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Introduction, Objectives and Structure

1 Introduction, Objectives and Structure

1.1 Introduction

New control theories have been developed along the last two decades of the 20th century.
These new theories are oriented to multivariable control problems, where the classic
methods either do not provide satisfactory results or require high level experienced
control engineers and a lot of design effort.

One of these theories is the H-Infinity theory. It is an evolution of the LQR (Linear
Quadratic Regulation) and LQG (Linear Quadratic Gaussian) theories. In turn, these
theories where originated on the sixties in the aerospace world. LQG and LQR achieved
good results in the paper, but not so good results in real MIMO applications (a well-
known case is the recovery of stall of the F-8C Crusader fighter, see (Byrnes, 1991). The
main reason is that LQR and LQG do not manage the uncertainties of the plants.

The H-infinity addresses this problem of model uncertainty in a very general and elegant
schema and provides a highly automated synthesis method, where the designer express
the closed loop objectives as weights in the frequency domain and just executes the
algorithms for finding the controller.

As drawbacks of the H-infinity method, we can mention three. First, some control
objectives are often expressed in the time domain and not in the frequency domain.
Second, the designed controller is usually of higher order that with classis method (but
the recent H-Infinity Structured technique can address this issue). The third one is the
following: it has been known from time ago that the most commonly used variant of the
H-Infinity method (the Mixed Sensitivity variant) has problems for the control of ill-
conditioned plants. Some influent authors have arrived to the conclusion that this was a
fundamental limitation of the most popular variant of H-infinity theory, the Mixed
Sensitivity variant.

This thesis addresses mostly this third problem: the control with H-Infinity of ill
conditioned plants in presence of disturbances and evaluates systematically the available
options, demonstrating that some of them are perfectly valid for such type of control.

The motivation for addressing this third problem was originated during the “Diploma de
Estudios Avanzados” where a control of the RCAM aircraft see (Aranda, 2000) was
attempted. It was found that in fact the H-Infinity Mixed Sensitivity had problems to
control the longitudinal dynamics (that has a strong coupling between the throttle and
elevator inputs, the so called “phugoid mode”).

The aerospace industry is adopting the new control techniques as p, H-infinity, etc., if
well very slowly: reliability, safety considerations, cultural inertia... places an important
role here. Aerospace industry is by definition very conservative and has a big amount of
know-how with classical methods (basically tuned PIDs). This know-how is perceived as
“industrial property” not to be lost. However, these classics methods require very skilled
and experienced designers and extensive time domain simulations that are very costly in
time and effort.
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A second motivation for this thesis is to demonstrate that new methods can be used for a
typical aerospace problem obtaining similar performances to the classical method but
with reduced development cost and robustness guaranteed “by design”.
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1.2 Objectives

The objective of this thesis is to study the practical applicability of the H-Infinity to the
control of ill-conditioned plants in presence of disturbances. The following sub-
objectives are identified:

To identify interesting examples of ill conditioned plants control problems. Two
examples are identified: one academic problem (CDC distillation process) and one real
world problem (Control of the first stage of the VEGA Launcher in presence of roll).

To confirm the problems of the Mixed Sensitivity variant of the H-Infinity method for
controlling these plants.

To study improvements of the H-Infinity theory to manage the problem of controlling
ill conditioned plants. To use these new optimized methods in one of the examples of
ill conditioned plants identified. To compare exhaustively these methods in terms of
performances, design effort and robustness.

To study and propose solutions for dealing with the ‘practical problems’ of the H-
Infinity method: expression of time specifications on the frequency domain,
expressions of parametric uncertainties on the frequency domain, to provide rules for
the selection of weights, etc.

To apply the obtained results to another of the examples identified: the control of the
VEGA Launcher Vehicle in presence of roll during the first stage and to compare with
the controller used in the real Launcher. To compare the H-Infinity optimized
methods with the real controllers (classical PIDs plus tuning filters) in terms of
performances, design effort and robustness.

Page 19 of 296



Introduction, Objectives and Structure

1.3 Structure of the Thesis

The structure of this thesis is as follows:
This first chapter is the introduction containing the Objectives of the thesis.

Chapter 2 contains a review of “classical” Robust Control notions. It should be consider
only as a reminder if well an important effort has been done to describe traditional
concepts from a modern point of view.

Chapter 3 focuses on the H-infinity theory. It contains the formulation of the problem,
provides a list of the available mathematical solutions and fully describes one of them
(the LMI solution). Then a review of the story and the current state of the art of the H-
Infinity theory are presented (with focus in the new H-Infinity Structured theory). The
Chapter 3 has good tutorial value and could serve as nucleus for lectures or
presentations in an H-Infinity course.

Chapter 4 describes the problems of the H-infinity theory for control of “ill conditioned”
plants in presence of disturbances that is the main goal of this thesis. An academic
example (the CDC benchmark) demonstrates the unsuitability of the widely used H-
infinity “Mixed Sensitivity” techniques for controlling the plant. Then, alternative H-
infinity techniques to cope with the problem are systematically studied. Finally the CDC
test bench is executed on these H-infinity variants and confronted with some reference u
controllers.

Chapter 5 provides the application of the previous result to a “real” control problem: the
control of the VEGA Launcher during the first stage in presence of roll rate. First the
VEGA Launcher is described. Then a detailed mathematical 6DoF model of the Launcher
dynamics is developed. The simulator is implemented in Matlab/Simulink™. A set of
scenarios is run in this simulator confronting the H-infinity controllers developed using
techniques described in chapter 4. These controllers are compared against the real
controllers implemented in the Launcher.

Chapter 6 contains the overall conclusions and intended future work.
Chapter 7 contains the commented bibliography.

Chapter 8 contains an appendix with demonstrations and mathematical background
used along the thesis. We have opted to locate long demonstrations into appendices to
make easier the reading of the relevant chapters.

Chapter 9 contains notes about the software developed on the frame of this thesis.
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2 Brief Review of Classical Robust Control

The classical robust control notions and concepts are reviewed in this chapter.

2.1 Review of concepts of feedback systems

Given the standard feedback system Figure 2-1:

Figure 2-1: Standard feedback system

Where:
r: reference signal
e: error
u: control signal
up: input to the plant
d;: disturbances at plant input
d: disturbances at plant outputs
y: measured signals
n: noise

There are eight independents functions from the inputs (r, di, d, n) to the outputs (u, y).
From this, point, we assume that there is no measurement noise so having only four

independent transfer functions.

It is shown hereafter that the performances and robustness of the system are defined by
the shape of these transfer functions.

2.1.1Definition of the transfer functions

2.1.1.1 Output Sensitivity (So)

The output sensitivity, S,, is defined as the TF from the disturbances at plant output to
the outputs, or also was the TF from the references to the error signal.

Removing the signals (d;, r, n), we have the following system (Figure 2-2):
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Figure 2-2: Output Sensitivity as output disturbance

Being the transfer function from d toy:
y=(1+PK)jid=S,d

Instead, if we consider the TF from r to e (Figure 2-3):
e=(1+PK}lr=5S,r

Figure 2-3: Output Sensitivity as tracking error

We want | S,| to be as small as possible for achieving the following objectives:

1. Decrease the effect of disturbances at plant output: if the gain of S, is small, the
influence of a disturbance will be decreased by that factor.

2. Good reference tracking: if S, is small, the error e, defined as the difference between
the reference and the measured output will be small. If the error is small, we are
following well the reference.

In principle, it is not possible to make S, small all over the frequency range: in a real
system, the product of PK is a proper transfer function (the order of the denominator is
equal or higher than the order of the numerator). This implies that PK 2 O when s 2 .
So, (1 + PK )1 2 1 when s 2 «. L.e. above a defined frequency, the sensitivity is equal to
1.

We need to formulate mathematically the exigency ‘S, shall be small at low frequencies’
by introducing weights. This point will be introduced later.
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2.1.1.2 Complementary of the Output Sensitivity (T,)

It is defined as the TF from the references to the measured outputs:
y=(1+PK)!PKr=T,r

The name is due to the following fundamental relation:
S+T=(1+PK)! +(1+PK)PK=1

It is very important to note that S + T = I, not that the modulus |S| + |T| = 1.

In principle, in order to have a good reference tracking, the objective is to achieve T,
equal to 1 in all the frequencies, so y ~r.

This is not possible by principle because (I + PK)}! PK - 0 when s 2 «. l.e. at high
frequencies T, is zero in real physical systems (the input changes so fast that the system
cannot follow it). This is in agreement of the fact that S, 2 I when s 2 «.

We are interested in that T, is = 1 up to a given frequency and then decreases for higher
frequencies.

The shape of T, determines the robustness of the plant in presence of noise and
modeling errors.

For demonstrating previous fact, let’s suppose that the stable plant P is affected by a
multiplicative disturbance (Figure 2-4).

AM
r € u r 1 y
—bT—P K =» P >

Figure 2-4: Multiplicative disturbance at output

The system will be stable if the characteristic equation has no zeros on the right semi
plane, i.e. 1

det[I+ (I+Ay) PK]=det[I+ PK + Ay PK | = extracting the term (I + PK)
det[(I+PK)(I+AuPK (I+PK)!1)=
det[ I+PK Jdet[I+AuT,]

But (I + PK) is stable because the nominal plant P is stable so the first determinant is
always different from zero.
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For the second determinant, if A, Tis minor than 1 (the concept of “norm” will be

introduced later), the whole determinant is always different from zero and the closed loop
system is stable.

We see that T, determines the stability margin against multiplicative disturbances at the
output. Any disturbance with A,, <T,"does not de-stabilizes the system.

2.1.1.3 Control Sensitivity (S:K or KS,)

It is defined as the TF from the references r to the control signal u generated by the
controller (Figure 2-5):

Figure 2-5: Control Sensitivity

Being:
u=K(r-Pu) >
(1+KP)u=Kr=>
u=(1+KP)1 Kr=>
u=SKr

Or also having into account that mathematically S; K = K S,
u=KS,r

It is interesting that the control signal is as small as possible for avoiding actuators
saturation and saving energy. This means that KS, shall be small at low frequencies and
big a high frequencies to limit the actuating effort.

2.1.1.4 Sensitivity at the plant input (S,P)

It is the TF from the perturbations at plant input d; to the outputs y (Figure 2-6).
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Figure 2-6: Sensitivity at plant input

This TF is equal to:
y=(1+PK)}1Pdi=S,Pd

Note that mathematically:
So P = PSl

Traditionally in the literature this transfer function has not given the appropriate
attention, supposing that the perturbations at plant inputs are negligible. Specifically for
ill conditioned plants this approach is erroneous and the consideration of this transfer
function is of paramount importance, as will be demonstrated in chapter 4 of this thesis.

2.1.2Summary of tradeoffs in feedback control

The following relations hold in the feedback configuration introduced previously. It has
been supposed that there is no measurement noise n.

(1) y = Tor + SoPd; + Sod
(2)e=r-y = So(r-d) - S.Pd;
(3) u =KSor - KS,d -Td;

(4) up =KSor - KSod +Sid;

Equations (1) and (2) say that for obtaining a good tracking (i.e. y ~ r) is needed that at
low frequency (Figure 2-7):
- To~1
- S, shall be small in order that perturbations at plant output have little influence
in the output and the error is small (disturbance rejection at plant output)
- SoP shall be small in order that perturbations at plant input have little influence in
the output and the error is small
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Low peaks ——  2010g10 [S|
good for statibility
margins — 20 10910 [T|

0db A R |og w

'S'|low, good for
distubance rejecti

'T ' low, good for
noise attenuation

Figure 2-7: S and T trade-offs

Equations (3) y (4) says that in order the control signal to be small

- S; shall be small
- KS, shall be small

We have already seen that as:
So =1 / (1 + PK)

S, small at low frequencies implies PK >> I at such low frequencies. Also, as
To,=PK/(1+PK)

To small at high frequencies implies PK << O at such high frequencies.
Let’s define as the loop gain, L, or its complementary L; as (Figure 2-8):

L, = PK
L;=KP

Page 26 of 296



Brief Review of Classical Robust Control

NOT ALLOWED
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log w
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Figure 2-8: Open loop gain and weights

The gain crossover frequency, @, is defined as the frequency where |L(jo)| first crosses 1
from above. This is one definition of the open-loop bandwidth.

The phase crossover frequency, wiso, is defined as the frequency where the Nyquist curve

of L(jw) first crosses the negative real axis.

2.1.3 Controllability and observability

Controllability

A system is controllable if starting from any initial state xo, the system can be driven to
any final state xr in finite time by applying the appropriate input u. The pair (A, B) is said
to be controllable.

The following statements are equivalent. Refer to (Zhou, 1995) or (Datta, 2004) for a
proof.

- (A, B)is controllable
- The controllability matrix C = [B AB A’B A"‘lB] has full row rank
- The matrix [A—Al,B]has full row rank for all Ain C.

- The eigenvalues of A + BF can be freely assigned

The controllability matrix is built as follows:
x’ = Ax+Bu

taken x(0)= 0
x(0) = AO+Bu = Bu
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x(1) = A x(0) + Bu=ABu + Bu
x(2) =A x(1) + Bu=A2Bu + ABu + Bu

So is clear that the state is a combination of the inputs of the previous instants. If one of
the steps is null, the following steps will remain on that state and not all the states will
be reachable.

Stable systems and Stability

An unforced system x’= Ax is stable if all the eigenvalues of A are in the left half plane. A
is said to be Hurwitz.

The pair [A, B] is said to be stabilizable if exist a feedback state law u = Fx such that the
system [A + BF] is stable.

Observability

A system is said to be observable if the initial state xp, can be uniquely determined from
the knowledge of u(t) and y(t) between to and tr. In other words, it is possible to determine
all the states only from the inputs and outputs.

The concepts of observability and controllability are dual.

The following statements are equivalent. Refer to (Zhou, 1995) or (Datta, 2004) for a
proof.

- (C, A)is observable
- The observability matrix O = [C CB C°B C”‘lB]T has full column rank
- The matrix [A—Al,C[ has full row rank for all Ain C.

- The eigenvalues of A + LC can be freely assigned

Detectability

The pair [C, A] is said to be detectable if /A + L(C] is stable for some L.

The following statements are equivalent. Refer to (Zhou, 1995) or (Datta, 2004) for a
proof.

