!      !  

States End State Probabilities

state 1 Environmental damage liquid 0.050

state 2 Flash+Pool fire 0.143

state 3 VCE+Pool fire 0.162

state 4 Pool fire 0,646

Tran =

0.05 0.14 0.16 0.65
0.15 0.10 0.10 0.65
0.05 0.05 0.20 0.70
0.05 0.15 0.15 0.65

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Emiss =

V1 V2 V3
S1 0.75 0.15 0.05
S2 0.10 0.75 0.15
S3 0.10 0.15 0.75
S4 0.30 0.30 0.40

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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In concordance with the previous defined transition and emission matrices the expected 
use of the end states and the observed safety barrier are presented in Figure 90. 

Figure 90.- LOC-domino effect. Initial transitions of the end states and emission matrices 

As the previous case, the sampling is obtained by sequentially observing the barriers, if 
the first is active, then its value is 1, if it fails and the second barrier is active, then the 
value is 2 and so on; a group of ten observations is also maintained. The sampled 
sequence of the safety barriers is seqobs=[3 2 3 1 1 1 1 1 3 3].  And the posterior 
transition and emission matrices are. 

!     !  

Being the relative occupancies S1=11.1%, S2=11.1%, S3=22.2% and S4=55.6% at steady 
state,  Figure 91. 

Transobs =

0 0 1 0
0 0 1 0
0 0.5 0 0.5
0.2 0 0 0.8

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Emisobs =

V1 V2 V3
S1 0 0 1
S2 0 1 0
S3 0 0 1
S4 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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Figure 91.- LOC-domino effect. Transitions of the end states and emission matrices according to the first 
sequence observation of safety barriers. 

And number of visits or transitions, in 10 intervals. 

!  

The next passage values in this case not for the last, but for the 3rd state, VCE+Pool 
fire, are m1=1, m2=1 and  m4=6. 

Using a recurrent method the posterior transition and emission matrices (Transobs and 
Emisobs), can be the new prior in the next sampling, being seqobs=[2 3 1 1 1 1 1 3 3 1] 
showing an increase of the use of the first barrier SF1,  a new posterior for transition and 
emission matrices is obtained. 

!       !  

Being the steady state occupations S1=13.3%, S2=6.7%, S3=13.3% and S4=66.7%, 
Figure 92. 

M (10) =

0.8391 1.3984 3.0075 4.7550
0.8391 1.3984 3.0075 4.7550
0.9510 1.5037 2.2376 5.3077
1.2839 0.8391 1.9020 5.9749

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Transobs =

0 0.5 0.5 0
0 0 1 0
0 0 0 1
0.2 0 0 0.8

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Emisobs =

V1 V2 V3
S1 0 0 1
S2 0 1 0
S3 0 0 1
S4 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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Figure 92.- LOC-domino effect. Transitions of the end states and emission matrices, using a recurrent 
method, according to the second sequence observation of safety barriers. 

The number of visits or transitions, in 10 intervals. 

!  

And the next passage values for the 3rd state, VCE+Pool fire, are m1=1.5, m2=1 and  
m4=6.5. 

b.- Direct method 

Using a direct method the initial transition and emission matrices (Tran and Emiss) be 
the prior in the next sampling, of seqobs=[2 3 1 1 1 1 1 3 3 1] and the new posterior for 
transition and emission matrices is obtained. 

!       !  

Being the steady state occupations S1=0%, S2=0%, S3=5% and S4=95%, Figure 93. 

M (10) =

1.0804 0.9736 1.8797 6.0663
1.1467 0.5070 1.9472 6.3991
1.2798 0.5734 1.0804 7.0664
1.4133 0.6399 1.2133 6.7335

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Transobs =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0.06 0.94

⎛
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⎞

⎠

⎟
⎟
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Emisobs =

V1 V2 V3
S1 1 0 0
S2 0 1 0
S3 0 0 1
S4 0.79 0 0.21
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Figure 93.- LOC-domino effect. Transitions of the end states and emission matrices, using a direct 
method, according to the second sequence observation of safety barriers. 

The number of visits or transitions, in 10 intervals. 

!  

And the next passage values for the 3rd state, VCE+Pool fire, are m1=2, m2=1 and  
m4=18. 

M (10) =

0 1 1.3693 7.6307
0 0 1.4217 8.5783
0 0 0.4741 9.5259
0 0 0.5264 9.4736

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟



Chapter 5 

Discussion of results. 
5.1 Inference models. 

An important number of inference models have been tested covering the recurrent or 
direct modes with mean prior or posterior in different environments, such as industrial, 
occupational process, cost-time deviation and loss of containment (LOC) producing 
domino effect and all of their MATLAB programs can be found in Annex H. 

In the general application of the SRC methodology, with independency of the analyzed 
cases, the observations in which the risk parameter p is a frequency or ratio of risk for 
initiating causes and safety barriers incidences, requires the use of models based on 
Poisson, exponential and Weibull distributions being functions with the characteristic of 
no memory, and then every observation at each time interval begins as if it were new. 
The application of the gamma and normal distributions to characterize the risk 
parameter p as a ratio of risk, is adequate within the range of positive numbers, which 
this parameter can adopt, it should be kept in mind that gamma distribution is a special 
case of exponential and the exponential is related with the Poisson and Weibull 
distributions. For the general analysis of the preventive or mitigative safety barriers the 
application of the binomial-beta model inference is the most adequate because the 
analysis is for to determine if the safety barrier is active or not, this collected data 
follows a binomial distribution with a probability of failure expressed through a beta 
distribution as a prior. 

These considerations also apply when analyzes are performed in the most specific 
presented cases of the general method such as industrial, occupational, cost-time and 
LOC events, because are developments of the general SRC methodology. 

Additional inference models have been presented for the analysis of deviations in cost 
and time, in which the data is collected from the planned and actual values after 
examining their goodness of adjustment to normal or lognormal distributions. In the 
case of deviations in cost the normal and lognormal distributions have been tested for 
data and also the normal, lognormal, gamma and uniform for the parameter. And in the  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analysis of time, the normal has been applied for data and Normal and Gamma I for 
prior. Additionally the Normal-gamma II have been tested in probability deviations in 
scenarios of LOC and further domino effect risk. 

In the following Table 88 can be seen the summarized inference models tested in this 
work. 

Table 88.- Summary of inference models used in this thesis and their application. 

The posterior distribution because is a reflect of the evolution of the prior takes, with 
exception in the application of the Lognormal-uniform model, the same distribution 
function.  

The use of a control chart first requires, in every situation, previous tests to adjust the 
control limits in in order to obtain the desired detection level. 

Below are the most important aspects according to each case analyzed. 

a.- Industrial processess 

In the following Table 89 are compared the important parameters of every inference 
model as a result of their application on the analysis of the initiating causes and safety 
barriers incidences rate.  

Inference models Application Inference models Application

Poisson-gamma Initiating causes- 
incidences rate

Normal-normal Cost deviation
Time deviation

Exponential-gamma Initiating causes- 
incidences rate

Lognormal-Lognormal Cost deviation

Weibull-gamma Initiating causes- 
incidences rate

Lognormal-gamma Cost deviation
Probability deviation

Exponential-normal Initiating causes- 
incidences rate

Lognormal-uniform Cost deviation

Poisson-normal Initiating causes- 
incidences rate

Normal-gamma I Time deviation

Binomial-beta Probability of failure Normal-gamma II Probability deviation
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Table 89.- Comparison of results for inference models applied in the analysis of the initiating causes and 
safety barriers incidences 𝝀 rate.  

From these inference models, with a target for have not more than 1 incidence in 20 
intervals and +/-1σpost , the exponential-gamma, exponential-normal and Poisson-normal 
show the first out-of-limits at the first incidence in interval 4, and this detection is 
maintained independently of the method applied, recurrent or direct. From the 
comparison of the minimal difference in 𝝀 value from the observation, all of them 

present this minimal difference at the low observed value 1/4 in the fourth interval, with 
exception of the exponential-normal model showing this also at the next interval, the 
seventh; with differences between the different models of +/- 20%, and being the most 
nearest posterior value to the observed the one offered by the Poisson-gamma model. 
Likewise from the comparison of the maximal difference in 𝝀 value from the 

observation, all of them present this maximal difference at the last observation with a 
value of 1 in the eighth interval, in this case the model that approximates the value after 
the observed one is the exponential-normal showing 0.50 posterior to 1 observed, in 
direct method and 0.56 posterior to 1 observed in recurrent. 

The Poisson-gamma model showed just at the upper limit the first observation with 
value 0.25, at low changes the Poisson-gamma respond better and with important 
changes shows better the exponential-normal. 

Inference models 1st 
interval 

of 
detection

RM    
Prior

1st 
interval 

of 
detection   

RM 
Posterior

1st 
interval 

of 
detection 

DM          
Prior

1st 
interval 

of 
detection 

DM 
Posterior

Incidences 
and 

intervals

Sigma 
applied

Min. 𝝀 
variation

       
[posterior: 
observed]

Max. 𝝀 
variation

       
[posterior: 
observed]

Poisson-gamma 7 8 7 8 [1:4;1:7;1:8] +/-1σpost [0.25:0.25]
all 

methods

[0.38:1] 
all 

methods

Exponential-gamma 4 4 4 4 [1:4;1:7;1:8] +/-1σpost [0.16:0.25] 
all 

methods

[0.28:1] 
all 

recurrent

Weibull-gamma 4 7 4 8 [1:4;1:7;1:8] +/-1σpost [0.20:0.25] 
all 

methods

[0.36:1]
all 

recurrent

Exponential-normal 4 4 4 4 [1:4;1:7;1:8] +/-1σpost [0.16:0.25]
[0.24:0.33] 

all 
recurrent

[0.50:1] 
all     

direct

Poisson-normal 4 4 4 4 [1:4;1:7;1:8] +/-1σpost [0.24:0.33] 
all 

recurrent

[0.39:1] 
all     

direct
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Posterior values are inferred from the prior data and the observed data, see Figure 94  
showing the evolution for the normal data in the exponential-normal model and for the 
Weibull data in the Weibull-gamma model, in intervals 4, 7 and 8 and using a recurrent 
method with mean prior. As a characteristic of the Bayesian inference, the posterior data 
and their subsequent distribution is a compromise between the prior and the observed 
distributions and it is adjusted according to the evolution of the observed data and the 
distribution function that represents them and the initial or prior considered distribution 
data. 

Figure 94.- Evolution of posterior distribution in two inference models: exponential-normal, from point of 
view of normal distribution and Weibull-gamma, from point of view of Weibull distribution in the 
intervals 4,7 and 8 with a recurrent method. Being blue:prior; orange: observed; red: posterior. 

In the process of data collection when initiating causes occur, at the same time 
information is being obtained on the status of the process and the different elements of 
the equipment and the safety barriers, forcing a continuous review of its operation; for 
example, in the interval 4 due to a failure in a valve on the manifold SF11 it is a situation 
that requires verifying the same type of valves; the same occurs when in the interval 7 
there is a fail in safety supervision (SSU) affecting IS2 cooling, then it is necessary to 
analyze the procedures and sub-functions that affect the safety design of the work, the 
environment of the operator, the characteristics of the operator, the interface of the 
system, procedures and information and design that affect this kind of workplaces. The 
last cause occurs in a failed test affecting SF3 the general emergency shutdown requires 
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reviewing the causes, the status of the automatisms and interlocks and the general 
procedure. 

Considering the analysis of the safety barriers, the inference model of application is the 
binomial-beta, see Table 90. 

Table 90.- Results for the binomial-beta model applied in the analysis of the probability p of failure of a 
safety barrier. 

The analysis has a double purpose, making groups of observations distributed in 
different intervals, on the one hand it is wanted to determine the probability of failure of 
the safety, preventive or mitigating barrier, and on the other hand to control at what 
moment an out of control limits occurs . 

This is a process, in which the collection of data to the extent possible is likely to be 
automated based on information from the control systems. 

With a target value of p=0.2 and with +/-1σpost  the recurrent and direct methods both 
with mean posterior show the first out-of-limits at the first incidence in interval 4. 

See Figure 95  showing the evolution for the probability value p from the point of view 
of beta distribution, in intervals 4, 7 and 8 and using a recurrent method with mean 
posterior. 

Figure 95.- Evolution of posterior distribution in the binomial-beta inference model, from the point of 
view of beta distribution, in the intervals 4,7 and 8 using a recurrent method with mean posterior. Being 
blue:prior; orange: observed; red: posterior. 

Inference models 1st 
interval 

of 
detection

RM    
Prior

1st 
interval 

of 
detection   

RM 
Posterior

1st 
interval 

of 
detection 

DM          
Prior

1st 
interval 

of 
detection 

DM 
Posterior

Incidences 
and 

intervals

Sigma 
applied

Min. p 
variation

       
[posterior: 
observed]

Max. p 
variation

       
[posterior: 
observed]

Binomial-beta 7 4 7 4 [1:4;2:7;1:8] +/-1σpost [0.13:0.20]
all 

methods

[0.12:0.40]
all 

methods
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As observed in the Figure, the posterior data are softely affected for the observed data 
and maintains values closer to those of the prior distribution. 

b.- Occupational analysis 

The inference models that can be applied are the same as the previously presented. As 
an example, an application of the Poisson-gamma inference model has been used with  a 
recurrent and mean prior mode with a target for have zero accidents and working with 
+/-1σpost. Table 91. 

Table 91.- Results for the Poisson-gamma model applied in the occupational analysis measuring the ratio 

of incidences 𝝀 for initiating causes and safety barriers. 

In this case the required accident rate value is very low, close for not having. And the 
control limits +/- 1sigma are restrictive in order to highlight the out-of-limits situation 
well in advance. The model shows the first out-of-limits detection at the second interval 
incidence, and showed just at the upper limit the first observation, in the industrial 
application the inference model showed at fourth interval with a 0.25 value and in this 
occupational analysis showed at third interval with a 0.3 value. As the previous also 
offers the minimal difference in posterior 𝝀 value from the observation at this interval.  

See Figure 96  showing the evolution for the value 𝝀 from the point of view of gamma 

distribution, in intervals 4, 6 and 7 using a recurrent method with mean prior. 

As previously seen in the process of data collection when initiating causes occur, 
simultaneous information is being obtained from the status of the operators their 
equipment and safety barriers, forcing a continuous review; for example, in the interval 
3 due to a job self control failure (JSC) and a safety self control fail (SSC) in interval 7 
the working and safety procedures must be revised together with sub-functions  
affecting the safety of the work, the environment of the operator, the characteristics of 
the operator, the interface of the system, procedures and information and design that 
affect this kind of workplaces. The fail of the personal equipment protection in the 
impregnation area in interval 4 must be corrected and revised together to with the origin 
of the automation failure in the interval 6 in hot pressing. And also the fail in the general 

Inference models 1st 
interval 

of 
detection

RM    
Prior

1st 
interval 

of 
detection   

RM 
Posterior

1st 
interval 

of 
detection 

DM          
Prior

1st 
interval 

of 
detection 

DM 
Posterior

Incidences 
and 

intervals

Sigma 
applied

Min. 𝝀 
variation

       
[posterior: 
observed]

Max. 𝝀 
variation

       
[posterior: 
observed]

Poisson-gamma 4 not 
applied

not 
applied

not 
applied

[1:3;1:4;1:6;
1:7;1:8]

+/-1σpost [0.3:0.3]
[0.5:0.5]

[0.5:1]
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Figure 96.- Evolution of posterior distribution in the Poisson-gamma inference model, from the point of 
view of gamma distribution, in the intervals 4,6 and 7 using a recurrent method with mean prior. Being 
blue:prior; orange: observed; red: posterior. 

emergency shutdown test requires reviewing the causes, the status of the automatisms 
and also the interlocks and procedures. 

c.- Deviations in cost-time 

In the following Table 92 are compared the important parameters of every inference 
model as a result of their application on the analysis of the deviations in cost-time. 

Table 92.- Comparison of results for inference models applied in the analysis of the cost-time deviation.  

Inference models 1st 
interval 

of 
detection

RM    
Prior

1st 
interval 

of 
detection   

RM 
Posterior

1st 
interval 

of 
detection 

DM          
Prior

1st 
interval 

of 
detection 

DM 
Posterior

Incidences 
and 

intervals

Sigma 
applied

Min. 𝜇 
variation

       
[posterior: 
observed]

Max. 𝜇 
variation

       
[posterior: 
observed]

Cost

Normal-Normal 4 3 4 4 [1;3;4;5] +/-3σpost [71:73]
all 

methods

[72:125] 
all 

recurrent

Lognormal-Lognormal 4 4 not 
detected

not 
detected

[1;3;4;5] +/-3σpost [77:73]   
all 

recurrent

[79:125] 
all 

recurrent

Lognormal-gamma 4 4 not 
detected

not 
detected

[1;3;4;5] +/-3σpost [76.5:73] 
all 

recurrent

[78:125]
all 

recurrent

Lognormal-uniform 4 4 - - [1;3;4;5] +/-1σpost [72.3:73] 
all

[97:125] 
all

Time

Normal-normal not 
applied

not 
applied

not 
applied

6 [2;3;6;7] +/-3σpost [1:1]
[2.3:3]
[2.7:2]

[2.6:4]
[2.4:1]

Exponential-normal 2 not 
applied

not 
applied

not 
applied

[1:2;1:3;1:6;
1:7]

+/-3σpost Min. 𝝀
[0.33:0.5]
[0.83:1]

Max. 𝝀
[0.67:1]

[0.66:0.33

Normal-gamma I - - 4 5 [2;3;6;7] +/-3σpost Min. 𝝈
[0.99:1]

Max. 𝝈
[1.2:1.56]
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For cost inference models, with a target that is coincident with the average value for the 
planned evolution of costs and with +/-3σpost, for the normal-normal, lognormal-
lognormal, lognormal-gamma and lognormal-uniform, this last with +/-1σpost, show the 
first out-of-limits at the fourth interval-activity using a recurrent method with mean 
prior and recurrent method with mean posterior and using this method only the normal-
normal detects an out-of-limits at the third interval-activity. Also only the normal-
normal show this out-of-limits at the fourth interval using a direct method prior and 
posterior. From the comparison of the minimal difference in mean 𝜇 value, all of them 

present this minimal difference in the second interval-activity, with differences between 
the different models of +/- 4%, and being the most nearest posterior value to the 
observed the one offered by the normal-normal and lognormal-uniform models. 
Likewise from the comparison of the maximal difference in mean 𝜇 value, all of them 

present this at the fifth interval, in this case the model that approximates better is the 
lognormal-uniform. 

For time inference models, also with a mean target coincident with the mean planned 
and with +/-3σpost,  only the exponential-normal shows an out-of-limits at the second 
activity, followed by the Normal-gamma I inference model detecting an out-of-limits 
from the sigma planned in the fourth activity, but expressing the gain of 1 day. The 
minimal difference is presented in different activities so that the normal-normal in the 
first, third and eighth activities, the exponential-normal in the second and seventh 
activities and the normal-gamma I also in the second activity. Likewise for the 
maximum difference presenting it in the activities sixth and tenth for the normal-normal 
model, in the third and sixth for the exponential-normal and in the fifth for the normal-
gamma I. 

From both cases, cost and time, the lognormal-uniform in cost application, has a unique 
representation that is basically using the recurrent method, and the normal-gamma I in 
time application, due to work with sigma variations, only has direct method. 

See Figure 97 showing the evolution for the value 𝜇 for cost evolution from the point of 

view of gamma distribution, in the lognormal-gamma inference model in intervals 3, 4 
and 5 using a recurrent method with mean prior. 
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Figure 97.- Evolution of posterior distribution in cost for the lognormal-gamma inference model, from the 
point of view of gamma distribution, in the intervals 3,4 and 5 using a recurrent method with mean prior. 
Being blue:prior; orange: observed; red: posterior. 

See Figure 98 showing the evolution for the value 𝜇 for time evolution for the normal-

normal inference model in intervals 5, 6 and 7 using a direct method with mean prior. 

Figure 98.- Evolution of posterior distribution for the normal-normal inference model, in the intervals 5, 6 
and 7 using a direct method with mean prior. Being blue:prior; orange: observed; red: posterior. 

d.- LOC event with domino effect risk 

In the following Table 93 are compared the important parameters of the inference 
models applied in the analysis of the domino effect risk. 

Table 93.- Comparison of results for inference models applied in the analysis of the domino effect risk.  

Inference models 1st 
interval 

of 
detection

RM    
Prior

1st 
interval 

of 
detection   

RM 
Posterior

1st 
interval 

of 
detection 

DM          
Prior

1st 
interval 

of 
detection 

DM 
Posterior

Incidences 
and 

intervals

Sigma 
applied

Min. 𝜇 
variation

       
[posterior: 
observed]

Max. 𝜇 
variation

       
[posterior: 
observed]

Normal-gamma II 2 2 2 2 [1;2;3] +/-2σpost [9.3:9.3]
practically 

all

[10.1:16.3] 
practically 

all

Lognormal-gamma 2 2 2 2 [1;2;3] +/-2σpost [9.3:9.3]   
practically

all

[9.7:16.3] 
practically 

all
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All inference models are showing the out-of-limits at interval 2 due to changes in the 
TOF conditions, with operation and flammability code to 4 and installation behavior 
(IB) returning to nominal values Q3 =4 (kg/s); Pin = 25 (bar) and Pout = 7.5 (bar). 

See Figure 99 showing the evolution for the value 𝜇 for probability evolution from the 

point of view of lognormal distribution, in the lognormal-gamma inference model in 
intervals 1, 2 and 3 using a recurrent method with mean prior. 

Figure 99.- Evolution of posterior distribution in Pdamage,distance probability mean for the lognormal-gamma 
inference model, in the intervals 1, 2 and 3 using a recurrent method with mean prior. Being blue:prior; 
orange: observed; red: posterior. 

From the previous Figures showing the posterior evolution of the parameter, can be seen 
that the posterior, being also a characteristic of the Bayesian inference, has a smaller 
dispersion than the one that the data collected has. 

Of the different results that have been obtained as a result of the application of the 
different inference models, there is in particular none that stands out especially but it 
can be seen that in the treatment of incidents through the parameter based on the 
production ratio, 𝝀, and working with high sensitivity +/-1σpost, the exponential-gamma, 

exponential-normal and Poisson-normal models are presented as the ones that best fit 
the immediacy characteristic (I) in any of the used recurrent and direct methods. The 
Poisson-gamma model shows the detection of the out-of-limits at the second incidence 
interval working in recurrent-prior or direct prior methodologies. 

The binomial-beta model, also using it with restrictive limits of +/-1σpost, seems to have 
a better response working with recurrent-posterior or direct-posterior methods. 

The models applied in treatment of cost-time deviations show in general better 
sensibility working with recurrent-posterior or direct-posterior methods, and adjusting 
the limits from +/-3σpost, to +/-1σpost, for example the normal-normal model would have 
already shown in the interval-activity 1 the out-of-limits situation in the two recurrent 
and direct posterior methods in the cost deviation analysis and in the first incidence in 
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time deviation analysis, and analogously the lognormal-lognormal and lognormal-
normal models would have shown the out-of-limits situation in the interval-activity 3 
working with a recurrent-posterior method, and in the interval-activity 4 with the direct-
posterior method. The exponential-normal model approaching the deviation in days as 
incidences arriving at a rate 𝝀 shows the out of limits at the first incidence even working 

with a control limit coefficient of  +/-3σpost. The normal-gamma I model is working with 
the sigma deviation as parameter p in the data collected, and it is highly sensitive but 
needs to work with low control limits coefficients. 

In the treatment of LOC and risk domino effect the lognormal-gamma and normal-
gamma II working with parameter p as a mean value +/-3σpost, show the out-of-limits at 
the second incidence and the normal-gamma II model show that can be applied 
indistinctly in treatments of cost-time deviation or probability changes. 

5.2 Metropolis-Hastings sampler. 

The Metropolis-Hastings sampling has been done with a random simulation of 4500 
values and removing (burning) the first 500 to guarantee the stability of the process, 
with a repetition cycle of ten times, determining the average value and confidence 
intervals to obtain the representative posterior values. The resultant traces of the 
sampling processes also show a correct stochastic variability.  

This can be shown using the sample autocorrelation (ACF), and partial autocorrelation 
functions (PACF) from Annex B. Through the graphical representation of a ACF and 
PACF seeing their evolution from a time series and including an approximate 95% 
confidence intervals where the degree of stochasticity is observed when the evolution of 
the autocorrelation and partial correlation parameters goes mostly within the two 95% 
confidence bands along the number of lags. 

Then analyzing the Markov chain obtained from the Metropolis-Hastings sampling of 
the exponential-gamma inference model applied in the industrial analysis, from Figure 
31, the following graphical evolution for the autocorrelation function ACF is obtained, 
Figure 100 and Figure 101 for the partial autocorrelation function (PACF). The same 
analysis for the Weibull-gamma sampling in Figure 36, shows the results in Figure 102 
for the autocorrelation function (ACF) and Figure 103 for the partial autocorrelation 
function (PACF). 
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Figure 100.- Evolution of ACF parameter for the chain series from the exponential-gamma inference 
model sampling. Left in the 100 first lags, there is no seasonality in the data and in the 4000 lags the 
fluctuation of the parameter goes mainly into de confidence bands. 

Figure 101.- Evolution of PACF parameter for the chain series from the exponential-gamma inference 
model sampling. Left in the 100 first lags, there is no seasonality in the data and in the 500 lags the 
fluctuation of the parameter goes uniformly into de confidence bands. 

Figure 102.- Evolution of ACF parameter for the chain series from the Weibull-gamma inference model 
sampling. 
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Figure 103.- Evolution of PACF parameter for the chain series from the Weibull-gamma inference model 
sampling. 

Finally the analysis is performed for the lognormal-lognormal sampling in Figure 72, 
showing the results in Figure 104 for the autocorrelation function (ACF) and Figure 105 
for the partial autocorrelation function (PACF). 

Figure 104.- Evolution of ACF parameter for the chain series from the lognormal-lognormal inference 
model sampling. 

Figure 105.- Evolution of PACF parameter for the chain series from the lognormal-lognormal inference 
model sampling. 
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The sampling show acceptance rates (AR) oscillating between 25.7% to 80.8%, see 
Table 94 being necessary conditions to obtain a good sampling. 

Table 94.- Acceptance rates (AR) for sampled inference models. 

The higher values of AR is characteristic of sampling at high intervals when the vector 
of collected data has higher variation in values. 

5.3 Hidden Markov chain analysis. 

The hidden Markov chain procedure allows to follow the situation of the mitigating 
barriers and obtain a map of their activity. The action of mitigating barriers is critical 
because when an accident occurs, they have to act with the highest probability that no 
failures will occur. However, it should be borne in mind that the method is an estimate 
of reality from the observations made allowing a quick view of which barrier is most 
used and likely to fail because it is showing high occupations.  

According to the experience gathered in the application of the Baum-Welch algorithm 
the determination of the new transition and emission matrices  from observations must 
have 10 values to obtain representative results.  

The algorithm is sensitive to the prior definitions for the transition and emission 
matrices  [187,188], and two procedures have been tested, the direct method, using 
always the initially defined transition and emission matrices in the actualization of the 
posterior values from the 10 observations, and the recurrent method, using the transition 
and emission matrices obtained after each observation, as initial matrices in the next. 

Inference models AR variation                                     
[min.-max.]

Exponential-gamma 48.9% - 65.3%

Weibull-gamma 47.6% - 68.1%

Exponential-normal 46.4% - 80.5%

Poisson-normal 53.8% - 80.8%

Lognormal-lognormal 25.7% - 53.4%

Lognormal-gamma 52.5% - 77.6%

Lognormal-uniform 65.9% - 72.3%

Normal-gamma II 47% - 61.9%
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The results for observations sequence and number of intervals of passage for the last 
safety barrier and the last end state, are summarized in the following Table 95; 

Table 95.- Comparative of obtained values for passage intervals for the last safety barrier and last or 3rd 
end states, applying hidden Markov chain analysis in recurrent or direct mode for the studied cases. 

In the industrial case application the passage for the last safety barrier is more critical 
when the observed end states has an increase of state number 2 for a partial operation 
observed situation. In this case there is no difference in the application of the recurrent 
or direct mode. The situation, when observing the state of safety barriers, is analogous; 
an increase in the use of the second barrier because the first one has failed shows a 
reduction in the passage from the first final state to the last one, and although this value 
is not modified there are slight variations in the other two using a recurrent or direct 
method. 

In the occupational case, only observations have been made for safety barriers, no 
observations have been made for the different final states since it would have 
represented observing personal injuries and accidents, which is precisely what should be 
avoided. In this case the increase of the second safety barrier activity reduce the time of 
passage for the last final state, but in direct mode this reduction is more significative. 

Analysis of the mitigative safety barriers observing 
the end states

Analysis of the end states observing the mitigative 
safety barriers.

Case of analysis Sequences 
observed          

of                    
end sates

Recurrent

passage 
intervals 
for last 
barrier

Direct

passage 
intervals  for 
last barrier

Sequences 
observed         
of active              

safety barriers

Recurrent

passage 
intervals  

for last end 
state

Direct

passage 
intervals for 

last end 
state

Industrial processes [1 1 1 1 1 1 2 3 1 1] 8,9 8;9 [1 1 1 2 1 1 2 2 1 1] 2;1.5;2.5 2;1.5;2.5

[1 1 1 1 1 2 3 1 1 2] 4;5 4;5 [1 1 2 1 1 2 2 1 1 2] 1;1.5;2.5 1;2;3

Occupational - - - [1 1 1 1 1 1 2 3 1 1] 18.25;19.30;
20.30;21.30

18.25;19.30;
20.30;21.30

[1 1 1 1 1 2 3 1 1 2] 10.80;11.80;
12.80;13.80

5;1;2;3

Sequences 
observed         
of active              

safety barriers

Recurrent

passage 
intervals  

for 3rd end 
state

Direct

passage 
intervals for 

3rd end 
state

LOC domino effect - - - [3 2 3 1 1 1 1 1 3 3 ] 1;1;6 1;1;6

[2 3 1 1 1 1 1 3 3 1] 1.5;1;6.5 2;1;18
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Finally in the LOC and domino effect risk analysis, also observation have been 
performed only for the safety barriers. In this case this an increase of the use of the first 
safety barrier increases slightly the times of passage through the third final state using 
the recurring method, however, applying the direct method, changes in interval from the 
first and second end states are practically the same and is pronounced going from the 
last end state. 

Direct method in general seems to have a greater degree of prudence with values closer 
to the worst case, because in fact the starting hypotheses on the initial transition and 
emission values are maintained along the Markov analysis and there is no posterior 
modification that reduces this information. 

This fact is important when applying the hidden Markov chain analysis in less 
variability situations, where the methods can fail obtaining good convergence, as seen 
in the following Table 96, for the industrial process. 

Table 96.- Comparative of converging results for the posterior determination and last safety barrier and 
last end states passage intervals, applying hidden Markov chain analysis in recurrent or direct mode for 
the industrial case. 

The algorithm of analysis works well when the sampling shows wit great variation in 
values for the observed vector of 10 samples, in which the difficulty of appreciation of 
the different transition states is greater. In Table 96 the intervals of passage through the 
last safety barrier or final state are evident and intuitive without practically analysis in 
concordance with the vector of observations, however convergence is more difficult due  
by one hand to the lack of variability and by the other due to the increase of number of 
variables to analyze, in these situations the direct method being more effective that the 
recurrent, even when in previous sampling no convergence has been obtained. 

Analysis of the mitigative safety barriers observing 
the end states

Analysis of the end states observing the mitigative 
safety barriers.

Case of analysis Sequences 
observed          

of                    
end sates

Recurrent

passage 
intervals 
for last 
barrier

Direct

passage 
intervals  
for last 
barrier

Sequences 
observed         
of active              

safety barriers

Recurrent

passage 
intervals  for 

last end 
state

Direct

passage 
intervals for 

last end 
state

Industrial processes [1 1 1 1 1 1 1 1 1 1] 80.6;80.3 80.6;80.3 [1 1 1 1 1 1 1 1 1 1] 211;209;202 211;209;2002

[1 1 1 1 1 1 1 1 1 2] not 7.3;3.7 [1 1 1 1 1 1 1 1 1 2] not not

[1 1 1 1 2 1 1 1 1 1] not 3.4;4.4 [1 1 1 1 2 1 1 1 1 1] not 2;3;5
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Collecting observations for the Bayesian inference or for the analysis of the safety 
barriers using the binomial-beta model or the hidden Markov chain, can be carried out 
by the own company personnel or from the automated control systems, however human 
failures, in general, must be collected on site by personal observation. 