- (C, A)is detectable

The matrix [A—Al,C[ has full row rank for all A in C.
Exist a L such that A + LCis Hurwitz

- [AT CT ]is stabilizable
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2.1.4 State feedback and output injection

Given the system
X'= AX+ Bu
y =Cx+Du

Imposing a “state feedback” control law
u=Fx+v

The closed loop system becomes:
X'=(A+BF)x+Bv
y =(Cx+ DF)x+Dv

The state feedback does not change the controllability, however it changes the
observability. By state feedback the poles of the closed loop system can be assigned freely
(but the original system shall be controllable).

The dual operation of the “state feedback” is the “output injection”
u=_Ly

The closed loop system becomes:
X'= AX+BLy + Bv
y =Cx+ DLy +Dv

By duality the “output injection” does not change the observability, however it changes
the controllability, i.e. we can make an uncontrollable system controllable with “output
feedback”.

2.1.5 Observers and Observers-Based Controllers

In real control problems not all the states are available for feedback. The designer has
available only some states plus the inputs and the outputs.

Given a system:
X'= AX+ Bu
y =Cx+Du

An observer system estimates the state of the previous system and is given by:
q'= Mg+ Nu + Hy
X =Qq+Ru+Sy
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i.e. the vector q is the state of the observer. The observer output is X, i.e. the estimated
state. The observer takes as inputs the control inputs and outputs of the estimated
system.

A “Luenberger observer” (Figure 2-9) is a variation of previous described by the equations:
q'=Aq+Bu+L(Cq+Du-y)
X=q

That can be interpreted as a mimic of the original system (q’ = Ag+Bu) plus a weighted

term that depends on the output error (difference between the output estimation gy =
Cg+Du and the real output y).

r u y
() » P
feedback -1 observer
= X L
controller

Figure 2-9: Luenberger observer

Let’s calculate the combined “observer —state feedback” for the system:
X'= AX+ Bu
y =Cx+Du

Defining the error e and the state feedback w:

e=x-X; (X=x-¢)

u=Fx

We have:
X'= AX + Bu = Ax + B(FX)
X'= AX + BFX

X'= AX+BF(x—e)
X'=(A+BF)x—-BFe
And
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Ax +Bu)— (A% +Bu + L(C% + Du—Cx - Du))
'= AX— AX— L(CX -Cx)

'= A(X—X)+LC(x=X)))

e'=Ae+LCe

e

e

e'= (Ax+Bu)—(AX+Bu+L(CX+ Du-y))
e'=

e

e

The closed loop of the system with the “observer - state feedback” controller is given by:
x| |A+BF —-BF |x
e] | 0 A+LC]|e
The poles of the closed loop are made by two parts: the poles coming from the state
feedback (A+BF) and the poles coming from the observer (A+LC).
The “observer - state feedback” controller is given by:

X'| [A+BF+LC+LDF |-L[X
ul F | 0 ||y

The “Luenberger observer” has been introduced here with some detail because it will be
shown later that H-Infinity controller has a similar structure.

2.1.6 Fundamental limitations on feedback systems
2.1.6.1 Fundamental limitations on S and T

First limitation has been mentioned previously: as PK - 0 when o - « for any physical
system, from the definition of S and T we have:

- S 2 0 at low frequencies

- T 2 0 at high frequencies
As mathematically S + T = 1, we cannot do both S and T small at a given frequency.
2.1.6.2 Bode integral formula or the ‘waterbed effect’
The following formula is due to Bode:

jo‘” InS(jo)da| = ﬂz Re(p,)

The area of the modulus of Sis constant: it is zero for stable systems and it is a multiple
of the sum of the real part of the unstable poles for unstable systems. This means that
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increasing S in some frequency range motivates that S decreases in some other frequency
range. This also means that unstable poles increase the area of |S| to be greater than 1.

This is called the ‘waterbed effect’ (Figure 2-10). Decreasing S in a range of frequencies
motivates S to increase in another range of frequencies.

— 2010910 |S]

Increases S
here

p
\
Ve
0db i ~ logw

Dé¢creasing S
here

Figure 2-10: The waterbed effect

The previous restriction applies to any physical plant.

2.1.6.3 Fundamental limitations on S and T due to RHP poles and zeros

Maximum modulus theorem

For a stable function (i.e. it has no RHP poles), the maximum modulus over the
imaginary axis is equal to the maximum modulus over the RHP. This follows from the
special properties of complex functions (see demonstration in appendix 8.2.1).

Value of Sand T at RHP

If P has a RHP zero (z0) and K is a stabilizing controller (so no zero pole cancellations are
present) we have that the sensitivity S is equal to 1 at the zero, because

S=1/(1+PK) and P(zp) = 0, so
S(zo) =1/ (1+P(z0) K) =1

If P has a RHP pole (po), and K is a stabilizing controller (so no zero pole cancellations are
present) we have that the complementary sensitivity T'is equal to 1 at the pole, because:
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S =1/ (1+PK) and P(po) = », so
S(po) =1/ (1+P(po) K) = 0

Butas S+ T = 1, we shall have T(po) = 1

As summary, assuming a stabilizing controller K for a plant P that have a RHP zero (zo)
and pole (po):

S(zo) = 1 and S(po) = 0

T(po) = 1 and T{(zo) = O

Given a stable weight Ws, applying the maximum modulus theorem, we have that having
max(WsS) on the imaginary axis is equal to max(WsS) on all the RHP.

In particular it will be greater or equal to the value of Ws in zo, but as S(zp) = 1, we have
max (WsS) > Ws(zg), i.e. the magnitude of (WsS) will be always greater than a fixed value
Ws(zo). It is not possible to decrease the Sensitivity of the closed loop below this limit.

Given a stable weight Wr, applying the maximum modulus theorem, we have that having
max(WrT) on imaginary axis is equal to max(WrT) on all the RHP.

In particular it will be greater or equal to the value of Wrin po, but as T(po) = 1, we have
max (WrT) > Wr(po), i.e. the magnitude of (WrT) will be always greater than a fixed value
Wr(po). It is not possible to decrease the Complementary Sensitivity of the closed loop
below this limit.
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2.2 The formulation of the Robust Control Problem

The following goals are defined:

- Nominal stability: the nominal closed loop plant is stable
- Nominal Performance: the nominal closed loop plant fulfills the specifications
- Robust stability: all the closed loop plants (nominal and disturbed) are stable

- Robust Performance: all the closed loop plants (nominal and disturbed) fulfills
the specifications

It is necessary to introduce before the concepts of singular values, norms, weights and
scaling.

2.2.1 The size of a transfer function: singular values and norms

We have shown that in order to achieve good control performances some transfer
functions have to be ‘small’ in a given frequency range. We have shown that there are
some intrinsic limitations on S and T and their shape. In order to formulate
mathematically this concept of ‘small in a given frequency range’ or ‘minor than’ the
concepts of singular values and norm have to be introduced.

2.2.1.1 Singular values

Any matrix of dimensions (1 x m) can be factorized as:
A=UEVH

Where U and V are unitary (i.e. its inverse is equal to its conjugate transposed). The
matrix E is a diagonal matrix with the singular values of A, where

01 > 02... > Ok,
k =min (I, m)

Intuitively, the major singular value is the greatest gain that can be obtained for any
combination of the inputs. The minor singular value is the smallest gain that can be
obtained for any combination of the inputs. The largest input direction is given by o;. The
smallest input direction is given by ok If we plot the Bode diagram for the gain for a
MIMO system, the gain are always bounded by the major singular value and minor
singular value.

It is useful to study the particular case of a 2 x 2 matrix because it has a physical
visualization in terms of operations on a vector.

The singular value decomposition of A = U E V¥ can be interpreted as the concatenation
of the following basic operations:
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- Take the input vector and rotate it with the matrix rotation V

- Scale the resulting vector (a different factor scale is applied to each dimension, e.g.
a circle would be transformed to an ellipse)

- Rotate again with the matrix rotation U

Graphically (Figure 2-11), if we take as input vectors 2 orthogonal unit vectors, the steps of
the SVD are:

| ‘

A | |
-

- -

SVD = ROTATE SCALE ROTATE
V) (S) )

Figure 2-11: Visualization of a SVD in a 2x2 system

Connection of singular values with induced 2-norm of a matrix

The induced 2-norm (Euclidian norm) that will be introduced later is related to the
maximum singular values.

o(A) = max|Ax|,

=L

o(A) =min|Ax],

Ix=2

Intuitively: just introduce a vector x such that its norm H: is 1 (i.e. lies in a unit circle).
Apply the matrix A to it taking the SVD decomposition A = U E VH,

Ax=

(UE VH)x =

(UE) (VHx) =

(UE)y (where 2-norm of y is 1 as a rotation does not change the modulus)

Now as y lies in the unit circle,
Let’s suppose that we have taken the vector x such that y =[1 0]

JmaX 0 1 Gmax O-max
U =U but
0 o,,/0 0 0

2
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The vector x is mapped to a vector y that lies on the major axis of the ellipse and suffers
a scaling of omax. Any other input vector will lie in any other direction that the major axis
of the ellipse so the scaling will be minor than om. (because in an ellipse the major axis
is the one with maximum length). This demonstrates that E( A) = rmi(H Atzis true.

Connection of singular values with eigenvalues

Given the matrix M, we can perform the singular values decomposition:
M =UEV'

And then multiply by MT:
MT™M =(UEV") UEVT =VEUTUEV' =VEEV' =VE¥/'

But this means
(M ™ WV =VE 2

I.e. the square of the singular values of M are the eigenvalues of MTM.

2.2.1.2 Norms

A norm is a mathematical operation that assigns a scalar (‘the norm’) to each element of
a space. In order to be a norm the operation shall observe the following properties:

- Non negative: norm(v) >= 0

- Positive: norm(v) = O iifv =0

- Homogeneity: norm (a v) = a norm(v) for any scalar a

- Triangle inequality: norm (el + e2) <= norm(el) + norm(e2)

The appendix 8.1.2 defines in detail the different types of vector norms and how the
concept of vector norm can be generalized to the concept of induced norm of a matrix,
then to the concept of norm of a signal and finally to the concept norm of a system.

The H, norm of a system G(s) is defined as:

. =supo(G(iw) = sUp o(G(s)

weR

The following physical interpretations are useful:

- The H-Infinity norm is the maximum peak of the major singular value for all the
frequencies or equivalently, the H-Infinity norm of a system is the maximum along
frequency of the 2-norm at each frequency

- The H-Infinity norm is the maximum peak of the Bode magnitude for all the
inputs directions and all the frequencies

- The H-Infinity norm is equal to the farthest point in the Nyquist diagram
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Note that the definition of H-infinity norm for a system uses the singular values for
defining the norm at each frequency value and then the H-infinity norm for taking the
peak over all the frequencies.

A function belongs to the space RH, if their H, norm is finite. All the TF functions
bounded in the RHP belongs to the RH,, space. The TF functions with poles in the RHP do
not belong to the RH, space. All the TF that are rational and proper (order of the
denominator is higher or equal that order of the numerator) belong to the RH,. space.

It is very important to remark that the H, norm is a ‘worst case’ norm along the
frequency in opposition to the H; norm that is an ‘average case norm’ This has
important practical implications: let’s suppose the transfer function of an actuator. The
H> norm may be on average under the physical limits of actuation but we can have
‘peaks’ of actuation that goes over the allowed values so breaking the actuator. The H,,
norm is a worst case norm.

The following property of the H,, norm is very useful:
AB|, <[l [B],

It is useful because we now that the norm of the overall composition (augmented system)
will be bounded by the product of the norm of the parts.

- Being an induced norm,
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2.2.2 Introduction of weights

Previously the H, norm has been introduced as a tool for measuring the ‘size’ of a
transfer function.

Let’s take for example S,. Our requirement is that the magnitude of S, is small (less than
a value ‘m’) at low frequencies (e.g. frequencies minor than wo):

| So| <m, for ® < wo

This is equivalent to require that the greater singular value of S, is less than ‘m’ at such
frequencies:

c(S,)<m, o<am,
But is this the same that require:
1_
—a(S,)<l, w<o,
m
We can substitute the scalar 1/m for a frequency dependent weight Ws(s) so the limit is

specific for each frequency, having

o(WS,)<1 weR,

Or equivalently:

WSS, [, <1

Following a similar strategy, require T, to be small in a given frequency range is
equivalent to require:

Wi T, <1

The literature e.g. (Skogestad, 1996) proposes as a typical weight the following:

Note that W(0) —» 1/A and W{(x)— 1/M. The bandwidth frequency @z is chosen according
to the specific problem. The values of M and A depends on the specific problem and the
type of weight (see hereafter).

If more roll-off is needed the previous weight can be generalized as:
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S

YO s o

2.2.2.1 Weights for S,

Particularized for weighting S,, we need the weight to be a low pass filter to influence S,
at frequencies minor than ws. Supposing for example wg = 0.1, M=2, A=0.1, the Ws weight
should have the following shape (Figure 2-12):

Singular Values
30 T T T T

20 Ws

10

-10

-20

-30

Singular Values (dB)

-40

-50

-60

70+ 4

80 M| il M| M|
10 10° 107 10" 10° 10"
Frequency (rad/s)

Figure 2-12: Typical shapes for S, weights

If the control is satisfactory optimum we will see that the curves for S, and inv(Ws) are
very similar at low frequencies.

Usually the performances are expressed on the time domain and not on the frequency
domain. We introduce in our work a more easy approach for the Ws weight based on the
shape of an ideal second order system used from time ago see for example (Aranda,
2000). Note: the use of a second ideal order system as “ideal model to match” is used
often in generalized augmented plant schemas, but the direct use of the sensitivity of
such ideal system as Ws was not found in the literature prior to the provided reference.

The proposal is:
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- Choose a 2nd order system that meets the specifications (chose w. and delta)
0 The TF of the system is: Toia = @n2 / (s2+ 2 delta wn S + @04?)

- Calculate S ia =1-Toia

- Define the weight as the inverse of S, i

The weight defined is not proper. Depending the particular plant being controlled it can
work or not. If a strictly proper weight is needed, we can add some zeros by simply
calculate S, iq as:

Soia =1+ €—T, g, where €is a small value
2.2.2.2 Weights for T,

Particularized for weighting T,, we need the weight to be a high pass filter to limit T, at
frequencies greater than ws. Supposing for example ws = 2, M=0.1, A=2, the Ws weight
should have the following shape (Figure 2-13):

Singular Values
30 T T T T

101

-10F

20

Singular Values (dB)

-40}

50+

-60 -

=70

80 PR | PR | R | Ll

. -2 -1 0 1 2

10 10 10 10 10 10
Frequency (rad/s)

Figure 2-13: Typical shapes for T, weights

The specifications for T, are usually in the frequency domain, requiring roll-off at after a
given frequency (for example for avoiding the coupling with bending modes of the plant).
If the roll-off needs to be greater than 20 dB/decade we can use a higher order for the
weight.
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If the specifications for T, are given in the temporal domain, we can use again the
strategy of an “ideal 2nd order system”.

The proposal is:
- Choose a 2nd order system that meets the specifications (chose o, and delta)

0 The TF of the system is: Toia = @n2 / (s2+ 2 delta wn S + @04?)
- Define the weight as the inverse of To i

The weight defined is not proper. Depending the particular plant being controlled it can
work or not. If a strictly proper weight is needed, we can add some zeros.

It shall be noted that the wp frequency for Ws shall be minor than the ws frequency for
Wr. This follows from the fact that the ‘not allowed regions’ on Figure 2-8: Open loop gain and
weights shall not overlap.

2.2.2.3 Weights for KS,

Particularized for weighting KS,, we need the weight to be a high pass filter limiting the
actuation effort at frequencies greater than ws. Here the wgis defined by the physical
capacities of the actuators. Usually the problem specifications define the actuator
bandwidth and the maximum actuation gain allowed in the frequency domain.

Some other times the specifications for the actuators are defined in the time domain. For
example, the thrust vector control for the nozzle of a rocket studied later has the
following limits:

- Maximum deflection +7 degrees
- Maximum deflection rate 10 degrees/s

From previous, the actuator will complete a period (from zero position to -7 degrees, from
-7 to +7 degrees and back to zero in (7 x 4)/10 = 2.8 seconds. This means that the
angular frequency is wact =21/ T = 2.24 rad/s.

However this value cannot be used directly as bandwidth: we have to take into account
the roll-off of the weight (20 dB/decade for a first order weight). If we want to conserve
actuation up to this frequency, the gain shall be significant at least until wa. This means
that the bandwidth shall be of the order of 1 decade higher, i.e. is wz= 10 * @qac:.

Then the maximum reference should require a deflection not greater than *7 degrees.
This imposes the limit A for the weight at low frequencies. The value of M and the order
of the weight depend on how much we want to limit the actuator effort at high
frequencies. Practical experience shows that M should be some value near (and minor)
than 1.

In our example wp= 22.4, A=7*n/180, M = 0.9 the Wy weight should have the following
shape (Figure 2-14):
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Singular Values
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Figure 2-14: Typical form for KS, weights
2.2.2.4 Weights for S,P

This transfer function (disturbances at plant input to the plant outputs) has been not
given the appropriate importance in the literature. Weights for this transfer function will
be studied in depth in chapter 4.

2.2.2.5 Some practical notes for weights

The experience of the author (in accordance with some cites in the literature) is that
nothing more complex than a second or third order weight is useful. Second order
weights are a good compromise because can be extracted directly of an equivalent ideal
2nd order system. Weights of higher order produce higher order controllers and often the
H-infinity algorithm does not find solution.

To extend the selection of weights to MIMO problems the experience of the author shows
that best way is to use diagonal weights. Each channel can have slight different weights
but they should not be very different (the opposite would reveal poor scaling of the
problem, see next paragraph).
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2.2.3 The importance of scaling in MIMO

The H-Infinity theory (and a lot of other modern theories of control) is based in the
minimization of the magnitude of some cost function. Usually this magnitude is the norm
of a transfer function.

The concept behind scaling is to use reasonable and comparable inputs and outputs for
all the transfer functions (i.e. use coherent units).

When we work with a MIMO problem an appropriate scaling is more important because
not only the inputs and outputs but the different channels have to be comparable
between them. The optimization algorithm will try to minimize (using the chosen norm) a
cost function that is composed of the different terms. These terms shall be comparable
between them: if one of the functions has much minor magnitude (norm) than the
others, it simply does not contribute to the minimization process: the minimization
would be driven just by the functions with the bigger magnitudes (norms).

The different types of scaling are analyzed hereafter.

Scaling ‘input versus outputs’

This is the more easy to understand and just means to use equivalent units for inputs
and outputs in a given channel. For example, in the SISO case of a voltage amplifier we
should not use millivolts as inputs and volts as outputs.

It is always interesting to observe this scaling for coherence (using the same units in our
problem). However in SISO the non-appropriate scaling is harmless (it simply changes
the scale of our bode diagrams but does not influence the results). Things are different in
MIMO.

Scaling between different channels:

Scaling between channels is equivalent to choose normalized units for all the channels. It
is important in MIMO systems and even more important when we have coupling in the
transfer matrix.

For example suppose we want to control the dynamics of an airplane. We have available
as measures the angles of attack and the airspeed. The angles of attack will be expressed
on radians and will have a magnitude of a few degrees (equivalent to about 0.1 rad). The
airspeed will be expressed in meters and can have a magnitude of tenths of meters per
second. If we have non diagonal terms in our transfer function we will be trying to
optimize terms in AoA and terms in airspeed
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G, G| Ao0A
G, G,, | airspeed

The optimization algorithm will try to optimize the chosen norm (Norm-X) of something

as:

Norm-X(Gi: * AoA + Gz * airspeed) + NormX (Gz; * AoA + Gao * airspeed)

As in non-scaled units:

airspeed >> Ao0A,

The term to optimize will trend to be

NormX (G2 * airspeed) + NormX (G2 * airspeed)

... and as result the terms in AoA will be neglected.

We shall scale the units in order to apply any optimization method.

A general set of rules for scaling is explained in (Balas, 2012):

All the inputs to the augmented system should have magnitude 1
All the outputs of the augmented plant should have magnitude 1

Each input scaling is such that a scaled input of magnitude 1 originates a typical

(usually a maximum) not scaled input

Each output scaling is such that a typical measured output originates a scaled

measured output of 1
See (Figure 2-15)

Augmented plant

®
Ve

1

oy
»
1

—|1/e J —>11/U

max max

r=1 u y

yS:1

e L. —>T »l K o P | 1/ymax

Figure 2-15: Augmented plant and scaling

Scaling of transfer functions

\ 4

Fig

Another type of scaling is needed when the TF being optimized are a priori of different
magnitude. This is not the case of the classical H-infinity mixed sensitivity S-T option
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because in this case, S and T are by definition a magnitude similar to 1 in a range of
frequencies and their maximums are also comparable.

We will see in chapter 4 that scaling S,P is important when weighing it in H-Infinity
problems together with S, and To.

2.2.4Robust stability and robust performance
The following goals were defined previously:

- Nominal stability: the nominal closed loop plant is stable
- Nominal Performance: the nominal closed loop plant fulfills the specifications
- Robust stability: all the closed loop plants (nominal and disturbed) are stable

- Robust Performance: all the closed loop plants (nominal and disturbed) fulfills
the specifications

We already discussed that nominal performance is directly derived from S,. Now we
study the others objectives.

2.24.1 Internal Stability and Small Gain theorem

Internal stability

Let’s suppose the following system (Figure 2-16)

W1 €1

W2
K e e—

€;

Figure 2-16: Internal stability

The equations are:
e, =w, +Ke,
e, =W, + Pe,

That can be written as:

[el}_ (I-KP)* (I1-KP)'K {wl}
e, | |(1-PK)'P (1-PK)™ |w,
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The system is well posed if all the transfer functions of the transfer matrix have inverse
and are proper. The system is said to be internally stable if the closed loop system all the
transfer matrices has a bounded H-infinity norm.

Internal stability guarantees that all the signals in the closed loop system are bounded.
In other point of view: in presence of null external systems (w = 0), the state vector of the
closed loop system goes to zero.

Small Gain Theorem

Let’s assume M is internally stable and well-posed (Figure 2-17).
Then the system is stable for all disturbances ”A”w <lif ||M ||w <1.

—14 |[A]] <1
M A
_— G »u
— <= :>
M
> K

Figure 2-17: Set-up for the Small Gain theorem

This follows from the following: the LFT of the closed loop system is:
zZ = [M11 + M2 A (I_MQQ A)’I M21] w

But we have required M is internally stable and well posed. This means that all the M;
are stable. The only source of instability is (I — Moo A).

But
(1-Mp,A) =0 [MA| <1
M2z, <M. [A].

But we have required both ||A||oc <1 and ||M ||OO <1 that implies ||M 22”00 <1.

The interpretation of the small gain theorem is easy: if the norm of the closed loop is
minor than 1, we stay out of the dangerous point (-1,0) so no instability may occur.
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2.2.4.2 Robust Stability

The objective of Robust Stability is defined as:
- All the closed loop plants (nominal and disturbed) are stable

The shape of T, determines the robustness of the plant in presence of noise and modeling
errors.

For demonstrating that, let’s suppose that the stable plant P is affected by a
multiplicative disturbance (Figure 2-18).

r e u 1 y

_>$_' > O

Figure 2-18: Multiplicative disturbance at output and stability

%

A
\ 4
o

The system will be stable if the characteristic equation has no zeros on the right semi
plane, i.e.

det[I+ (I+ Ay) PK]=det[I+ PK + Ay PK | = extracting the term (I + PK)
det[(I+PK)(I+AuPK (I+PK)!)=
det[ I+PK Jdet[I+AuT,]

But (I + PK) is stable, as the nominal plant P is stable and the first determinant is always
different from zero.

So, if ||AMT0 ||w< 1, the whole determinant is always different from zero and the closed

loop system is stable.

We see that T, determines the stability margin against multiplicative disturbances at the
T

output. Any disturbance with HA M Hw < LO does not de-stabilizes the system.

We can reformulate the exigency ‘T, shall be small at high frequencies’ by introducing a
frequency dependent weight and requiring

i,

Where W3 shall be a high pass filter for forcing T, to be 1 at low frequencies and small at
high frequencies.

<1,

0

The condition ”\NsTo

<1 can be expressed also as:
0
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W@PK@+PKny<1
W,PK < (1+ PK)

That has a graphical interpretation in terms of a Nyquist diagram (Figure 2-19). The set of
possible open loop gains (PK) at a given frequency is a disk centered in PK with radius
WsPK. In order to be nominally stable, the Nyquist plot shall encircle the point (-1) the
correct number of times (zero if the plant as no RHP).

A A
CASE WITH CASE WITH NO
ROBUST ROBUST
STABILITY STABILITY
1 P B
|1+PK|
|1+PK| \
__ circlé
|W,PK]|
PK
PK y
__circte
|W,PK]|
Figure 2-19: Robust stability
2.2.4.3 Robust Performance

The objective of Robust Performance is defined as:
- All the closed loop plants (nominal and disturbed) fulfills the specifications

The performance is expressed by the Output Sensitivity S.. In presence of disturbances
the robust performance criteria can be expressed as:

W, @+ P@+AW,)K)?| <1with [A]<1

Expressed in a Nyquist diagram (Figure 2-20) we have now 2 disks. One disk of radio W,
centered at point (-1) measures the robustness. The other disk represents the
uncertainty of the plant. The robust performance margin is the distance between both
disks.
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’ T I |W1|

f
Performance
circle

Robust performance
|1+PK] - [W,| - [W,PK]|

PK

T WPK|

Figure 2-20: Robust performance

2.2.4.4 Summary

U

v

ncertainty
circle

Nominal Performance: < "\/VlSO”w <1

Robust Stability: = ”\NSTO”w <1
Nominal Performance and Robust Stability:

< max(W,S, |, W,T,[.) <1

Robust Performance: < maX(H [\N180|+[\N3T0| ‘ )<1
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3 The H-Infinity Theory

3.1 General formulation of the control problem: the augmented
plant

We are going to introduce a general formulation of the robust control problem by means
of the concept of ‘augmented plant’. The ‘augmented plant’ contains into a single
framework both the performance and robustness requirements of the robust control
problem. We will show that both types of requirements can be expressed by means of
weights and relations that the transfer functions of the augmented plant shall meet.

Let’s formulate the control problem in the following layout (Figure 3-1):

z W
— —

au

K
y u

Figure 3-1: Robust control problem as LFT

Where
P..: Augmented plant (including weights)
K: Controller
w: exogenous signals: references + disturbances
z: regulated (weighted) signals
y: measured signals (signals available to the controller)
wu: control signals

Let’s partition P, in dimensions compatible with w, u, z, y.
p:1 = dim(z) = number of weighted signals
p2 = dim(y) = number of measured signals
m; = dim(w) = number of exogenous signals (references and disturbances)
mo = dim(u) = number of control signals (i.e. actuators)

So P11 (p1 x mi), P12 (p1 X ma), P21 (p2 X mi), Pao(p2 X my)

The system equations are:

MR
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z=Prw+Prou
y=P21u+P22u
u=Ky

From previous, we can express the transfer function from w to z as:

z=P, +P,K(I -P,K)*P,,w

But this mathematical expression is a well mathematical expression known as a LFT
(Linear Functional Transformation). Refer to the appendix 8.1.3 for a introducing to LFTs
and it use in control.

The general control problem has been formulated as: find a controller that
minimizes the norm of the TF from w to z.

3.2 Mathematical solutions to the H-infinity problem

3.2.1 The statement on the problem

From the previous discussions we deduce that the problem H-infinity is a general case of
the general control problem, where we use the H-Infinity norm for minimization of the TF
from wto z.

Let’s take a representation in state space of the general control problem (Figure 3-2):

||Tzvv||°° <Y
 — ]
— —
z Pau w
K
y u

Figure 3-2: The H-infinity problem as LFT

X A B, B, [x
Z|= Cl D11 D12 w
y C, D, Dyju

Or alternatively, in ‘input output’ notation:
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X A B, B,|[x
z = CZ DZW DZU W
y C, D, D,|u

The general problem of H-Infinity control is expressed as:

To find a controller that minimizes the H-infinity norm of the TF from w to
z and stabilizes internally the system.

z=P, +P,K(I -P,K)*P,,w

No exact solution has been found for this optimal control problem (i.e. to find the
minimum). It is much easier to resolve the suboptimal problem:

To find a controller that guarantees that the H-infinity norm of the TF from
w to z is minor that a given number and stabilizes internally the system.

||TWZ ||w <y, y>0

3.2.2 Some key concepts

Some important concepts have to be introduced before describing the solutions to the H-
infinity problem. The methodology described in this work follows the LMI based
formulation introduced by (Gahinet, 1994). This LMI formulation is clearer and more
general that the “traditional” formulation based on Riccati equations.