5.4 Considerations about the bow-tie and mitigative safety 
barriers use. 

a.- Safety barriers and subsystems analysis. 

When the analysis of the safety barriers needs to be carried on, the inference model that 
allows to obtain a probability of failure is the binomial-beta model or a rate of failure 
through the Poisson-gamma model. The analysis can not only cover the safety barrier as 
a complete system but can also be carried out in each of the subsystems that compose it, 
Figure 106. 

Figure 106.- Generic subsystems conforming a safety barrier. In this case is reflected a mitigative barrier 
and a critical multilevel chain of subsystems highlighted in yellow. 

This represents an important amount of work and can be interesting, once a first data 
collection has been made and if there is no modification in the composition of the 
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subsystems, to be able to evaluate the changes that the subsystems represent, at least for 
the most critical ones, located at a certain level, for different levels or for a mixed 
composition; and based on the modification of the probability or the incidence ratio in 
the main barrier taken as a whole. 

The tool applied is then a joint distribution, [194], Annex G. 

If a binomial-beta distribution has been applied obtaining values of failure probabilities 
p in a critical chain of subsystems for a given safety barrier with posterior beta functions 
defined for the probability of failure of a certain critical multilevel chain, given by the 
vector;  (SFn; SFn11;SFn12;SFn1k-1;SFn1k) , equal to (9.99;3.91;3.03;2.50;0.63) in units of 
10-5 , see Figure 106, and their beta distribution can be joined to the evolution of the SFn 
probability values, the following Figure 107 is obtained. 

Figure 107.- Joined distributions of beta distribution for the critical subsystems chain from the generic 
safety barrier n. 
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With !  and defined with n=100000 random samples. 

If a new value for SFn is obtained equal to 2·10-4 is obtained, the new vector of 
probabilities is;  (20;4.99;4.13;3.37;1.14) in units of 10-5. 

If a Poisson-gamma distribution has been applied obtaining values of incidences rate 𝝀 

in a critical chain of subsystems for a given safety barrier with posterior functions 
defined by gamma functions and given by the vector;  (SFn; SFn11;SFn12;SFn1k-1;SFn1k) , 
equal to (2;1.25;0.77;0.21;0.13)  , see Figure 108, with the same 𝜌 and n=10000 random 

samples. 

Figure 108.- Joined distributions of gamma distribution for the critical subsystems chain from the generic 
safety barrier n. 

If a new value for SFn is obtained equal to 3 is obtained, the new vector of probabilities 
is;  (3;1.84;1.60;0.46;0.31). 

ρ =

1 0.7 0.8 0.7 0.8
0.7 1 0.7 0.7 0.8
0.8 0.7 1 0.7 0.6
0.7 0.7 0.7 1 0.6
0.8 0.8 0.6 0.6 1

⎛
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b.- Bow-tie and mitigative safety barriers definition  

It can cause confusion is the use of the event graph in the bow tie with the objective to 
analyze possible events and situations when also it is used to reflect the design of safety 
barriers. And to differentiate these applications, it is needed to state a previous ratio 
measuring the degree of definition of a safety barrier design scheme on the event tree. 

In a general designed system, as from Figure 11, and selecting only the part of the event 
tree, see Figure 109. Is defined the degree of safety barriers definition (DSBd)  as; 

Figure 109.- General event tree part of the bow-tie for the mitigative safety barriers definition. 

        DSBd = number of mitigative safety barriers / number of branching nodes      (36) 

This value has to be 1 or close to 1 for a correct definition of the safety barriers scheme. 

Two examples are exposed to visualize this difference. 

a.- CSTR reactor. 

Meel and Seider, [114,195] proposed the analysis of a CSTR reactor and the adapted 
consequence modeling scheme is presented on the next Figure 110. Where how to react 
for the high temperature accident event in a continuous stirred tank reactor (CSTR) is 
analyzed. 
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Figure 110.- Consequence scheme for the safety analysis of a CSTR reactor. Adapted from [114]. 

There are defined 6 reactive safety systems, see Table 97,  and 11 end states with three 
possibilities defined as; CO for continuous operation, SD for manual or automatic 
shutdown and RA for a catastrophic run away of the reaction. At every end state is 
indicated the number of times that it is produced from a total of  275, the probabilities 
of  success and failure are defined for every branch in concordance to the end states 
production. 

Table 97.- Safety systems definition for the CSTR example. Adapted from [114].  

Safety system ID Description Type

S1 First alarm-temperature Automatic

S2 Operator-confirmation Human

S3 Operator-evaluation Human

S4 Operator-action Human

S5 Second alarm-temperature Automatic

S6 Second alarm-temperature Human-manual
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The aim is to analyze the behavior of the operator. From the point of view of analysis of 
the sequences of basic actions is correct and applicable, but from the point of view of 
application of the designed safety barriers the DSBd is equal to 0.6. 

A rational proposal for safety barriers action can be the depicted on Figure 111 where 
the DSBd is equal to 1, with the safety barriers definition in Table 98. 

Figure 111.- Safety barrier rational scheme for the CSTR reactor. 

Table 98.- Safety barriers definition for the CSTR example.  

Additionally, but this is not the objective, from this last rational rearrangement it is 
possible to see that the safety barrier SF1 is failing with a 64.4% percentage and the 

Safety system ID Description Type

SF1 First alarm-temperature Automatic

SF2 Operator-confirmation-evaluation and 
action

Human

SF3 Second alarm-temperature-automatic 
shutdown

Automatic

SF4 Second alarm-temperature-manual 
shutdown

Human-manual
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operator safety barrier is failing with a 97.7 %,  producing the reported and important 
amount of shut down’s, automatic and manual. 

b.- Offshore drilling blowout system. 

From the analysis performed by Xue et al. [196] and from Ramzali, Miri Lavasani and 
Ghodusi [197], an scheme of the end states due to a blowout accident are depicted in the 
following Figure 112. 

Figure 112.- Scheme for the safety analysis of a drilling blowout accident. Adapted from [196]. 

With the following definition of end states on Table 99 and safety systems on Table 100. 

Table 99.- End states for the drilling blowout consequence analysis [196]. 

End state Description

1 Near miss. Normal operation

2, 8, 13, 14 Incident

3, 9, 15 Accident

4, 5, 6, 10, 11, 12, 16, 17, 18 Catastrophic accident
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Table 100.- Safety systems for the drilling blowout consequence analysis [196]. 

The aim is to analyze the behavior of the safety systems, but from the point of view of  
safety barrier design the DSBd is equal to 0.29. 

A rational proposal for safety barriers action can be the depicted on Figure 113 where 
the DSBd is equal to 1, and safety barriers definition in Table 101. 

Figure 113.- Safety barrier rational scheme for the drilling blowout accident. 

Safety system ID Description Type

SF1 Ignition prevention Automatic

SF2 Escalation prevention Automatic, pasive

SF3 Emergency response Automatic

SF4 Blowout control Automatic-manual

SF5 Oil spill control Automatic-manual
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Table 101.- Safety barriers definition for the drilling blowout accident example.   

c.- Pipeline leakage 

The analysis performed by Li et al. [198] for a leakage accident in a pipeline are 
depicted in the following Figure 114. 

Figure 114.- Scheme for the safety analysis of a pipeline leakage accident. Adapted from [198]. 

With four different end states and the following definition of safety systems, Table 102. 

Table 102.- Safety systems for the pipeline leakage consequence analysis [198]. 

Safety system ID Description Type

SF1 Ignition prevention and emergency 
response shutdown

Automatic

SF2 Escalation prevention-local oil spill 
prevention

Automatic, passive

SF3 Blow out control - general shutdown 
and oil spill prevention

Automatic, passive, manual

Safety system ID Description Type

SF1 Leak detection Automatic, visual

SF2 Emergency shutdown Automatic, pasive

SF3 Manual shutdown Manual

SF4 Repair and scaling Automatic-manual

SF5 Ignition prevention Automatic-manual
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The DSBd is equal to 0.71. The rational proposal is depicted on Figure 115. 

Figure 115.- Safety barrier rational scheme for the pipeline leakage accident. 

And safety barriers definition on the following Table 103. 

Table 103.- Safety barriers definition for the pipeline leakage accident example.   

From the previous examples is clear that safety barriers are systems designed for a fast, 
effective and comprehensive response to an unexpected situation in order to prevent the 
spread of the consequences of an accident from the beginning. When, from the point of 
view of SRC, barriers are examined and their subsystems are being analyzed together in 
accordance with the actions they must possess, here the objective of the analysis is to 
guarantee their operation and response according to their design and it is 
complementary to the analysis works carried out, by their authors in the different 

Safety system ID Description Type

SF1 Detection and shutdown Automatic

SF2 Escalation prevention-local 
contention

Automatic, passive

SF3 Ignition prevention - general 
shutdown and contention

Automatic, passive, manual
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previous examples, whose objective is to detail the behavior by breaking down the 
different actions, their consequences and the associated risks. 

5.5 Control chart. 

A control chart process could be established without the need to associate it with a 
Bayesian inference, however, the objective of the new method, in addition to the 
graphic control of the evolution of risk, allowing simultaneous and immediate 
corrective actions, is the of having, on the one hand, the objective evaluation of a 
statistical parameter, which has been obtained from the observations that have been 
made through a formal procedure, and on the other hand, to be able to have a 
continuous map of the functioning of the barriers of safety and the causes that affect the 
safety and health of workers. 

It is needed to adjust the distance ! of the control limits from the center line to work 
with the desired sensitivity. 

5.6 Fuzzy logic application. 

The general procedure follows the general steps as presented in the previous case, with 
he general expression; 

                 Pdamage,distance = PLOC,distance,TOF · fWeather,SPW55 · fBehavior,IB           (13) 

The process is valid defining the bow-tie for LOC event in liquid and gas, for the 
determination of PLOC,distance,TOF  based on toxicity, operation and flammability because this is 
general, the determination of the  fWeather,SPW55   factor needs to actualize the local weather 
information and correct the fuzzy logic membership function for it; the fBehavior,IB  factor needs to 
analyze every installation where the procedure is applied. 

5.7 General. 

The cases analyzed show that the SRC methodology has the necessary requirements to 
be able to carry out a treatment of risk situations in different environments. 

A sensitivity analysis can also be carried out determining which initiating causes (ic's) 
or failures in safety barriers are more common and which areas within an industrial 
process, occupational situations, deviations or LOC and posterior domino effect have 
more incidence in risk. 

About the horizon of data collection of observations it is desirable to work in 
continuous processes in a day basis, since the different observations can be correlated 

C
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with the day and time of collection. In batch processes, data collection associated with 
each batch must be carried out. And in general it is desirable to be able to automate as 
much as possible the collection and analysis of the data using the data acquisition plant 
tools [199, 200]. 

Future work is extensive, in a specific scenario the analysis can be carried out 
considering the entire industrial manufacturing process or occupational area as a whole 
or analyzing it in deeply and detailed areas.  



Chapter 6 

Conclusions and further research. 
6.1 Conclusions about research objective. 

The objective for to develop a new tool to manage and assess risk situations in 
industrial processes and occupational accidents, responding to the three characteristics 
of prevention (P), simultaneity (S) and immediacy (I) has been covered by the new 
statistical risk control (SRC) methodology offering a new solution being a formal 
procedure for warning of the existence of a risk and allowing to act in advance 
correcting their causes. 

6.2 Conclusions about the existing methodologies. 

From the revision of the existing methodologies, it has been verified that all of them 
have highlights related to the intention on the one hand of establishing guidelines and 
standards that allow the application of risk policies in organizations, at a general level 
within the industry , as labor, such as those listed in Table 1. On the other by the use of 
traditional models based on the search and analysis of risk factors establishing their 
cause-consequence and the quantification of the probability of occurrence such as those 
collected in Tables 2 and 3. Or models based on a systemic vision of organizations or 
cognitive models that allow to explain the errors that occur in these organizations or in 
jobs, such as those listed in Tables 4 and 5. All of them they have established the 
characteristic of prevention but to a lesser extent that of simultaneity and do not possess 
that of immediacy since they are guides or those that allow an earlier analysis of the 
organizations and jobs and many times later, when an accident has already occurred and 
they want to analyze the causes that have generated it, but without the objective of still 
being able to have information on the current status of the scenario analyzed. It is from 
the development of the dynamic models which adapt to this need to assess the current 
situation and the immediacy in the information. The new methodology (SRC) follows  

!187



!  

!                                                                              Conclusions and further research 188

the characteristics of this last group, shown in Table 6, with the addition of a formal 
procedure for to perform the analysis and evaluation of risks in different scenarios 
considering industrial, occupational, cost-time and LOC-domino effect.  

Already at this point it is established that the method, together with most of the existing 
ones, should not be considered unique in its application but that it is complementary to 
the usefulness of all of them according to the scenario to be reviewed. 

6.3 Conclusions about the analyzed cases. 

The cases analyzed have the objective of giving a vision of the operation of the SRC 
model and how it can be applied in different situations. All of them are based on the 
author's experience in different industrial projects and applications. 

In the cases analyzed at industrial and labor level, the method is applied according to 
the general approach encompassing the causes that cause the accident and the 
consequences along with its safety barriers in order to position itself in the worst case 
situation.  

The use in cases of cost and time deviation, apart from its possibility of SRC application 
as a general method, the case presented of deviations in costs in which the analysis of 
the deviations themselves was carried out can be interpreted as not necessary, since 
normally in all the projects systematic controls of the costs and execution times are 
established compared to the previous planning however, correction of deviations are 
based on the analysis of their causes at detail and many times, there is no clear vision to 
indicate whether action is necessary. In this sense it is considered that again the SRC 
methodology is not a substitute for established methodologies but complementary to its 
information and useful in cases of cost and time deviation. 

A LOC domino effect treatment based on a vision that is easy to implement has been 
desired. Most of the situations in which this type of risk occurs are due to everyday 
conditions, such as those produced in production in which they may require an 
additional temporary space and in which one or several deposits or tanks, even if they 
are of low volume, they must move; in cases of maintenance work in which containers 
or elements with flammable products must be incorporated to perform welding tasks, 
the list may in fact be long; the presented procedure has to take into account the 
distance to the primary focus susceptible to a loss of content (LOC), the toxicity, 
operating status and flammability of the components, the meteorological effects by days 
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of thunderstorms, rainfall and windy days greater than 55km/h, together with the 
characteristics or status of the critical variables, (temperature, pressure, flow, production 
ratio, speed) of the installation, in this case the source. 

6.4 Conclusions about the applied statistical tools. 

The bow-tie, which is an important element of the new methodology, was first 
generated by as a framework for the general treatment of risks and followed by 
adaptation to occupational accidents, cost-time and LOC events. 

The content of the initiating causes (ic's) which may be: basic events (ba) such as 
failures in control systems, equipment or processes; the human risk factors (ha) which 
are human errors and the potential causes (pot) and the safety barriers have been 
presented with their general definition.  

With these previous schemes it has been desired to collect the widest possible range of 
Bayesian inference models in order to have a better comparison. Models based on the 
analysis of an incidence rate (Poisson, exponential, Weibull) using the gamma or normal 
distributions to express the parameter p, as well as probability (binomial) using the beta 
distribution for the parameter, are more suitable for the general treatment of the SRC 
method. The models based on the analysis of the mean as a parameter (normal, 
lognormal) and their normal, lognormal, gamma and uniform distributions are adequate 
in this treatment, both in the case of cost deviations and in the LOC-domino effect 
analysis . The special case of approximating the values of the differences, in the analysis 
of the deviations in time, as an incidence rate works correctly. The special application, 
in  time deviation, for the standard deviation as parameter using the Normal-gamma I 
model requires high sensitivity in the control limit with +/-1/2σpost. In general the 
presented inference models  show that they are suitable for this type of analysis. 

Using control charts or tables for representing the limits evolution it requires a previous 
adjustment of the distance of the control limits from the center line in multiples of the 
standard deviation, in order to raise the required sensitivity. 

One could argue that a treatment of charts or control tables can be applied directly 
without using treatments based on Bayesian inference; however, it should be noted that 
the objective is not only to inform about risk situations well in advance, but also to 
gather the information that allows establishing a knowledge base about the evolution of 
the risk probabilities, whether material, personal, or economic, in the different 
equipment, facilities, people and projects according to the information collected, using, 
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for this, a formal treatment of the data collected in the form of causes or failures in 
security barriers. 

The application of the hidden Markov chain for the analysis of reactive safety barriers 
provides control for these types of barriers, since they are critical in their operation or 
failure in the event of an accident. The tool, in its application, has the constraint of the 
initial values dependence, and works better using a direct scheme; but both methods, 
direct and recurrent it is needed to run and compare in order to take and consider, from 
both, the worst case. 

6.5 General conclusions 

Additional applications are emerging as the use of a Bayesian network for assess the 
situations of leakage accidents [200,201]; the inclusion of the economic valuation into 
the FMECA procedure [202]; the use of the PETRI-NET tools [203,204]; the 
identification and monitoring of emerging risks over time [69,70]; or the treatment 
through neural networks, [205,206,207]. These are new proposals that highlight the 
importance of risk assessment and the supporting role that the new SRC methodology 
can provide. 

The new method has strengths and weaknesses. The strong point is that the objective of 
the new methodology is that it is easy to implement and use to quickly get an idea of the 
overall risk status of the incidences of an industrial process, the workers situation, the 
cost-time deviation and the risk for a domino effect; at the same time this is a weakness 
since it alone cannot be enough and must be complemented with other techniques. In 
addition, an important feature of the new method is that it is based on dynamic risk 
methodologies, which, with respect to the quantitative risk analysis, allow the risk 
situation to be updated [104,105], and the weak points are based on the fact that by 
itself it is not a substitute for other methods.  

In conclusion, the SRC method is a formal method that allows us to meet the three 
characteristics of prevention, simultaneity and immediacy. It is applicable to the 
assessment of industrial, occupational, cost-time, and LOC-domino effect hazards in 
different industrial and manufacturing scenarios, and offers an overview of the risk 
status in the simplest way possible and at the same time it is reliable, in accordance with 
the established control limits and providing warning in advance to be able to prevent 
risk. 
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6.6 Further research. 

Considering future works the SRC methodology is linked to the evolution of dynamic 
analysis of risks techniques and in this regard it is important to monitor the future 
evolution of this group of techniques considering also its application for different types 
of industries and situations of occupational risk. 

Also, it is necessary to monitor the future evolution of the existing methodologies in 
order to complement their applicability. 
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Annex A 

Bayesian inference models. 
A.1. Bayes rule. 

The starting point for Bayesian inference is Baye’s rule. The simplest form of this is; 

!          (A.1) 

where ! are events such that ! . 

This is easily proven by considering that: 

!            (A.2) 

Expression obtained from the definition of conditional probability, stated in the next 
equation 

 ! )        (A.3) 

Where: 

!   by the multiplicative law of probability. 

!  by the law of total probability. 

The following terminology is applied: 

! ;  is the prior probability of !  (meaning the probability of ! before ! is known to 

have occurred). Also represents the a priori beliefs regarding ! . 

! ; is the posterior probability of !  given !  (meaning the probability of ! after 

!  is known to have occurred).  Also represents the a posteriori beliefs regarding A.  

P(A / B) = P(A)P(B / A)
P(A)P(B / A)+ P(A)P(B / A)

A,B P(B) > 0

P(A / B) = P(AB)
P(B)

P(G /M ) = P(G∩M )
P(M )

P(AB) = P(A)P(B / A)

P(B) = P(AB)+ P(AB) = P(A)P(B / A)+ P(A)P(B / A)

P(A) A A B
A

P(A / B) A B A

B
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More generally, can be considered any event ! such that ! and !  events, 

!  which form a partition of any superset of ! (such as the entire space S); then 

for any !  it s true that  

!    where !    and  !  being; 

!      (A.4) 

A.2. General Bayesian models and the posterior distribution. 

Baye’s formula can be generalized to statistical models. The basic components of a 
Bayesian model are: 

• the data, denoted by !  

• the parameter, denoted by !  

• the model distribution, given by a specification or distribution for !  or  

• the prior distribution, given by a specification or distribution for ! or !  

Where F, denotes cumulative distribution function !  and ! denotes probability 

density function !  when applied to a continuous or discrete random variable. 

Bayesian inference requires determination of the posterior probability distribution of ! , 
as; 

!             (A.5) 

Where !  is the unconditional probability distribution function !  of ! , given by: 

!  

B P(B) > 0 k >1
A1,...,Ak B

i = 1,...,k

P(Ai / B) =
P(AiB)
P(B)

P(B) = P(AjB)
j=1

n

∑ P(AjB) = P(Aj )P(B / Aj )

P(Ai / B) =
P(AiB)
P(B)

=
P(Aj )P(B / Aj )

P(AjB)
j=1

n

∑
=

P(Aj )P(B / Aj )

P(Aj )P(B / Aj )
j=1

n

∑

y

θ

f (y /θ )

f (θ ) F(θ )

(cdf ) f ,

(pdf )

θ

f (θ / y) = f (θ ) f (y /θ )
f (y)

f (y) (pdf ) y

f (y) = f (y /θ )dF(θ ) =
f (θ ) f (y /θ )dθ  for θ  continuous∫
f (θ ) f (y /θ ) for θ  discrete

θ
∑

⎧
⎨
⎪

⎩⎪
∫



!  

!                                                                                         Annex A. Bayesian inference 221

A.3. The proportionality expression. 

Takes in consideration that !  is a constant with respect to !  in the equation (A.5), 

which means that it is possible to write;   

!           (A.6) 

Where !  

And from expression (A.6) is usual to write;   

!         (A.7) 

Then for determining the required posterior distribution, only it is needed to multiply 
the prior density (or the kernel of that density) by the function of the data evolution y or 
model distribution. 

A.4. The binomial - beta model. 

In the binomial - beta model; data y follow a binomial model and probability of risk is 
the parameter !  ;! , and the binomial parameter follows, as a 

prior, a beta distribution ! . 

The posterior distribution of !  is defined according the expression (A.7); 

!  

ignoring constants which do not depend on !  is  

! ,   for !  

This is the kernel of the beta density with parameters !  and ! ; it follows 

that the posterior distribution of !  is given by; 

!         (A.8) 

Being the posterior density of !  a beta distribution, defined by; 

f (y) θ

f (θ / y) = c ⋅ f (θ ) f (y /θ )

c = 1
f (y)

f (θ / y)∝ f (θ ) f (y /θ )

p = θ (y / p) = Binomial(n, p)

p ∼ Beta(α ,β )

p

f (p / y)∝ f (p) f (y / p) = pα−1(1− p)β−1

B(α ,β )
n
y

⎛
⎝⎜

⎞
⎠⎟
py(1− p)n−y =

p

= pα−1(1− p)β−1 py(1− p)n−y = p(α+y)−1(1− p)(β+n−y)−1 0 < p <1

α + y β + n − y
p

(p / y) ∼ Beta(α + y,β + n − y)

p
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!      (A.9) 

A.5. The normal - normal model. 

In the normal - normal model; data y follow a normal model; ! , 

and the normal parameter !  follows, as a prior, also a normal distribution 

! . Where !  are known or specified constants. 

The posterior density of !  given data in the form of the vector , is defined accordingly 

to expression (A.7); 

!   !   being equal to 

!  

Where  !   is the sample mean. 

The posterior density of !  is proportional to the exponent of a quadratic in ! , that is; 

!     which implies that;  ! . 

It remains to find the normal mean and variance parameters !  ; that must be 

functions of the known quantities of ! . 

Ignoring constants and maintaining the !  function, it is possible to write; 

!   

!    

Where !  is a constant with respect to ! ; 

f (p / y) = p(α+y)−1(1− p)(β+n−y)−1

B(α + y,β + n − y)
,   for  0 < p <1

(y1,..., yn / µ) ∼ N(µ,σ
2 )

p = µ

µ ∼ N(µ0,σ 0
2 ) σ 2,µ0   and   σ 0

2

µ

f (µ / y)∝ f (µ) f (y / µ) ∝ exp − 1
2

µ − µ0
σ 0

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟ ⋅ exp − 1

2
yi − µ
σ

⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

n

∏

= exp − 1
2

1
σ 0
2 (µ

2 − 2µµ0 + µ0
2 )+ 1

σ 2 yi
2 − 2µny + nµ2

i=1

n

∑⎛⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟

y = (y1 + ...+ yn )
n

µ µ

f (µ / y)∝ exp − 1
2σ ∗

2 (µ − µ∗)
2⎛

⎝⎜
⎞
⎠⎟

(µ / y) ∼ N(µ∗,σ ∗
2 )

µ∗  and  σ ∗
2

n, y,σ ,µ0  and σ 0

µ

= exp − 1
2

1
σ 0
2 (µ
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1
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µ2 1
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n
σ 2
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σ 0
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ny
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Defining ; !     and    !    is then; 

!  

!     

Where !  is a constant with respect to ! ; and then is; 

!  

And equating with 

!      

The posterior is a normal distribution   !   with;         

!        (A.10) 

!        (A.11) 

A little algebra shows that the posterior mean can also be written as;  

!             (A.12) 

And the posterior variance as; 

!           (A.13) 

a = 1
σ 0
2 +

n
σ 2 b = µ0

σ 0
2 +

ny
σ 2

= exp − 1
2
aµ2 − 2µb + c⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟ = exp − 1

2
a µ2 − 2 b

a
µ⎛

⎝⎜
⎞
⎠⎟ + c

⎡
⎣⎢

⎤
⎦⎥

⎛
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⎞
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= exp − 1

2
a µ2 − 2 b

a
µ + b

a
⎛
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⎞
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⎛

⎝
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= exp − 1
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1
1
a

µ − b
a
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2
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⎢
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⎥
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⎛

⎝
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⎞
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⎟

c ' µ

f (µ / y)∝ exp − 1
2(1a)

µ − b
a

⎛
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2⎛

⎝
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where !          (A.14) 

Another way to derive !   and  !  is to write;  

!   

and equating coefficients of powers of !  with; 

!  

Is; 

!     

and 

!     

Resolving can get the !  and !  values. 

A.6. The normal - gamma I model. 

I n t h e n o r m a l - g a m m a m o d e l ; d a t a y f o l l o w a n o r m a l m o d e l ;
! , being !  known and the parameter  !  follows, as a 

prior, a gamma distribution ! . 

The posterior density of !  given data in the form of the vector , is defined accordingly 
to expression (A.7); 

!  being equal to 

k = n

n + σ
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2
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µ

f (µ / y)∝ exp − 1
2

1
σ 0
2 (µ

2 − 2µµ0 + µ0
2 )+ 1

σ 2 yi
2 − 2µny + nµ2

i=1

n

∑⎛⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟

µ2

σ 0
2 +

µ0
2

σ 0
2 +

nµ2

σ 2 = µ2

σ ∗
2 +

µ∗
2

σ ∗
2     ⇒

only  µ  function
     µ

2

σ 0
2 +

nµ2

σ 2 = µ2

σ ∗
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(y1,..., yn / µ,λ) ∼ N(µ,1 / λ) µ σ 2 = 1/ λ
λ ∼G(α ,β )

λ

f (λ / y)∝ f (y) f (y / λ)∝λα−1e−βλ × 1
1
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!    for some a and b. 

From the previous expression the posterior is !  

Where; 

!           (A.15) 

!           (A.16) 

With; 

!          (A.17) 

A.7. The Poisson - gamma model. 

In the Po i sson - gamma mode l ; da ta y fo l low a Po isson mode l ;
! , and ! follows, as a prior, a gamma distribution 

! . The posterior density of !  

!    

That is, the posterior is a gamma distribution; 

!        (A.18) 

A.8. The exponential - gamma model. 

In the exponential-gamma model; data y follow an exponential model;
! , and ! follows, as a prior, a gamma distribution 

! . The posterior density of !  is; 

!        (A.19) 

Being a gamma distribution. 

= λα−1e−βλ × λ n
2 exp − λ

2
(yi − µ)2

i=1

n

∑⎧
⎨
⎩

⎫
⎬
⎭
= λ a−1e−bλ

f (λ / y) ∼Gamma(a,b)

a =α + n
2

b = β + n
2
sµ
2

sµ
2 = 1

n
(yi − µ)2

i=1

n

∑

(y1,..., yn / λ) ∼ Poisson(λ) λ
λ ∼G(α ,β ) λ

f (λ / y)∝ f (λ) f (y / λ) = βαλα−1e−βλ

Γ(α )
⋅ e−λλ yi

yi !
∝λ (α+ny )−1e−λ (β+n)

i=1

n

∏

f (λ / y) ∼Gam(α + ny,β + n)

(y1,..., yn / λ) ∼ Poisson(λ) λ
λ ∼G(α ,β ) λ

f (λ / y)∞f (λ) f (y / λ)∞yi
α−1e− yi (β+λ )



!  

!                                                                                         Annex A. Bayesian inference 226

A.9. The Weibull - gamma model. 

I n t h e We i b u l l - g a m m a m o d e l ; d a t a y f o l l o w a We i b u l l m o d e l ;
! , and ! follows, as a prior, a gamma distribution 

! . The posterior density of !  is; 

!      (A.20) 

Being a gamma distribution. 

When c=1 the failure rate function is constant being equivalent to an Exponential-
Uniform model. If  c>1 the failure rate function is increasing. If 0<c<1 the failure rate 
function is decreasing. 

A.10. The exponential - normal model. 

In the exponential-normal model; data y follow an exponential model;
! , and ! follows, as a prior, a normal distribution ! . 

The posterior density of !  is; 

!      (A.21) 

Being a normal distribution. 

A.11. The Poisson - normal model. 

In the Poisson-normal model; data y follow a Poisson model ! , 

and ! follows, as a prior, a normal distribution ! . The posterior density of !  

is; 

!     (A.22) 

Being a normal distribution. 

A.12. The lognormal - lognormal model. 

Using a LogNormal-LogNormal model; data !  follow a  lognormal probability 

distribution function with mean 𝜇 and standard deviation 𝝈 expressed as  

(y1,..., yn / λ,c) ∼Weibull(yi / λ,c) λ

λ ∼G(α ,β ) λ

f (λ / y)∝ f (λ) f (y / λ)∝ yi
α−1 ⋅e−βyi ⋅ yi

λ
⎛
⎝⎜

⎞
⎠⎟
c−1

e
− yi

λ
⎛
⎝⎜

⎞
⎠⎟
c

(y1,..., yn / λ) ∼ exp(yi / λ) λ λ ∼ N(µ,σ )
λ

f (λ /Data)∝ g(Data / λ) f (λ)∝λe−λyi ⋅e
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2
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σ

⎛
⎝⎜

⎞
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2

(y1,..., yn / λ) ∼ Poisson(λ)
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n

∏ ⋅e
−1
2

λ−µ
σ

⎛
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⎞
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!  and a prior for the distribution of !  also following a 

LogNormal distribution expressed as ! . The posterior density of !  is 

expressed as 

!    (A.23) 

Being a LogNormal distribution. 

A.13. The lognormal - gamma model. 

Using a LogNormal-gamma model; data !  follow a  lognormal probability 

distribution function with mean 𝜇 expressed as  !  and the 

prior for the distribution of ! follows a gamma distribution expressed as ! . 

The posterior density of !  is expressed as 

!    (A.24) 

Being a gamma distribution. 

A.14. The lognormal - uniform model. 

Using a LogNormal-uniform model; data !  with mean ! follow a lognormal 

probability distribution function with mean 𝜇 expressed as !   

and the prior for the distribution of !  follows an uniform distribution expressed as  

! . The posterior density of !  is expressed as: 

 !          (A.25) 

Being a LogNormal distribution. 

A.15. The normal - gamma II model. 

In this normal - gamma model variation; data y follow a normal model;
! , being !  known and ! follows, as a prior, a gamma 

distribution ! . 
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2 ) µ
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The posterior density of !  given data in the form of the vector , is defined accordingly 
to expression (A.7); 

!   

Being a gamma distribution. 

λ

f (µ / y)∝ f (y) f (y / µ)∝ µα−1e−β /µ × 1
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Annex B 

Metropolis-Hastings sampler. 
B.1. The Metropolis - Hastings sampler. 

With the aim to estimate the posterior mean and variance it is needed to sample from a 
probability distribution function ! expressed as !  and 

defined on the domains ! , !  and ! . With the application of the concept of discrete 
Markov chain. 

A stochastic process ! on state space S is defined as a discrete-time Markov 

Chain (DTMC) if for all i and j in S, if; 

!         (B.1) 

For time !  

Additionally a DTMC !  is a time homogeneous if for all n=0,1,…, when; 

!        (B.2) 

With the system having the Markov property that is if, given the complete history X0, 
X1,…, Xn-1, the next state Xn depends only upon Xn-1. That is, as far as predicting Xn+1 is 
concerned, the knowledge of X0, X1,…, Xn-2 is redundant if Xn-1 is known for all values 
of n. 

The Metropolis-Hastings procedure begins by specifying an initial value of ! , call it 
! .  

Then a suitable driver distribution which is easy to sample from, is defined being a pdf 
!  being the proposal density.  

(pdf ) f (Xn ) = f (θ / y)∝ f (θ ) f (y /θ )

S Θ Y

Xn ,n ≥ 0{ }

P(Xn+1 = j / Xn = i,Xn−1,...,X0 ) = P(Xn+1 = j / Xn = i)

t = n = 0,1,2,...,N

Xn , n ≥ 0{ }

P(Xn+1 = j / Xn = i) = P(X1 = j / X0 = i)

X
X0

g(t / Xn )

!229
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This driver has to be symmetric, in the sense that ! or more precisely, 

!   !  and for any ! . 

Then the following iteration is performed for each !  where !  is large; 

1.- Generate a candidate value of !  by sampling !  with a defined range 

of possible values for ! . Being !  the proposed value and ! , as previously 

indicated, the proposal density. 

2.- Calculate the acceptance probability as ! . 

If !  then the value !  is taken.  Also if !  is outside the range of possible 

values for the random variable !  in the proposal density, then !  and so

! . 

3.- Accept the proposed value !  with probability ! , with the following rule; 

 To determine if !  is accepted, generate a random !  (independently).  

 If !  then accept ! , and otherwise reject ! . 

4.- If ! has been accepted then is ! ;  otherwise, if has been rejected, then is 

!  (the last value !  is maintained in case of rejection). 

This procedure results in the realization of a Markov chain, ! . The last 

value of this chain ! , may be taken as an observation from !  at least 

approximately. The approximation will be extremely good if ! is sufficiently large. 

A value of acceptance rate (AR) is obtained as a ratio of the accepted number in front of 
the total sample ! .  

If ! is sufficiently large, stochastic convergence will be achieved within !  iterations, 
regardless of the point(s) !  from which the algorithm is started. 

Relabelling the last value, ! , in the !  chain as !  ( ! ) leads the required 

sample, namely ! and then a random sample of size !  from ! , is  

obtained. 

g(t / Xn ) = g(Xn / t)

g(t = a / Xn = b) = g(t = b / Xn = a) ∀a,b∈ℜ n

j = 1,2,3,..., J J

Xn X ' j ∼ g(t / Xj−1)

Xn X ' j g(t / Xj−1)

p =
f (X ' j )
f (Xj−1)

p >1 p = 1 X ' j
Xn f (X ' j ) = 0

p = 0

X ' j p

X ' j u ∼U(0,1)

u < p X ' j X ' j

X ' j Xj = X ' j

Xj = Xj−1 Xj−1

X0,X1,X2,...,XK

XK f (Xn )

K

J

J B
X0

xK j 'th x j j = 1,..., J

x1,..., xJ ∼ f (x) J f (Xn )
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The obtention of random samples of size ! , can be repeated ! times to obtain a 
representative value from the Markov chain at steady state. 

Generating a chain of length ! with a sample ! a larger number of times ! may be 
considered wasteful of computer resources. Typically only one long chain is generated, 
of length ! , where !  is sufficiently large for stochastic convergence to be 
achieved from the starting value !  and ! is again the required sample size. But in this 

thesis this sample obtention is repeated ! times. Discarding the results of the first !
iterations (called the burn-in, including also ! ) and relabelling the last ! values of the 

chain appropriately, the result will be the sample ! . 

A possible problem with this method of generating the sample values is that they will be 
autocorrelated in a some extent not truly random and then is !  

approximately a random sample. Moreover if !  is sufficiently large, then these values 
will be effectively independent meaning that a probability histogram of these values 
will converge to !  as ! tends to infinity. 

B.2. Time series. Autocorrelation. 

A stochastic process corresponds to a family of time indexed random variables !  

where !  belongs to a sample space and ! to an index set. For a fixed ! , ! is a 

random variable and for a given ! ,!  as a function of ! is called a sample 

function. Then a time series is a sample function from a certain stochastic process. The 
sample function is then expressed as !  or ! . And the following definitions are taken;  

Mean function of the process: 

      !      (B.3) 

Variance function of the process: 

     !     (B.4) 

Covariance function between !  and !  as: 

          !    (B.5) 

Correlation function between !  and !  as: 

J m

J K m

J = B + K B
x0 J

m B
X0 J

X1,...,XJ ∼ f (Xn )

X1,...,XJ ∼ f (Xn )

J

f (Xn ) J

X(ω ,t)

ω t t X(ω ,t)
ω X(ω ,t) t

Xt Xn

µn = E(Xn )

Var(Xn ) =σ n
2 = E(Xn − µn )

2

Xn1 Xn2

γ (n1,n2 ) = E(Xn1 − µn1)(Xn2 − µn2 )

Xn1 Xn2
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      !     (B.6) 

The sample autocorrelation function (ACF) is then defined as;: 

 !    (B.7) 

Whereis the sample mean of the series is defined as: 

     !      (B.8) 

For a stationary process the covariance function !  and the autocorrelation 

function !  have the following properties; 

1. If !  that is ! , then is !  and !  

2. !  and !  

3. If ! ,  and !  is  !  and is !  and the 

functions are symmetric around the lag ! ; this property follows from the 
characteristic of the Markov chain, having the Markov property. 

An ACF plot can be performed showing the evolution of the (ACF) !  with ! . 

An approximate 95% confidence intervals are drawn at ! when plotting the (ACF) 

being this parameter the standard error  for the auto correlation function, defined as: 

   !     (B.9) 

For a stochastic process !   and then the sample autocorrelation 

function in every lag is, !  and; 

       !       (B.10) 

ρ(n1,n2 ) =
γ (n1,n2 )
σ n1
2 σ n2

2

ρk =
Cov(Xn ,Xn+k )

Var(Xn ) Var(Xn+k )
= ρ̂k =

(Xn − X)(Xn+k − X)
n=1

m−k

∑

(Xn − X)
2

n=1

m

∑

X = Zn

mn=1

m

∑

γ (n1,n2 )

ρk

n1 = n2 k = 0 γ (n,n) =Var(Xn ) ρk = ρ0 = 1

γ (n1,n2 ) ≤ γ (n,n) ρk ≤1

nc = nb + k na = nb − k γ (nb ,nc ) = γ (nb ,na ) ρk = ρ−k

k

ρk k

±2Sρ̂k

Sρ̂k =
1
m
(1+ 2ρ̂1

2 + ...+ 2ρ̂k−1
2 )

ρk =
1, for k = 0
0, for k ≠ 0

⎧
⎨
⎩

2ρ̂1
2 = ...= 2ρ̂k−1

2 = 0

Sρ̂k =
1
m



!  

!                                                                      Annex B. Metropolis-Hastings sampler 233

Being !  the total Markov chain number of lags. 

B.3. Time series. Partial autocorrelation. 

In addition to the autocorrelation between ! and !  it is needed to analyze the 

correlation between ! and !  and the intervening variables between them as ! , 

! , …, and ! . The conditional correlation; 

    !     (B.11) 

is referred as the partial autocorrelation function (PACF). 

To analyze this expression it is needed to define what is the linear dependence of !  

and !  everyone from ! , ! , …, and ! . Then considering a Markov chain

!  and assuming that ! , is; 

a.- Let the linear dependence of !  from ! , ! , …, and !  be defined  as the 

best linear estimate !  and expressed as; 

  !     (B.12) 

where ! !  are the mean squared linear regression coefficients obtained 

from minimizing; 

 !   (B.13) 

Similarly; 

b.- The best linear estimate !  can be expressed as; 

  !      (B.14) 

where ! !  are the mean squared linear regression coefficients obtained 

from minimizing; 

 !    (B.15) 

The partial autocorrelation function (PACF) between !  and !  will equal the 

ordinary autocorrelation between !  and !  being defined as; 

m

Xn Xn+k

Xn Xn+k Xn+1

Xn+2 Xn+k−1

Corr(Xn ,Xn+k Xn+1,...,Xn+k−1)

Xn

Xn+k Xn+1 Xn+2 Xn+k−1

Xn E(Xn ) = 0

Xn+k Xn+1 Xn+2 Xn+k−1

X̂n+k

X̂n+k =α1Xn+k−1 +α 2Xn+k−2 + ...+α k−1Xn+1

α i (1≤ i ≤ k −1)

E(Xn+k − X̂n+k )
2 = E(Xn+k −α1Xn+k−1 −α 2Xn+k−2 − ...−α k−1Xn+1)

2

X̂n

X̂n = β1Xn+1 + β2Xn+2 + ...+ βk−1Xn+k−1

βi (1≤ i ≤ k −1)

E(Xn − X̂n )
2 = E(Xn − β1Xn+1 − β2Xn+2 − ...− βk−1Xn+k−1)

2

Xn Xn+k

(Xn − X̂n ) (Xn+k − X̂n+k )



!  

!                                                                      Annex B. Metropolis-Hastings sampler 234

  !     (B.16)  

For a stochastic process !   

An ACF plot can be performed showing the evolution of the (PACF) !  with ! . 

Also an approximate 95% confidence intervals are drawn at ! when plotting the 

(PACF) being this parameter the standard error for the partial auto correlation function, 
defined as: 

       !        (B.17) 

Being !  the total Markov chain number of lags. 

pk =
Cov (Xn − X̂n )(Xn+k − X̂n+k )⎡⎣ ⎤⎦
Var(Xn − X̂n ) Var(Xn+k − X̂n+k )

pk =
1, for k = 0
0, for k ≠ 0

⎧
⎨
⎩

pk k

±2Sp̂k

Sp̂k =
1
n

n



Annex C 

Hidden time Markov chains. 
C.1. Discrete time Markov chains. 

Let Xn be the state of the system at time n for a system that is observed at times 0,1,2,
…,n. Suppose the system is currently at time n, and observations have been made in 
times 0,1,…,n-1# n. The question is if it is possible to predict, in a probabilistic way, the 
state of the system at time n+1. In general, Xn+1 depends (in a possibly random fashion) 
on X0, X1,…, Xn-1. Considerable simplification occurs if, given the complete history X0, 
X1,…, Xn-1, the next state Xn depends only upon Xn-1. That is, as far as predicting Xn+1 is 
concerned, the knowledge of X0, X1,…, Xn-2 is redundant if Xn-1 is known. If the system 
has this property at all values of n (and not just for one n value), it is said that the 
system has a Markov property.  

A stochastic process ! on state space S is a discrete-time Markov Chain 

(DTMC) if for all i and j in S, if; 

!         (C.1) 

A DTMC !  is a time homogeneous if for all n=0,1,…, when; 

!       (C.2) 

It should be keep in mind that according to (C.1) implies that the conditional probability 
on the left hand side is the same no matter what values !  take. Sometimes 

this property is described as <given the present state of the system (namely Xn), the 
future state of the DTMC (namely Xn+1) is independent of its past (namely X0, X1,
…,Xn-1)>. The quantity;  

!   for  i,j = 1,2,…,N      (C.3) 

≤

Xn ,n ≥ 0{ }

P(Xn+1 = j / Xn = i,Xn−1,...,X0 ) = P(Xn+1 = j / Xn = i)

Xn , n ≥ 0{ }

P(Xn+1 = j / Xn = i) = P(X1 = j / X0 = i)

X0, X1,...,Xn−1

P(Xn+1 = j / Xn = i)

!235
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Is called a one-step transition probability of the DTMC at time n. Equation (C.2) 
implies that, for time homogeneous DTMCs, the one-step transition probability depends 
on i and j but is the same at all times n; hence the terminology time homogeneous.  

In this thesis only time-homogeneous DTMCs with finite state space S={1,2,.,N} are 
considered. 

C.2. Transient distributions. 

Let ! be a time-homogeneous DTMC on state space !  with 

transition probability matrix P and initial distribution !  of states. Where; 

!  for ! . 

The transient distribution corresponds to the distribution of Xn for a fixed . And   
in general the problem is to know the state !  for all !  and ! . Is; 

!   (C.4) 

Introducing the notation; 

!          (C.5) 

!         (C.6) 

This quantity is called the n-step transition probability of the DTMC. Analogous to the 

one-step transition probability matrix ! , an n-step transition probability matrix 

is defined as follows. 

                               !  

The case for ! , is; !  

Xn , n ≥ 0{ } S = 1,2,...,N{ }
a = a1,...,aN[ ]

ai = P(X0 = i) 1 ≤ i ≤ N

n ≥ 0
P(Xn = j) j ∈S n ≥ 0

P(Xn = j) = P(Xn = j / X0 = i) ⋅P(X0 = i) = ai ⋅
i=1

N

∑
i=1

N

∑ P(Xn = j / X0 = i)

aj
(n) = P(Xn = j)

pi, j
(n) = P(Xn = j / X0 = i)

P = pi, j⎡⎣ ⎤⎦

p(n) =

p1,1
(n) p1,2

(n) p1,3
(n) ! p1,N

(n)

p2,1
(n) p2,2

(n) p2,3
(n) ! p2,N

(n)

p3,1
(n) p3,2

(n) p3,3
(n) ! p3,N

(n)

" " " # "
pN ,1
(n) pN ,2

(n) pN ,3
(n) ! pN ,N

(n)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

P(0) pi, j
(0) = P(X0 = j / X0 = i) =

1   if   i = j
0  if   i ≠ j

⎧
⎨
⎩
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This implies that !  is the identity matrix, (from (C.3) and (C.6 )),  

The case for ! , is;   !   

And hence  

!  

Now construct the transient vector; 

!   so that (C.4) can be written in matrix form, as; 

!  

Note that; !   the initial distribution of the DTMC 

To develop computing methods of the n-step transition probability matrix ! the 
following theorem is needed; 

Theorem 1.- n-step transition probability matrix. 

P(n)=Pn                   (C.7) 

Where Pn is the nth power of matrix P. 

Proof: Since !  and !  the theorem is true for ! . Hence let ! . Is; 

!       

The last sum can be recognized as a matrix multiplication operation, and the equation 
above, which is valid for all !  can be written in a more succinct fashion in 

matrix terminology as; 

P(0) = I

P(1) pi, j
(1) = P(X1 = j / X0 = i) = pi, j

P(1) = P

a(n) = a1
(n),a2

(n),...,aN
(n)⎡⎣ ⎤⎦

a(n) = a ⋅P(n)

a(0) = a ⋅P(0) = a ⋅ I = a

P(n)

P0 = I P1 = P n = 0,1 n ≥ 2

pi,
(n) = P(Xn = j / X0 = i)

= P(Xn = j / Xn−1 = k, X0 = i) ⋅P(Xn−1 = k / X0 = i)
k=1

N

∑

= pi,k
(n−1) ⋅

k=1

N

∑ P(Xn = j / Xn−1 = k, X0 = i)       from C.6

= pi,k
(n−1) ⋅

k=1

N

∑ P(Xn = j / Xn−1 = k)                   due to the Markov property

= pi,k
(n−1) ⋅

k=1

N

∑ P(X1 = j / X0 = k)                     due to time homogeneity

= pi,k
(n−1) ⋅

k=1

N

∑ pk , j

1≤ i, j ≤ N
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!          (C.8) 

Using the equation above for !  is !  

Similarly for !  is !  

In general, using !  as the nth power of the matrix ! , is (C.7). 

Corollary 1.1 

!  

Corollary 1.2  

!  

Theorem 2.- Chapman-Kolmogorov equation 

The  n-step transition probabilities satisfy the following equation, called the Chapman-
Kolmogorov equation: 

!          (C.9) 

Proof: 

!  

In matrix form can be expressed as; 

!  

P(n) = P(n−1) ⋅P

n = 2 P(2) = P(1) ⋅P = P ⋅P

n = 3 P(3) = P(2) ⋅P = P ⋅P ⋅P

P(n) P

a(n) = a ⋅P(n)

P(Xn+m = j / Xn = i, Xn−1,...,X0 )= P(Xn+m = j / Xn = i)= pi, jm

pi, j(n+m) = pi,k(n)pk, j(m)
k=1

N

∑

P(Xn+m = j / X0 = i) = P(Xn+m = j / Xn = k, X0 = i) ⋅P(
k=1

N

∑ Xn = k / X0 = i)

= P(Xn+m = j / Xn = k) ⋅
k=1

N

∑ P(Xn = k / X0 = i)   due to Corollary 1.2

= P(Xm = j / X0 = k)
k=1

N

∑ ⋅P(Xn = k / X0 = i)   due to time homogeneity

= P(Xn = k / X0 = i) ⋅P(Xm = j / X0 = k)
k=1

N

∑

= pi,k
(n) ⋅ pk , j

(m )

k=1

N

∑

P(n+m) = P(n) ⋅P(m) = p(m) ⋅ p(n)



!  

!                                                                                  Annex C. Hidden Markov Chains 239

The equations above imply that the matrices !  and !  commute for all n and m; 
being an unusual property for matrices. Theorem 2 makes it especially easy to compute 
the transient distributions in DTMC’s since it reduces the computations to matrix power 
and multiplication.  

C.3. Occupancy times. 

Let !  be a time - homogeneous DTMC on state space !  with 

transition probability matrix !  and initial distribution ! .   

The occupancy times are the expected amount of time that the DTMC spends in a given 
state during a given interval of time. Since the DTMC undergoes one transition per unit 
time, the occupancy time is the same as the expected number of times it visits a given 
state in a finite number of transitions. Formally is;  

Let !  be the number of times the DTMC visits state j over the time span 

!  and let; 

!  

The quantity !  is called the occupancy time up to n of state j starting from state i. 

Let; 

                           !  

be the occupancy times matrix. The next theorem gives a simple method of computing 
the occupancy times. 

Theorem 3.- Occupancy times 

The occupancy times matrix is given by; 

!           (C.10) 

P(n) P(m )

Xn , n ≥ 0{ } S = 1,2,...,N{ }
P a = [a1,...,aN ]

N j (n)

0,1, 2,...,n{ }

mi, j (n) = E(N j (n) / X0 = i)

mi, j (n)

M (n) =

m1,1(n) m1,2 (n) m1,3(n) ! m1,N (n)

m2,1(n) m2,2 (n) m2,3(n) ! m2,N (n)

m3,1(n) m3,2 (n) m3,3(n) ! m3,N (n)
" " " # "

mN ,1(n) mN ,2 (n) mN ,3(n) ! mN ,N (n)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

M (n) = Pr

r=0

n

∑
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Proof: Let !  if !  and !  if ! . Then  

!  

Hence; 

!  

And writing the previous equivalence in matrix form, the Equation A.10 is obtained. 

C.4. Limiting behavior. 

Let !  be a time - homogeneous DTMC on state space !  with 

transition probability matrix . The problem to find the limiting behavior of  Xn  as n 
tends to infinity. 

If it does, the limiting or steady-state distribution is denoted by; 

!          (C.11) 

where; 

!  with !        (C.12) 

And if the limiting distribution exists it has to satisfy the following theorem; 

Theorem 4.- Limiting distributions 

If a limiting distribution !  exists it satisfies, 

!   with !       balance equations     (C.13) 

and 

!     normalizing equation    (C.14) 

Proof: Using the law of Total Probability  

Zn = 1 Xn = j Zn = 0 Xn ≠ j

N j (n) = Z0 + Z1 + ...+ Zn

mi, j (n) = E(N j (n) / X0 = i) = E(Z0 + Z1 + ...+ Zn / X0 = i) = E(Zr / X0 = i)
r=0

n

∑

= P(Zr = 1/ X0 = i) =
r=0

n

∑ P(Xr = j / X0 = i) =
r=0

n

∑ pi, j
(r )

r=0

n

∑

Xn , n ≥ 0{ } S = 1,2,...,N{ }
P

π = π1,π 2, ...,πN[ ]

π j = limn→∞
P(Xn = j) j ∈S

π

π j = π i pi, j
i=1

N

∑ j ∈S

π j = 1
j=1

N

∑
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The law of Total Probability, states that if !  is finite or countable 

infinity partition of a sample space, and each event !  is measurable, then for any event 

A of the same probability space, is; 

!  And is the marginal probability of A. 

Then is; 

!   for !       (C.15) 

Now, let n tend to infinity on both the right- and left-hand sides. Then, assuming that the 
limiting distribution exists, is; 

!  

Substituting in (C.15) the equation (C.13) is obtained, and can be written in matrix form 
as; 

!           (C.16) 

And are called the balance equations or the steady-state equations. Equation (C.14) is 
called the normalizing equation.  

C.5. First passage times. 

The question to answer is what is the random time at which a stochastic process “first 
passes into” a given subset of the state space. 

Let ! be a DTMC on state space !  with transition probability 

matrix P. The first-passage time into state N, is defined as; 

!          (C.17) 

Note that T is not the minimum number of steps in which the DTMC can reach state N. 
It is the (random) number of steps that it takes to actually visit state N. Typically T can 
take values in ! .  

Let; 

!  

Bn , n = 1,2,3,...{ }
Bn

P(A) = P(A∩ Bn ) = P(A / Bn ) ⋅P(Bn )
n
∑

n
∑

P(Xn+1 = j) = P(Xn = i) ⋅ pi, j
i=1

N

∑ j ∈S

lim
n→∞

P(Xn = j) = lim
n→∞

P(Xn+1 = j) = π j

π = π ⋅P

Xn ,n ≥ 0{ } S = 1, 2,...,N{ }

T = min n ≥ 0 :Xn = N{ }

0,1, 2, 3,...{ }

mi = E(T / X0 = i)
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Clearly ! . The next theorem gives a method of computing !  with ! . 

Theorem 5.- Expected first-passage times  

Proof: !   satisfy; 

!   for  !              (C.18) 

That is, the mean passage time from state i to state j (also denoted by ! ) is the 

expected number  of transitions before state j is reached. There are two possibilities to 
perform these transitions: 

Case 1: With probability ! it will take one transition to go from state i to state j. 

Case 2: With probability !  it will take one transition to go from i to state k ( ! ). 

From state k it will to take !  transitions to go from k to j. Therefore, it will take an 

average of !  transitions to go from i to j. 

Suppose !  and !  (the transition is from initial state i to state j) because if  

j=N  then is ! , and if !  then the DTMC has spent time unit to go to state j and 

the expected time from then on to reach state N is given by ! , hence we get; 

!  

Then !  or  !  is; 

!  

From the definition of ! ; 

!  

as desired. 

mN = 0 mi 1≤ i ≤ N −1

mi , 1≤ i ≤ N −1{ }

mi = 1+ pi, jmj
j=1

N−1

∑ 1≤ i ≤ N −1

mij

pij

pik k ≠ j

mkj

1+mkj

X0 = i X1 = j

T = 1 j ≠ N
mj

E(T / X0 = i, X1 = j) =
1             if j = N
1+mj     if j ≠ N
⎧
⎨
⎩

mi mij

mi = case1+ case2 = pij ⋅1+ pik (1+mkj ) = 1+ pikmkj
k≠ j
∑

k≠ j
∑

mi

mi = E(T / X0 = i) = E(T / X0 = i, X1 = j) ⋅P(X1 = j
j=1

N

∑ / X0 = i) = (1+mj )pi, j + (1)pi,N
j=1

N−1

∑ =

= (1)pi, j + pi, jmj
j=1

N−1

∑
j=1

N

∑ = 1+ pi, jmj
j=1

N−1

∑
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C.6. Discrete and hidden Markov chain. 

As defined before, consider a system which may be described at any time as being in 
one of a set of N distinct states. 

At discrete times, the system undergoes a change of state (possibly back to the same 
state) according to a set of probabilities associated with the state. We denote the time 
instants associated with state changes as n=0,1,2,…, and we denote the actual state at 
time t as Xn. If it has a Markov property.  

!  

considering those processes with time independency and leading a set of state transition 
probabilities !  of the form; 

!     !  

With state transition coefficients having the properties; 

  !              

!            

This situation considers Markov chains in which each state correspond to an observable 
event. There is a case where the observation is also a probabilistic function of the state-i 
but the resulting chain (which is called a hidden Markov chain) is a doubly embedded 
stochastic process with an underlying stochastic chain that is not observable (it is 
hidden). And the hidden underlying sequence can only be deduced through the 
observations of a visible sequence of variables or symbols related to with the underlying 
chain. 

A hidden Markov chain (HMC) is characterized by the following; 

1.- The number of the states N denoted as !  and the state at time t=n as 

Xn , of the hidden chain. 

2.- The number M of distinct observation symbols. Denoted as ! . And 

their associated observation sequence  ! . 

P(Xn+1 = j / Xn = i,Xn−1,...,X0 ) = P(Xn+1 = j / Xn = i)

pi, j
(n)

pi, j
(n) = P(Xn = j / X0 = i) 1≤ i, j ≤ N

pi, j
(n) ≥ 0

pi, j
(n)

j=1

N

∑ = 1

S = S1,S2,...,SN{ }

V = V1,V2,...,VM{ }
O =O1O2,...,OT
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Where each observation ! is one of the symbols !  from V and T is the number of 

observations in the sequence. 

3.- The state transition probability distribution !  where;  

!     !  

4.- The observation symbol probability distribution in state ! , ! where; 

!  for !  and !  

5.- The initial state distribution ! where; 

!  for !  

A complete specification of an HMC requires the definition of the probabilities; 

!     !  

!  for !  and !  

and the initial state distribution; 

!  for !  

To indicate the complete parameter set of a HMC, it is possible to use the compact 
notation; 

!           (C.19) 

The Basic Problem for HMC applied in this thesis is called the learning: How to adjust 
parameters of the HMC !  to maximize ! . 

There is no any known analytical way to solve this problem. But it is possible choose
!  such that ! is locally maximized by using an iterative procedure 

such as the Baum-Welch method also called the backward-forward method. 

First a parameter !  is defined, the probability of being in state !   at time n  

and state!  at time n+1, given a !  for a HMC with an observation 

sequence. 

Ot ν k

P = pi, j
(n){ }

pi, j
(n) = P(Xn = j / X0 = i) 1≤ i, j ≤ N

Xn = j Q = qj (k){ }
qj (k) = P(vk at t = n / Xn = j) 1≤ j ≤ N 1≤ k ≤ M

a = a1,...,aN[ ]

ai = P(X0 = i) 1 ≤ i ≤ N

pi, j
(n) = P(Xn = j / X0 = i) 1≤ i, j ≤ N

qj (k) = P(vk at t / Xn = j) 1≤ j ≤ N 1≤ k ≤ M

ai = P(X0 = i) 1 ≤ i ≤ N

ψ = (P,Q,a)

ψ = (P,Q,a) P(O /ψ )

ψ = (P,Q,a) P(O /ψ )

ξn (i, j) Xn = i

Xn+1 = j ψ = (P,Q,a)
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!        (C.20) 

The sequence of events leading to the conditions required is illustrated in Figure C.6.1 

Figure C.6.1.-  Backward and Forward variables and sequence of events (adapted from [140]).  

From the definitions of forward and backward variables (Figure C.6.1): 

forward variable: 

!        (C.21) 

backward variable: 

!        (C.22) 

It is possible to can write !  in the form, 

!    (C.23) 

Where the numerator term is just !  and the division by !  

gives the desired probability measure. 

ξn (i, j) = P(Xn = i,Xn+1 = j /O,ψ )

α n (i) = P(O1O2...Ot ,Xn = i /ψ )

βn (i) = P(Ot+1,Ot+2,...,OT / Xn = i,ψ )

ξt (i, j)

ξn (i, j) =
α n (i)pi, j

(n)qj (On+1)βn+1( j)
P(O /ψ )

=
α n (i)pi, j

(n)qj (On+1)βn+1( j)

α n (i)pi, j
(n)qj (On+1)βn+1( j)

j=1

N

∑
i=1

N

∑

P(Xn = i,Xn+1 = j,O /ψ ) P(O /ψ )

t=n t=n+1 t=n+2t=n-1

𝛼n(i) 𝛽n+1(j)

p(n)i,j qj (On+1)

Xn+1=jXn=i
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Defining ! as the probability of being in state !  at time n given the observation 

sequence and the model !  it is possible to relate to !  by summing over 

! , giving; 

!          (C.24) 

If we sum !  over the time index n, we get a quantity which can be interpreted as the 

expected number of times that state !  is visited, or equivalently, the expected 

number of transitions made from state ! . Similarly, summation of !  from t=1 

to t=n-1) can be interpreted as the expected number of transitions from state !  to 

state! , that is: 

!  

!  

Then a set of reasonable re-estimation formulas for  a, P and Q   are: 

!  

!  

!  

If the current model is defined as !  and it is used to compute the right hand 

sides of the previous expressions the re-estimate model is defined as ! , and 

has been proven [140], that: 

γ n (i) Xn = i

ψ = (P,Q,a) ξn (i, j)
j

γ n (i) = ξn (i, j)
j=1

N

∑

γ n (i)
Xn = i

Xn = i ξn (i, j)

Xn = i
Xn = j

γ n (i) = expected number of transitions from Xn = i
n=1

n−1

∑

ξn (i, j) = expected number of transitions from Xn = i
n=1

n−1

∑  to Xn = j  

ai = expected frequency in state X0 = i at time γ 0 (i) (n=0)

pi, j
(n) = expected number of transitions from state Xn = i to state Xn = j

expected number of transitions from state Xn = i
=

ξn (i, j)
n=1

n−1

∑

γ n (i)
n=1

n−1

∑

qj (k) = expected number of times in state Xn = j  and observing symbol vk

expected number of times in Xn = j
=

γ n ( j)
n=1
On=vk

n

∑

γ n ( j)
n=1

n

∑

ψ = (P,Q,a)

ψ = (P,Q,a )
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1.- The initial model !  defines a critical point in the likelihood function in which case 

!   

2.- The model !  is more likely than model !  in the sense that ! . 

It should be pointed that the forward-backward algorithm leads to local maxima only, 
and taking in care that in most problems of interest the optimization surface can be 
complex with many local maxima. 

ψ

ψ =ψ

ψ ψ P(O /ψ ) > P(O /ψ )
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Annex D 

Control charts. 
The purpose of establishing a control chart or Shewhart control chart, is to 
systematically monitor the activity and determine if it is necessary to carry out 
corrective actions on it. 

They are based on two premises: 

1.- The measurements or the taking of samples must belong to a population that has a 
distribution function. 

2.- The measurements, for each group of samples, must be statistically independent. A 
measurement should not affect other measurements. 

The characteristic or parameter that is measured is a variable that belong to a set of 
possible values (cost, precursor event, failures, etc.) and their control is based on the 
analysis of the tendency and variability. The general model on which the Shewhart 
control chart is based in the measurement of a statistic  !  for which their mean is 

!  and the variance is !  being; 

The upper control limit, and low control limits that are defined as: 

     !     (D.1) 

     !     (D.2) 

Respectively, where ! is the distance of the control limits from the center line in 
multiples of the standard deviation. 

θ ∈Θ

µΘ σΘ
2

UCL = µΘ +CσΘ

LCL = µΘ −CσΘ

C

!249
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Annex E 

Tables of LOC probabilities. 
E.1. Stationary and atmospheric vessels. 

G1: Instantaneous release of the content. 

G2: Continuous release of the content in 10 min at constant rate. 

G3: Continuous release from a hole with an effective diameter of 10 mm. 