The key concepts are the Hamiltonian function of a control system, the Bounded Real
Lemma and the equivalence of Riccati and LMI formulations.

The strategy of this paragraph is as follows:

First, it is shown that the Hamiltonian function of a system describes the net energy flow
of the system in terms of its system state equations and a cost function of its external
inputs (w) and measured outputs (2).

Then it is demonstrated that the Hamiltonian function can be expressed as a LMI.

Then the Bounded Real lemma is introduced: it relates the H-infinity norm of a system
with a LMI feasibility test on its Hamiltonian matrix (i.e. using the LMI formulation of the
Hamiltonian). Finally, it is shown that the LMI test is equivalent to a Riccati equation
test.
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3.2.2.1 Hamiltonian function of a system

Let’s be a system (not necessarily linear) described by:

X'= f(x,w)
z=g(x,w)

Where x is the state, z € Z are the weighted signals, w € W are the exogenous signals.

The previous system is said to be dissipative with regard to a supply function s(w,z) if
exists a storage function V(x) such that:

V(x(t,) sv<x(tl))+Ts(w(t),z(t))dt

This ‘storage function’is called the ‘Hamiltonian’ for analogy with the function of physics.

Note that:
s:WxZ - R l.e. s(w,z) assigns a real number (a cost) to each pair (w,z)
V:X >R Ile. V(x)is a function that assigns a real number (a potential) to each state

The previous has a very important physical interpretation: s(w,z) measures the
energy provided to and extracted from the system. V{x) measures the energy stored in the
system. It is clear that the final storage V(x(tz)) can be as maximum the initial energy
V(x(t:)) plus the net energy flow.

Then a step further: if the storage function V is differentiable, then the following
inequality holds (simply by differentiating both terms in previous equation):

Substituting the expressions for x’ and z:

N £ (xow) < s(w, g(x,w))
X

Now let’s specialize the previous for a linear system:

X'= f(x,w)=Ax+Bw
z=g(x,w)=Cx+Dw

And let’s use a quadratic supply function:

s(w,z) =[w Z{SQT ﬂm
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And a quadratic storage function:
V(x) = x" Xx

Where X is some symmetric matrix (be aware that X is a matrix not the state x.

The general equation

ﬂ f(x,w) <s(w,g(x,w))
X

Is particularized as:
S|w
2x"Xx' < [w z QT
S Rz

And previous formula can be expressed as follows. (See demonstration in appendix

8.2.4).
T T
I 0|0 X|I O 0 I Q S|0 1 X
[x w - . <0
A Bl|X OJ]A B C D||S R|C D|Jw
The previous expression is a Linear Matrix Inequality or LMI (see appendix 8.1.5 for an
introduction to LMIs).

It is usual to express the previous LMI in the following 3 alternative forms:

By grouping terms:

I olfo x| o o7 I o
A B|l|Xx ol 0o ofA B
F(X)= <0 (Eq 3-1)
0 1[|l0o 0o|l-Q -s|o 1
c D||0 0|-ST -R|C D

By developing the product:

ATX + XA-C'RC XB—-(SC)" —~C'RD

<0 Eq 3-2
B"X-SC-D'RC -Q-SD-(SD)" -D'RD (Eas3-2)

I:(X){

That can be decomposed as:
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ATX+XA xBl [0 1T sTo |
F(X):{ BTJ)F( O}[C D} {SQT R}[C D}O (Fa33)

3.2.2.2 The Bounded Real Lemma

The Bounded Real Lemma connects the Hamiltonian (expressed as an LMI) and the H-
infinity norm of a system.

One of the ways of expressing the H-infinity norm is as the supreme of the induced 2-
norm:

T (9], zsup{ ”2”2 e 0}

e | [,

The minimization of the norm of 7., can be expressed as achieving:

4],

”Tzw(s)”oo <y = SUD{—} <y:w=0
W,

That can be expressed in term of a cost function:

s(w2)=[ef: ~ | <0

That can be expressed also as (dividing by minus gamma):

1
s(w2) =2l + o <0

But this cost function is simply a particularization of the general quadratic cost function:

e

A0

Q S
[ST R}: 0o -1
y

With:

So for this specific cost function we have an expression for calculating the H-infinity
norm as a LMI:

Page 55 of 296



The H-Infinity Theory

I 0Y(0 X| 0O o0YI O
A B|IX olo o0 |A B
F(X)= <0 (Eq 3-4)
0 1||0 O0|-pd O |O I
c bJlo ol 0 yujlc D

This is a crucial result: relates the H-infinity norm of a transfer function T.., with
a feasibility LMI test derived from its Hamiltonian matrix.

Alternative formulations of the LMI

Also using the particular cost function:

Q s M ¢
[ST R}O -2
Y

Substituting in the general formula for a Hamiltonian Matrix:
F(X)= A"X + XA-C'RC XB—-(SC)" —C"RD -
B"X-SC-D'RC -Q-SD-(SD)" -D'RD

We arrive to:

F(X):{

A"X +XA+C'y'C XB+C'y'D <0
B'X+D"y'C +D'y'D-#

Can be also written as:
ATX + XA XB ol
F(X)= —(=y7 C DI<0
(){ BTy _}J(w[ }[ ]

Given the matrix M

M =

c d

The Schur complement of d in M is given by:

a—bd*c

(Refer to appendix 8.1.6 for an introduction to the Schur complement).

Applying the inverse of Schur complement to previous, i.e. identifying:
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{ATXJFXA XB} {CT}
F(x)=L B'X -/ —EL(—W)[C D]

\_ﬁf_J

a b d—l

c

A third way of formulating a LMI is found:

ATX +XA XB CT
F(X)=| B'X -4 D' |<0 (Eq 3-5)
C D -

3.2.2.3 Connection between the Hamiltonian and a Riccati equation

If we apply the Schur complement to the general formula

F(X)= ATX + XA—C'RC XB—(SC)T—CTRD -
B"X -SC-D'RC —Q—SD—(SD)T—DTRD
We have:

d=-Q-SD—(SD)" —~D"RD
F=a-bd'c<0

F =(A"X + XA—C"RC)-(XB—(SC)" ~C"RD)-Q-SD—(SD)" ~D'RD)"(B"X —SC —D"RC)<0

If we particularize for the cost function:

Q s1|* ©
[ST R}:O —

4

We have:

dz—ﬂ—DT(—ljD
Ve
F=a-bd'c<0
1 1 AN 1
F =(ATX + XA—CT(——jCJ—(XB—CT[——jDI—ﬂ -DT [——jDJ (BTX -DT7 (——JC)—<O
7 Ve Ve V
With D=0and y =1

F =(ATX + XA+CC)-(XB)-1)*(B"X) <0
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F=(A"X +XA+C"C)+(XBB"X )<0
That is the Riccati equation used on the DGKF solution (discussed hereafter).

3.2.1The DGKF solution
3.2.1.1 Preconditions
The following theorem was stated in (Doyle, 1989)

Let be the control problem formulated previously in paragraph 3.1. It is assumed that
the following conditions hold:

(C1) (A, B1)is stabilizable, and (C1, A) is detectable. (A, B2) is stabilizable, and (C2, A) is
detectable.
(This condition means that the plant does not contains uncontrollable of unobservable

modes, ie. that we can stabilize the system with state feedback and that an observer
exists).

(C2) rank(Diz) = ny, rank(D21) = ny

(rank(D;2) = n, means that all the control signals are weighted and contribute to the
calculated norm. rank(D2;) = ny, means and that all the external signals are observable for
the controller).

A-iol B
(C3) The columns of { C D2 :|are linearly independent for all o, i.e. the column
1 12
range of the matrix is nx + ny
A-iol B, | . ) .
(C4) The rows of C D linearly independent for all o, i.e. the row range of the
2 21

matrix is nx + ny

(C3 and C4 mean that there are no jo-axis zeros in T, or Tyw. The controller cannot cancel
these zeros because the closed loop would not be internally stable).

For simplicity on the solution, the following conditions are also assumed:
(CS) D11 = 0, D22 = 0.
(C5 implies that T, and Ty, are strictly proper i.e. there is not direct feed through from w —

z of from u — y. This holds in almost all the real-life control problems because the effect of
the inputs on the outputs is not instantaneous).

0
(Co) D12=L}, D21:[O I]

(Sometimes C5 and C6 are formulated together asD,D,, = D;,D,, =1 ).
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(C7) D;,C, =0y B,D; =0

(It means that the weighted signal z shall be of the form z = C;x+ u. Le. a unit weight in the
control input and there are no cross-term in x and u).

It shall be noted that there are different ways of expressing the previous conditions C1 to
C4. Also, the conditions C5 to C7 can be removed at cost of complicating the expression
of the resulting controller solution.

3.2.1.2 The suboptimal solution

If the previous conditions hold, then a controller K exists that stabilizes internally P and
||T <y if the following conditions are hold:

oo
(i) X.is a semidefinite positive stabilizing solution of the Riccati equation:
ATX_ +X_A+C/C,+X (BB -B,B;)X, =0

Or equivalently, of the Hamiltonian:

H - A y’B,B; —B,B;
T |-C/C, - A

(Refer to the appendix 8.2.5.2 for a demonstration of the equivalence between Riccati
equations and Hamiltonian matrix).

(ii) Y. is a semidefinite positive stabilizing solution of the Riccati equation:
A'Y_+Y A+BB/ +Y, (y°C/C,—-C,C,)Y, =0

Or equivalently, of the Hamiltonian matrix:
[ AT yZCfCl—C;C{

J =
—B,B/ ~A

00

(iii) p( X» Y. ) <y2 (all the eigenvalues of X, Y, have a value less than y?)

Then a suboptimal controller is given by:

A |-Z,L,
KSUB=|:F 0

00

Where:
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F,=-B, X,

L, =-Y.C,

Z, =(1-y%Y, X, )"

A, =A+y?BB/X, +B,F +Z,L.C,

3.2.1.3 The family of suboptimal solutions

In fact, there is not only one controller but a set of controllers that satisfy the conditions.
These are given by the following LFT expression:

K=F(K.Q)

I.e. an LFT of Q over a ‘central’ controller given by:
A |-Z,L, Z,B,
K.=| F 0 |
|

—C, 0

Where Q(s) is any stable and proper FT such that ||Q||w <y.

Generally the controller chosen is the “central” controller (i.e. Q(s) = 0).

A critic raised here, see for example (Gahinet, 1994) is that the choice of “Q(s) = 0” is not
really justified. Why the central controller should be the best controller? Also is not clear
how variations of Q(s) are linked to variation of properties of the closed loop system.

3.2.1.4 Comments on the DGKF solution

Developing the state equations for the ‘central’ suboptimal controller:

£1 [A. |-Z,LT%
ul |F, 0 y
We have:
K=AX-Z_ L.y
%=(A+y?BB] X, +B,F, +Z,L,C,)R-Z L,y

R'= AR+BW,q +Bu+Z, L, (C,%-y)

~

u=F X

0

worst

Where has been defined:
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WWOI‘St

=y B/ X_X

Wuworst can be interpreted as the worst case estimated disturbance.

The term Z L, (CZ)A( - y): Z,L (§-vy) is the optimal estimation of the error.

So the next estimated state of the controller is a contribution of:
- The current estimated state
- The current signal control u
- The worst disturbance
- The estimated error

By analysis of the diagram of the controller we find that is an “observer — state feedback”
controller (Figure 3-3). I.e. the controller is made of two separate parts: an estimation of the
state and a state feedback. This is very similar to the ‘Luenberger controller’ described in
paragraph 2.1.5.

Plant
» Dy
w z
’_ Bl -> Cl _‘_>
X
—p B,
—> D12
—p» C; —\_>6_
u
y
77777777 State §Observiéirm i
Feedback y-y
| Zol. (@
— 1,
X

Figure 3-3: Separation structure of H-infinity controllers
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The demonstration of the DGKF solution was presented in the famous “DGKF” article by
Doyle, Glover, P. Khargonekar, and B. Francis, see (Doyle, 1989). A full development of
the solution is included in (Zhou, 1995).

The solution is indeed very technical and does not provide tutorial value: on this thesis
we prefer to develop the LMI solution to the H-infinity problem.

Just a sketch of the solution is commented. The previous structure of the controller
(separation state feedback - observer) inspires the following strategy for the
demonstration: first several special problems are introduced, the filtering problem
(observer part) and the full information problem (state feedback part). The general
solution is made by resolving each problem separately and combining them.

3.2.1The LMI solution
The LMI solution was introduced by Gahinet and Apkarian (Gahinet, 1994).

Being stated the same H-Infinity problem that previously (paragraph 3.1), the following
assumptions are done:

(C1) (A, B2) is stabilizable, and (C2, A) is detectable.

(This condition means that the plant does not contains uncontrollable of unobservable
modes, ie. that we can stabilize the system with state feedback and that an observer
exists).

(C2) (D22=0).
Note that assumptions C3 and C4 of the DGKF solution are not required here.

The problem is stated as:

To find a controller that guarantees that the H-infinity norm of the TF from
w to z is minor that a given number and stabilizes internally the system.

||TWZ ||OO <y, y>0

The “Bounded Real Lemma” has been introduced previously. It relates the problem of
bounding the H-infinity norm of a system with the existence of a solution for a LMI.

Ml <7, 7>0,iff
ATX+XA XB CT
F(X)=| B'X -A D' <0, X=0
C D -
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But on this formula [A, B, C, D] is the state space representation of the closed loop
system. The bounded real lemma defines a necessary condition that if satisfied
guarantees the existence of a controller that fulfill the specifications. However the
bounded real lemma does not defines a synthesis formula for the controller. It is needed
to express the previous LMI in function of the open loop plant and the controller.

Before demonstrating the general case (that is quite complicated) the specific case of
static state feedback control is demonstrated. It is quite simple and provides an
introduction to the general case.