Table E.1.1.- Frequency 𝝀 of LOC episode for stationary vessels, (adapted from [45]). 

Table E.1.2.- Frequency 𝝀 of LOC episode for atmospheric vessels, (adapted from [45]). 

Installation LOC frequency (y-1)

stationary vessel G1 G2 G3

pressure 5·10-7 5·10-7 1·10-5

process 5·10-6 5·10-6 1·10-4

reactor 5·10-5 5·10-5 1·10-3

Installation LOC frequency (y-1)

atmospheric vessel G1 G2 G3

single containment 5·10-6 5·10-6 1·10-4

protective outer shell 5·10-7 5·10-7 1·10-4

double containment 5·10-8 5·10-8 1·10-4

in-ground 1·10-8 - -

!251
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E.2. Pipes. 

G1: Full bore rupture. 

G2: Leak. 

Table E.2.1.- Frequency 𝝀 of LOC episode for pipelines, (adapted from [45]).  

E.3. Pumps. 

G1: Catastrophic failure with full bore rupture of the largest connecting pipeline. 

G2: Leak. 

Table E.3.1.- Frequency 𝝀 of LOC episode for pumps, (adapted from [45]). 

E.4. Heat exchangers. 

G1: Instantaneous release of the content. 

G2: Continuous release of the content in 10 min at constant rate. 

G3: Continuous release from a hole with an effective diameter of 10 mm. 

G4: Simultaneous and total rupture of the hole at the entrance and exit of a pipe. 

G.5: Full bore rupture of one pipe. 

G.6: Leak 

Installation LOC frequency (y-1)

pipeline G1 G2 G3

nominal ∅ < 75 mm 1·10-6 5·10-6 -

75 mm <∅<150 mm 3·10-7 5·10-6 -

nominal ∅>150 mm 1·10-7 5·10-7 -

Installation LOC frequency (y-1)

pump G1 G2 G3

without additional provisions 1·10-4 5·10-4 -

with a steel containment 5·10-5 2.5·10-4 -

canned pumps 1·10-5 5·10-5 -
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Table E.4.1.- Frequency 𝝀 of LOC episode for heat exchangers, (adapted from [45]). 

E.5. Pressure relief devices. 

G1: Discharge of pressure relief device at maximum rate. 

Table E.5.1.- Frequency 𝝀 of LOC episode for pressure relief devices, (adapted from [45]). 

E.6. Storage in warehouses. 

G1: Handling solids, with dispersion of a fraction of the unit packaging as respirable   
powder. 

G2: Handling liquids, with spill of the complete unit packaging. 

S3: Emission of unburned toxics and toxics produced in the fire or explosion. 

Table E.6.1.- Frequency 𝝀 of LOC episode for storage in warehouse, (adapted from [45]). 

Installation LOC frequency (y-1)

heat exchanger G1 G2 G3 G4 G5 G6

dangerous substance 
outside pipes

1·10-4 5·10-4 1·10-3 - - -

dangerous substance inside pipes 
pressure outer shell<pressure of dangerous substance

1.2·10-5 1.2·10-3 1.2·10-3

dangerous substance inside pipes 
pressure outer shell>pressure of dangerous substance

1.2·10-6 - -

Installation LOC frequency (y-1)

pressure relief device G1 G2 G3

without additional provisions 2·10-5 - -

Installation LOC frequency (packaging unit-1) EMISSION (y-1)

storage in warehouse G1 G2 G3

storage of substances 1·10-5 1·10-5 8.8·10-4 

(worst case)
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E.7. Road tankers. 

G1: Instantaneous release of the content. 

G2: Continuous release from a hole with the size of the largest connection. 

L1a: Full bore rupture of the of the loading / unloading connection. 

L2a: Leak of the loading / unloading connection. 

L1b: Full bore rupture of the loading / unloading arm. 

L2b: Leak of the loading / unloading arm. 

E.1: External impact. 

S.1: Fire under tank modeled as total and instantaneous release of content. 

Table E.7.1.- Frequency 𝝀 of LOC episode for road tankers, (adapted from [45]). 

E.8. Ship tankers. 

L.1: Full bore rupture of the loading / unloading arm. 

L.2: Leak of the loading / unloading arm. 

E.1: External impact, large spill. 

E.2: External impact, small spill. 

Table E.8.1.- Frequency 𝝀 of LOC episode for ship tankers, where f0 = 6.7·10-11·T·t·N; with T total 
number of ships by year, t average hours of loading / unloading, N number of shipments by year;   
(adapted from [45]).  

Installation LOC frequency 
(y-1)

 (h-1)  (y-1)

road tanker G1 G2 L1a L2a L1b L2b E1 S1

with / without 
pressure

5·10-7 

(worst case)
5·10-7 4·10-5 4·10-5 3·10-8 3·10-7 1·10-6 1·10-5 

(worst case)

Installation LOC frequency (shipment-1)  (y-1)

ship L1 L2 E1 E2

all class 6·10-5 6·10-4 0.1f0                
(worst case)

0.2f0              
(worst case)



Annex F 

Fuzzy logic. 

There are two fuzzy inference systems (FIS) that are possible to apply, the Mamdami-
type and the Sugeno-type. Mamdani-type uses the technique of de-fuzzification of the 
fuzzy output, while Sugeno-type uses the weighted average to compute the output. 
Sugeno method is computationally efficient and works well with optimization and 
adaptive techniques, because there is no de-fuzzification step which makes it very 
attractive in control problems, particularly for dynamic non linear systems. 

But  Mamdani's fuzzy inference method is the most commonly applied because their 
rules definition are very close to the human language expression. It was proposed in 
1975 by Ebrahim Mamdani as an attempt to control a steam engine and boiler 
combination by synthesizing a set of linguistic control rules obtained from experienced 
human operators.  In this thesis the Mamdami-type FIS is applied. 

The fuzzy inference is a method that interprets the values in the input vector and, based 
on rules, assigns values to the output vector. (Figure F.1). 

Figure F.1.-  Fuzzy inference scheme procedure. Inputs applied for the (SPW55) fuzzy estimation.   

!255
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Procedure: 

1. Define inputs and their intervals of variability. This is the input space. 

2. Define the fuzzy sets. 

A diffuse set has the characteristic of not having clear and clearly defined limits. 
Although each of the inputs have their own intervals of action; by interacting with each 
other, affecting risk can show limits that overlap and are not clearly defined. 

3. Define the membership functions (MF). 

To reflect the degree of interaction and diffuse limits between the Inputs, the 
membership functions (MF) are used, which are curves for which the variations of each 
Input are defined and associated with an interval valued between 0 and 1. These curves 
can be: piece-wise linear functions, gaussian functions, sigmoid curves or quadratic, 
cubic-polynomial. 

4.  Rules are defined. 

These rules are logical collecting the Inputs and giving an Output value defined also as 
a membership function (MF) with a considered interval. 

5. Aggregation and de-fuzzy 

The logical rules are summarized and de-fuzzified giving the Output value. 

6. Obtention of the Output value. 

For the case of the fuzzy inference system (FIS) for Storm, Precipitation and Wind55 
(SPW55), with the inputs and their intervals of variability are: Storm [0 4] in days; 
Precipitation [0 120] in mm; and Wind55 [0 14] in days. And the Output [1 2] being this 
a factor. 

The fuzzy sets and the membership functions as triangular distributions are defined. 
Every input and the output has three sets for low, medium and high. See Figure F.2. 
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Figure F.2.-  Fuzzy sets and memberships definition for the three inputs on the (SPW55) inference.   

The definition of rules are; 

1 If Storm is low or Precipitation is low or Wind55 is low then factor is low 

2 If Storm is medium or Precipitation is medium or Wind55 is medium then factor is 
medium. 

3 If Storm is high or Precipitation is high or Wind 55 is high then factor is high. 

4 If Storm is high then factor is high. 

Every rule is independent from each other. 

The aggregation and de-fuzzy process are presented on Figure F.3. In this case when 
Storm = 2 days, Precipitation = 60 mm and Wind55 = 7 days, the Factor is 1.5. 

Figure F.3.-  Aggregation and output for the (SPW55) fuzzy inference. 
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Annex G 

Joint distributions. 
Most statistics applications require analyzing more than one random variable in a 
simultaneous way. Let X and Y denote two random variables.  

Their joint cumulative distribution function is defined as; 

    !     (G.1) 

And then their joint density function is defined as; 

    !      (G.2) 

Their covariance is defined as; 

 !   (G.3) 

Measuring the degree of coordination in the way X and Y might change. 

Their correlation coefficient is defined as; 

   !      (G.4) 

Measuring, in this case, the dependence between two random variables. 

For the case of more than two random variables. Let ! a random column 

vector of dimension ! . 

The joint cumulative distribution function can be defined as; 

   !     (G.5) 

And the joint density function as;  

F(x, y) = P(X ≤ x,Y ≤ y)

f (x, y) = ∂2F(x, y)
∂x∂y

Cov(X,Y ) = E[(X − E(X)) ⋅(Y − E(Y ))]= E(XY )− E(X)E(Y )

ρ(X,Y ) = Cov(X,Y )
Var(X)Var(Y )

X = (X1,...,Xn )
T

n

F(x1,..., xn ) = P(X1 ≤ x1,...,Xn ≤ xn )

!259
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   !      (G.6) 

With covariance matrix; 

  !    (G.7) 

With its elements defined as pairwise covariances, and being, for !  the diagonal 

elements. 

   !      (G.8) 

And correlation matrix; 

    !       (G.9) 

To enhance the needs for good a data fit appear the concept of Joint Distribution-
Copula. But before is needed to define the concept of marginal distribution. 

If from the two variables X, Y only one, say X, is important for the analysis and the 
values of the other Y are irrelevant or not enough information is available on them, then 
it is possible to consider a marginal density function of X and define it as the integral of 
the joint density over ! , as; 

    !      (G.10) 

And, accordingly, the marginal cumulative distribution function is; 

    !      (G.11) 

If on the contrary, the specific value ! is relevant and known, from a Bayesian point of 

view, it is possible to consider the conditional cumulative distribution of X given Y, as; 

    !     (G.12) 

With density function; 

    !      (G.13) 

f (x1,..., xn ) =
∂n F(x1,..., xn )
∂x1...∂xn

σ ij = Cov(Xi ,Xj ) = E[(Xi − E(Xi )) ⋅(Xj − E(Xj )]

i = j

σ ii = Cov(Xi ,Xi ) =Var(Xi )

ρij =
σ ij

σ iiσ jj

y

fX (x) = f (
−∞

∞

∫ x, y)dy

FX (x) = limy→∞
F(x, y)

y

FXY (x y) = P(X ≤ x Y = y)

fX Y (x y) =
f (x, y)
fY (y)
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Then,  

a. modeling marginal cumulative distributions !  and ! . 

b. modeling the joint distribution as  

    !     (G.14) 

That is “mixing” the marginal distributions with the help of a special bivariate function 
! , reflecting the relation pattern. This class of functions !  is known as Joint 
Distributions - Copulas. 

G.1. Quasi-monotonicity. 

Introducing the notation: !  is the unit segment; !  is the unit 

square. Then for any !  and !  is a rectangular region in 

the plane as shown in Figure G.1.1. 

Figure G.1.1.-  Rectangular area (adapted from [194]).  

Let !  be a function from ! to !  and ! be a rectangular region in the unit square. 

The !  of the region !  is defined as; 

  !    (G.15) 

Let !  and !  represent the first consecutive difference, as; 

F(x) G(y)

H (x, y) = C(F(x),G(y))

C C

I = [0,1] I 2 = [0,1]× [0,1]
u1 ≤ u2, v1 ≤ v2 B = [u1,u2 ]× [v1,v2 ]

A(u,v) I 2 I B

A − volume B

VA(B) = A(u2,v2 )− A(u1,v2 )− A(u2,v1)+ A(u1,v1)

Δu1
u2 Δv1

v2

0 1

1

u1 u2

v1

v2

B
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!   and  !    (G.16) 

The !  is then; 

    !      (G.17) 

Then the function  !  is called quasi-monotone if for any rectangular area !  in the 

unit square its ! is nonnegative. 

Additionally, the function ! is grounded on ! if !  

G.2. Definition of Copula. 

The function !  is called a copula if it satisfies; 

1. ! . 

2. For any !  ! . 

3. For any !  ! . 

4. For any !  and !  is 

!  

For any copula ! partial derivatives !  and !  exist for almost all ! . 

Let!  and !  exist and be continuous on ! , then the copula density is; 

     !      (G.18) 

From the definition, it is evident that if !  and !  are two distribution 

functions, then any copula !  is a valid bivariate distribution 

function, and the joint probability density function of X and Y can be represented as; 

    !     (G.19) 

Δu1
u2A(u,v) = A(u2,v)− A(u1,v) Δv1

v2A(u,v) = A(u,v2 )− A(u,v1)

A − volume

VA(B) = Δv1
v2Δu1

u2A(u,v)

A(u,v) B

A − volume

A(u,v) I 2 A(0,v) = A(u,0) = 0

C

C : I 2 → I

u,v∈[0,1] C(0,v) = C(u,0) = 0

u,v∈[0,1] C(1,v) = v;C(u,1) = u

0 ≤ u1 ≤ u2 ≤1 0 ≤ v1 ≤ v2 ≤1

VC (B) = C(u2,v2 )−C(u1,v2 )−C(u2,v1)+C(u1,v1) ≥ 0

C(u,v) ∂C
∂u

∂C
∂v

u,v∈[0,1]

∂2C
∂u∂v

∂2C
∂v∂u

I 2

c(u,v) = ∂2C
∂u∂v

= ∂2C
∂v∂u

u = F(x) v = F(y)

C(u,v) = C(F(x),G(y))

f (x, y) = ∂2C
∂u∂v

⋅ dF
dx

⋅ dG
dy
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Where !  and !  are marginal densities of X and Y. 

G.3. Elliptical copulas. Gaussian. Construction. 

In this thesis, the kind of copulas applied corresponds to the so-called elliptical being its 
exponent the Gaussian or normal. 

One method of building a Gaussian copula is the method of inverses. This uses the fact 
that for !  is uniformly distributed on [0,1], their inverse transforms !  

and !  are two independent random variables that have the same cumulative 

distribution function in [0,1] and  allowing for an effective separation of the marginal 
distributions !  and ! , being; 

   !     (G.20) 

Where !  is the correlation matrix. For example a Gaussian N(0,1) joint bivariate 

distribution with !  is defined with n=100000 random samples. Their 

histogram is, Figure G.3.1; 

 

Figure G.3.1.-  Bivariate Gaussian distribution.  

dF
dx

dG
dy

u,v∈[0,1] Φ−1(u)

Φ−1(v)

u = F(x) v = F(y)

H (x, y) = Φρ[Φ
−1(F(x)),Φ−1(G(y))]

ρ

ρ = 1 0.7
0.7 1

⎛
⎝⎜

⎞
⎠⎟
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And their cumulated distribution is ! , Figure G.3.2. 

Figure G.3.2.-  Cumulated distribution function.  

Two marginal d is t r ibut ions are def ined, being; ! and 

!  with joint distribution-copula defined, Figure G.3.3, according to 

(F.20), as; 

Figure G.3.3.-  Gaussian joint distribution-copula for Gamma(2.1) and t-Student(5) marginals.  

u,v∈[0,1]

F(x) = gamma(2,1)

G(x) = t − Student(5)



Annex H 

Applied programs. 
The Matlab programs applied in the different cases are collected in this annex.  

H.1. Poisson-gamma. 

a.- Recurrent method with mean prior. 

clear 
%% Recurrent with mean prior 
%Prior time 0 
alfa0=0.001; beta0=0.001; mean0=0.001; 

%Interval 1 

yi=[0]; yiobs1=[0]; st=sum(yi); Nt=length(yi); alfa1=alfa0+st; beta1=beta0+Nt; lambda1=alfa1/beta1; 
sigma1=sqrt(alfa1/beta1^2); 
CILM1 = mean0-sigma1; 
if CILM1<0 
    CILM1=0; 
end 
MEAN1 = mean0; CIUM1 = mean0+sigma1; 
xx1=[0 yiobs1]; lim1 = [CILM1 MEAN1 CIUM1]; 
figure 
controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[0 0.5],’width',1); title('interval t=1')  

% Interval 2 

yi=[0]; yiobs2=[0]; st=sum(yi); Nt=length(yi); alfa2=alfa1+st; beta2=beta1+Nt; lambda2=alfa2/beta2; 
sigma2=sqrt(alfa2/beta2^2); 
CILM2 = mean0-sigma2; 
if CILM2<0 
    CILM2=0; 
end 
MEAN2 = mean0; CIUM2 = mean0+sigma2; 
xx2=[yiobs1 yiobs2]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[0 0.5],’width',1); title('interval t=2')  

% Interval 3 

yi=[0]; yiobs3=[0]; st=sum(yi); Nt=length(yi); alfa3=alfa2+st; beta3=beta2+Nt; lambda3=alfa3/beta3; 
sigma3=sqrt(alfa3/beta3^2); 
CILM3 = mean0-sigma3; 
if CILM3<0 
    CILM3=0; 
end 
MEAN3 = mean0; CIUM3 = mean0+sigma3; 
xx3=[yiobs1 yiobs2 yiobs3]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[0 0.5],’width',1); title('interval t=3’) 

!265
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% Interval 4 

yi=[1]; yiobs4=[1/4]; st=sum(yi); Nt=length(yi); alfa4=alfa3+st; beta4=beta3+Nt; lambda4=alfa4/beta4; 
sigma4=sqrt(alfa4/beta4^2); 
CILM4 = mean0-sigma4; 
if CILM4<0 
    CILM4=0; 
end 
MEAN4 = mean0; CIUM4 = mean0+sigma4; 
xx4=[yiobs1 yiobs2 yiobs3 yiobs4]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[0 0.5],’width',1); title('interval t=4')  

% Interval 5 

yi=[0]; yiobs5=[0]; st=sum(yi); Nt=length(yi); alfa5=alfa4+st; beta5=beta4+Nt; lambda5=alfa5/beta5; 
sigma5=sqrt(alfa5/beta5^2); 
CILM5 = mean0-sigma5; 
if CILM5<0 
    CILM5=0; 
end 
MEAN5 = mean0; CIUM5 = mean0+sigma5; 
xx5=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[0 0.5],’width',1); title('interval t=5')  

% Interval 6 

yi=[0]; yiobs6=[0]; st=sum(yi); Nt=length(yi); alfa6=alfa5+st; beta6=beta5+Nt; lambda6=alfa6/beta6; 
sigma6=sqrt(alfa6/beta6^2); 
CILM6 = mean0-sigma6; 
if CILM6<0 
    CILM6=0; 
end 
MEAN6 = mean0; CIUM6 = mean0+sigma6; 
xx6=[0 yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[0 0.5],’width',1); title('interval t=6')  

% Interval 7 

yi=[1]; yiobs7=[1/3]; st=sum(yi); Nt=length(yi); alfa7=alfa6+st; beta7=beta6+Nt; lambda7=alfa7/beta7; 
sigma7=sqrt(alfa7/beta7^2); 
CILM7 = mean0-sigma7; 
if CILM7<0 
    CILM7=0; 
end 
MEAN7 = mean0; CIUM7 = mean0+sigma7; 
xx7=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[0 0.5],’width',1); title('interval t=7')  

% Interval 8 

yi=[1]; yiobs8=[1/1]; st=sum(yi); Nt=length(yi); alfa8=alfa7+st; beta8=beta7+Nt; lambda8=alfa8/beta8; 
sigma8=sqrt(alfa8/beta8^2); 
CILM8 = mean0-sigma8; 
if CILM8<0 
    CILM8=0; 
end 
MEAN8 = mean0; CIUM8 = mean0+sigma8; 
xx8=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[0 0.5],’width',1); title('interval t=8')  

% Interval 9 
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yi=[0]; yiobs9=[0]; st=sum(yi); Nt=length(yi); alfa9=alfa8+st; beta9=beta8+Nt; lambda9=alfa9/beta9; 
sigma9=sqrt(alfa9/beta9^2); 
CILM9 = mean0-sigma9; 
if CILM9<0 
    CILM9=0; 
end 
MEAN9 = mean0; CIUM9 = mean0+sigma9; 
xx9=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8 yiobs9]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[0 0.5],’width',1); title('interval t=9')  

% Interval 10 

yi=[0]; yiobs10=[0]; st=sum(yi); Nt=length(yi); alfa10=alfa9+st; beta10=beta9+Nt; lambda10=alfa10/beta10; 
sigma10=sqrt(alfa10/beta10^2); 
CILM10 = mean0-sigma10; 
if CILM10<0 
    CILM10=0; 
end 
MEAN10 = mean0; CIUM10 = mean0+sigma10; 
xx10=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8 yiobs9 yiobs10];  
lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[0 0.5],’width',1); title('interval t=10')  

b.- Recurrent method with mean posterior. 

clear 
%% Recurrent with Mean posterior 
%Prior time 0 
alfa0=0.001; beta0=0.001; mean0=0.001; 

%Interval 1 

yi=[0]; yiobs1=[0]; st=sum(yi); Nt=length(yi); alfa1=alfa0+st; beta1=beta0+Nt; lambda1=alfa1/beta1; 
sigma1=sqrt(alfa1/beta1^2); 
CILM1 = lambda1-sigma1; 
if CILM1<0 
    CILM1=0; 
end 
MEAN1 = lambda1; CIUM1 = lambda1+sigma1; 
xx1=[0 yiobs1]; lim1 = [CILM1 MEAN1 CIUM1]; 
figure 
controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[0 0.5],’width',1); title('interval t=1')  

% Interval 2 

yi=[0]; yiobs2=[0]; st=sum(yi); Nt=length(yi); alfa2=alfa1+st; beta2=beta1+Nt; lambda2=alfa2/beta2; 
sigma2=sqrt(alfa2/beta2^2); 
CILM2 = lambda2-sigma2; 
if CILM2<0 
    CILM2=0; 
end 
MEAN2 = lambda2; CIUM2 = lambda2+sigma2; 
xx2=[yiobs1 yiobs2]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[0 0.5],’width',1); title('interval t=2')  

% Interval 3 

yi=[0]; yiobs3=[0]; st=sum(yi); Nt=length(yi); alfa3=alfa2+st; beta3=beta2+Nt; lambda3=alfa3/beta3; 
sigma3=sqrt(alfa3/beta3^2); 
CILM3 = lambda3-sigma3; 
if CILM3<0 
    CILM3=0; 
end 
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MEAN3 = lambda3; CIUM3 = lambda3+sigma3; 
xx3=[yiobs1 yiobs2 yiobs3]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[0 0.5],’width',1); title('interval t=3')  

% Interval 4 

yi=[1]; yiobs4=[1/4]; st=sum(yi);Nt=length(yi); alfa4=alfa3+st; beta4=beta3+Nt; lambda4=alfa4/beta4; 
sigma4=sqrt(alfa4/beta4^2); 
CILM4 = lambda4-sigma4; 
if CILM4<0 
    CILM4=0; 
end 
MEAN4 = lambda4; CIUM4 = lambda4+sigma4; 
xx4=[yiobs1 yiobs2 yiobs3 yiobs4]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[0 0.5],’width',1); title('interval t=4')  

% Interval 5 

yi=[0]; yiobs5=[0]; st=sum(yi); Nt=length(yi); alfa5=alfa4+st; beta5=beta4+Nt; lambda5=alfa5/beta5; 
sigma5=sqrt(alfa5/beta5^2); 
CILM5 = lambda5-sigma5; 
if CILM5<0 
    CILM5=0; 
end 
MEAN5 = lambda5; CIUM5 = lambda5+sigma5; 
xx5=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[0 0.5],’width',1); title('interval t=5')  

% Interval 6 

yi=[0]; yiobs6=[0]; st=sum(yi); Nt=length(yi); alfa6=alfa5+st; beta6=beta5+Nt; lambda6=alfa6/beta6; 
sigma6=sqrt(alfa6/beta6^2); 
CILM6 = lambda6-sigma6; 
if CILM6<0 
    CILM6=0; 
end 
MEAN6 = lambda6; CIUM6 = lambda6+sigma6; 
xx6=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[0 0.5],’width',1); title('interval t=6')  

% Interval 7 

yi=[1]; yiobs7=[1/3]; st=sum(yi); Nt=length(yi); alfa7=alfa6+st; beta7=beta6+Nt; lambda7=alfa7/beta7; 
sigma7=sqrt(alfa7/beta7^2); 
CILM7 = lambda7-sigma7; 
if CILM7<0 
    CILM7=0; 
end 
MEAN7 = lambda7; CIUM7 = lambda7+sigma7; 
xx7=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[0 0.5],’width',1); title('interval t=7')  

% Interval 8 

yi=[1]; yiobs8=[1/1]; st=sum(yi); Nt=length(yi); alfa8=alfa7+st; beta8=beta7+Nt; lambda8=alfa8/beta8; 
sigma8=sqrt(alfa8/beta8^2); 
CILM8 = lambda8-sigma8; 
if CILM8<0 
    CILM8=0; 
end 
MEAN8 = lambda8; CIUM8 = lambda8+sigma8; 
xx8=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8]; lim8 = [CILM8 MEAN8 CIUM8]; 
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figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[0 0.5],’width',1); title('interval t=8')  

% Interval 9 

yi=[0]; yiobs9=[0]; st=sum(yi); Nt=length(yi); alfa9=alfa8+st; beta9=beta8+Nt; lambda9=alfa9/beta9; 
sigma9=sqrt(alfa9/beta9^2); 
CILM9 = lambda9-sigma9; 
if CILM9<0 
    CILM9=0; 
end 
MEAN9 = lambda9; CIUM9 = lambda9+sigma9 
xx9=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8 yiobs9]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[0 0.5],’width',1); title('interval t=9')  

% Interval 10 

yi=[0]; yiobs10=[0]; st=sum(yi); Nt=length(yi); alfa10=alfa9+st; beta10=beta9+Nt; lambda10=alfa10/beta10; 
sigma10=sqrt(alfa10/beta10^2); 
CILM10 = lambda10-sigma10; 
if CILM10<0 
    CILM10=0; 
end 
MEAN10 = lambda10; CIUM10 = lambda10+sigma10; 
xx10=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8 yiobs9 yiobs10];  
lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[0 0.5],’width',1); title('interval t=10')  

c.- Direct method with mean prior. 

clear 
%% Direct with Mean prior constant  
%Prior time 0 
alfa0=0.001; beta0=0.001; mean0=0.001; 

%Interval 1 

yi=[0]; yiobs1=[0]; st=sum(yi); Nt=length(yi); alfa1=alfa0+st; beta1=beta0+Nt; lambda1=alfa1/beta1; 
sigma1=sqrt(alfa1/beta1^2); 
CILM1 = mean0-sigma1; 
if CILM1<0 
    CILM1=0; 
end 
MEAN1 = mean0; CIUM1 = mean0+sigma1; yiobs1= yiobs1(Nt); 
xx1=[0 yiobs1]; lim1 = [CILM1 MEAN1 CIUM1]; 
figure 
controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[0 0.5],’width',1); title('interval t=1')  

% Interval 2 

yi=[0 0]; yiobs2=[0 0]; st=sum(yi); Nt=length(yi); alfa2=alfa0+st; beta2=beta0+Nt; lambda2=alfa2/beta2; 
sigma2=sqrt(alfa2/beta2^2); 
CILM2 = mean0-sigma2; 
if CILM2<0 
    CILM2=0; 
end 
MEAN2 = mean0; CIUM2 = mean0+sigma2; yiobs2= yiobs2(Nt); 
xx2=[yiobs1 yiobs2]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[0 0.5],’width',1); title('interval t=2')  

% Interval 3 

yi=[0 0 0]; yiobs3=[0 0 0]; st=sum(yi); Nt=length(yi); alfa3=alfa0+st; beta3=beta0+Nt; lambda3=alfa3/beta3; 
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sigma3=sqrt(alfa3/beta3^2); 
CILM3 = mean0-sigma3; 
if CILM3<0 
    CILM3=0; 
end 
MEAN3 = mean0; CIUM3 = mean0+sigma3; yiobs3= yiobs3(Nt); 
xx3=[yiobs1 yiobs2 yiobs3]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[0 0.5],’width',1); title('interval t=3')  

% Interval 4 

yi=[0 0 0 1]; yiobs4=[0 0 0 1/4]; st=sum(yi); Nt=length(yi); alfa4=alfa0+st; beta4=beta0+Nt; lambda4=alfa4/beta4; 
sigma4=sqrt(alfa4/beta4^2); 
CILM4 = mean0-sigma4; 
if CILM4<0 
    CILM4=0; 
end 
MEAN4 = mean0; CIUM4 = mean0+sigma4; yiobs4= yiobs4(Nt); 
xx4=[yiobs1 yiobs2 yiobs3 yiobs4]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[0 0.5],’width',1); title('interval t=4')  

% Interval 5 

yi=[0 0 0 1 0]; yiobs5=[0 0 0 1/4 0]; st=sum(yi); Nt=length(yi); alfa5=alfa0+st; beta5=beta0+Nt;  
lambda5=alfa5/beta5; sigma5=sqrt(alfa5/beta5^2); 
CILM5 = mean0-sigma5; 
if CILM5<0 
    CILM5=0; 
end 
MEAN5 = mean0; CIUM5 = mean0+sigma5; yiobs5= yiobs5(Nt); 
xx5=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[0 0.5],’width',1); title('interval t=5')  

% Interval 6 

yi=[0 0 0 1 0 0]; yiobs6=[0 0 0 1/4 0 0]; st=sum(yi); Nt=length(yi); alfa6=alfa0+st; beta6=beta0+Nt; 
lambda6=alfa6/beta6; sigma6=sqrt(alfa6/beta6^2); 
CILM6 = mean0-sigma6; 
if CILM6<0 
    CILM6=0; 
end 
MEAN6 = mean0; CIUM6 = mean0+sigma6; yiobs6= yiobs6(Nt); 
xx6=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[0 0.5],’width',1); title('interval t=6')  

% Interval 7 

yi=[0 0 0 1 0 0 1]; yiobs7=[0 0 0 1/4 0 0 1/3]; st=sum(yi); Nt=length(yi); alfa7=alfa0+st; beta7=beta0+Nt; 
lambda7=alfa7/beta7; sigma7=sqrt(alfa7/beta7^2); 
CILM7 = mean0-sigma7; 
if CILM7<0 
    CILM7=0; 
end 
MEAN7 = mean0; CIUM7 = mean0+sigma7; yiobs7= yiobs7(Nt); 
xx7=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[0 0.5],’width',1); title('interval t=7')  

% Interval 8 

yi=[0 0 0 1 0 0 1 1]; yiobs8=[0 0 0 1/4 0 0 1/3 1/1]; st=sum(yi); Nt=length(yi); alfa8=alfa0+st; beta8=beta0+Nt; 
lambda8=alfa8/beta8; sigma8=sqrt(alfa8/beta8^2); 
CILM8 = mean0-sigma8; 
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if CILM8<0 
    CILM8=0; 
end 
MEAN8 = mean0; CIUM8 = mean0+sigma8; yiobs8= yiobs8(Nt); 
xx8=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[0 0.5],’width',1); title('interval t=8')  

% Interval 9 

yi=[0 0 0 1 0 0 1 1 0]; yiobs9=[0 0 0 1/4 0 0 1/3 1/1 0]; st=sum(yi); Nt=length(yi); alfa9=alfa0+st; beta9=beta0+Nt; 
lambda9=alfa9/beta9; sigma9=sqrt(alfa9/beta9^2); 
CILM9 = mean0-sigma9; 
if CILM9<0 
    CILM9=0; 
end 
MEAN9 = mean0; CIUM9 = mean0+sigma9; yiobs9= yiobs9(Nt); 
xx9=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8 yiobs9]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[0 0.5],’width',1); title('interval t=9')  