3.2.1.1 Specific case: static state feedback

A simple static state feedback controller is imposed:
e y=x (Cz=1I D2=0, D22=0)
e u =Ky, where Kis a constant feedback (Dx=Kc, Ak, Bk, Cx=0)

With these, the general formula for the state space representation of the closed loop:

AL Bal A+B,D,C, B,C,
Tzw_ - BKCZ AK

CCL CL

B, +B,DyD,,
By Dx (Eq 3-6)
C,+D,,DiC, D,CK | Dy, + Dy, D Dy

Is greatly simplified to:

B A+B,K B
T, :{ACL CL:|:|: 2M™\c | 1 } (Eq3-7)
Ca Do C, + DK | D

Applying the general LMI formula (Eq 3-5) to the closed loop state space expression (Eq 3-7)
we have:

(A+B,K.) X +X(A+B,K.) XB, (C,+Dp,K.)
F(X)= B," X — D, <0
C1+D12KC Dll _7|

That is no longer an LMI because there are non-lineal terms with product of the
incognita Kc and X. (Note also that exists terms only on K¢ and only on X on so a simple
change of variable Y = K¢ X will not work).

The strategy of the solution is to put back the previous in form of a LMI. In order to “re-
linearize” two steps are applied:

Step 1: apply a congruence transformation T with:
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T=

o o <

00
| 0(<0, being Y=X"
0 1

The congruence transformation (refer to appendix 8.1.7) is a simply change of
coordinates that does not change the “definitess” of F(X)

G(Y)=TTF(X)T <0

Y 0 0]|(A+B,K.) X +X(A+B,K.) XB, (C,+D,K.) [Y 0 0
G(Y)=/0 1 0 B,' X —A D, 0 1 0[<0
0 0 | C, +D,K, D,, — 0 0 I
Giving:
Y (A+B,K. ) XY +YX(A+B,K. )Y YXB, Y(C,+D,K.)
G(Y)= B," XY A D, <0
] (C,+D,K )Y D, —
Y(A+B,K.) +(A+B,K.)Y B, Y(C,+Dy,K.)
G(Y)= B, —l D, <0
] (C,+D,K. )Y D, -

It shall be noted that G(Y) has now terms on the product (Y K¢), but has no terms only on
Y or only on Kc.

Step 2: apply a change of variable W=KcY

(YA+BW) +AY +BW B, (CY+D,W)
G(Y W)= B, —A D, <0, Y>0,W>0
C,Y +D,W D, —

That is a LMI in variables Y, W. Solving numerically the LMI for Y and W, we obtain the
desired controller as:

Ke =WY -
3.2.1.2 General Case

The general case follows the same steps that the previous case but is much more
complicated mathematically.
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- Find the expression of the LMI in terms of the open loop plant and controller: in
fact this generates two pseudo-LMIs

- Re-linearize the LMI (apply a congruent transformation plus a change of variable)
- Reconstruct the controller

3.2.1.2.1 Finding the LMI in terms of open loop plant and controller

Assuming state space representations for the open loop plant (the plant augmented with
appropriate weights) and the controller:

SIS
C D C. Dy

The closed loop transfer functions can be expressed as:
A, B A+B,D,C, B,C, B, +B,D:D,,
T = {C - DCL } = B«C, Aq By D,
CL . Cl + D12 DKCZ DlZCK | Dll + D12 DK DZl

The following notation is defined:
— |A O — | B — |0 B,
A= , B, = , B,=
0 0 0 I 0
_ — 0 |
C = [Cl 0]' C,=

_ _ 0 _
1~ D11’ D21 = , D12 = [O Dlz]

)

Note: It shall be remarked that the new matrices K,gl... depend only on the open loop
plant and not in the controller.

With previous notation the closed loop transfer function can be expressed as:

T, = |:ACL B } _ { A+ §2 Kc_:z | + §2 K521 (Eq 3-8)

B,
CCL DCL (Tl + 512 KCZ | 5ll + DlZ K521

The expressions for (Ar, Bi, Ci, Dr) shall be substituted by the expressions using the open
loop plant and controller on the LMI general formula (Eq 3-5).
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When this is done, the result is no longer a LMI, because we have multiplications of two
incognita X and K, for example for the term (1, 1) of the LMI we have:

ATX + XA= Al X + XA, =(A+B,KC,) X + X (A+B,KC,)
A change of variables is defined as follows:

Py :[§2TX 0 Ssz]
Q= [62 521 0]

Note: in notation input/output,
P, =[BI/X 0 D,]
Q= [éy 5yw O]

Px is the direct influence of the control signal in the state and in the weighted signals. Q
is the contribution to the output of the state and the exogenous signals

Then writing the LMI in function of A,B, ... variables
ATX+XA XB, C/
H(X)=| BIX  —A Dy
C. Dy -

The LMI F(X) can be written as a more complex LMI:
F(X)=H(X)+Q'K'P, +PKQ <0 (Eq 3-9)

The demonstration is just long, tedious calculus. Refer to appendix 8.2.6 for a
demonstration.

3.2.1.2.2 Finding the LMI for synthesis of the controller

The previous equation (Eq 3-9) contains 2 unknown variables: Px (that depends of X) and K
that is the state space expression of the controller.

F(X)=H(X)+Q"K'P, +P]KQ <0

But by the “Elimination Lemma” (refer to appendix 8.2.7 for a discussion and
demonstration) the previous equation has a solution on K iff:

W H (X )W,, <0
WJH (X)W, <0

Page 66 of 296



The H-Infinity Theory

Where:
- Whis the orthogonal operator of a basis of the kernel of Px.
- Wois the orthogonal operator of a basis of the kernel of Px.

The elimination lemma removes the (still unknown) controller data (K) from the previous
LMI, at cost of introducing two separate LMIs. The first LMI only takes into account the
inputs that contribute to the state and weighted signals. The second LMI only takes into
account the states and external signals that influences the output.

Note:
kerP, =ker(BJX 0 D,) [B'x o D,p=0
kerQ = ker([(fz 521 0]) (in input-output) [6 Eyw 0}\/ 0

y

Let’s be u a vector of the kernel of P.. This means that the vector u contribution to the
state and to the weighted signal is null, because

X'= AX+B,w+B,u 4B 0. D 0
u=0, us=
2=C,Xx+Dyw+Dyu 2 =

This means that Wpx is made of all vectors u (all inputs) that instead contributes to the
state and weighted signal.

Similarly, let’s be w a vector of the kernel of Q. This means that the vector w (states,
external signals) contribution to the output is null, because

z=C,x+D,w+D,u and C,y=0, D, y=0

This means that Wy is made of all vectors y (states and external signals) that instead
contributes to the output.

But in previous Wp and H(X) depend on X that means that the expression is not a LMI.
(Note that Wpis the orthogonal of the kernel of Px that depends on X).

Py :[§2TX 0 512]

Note also that there is no problem with the second inequality: WoH(X) is linear in X
because Wp does not depend on X.

To resolve this non linearity on the first inequality we apply a congruence transformation
(exactly the same that in the simplified static feedback problem):
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Y 0O
T=/0 | 0|<0, being Y=X71,
0 0 |

T(Y)=T H(X)T <0

Multiplying,

Y 0 O] [AT™X+XA XB, C/ [Y 0 0

T(Y)=/0 | © B, X -A D, |0 1 0
0 0 I C, D, -A[0 0 1
Y 0 O] [ATXY+XAY XB, C/

T(Y)=/0 I © B, XY -A D,
_0 0 I_ 61Y 511 -/
'ATY+YA B, Y'C/

T(Y)=| B -4 D (Eq 3-10)
L 61Y 511 -

With this transformation the problem is stated as:
The equation (Eq 3-9):
F(X)=H(X)+Q"K'P, +P, KQ <0

Has a solution K iff:
WPT TY)W, <0
WQT H(X )WQ <0

That expands to:
ATY+YA B, Y'C/
WO T(Y)W, =W, | B/ -A Dy W, <0 (Eq 3-12)
CY D, -#
ATX+XA XB, C/
Wy H(XW, =Wy | B/X -A Dy W, <0 (Eq 3-12)
C, D, -#

X is of dimension (n, + ni). Let’s partition X and Y accordingly as follows:
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‘_ x$ XZ,Y:x-lei Y,
XJ ‘AR

In turn, it can be demonstrated (refer to paragraph 8.2.8) that the previous two LMI
conditions (Eq 3-11) and (Eq 3-12) are equivalent to the following 3 LMI conditions
(independent of controller variables and expressed only in function of the open loop
plant):

T ATX +x oA X.B, C/
Nx -A D, Ny 0 <0 Eq3-13
0 11 0 | ' (Eq 3-13)
D11 _7'
) T ATY +Y,A Y,.C': B,
N, N, 0
-A Dy <0, (Eq 3-14)
0 . 0 |
- Dy -”
R >0 Eq 3-15
i 0 Yp - (q - )

Where:
ImN, =ker[C, D,,]
ImN, =ker[B,” D"

Summary: a controller can be synthetized for the closed loop system achieving

HTWZHOO <7 iff the previous 3 LMIs have solution.

3.2.1.2.3 Controller reconstruction

The previous paragraphs demonstrate that a controller exists (existence problem). The
synthesis procedure for the controller is:

From the partition for X and Y construct:
X X

x{ i 2} X =Y =X,X,"
X, |

Then construct:

Page 69 of 296



The H-Infinity Theory

Then solve the LMI in K (with X, Px, Q known):
F(X)=H(X)+Q'K'P, +P,KQ <0

K is the controller.

3.2.2 Properties of the H-Infinity controllers

The following properties are applicable to the H-Infinity controllers whatever the solution
method used:

Property 1: All pass property

The optimum cost function T, is ‘all-pass’, i.e., it is equal to 1 for all the frequencies.

On one side this is negative because means that the optimal controller will not roll-off at
high frequencies (meaning that the optimal controller is not proper and is not realizable).

In practice is positive because we are not interested in the optimal controller but in sub-
optimal controllers. For a sub-optimal controller this all-pass property means that the
desired shape for the closed loop transfer function can be reached (in a limited range of
frequencies) if the appropriate weights are selected.

For example, if we take S,:

1
"Wsso”w =l = §, zW—

S

I.e. S, is similar to the inverse of the desired weight (that have been chosen according to
the design objectives).

Property 2: Dimension of the controller

The H-Infinity controller has a number of states equal to the number of states of the
augmented plant (i.e. sum of the states of the open loop plant plus states of the weights).

In general the complexity (number of states) of the H-Infinity trends to be greater that the
classical methods. Note however that the very recently “H-Infinity Structured” approach
allows to synthetize controllers of desired order and structure.

Property 3: Possible pole zero cancellation
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As many other methods of modern control the H-Infinity method trends to provide
controllers that invert the plant being controlled.

Depending on the particular control problem and in particular when the original open
loop plant is ill-conditioned this can be a serious problem. Pole zero cancellation cannot
be perfect and for such ill-conditioned plants the closed loop performances can be very
bad.

This thesis will introduce methods for management of these cases.

3.3 History of H-infinity

Some notes about the historic evolution of H-infinity theory are provided in this
paragraph.

The development of H-infinity theory was started by (Zames, 1981) who studied the
minimization of the sensitivity function of a SISO LTI feedback system.

IS|. EsuE|S(iw)|

The problem was posed in the frequency domain. Solutions available at that time
involved analytic functions (Nevanlinna-Pick interpolation) or operator-theoretic
methods. These methods where quite complicated and provided limited insight on the
structure of the solutions. Progress in these first years was slow.

A more practicable solution was proposed by Doyle and Glover (Doyle, 1984). It is based
on the Youla parameterization approach (see appendix 8.2.2 for a discussion) that
defines the following expression for all stabilizing controllers of a given plant.

K(s) = (1 - Q(s)P(s)}* Q(s)

From previous we can get the expression for Q(s) (omitting the “s” by simplicity):

(1-QP)K=0Q;
K-QPK = Q;

K =0Q + QPK;
K=Q (I +PK)

QOfs)=K (I +PK}1=KSo

And we can get the expression of the usual closed loop transfer functions in function of
the parameter Q:

T =PK (1 + KP}1 = PQ
S=1-T=1-PQ
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The objective of obtaining nominal performance is

W, ()8, ()], <1

And expressing S in function of Q:
We ()L~ P(s)Q(s)), <1
W (5) =W, (5)P($)Q(s)), <1

Now renaming T; = W), T2 = -W,P, T3 = 1, we have
[T (8)+T,Q()Ty|, <1

That is known as the “matching model” problem (Figure 3-4):

w f Tz
—p| T3 = Q —» T:

Figure 3-4: The model matching problem

In turn, the ‘matching model problem’ can be demonstrated to be equivalent to the
‘Hankel approximation problem’ for which a solution was developed by (Glover, 1984).
The book (Maciejowski, 1989) contains a fully detailed demonstration of the 1984
solution.

The 1984 solution had several disadvantages: the controllers generated were of high
order and the computation of the controller was very demanding.

A more satisfactory state space solution was found in 1998 due to the work of Doyle,
Glover, Khargonekar and Francis, (Doyle, 1989) (popularly “known as the DGKF paper”).
The degree of the synthetized controller was equal to the dimension of the augmented
plant. This made the controller implementation feasible and starts the practical
application of H-infinity.

A different approach is the solution of the problems by means of LMIs. The LMI solution
was proposed in the article of Gahinet and Apkarian (Gahinet, 1994). A later paper with
the generalization to multi-objective synthesis was proposed in the article of (Scherer,
1997).

The main advantages of the LMI solution over the DGKF solutions are:

- Less number of assumptions (even if there are workarounds for some of them in
DGKF)
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- Demonstrations are simpler and provides more educational value
- Multi-objective synthesis can be integrated normally in the framework

3.4 H-infinity Mixed Sensitivity

In the previous chapter the H-infinity problem has been introduced as finding a
controller that minimizes the H-infinity norm of the closed loop transfer functions.

There are multiple alternatives for choosing the transfer functions to be weighted and
there are multiple alternatives for choosing the weights.

The Mixed Sensitivity variant of the H-Infinity method is the variant most frequently used
for this choice. The origin of its name is due to the fact that a “mix” of transfer functions
are weighted. Usually they are S, and T, but other variants are possible.

For example, we may want to minimize S, and T,, trying to achieve a good reference
tracking, robustness to output disturbances and robustness against multiplicative
uncertainty at plant output by posing the following problem.

S
TZW = e
O

Or alternatively we can give more importance to the control signal, trying to guarantee
that it meet some actuator constrains.

_ | WiS,
ol =y

We can also use 3 transfer functions:
W;S,
[Taull. = | WeKSo| <
W3T0

<7

0

<7

o0

All the previous examples are particular cases of the H-Infinity standard problem. The
stack of TF is simply the TF of the exogenous signals (w) to the regulated signals (z) of
the augmented plant.