% Interval 10 

yi=[0 0 0 1 0 0 1 1 0 0]; yiobs10=[0 0 0 1/4 0 0 1/3 1/1 0 0]; st=sum(yi); Nt=length(yi); alfa10=alfa0+st; 
beta10=beta0+Nt; lambda10=alfa10/beta10; sigma10=sqrt(alfa10/beta10^2); 
CILM10 = mean0-sigma10; 
if CILM10<0 
    CILM10=0; 
end 
MEAN10 = mean0; CIUM10 = mean0+sigma10; yiobs10= yiobs10(Nt); 
xx10=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8 yiobs9 yiobs10];  
lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[0 0.5],’width',1); title('interval t=10')  

d.- Direct method with mean posterior. 

clear 
%% Direct with Mean prior posterior  
%Prior time 0 
alfa0=0.001; beta0=0.001; mean0=0.001; 

%Interval 1 

yi=[0]; yiobs1=[0]; st=sum(yi); Nt=length(yi); alfa1=alfa0+st; beta1=beta0+Nt; lambda1=alfa1/beta1; 
sigma1=sqrt(alfa1/beta1^2); 
CILM1 = lambda1-sigma1; 
if CILM1<0 
    CILM1=0; 
end 
MEAN1 = lambda1; CIUM1 = lambda1+sigma1; yiobs1= yiobs1(Nt); 
xx1=[0 yiobs1]; lim1 = [CILM1 MEAN1 CIUM1]; 
figure 
controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[0 0.5],’width',1); title('interval t=1')  

% Interval 2 

yi=[0 0]; yiobs2=[0 0]; st=sum(yi); Nt=length(yi); alfa2=alfa0+st; beta2=beta0+Nt; lambda2=alfa2/beta2; 
sigma2=sqrt(alfa2/beta2^2); 
CILM2 = lambda2-sigma2; 
if CILM2<0 
    CILM2=0; 
end 
MEAN2 = lambda2; CIUM2 = lambda2+sigma2; yiobs2= yiobs2(Nt); 
xx2=[yiobs1 yiobs2]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
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controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[0 0.5],’width',1); title('interval t=2')  

% Interval 3 

yi=[0 0 0]; yiobs3=[0 0 0]; st=sum(yi); Nt=length(yi); alfa3=alfa0+st; beta3=beta0+Nt; lambda3=alfa3/beta3; 
sigma3=sqrt(alfa3/beta3^2); 
CILM3 = lambda3-sigma3; 
if CILM3<0 
    CILM3=0; 
end 
MEAN3 = lambda3; CIUM3 = lambda3+sigma3; yiobs3= yiobs3(Nt); 
xx3=[yiobs1 yiobs2 yiobs3]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[0 0.5],’width',1); title('interval t=3')  

% Interval 4 

yi=[0 0 0 1]; yiobs4=[0 0 0 1/4]; st=sum(yi); Nt=length(yi); alfa4=alfa0+st; beta4=beta0+Nt; lambda4=alfa4/beta4; 
sigma4=sqrt(alfa4/beta4^2); 
CILM4 = lambda4-sigma4; 
if CILM4<0 
    CILM4=0; 
end 
MEAN4 = lambda4; CIUM4 = lambda4+sigma4; yiobs4= yiobs4(Nt); 
xx4=[yiobs1 yiobs2 yiobs3 yiobs4]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[0 0.5],’width',1); title('interval t=4')  

% Interval 5 

yi=[0 0 0 1 0]; yiobs5=[0 0 0 1/4 0]; st=sum(yi); Nt=length(yi); alfa5=alfa0+st; beta5=beta0+Nt; 
lambda5=alfa5/beta5; sigma5=sqrt(alfa5/beta5^2); 
CILM5 = lambda5-sigma5; 
if CILM5<0 
    CILM5=0; 
end 
MEAN5 = lambda5; CIUM5 = lambda5+sigma5; yiobs5= yiobs5(Nt); 
xx5=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[0 0.5],’width',1); title('interval t=5')  

% Interval 6 

yi=[0 0 0 1 0 0]; yiobs6=[0 0 0 1/4 0 0]; st=sum(yi); Nt=length(yi); alfa6=alfa0+st; beta6=beta0+Nt; 
lambda6=alfa6/beta6; sigma6=sqrt(alfa6/beta6^2); 
CILM6 = lambda6-sigma6; 
if CILM6<0 
    CILM6=0; 
end 
MEAN6 = lambda6; CIUM6 = lambda6+sigma6; yiobs6= yiobs6(Nt); 
xx6=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[0 0.5],’width',1); title('interval t=6')  

% Interval 7 

yi=[0 0 0 1 0 0 1]; yiobs7=[0 0 0 1/4 0 0 1/3]; st=sum(yi); Nt=length(yi); alfa7=alfa0+st; beta7=beta0+Nt; 
lambda7=alfa7/beta7; sigma7=sqrt(alfa7/beta7^2); 
CILM7 = lambda7-sigma7; 
if CILM7<0 
    CILM7=0; 
end 
MEAN7 = lambda7; CIUM7 = lambda7+sigma7; yiobs7= yiobs7(Nt); 
xx7=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[0 0.5],’width',1); title('interval t=7')  
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% Interval 8 

yi=[0 0 0 1 0 0 1 1]; yiobs8=[0 0 0 1/4 0 0 1/3 1/1]; st=sum(yi); Nt=length(yi); alfa8=alfa0+st; beta8=beta0+Nt; 
lambda8=alfa8/beta8; sigma8=sqrt(alfa8/beta8^2); 
CILM8 = lambda8-sigma8; 
if CILM8<0 
    CILM8=0; 
end 
MEAN8 = lambda8; CIUM8 = lambda8+sigma8; yiobs8= yiobs8(Nt); 
xx8=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[0 0.5],’width',1); title('interval t=8')  

% Interval 9 

yi=[0 0 0 1 0 0 1 1 0]; yiobs9=[0 0 0 1/4 0 0 1/3 1/1 0]; st=sum(yi); Nt=length(yi); alfa9=alfa0+st; beta9=beta0+Nt; 
lambda9=alfa9/beta9; sigma9=sqrt(alfa9/beta9^2); 
CILM9 = lambda9-sigma9; 
if CILM9<0 
    CILM9=0; 
end 
MEAN9 = lambda9; CIUM9 = lambda9+sigma9; yiobs9= yiobs9(Nt); 
xx9=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8 yiobs9]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[0 0.5],’width',1); title('interval t=9')  

% Interval 10 

yi=[0 0 0 1 0 0 1 1 0 0]; yiobs10=[0 0 0 1/4 0 0 1/3 1/1 0 0]; st=sum(yi); Nt=length(yi); alfa10=alfa0+st; 
beta10=beta0+Nt; lambda10=alfa10/beta10; sigma10=sqrt(alfa10/beta10^2); 
CILM10 = lambda10-sigma10; 
if CILM10<0 
    CILM10=0; 
end 
MEAN10 = lambda10; CIUM10 = lambda10+sigma10; yiobs10= yiobs10(Nt); 
xx10=[yiobs1 yiobs2 yiobs3 yiobs4 yiobs5 yiobs6 yiobs7 yiobs8 yiobs9 yiobs10]; 
lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[0 0.5],’width',1); title('interval t=10')  

H.2. Exponential-gamma. 

a.- Recurrent method. 

clear 
%% Init 
%Parameters specification 
x0=0.2; c=0.1;  B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10;  
% Initial t=0 specification 1/20 
t=20;  
%Values for gamma 
alfa0=0.5; beta0=10; meangamma00=alfa0/beta0; sigmagamma00=sqrt(alfa0/beta0^2); object=meangamma00; 

for i=1:n 
a(i)=0;     
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3)      %>2 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa0,1/beta0)*exppdf(object,x(j,1)))/… 
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           (gampdf(x(j-1,1),alfa0,1/beta0)*exppdf(object,x(j-1,1)));       
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu0(i)=mean(xx); vaa0(i)=var(xx); stdd0(i)=sqrt(vaa0(i)); 
end 

%Acceptance Rate AR 
[muhat0,sigmahat0,muci0,sigmaci0] = normfit(muu0); AR0=mean(a)/J; muu00=mean(muu0); vaa00=mean(vaa0); 
std00=sqrt(vaa00); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 0','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 0','FontSize',15); 
%Histogram 
figure 
h = histogram(xx);  
counts = h.Values; phat=gamfit(xx); alfa00 = phat(1); beta00 = 1/phat(2); meangamma0=phat(1)/(1/phat(2)); 
sigmagamma0=sqrt(phat(1)/(1/phat(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat(1),phat(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 0','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda00=muu00; Sigma00=sigmagamma0; 

% First incident Interval t=4 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; 
%Data 
yi =[1]; t=4; yiP1 = [1/4]; 
%Values for gamma 
alfa1=alfa0; beta1=beta0; meangamma1=alfa1/beta1; sigmagamma1=sqrt(alfa1/beta1^2); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
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    else p(j,1)=(gampdf(x(j,1),alfa1,1/beta1)*exppdf(yiP1,x(j,1)))/... 
          (gampdf(x(j-1,1),alfa1,1/beta1)*exppdf(yiP1,x(j-1,1)));                
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat1=gamfit(xx); alfa11 = phat1(1); beta11 = 1/phat1(2); meangamma1=phat1(1)/(1/phat1(2)); 
sigmagamma1=sqrt(phat1(1)/(1/phat1(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat1(1),phat1(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda11=muu11; Sigma11=sigmagamma1; 

% Second incident 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n =10; 
%Data 
% Incidence in t=7, 7-4=3, one incident. Interval t=3 
yi =[1]; t=3;  yiP2=[1/3]; 
%Values for gamma 
alfa2=alfa11; beta2=beta11; meangamma2=alfa2/beta2; sigmagamma2=sqrt(alfa2/beta2^2); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
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    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0;       
    else p(j,1)=(gampdf(x(j,1),alfa2,1/beta2)*exppdf(yiP2,x(j,1)))/... 
          (gampdf(x(j-1,1),alfa2,1/beta2)*exppdf(yiP2,x(j-1,1)));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
stdd22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat2=gamfit(xx); alfa22 = phat2(1); beta22 = 1/phat2(2); meangamma2=phat2(1)/(1/phat2(2)); 
sigmagamma2=sqrt(phat2(1)/(1/phat2(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat2(1),phat2(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda22=muu22; Sigma22=sigmagamma2; 

% Third incident 
% Incident in t=8, 8-7=1. Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; 
%Data 
yi =[1]; t=1; yiP3=[1/1]; 
%Values for gamma  
alfa3=alfa22; beta3=beta22; meangamma3=alfa3/beta3; sigmagamma3=sqrt(alfa3/beta3^2); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
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    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa3,1/beta3)*exppdf(yiP3,x(j,1)))/... 
          (gampdf(x(j-1,1),alfa3,1/beta3)*exppdf(yiP3,x(j-1,1)));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
stdd33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 8','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 8','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat3=gamfit(xx); alfa33 = phat3(1); beta33 = 1/phat3(2); meangamma3=phat3(1)/(1/phat3(2)); 
sigmagamma3=sqrt(phat3(1)/(1/phat3(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat3(1),phat3(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 8','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda33=muu33; Sigma33=sigmagamma3; 

b.- Direct method. 

clear 
%% Init 
%Parameters specification 
x0=0.2; c=0.2;  B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; 
% Initial t=0, specification 1/20 
t=20;  
%Values for gamma 
alfa0=0.5; beta0=10; meangamma00=alfa0/beta0; sigmagamma00=sqrt(alfa0/beta0^2); object=meangamma00; 
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for i=1:n 
a(i)=0;     
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3)      %>2 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa0,1/beta0)*exppdf(object,x(j,1)))/... 
            (gampdf(x(j-1,1),alfa0,1/beta0)*exppdf(object,x(j-1,1)));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu0(i)=mean(xx); vaa0(i)=var(xx); stdd0(i)=sqrt(vaa0(i)); 
end 

%Acceptance Rate AR 
[muhat0,sigmahat0,muci0,sigmaci0] = normfit(muu0); AR0=mean(a)/J; muu00=mean(muu0); vaa00=mean(vaa0); 
std00=sqrt(vaa00); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 0','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 0','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat=gamfit(xx); alfa00 = phat(1); beta00 = 1/phat(2); meangamma0=phat(1)/(1/phat(2)); 
sigmagamma0=sqrt(phat(1)/(1/phat(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat(1),phat(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 0','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda00=muu00; Sigma00=sigmagamma0; 

% First incident. Interval t=4 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; 
%Data 
yi =[1]; t=4; yiP1 = [1/4]; 
%Values for gamma 
alfa1=alfa0; beta1=beta0; meangamma1=alfa1/beta1; sigmagamma1=sqrt(alfa1/beta1^2); 
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for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa1,1/beta1)*exppdf(yiP1,x(j,1)))/... 
          (gampdf(x(j-1,1),alfa1,1/beta1)*exppdf(yiP1,x(j-1,1)));               
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat1=gamfit(xx); alfa11 = phat1(1); beta11 = 1/phat1(2); meangamma1=phat1(1)/(1/phat1(2)); 
sigmagamma1=sqrt(phat1(1)/(1/phat1(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat1(1),phat1(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 

%Lambda post, sigma post 
Lambda11=muu11; Sigma11=sigmagamma1; 

% Second incident 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n =10; 
%Data. Incident in t=7, 7-4=3 un incident 
yi =[1]; t=3; yiP2=[1/3]; 
%Values for gamma 
alfa2=alfa0; beta2=beta0; meangamma2=alfa2/beta2; sigmagamma2=sqrt(alfa2/beta2^2); 
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for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa2,1/beta2)*exppdf(yiP2,x(j,1)))/... 
          (gampdf(x(j-1,1),alfa2,1/beta2)*exppdf(yiP2,x(j-1,1)));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
stdd22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value','FontSize',15,'FontWeight','bold');title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat2=gamfit(xx); alfa22 = phat2(1); beta22 = 1/phat2(2); meangamma2=phat2(1)/(1/phat2(2)); 
sigmagamma2=sqrt(phat2(1)/(1/phat2(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat2(1),phat2(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda22=muu22; Sigma22=sigmagamma2; 

% Third incident. Incident in t=8, 8-7=1 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; 
%Data 
yi =[1]; t=1; yiP3=[1/1]; 
%Values for gamma 
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alfa3=alfa0; beta3=beta0; meangamma3=alfa3/beta3; sigmagamma3=sqrt(alfa3/beta3^2); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa3,1/beta3)*exppdf(yiP3,x(j,1)))/... 
          (gampdf(x(j-1,1),alfa3,1/beta3)*exppdf(yiP3,x(j-1,1)));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
stdd33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 8','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 8’,'FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat3=gamfit(xx); alfa33 = phat3(1); beta33 = 1/phat3(2); meangamma3=phat3(1)/(1/phat3(2)); 
sigmagamma3=sqrt(phat3(1)/(1/phat3(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat3(1),phat3(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 8','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda33=muu33; Sigma33=sigmagamma3; 
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H.3. Weibull-gamma. 

a.- Recurrent method. 

clear 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; 
% Initial t=0. Specification 1/20 
t=20;  
%Values for gamma 
alfa0=0.5; beta0=10; meangamma00=alfa0/beta0; sigmagamma00=sqrt(alfa0/beta0^2); object=meangamma00; 
%Weibull 
aw=1.5;  

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa0,1/beta0)*wblpdf(object,x(j,1),aw))/... 
            (gampdf(x(j-1,1),alfa0,1/beta0)*wblpdf(object,x(j-1,1),aw));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu0(i)=mean(xx); vaa0(i)=var(xx); stdd0(i)=sqrt(vaa0(i)); 
end 

%Acceptance Rate AR 
[muhat0,sigmahat0,muci0,sigmaci0] = normfit(muu0); AR0=mean(a)/J; muu00=mean(muu0); vaa00=mean(vaa0); 
std00=sqrt(vaa00); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 0','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 0','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat=gamfit(xx); alfa00 = phat(1); beta00 = 1/phat(2); meangamma0=phat(1)/(1/phat(2)); 
sigmagamma0=sqrt(phat(1)/(1/phat(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat(1),phat(2)); 
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plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 0','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda00=muu00; Sigma00=sigmagamma0; 

% First incident 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; 
%Data. Interval t=4 
yi =[1]; t=4; yiP1=[1/4]; 
%Values for gamma 
alfa1=alfa0; beta1=beta0; meangamma1=alfa1/beta1; sigmagamma1=sqrt(alfa1/beta1^2); 
%Weibull 
aw=1.5;  

for i=1:n 
a(i)=0;     
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa1,1/beta1)*wblpdf(yiP1,x(j,1),aw))/... 
            (gampdf(x(j-1,1),alfa1,1/beta1)*wblpdf(yiP1,x(j-1,1),aw));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat1=gamfit(xx); alfa11 = phat1(1); beta11 = 1/phat1(2); meangamma1=phat1(1)/(1/phat1(2)); 
sigmagamma1=sqrt(phat1(1)/(1/phat1(2)^2)); 
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hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat1(1),phat1(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda11=muu11; Sigma11=sigmagamma1; 

% Second incident 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; 
%Data. Incident in t=7,  7-4=3. Interval t=3 
yi =[1]; t=3; yiP2=[1/3]; 
%Values for gamma 
alfa2=alfa11; beta2=beta11; meangamma2=alfa2/beta2; sigmagamma2=sqrt(alfa2/beta2^2); 
%Weibull 
aw=1.5;  

for i=1:n 
a(i)=0;     
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa2,1/beta2)*wblpdf(yiP2,x(j,1),aw))/... 
            (gampdf(x(j-1,1),alfa2,1/beta2)*wblpdf(yiP2,x(j-1,1),aw));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
stdd22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
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h = histogram(xx);  
counts = h.Values; phat2=gamfit(xx); alfa22 = phat2(1); beta22 = 1/phat2(2); meangamma2=phat2(1)/(1/phat2(2)); 
sigmagamma2=sqrt(phat2(1)/(1/phat2(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat2(1),phat2(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda22=muu22; Sigma22=sigmagamma2; 

% Third incident 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; 
%Data. Incident in t=8, 8-7=1. Interval t=1 
yi =[1]; t=1; yiP3=[1/1]; 
%Values for gamma 
alfa3=alfa22; beta3=beta22; meangamma3=alfa3/beta3; sigmagamma3=sqrt(alfa3/beta3^2); 
%Weibull 
aw=1.5;  

for i=1:n 
a(i)=0;     
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa3,1/beta3)*wblpdf(yiP3,x(j,1),aw))/... 
            (gampdf(x(j-1,1),alfa3,1/beta3)*wblpdf(yiP3,x(j-1,1),aw));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
stdd33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 8','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
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ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 8','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat3=gamfit(xx); alfa33 = phat3(1); beta33 = 1/phat3(2); meangamma3=phat3(1)/(1/phat3(2)); 
sigmagamma3=sqrt(phat3(1)/(1/phat3(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat3(1),phat3(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 8','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda33=muu33; Sigma33=sigmagamma3; 

b.- Direct method. 

clear 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; 
% Initial t=0. Specification 1/20 
t=20;  
%Values for gamma 
alfa0=0.5; beta0=10; meangamma00=alfa0/beta0; sigmagamma00=sqrt(alfa0/beta0^2); object=meangamma00; 
%Weibull 
aw=1.5;  

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa0,1/beta0)*wblpdf(object,x(j,1),aw))/... 
            (gampdf(x(j-1,1),alfa0,1/beta0)*wblpdf(object,x(j-1,1),aw));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu0(i)=mean(xx); vaa0(i)=var(xx); stdd0(i)=sqrt(vaa0(i)); 
end 

%Acceptance Rate AR 
[muhat0,sigmahat0,muci0,sigmaci0] = normfit(muu0); AR0=mean(a)/J; muu00=mean(muu0); vaa00=mean(vaa0); 
std00=sqrt(vaa00); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 



!  

!                                                                                          Annex G. Applied programs 287

xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 0','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 0','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat=gamfit(xx); alfa00 = phat(1); beta00 = 1/phat(2); meangamma0=phat(1)/(1/phat(2)); 
sigmagamma0=sqrt(phat(1)/(1/phat(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat(1),phat(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 0','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda00=muu00; Sigma00=sigmagamma0; 

% First incident 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; 
%Data. Interval t=4 
yi =[1]; t=4; yiP1=[1/4]; 
%Values for gamma 
alfa1=alfa0; beta1=beta0; meangamma1=alfa1/beta1; sigmagamma1=sqrt(alfa1/beta1^2); 
%Weibull 
aw=1.5;  

for i=1:n 
a(i)=0;     
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa1,1/beta1)*wblpdf(yiP1,x(j,1),aw))/... 
            (gampdf(x(j-1,1),alfa1,1/beta1)*wblpdf(yiP1,x(j-1,1),aw));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
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k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat1=gamfit(xx); alfa11 = phat1(1); beta11 = 1/phat1(2); meangamma1=phat1(1)/(1/phat1(2)); 
sigmagamma1=sqrt(phat1(1)/(1/phat1(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat1(1),phat1(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda11=muu11; Sigma11=sigmagamma1; 

% Second incident 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; 
%Data. Incident in t=7, 7-4=3. Interval t=3 
yi =[1]; t=3; yiP2=[1/3]; 
%Values for gamma 
alfa2=alfa0; beta2=beta0; meangamma2=alfa2/beta2; sigmagamma2=sqrt(alfa2/beta2^2); 
%Weibull 
aw=1.5;  

for i=1:n 
a(i)=0;     
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa2,1/beta2)*wblpdf(yiP2,x(j,1),aw))/... 
            (gampdf(x(j-1,1),alfa2,1/beta2)*wblpdf(yiP2,x(j-1,1),aw));            
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
stdd22=sqrt(vaa22); 
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%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat2=gamfit(xx); alfa22 = phat2(1); beta22 = 1/phat2(2); meangamma2=phat2(1)/(1/phat2(2)); 
sigmagamma2=sqrt(phat2(1)/(1/phat2(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat2(1),phat2(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda22=muu22; Sigma22=sigmagamma2; 

% Third incident 
%Parameters specification 
x0=0.2; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; 
%Data. Incident in t=8, 8-7=1. Interval t=1 
yi =[1]; t=1; yiP3=[1/1]; 
%Values for gamma 
alfa3=alfa0; beta3=beta0; meangamma3=alfa3/beta3; sigmagamma3=sqrt(alfa3/beta3^2); 
%Weibull 
aw=1.5;  

for i=1:n 
a(i)=0;     
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>3) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfa3,1/beta3)*wblpdf(yiP3,x(j,1),aw))/... 
            (gampdf(x(j-1,1),alfa3,1/beta3)*wblpdf(yiP3,x(j-1,1),aw)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 
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%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
stdd33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 8','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 8','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; phat3=gamfit(xx); alfa33 = phat3(1); beta33 = 1/phat3(2); meangamma3=phat3(1)/(1/phat3(2)); 
sigmagamma3=sqrt(phat3(1)/(1/phat3(2)^2)); 
hold on 
xxx=0:0.01:2; 
yyy=gampdf(xxx,phat3(1),phat3(2)); 
plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 8','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda33=muu33; Sigma33=sigmagamma3; 

H.4. Exponential-normal. 

a.- Recurrent method. 

clear 
%First incident t=4  
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1]; sumY=sum(yi); nn=length(yi); 
%Vector of parameters 
yiP=[0 0 0 1/4];  SiP = std(yiP,1); yii = sumY/nn; S = std(yi,1); MU = mean(yi,2); 

for i=1:n 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(exppdf(yiP(nn),x(j,1))*normpdf(object,x(j,1),SiP))/... 
            (exppdf(yiP(nn),x(j-1,1))*normpdf(object,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
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        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 

%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:2; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda11=muu11; Sigma11=sigmahat; 

% Second incident in t=7;  t=7-4=3  
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1 0 0 1]; sumY=sum(yi); nn=length(yi); 
% Vector of parameters 
yiP=[0 0 0 1/4 0 0 1/3];  SiP = std(yiP,1); yii = sumY/nn; S = std(yi,1); MU = mean(yi,2); 

for i=1:n 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(exppdf(yiP(nn),x(j,1))*normpdf(muu11,x(j,1),SiP))/... 
            (exppdf(yiP(nn),x(j-1,1))*normpdf(muu11,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
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        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:3; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda22=muu22; Sigma22=sigmahat; 

%Third incident in t=8;  t=8-7=1  
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1 0 0 1 1]; sumY=sum(yi); nn=length(yi); 
%Vector of parameters 
yiP=[0 0 0 1/4 0 0 1/3 1/1]; SiP = std(yiP,1); yii = sumY/nn; S = std(yi,1); MU = mean(yi,2); 

for i=1:n 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(exppdf(yiP(nn),x(j,1))*normpdf(muu22,x(j,1),SiP))/... 
            (exppdf(yiP(nn),x(j-1,1))*normpdf(muu22,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
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        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 8','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 8','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:3; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 8','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda33=muu33; Sigma33=sigmahat; 

b.- Direct method. 

clear 
%First incident t=4  
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector de incidences 
yi =[0 0 0 1]; sumY=sum(yi); nn=length(yi); 
%Vector of parameters 
yiP=[0 0 0 1/4]; SiP = std(yiP,1); yii = sumY/nn; S = std(yi,1); MU = mean(yi,2); 

for i=1:n 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
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    else p(j,1)=(exppdf(yiP(nn),x(j,1))*normpdf(object,x(j,1),SiP))/... 
            (exppdf(yiP(nn),x(j-1,1))*normpdf(object,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:2; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda11=muu11; Sigma11=sigmahat; 

% Second incident in t=7;  t=7-4=3  
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1 0 0 1]; sumY=sum(yi); nn=length(yi); 
%Vector of parameters 
yiP=[0 0 0 1/4 0 0 1/3]; SiP = std(yiP,1); yii = sumY/nn; S = std(yi,1); MU = mean(yi,2); 

for i=1:n 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
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        p(j,1)=0; 
    else p(j,1)=(exppdf(yiP(nn),x(j,1))*normpdf(object,x(j,1),SiP))/... 
            (exppdf(yiP(nn),x(j-1,1))*normpdf(object,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:3; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda22=muu22; Sigma22=sigmahat; 

%Third incident in t= 8, t=8-7=1 
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1 0 0 1 1]; sumY=sum(yi); nn=length(yi); 
%Vector of parameters 
yiP=[0 0 0 1/4 0 0 1/3 1/1]; SiP = std(yiP,1); yii = sumY/nn; S = std(yi,1); MU = mean(yi,2); 

for i=1:n 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
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    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(exppdf(yiP(nn),x(j,1))*normpdf(object,x(j,1),SiP))/... 
            (exppdf(yiP(nn),x(j-1,1))*normpdf(object,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 8','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 8','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:3; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 8','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda33=muu33; Sigma33=sigmahat; 

H.5. Poisson-normal. 

a.- Recurrent method. 

clear 
%First incident 
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
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%Vector of incidences 
yi =[0 0 0 1]; sumY=sum(yi); nn=length(yi); S = std(yi,1); MU = mean(yi,2); 
%Vector of parameters 
yiP=[0 0 0 1/4]; SiP = std(yiP,1); yii = sumY/nn; 

for i=1:n; 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(poisspdf(yi(nn),x(j,1))*normpdf(object,x(j,1),SiP))/... 
            (poisspdf(yi(nn),x(j-1,1))*normpdf(object,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:3; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda11=muu11; Sigma11=sigmahat; 

%Second incident in t=7; t=7-4=3 
%Parameters specification 
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x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1 0 0 1]; sumY=sum(yi); nn=length(yi); S = std(yi,1); MU = mean(yi,2); 
%Vector of parameters 
yiP=[0 0 0 1/4 0 0 1/3]; SiP = std(yiP,1); yii = sumY/nn; 

for i=1:n; 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(poisspdf(yi(nn),x(j,1))*normpdf(muu11,x(j,1),SiP))/... 
            (poisspdf(yi(nn),x(j-1,1))*normpdf(muu11,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:2; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda22=muu22; Sigma22=sigmahat; 

%Third incident in t=8; t=8-7=1 
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%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1 0 0 1 1]; sumY=sum(yi); nn=length(yi); S = std(yi,1); MU = mean(yi,2); 
%Vector of parameters 
yiP=[0 0 0 1/4 0 0 1/3 1/1]; SiP = std(yiP,1); yii = sumY/nn; 

for i=1:n; 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(poisspdf(yi(nn),x(j,1))*normpdf(muu22,x(j,1),SiP))/... 
            (poisspdf(yi(nn),x(j-1,1))*normpdf(muu22,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 8','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 8','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:3; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 8','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda33=muu33; Sigma33=sigmahat; 
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b.- Direct method. 

clear 
%First incident 
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1]; sumY=sum(yi); nn=length(yi); S = std(yi,1); MU = mean(yi,2); 
%Vector of parameters 
yiP=[0 0 0 1/4]; SiP = std(yiP,1); yii = sumY/nn; 

for i=1:n; 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(poisspdf(yi(nn),x(j,1))*normpdf(object,x(j,1),SiP))/... 
            (poisspdf(yi(nn),x(j-1,1))*normpdf(object,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:3; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
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legend('Location','northeast') 

%Lambda post, sigma post 
Lambda11=muu11; Sigma11=sigmahat; 

%Second incident in t=7; t=7-4=3 
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidencias 
yi =[0 0 0 1 0 0 1]; sumY=sum(yi); nn=length(yi); S = std(yi,1); MU = mean(yi,2); 
%Vector of parameters 
yiP=[0 0 0 1/4 0 0 1/3]; SiP = std(yiP,1); yii = sumY/nn; 

for i=1:n; 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(poisspdf(yi(nn),x(j,1))*normpdf(object,x(j,1),SiP))/... 
            (poisspdf(yi(nn),x(j-1,1))*normpdf(object,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:2; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
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hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda22=muu22; Sigma22=sigmahat; 

%Third incident in t=8; t=8-7=1 
%Parameters specification 
x0=1; c=0.2; B=500; K=4000; J=B+K; a=0; r=0; mu=0; n=10; object=0.05; 
%Vector of incidences 
yi =[0 0 0 1 0 0 1 1]; sumY=sum(yi); nn=length(yi); S = std(yi,1); MU = mean(yi,2); 
%Vector of parameters 
yiP=[0 0 0 1/4 0 0 1/3 1/1]; SiP = std(yiP,1); yii = sumY/nn; 

for i=1:n; 
%Candidate value generation 
a(i)=0; 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(poisspdf(yi(nn),x(j,1))*normpdf(object,x(j,1),SiP))/... 
            (poisspdf(yi(nn),x(j-1,1))*normpdf(object,x(j-1,1),SiP)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 8','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 8','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Normal fitting 
counts = h.Values; [muhat,sigmahat]=normfit(xx); 
hold on 
xxx=0:0.01:3; 
yyyy=normpdf(xxx,muhat,sigmahat); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) normal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
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ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 8','FontSize',15); 
hold off 
legend('Location','northeast') 

%Lambda post, sigma post 
Lambda33=muu33; Sigma33=sigmahat; 

H.6. Binomial-beta. 

a.- Recurrent method with mean prior. 

clear 
%Prior time 0 
alfa0=3; beta0=12; mean0=alfa0/(alfa0+beta0); sigma0=sqrt(alfa0*beta0/(((alfa0+beta0)^2)*(alfa0+beta0+1))); 
CILM0 = mean0-sigma0; 
if CILM0<=0 
    CILM0=0; 
end 
MEAN0 = mean0; CIUM0 = mean0+sigma0; 
xx0=[mean0 mean0]; lim0 = [CILM0 MEAN0 CIUM0]; 
figure 
controlchart(xx0,'chart',{'i'},'limits',lim0,'specs',[0.1 0.15],’width',1); title('interval t=0')  

%Interval 1 

n1=5; K1=0; p1=K1/n1; L1=n1-K1; alfa1=alfa0+K1; beta1=beta0+n1-K1; mean1=alfa1/(alfa1+beta1); 
var1=alfa1*beta1/(((alfa1+beta1)^2)*(alfa1+beta1+1));  
sigma1=sqrt(alfa1*beta1/(((alfa1+beta1)^2)*(alfa1+beta1+1))); 
CILM1 = mean0-sigma1; 
if CILM1<=0 
    CILM1=0; 
end 
MEAN1 = mean0; CIUM1 = mean0+sigma1; 
xx1=[mean0 p1]; lim1 = [CILM1 MEAN1 CIUM1]; 
figure 
controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[0.1 0.15],’width',1); title('interval t=1')  

% Interval 2 

n2=5; K2=0; p2=K2/n2; L2=n2-K2; alfa2=alfa1+K2; beta2=beta1+n2-K2; mean2=alfa2/(alfa2+beta2); 
sigma2=sqrt(alfa2*beta2/(((alfa2+beta2)^2)*(alfa2+beta2+1))); 
CILM2 = mean0-sigma2; 
if CILM2<=0 
    CILM2=0; 
end 
MEAN2 = mean0; CIUM2 = mean0+sigma2; 
xx2=[p1 p2]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[0.1 0.15],’width',1); title('interval t=2')  

% Interval 3 

n3=5; K3=0; p3=K3/n3; L3=n3-K3; alfa3=alfa2+K3; beta3=beta2+n3-K3; mean3=alfa3/(alfa3+beta3); 
sigma3=sqrt(alfa3*beta3/(((alfa3+beta3)^2)*(alfa3+beta3+1))); 
CILM3 = mean0-sigma3; 
if CILM3<=0 
    CILM3=0; 
end 
MEAN3 = mean0; CIUM3 = mean0+sigma3; 
xx3=[p1 p2 p3]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[0.1 0.15],’width',1); title('interval t=3')  

% Interval 4 
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n4=5; K4=1; p4=K4/n4; L4=n4-K4; alfa4=alfa3+K4; beta4=beta3+n4-K4; mean4=alfa4/(alfa4+beta4); 
sigma4=sqrt(alfa4*beta4/(((alfa4+beta4)^2)*(alfa4+beta4+1))); 
CILM4 = mean0-sigma4; 
if CILM4<=0 
    CILM4=0; 
end 
MEAN4 = mean0; CIUM4 = mean0+sigma4; 
xx4=[p1 p2 p3 p4]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[0.1 0.15],’width',1); title('interval t=4')  

% Interval 5 

n5=5; K5=0; p5=K5/n5; L5=n5-K5; alfa5=alfa4+K5; beta5=beta4+n5-K5; mean5=alfa5/(alfa5+beta5); 
sigma5=sqrt(alfa5*beta5/(((alfa5+beta5)^2)*(alfa5+beta5+1))); 
CILM5 = mean0-sigma5; 
if CILM5<=0 
    CILM5=0; 
end 
MEAN5 = mean0; CIUM5 = mean0+sigma5; 
xx5=[p1 p2 p3 p4 p5]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[0.1 0.15],’width',1); title('interval t=5')  

% Interval 6 

n6=5; K6=0; p6=K6/n6; L6=n6-K6; alfa6=alfa5+K6; beta6=beta5+n6-K6; mean6=alfa6/(alfa6+beta6); 
sigma6=sqrt(alfa6*beta6/(((alfa6+beta6)^2)*(alfa6+beta6+1))); 
CILM6 = mean0-sigma6; 
if CILM6<=0 
    CILM6=0; 
end 
MEAN6 = mean0; CIUM6 = mean0+sigma6; 
xx6=[p1 p2 p3 p4 p5 p6]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[0.1 0.15],’width',1); title('interval t=6')  

% Interval 7 

n7=5; K7=2; p7=K7/n7; L7=n7-K7; alfa7=alfa6+K7; beta7=beta6+n7-K7; mean7=alfa7/(alfa7+beta7); 
sigma7=sqrt(alfa7*beta7/(((alfa7+beta7)^2)*(alfa7+beta7+1))); 
CILM7 = mean0-sigma7; 
if CILM7<=0 
    CILM7=0; 
end 
MEAN7 = mean0; CIUM7 = mean0+sigma7; 
xx7=[p1 p2 p3 p4 p5 p6 p7]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[0.1 0.15],’width',1); title('interval t=7')  

% Interval 8 

n8=5; K8=1; p8=K8/n8; L8=n8-K8; alfa8=alfa7+K8; beta8=beta7+n8-K8; mean8=alfa8/(alfa8+beta8); 
sigma8=sqrt(alfa8*beta8/(((alfa8+beta8)^2)*(alfa8+beta8+1))); 
CILM8 = mean0-sigma8; 
if CILM8<=0 
    CILM8=0; 
end 
MEAN8 = mean0; CIUM8 = mean0+sigma8; 
xx8=[p1 p2 p3 p4 p5 p6 p7 p8]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[0.1 0.15],’width',1); title('interval t=8')  

% Interval 9 

n9=5; K9=0; p9=K9/n9; L9=n9-K9; alfa9=alfa8+K9; beta9=beta8+n9-K9; mean9=alfa9/(alfa9+beta9); 
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sigma9=sqrt(alfa9*beta9/(((alfa9+beta9)^2)*(alfa9+beta9+1))); 
CILM9 = mean0-sigma9; 
if CILM9<=0 
    CILM9=0; 
end 
MEAN9 = mean0; CIUM9 = mean0+sigma9; 
xx9=[p1 p2 p3 p4 p5 p6 p7 p8 p9]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[0.1 0.15],’width',1); title('interval t=9')  

% Interval 10 

n10=5; K10=0; p10=K10/n10; L10=n10-K10; alfa10=alfa9+K10; beta10=beta9+n10-K10; 
mean10=alfa10/(alfa10+beta10); 
sigma10=sqrt(alfa10*beta10/(((alfa10+beta10)^2)*(alfa10+beta10+1))); 

CILM10 = mean0-sigma10; 
if CILM10<=0 
    CILM10=0; 
end 
MEAN10 = mean0; CIUM10 = mean0+sigma10; 
xx10=[p1 p2 p3 p4 p5 p6 p7 p8 p9 p10]; lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[0.1 0.15],’width',1); title('interval t=10')  

b.- Recurrent method with mean posterior. 

clear 
%Prior time 0 

alfa0=3; beta0=12; mean0=alfa0/(alfa0+beta0); sigma0=sqrt(alfa0*beta0/(((alfa0+beta0)^2)*(alfa0+beta0+1))); 
CILM0 = mean0-sigma0; 
if CILM0<=0 
    CILM0=0; 
end 
MEAN0 = mean0; CIUM0 = mean0+sigma0; 
xx0=[mean0 mean0]; lim0 = [CILM0 MEAN0 CIUM0]; 
figure 
controlchart(xx0,'chart',{'i'},'limits',lim0,'specs',[0.1 0.15],’width',1); title('interval t=0')  

%Interval 1 

n1=5; K1=0; p1=K1/n1; L1=n1-K1; alfa1=alfa0+K1; beta1=beta0+n1-K1; mean1=alfa1/(alfa1+beta1); 
var1=alfa1*beta1/(((alfa1+beta1)^2)*(alfa1+beta1+1)); 
sigma1=sqrt(alfa1*beta1/(((alfa1+beta1)^2)*(alfa1+beta1+1))); 
CILM1 = mean1-sigma1; 
if CILM1<=0 
    CILM1=0; 
end 
MEAN1 = mean1; CIUM1 = mean1+sigma1; 
xx1=[mean0 p1]; lim1 = [CILM1 MEAN1 CIUM1]; 
figure 
controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[0.1 0.15],’width',1); title('interval t=1')  

% Interval 2 

n2=5; K2=0; p2=K2/n2; L2=n2-K2; alfa2=alfa1+K2; beta2=beta1+n2-K2; mean2=alfa2/(alfa2+beta2); 
sigma2=sqrt(alfa2*beta2/(((alfa2+beta2)^2)*(alfa2+beta2+1))); 
CILM2 = mean2-sigma2; 
if CILM2<=0 
    CILM2=0; 
end 
MEAN2 = mean2; CIUM2 = mean2+sigma2; 
xx2=[p1 p2]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[0.1 0.15],’width',1); title('interval t=2')  
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% Interval 3 

n3=5; K3=0; p3=K3/n3; L3=n3-K3; alfa3=alfa2+K3; beta3=beta2+n3-K3; mean3=alfa3/(alfa3+beta3); 
sigma3=sqrt(alfa3*beta3/(((alfa3+beta3)^2)*(alfa3+beta3+1))); 
CILM3 = mean3-sigma3; 
if CILM3<=0 
    CILM3=0; 
end 
MEAN3 = mean3; CIUM3 = mean3+sigma3; 
xx3=[p1 p2 p3]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[0.1 0.15],’width',1); title('interval t=3')  

% Interval 4 

n4=5; K4=1; p4=K4/n4; L4=n4-K4; alfa4=alfa3+K4; beta4=beta3+n4-K4; mean4=alfa4/(alfa4+beta4); 
sigma4=sqrt(alfa4*beta4/(((alfa4+beta4)^2)*(alfa4+beta4+1))); 
CILM4 = mean4-sigma4; 
if CILM4<=0 
    CILM4=0; 
end 
MEAN4 = mean4; CIUM4 = mean4+sigma4; 
xx4=[p1 p2 p3 p4]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[0.1 0.15],’width',1); title('interval t=4')  

% Interval 5 

n5=5; K5=0; p5=K5/n5; L5=n5-K5; alfa5=alfa4+K5; beta5=beta4+n5-K5; mean5=alfa5/(alfa5+beta5); 
sigma5=sqrt(alfa5*beta5/(((alfa5+beta5)^2)*(alfa5+beta5+1))); 
CILM5 = mean5-sigma5; 
if CILM5<=0 
    CILM5=0; 
end 
MEAN5 = mean5; CIUM5 = mean5+sigma5; 
xx5=[p1 p2 p3 p4 p5]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[0.1 0.15],’width',1); title('interval t=5')  

% Interval 6 

n6=5; K6=0; p6=K6/n6; L6=n6-K6; alfa6=alfa5+K6; beta6=beta5+n6-K6; mean6=alfa6/(alfa6+beta6); 
sigma6=sqrt(alfa6*beta6/(((alfa6+beta6)^2)*(alfa6+beta6+1))); 
CILM6 = mean6-sigma6; 
if CILM6<=0 
    CILM6=0; 
end 
MEAN6 = mean6; CIUM6 = mean6+sigma6; 
xx6=[p1 p2 p3 p4 p5 p6]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[0.1 0.15],’width',1); title('interval t=6')  

% Interval 7 

n7=5; K7=2; p7=K7/n7; L7=n7-K7; alfa7=alfa6+K7; beta7=beta6+n7-K7; mean7=alfa7/(alfa7+beta7); 
sigma7=sqrt(alfa7*beta7/(((alfa7+beta7)^2)*(alfa7+beta7+1))); 
CILM7 = mean7-sigma7; 
if CILM7<=0 
    CILM7=0; 
end 
MEAN7 = mean7; CIUM7 = mean7+sigma7; 
xx7=[p1 p2 p3 p4 p5 p6 p7]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[0.1 0.15],’width',1); title('interval t=7')  

% Interval 8 
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n8=5; K8=1; p8=K8/n8; L8=n8-K8; alfa8=alfa7+K8; beta8=beta7+n8-K8; mean8=alfa8/(alfa8+beta8); 
sigma8=sqrt(alfa8*beta8/(((alfa8+beta8)^2)*(alfa8+beta8+1))); 
CILM8 = mean8-sigma8; 
if CILM8<=0 
    CILM8=0; 
end 
MEAN8 = mean8; CIUM8 = mean8+sigma8; 
xx8=[p1 p2 p3 p4 p5 p6 p7 p8]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[0.1 0.15],’width',1); title('interval t=8')  

% Interval 9 

n9=5; K9=0; p9=K9/n9; L9=n9-K9; alfa9=alfa8+K9; beta9=beta8+n9-K9; mean9=alfa9/(alfa9+beta9); 
sigma9=sqrt(alfa9*beta9/(((alfa9+beta9)^2)*(alfa9+beta9+1))); 
CILM9 = mean9-sigma9; 
if CILM9<=0 
    CILM9=0; 
end 
MEAN9 = mean9; CIUM9 = mean9+sigma9; 
xx9=[p1 p2 p3 p4 p5 p6 p7 p8 p9]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[0.1 0.15],’width',1); title('interval t=9')  

% Interval 10 

n10=5; K10=0; p10=K10/n10; L10=n10-K10; alfa10=alfa9+K10; beta10=beta9+n10-K10; 
mean10=alfa10/(alfa10+beta10); 
sigma10=sqrt(alfa10*beta10/(((alfa10+beta10)^2)*(alfa10+beta10+1))); 
CILM10 = mean10-sigma10; 
if CILM10<=0 
    CILM10=0; 
end 
MEAN10 = mean10; CIUM10 = mean10+sigma10; 
xx10=[p1 p2 p3 p4 p5 p6 p7 p8 p9 p10]; lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[0.1 0.15],’width',1); title('interval t=10’) 

c.- Direct method with mean prior. 

clear 
%Prior time 0 
alfa0=3; beta0=12; mean0=alfa0/(alfa0+beta0); sigma0=sqrt(alfa0*beta0/(((alfa0+beta0)^2)*(alfa0+beta0+1))); 
CILM0 = mean0-sigma0; 
if CILM0<=0 
    CILM0=0; 
end 
MEAN0 = mean0; CIUM0 = mean0+sigma0; 
xx0=[mean0 mean0]; lim0 = [CILM0 MEAN0 CIUM0]; 
figure 
controlchart(xx0,'chart',{'i'},'limits',lim0,'specs',[0.1 0.15],’width',1); title('interval t=0')  

%Interval 1 
%Observed 
n=5; K=0; p11=K/n; n1=n; K1=K; L1=n1-K1; alfa1=alfa0+K1; beta1=beta0+n1-K1; mean1=alfa1/(alfa1+beta1); 
var1=alfa1*beta1/(((alfa1+beta1)^2)*(alfa1+beta1+1)); 
sigma1=sqrt(alfa1*beta1/(((alfa1+beta1)^2)*(alfa1+beta1+1))); 
CILM1 = mean0-sigma1; 
if CILM1<=0 
    CILM1=0; 
end 
MEAN1 = mean0; CIUM1 = mean0+sigma1; 
xx1=[mean0 p11]; lim1 = [CILM1 MEAN1 CIUM1]; 
figure 
controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[0.1 0.15],’width',1); title('interval t=1')  
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% Interval 2 
%Observed 
n=5; K=0; p22=K/n; n2=n+n1; K2=K+K1; L2=n2-K2; alfa2=alfa0+K2; beta2=beta0+n2-K2; 
mean2=alfa2/(alfa2+beta2); sigma2=sqrt(alfa2*beta2/(((alfa2+beta2)^2)*(alfa2+beta2+1))); 
CILM2 = mean0-sigma2; 
if CILM2<=0 
    CILM2=0; 
end 
MEAN2 = mean0; CIUM2 = mean0+sigma2; 
xx2=[p11 p22]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[0.1 0.15],’width',1); title('interval t=2')  

% Interval 3 
%Observed 
n=5; K=0; p33=K/n; n3=n+n2; K3=K+K2; L3=n3-K3; alfa3=alfa0+K3; beta3=beta0+n3-K3; 
mean3=alfa3/(alfa3+beta3); sigma3=sqrt(alfa3*beta3/(((alfa3+beta3)^2)*(alfa3+beta3+1))); 
CILM3 = mean0-sigma3; 
if CILM3<=0 
    CILM3=0; 
end 
MEAN3 = mean0; CIUM3 = mean0+sigma3; 
xx3=[p11 p22 p33]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[0.1 0.15],’width',1); title('interval t=3')  

% Interval 4 
%Observed 
n=5; K=1; p44=K/n; n4=n+n3; K4=K+K3; L4=n4-K4; alfa4=alfa0+K4; beta4=beta0+n4-K4; 
mean4=alfa4/(alfa4+beta4); sigma4=sqrt(alfa4*beta4/(((alfa4+beta4)^2)*(alfa4+beta4+1))); 
CILM4 = mean0-sigma4; 
if CILM4<=0 
    CILM4=0; 
end 
MEAN4 = mean0; CIUM4 = mean0+sigma4; 
xx4=[p11 p22 p33 p44]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[0.1 0.15],’width',1); title('interval t=4')  

% Interval 5 
%Observed 
n=5; K=0; p55=K/n; n5=n+n4; K5=K+K4; L5=n5-K5; alfa5=alfa0+K5; beta5=beta0+n5-K5; 
mean5=alfa5/(alfa5+beta5); sigma5=sqrt(alfa5*beta5/(((alfa5+beta5)^2)*(alfa5+beta5+1))); 
CILM5 = mean0-sigma5; 
if CILM5<=0 
    CILM5=0; 
end 
MEAN5 = mean0; CIUM5 = mean0+sigma5; 
xx5=[p11 p22 p33 p44 p55]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[0.1 0.15],’width',1); title('interval t=5')  

% Interval 6 
%Observed 
n=5; K=0; p66=K/n; n6=n+n5; K6=K+K5; L6=n6-K6; alfa6=alfa0+K6; beta6=beta0+n6-K6; 
mean6=alfa6/(alfa6+beta6); sigma6=sqrt(alfa6*beta6/(((alfa6+beta6)^2)*(alfa6+beta6+1))); 
CILM6 = mean0-sigma6; 
if CILM6<=0 
    CILM6=0; 
end 
MEAN6 = mean0; CIUM6 = mean0+sigma6; 
xx6=[p11 p22 p33 p44 p55 p66]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[0.1 0.15],’width',1); title('interval t=6')  

% Interval 7 
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%Observed 
n=5; K=2; p77=K/n; n7=n+n6; K7=K+K6; L7=n7-K7; alfa7=alfa0+K7; beta7=beta0+n7-K7; 
mean7=alfa7/(alfa7+beta7); sigma7=sqrt(alfa7*beta7/(((alfa7+beta7)^2)*(alfa7+beta7+1))); 
CILM7 = mean0-sigma7; 
if CILM7<=0 
    CILM7=0; 
end 
MEAN7 = mean0; CIUM7 = mean0+sigma7; 
xx7=[p11 p22 p33 p44 p55 p66 p77]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[0.1 0.15],’width',1); title('interval t=7')  

% Interval 8 
%Observed 
n=5; K=1; p88=K/n; n8=n+n7; K8=K+K7; L8=n8-K8; alfa8=alfa0+K8; beta8=beta0+n8-K8; 
mean8=alfa8/(alfa8+beta8); sigma8=sqrt(alfa8*beta8/(((alfa8+beta8)^2)*(alfa8+beta8+1))); 
CILM8 = mean0-sigma8; 
if CILM8<=0 
    CILM8=0; 
end 
MEAN8 = mean0; CIUM8 = mean0+sigma8; 
xx8=[p11 p22 p33 p44 p55 p66 p77 p88]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[0.1 0.15],’width',1); title('interval t=8')  

% Interval 9 
%Observed 
n=5; K=0; p99=K/n; n9=n+n8; K9=K+K8; L9=n9-K9; alfa9=alfa0+K9; beta9=beta0+n9-K9; 
mean9=alfa9/(alfa9+beta9); sigma9=sqrt(alfa9*beta9/(((alfa9+beta9)^2)*(alfa9+beta9+1))); 
CILM9 = mean0-sigma9; 
if CILM9<=0 
    CILM9=0; 
end 
MEAN9 = mean0; CIUM9 = mean0+sigma9; 
xx9=[p11 p22 p33 p44 p55 p66 p77 p88 p99]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[0.1 0.15],’width',1); title('interval t=9')  

% Interval 10 
%Observed 
n=5; K=0; p1010=K/n; n10=n+n9; K10=K+K9; L10=n10-K10; alfa10=alfa0+K10; beta10=beta0+n10-K10; 
mean10=alfa10/(alfa10+beta10); sigma10=sqrt(alfa10*beta10/(((alfa10+beta10)^2)*(alfa10+beta10+1))); 
CILM10 = mean0-sigma10; 
if CILM10<=0 
    CILM10=0; 
end 
MEAN10 = mean0; CIUM10 = mean0+sigma10; 
xx10=[p11 p22 p33 p44 p55 p66 p77 p88 p99 p1010]; lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[0.1 0.15],’width',1); title('interval t=10’) 

c.- Direct method with mean posterior. 

clear 
%Prior time 0 
alfa0=3; beta0=12; mean0=alfa0/(alfa0+beta0); sigma0=sqrt(alfa0*beta0/(((alfa0+beta0)^2)*(alfa0+beta0+1))); 
CILM0 = mean0-sigma0; 
if CILM0<=0 
    CILM0=0; 
end 
MEAN0 = mean0; CIUM0 = mean0+sigma0; 
xx0=[mean0 mean0]; lim0 = [CILM0 MEAN0 CIUM0]; 
figure 
controlchart(xx0,'chart',{'i'},'limits',lim0,'specs',[0.1 0.15],’width',1); title('interval t=0')  

%Interval 1 
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%Observed 
n=5; K=0; p11=K/n; n1=n; K1=K; L1=n1-K1; alfa1=alfa0+K1; beta1=beta0+n1-K1; mean1=alfa1/(alfa1+beta1);  
var1=alfa1*beta1/(((alfa1+beta1)^2)*(alfa1+beta1+1));  
sigma1=sqrt(alfa1*beta1/(((alfa1+beta1)^2)*(alfa1+beta1+1))); 
CILM1 = mean1-sigma1; 
if CILM1<=0 
    CILM1=0; 
end 
MEAN1 = mean1; CIUM1 = mean1+sigma1; 
xx1=[mean0 p11]; lim1 = [CILM1 MEAN1 CIUM1]; 
figure 
controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[0.1 0.15],’width',1); title('interval t=1')  

% Interval 2 
%Observed 
n=5; K=0; p22=K/n; n2=n+n1; K2=K+K1; L2=n2-K2; alfa2=alfa0+K2; beta2=beta0+n2-K2; 
mean2=alfa2/(alfa2+beta2); sigma2=sqrt(alfa2*beta2/(((alfa2+beta2)^2)*(alfa2+beta2+1))); 
CILM2 = mean2-sigma2; 
if CILM2<=0 
    CILM2=0; 
end 
MEAN2 = mean2; CIUM2 = mean2+sigma2; 
xx2=[p11 p22]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[0.1 0.15],’width',1); title('interval t=2')  

% Interval 3 
%Observed 
n=5; K=0; p33=K/n; n3=n+n2; K3=K+K2; L3=n3-K3; alfa3=alfa0+K3; beta3=beta0+n3-K3; 
mean3=alfa3/(alfa3+beta3); sigma3=sqrt(alfa3*beta3/(((alfa3+beta3)^2)*(alfa3+beta3+1))); 
CILM3 = mean3-sigma3; 
if CILM3<=0 
    CILM3=0; 
end 
MEAN3 = mean3; CIUM3 = mean3+sigma3; 
xx3=[p11 p22 p33]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[0.1 0.15],’width',1); title('interval t=3')  

% Interval 4 
%Observed 
n=5; K=1; p44=K/n; n4=n+n3; K4=K+K3; L4=n4-K4; alfa4=alfa0+K4; beta4=beta0+n4-K4; 
mean4=alfa4/(alfa4+beta4); sigma4=sqrt(alfa4*beta4/(((alfa4+beta4)^2)*(alfa4+beta4+1))); 
CILM4 = mean4-sigma4; 
if CILM4<=0 
    CILM4=0; 
end 
MEAN4 = mean4; CIUM4 = mean4+sigma4; 
xx4=[p11 p22 p33 p44]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[0.1 0.15],’width',1); title('interval t=4')  

% Interval 5 
%Observed 
n=5; K=0; p55=K/n; n5=n+n4; K5=K+K4; L5=n5-K5; alfa5=alfa0+K5; beta5=beta0+n5-K5; 
mean5=alfa5/(alfa5+beta5); sigma5=sqrt(alfa5*beta5/(((alfa5+beta5)^2)*(alfa5+beta5+1))); 
CILM5 = mean5-sigma5; 
if CILM5<=0 
    CILM5=0; 
end 
MEAN5 = mean5; CIUM5 = mean5+sigma5; 
xx5=[p11 p22 p33 p44 p55]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[0.1 0.15],’width',1); title('interval t=5')  

% Interval 6 
%Observed 
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n=5; K=0; p66=K/n; n6=n+n5; K6=K+K5; L6=n6-K6; alfa6=alfa0+K6; beta6=beta0+n6-K6; 
mean6=alfa6/(alfa6+beta6); sigma6=sqrt(alfa6*beta6/(((alfa6+beta6)^2)*(alfa6+beta6+1))); 
CILM6 = mean6-sigma6; 
if CILM6<=0 
    CILM6=0; 
end 
MEAN6 = mean6; CIUM6 = mean6+sigma6; 
xx6=[p11 p22 p33 p44 p55 p66]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[0.1 0.15],’width',1); title('interval t=6')  

% Interval 7 
%Observed 
n=5; K=2; p77=K/n; n7=n+n6; K7=K+K6; L7=n7-K7; alfa7=alfa0+K7; beta7=beta0+n7-K7; 
mean7=alfa7/(alfa7+beta7); sigma7=sqrt(alfa7*beta7/(((alfa7+beta7)^2)*(alfa7+beta7+1))); 
CILM7 = mean7-sigma7; 
if CILM7<=0 
    CILM7=0; 
end 
MEAN7 = mean7; CIUM7 = mean7+sigma7; 
xx7=[p11 p22 p33 p44 p55 p66 p77]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[0.1 0.15],’width',1); title('interval t=7')  

% Interval 8 
%Observed 
n=5; K=1; p88=K/n; n8=n+n7; K8=K+K7; L8=n8-K8; alfa8=alfa0+K8; beta8=beta0+n8-K8; 
mean8=alfa8/(alfa8+beta8); sigma8=sqrt(alfa8*beta8/(((alfa8+beta8)^2)*(alfa8+beta8+1))); 
CILM8 = mean8-sigma8; 
if CILM8<=0 
    CILM8=0; 
end 
MEAN8 = mean8; CIUM8 = mean8+sigma8; 
xx8=[p11 p22 p33 p44 p55 p66 p77 p88]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[0.1 0.15],’width',1); title('interval t=8')  

% Interval 9 
%Observed 
n=5; K=0; p99=K/n; n9=n+n8; K9=K+K8; L9=n9-K9; alfa9=alfa0+K9; beta9=beta0+n9-K9; 
mean9=alfa9/(alfa9+beta9); sigma9=sqrt(alfa9*beta9/(((alfa9+beta9)^2)*(alfa9+beta9+1))); 
CILM9 = mean9-sigma9; 
if CILM9<=0 
    CILM9=0; 
end 
MEAN9 = mean9; CIUM9 = mean9+sigma9; 
xx9=[p11 p22 p33 p44 p55 p66 p77 p88 p99]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[0.1 0.15],’width',1); title('interval t=9')  

% Interval 10 
%Observed 
n=5; K=0; p1010=K/n; n10=n+n9; K10=K+K9; L10=n10-K10; alfa10=alfa0+K10; beta10=beta0+n10-K10; 
mean10=alfa10/(alfa10+beta10); sigma10=sqrt(alfa10*beta10/(((alfa10+beta10)^2)*(alfa10+beta10+1))); 
CILM10 = mean10-sigma10; 
if CILM10<=0 
    CILM10=0; 
end 
MEAN10 = mean10; CIUM10 = mean10+sigma10; 
xx10=[p11 p22 p33 p44 p55 p66 p77 p88 p99 p1010]; lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[0.1 0.15],’width',1); title('interval t=10')  
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H.7. Hidden Markov chain. 

a.- Recurrent method 

clear 
TRANS=[0.8 0.15 0.03 0.02;0.5 0.4 0.05 0.05;0.2 0.3 0.4 0.1;0.15 0.4 0.4 0.05]; 
EMIS=[0.7 0.2 0.1;0.4 0.4 0.2;0.3 0.3 0.4;0.2 0.2 0.6];  

% A random sequence and a matrix of states 
[seqsim0,statessim0] = hmmgenerate(10000,TRANS,EMIS); 
figure 
%Evolution of the initial defined sequence of end states 
histogram(seqsim0); 
xlabel('Observed safety barriers’,'FontSize',15,'FontWeight','bold'); 
title('Evolution of defined emission matrix','FontSize',15); 
figure 
%Evolution of initial defined transitions for the three safety barriers 
histogram(statessim0); 
xlabel('End states’,'FontSize',15,'FontWeight','bold');  
title('Evolution of defined transition matrix','FontSize',15); 

% Observed sequence 
seqobs = [1 1 1 1 1 1 2 3 1 1];                                     
  
%Estimated Transition and Emission Matrices using a guess using Baum-Welch algorithm 
TRANS_GUESS = TRANS; 
EMIS_GUESS = EMIS; 
[TRANS_ESTobsBW, EMIS_ESTobsBW] = hmmtrain(seqobs,TRANS_GUESS, EMIS_GUESS); 

% A random sequence and a matrix of states 
[seqsim1,statessim1] = hmmgenerate(10000,TRANS_ESTobsBW,EMIS_ESTobsBW); 
figure 
%Evolution of the initial defined sequence of end states 
histogram(seqsim1); 
xlabel('Observed safety barriers','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined emission matrix','FontSize',15); 
figure 
%Evolution of initial defined transitions for the three safety barriers 
histogram(statessim1); 
xlabel('End states','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined transition matrix','FontSize',15); 

%Relative limiting steady states 
r=35; 
pi=TRANS^r; 
pestobsBW=TRANS_ESTobsBW^r; 

%Occupancy times 
ss=length(seqobs); 
%MestBW=TRANS_ESTobsBW^0; 
MestBW = zeros(length(TRANS_ESTobsBW(1,:))); 
for i=1:1:ss 
    E=TRANS_ESTobsBW^i; 
    MestBW=MestBW+E; 
end 

%First passage for the fourth transition state 
e=[1;1;1]; 
TRANSFPobs1BW=[TRANS_ESTobsBW(1,:);TRANS_ESTobsBW(2,:);TRANS_ESTobsBW(3,:)]; 
TRANSFPobsBW=[TRANSFPobs1BW(:,1) TRANSFPobs1BW(:,2) TRANSFPobs1BW(:,3)]; 
fun3 = @(z)e+TRANSFPobsBW*z-z; 
options = optimoptions('fsolve','Display','off'); 
z0 = [1;1;1]; 
%Call fsolve and obtain information about the solution process. 
[z,fval,exitflag,output] = fsolve(fun3,z0,options) 
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%Second observation 
seqobs2 = [1 1 1 1 1 2 3 1 1 2];    

%Estimated Transition and Emission Matrices using a guess using Baum-Welch algorithm 
TRANS_GUESS2 = TRANS_ESTobsBW; 
EMIS_GUESS2 = EMIS_ESTobsBW; 
[TRANS_ESTobsBW2, EMIS_ESTobsBW2] = hmmtrain(seqobs2,TRANS_GUESS2, EMIS_GUESS2); 

% A random sequence and a matrix of states 
[seqsim2,statessim2] = hmmgenerate(10000,TRANS_ESTobsBW2, EMIS_ESTobsBW2); 
figure 
%Evolution of the initial defined sequence of end states 
histogram(seqsim2); 
xlabel('Observed safety barriers','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined emission matrix','FontSize',15); 
figure 
%Evolution of initial defined transitions for the three safety barriers 
histogram(statessim2); 
xlabel('End states','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined transition matrix','FontSize',15); 

%Relative limiting steady states 
pestobsBW2=TRANS_ESTobsBW2^r; 

%Occupancy times 
sss=length(seqobs2); 
%MestBW2=TRANS_ESTobsBW2^0; 
MestBW2 = zeros(length(TRANS_ESTobsBW2(1,:))); 
for i=1:1:sss 
    E2=TRANS_ESTobsBW2^i; 
    MestBW2=MestBW2+E2; 
end 

%First passage for the fourth transition state 
e=[1;1;1]; 
TRANSFPobs1BW2=[TRANS_ESTobsBW2(1,:);TRANS_ESTobsBW2(2,:);TRANS_ESTobsBW2(3,:)]; 
TRANSFPobsBW2=[TRANSFPobs1BW2(:,1) TRANSFPobs1BW2(:,2) TRANSFPobs1BW2(:,3)]; 
fun4 = @(y)e+TRANSFPobsBW2*y-y; 
options = optimoptions('fsolve','Display','off'); 
y0 = [1;1;1]; 
%Call fsolve and obtain information about the solution process. 
[y,fval,exitflag,output] = fsolve(fun4,y0,options) 

b.- Direct method 

clear 
TRANS=[0.8 0.15 0.03 0.02;0.5 0.4 0.05 0.05;0.2 0.3 0.4 0.1;0.15 0.4 0.4 0.05]; 
EMIS=[0.7 0.2 0.1;0.4 0.4 0.2;0.3 0.3 0.4;0.2 0.2 0.6];  