It shall be commented that an error is present when the H-Infinity norm of the previous
problems is calculated. This is because the expression:

S
V190
O

Is not exactly the same that compute the norm separately: ”WlS0

<1

o0

<1

o0

, <land ”\NgT0
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Usually we take as H, norm of a vector the square root of the sum of the square of the
components (i.e. the usual Euclidian norm).

Tl =ywss,], F +(wsr,], f

But if for example:

|[vvlso||w =1-¢ and ”\/V?,T0

=1l-¢,

0

Separately both components have an H, norm minor than 1 and however the computed
Euclidian norm is greater than 1 = (\/E Q- g))

This means that the method H-infinity Mixed Sensitivity is conservative because
discards as invalid (H.>I) solutions that are valid. The error factor is minor than

\/5 ~ 3db that is low. So usually this error can be ignored and the method provides valid
results.

The previous H-Infinity Mixed Sensitivity problems are studied in detail in the next
paragraph. It will be explained how to build the augmented plant with the weights and
that the transfer function of the closed loop is in fact a LFT of the plant and the
controller.

3.4.1 H-infinity Mixed Sensitivity S-KS: reference tracking
The objective is to follow a given reference signal. The TFs to shape are S, and KS..

With a proper shape of S, we will achieve a good tracking of the reference and robustness
against disturbances at the output of the plant. With a proper shape of KS, we will limit
the control effort at high frequencies (Figure 3-5).

z1 72
W, — "W, —>
r e u y
> » K » P P>

’

Figure 3-5: H-inf Mixed Sensitivity for reference tracking

We want to minimize T,
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"-rZW”oo -

<7

WS,
ZKSO

It is demonstrated now that the S-KS problem is just a particular case of the general
formulation. Let’s reformat the previous system of (Figure 3-5) as shown in (Figure 3-6):

z1

z2

=

v

v

Figure 3-6: H-inf Mixed Sensitivity for reference tracking as LFT

Note that no connection has been changed: only the layout of the diagram has been
changed. We have defined the external inputs to the plant (references and disturbances)
as ‘w and the signals to weight as ‘Z’. The input to the controller is ‘y’ and the output of
the controller is named ‘u’. The dashed line defines the augmented plant.

By analysis of the previous plant we obtain the following relations:

Z1=W1LU—W1PLL
zz=W2u
v=w-Pu

That can be written in matrix form:

Z, W, -W,P w M
2= 01 W, =t
2 : u M,
v 1 -P

Now we can use the general LFT formula for finding the TF from the external signals (w)

to the regulated signals (2):

FI(M 7A|) = M11 + Mlel(l_M22A|)_1M21
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z W -W,PK
I S . 1-(-P)K | 1
z, 0 W,K
Developing the terms, we have

z, _Wl—WlPK(1+PK)’1W
z,| | W,K@+PK)™

z,] [WPK@+PK)™ e W,S, "
z,] | W,K@+PK)™ W,KS,

That is the formulation of the S/KS problem.

So it has been demonstrated that the Mixed Sensitivity S/KS problem is just the
minimization of the norm of the TF (external signals to the regulated signals) of
the augmented plant.

3.4.2 H-infinity Mixed Sensitivity S-T

The objective is to follow a given reference signal. However in this variant we want to
have more control on the shape of T, probably for modeling the behavior at high
frequencies. The TFs to shape are S, and T, (Figure 3-7).

With a proper shape of S, a good tracking of the reference and robustness against
disturbances at the output of the plant can be achieved. With a proper shape of T,
robustness to modeling errors at high frequencies can be achieved.

z1 72
| W, —> W, —
r e u y
> > K > P >

T_

Figure 3-7: H-inf Mixed Sensitivity S-T

We want to minimize T,
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"-rZW”oo -

<7

wso
3To
It is demonstrated now that the S-T problem is just another particular case of the general
formulation. Let’s reorder the previous system of (Figure 3-7) as a LFT (Figure 3-8):

0

z1

=

z2

v
A 4
=

\ 4

4
-
|
| |

Figure 3-8: H-inf Mixed Sensitivity S-T a LFT

By analysis of the previous plant we obtain the following relations:
zl=W1v=W1w—W1Pu
zZ3 = W3 Pu
v=w-Pu

That can be written in matrix form:

~W,P

v 1 _p u M, M, |u

Now we can use again the general LFT formula for finding the TF from the external
signals (w) to the regulated signals (2):

FI(M 7A|) = M11 + Mlel(l_M22A|)_1M21

-1

SRR
=+ 1-(-P)K | 1
z,| | 0| | WPK
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Developing the terms, we have

z,] [W,-W,PK(@+PK)*
z,| | W,PK@+PK)™

z,] [WPK(1+PK)™ Y- W,S, .
z,] |W,PK(+PK)™ W, T

0

So it has been demonstrated that the Mixed Sensitivity S/T problem is just the
minimization of the norm of the TF (external signals to the regulated signals) of
the augmented plant.

3.4.1 Problems of H-infinity Mixed Sensitivity

The H-infinity Mixed Sensitivity weights closed loops functions as S, T, KS,. The open
loop plant is not “seen” by the method and is not weighted.

This can be an “a priori” problem as said by (Maciejowski, 1989): we pretend to design a
controller without taking into account the characteristics of the open loop plant; we only
specify its closed loop behavior. This can work or not, depending on the plant. In fact it
will not work for ill conditioned plants.

This topic is one of the objects of this thesis and is developed extensively in chapter 4.

3.5 Current state of the art for H-infinity

After the availability of the DKGF solution in 1988 H-Infinity became a practical method
for controller synthesis. The arrival of the LMI solution in 1994 multiplied the choices
and the connection to other fields.

The decade 2000-2010 has assisted to the application of the H-infinity problem
(previously limited to the LTI systems) to a wider variety of problems: nonlinear
problems, discrete time problems, Linear Parameter Varying (LPV) problems, fixed-order
controller problems, etc.

This has been made possible mainly by the LMI solutions where multi-objective goals,
and in particular Linear Parameter Varying (LPV) problems can be introduced in a more
easy way. LPV is still an important research topic that is introduced later.

A new application with growing interest is the H-Infinity filtering. The classical Kalman
filtering provides an estimated plant with the smallest standard deviation of the error
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between the real plant and the estimation. However the classical Kalman filtering needs
some conditions to be hold: the average value of the noise shall be zero and the standard
deviation of the noise shall be known. The H-infinity filtering instead minimizes the worst
case error (not the quadratic error) and can be applied even when the characteristics of
the noise are not known.

Filtering is used for example in satellites for fault detection of the thrusters. The failure
of the thrusters can be detected from Ground by telemetry analysis, but the satellite is
not always on visibility from the Ground Stations. An autonomous on board Fault
Diagnosis capability is desirable. On the H-infinity framework, the problem is reduced to
find an observer that minimizes the H-infinity norm of the difference between a
combination of selected inputs (control signals and command references) and outputs
(measures).

The more important breakthrough in the H-Infinity world in the last decade is the H-
Infinity Structured. Its interest deserves a dedicate paragraph. A brief introduction to
LPV control (which solution strongly connected with the LMI theory) is also provided.

3.5.1 Structured H-Infinity

3.5.1.1 Practical problems with “classical” H-Infinity

H-Infinity synthesis (either the DGKF synthesis or the LMI synthesis) has some
limitations that have slowed its adoption in the industry, in particular the Aerospace
industry. There are 2 main causes that might explain this fact.

A first cause was that H-infinity controllers have more states than classical controllers. A
controller of high order needs more computational power. This is usually not a concern
in industrial plants but it was a concern in the aerospace world.

Note:

The 1750 processor commonly used in aerospace during the eighties and nineties is a
16-bit computer with a 20MHz clock speed and limited floating point support. Some
examples of usage are the F-16 and F18 fighters and ESA missions as Rosetta and
Envisat). It is to be remarked that the 1750 processor will be used in satellite
communications up to 2020 (the space communications world is very conservative a
major driver is cost-saving!). The reason of such low computational power is that the
processors are required to be “radiation-hardened”. This implies different technologies
that commercial chips: the technologies used in the space chips cannot work at high
clock speeds.

This first cause has become a minor concern with the availability of more powerful
processors since year 2000 (ERC32 and LEON family by ESA for aerospace that include a
full mathematical processor of 64-bits). Be aware that at 2014 new ESA missions include
computers with LEON2/LEONS a clock running from 66 to 80 MHz!).
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A second problem however has been persistent and in fact is still present today. The H-
infinity method generates controllers without defined structure. The controller generated
has n states being n the sum of the number of states of the open loop plant and the
number of states of the weights. The controller has no defined structure (the controller is
a “black-box” for the designer). This lack of structure made more difficult to understand
and tune the controller.

This is different from traditional techniques (example tuned PIDs) where the controller is
defined by a number of PID blocks plus filters interconnected in a well-known setup. The
existence of a predefined structure of the classical methods allows more insight for the
control engineer: the meaning of the proportional, integral and derivative terms, pre-
filters, feed-forward terms, roll-off terms, etc. are well known and make possible manual
tuning.

The problem lack of structure of the H-Infinity controller has been resolved by the recent
work of Apkarian and Nole (Apkarian, 2006) . The new method is called “H-infinity
Structured” and allows choosing a given structure for the generating controller. This
method is studied in the next paragraph.

3.5.1.2 Fundamentals of H-Infinity Structured

Given the general control problem (Figure 3-9):

z W
— —

au

K
y u

Figure 3-9: Robust control problem

With a space state representation:

X A B, B,|x
Z|= Cl D11 D12 w
y Cz D21 Dzz u

The H-Infinity Structured problem of control is expressed as:

To find a controller that stabilizes internally the system and guarantees that the
H-infinity norm of the TF from w to z is minor than a given number and in
addition satisfies that the controller belongs to a predefined set of controllers
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||Twz (K)”OO <Y subjecttoK € K
where K is the family of controllers satisfying a given structural constraint
It is useful to reminder the following identities:
_ 2
[T (K,@)], = max 5(T,, (K, @)= max 4., (T} (K, @)T,,.(K.0)f

Formalization of the concept of structured controller

Assuming that the controller K is structured with a vector 6 of parameters (where it is
assumed that the dependency of K in 8 is smooth):

K(Q)Z{AK ©) | BK(G)}

Cy(0) | D(0)
The closed loop function will be:
T (P.K(0)) = A(K(9)) | B(K(9))
T C(k(9) | DK(9))
With TF:

T, (P, K(0)) =C(K(0))(sl - A(K(9))) " B(K(9)) + D(K(9))

The objective becomes to minimize the closed loop transfer function

£(0)=T..], =maxa(C(K@)(s - AK©))*BK(@)) + D(K ()

With the additional condition of that the closed system loop is stable
D, ={feR": A(K(0)) is stable}

Note that a nested minimization problem has been defined: the closed loop function
depends on the controller K and in turn the controller K depends on the parameter 6.

The following composite function has been defined (mathematically it is a ‘functional’),
that assign to each set of parameters 6 a value of the H-infinity norm:

f:0 (], oT. 2 K(6))

The previous minimization problem is non-smooth: the vector 6 of parameters is the
cause of the problem becoming non-smooth.
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The minimization algorithms commonly used are based on the use of the derivative of the
function to minimize a cost: starting from a given point, calculate the steepest descent
direction (with the derivative) and repeat until a minimum is found. But the composite
function is non-derivable because is non-smooth.

We have to introduce the concept of sub-differential that replaces the derivative when
calculating the steepest descent direction in the minimization problem.

Sub-differentials

The concept of sub-differential is a generalization of the concept of derivation for
functions that are not smooth. For a smooth function we have a unique value for the
derivative in a given dimension. For a non-smooth function we have a set of values for
the sub-derivative in each dimension (Figure 3-10).

Intuitively, the sub-derivative at a point xo is the set of all the lines that are under the
function: i.e. computing the value in a point x close to xp as a first order expansion gives
a value always minor than the real value of the function in x.

value of sub-
non smooth differential <
function value f(x)

sub-differentials
H

I\

v

x0 X
Figure 3-10: Sub-differential

Formally the sub-derivative is expressed as:

F(X)— (%) 2 Ve (X—X))

Where the ‘dot’ denotes the scalar product. Remainder:

xey=(xy)=Tr(x"y)

Sub-differential of the H-infinity norm

Let be a transfer function G(s). We know that:

IG(s)|, =T (G(iw))
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Let be a singular decomposition of G(s)

max

G=Uzv" =U 4

Taken only the first column of U and V and the biggest singular value we have:
G(s)=uac(G(s))v
G(s) =u|G(s)| v

u=|G(s)|. G(s)v

By analogy with a Lyapunov quadratic function V (X) = X" Px , let’s introduce the linear
functional & defined as:

®(H) = Re(u" H (iw)v)

And substituting in previous:
®(H) = Re(u" H (iw)v)= Re(me(s)nje(s)v)H H (iw)vj
(Eq 3-16)
®(H) =[G(s)[ Re(v* G (s)" H (iw)v)

That is continuous in the space of the H. stable transfer functions and is a subgradient
of ||||OO in Gf(s). (This is because the expression for @ is divided by the H-infinity norm of

G(s), so in principle any first order expansion of G{s) centered on this point will be minor
that the value of G(s) on the vicinity.

Derivative of closed loop transfer function with regard the controller K

Given a plant P and a controller K, the closed loop transfer function is given by the usual
LFT formula

Tzw(K) = P11 + PlZK(I - PzzK)_l le

The derivative of T at K is given by
Tau(K)K = Py (I = P, K) K (I = KP,,) Py (Eq3-17)

Note:

We have to find the derivative of the term K(I — P,K)™. The derivative of the scalar
function is

o X 1
& @-px)) (@-px)?
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So by analogy the derivative is
(l - PzzK)_zéK = (I - PzzK)_léK(l - KPzz)_l

Clarke sub differential of the composite function

The composite function is defined as
f:0 (| 0T, oK(©®))

I.e. for each set of parameters 6 of the controller, calculates the closed loop function and
then calculates the H-infinity norm.

Then f is Clarke-sub differentiable and allows applying the usual chain rule for the
derivative:

Oy K

0c f(0) = (Tl )22

W

But by equation (Eq 3-17) we have the expression for and by equation (Eq 3-16) we have

the expression @ for a sub-differential of the H-infinity norm 0. (”Tzw”w)

O K
XK 50

0. f(0)=D(T,,)
So we arrive to an expression for the Clarke sub-differential for f :6 — (“”oO oT,, oK (9)):
0cF(6) =@, =T, | Re((1 =KP,,) P, THQYQ" P, (1 - P,K) ) (Eq 3-18)

The differential of K respect 6 is particular of each problem and depends on the structure
of the controller.