% A random sequence and a matrix of states 
[seqsim0,statessim0] = hmmgenerate(10000,TRANS,EMIS); 
figure 
%Evolution of the initial defined sequence of end states 
histogram(seqsim0); 
xlabel('Observed safety barriers','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined emission matrix','FontSize',15); 
figure 
%Evolution of initial defined transitions for the three safety barriers 
histogram(statessim0); 
xlabel('End states','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined transition matrix','FontSize',15); 

%Observed sequence 
seqobs = [1 1 1 1 1 1 2 3 1 1];                                     
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%Estimation of Transition and Emission Matrices using a guess using Baum-Welch algorithm 
TRANS_GUESS = TRANS; 
EMIS_GUESS = EMIS; 
[TRANS_ESTobsBW, EMIS_ESTobsBW] = hmmtrain(seqobs,TRANS_GUESS, EMIS_GUESS); 

% A random sequence and a matrix of states 
[seqsim1,statessim1] = hmmgenerate(10000,TRANS_ESTobsBW,EMIS_ESTobsBW); 
figure 
%Evolution of the initial defined sequence of end states 
histogram(seqsim1); 
xlabel('Observed safety barriers','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined emission matrix','FontSize',15); 
figure 
%Evolution of initial defined transitions for the three safety barriers 
histogram(statessim1); 
xlabel('End states','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined transition matrix’,’FontSize',15); 

%Relative limiting steady states 
r=35; 
pi=TRANS^r; 
pestobsBW=TRANS_ESTobsBW^r; 

%Occupancy times 
ss=length(seqobs); 
%MestBW=TRANS_ESTobsBW^0; 
MestBW = zeros(length(TRANS_ESTobsBW(1,:))); 
for i=1:1:ss 
    E=TRANS_ESTobsBW^i; 
    MestBW=MestBW+E; 
end 

%First passage for the fourth transition state 
e=[1;1;1]; 
TRANSFPobs1BW=[TRANS_ESTobsBW(1,:);TRANS_ESTobsBW(2,:);TRANS_ESTobsBW(3,:)]; 
TRANSFPobsBW=[TRANSFPobs1BW(:,1) TRANSFPobs1BW(:,2) TRANSFPobs1BW(:,3)]; 
fun3 = @(z)e+TRANSFPobsBW*z-z; 
options = optimoptions('fsolve','Display','off'); 
z0 = [1;1;1]; 
%Call fsolve and obtain information about the solution process. 
[z,fval,exitflag,output] = fsolve(fun3,z0,options) 

%Second observation 
seqobs2 = [1 1 1 1 1 2 3 1 1 2];    

%Estimation of Transition and Emission Matrices using a guess using Baum-Welch algorithm 
TRANS_GUESS2 = TRANS; 
EMIS_GUESS2 = EMIS; 
[TRANS_ESTobsBW2, EMIS_ESTobsBW2] = hmmtrain(seqobs2,TRANS_GUESS2, EMIS_GUESS2); 

% A random sequence and a matrix of states 
[seqsim2,statessim2] = hmmgenerate(10000,TRANS_ESTobsBW2, EMIS_ESTobsBW2); 
figure 
%Evolution of the initial defined sequence of end states 
histogram(seqsim2); 
xlabel('Observed safety barriers','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined emission matrix','FontSize',15); 
figure 
%Evolution of initial defined transitions for the three safety barriers 
histogram(statessim2); 
xlabel('End states','FontSize',15,'FontWeight','bold'); 
title('Evolution of defined transition matrix','FontSize',15); 

%Relative limiting 2 steady states 
pestobsBW2=TRANS_ESTobsBW2^r; 

%Occupancy times in the next interval from observed intervals Baum-Welch 
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sss=length(seqobs2); 
%MestBW2=TRANS_ESTobsBW2^0; 
MestBW2 = zeros(length(TRANS_ESTobsBW2(1,:))); 
for i=1:1:sss 
    E2=TRANS_ESTobsBW2^i; 
    MestBW2=MestBW2+E2; 
end 

%First passage for the fourth transition state 
e=[1;1;1]; 
TRANSFPobs1BW2=[TRANS_ESTobsBW2(1,:);TRANS_ESTobsBW2(2,:);TRANS_ESTobsBW2(3,:)]; 
TRANSFPobsBW2=[TRANSFPobs1BW2(:,1) TRANSFPobs1BW2(:,2) TRANSFPobs1BW2(:,3)]; 
fun4 = @(y)e+TRANSFPobsBW2*y-y; 
options = optimoptions('fsolve','Display','off'); 
y0 = [1;1;1]; 
%Call fsolve and obtain information about the solution process. 
[y,fval,exitflag,output] = fsolve(fun4,y0,options) 

H.8. Normal-normal. 

a.- Recurrent method with mean prior. 

clear 
%% Interval 1 
%Prior 
r = [68 74 82 110 115 93 86]; [muhat,sigmahat] = normfit(r); mu0=muhat; sigma0=sigmahat; 

%Data vector 
yi=[69]; n1=length(yi); ymean1=mean(yi); ysigma1=sqrt(var(yi,1)); 
% Posterior 
k1=n1/(n1+(ysigma1^2/sigma0^2)); mupost1=(1-k1)*mu0+(k1*ymean1); sigmapost1=sqrt(k1*ysigma1^2/n1); 

% Límits 
CILM1 =(muhat-3*sigmapost1); MEAN1 = muhat; CIUM1 =(muhat+3*sigmapost1); 
xx1=[yi]; lim1 = [CILM1 MEAN1 CIUM1]; 
%figure 
%controlchart(xx1,’chart',{'i'},'limits',lim1,'specs',[90 107],’width',1); title('interval t=1')  

%% Interval 2 
%Data vector 
yi=[69 73]; n2=length(yi); ymean2=mean(yi); ysigma2=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost1; sigma0=sigmahat; 
% Posterior 
k2=n2/(n2+(ysigma2^2/sigma0^2)); mupost2=(1-k2)*mu0+(k2*ymean2); sigmapost2=sqrt(k2*ysigma2^2/n2); 

% Límits 
CILM2 =(muhat-3*sigmapost2); MEAN2 = muhat; CIUM2 =(muhat+3*sigmapost2); 
xx2=[yi]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[90 90],’width',1); title('interval t=2')  

%% Interval 3 
%Data vector 
yi=[69 73 85]; n3=length(yi); ymean3=mean(yi); ysigma3=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost2; sigma0=sigmapost2; 
% Posterior 
k3=n3/(n3+(ysigma3^2/sigma0^2)); mupost3=(1-k3)*mu0+(k3*ymean3); sigmapost3=sqrt(k3*ysigma3^2/n3); 

% Límits 
CILM3 =(muhat-3*sigmapost3); MEAN3 = muhat; CIUM3 =(muhat+3*sigmapost3); 
xx3=[yi]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
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controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[90 90],'width',1); 
title('interval t=3')  

%% Interval 4 
%Data vector 
yi=[69 73 85 115]; n4=length(yi); ymean4=mean(yi); ysigma4=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost3; sigma0=sigmapost3; 
% Posterior 
k4=n4/(n4+(ysigma4^2/sigma0^2)); mupost4=(1-k4)*mu0+(k4*ymean4); sigmapost4=sqrt(k4*ysigma4^2/n4); 

% Límits 
CILM4 =(muhat-3*sigmapost4); MEAN4 = muhat; CIUM4 =(muhat+3*sigmapost4); 
xx4=[yi]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[90 90],’width',1); title('interval t=4')  

%% Interval 5 
%Data vector 
yi=[69 73 85 115 125]; n5=length(yi); ymean5=mean(yi); ysigma5=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost4; sigma0=sigmapost4; 
% Posterior 
k5=n5/(n5+(ysigma5^2/sigma0^2)); mupost5=(1-k5)*mu0+(k5*ymean5); sigmapost5=sqrt(k5*ysigma5^2/n5); 

% Límits 
CILM5 =(muhat-3*sigmapost5); MEAN5 = muhat; CIUM5 =(muhat+3*sigmapost5); 
xx5=[yi]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[90 90],’width',1); title('interval t=5')  

%% Interval 6 
%Data vector 
yi=[69 73 85 115 125 90]; n6=length(yi); ymean6=mean(yi); ysigma6=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost5; sigma0=sigmapost5; 
% Posterior 
k6=n6/(n6+(ysigma6^2/sigma0^2)); mupost6=(1-k6)*mu0+(k6*ymean6); sigmapost6=sqrt(k6*ysigma6^2/n6); 

% Límits 
CILM6 =(muhat-3*sigmapost6); MEAN6 = muhat; CIUM6 =(muhat+3*sigmapost6); 
xx6=[yi]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[90 90],’width',1); title('interval t=6')  

%% Interval 7 
%Data vector 
yi=[69 73 85 115 125 90 79]; n7=length(yi); ymean7=mean(yi); ysigma7=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost6; sigma0=sigmapost6; 
% Posterior 
k7=n7/(n7+(ysigma7^2/sigma0^2)); mupost7=(1-k7)*mu0+(k7*ymean7); sigmapost7=sqrt(k7*ysigma7^2/n7); 

% Límits 
CILM7 =(muhat-3*sigmapost7); MEAN7 = muhat; CIUM7 =(muhat+3*sigmapost7); 
xx7=[yi]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[90 90],’width',1); title('interval t=7’) 

b.- Recurrent method with mean posterior. 

clear 
%% Interval 1 
%Prior 
r = [68 74 82 110 115 93 86]; [muhat,sigmahat] = normfit(r); mu0=muhat; sigma0=sigmahat; 
%Data vector 
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yi=[69]; n1=length(yi); ymean1=mean(yi); ysigma1=sqrt(var(ymean1,1)); 
% Posterior 
k1=n1/(n1+(ysigma1^2/sigma0^2)); mupost1=(1-k1)*mu0+(k1*ymean1); sigmapost1=sqrt(k1*ysigma1^2/n1); 

% Limits 
CILM1 =(mupost1-3*sigmapost1); MEAN1 = mupost1; CIUM1 =(mupost1+3*sigmapost1); 
xx1=[yi]; lim1 = [CILM1 MEAN1 CIUM1]; 
%figure 
%controlchart(xx1,’chart',{'i'},'limits',lim1,'specs',[90 107],’width',1); title('interval t=1')  

%% Interval 2 
%Data vector 
yi=[69 73]; n2=length(yi); ymean2=mean(yi); ysigma2=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost1; sigma0=sigmahat; 
% Posterior 
k2=n2/(n2+(ysigma2^2/sigma0^2)); mupost2=(1-k2)*mu0+(k2*ymean2); sigmapost2=sqrt(k2*ysigma2^2/n2); 

% Límits 
CILM2 =(mupost2-3*sigmapost2); MEAN2 = mupost2; CIUM2 =(mupost2+3*sigmapost2); 
xx2=[yi]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[90 90],’width',1); title('interval t=2')  

%% Interval 3 
%Data vector 
yi=[69 73 85]; n3=length(yi); ymean3=mean(yi); ysigma3=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost2; sigma0=sigmapost2; 
% Posterior 
k3=n3/(n3+(ysigma3^2/sigma0^2)); mupost3=(1-k3)*mu0+(k3*ymean3); sigmapost3=sqrt(k3*ysigma3^2/n3); 

% Límits 
CILM3 =(mupost3-3*sigmapost3); MEAN3 = mupost3; CIUM3 =(mupost3+3*sigmapost3); 
xx3=[yi]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[90 90],’width',1); title('interval t=3')  

%% Interval 4 
%Data vector 
yi=[69 73 85 115]; n4=length(yi); ymean4=mean(yi); ysigma4=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost3; sigma0=sigmapost3; 
% Posterior 
k4=n4/(n4+(ysigma4^2/sigma0^2)); mupost4=(1-k4)*mu0+(k4*ymean4); sigmapost4=sqrt(k4*ysigma4^2/n4); 

% Limits 
CILM4 =(mupost4-3*sigmapost4); MEAN4 = mupost4; CIUM4 =(mupost4+3*sigmapost4); 
xx4=[yi]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[90 90],’width',1); title('interval t=4')  

%% Interval 5 
%Data vector 
yi=[69 73 85 115 125]; n5=length(yi); ymean5=mean(yi); ysigma5=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost4; sigma0=sigmapost4; 
% Posterior 
k5=n5/(n5+(ysigma5^2/sigma0^2)); mupost5=(1-k5)*mu0+(k5*ymean5); sigmapost5=sqrt(k5*ysigma5^2/n5); 

% Limits 
CILM5 =(mupost5-3*sigmapost5); MEAN5 = mupost5; CIUM5 =(mupost5+3*sigmapost5); 
xx5=[yi]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[90 90],’width',1); title('interval t=5')  

%% Interval 6 
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% Data vector 
yi=[69 73 85 115 125 90]; n6=length(yi); ymean6=mean(yi); ysigma6=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost5; sigma0=sigmapost5; 
% Posterior 
k6=n6/(n6+(ysigma6^2/sigma0^2)); mupost6=(1-k6)*mu0+(k6*ymean6); sigmapost6=sqrt(k6*ysigma6^2/n6); 

% Limits 
CILM6 =(mupost6-3*sigmapost6); MEAN6 = mupost6; CIUM6 =(mupost6+3*sigmapost6); 
xx6=[yi]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[90 90],’width',1); title('interval t=6')  

%% Interval 7 
% Data vector 
yi=[69 73 85 115 125 90 79]; n7=length(yi); ymean7=mean(yi); ysigma7=sqrt(var(yi,1)); 
% Prior recurrent 
mu0=mupost6; sigma0=sigmapost6; 
% Posterior 
k7=n7/(n7+(ysigma7^2/sigma0^2)); mupost7=(1-k7)*mu0+(k7*ymean7); sigmapost7=sqrt(k7*ysigma7^2/n7); 

% Limits 
CILM7 =(mupost7-3*sigmapost7); MEAN7 = mupost7; CIUM7 =(mupost7+3*sigmapost7); 
xx7=[yi]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[90 90],’width',1); title('interval t=7')  

c.- Direct method with mean prior. 

clear 
%% Interval 1 
%Prior 
r = [68 74 82 110 115 93 86]; [muhat,sigmahat] = normfit(r); mu0=muhat; sigma0=sigmahat; 
%Data vector 
yi=[69]; n1=length(yi); ymean1=mean(yi); ysigma1=sqrt(var(yi,1)); 
% Posterior 
k1=n1/(n1+(ysigma1^2/sigma0^2)); mupost1=(1-k1)*mu0+(k1*ymean1); sigmapost1=sqrt(k1*ysigma1^2/n1); 

%Limits 
CILM1 =(mu0-3*sigmapost1); MEAN1 = mu0; CIUM1 =(mu0+3*sigmapost1); 
xx1=[yi]; lim1 = [CILM1 MEAN1 CIUM1]; 
%figure 
%controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[90 107],’width',1); title('interval t=1')  

%% Interval 2 
%Data vector 
yi=[69 73]; n2=length(yi); ymean2=mean(yi); ysigma2=sqrt(var(yi,1)); 
%Posterior 
k2=n2/(n2+(ysigma2^2/sigma0^2)); mupost2=(1-k2)*mu0+(k2*ymean2); sigmapost2=sqrt(k2*ysigma2^2/n2); 

%Limits 
CILM2 =(mu0-3*sigmapost2); MEAN2 = mu0; CIUM2 =(mu0+3*sigmapost2); 
xx2=[yi]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[90 90],’width',1); title('interval t=2')  

%% Interval 3 
%Data vector 
yi=[69 73 85]; n3=length(yi); ymean3=mean(yi); ysigma3=sqrt(var(yi,1)); 
%Posterior 
k3=n3/(n3+(ysigma3^2/sigma0^2)); mupost3=(1-k3)*mu0+(k3*ymean3); sigmapost3=sqrt(k3*ysigma3^2/n3); 

%Limits 
CILM3 =(mu0-3*sigmapost3); MEAN3 = mu0; CIUM3 =(mu0+3*sigmapost3); 
xx3=[yi]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
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controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[90 90],’width',1); title('interval t=3')  

%% Interval 4 
%Data vector 
yi=[69 73 85 115]; n4=length(yi); ymean4=mean(yi); ysigma4=sqrt(var(yi,1)); 
%Posterior 
k4=n4/(n4+(ysigma4^2/sigma0^2)); mupost4=(1-k4)*mu0+(k4*ymean4); sigmapost4=sqrt(k4*ysigma4^2/n4); 

%Limits 
CILM4 =(mu0-3*sigmapost4); MEAN4 = mu0; CIUM4 =(mu0+3*sigmapost4); 
xx4=[yi]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[90 90],’width',1); title('interval t=4')  

%% Interval 5 
%Data vector 
yi=[69 73 85 115 125]; n5=length(yi); ymean5=mean(yi); ysigma5=sqrt(var(yi,1)); 
%Posterior 
k5=n5/(n5+(ysigma5^2/sigma0^2)); mupost5=(1-k5)*mu0+(k5*ymean5); sigmapost5=sqrt(k5*ysigma5^2/n5); 

%Limits 
CILM5 =(mu0-3*sigmapost5); MEAN5 = mu0; CIUM5 =(mu0+3*sigmapost5); 
xx5=[yi]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[90 90],’width',1); title('interval t=5')  

%% Interval 6 
%Data vector 
yi=[69 73 85 115 125 90]; n6=length(yi); ymean6=mean(yi); ysigma6=sqrt(var(yi,1)); 
%Posterior 
k6=n6/(n6+(ysigma6^2/sigma0^2)); mupost6=(1-k6)*mu0+(k6*ymean6); sigmapost6=sqrt(k6*ysigma6^2/n6); 

%Limits 
CILM6 =(mu0-3*sigmapost6); MEAN6 = mu0; CIUM6 =(mu0+3*sigmapost6); 
xx6=[yi]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[90 90],’width',1); title('interval t=6')  

%% Interval 7 
%Data vector 
yi=[69 73 85 115 125 90 79]; n7=length(yi); ymean7=mean(yi); ysigma7=sqrt(var(yi,1)); 
%Posterior 
k7=n7/(n7+(ysigma7^2/sigma0^2)); mupost7=(1-k7)*mu0+(k7*ymean7); sigmapost7=sqrt(k7*ysigma7^2/n7); 

%Limits 
CILM7 =(mu0-3*sigmapost7); MEAN7 = mu0; CIUM7 =(mu0+3*sigmapost7); 
xx7=[yi]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[90 90],’width',1); title('interval t=7')  

d.- Direct method with mean posterior. 

clear 
%% Interval 1 
%Prior 
r = [68 74 82 110 115 93 86]; [muhat,sigmahat] = normfit(r); mu0=muhat; sigma0=sigmahat; 
%Data vector 
yi=[69]; n1=length(yi); ymean1=mean(yi); ysigma1=std(yi,1); 
% Posterior 
k1=n1/(n1+(ysigma1^2/sigma0^2)); mupost1=(1-k1)*mu0+(k1*ymean1); sigmapost1=sqrt(k1*ysigma1^2/n1); 

%Limits 
CILM1 =(mupost1-3*sigmapost1); MEAN1 = mupost1; CIUM1 =(mupost1+3*sigmapost1); 
xx1=[yi]; lim1 = [CILM1 MEAN1 CIUM1]; 
%figure 
%controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[90 107],’width',1); title('interval t=1')  
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%% Interval 2 
%Data vector 
yi=[69 73]; n2=length(yi); ymean2=mean(yi); ysigma2=std(yi,1); 
%Posterior 
k2=n2/(n2+(ysigma2^2/sigma0^2)); mupost2=(1-k2)*mu0+(k2*ymean2); sigmapost2=sqrt(k2*ysigma2^2/n2); 

%Limits 
CILM2 =(mupost2-3*sigmapost2); MEAN2 = mupost2; CIUM2 =(mupost2+3*sigmapost2); 
xx2=[yi]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[90 90],’width',1); title('interval t=2')  

%% Interval 3 
%Data vector 
yi=[69 73 85]; n3=length(yi); ymean3=mean(yi); ysigma3=std(yi,1); 
%Posterior 
k3=n3/(n3+(ysigma3^2/sigma0^2)); mupost3=(1-k3)*mu0+(k3*ymean3); sigmapost3=sqrt(k3*ysigma3^2/n3); 

%Limits 
CILM3 =(mupost3-3*sigmapost3); MEAN3 = mupost3; CIUM3 =(mupost3+3*sigmapost3); 
xx3=[yi]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[90 90],’width',1); title('interval t=3')  

%% Interval 4 
%Data vector 
yi=[69 73 85 115]; n4=length(yi); ymean4=mean(yi); ysigma4=std(yi,1); 
%Posterior 
k4=n4/(n4+(ysigma4^2/sigma0^2)); mupost4=(1-k4)*mu0+(k4*ymean4); sigmapost4=sqrt(k4*ysigma4^2/n4); 

%Limits 
CILM4 =(mupost4-3*sigmapost4); MEAN4 = mupost4; CIUM4 =(mupost4+3*sigmapost4); 
xx4=[yi]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[90 90],’width',1); title('interval t=4')  

%% Interval 5 
%Data vector 
yi=[69 73 85 115 125]; n5=length(yi); ymean5=mean(yi); ysigma5=std(yi,1); 
%Posterior 
k5=n5/(n5+(ysigma5^2/sigma0^2)); mupost5=(1-k5)*mu0+(k5*ymean5); sigmapost5=sqrt(k5*ysigma5^2/n5); 

%Limits 
CILM5 =(mupost5-3*sigmapost5); MEAN5 = mupost5; CIUM5 =(mupost5+3*sigmapost5); 
xx5=[yi]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[90 90],’width',1); title('interval t=5')  

%% Interval 6 
%Data vector 
yi=[69 73 85 115 125 90]; n6=length(yi); ymean6=mean(yi); ysigma6=std(yi,1); 
%Posterior 
k6=n6/(n6+(ysigma6^2/sigma0^2)); mupost6=(1-k6)*mu0+(k6*ymean6); sigmapost6=sqrt(k6*ysigma6^2/n6); 

%Limits 
CILM6 =(mupost6-3*sigmapost6); MEAN6 = mupost6; CIUM6 =(mupost6+3*sigmapost6); 
xx6=[yi]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[90 90],’width',1); title('interval t=6')  

%% Interval 7 
%Data vector 
yi=[69 73 85 115 125 90 79]; n7=length(yi); ymean7=mean(yi); ysigma7=std(yi,1); 
%Posterior 
k7=n7/(n7+(ysigma7^2/sigma0^2)); mupost7=(1-k7)*mu0+(k7*ymean7); sigmapost7=sqrt(k7*ysigma7^2/n7); 
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%Limits 
CILM7 =(mupost7-3*sigmapost7); MEAN7 = mupost7; CIUM7 =(mupost7+3*sigmapost7); 
xx7=[yi]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[90 90],’width',1); title('interval t=7') 

H.9. Lognormal-lognormal. 

a.- Recurrent method. 

clear 

%% First interval 
%Parameters specification 
x0=0.2; c=65; B=500; K=4000; J=B+K; a=0; r=0; n=10; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y, adopted y0; sigma1=std(log(y0)); 

for i=1:n 
    a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j-1,1)),sigma1));        
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 1','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 1','FontSize',15); 
%Histogram 
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figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 1','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M1,V1]=lognstat(parmhat(1),parmhat(2)); Mean11=muu11; Sigma11=sqrt(V1); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu111=muu11; sigma111=parmhat(2); 

%% Second interval 
%Parameters specification 
x0=0.2; c=65; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y, still adopted y0; sigma1=std(log(y0)); 

for i=1:n 
    a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(muu11),sigma111)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(muu11),sigma111)*lognpdf(meanY,log(x(j-1,1)),sigma1));        
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 2','FontSize',15); 
l=B:J; 
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subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 2','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 2','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M2,V2]=lognstat(parmhat(1),parmhat(2)); Mean22=muu22; Sigma22=sqrt(V2); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu222=muu22; sigma222=parmhat(2); 

%% Third interval 
%Parameters specification 
x0=0.2; c=65; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(muu22),sigma222)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(muu22),sigma222)*lognpdf(meanY,log(x(j-1,1)),sigma1));       
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
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subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 3','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 3','FontSize',15); 

%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 3','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M3,V3]=lognstat(parmhat(1),parmhat(2)); Mean33=muu33; Sigma33=sqrt(V3); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu333=muu33; sigma333=parmhat(2); 

%% Fourth interval 
%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(muu33),sigma333)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(muu33),sigma333)*lognpdf(meanY,log(x(j-1,1)),sigma1));       
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu4(i)=mean(xx); vaa4(i)=var(xx); stdd4(i)=sqrt(vaa4(i)); 
end 

%Acceptance Rate AR 
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[muhat4,sigmahat4,muci4,sigmaci4] = normfit(muu4); AR4=mean(a)/J; muu44=mean(muu4); vaa44=mean(vaa4); 
std44=sqrt(vaa44); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 

%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M4,V4]=lognstat(parmhat(1),parmhat(2)); Mean44=muu44; Sigma44=sqrt(V4); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu444=muu44; sigma444=parmhat(2); 

%% Fifth interval 

%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(muu44),sigma444)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(muu44),sigma444)*lognpdf(meanY,log(x(j-1,1)),sigma1));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
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    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu5(i)=mean(xx); vaa5(i)=var(xx); stdd5(i)=sqrt(vaa5(i)); 
end 

%Acceptance Rate AR 
[muhat5,sigmahat5,muci5,sigmaci5] = normfit(muu5); AR5=mean(a)/J; muu55=mean(muu5); vaa55=mean(vaa5); 
std55=sqrt(vaa55); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 5','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 5','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 5','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M5,V5]=lognstat(parmhat(1),parmhat(2)); Mean55=muu55; Sigma55=sqrt(V5); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu555=muu55; sigma555=parmhat(2); 

%% Sixth interval 
%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125 90]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(muu55),sigma555)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(muu55),sigma555)*lognpdf(meanY,log(x(j-1,1)),sigma1));    
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
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        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu6(i)=mean(xx); vaa6(i)=var(xx); stdd6(i)=sqrt(vaa6(i)); 
end 

%Acceptance Rate AR 
[muhat6,sigmahat6,muci6,sigmaci6] = normfit(muu6); AR6=mean(a)/J; muu66=mean(muu6); vaa66=mean(vaa6); 
std66=sqrt(vaa66); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 6','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 6','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 6','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M6,V6]=lognstat(parmhat(1),parmhat(2)); Mean66=muu66; Sigma66=sqrt(V6); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu666=muu66; sigma666=parmhat(2); 

%% Seventh interval 
%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125 90 79]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(muu66),sigma666)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(muu66),sigma666)*lognpdf(meanY,log(x(j-1,1)),sigma1));   
    end 
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    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu7(i)=mean(xx); vaa7(i)=var(xx); stdd7(i)=sqrt(vaa7(i)); 
end 

%Acceptance Rate AR 
[muhat7,sigmahat7,muci7,sigmaci7] = normfit(muu7); AR7=mean(a)/J; muu77=mean(muu7); vaa77=mean(vaa7); 
std77=sqrt(vaa77); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M7,V7]=lognstat(parmhat(1),parmhat(2)); Mean77=muu77; Sigma77=sqrt(V7); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu777=muu77; sigma777=parmhat(2); 

b.- Direct method. 

clear 
%% First interval 
%Parameters specification 
x0=0.2; c=65; B=500; K=4000; J=B+K; a=0; r=0; n=10; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y, adopted y0; sigma1=std(log(y0)); 

for i=1:n 
    a(i)=0; 
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%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j-1,1)),sigma1));  
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu1(i)=mean(xx);vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 1','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 1','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 1','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M1,V1]=lognstat(parmhat(1),parmhat(2)); Mean11=muu11; Sigma11=sqrt(V1); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu111=muu11; sigma111=parmhat(2); 

%% Second interval 
%Parameters specification 
x0=0.2; c=65; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73]; meanY=mean(y); 
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%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y, still adopted y0; sigma1=std(log(y0)); 

for i=1:n 
    a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j-1,1)),sigma1));   
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 2','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 2','FontSize',15); 

%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 2','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M2,V2]=lognstat(parmhat(1),parmhat(2)); Mean22=muu22; Sigma22=sqrt(V2); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu222=muu22; sigma222=parmhat(2); 
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%% Third interval 
%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j-1,1)),sigma1));  
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 3','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 3','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 3','FontSize',15); 
hold off 
legend('Location','northeast') 
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%Mean post, sigma post 
[M3,V3]=lognstat(parmhat(1),parmhat(2)); Mean33=muu33; Sigma33=sqrt(V3); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu333=muu33; sigma333=parmhat(2); 

%% Fourth interval 
%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j-1,1)),sigma1)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu4(i)=mean(xx); vaa4(i)=var(xx); stdd4(i)=sqrt(vaa4(i)); 
end 

%Acceptance Rate AR 
[muhat4,sigmahat4,muci4,sigmaci4] = normfit(muu4); AR4=mean(a)/J; muu44=mean(muu4); vaa44=mean(vaa4); 
std44=sqrt(vaa44); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
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xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M4,V4]=lognstat(parmhat(1),parmhat(2)); Mean44=muu44; Sigma44=sqrt(V4); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu444=muu44; sigma444=parmhat(2); 

%% Fifth interval 
%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j-1,1)),sigma1));   
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu5(i)=mean(xx); vaa5(i)=var(xx); stdd5(i)=sqrt(vaa5(i)); 
end 

%Acceptance Rate AR 
[muhat5,sigmahat5,muci5,sigmaci5] = normfit(muu5); AR5=mean(a)/J; muu55=mean(muu5); vaa55=mean(vaa5); 
std55=sqrt(vaa55); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 5','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 5','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
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parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 5','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M5,V5]=lognstat(parmhat(1),parmhat(2)); Mean55=muu55; Sigma55=sqrt(V5); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu555=muu55; sigma555=parmhat(2); 

%% Sixth interval 
%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125 90]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
    else p(j,1)=lognpdf(x(j,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j-1,1)),sigma1));  
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu6(i)=mean(xx); vaa6(i)=var(xx); stdd6(i)=sqrt(vaa6(i)); 
end 

%Acceptance Rate AR 
[muhat6,sigmahat6,muci6,sigmaci6] = normfit(muu6); AR6=mean(a)/J; muu66=mean(muu6); vaa66=mean(vaa6); 
std66=sqrt(vaa66); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 6','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 6','FontSize',15); 
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%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 6','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M6,V6]=lognstat(parmhat(1),parmhat(2)); Mean66=muu66; Sigma66=sqrt(V6); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu666=muu66; sigma666=parmhat(2); 

%% Seventh interval 
%Parameters specification 
x0=0.2; c=35; B=500; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125 90 79]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400 
        p(j,1)=0; 
   else p(j,1)=lognpdf(x(j,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (lognpdf(x(j-1,1),log(mu0),sigma0)*lognpdf(meanY,log(x(j-1,1)),sigma1));  
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu7(i)=mean(xx); vaa7(i)=var(xx); stdd7(i)=sqrt(vaa7(i)); 
end 

%Acceptance Rate AR 
[muhat7,sigmahat7,muci7,sigmaci7] = normfit(muu7); AR7=mean(a)/J; muu77=mean(muu7); vaa77=mean(vaa7); 
std77=sqrt(vaa77); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
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l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M7,V7]=lognstat(parmhat(1),parmhat(2)); Mean77=muu77; Sigma77=sqrt(V7); 

%Parameters post for substituting mu0 and sigma0 in the new prior 
mu777=muu77; sigma777=parmhat(2); 

H.10. Lognormal-uniform. 

clear 
%% First interval 
%Parameters specification 
x0=0.2; c=65; B=1000; K=4000; J=B+K; a=0; r=0; n=10; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y, adopted y0; sigma1=std(log(y0)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400   %<0   >400 
        p(j,1)=0; 
    else p(j,1)=1/x(j,1)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (1/x(j-1,1)*lognpdf(meanY,log(x(j-1,1)),sigma1));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
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std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 1','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 1','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 1','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M1,V1]=lognstat(parmhat(1),parmhat(2)); Mean11=muu11; Sigma11=sqrt(V1); 

%% Second interval 
%Parameters specification 
x0=0.2; c=35; B=1000; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y, adopted y0; sigma1=std(log(y0)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400   %<0   >400 
        p(j,1)=0; 
    else p(j,1)=1/x(j,1)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (1/x(j-1,1)*lognpdf(meanY,log(x(j-1,1)),sigma1));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 
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%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 2','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 2','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 2','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M2,V2]=lognstat(parmhat(1),parmhat(2)); Mean22=muu22; Sigma22=sqrt(V2); 

%% Third interval 
%Parameters specification 
x0=0.2; c=35; B=1000; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400   %<0   >400 
        p(j,1)=0; 
    else p(j,1)=1/x(j,1)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (1/x(j-1,1)*lognpdf(meanY,log(x(j-1,1)),sigma1));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
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end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 3','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 3','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 3','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M3,V3]=lognstat(parmhat(1),parmhat(2)); Mean33=muu33; Sigma33=sqrt(V3); 

%% Fourth interval 
%Parameters specification 
x0=0.2; c=35; B=1000; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400   %<0   >400 
        p(j,1)=0; 
    else p(j,1)=1/x(j,1)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (1/x(j-1,1)*lognpdf(meanY,log(x(j-1,1)),sigma1));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
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%Mean and Dev 
muu4(i)=mean(xx); vaa4(i)=var(xx); stdd4(i)=sqrt(vaa4(i)); 
end 

%Acceptance Rate AR 
[muhat4,sigmahat4,muci4,sigmaci4] = normfit(muu4); AR4=mean(a)/J; muu44=mean(muu4); vaa44=mean(vaa4); 
std44=sqrt(vaa44); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 4','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 4','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 4','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M4,V4]=lognstat(parmhat(1),parmhat(2)); Mean44=muu44; Sigma44=sqrt(V4); 

%% Fifth interval 
%Parameters specification 
x0=0.2; c=35; B=1000; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400   %<0   >400 
        p(j,1)=0; 
    else p(j,1)=1/x(j,1)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (1/x(j-1,1)*lognpdf(meanY,log(x(j-1,1)),sigma1));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
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    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu5(i)=mean(xx); vaa5(i)=var(xx); stdd5(i)=sqrt(vaa5(i)); 
end 

%Acceptance Rate AR 
[muhat5,sigmahat5,muci5,sigmaci5] = normfit(muu5); AR5=mean(a)/J; muu55=mean(muu5); vaa55=mean(vaa5); 
std55=sqrt(vaa55); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 5','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 5','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 5','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M5,V5]=lognstat(parmhat(1),parmhat(2)); Mean55=muu55; Sigma55=sqrt(V5); 

%% Sixth interval 
%Parameters specification 
x0=0.2; c=35; B=1000; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125 90]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400   %<0   >400 
        p(j,1)=0; 
    else p(j,1)=1/x(j,1)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (1/x(j-1,1)*lognpdf(meanY,log(x(j-1,1)),sigma1));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
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%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu6(i)=mean(xx); vaa6(i)=var(xx); stdd6(i)=sqrt(vaa6(i)); 
end 

%Acceptance Rate AR 
[muhat6,sigmahat6,muci6,sigmaci6] = normfit(muu6); AR6=mean(a)/J; muu66=mean(muu6); vaa66=mean(vaa6); 
std66=sqrt(vaa66); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 6','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 6','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 6','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M6,V6]=lognstat(parmhat(1),parmhat(2)); Mean66=muu66; Sigma66=sqrt(V6); 

%% Seventh interval 
%Parameters specification 
x0=0.2; c=35; B=1000; K=4000; J=B+K; a=0; r=0; 
%Data 
y0=[68 74 82 110 115 93 86]; y=[69 73 85 115 125 90 79]; meanY=mean(y); 
%Initial values 
mu0=mean(y0); sigma0=std(log(y0)); %Sigma of data y; sigma1=std(log(y)); 

for i=1:n 
a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if x(j,1)<0 || x(j,1)>400   %<0   >400 
        p(j,1)=0; 
    else p(j,1)=1/x(j,1)*lognpdf(meanY,log(x(j,1)),sigma1)/... 
            (1/x(j-1,1)*lognpdf(meanY,log(x(j-1,1)),sigma1));         
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 



!  