Optimization algorithm

The problem stated is a minimization problem: find the controller that minimizes the H-
infinity norm of the composite function f 219—)(“-”00 oT,, © K(H)). Instead of a normal

derivative the Clarke sub-differential has to be used as follows:

1. Chose a closed-loop stabilizing controller K
2. If Clarke sub-differential is O (local minimum, then STOP)
3. Compute steep descent direction as

H Dy ith ®y of (Eq 3-18)
T — W1 (0] -
Tr(@!®,) Yo

4. Do a line search along this step descent, using Xpew = x + HO
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5. Goto 2

In practice the steepest descent algorithm have some numerical problems. More
advanced methods are used. Refer to (Apkarian, 2006) for a full description of such
minimization methods.

As usually with the new control methods the mathematics of the H-Infinity Structured
technique is very complex. However commercial packages are already available. The H-
Infinity Structured Matlab toolbox is used later on this thesis.

3.5.2 Linear Parameter Variant (LPV) systems

The classical approach to deal with non-linear plants is the gain schedule approach:
some operation points are chosen, the nonlinear plant is linearized at these points and a
LTI (classical, H-Infinity or whatever) is designed for each point.

Then the controllers are scheduled based on some parameter (time, Mach, etc.). The
problem with this manual approach is that the control robustness guaranteed for the
controllers at the “operation points” is no longer guaranteed for the “scheduled
controllers”. Also effects as wind-up arose in the regions when the scheduling changes
the controller.

The LPV theory formalizes the concept of “manual gain scheduling” guaranteeing
robustness not only for the closed loop plant at the “operation points” but for the full set
of plants at all operative conditions.

In a Linear Parameter Variant system the state space equations of the plant and the
controller are not constant and depend (smoothly) on a parameter p that changes along
time, i.e. p = p(t). Without loss of generally (by introducing an appropriate scaling) we can
impose that the parameter values be on (-1 < p < 1).

The parameter p is not known in advanced but it is assumed that can be measured. It is
also assumed that the matrices (A,B,C,D) are affine (depends linearly) in p.

The problem is formulated as: given a plant that depends smoothly on the parameter p:

x'= A(p()x(t) + B(p(t))w(t)
z=C(p®)x(t) + D(p(t))w(t)

<y for all

wz ||oo

Find a controller K = K(p) that made stable the plant and guarantees that ||T

values of p.

For each value of p we have a “traditional” LMI problem which solution is known. But
this would mean to solve an infinite number of LMIs. What is done is to choose a basis of
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the parameter space of p. Any value of p can be expressed as a lineal combination of
vector of the basis.

P = Zaipi
=)

And then solve the following system of LMIs:

AT(p)X +XA(p) XB(p) CT(p;)
F(X)=| BT (o)X A D'(p)|<0, i=Ln

C(o) D(p)) -/

The advantage of the LPV method is that guarantees stability and performances for any
trajectory of the parameter inside the allowable region.

The disadvantage is that the method is conservative, i.e. the optimization can discard
controllers that would work.

There is a lot of research on LPV systems. A very recent book with examples of LPV
applications is (Mohammadpour, 2012).
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4 The problems of the H-Infinity method when applied
to ill-conditioned plants

This chapter describes the problems that the most commonly used H-Infinity method
(the H-Infinity Mixed Sensitivity) has with ill-conditioned plants in presence of
disturbances and how to solve them.

First we will introduce a famous control problem, the control of a distillation plant in
presence of disturbances in the actuators. This problem was introduced by Skogestad,
Morari and Doyle. A simple model of a column distillation is used to demonstrate that ill-
conditioned plants are very sensitive to model uncertainty in the actuators. The problem
was formalized as a benchmark problem (the Control of a Distillation Column ‘CDC’
benchmark problem) in (Limebeer, 1991).

After the introduction of the CDC benchmark it is checked that in fact H-infinity Mixed
Sensitivity does not work with this problem. Then alternative optimizations to the H-
Infinity method to overcome the problems of the Mixed Sensitivity approach are
described. The results of this chapter have been accepted for publication, see the
reference (Sanchez, 2015).

Finally the H-Infinity controllers are confronted with reference p controllers using the
CDC benchmark.

4.1 The CDC distillation process benchmark

The plant model and the design specifications for the CDC benchmark problem
(Limebeer, 1991) are presented hereafter.

4.1.1Plant Model

The process to be controlled is a distillation column (see Figure 4-1). The inputs are the
reflux (dL) and boilup (dV) flows. The outputs are the composition of the distillate (dyn)
and residual (dxg). The column is feed with a mixture (F). The control objective is that the
distillate be as pure as possible and enough quantity of distillate is obtained. By
actuating the boiler the mixture evaporates and distillate exit by the upper part of the
column. The reflux valve allows controlling the flow of distillate that is re-injected in the
column for increasing the purity of the distillate. The outputs are the product
compositions at each flow. The resulting simplified model is:

d dL
Yo | _ G,
dxg dv

dy,] 1 [0878 -0864T ke 0 [dL
dxg | 755+1[1.082 -1.096| 0 ke ™ |dV
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Where k; and k: are the actuator gains (0.8 < k; < 1.2), i.e. a 20% un uncertainty in each
input channel and t is the delay, (0 <t < I min). The channel 1 will be the one actuated
by the reflux (dL) and the channel 2 the one actuactd by the boil-up (dV). Note that the
previous model is expressed in time units of minutes. It is important to remark that the
uncertainty in the actuators is independent for each channel. However the delay has
been considered in the literature the same for both channels (i.e. t; - 12).

This means the gain the plant is strongly dependent on the directions of the inputs. For
example, if the sign of the inputs is opposed (the reflux decreases and the boil-up
increases), a fast and big response is obtained (high quantity of distillate but of low
purity) but if the inputs have the same sign the response is very small (high purity
distillate is obtained but in low quantity)). This made the plant easy to control for some
input combinations and very difficult to control for others. Indeed as Skogestad remarks
it is difficult to guarantee that the control signal are at the same time big but its
difference is small given the high level of uncertainty present. This ill conditioning as can
be deduced from the singular values diagram (Figure 4-2).

We assume in this and next chapters the following notation for naming a particular plant
of the uncertainty set of plants:

g(idK)(idK>)(idDelay) where:

i=1f{i=2 |i=3
idki | 0.8 1 1.2

idDelay|0 min|0.5 min{1 min

For example, goo; is the nominal plant with no delay, i.e. with: (k;: = 1.0, ko = 1.0, delay =
0 min), and g;33is the plant with: (k; = 0.8, k2 = 1.2, delay = 1 min)
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Figure 4-2: Singular values of the Open Loop Plant

The delay is usually modeled by a Padé approximation. In our case we use a second
order model (n = 2). For a delay (6) of 60 seconds, this introduces the following transfer
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function in the system:

&
oL )
(1+05j
2n
With (© = 0 and n = 2) becomes
s? —0.1s +0.003333

s +0.1s +0.003333

delay =

That has a right half zero in Zzgeay =0.005 * 0.033i. Remembering the fundamental
limitations presented in paragraph 2.1.6.3, it means that the sensitivity function S at
that zgelay cannot be minor than 1 at this frequency (1/60 = 0.0167 rad/s = 1 rad/min).

This means that at frequencies about 1 rad/min the control will have no effect in the
system. This imposes a limitation on the design of weights as will be shown after. It shall
be noted that as the transfer function has a roll-off the effect of the zero will be
manifested at lower frequencies (e.g. a decade before the zero for first order systems).

Remark about the plant: Some reference p controllers that used later modify the CDC

plant by normalizing it introducing a factor of 100 in the static gain, see (Skogestad,
1996).

dy,] 1 [878 -864Tke™ 0 [dL
dxg | 75s+1/108.2 -1096] 0  ke™ |dV

We have preferred in this work to work with the original CDC plant and not with the
scaled version. Scaling (if any) will be introduced as part of the controller in this work.

4.1.2 Control Specifications of the CDC problem
The following specifications are defined in (Limebeer, 1991):

S1) Closed-loop stability

S2) Outputs performances
For a unit step demand in channel 1, the plant outputs (tracking) and (interaction)
should satisfy:

- yi(t) should be < 1.1 for all t, and it should go from to O to > 0.9 in no more than

30 minutes

- y2(t) should not exceed 0.5

- 1.01 >=yl(x) >=0.99

- 0.01 >=y2(x) >=-0.01
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Corresponding performances apply for a unit step demand on channel 2.

For astepu=[0.4 0.6 ], the plant outputs (tracking) and (interaction) should satisfy:
- yi(t) should be < 0.5 for all t, and it should go from to O to > 0.35 in no more than
30 minutes

- y2(t) should be < 0.7 for all t, and it should go from to O to > 0.55 in no more than
30 minutes

- 041 >=yl(») >=0.39
- 0.61 >=y2(x) >=-0.59

In order to limit the control effort (avoiding controllers with unrealistic gains and
bandwidths) the specifications (S3) and (S4) are defined:

S3) Control effort: KiS, < 50 dB
S4) KS, < 1 for @ > 150 rad/min
The defined input scenarios are:

Scenario 1: increment the percentage of desired product on the distillate without change
the percentage on the residual

Ry”=[Yp Xg] = [1 O];
Scenario 2: complement of scenario 1
Ro’ = [Yp Xg] = [0 1];
Scenario 3: simultaneous increase on both references

R3’ = [Yp Xp] = [0.4 0.6];

4.2 Problems of H-Infinity Sensitivity with ill conditioned plants
and disturbances

4.2.1The cause: the controller trends to invert the plant

It is known that the H-Infinity Mixed Sensitivity approach may produce bad results for ill
conditioned plants. The reason is that the H-Infinity algorithm produces a controller that
cancels the poles of the plant with its transmission zeros. This pole — zero cancellation is
not desirable if the plant to control is subjected to uncertainty. In effect, the designed
controller will perform very well for the nominal plant but may perform badly if
perturbations are present. Of course, in real control problems uncertainties will be
always present.
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The reference (Christen, 1997) offers both, a formal demonstration and an intuitive
demonstration of the fact that the H-Infinity Mixed Sensitivity controllers will trend to
invert the plant. The intuitive demonstration is as follows:
The H-Infinity algorithm generates controllers that are all-pass i.e. that have more or less
the same magnitude of the major singular value over all the range of frequencies. This
means Ty, = 1 if the controller is optimal or nearly optimal.

Suppose we are weighting S, with a weight Ws. Suppose we have found a good controller
so that:

WP LS()z [Jz 1
This means that S, is approximately the inverse of Wp.
As the definition of S, is:

So = (1 + GK)!

That at low frequencies can be approximated to (GK)-! having:

Wp So= 1 >
Wp (K1G1)=1 >
K=G!IWp

This means that K will contain the inverse of the plant. This is the pole zero cancellation
effect referred previously.

4.2.2Demonstration of the problem with the CDC benchmark

The problem of the H-infinity Mixed Sensitivity approach with the CDC benchmark is
demonstrated here. Let’s generate the controller taking the following weights W, for S,
and W, for T,. (The guidelines for weight selection will be explained later).

As weight W, for S, we follow the guidelines:
- Choose a 2nd order system that meets the specifications (chose o, and delta)

- Toia=@n2/ (s2+ 2 delta on s + 0n2)
- Calculate Spig=1-Toia
- Define the weight as the inverse of S, i

Specifically, we choose
- ®n=10/75; delta = 1.5; (i.e. an ideal system 10 times faster than the open loop)

- (t="75 minutes)

As weight W, for T, we take an ideal first order system that meet the specifications.

Page 92 of 296



The problems of the H-Infinity method when applied to ill-conditioned plants

- Choose a first order system that meets the specifications. Introduce a zero to
make it proper.

- Toia=(0.1s + 60)/ (75/20 s + 60
- Define the weight as the inverse of T, i

The expression of the weights (in rad/min) is:

W — | s?+0.4s+1.778*1e"°
% s?24+0.4s+0.01778

Wy _1, 2255 +60
0.1s+60

The results of the benchmark for the criteria S2 are shown in the following tables.

plant ch | set-point tracking | interaction

plant  |t=30 |max [t=100|max [t=100
g223 u1|0.958 (1.000{1.000{0.000(-0.000
9113 u1]0.914 (1.000{1.000{0.000(-0.000
9133 ul1|-1.403(5.191|0.993|7.287(-0.009
0313 ul1|3.302 (6.469(1.008|7.261(0.010
9333 _u1|0.982 (1.000{1.000{0.000(-0.000

plant  |t=30 |[max |t=100|max (t=100
0223_u2(0.958 |1.000(1.000{0.000{0.000
g113_u2(0.914 |1.000(1.000{0.000{0.000
0133_u2(3.300 (6.490(1.007|4.660|0.006
0313 u2|-1.408(5.171{0.992|4.643-0.006
0333_u2(0.982 (1.000(1.000{0.000{0.000

plant  |t=30 |[max |t=100|max [t=100
g223 u3|0.383 (0.400{0.400{0.600(0.600
9113 u3]0.365 {0.400{0.400{0.600(0.600
0133 u3|0.567 (0.744|0.401{1.005(0.601
9313 u3]0.191 (0.399{0.399{0.599(0.599

0333 _u3|0.393 (0.400{0.400{0.600(0.600
Table 4-1: S2 criteria for Mixed Sensitivity controller

The temporal response of S, and T, for a set of 25 Monte Carlo plants for the scenario 1
are shown in (Figure 4-3), (Figure 4-4) and (Figure 4-5).
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Figure 4-3: H-inf Mixed Sensitivity controller response to scel
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Figure 4-4: H-inf Mixed Sensitivity controller response to sce2

100
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Figure 4-5: H-inf Mixed Sensitivity controller response to sce3
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The singular value diagrams of S, and T, for a set of 25 Monte Carlo plants is shown in
(Figure 4-6). It can be clearly appreciated the big variation of T, with this controller with
disturbances in the plant. It can be appreciated that for some plant the magnitude of T,
is the same order that the magnitude of S,P that means that the influence of the input
disturbances in the output (S,P) is of the same order that the output itself (7).