!                                                                                          Annex G. Applied programs 343

    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev 
muu7(i)=mean(xx); vaa7(i)=var(xx); stdd7(i)=sqrt(vaa7(i)); 
end 

%Acceptance Rate AR 
[muhat7,sigmahat7,muci7,sigmaci7] = normfit(muu7); AR7=mean(a)/J; muu77=mean(muu7); vaa77=mean(vaa7); 
std77=sqrt(vaa77); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 7','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 7','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
counts = h.Values; 
%parameters from the LogNormal 
parmhat=lognfit(xx); 
hold on 
xxx=0:0.1:250; 
yyyy=lognpdf(xxx,parmhat(1),parmhat(2)); 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) LogNormal') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 7','FontSize',15); 
hold off 
legend('Location','northeast') 

%Mean post, sigma post 
[M7,V7]=lognstat(parmhat(1),parmhat(2)); Mean77=muu77; Sigma77=sqrt(V7); 

H.11. Normal-gamma I. 

a.- Direct method with mean prior. 

clear 
%% Interval 1 
% Prior 
alfa0=2; beta0=2; muprior0=alfa0/beta0; mu0N=2.2; sigma0N=1; lambda0=1/sigma0N^2; 
sigmaprior0=sqrt(alfa0/beta0^2); 
%Chart control 
C=0.5; 
% Data 
yi=[1]; n1=length(yi); s1=smu(n1,yi,mu0N); a1=alfa0+n1/2; b1=beta0+n1/2*s1; lambda1=a1/b1; 
sigmap1=sqrt(a1/b1^2); sigmapostnormal1=1/sqrt(lambda1); SNormal1=std(yi,1);  
lambdanormalobs1=1/SNormal1^2; 
yyi=[lambdanormalobs1]; 
CILM1 = lambda0-C*sigmap1; MEAN1 = lambda0; CIUM1 = lambda0+C*sigmap1; 
xx1=[yyi]; lim1 = [CILM1 MEAN1 CIUM1]; 
%figure 
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%controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[lambda0 lambda0],’width',1); title('interval t=1')  

%% Interval 2 
% Data 
yi=[1 3]; n2=length(yi); s2=smu(n2,yi,mu0N); a2=alfa0+n2/2; b2=beta0+n2/2*s2; lambda2=a2/b2; 
sigmap2=sqrt(a2/b2^2); sigmapostnormal2=1/sqrt(lambda2); SNormal2=std(yi,1); 
lambdanormalobs2=1/SNormal2^2; 
yyi=[lambdanormalobs1 lambdanormalobs2]; 
CILM2 = lambda0-C*sigmap2; MEAN2 = lambda0; CIUM2 = lambda0+C*sigmap2; 
xx2=[yyi]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[lambda0 lambda0],’width',1); title('interval t=2')  

%% Interval 3 
% Data 
yi=[1 3 3]; n3=length(yi); s3=smu(n3,yi,mu0N); a3=alfa0+n3/2; b3=beta0+n3/2*s3; lambda3=a3/b3; 
sigmap3=sqrt(a3/b3^2); sigmapostnormal3=1/sqrt(lambda3); SNormal3=std(yi,1); 
lambdanormalobs3=1/SNormal3^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3]; 
CILM3 = lambda0-C*sigmap3; MEAN3 = lambda0; CIUM3 = lambda0+C*sigmap3; 
xx3=[yyi]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[lambda0 lambda0],’width',1); title('interval t=3')  

%% Interval 4 
% Data 
yi=[1 3 3 3]; n4=length(yi); s4=smu(n4,yi,mu0N); a4=alfa0+n4/2; b4=beta0+n4/2*s4; lambda4=a4/b4; 
sigmap4=sqrt(a4/b4^2); sigmapostnormal4=1/sqrt(lambda4); SNormal4=std(yi,1); 
lambdanormalobs4=1/SNormal4^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4]; 
CILM4 = lambda0-C*sigmap4; MEAN4 = lambda0; CIUM4 = lambda0+C*sigmap4; 
xx4=[yyi]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[lambda0 lambda0],’width',1); title('interval t=4')  

%% Interval 5 
% Data 
yi=[1 3 3 3 2]; n5=length(yi); s5=smu(n5,yi,mu0N); a5=alfa0+n5/2; b5=beta0+n5/2*s5; lambda5=a5/b5; 
sigmap5=sqrt(a5/b5^2); sigmapostnormal5=1/sqrt(lambda5); SNormal5=std(yi,1); 
lambdanormalobs5=1/SNormal5^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5]; 
CILM5 = lambda0-C*sigmap5; MEAN5 = lambda0; CIUM5 = lambda0+C*sigmap5; 
xx5=[yyi]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[lambda0 lambda0],’width',1); title('interval t=5')  

%% Interval 6 
% Data 
yi=[1 3 3 3 2 4]; n6=length(yi); s6=smu(n6,yi,mu0N); a6=alfa0+n6/2; b6=beta0+n6/2*s6; lambda6=a6/b6; 
sigmap6=sqrt(a6/b6^2); sigmapostnormal6=1/sqrt(lambda6); SNormal6=std(yi,1); 
lambdanormalobs6=1/SNormal6^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 … 
lambdanormalobs6]; 
CILM6 = lambda0-C*sigmap6; MEAN6 = lambda0; CIUM6 = lambda0+C*sigmap6; 
xx6=[yyi]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[lambda0 lambda0],’width',1); title('interval t=6')  

%% Interval 7 
% Data 
yi=[1 3 3 3 2 4 4]; n7=length(yi); s7=smu(n7,yi,mu0N); a7=alfa0+n7/2; b7=beta0+n7/2*s7; lambda7=a7/b7; 
sigmap7=sqrt(a7/b7^2); sigmapostnormal7=1/sqrt(lambda7); SNormal7=std(yi,1); 
lambdanormalobs7=1/SNormal7^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 …
lambdanormalobs6 lambdanormalobs7]; 
CILM7 = lambda0-C*sigmap7; MEAN7 = lambda0; CIUM7 = lambda0+C*sigmap7; 
xx7=[yyi]; lim7 = [CILM7 MEAN7 CIUM7]; 
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figure 
controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[lambda0 lambda0],’width',1); title('interval t=7')  

%% Interval 8 
% Data 
yi=[1 3 3 3 2 4 4 2]; n8=length(yi); s8=smu(n8,yi,mu0N); a8=alfa0+n8/2; b8=beta0+n8/2*s8; lambda8=a8/b8; 
sigmap8=sqrt(a8/b8^2); sigmapostnormal8=1/sqrt(lambda8); SNormal8=std(yi,1); 
lambdanormalobs8=1/SNormal8^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 …
lambdanormalobs6 lambdanormalobs7 lambdanormalobs8]; 
CILM8 = lambda0-C*sigmap8; MEAN8 = lambda0; CIUM8 = lambda0+C*sigmap8; 
xx8=[yyi]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[lambda0 lambda0],’width',1); title('interval t=8')  

%% Interval 9 
% Data 
yi=[1 3 3 3 2 4 4 2 1]; n9=length(yi); s9=smu(n9,yi,mu0N); a9=alfa0+n9/2; b9=beta0+n9/2*s9; lambda9=a9/b9; 
sigmap9=sqrt(a9/b9^2); sigmapostnormal9=1/sqrt(lambda9); SNormal9=std(yi,1); 
lambdanormalobs9=1/SNormal9^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 … 
lambdanormalobs6 lambdanormalobs7 lambdanormalobs8 lambdanormalobs9]; 
CILM9 = lambda0-C*sigmap9; MEAN9 = lambda0; CIUM9 = lambda0+C*sigmap9; 
xx9=[yyi]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[lambda0 lambda0],’width',1); title('interval t=9')  

%% Interval 10 
% Data 
yi=[1 3 3 3 2 4 4 2 1 1]; n10=length(yi); s10=smu(n10,yi,mu0N); a10=alfa0+n10/2; b10=beta0+n10/2*s10; 
lambda10=a10/b10; sigmap10=sqrt(a10/b10^2); sigmapostnormal10=1/sqrt(lambda10); SNormal10=std(yi,1); 
lambdanormalobs10=1/SNormal10^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 … 
lambdanormalobs6 lambdanormalobs7 lambdanormalobs8 lambdanormalobs9 lambdanormalobs10]; 
CILM10 = lambda0-C*sigmap10; MEAN10 = lambda0; CIUM10 = lambda0+C*sigmap10; 
xx10=[yyi]; lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[lambda0 lambda0],’width',1); title('interval t=10')  

%% Function s 
function y = smu(n,x,mu) 
sum = 0; 
for i = 1:n 
    sum = sum+(x(i)-mu)^2; 
    y = sum./n; 
end 
end 

b.- Direct method with mean posterior. 

clear 
%% Interval 1 
% Prior 
alfa0=2; beta0=2; muprior0=alfa0/beta0; mu0N=2.2; sigma0N=1; lambda0=1/sigma0N^2;  
sigmaprior0=sqrt(alfa0/beta0^2); 
%Chart control  
C=0.5; 
% Data 
yi=[1]; n1=length(yi); s1=smu(n1,yi,mu0N); a1=alfa0+n1/2; b1=beta0+n1/2*s1; lambda1=a1/b1; 
sigmap1=sqrt(a1/b1^2); sigmapostnormal1=1/sqrt(lambda1); SNormal1=std(yi,1); 
lambdanormalobs1=1/SNormal1^2; 
yyi=[lambdanormalobs1]; 
CILM1 = lambda1-C*sigmap1; MEAN1 = lambda1; CIUM1 = lambda1+C*sigmap1; 
xx1=[yyi]; lim1 = [CILM1 MEAN1 CIUM1]; 
%figure 
%controlchart(xx1,'chart',{'i'},'limits',lim1,'specs',[lambda0 lambda0],’width’,1); title('interval t=1')  



!  

!                                                                                          Annex G. Applied programs 346

%% Interval 2 
% Data 
yi=[1 3]; n2=length(yi); s2=smu(n2,yi,mu0N); a2=alfa0+n2/2; b2=beta0+n2/2*s2; lambda2=a2/b2; 
sigmap2=sqrt(a2/b2^2); sigmapostnormal2=1/sqrt(lambda2); SNormal2=std(yi,1); 
lambdanormalobs2=1/SNormal2^2; 
yyi=[lambdanormalobs1 lambdanormalobs2]; 
CILM2 = lambda2-C*sigmap2; MEAN2 = lambda2; CIUM2 = lambda2+C*sigmap2; 
xx2=[yyi]; lim2 = [CILM2 MEAN2 CIUM2]; 
figure 
controlchart(xx2,'chart',{'i'},'limits',lim2,'specs',[lambda0 lambda0],’width',1); title('interval t=2')  

%% Interval 3 
% Data 
yi=[1 3 3]; n3=length(yi); s3=smu(n3,yi,mu0N); a3=alfa0+n3/2; b3=beta0+n3/2*s3; lambda3=a3/b3; 
sigmap3=sqrt(a3/b3^2); sigmapostnormal3=1/sqrt(lambda3); SNormal3=std(yi,1); 
lambdanormalobs3=1/SNormal3^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3]; 
CILM3 = lambda3-C*sigmap3; MEAN3 = lambda3; CIUM3 = lambda3+C*sigmap3; 
xx3=[yyi]; lim3 = [CILM3 MEAN3 CIUM3]; 
figure 
controlchart(xx3,'chart',{'i'},'limits',lim3,'specs',[lambda0 lambda0],’width',1); title('interval t=3')  

%% Interval 4 
% Data 
yi=[1 3 3 3]; n4=length(yi); s4=smu(n4,yi,mu0N); a4=alfa0+n4/2; b4=beta0+n4/2*s4; lambda4=a4/b4; 
sigmap4=sqrt(a4/b4^2); sigmapostnormal4=1/sqrt(lambda4); SNormal4=std(yi,1); 
lambdanormalobs4=1/SNormal4^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4]; 
CILM4 = lambda4-C*sigmap4; MEAN4 = lambda4; CIUM4 = lambda4+C*sigmap4; 
xx4=[yyi]; lim4 = [CILM4 MEAN4 CIUM4]; 
figure 
controlchart(xx4,'chart',{'i'},'limits',lim4,'specs',[lambda0 lambda0],’width',1); title('interval t=4')  

%% Interval 5 
% Data 
yi=[1 3 3 3 2]; n5=length(yi); s5=smu(n5,yi,mu0N); a5=alfa0+n5/2; b5=beta0+n5/2*s5; lambda5=a5/b5; 
sigmap5=sqrt(a5/b5^2); sigmapostnormal5=1/sqrt(lambda5); SNormal5=std(yi,1); 
lambdanormalobs5=1/SNormal5^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5]; 
CILM5 = lambda5-C*sigmap5; MEAN5 = lambda5; CIUM5 = lambda5+C*sigmap5; 
xx5=[yyi]; lim5 = [CILM5 MEAN5 CIUM5]; 
figure 
controlchart(xx5,'chart',{'i'},'limits',lim5,'specs',[lambda0 lambda0],’width',1); title('interval t=5')  

%% Interval 6 
% Data 
yi=[1 3 3 3 2 4]; n6=length(yi); s6=smu(n6,yi,mu0N); a6=alfa0+n6/2; b6=beta0+n6/2*s6; lambda6=a6/b6; 
sigmap6=sqrt(a6/b6^2); sigmapostnormal6=1/sqrt(lambda6); SNormal6=std(yi,1); 
lambdanormalobs6=1/SNormal6^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 … 
lambdanormalobs6]; 
CILM6 = lambda6-C*sigmap6; MEAN6 = lambda6; CIUM6 = lambda6+C*sigmap6; 
xx6=[yyi]; lim6 = [CILM6 MEAN6 CIUM6]; 
figure 
controlchart(xx6,'chart',{'i'},'limits',lim6,'specs',[lambda0 lambda0],’width',1); title('interval t=6')  

%% Interval 7 
% Data 
yi=[1 3 3 3 2 4 4]; n7=length(yi); s7=smu(n7,yi,mu0N); a7=alfa0+n7/2; b7=beta0+n7/2*s7; lambda7=a7/b7; 
sigmap7=sqrt(a7/b7^2); sigmapostnormal7=1/sqrt(lambda7); SNormal7=std(yi,1); 
lambdanormalobs7=1/SNormal7^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 …
lambdanormalobs6 lambdanormalobs7]; 
CILM7 = lambda7-C*sigmap7; MEAN7 = lambda7; CIUM7 = lambda7+C*sigmap7; 
xx7=[yyi]; lim7 = [CILM7 MEAN7 CIUM7]; 
figure 
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controlchart(xx7,'chart',{'i'},'limits',lim7,'specs',[lambda0 lambda0],’width',1); title('interval t=7')  

%% Interval 8 
% Data 
yi=[1 3 3 3 2 4 4 2]; n8=length(yi); s8=smu(n8,yi,mu0N); a8=alfa0+n8/2; b8=beta0+n8/2*s8; lambda8=a8/b8; 
sigmap8=sqrt(a8/b8^2); sigmapostnormal8=1/sqrt(lambda8); SNormal8=std(yi,1); 
lambdanormalobs8=1/SNormal8^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 …
lambdanormalobs6 lambdanormalobs7 lambdanormalobs8]; 
CILM8 = lambda8-C*sigmap8; MEAN8 = lambda8; CIUM8 = lambda8+C*sigmap8; 
xx8=[yyi]; lim8 = [CILM8 MEAN8 CIUM8]; 
figure 
controlchart(xx8,'chart',{'i'},'limits',lim8,'specs',[lambda0 lambda0],’width',1); title('interval t=8')  

%% Interval 9 
% Data 
yi=[1 3 3 3 2 4 4 2 1]; n9=length(yi); s9=smu(n9,yi,mu0N); a9=alfa0+n9/2; b9=beta0+n9/2*s9; lambda9=a9/b9; 
sigmap9=sqrt(a9/b9^2); sigmapostnormal9=1/sqrt(lambda9); SNormal9=std(yi,1); 
lambdanormalobs9=1/SNormal9^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 …
lambdanormalobs6 lambdanormalobs7 lambdanormalobs8 lambdanormalobs9]; 
CILM9 = lambda9-C*sigmap9; MEAN9 = lambda9; CIUM9 = lambda9+C*sigmap9; 
xx9=[yyi]; lim9 = [CILM9 MEAN9 CIUM9]; 
figure 
controlchart(xx9,'chart',{'i'},'limits',lim9,'specs',[lambda0 lambda0],’width',1); title('interval t=9')  

%% Interval 10 
% Data 
yi=[1 3 3 3 2 4 4 2 1 1]; n10=length(yi); s10=smu(n10,yi,mu0N); a10=alfa0+n10/2; b10=beta0+n10/2*s10; 
lambda10=a10/b10; sigmap10=sqrt(a10/b10^2); sigmapostnormal10=1/sqrt(lambda10); SNormal10=std(yi,1); 
lambdanormalobs10=1/SNormal10^2; 
yyi=[lambdanormalobs1 lambdanormalobs2 lambdanormalobs3 lambdanormalobs4 lambdanormalobs5 …
lambdanormalobs6 lambdanormalobs7 lambdanormalobs8 lambdanormalobs9 lambdanormalobs10]; 
CILM10 = lambda10-C*sigmap10; MEAN10 = lambda10; CIUM10 = lambda10+C*sigmap10; 
xx10=[yyi]; lim10 = [CILM10 MEAN10 CIUM10]; 
figure 
controlchart(xx10,'chart',{'i'},'limits',lim10,'specs',[lambda0 lambda0],’width',1); title('interval t=10')  

%% Function s 
function y = smu(n,x,mu) 
sum = 0; 
for i = 1:n 
    sum = sum+(x(i)-mu)^2; 
    y = sum./n; 
end 
end 

H.12. Normal-gamma II. 

a.- Recurrent method 

clear 
%Parameters specification 
x0=0.2; c=2; B=500; K=4000; J=B+K; a=0; r=0; nn=10; 
%% Patern 
y0=[8.05 9.4349 8.1254 8.3369 10.1147 10.1950 10.2759 9.8897 10.8090 8.8172]; mean0=mean(y0); std0=std(y0,1); 
ppp = gamfit(y0); alfasp = ppp(1); betasp = ppp(2); 
% Prior 
Meanprior = alfasp*betasp; Varianceprior = alfasp*betasp^2; Stdprior = sqrt(Varianceprior); 
% Data 
yi =[9.3]; n=length(yi); MU1 = mean(yi); ST1 = std(yi,1);  %Adopted ST1 = Stdprior; ST1=Stdprior; 

for i=1:nn 
    a(i)=0;   
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    %Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>15)             % >20 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfasp,betasp)*normpdf(yi(n),x(j,1),ST1))/... 
            (gampdf(x(j-1,1),alfasp,betasp)*normpdf(yi(n),x(j-1,1),ST1)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 1','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 1','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Ajuste a gamma 
counts = h.Values; 
parmhat=gamfit(xx); 
hold on 
xxx=0:0.01:15; 
%yyy=gampdf(xxx,phat(1),phat(2)); 
yyyy=gampdf(xxx,parmhat(1),parmhat(2)); 
%plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) gamma1') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 1','FontSize',15); 
hold off 
legend('Location','northeastoutside') 

%Data posterior 
MU11=muu11; STD11=parmhat(1)*parmhat(2)^2; 

%Data for prior recurrent 
aa11=parmhat(1); bb11=parmhat(2); 

%% Second 
%Parameters specification 
x0=0.2; c=2; B=500; K=4000; J=B+K; a=0; r=0; nn=10; 
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% Data 
yi =[9.3 12.4]; n=length(yi); MU2 = mean(yi); ST2 = std(yi,1); 

for i=1:nn 
    a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>15) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),aa11,bb11)*normpdf(yi(n),x(j,1),ST2))/... 
            (gampdf(x(j-1,1),aa11,bb11)*normpdf(yi(n),x(j-1,1),ST2)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 2','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 2','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Ajuste a gamma 
counts = h.Values; 
parmhat=gamfit(xx); 
hold on 
xxx=0:0.01:15; 
%yyy=gampdf(xxx,phat(1),phat(2)); 
yyyy=gampdf(xxx,parmhat(1),parmhat(2)); 
%plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) gamma2') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 2','FontSize',15); 
hold off 
legend('Location','northeastoutside') 

%Data posterior 
MU22=muu22; STD22=parmhat(1)*parmhat(2)^2; 

%Data for prior recurrent 
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aa22=parmhat(1); bb22=parmhat(2); 

%% Third 
%Parameters specification 
x0=0.2; c=2; B=500; K=4000; J=B+K; a=0; r=0; nn=10; 
%Data 
yi = [9.3 12.4 16.3]; n=length(yi); MU3 = mean(yi); ST3 = std(yi,1); 

for i=1:nn 
    a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),aa22,bb22)*normpdf(yi(n),x(j,1),ST3))/... 
            (gampdf(x(j-1,1),aa22,bb22)*normpdf(yi(n),x(j-1,1),ST3)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 3','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 3','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Ajuste a gamma 
counts = h.Values; 
parmhat=gamfit(xx); 
hold on 
xxx=0:0.01:20; 
%yyy=gampdf(xxx,phat(1),phat(2)); 
yyyy=gampdf(xxx,parmhat(1),parmhat(2)); 
%plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) gamma3') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 3','FontSize',15); 
hold off 
legend('Location','northeastoutside') 
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%Data posterior 
MU33=muu33; STD33=parmhat(1)*parmhat(2)^2; 

%Data for prior recurrent 
aa33=parmhat(1); bb33=parmhat(2); 

b.- Direct method 

clear 
%Parameters specification 
x0=0.2; c=2; B=500; K=4000; J=B+K; a=0; r=0; nn=10; 
%% Patern 
y0=[8.05 9.4349 8.1254 8.3369 10.1147 10.1950 10.2759 9.8897 10.8090 8.8172]; mean0=mean(y0); std0=std(y0,1); 
ppp = gamfit(y0); alfasp = ppp(1); betasp = ppp(2); 
% Prior 
Meanprior = alfasp*betasp; Varianceprior = alfasp*betasp^2; Stdprior = sqrt(Varianceprior); 
% Data 
yi =[9.3]; n=length(yi); MU1 = mean(yi); ST1 = std(yi,1); %Adopted ST1 = Stdprior; ST1=Stdprior; 

for i=1:nn 
    a(i)=0;   
    %Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>15)             % >20 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfasp,betasp)*normpdf(yi(n),x(j,1),ST1))/... 
            (gampdf(x(j-1,1),alfasp,betasp)*normpdf(yi(n),x(j-1,1),ST1)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu1(i)=mean(xx); vaa1(i)=var(xx); stdd1(i)=sqrt(vaa1(i)); 
end 

%Acceptance Rate AR 
[muhat1,sigmahat1,muci1,sigmaci1] = normfit(muu1); AR1=mean(a)/J; muu11=mean(muu1); vaa11=mean(vaa1); 
std11=sqrt(vaa11); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 1','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 1','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
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%Ajuste a gamma 
counts = h.Values; 
parmhat=gamfit(xx); 
hold on 
xxx=0:0.01:15; 
%yyy=gampdf(xxx,phat(1),phat(2)); 
yyyy=gampdf(xxx,parmhat(1),parmhat(2)); 
%plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) gamma1') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 1','FontSize',15); 
hold off 
legend('Location','northeastoutside') 

%Data posterior 
MU11=muu11; STD11=parmhat(1)*parmhat(2)^2; 

%Data for prior recurrent 
aa11=parmhat(1); bb11=parmhat(2); 

%% Second 
%Parameters specification 
x0=0.2; c=2; B=500; K=4000; J=B+K; a=0; r=0; nn=10; 
%Data 
yi =[9.3 12.4]; n=length(yi); MU2 = mean(yi); ST2 = std(yi,1); 

for i=1:nn 
    a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>15) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfasp,betasp)*normpdf(yi(n),x(j,1),ST2))/... 
            (gampdf(x(j-1,1),alfasp,betasp)*normpdf(yi(n),x(j-1,1),ST2)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu2(i)=mean(xx); vaa2(i)=var(xx); stdd2(i)=sqrt(vaa2(i)); 
end 

%Acceptance Rate AR 
[muhat2,sigmahat2,muci2,sigmaci2] = normfit(muu2); AR2=mean(a)/J; muu22=mean(muu2); vaa22=mean(vaa2); 
std22=sqrt(vaa22); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 2','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
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xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 2','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Ajuste a gamma 
counts = h.Values; 
parmhat=gamfit(xx); 
hold on 
xxx=0:0.01:15; 
%yyy=gampdf(xxx,phat(1),phat(2)); 
yyyy=gampdf(xxx,parmhat(1),parmhat(2)); 
%plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) gamma2') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 2','FontSize',15); 
hold off 
legend('Location','northeastoutside') 

%Data posterior 
MU22=muu22; STD22=parmhat(1)*parmhat(2)^2; 

%Data for prior recurrent 
aa22=parmhat(1); bb22=parmhat(2); 

%% Third 
%Parameters specification 
x0=0.2; c=2; B=500; K=4000; J=B+K; a=0; r=0; nn=10; 
%Data 
yi = [9.3 12.4 16.3]; n=length(yi); MU3 = mean(yi); ST3 = std(yi,1); 

for i=1:nn 
    a(i)=0; 
%Candidate value generation 
x(1,1)=x0; 
for j=2:J 
    x(j,1)=random('Uniform',x(j-1,1)-c,x(j-1,1)+c,1,1); 
    if (x(j,1)<0) || (x(j,1)>20) 
        p(j,1)=0; 
    else p(j,1)=(gampdf(x(j,1),alfasp,betasp)*normpdf(yi(n),x(j,1),ST3))/... 
            (gampdf(x(j-1,1),alfasp,betasp)*normpdf(yi(n),x(j-1,1),ST3)); 
    end 
    u=random('Uniform',0,1,1,1); 
    if u<p(j,1) 
        x(j,1)=x(j,1); 
        a(i)=a(i)+1; 
    else x(j,1)=x(j-1,1); 
        r=r+1; 
    end 
end 
%Burn - in 
for j=B:J 
    xx(j-B+1,1)=x(j,1); 
end 
%Mean and Dev. 
muu3(i)=mean(xx); vaa3(i)=var(xx); stdd3(i)=sqrt(vaa3(i)); 
end 

%Acceptance Rate AR 
[muhat3,sigmahat3,muci3,sigmaci3] = normfit(muu3); AR3=mean(a)/J; muu33=mean(muu3); vaa33=mean(vaa3); 
std33=sqrt(vaa33); 

%Graphics 
figure 
k=1:J; 
subplot(2,1,1); 
plot(k,x) 
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xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Trace interval 3','FontSize',15); 
l=B:J; 
subplot(2,1,2); 
plot(l,xx) 
xlabel('Counts','FontSize',15,'FontWeight','bold'); 
ylabel('Mean value’,'FontSize',15,'FontWeight','bold'); title('Burn-in interval 3','FontSize',15); 
%Histogram 
figure 
h = histogram(xx); 
%Ajuste a gamma 
counts = h.Values; 
parmhat=gamfit(xx); 
hold on 
xxx=0:0.01:20; 
%yyy=gampdf(xxx,phat(1),phat(2)); 
yyyy=gampdf(xxx,parmhat(1),parmhat(2)); 
%plot(xxx,yyy*max(counts)/max(yyy),'DisplayName','y=f(x) gamma') 
plot(xxx,yyyy*max(counts)/max(yyyy),'DisplayName','y=f(x) gamma3') 
xlabel('Mean posterior','FontSize',15,'FontWeight','bold'); 
ylabel(‘Counts','FontSize',15,'FontWeight','bold'); title('Interval 3','FontSize',15); 
hold off 
legend('Location','northeastoutside') 

%Data posterior 
MU33=muu33; STD33=parmhat(1)*parmhat(2)^2; 

%Data for prior recurrent 
aa33=parmhat(1); bb33=parmhat(2); 
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