20

SoP

-20

Singular Values (dB)

-80

-100

-120

e | MR ET | MR | MR | IR | MR EET |
10" 10° 107 10" 10° 10" 10° 10°
Frequency (rad/min)

Figure 4-6: H-inf Mixed Sensitivity SoP and To
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These results are in line with the predictions of (Christen, 1997). The controller has
cancelled the poles of the plants with zeros (Figure 4-7). In presence of disturbances, the
cancellation is not perfect and the control is not acceptable, provoking big cross-coupling

and overshoots.

Pole zero cancellation
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Figure 4-7: Pole zero cancellation in H-infinity Mixed Sensitivity controller

We shall remark that this cancellation effect happens also when plant delay is zero.
The results of the benchmark with time delay = O seconds are shown in the following
table. The specifications are not acceptable for gi3:1 and gsi1.

H-Infinity Mixed sensitivity (no delay)

plant ch

set-point tracking

interaction

plant

t=30

max

t=100

max

t=100

9223 ul

0.959

1.000

1.000

0.001

-0.000

9113 ul

0.914

1.000

1.000

0.001

-0.000

9133 ul

-1.233

5.815

1.001

8.161

0.001

9313 ul

3.302

5.901

1.028

6.627

0.036

9333 _ul

0.982

1.000

1.000

0.001

-0.000

Table 4-2: S2 criteria for Mixed Sensitivity controller with no delay
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4.3 Alternative H-Infinity methods for control of ill conditioned
plants
We propose several optimizations to the H-Infinity theory for the management of ill

conditioned plants. The first one is the Kwakernaak approach. The second one is the
Christen-Geering approach. The third one is the H-Infinity structured approach.

We describe all of them in the following paragraphs.

4.3.1 Scaling of the plant

As said previously, scaling is fundamental in the H-Infinity theory.

For the CDC problem:

- Scaling of the references: it is not needed because the references are already in the
range [0..1] (fmax = 1)

- Scaling of the measures: it is not needed because the outputs are already in the
range [0..1] (Vmax = 1)

- Scaling between channels: not needed because both channels are in the same
units

- Scaling of the weighted signals: it is needed. See hereafter

We need to scale the transfer function KS,. Our rationale for the choosing of the scaling
is as follows:

- The design specification (S3) requires ‘Control effort: KS, < 50 dB’

- As KS, is equal to K/(1+PK), it reach its maximum value when P is small
- The plant with less gain is g;;; and its minimum singular value is 0.0111
- KS,<50dB= 316;

- K/(1+0.0111K)< 316

- => maximum gain allowed is for K is about 126

With this, we will have a KS, scaled output of 1 for the maximum allowed gain for the
“input to controller” transfer function.

For taking into account the fact that the open loop response to the second channel is
about a 25% greater than for the first channel we take the following scaling.

100 O
GS = G nom
0 126

The factor of 100 used by Skogestad is similar to our scaling and is justified by previous
explanation. Note however that differently to Skogestad that uses directly the new
“normalized” plant; we prefer to keep the plant proposed by the CDC benchmark
“unchanged” and integrating the scaling in the synthetized controller, as explained in
(Figure 4-8) and (Figure 4-9):

Page 98 of 296



The problems of the H-Infinity method when applied to ill-conditioned plants
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Figure 4-8: Scaling for the plant for the design

And after the controller is synthetized we integrate the scaling in the controller:

KfuII

r e y

—»9—» Ksyn —{ X100 Pl G P

Figure 4-9: Integrating the scaling on the controller

4.3.2 Kwakernaak optimization for H-Infinity

This proposal was first described by Kwakernaak in (Kwakernaak, 1993) and further
developed by Cao and Iori in (Cao, 1997).

The idea is to add a pre-filter V to the references that includes the dynamic of the plant
i.e. has the same poles (Figure 4-10). The idea is that a perturbation affecting the plant will
affect in the same way to the pre-filter and both perturbations ‘will cancel each other’.

—] -\/ >

A 4
A
A 4
T
=

f 2

Figure 4-10: H-infinity controller with pre-filter
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It shall be noted however that an unjustified ‘license’ is taken by the KWA approach: the
pre-filter V is designed to have the same denominator as the plant, however, the inputs
to the plant are the actuators (dL, dV) and the inputs to the pre-filter are instead the
references on dXg, dYp.

We can write the TF from the inputs to the outputs of the augmented plant as:

zZ] = W] U= W1 (-VLU—PLL)=-W1VLU—W1PLL
Z2=W2u
v=-Vw-Pu

In matrix form:

z, -WyV -W/P w
z,|=| O W, J
-V -P

That has a space state representation (the demonstration is provided in appendix
8.3.1.2):

A 0 100 B, 0 |
0 A |00 0 B,
-BC, -BC, A 0 |-BD, -BD;
Pu=| O 0 0 A | O B,
DC, -DC,|C, 0 |-DD, -DD,
0 0 [0 C,| O D,
| -c, C, i0 0| -D, -D, |

We can choose typical weights for S and T (described later). For the pre-filter V, the
article (Cao, 1997) proposes to take V= N / D where D is the denominator of the plant.
For the numerator it is proposed to choose a simple weight W, = J * (s + wp)*, where ws is
the bandwidth frequency and n is appropriate for making the inverse of the transfer
function proper.

However, the example proposed in (Cao, 1997) is a SISO system. In a MIMO case as the
distillation column we should take a pre-filter as:

1 {(s +0.005) 0 }

T 78s+1| 0 (s +0.005)

When we attempt such design the results of the control are not acceptable because the
directionality of the original plant has not been taken into account (i.e. the directionality
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of V does not match the directionality of P and so does not match its behavior).

We can introduce directionality of the plant by including Go (the static gain of the plant)
in the pre-filter V

\Y

__ 1 [(s+0.009) 0
- 75s+1 ° 0 (s +0.005)

This improves the response, but the obtained control is not robust to simulations with
time delay.

For taking into account the time delay, we may take the denominator of the nominal
transfer function with delay and a third order zero in order to make the prefilter V
proper.

v _ 1 c (s+0.005)° 0
75s° +8.55% + 0.355 +0.003333  ° 0 (s +0.005)°

The results improve (time delay simulations are now stable) but are not good for the
extreme perturbations on the gains (cases [ki, kof =[0.8 1.2], [1.2 0.8]).

A more straightforward alternative for choosing the pre-filter V is proposed on this
work:

Let’s take a singular value decomposition (SVD) of Go:

[V,S,U] = SVD(Go)

And define the pre-filter as an additive uncertainty A over P, but with the same
directionality that the plant P, i.e.

V=P+V*A*U where Ais [0.2 0; 0 0.2]

An example following this strategy will be presented later.

4.3.3 Christen — Geering approach

Christen and Geering proposed in (Christen, 1997) a variation over the standard
problem. (We will name it “CHGE” approach hereafter). The fundamental point is that the
transfer function S,P (the transfer function from d. to z,, i.e. from disturbances at plant
input to the plant outputs) is weighted. A pre-filter scalar weight Wy is included in the
references (Figure 4-11).
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e
d u

—>Wd—>T—> K O=»] P Wp—>

Figure 4-11: CHGE problem

Note that this approach manages the “a-priori” critic of Maciejowski to the H-Infinity
method: that it does not take into account the open loop plant. In fact the CHGE
approach is weighting S,P: the plant Pis taken into account explicitly.

The transfer matrix form for the augmented plant is:
{zu} - { WT, W,KSW, }{d}
Z, | |WoS,P W,TW, |d,

The following state space representation is proposed by (Christen, 1997). (The
demonstration is provided in appendix 8.3.1.3).

A, 0 0 |0 0 B,]
0 A BC,|0 0 0
0 0 A |B 0 B,
cC, 0 0 |0 0 D,
0 ¢, DC,|O 0 O

0 0 -C, |0 w, O]

Choice of Weight Wd

The reference (Christen, 1997) proposes to take a weight Wy << I. This made that the
second column of transfer matrices (KS, and S,) do not contribute too much to the norm,
so practically we are weighting only T; and S,P. This recommendation will be followed on
our work.

Choice of Weight Wp for SoP

The more important election is the weight for S,P. The reference (Christen, 1997)
proposes to take a weight made by two parts: one part for S, and the other part for P.

For the S, part of W,, the common proposal in the literature is to take a low pass filter:
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We propose a more direct approach using an ‘ideal 2nd order system’
- Choose a 2nd order system that meets the specifications (chose o, and delta)

0 The TF of the system is: Toia = @n2 / (s2+ 2 delta wn S + @0r?)
- Calculate Spia=1-To ia
- Define the weight as the inverse of S, i

Note: A practical point is that usually the algorithm H-infinity implemented in Matlab
works better is the weight has the same number of poles and zeros (is strictly proper).
For this we can add some zeros far from the bandwidth. We can do this simply by
computing S, ia = 1.00001 - To_ia

For the P part of the W), the reference (Christen, 1997) warns about taking the inverse of
P itself because in such case, the controller will include the inverse of P reproducing the
pole-zero cancellation problem. Instead, the article proposes to take the steady gain of P:
Py (=Go).

There are two possible strategies about the choice of Py that are explored now:
- Which P should be chosen for taking is steady gain Po? (e.g., should be taken Py of
Z20x, OF Of g13x, Of g33x...7).
- Or instead, should we take P, from gix (the nominal plant) and add to this
nominal static plant a model of the uncertainty?

Variant 1 for the choice of Po: which static plant to choose from the uncertainty set?

As said, it could be Py for gaox or Po for gisx, etc. (Note that the delay does not play any
role on the steady gain). A possible approach is to take the ‘averaged Po plant’. For
example we could do:

Stepl: Obtain a singular value decomposition for the set of plants: [U, S, V] = svd(POgxx)
- S are the singular values of Py (in a 2 x 2 system, the maximum and minimum
gains for any input),
- Vis made of 2 column vectors that define the inputs for which the maximum and
minimum gains are achieved
- Uis made of 2 column vectors that define the values of the outputs for the inputs
%4

(Note that S and V depend on each plant of the uncertainty set, but U is the same for all
the plants).

Step 2: Then, take the averaged values of V, S and U (by columns)

The exercise with the distillation plant and the Go for the set of plants goox, g11x, gi3x,
231x, g33x Obtains the following results:
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[ -0.6246 -0.7809
AVE 1 07809  0.6246

s _ 1.9877 0
AV T 0.0136

_[-07011  -0.7021
AVG 10,7021  -0.7011

That we can compare with the U, S, V decomposition of the nominal plant gsox:

-0.7809  0.6246

s 1.9721 0
S 0.0139

_[-0.7086 -0.7077
®5 | 0.7077  -0.7066

-0.6246 -0.7809
g223 —

The previous analysis demonstrates that the U, S, V matrices of the ‘averaged P, are
close to the values of Py for goox (the nominal plant). This implies that (at least on the case
of the distillation plant), we can simply take as static gain Pp the one of goox.

Variant 2 for the choice of Po: take Po from go0x and add to this nominal static plant a
uncertainty model

What is proposed is to take the part of the weight for P as the inverse of a multiplicative
perturbation (A) over Po:

Whepary = inv(Po * (1 +A) )

A point still to be decided is what perturbation A shall be taken: for example, we can take
A=[0.20;,00.2]or A=[-0.20;,0-0.2]or A =[-0.20; 00.2]...

Preliminary simulations demonstrate that an obvious election as A = [0.2 0; 0 0.2] may be
not the optimum value.

A more systematic way is proposed:
- Build a set of uncertainties Py * (I + A), where A =[A; 0; O AsJand A; € [-0.2, 0.2]

- Plot the sigma diagrams of this set
- Find the case with maximum singular values and gets its A, Az

Summarizing this paragraph, we propose to choose a weight W, equal to:
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— n 0
2 2
W, = inv(P,@+A)) iny| S TEMSTW, y
0 1- 2 . 2
S° 4+ 20W,S + W,
part (P) part (S,)

Where:

- The left term inv(Po * (1 + A)) is the part or the weight for P and the right term is the
part of the weight for S,

- For the variant 1 (let’s name it ‘CHGE pure’), A = [zero] and Py is the steady gain of
the nominal plant

- For the variant 2, A = [A; 0; O A2] with A;, A2 the values of uncertainty that
maximize the singular values of Pp * (1 +A)

Choice of Weight W, for T;:

The guidelines for the weight for T, proposed in the literature are to select the weight as a
high gain filter with bandwidth a bit greater that the desired bandwidth of the closed loop
system. As T, trends to match the inverse of W,, T, will present a slope after the
bandwidth so achieving a good resistance to unstructured uncertainties and noise at the
plant output.

Note that on MIMO, T;is in general not equal to T,, but in principle they are similar. We
can follow the same strategy for the S, part of W,: choose a weight T; as the inverse of an
ideal system T, .s. The weight needs to be a proper transfer function so we have to add
ZEeros.

Another point shall be taken into account in the CHGE approach, related to the scaling
of the transfer functions. The H-Infinity optimization algorithm assumes that the terms
being weighted have a similar magnitude (if not, only the term with the greater
magnitude contributes significantly to the overall weighted value). Previously we have
introduced a factor similar to 1/P in the weight W,. This means that the TF for W, is
1/Py times smaller than the term for W,.. We should introduce a similar factor in the
weight for W, restoring the situation where both weighted TF contribute equivalently to
the norm.

In the particular problem of the distillation column, however, we cannot introduce as
factor Py itself because as Py is ill conditioned we would pass this ill conditioning to T
Instead, we use a constant diagonal scalar factor ‘A’ in W, equal to the maximum
singular value of Po.

Summarizing, W, is chosen as:
- Take a 2nd order ideal system that meets the specifications (chose ®w, and delta)

- Multiply by a factor ‘A = max(svd(Po))’
- Choose the weight as inv(A * T, ia)
- Include zeros to made the weight proper
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4.3.4 Apkarian structured approach

The theoretical fundamentals of the method have been sketched previously in chapter
3.5.1.2. Now let’s explain the practical approach:

The concept of “structure of the controller” supposes that the controller has a state space
representation as:

X || Ac(@) By (0) | X«

ul| |C.(@ D.@]Y
And the real matrices Ak, Bk, Ck, Dxdepends smoothly on a design parameter 6 € R». The
vector O is referred as the vector of tunable parameters.

Example 1: for a (realizable) PID the tunable parameters are (T, Kp, Kp, Ki) being the
transfer function and space state:

0 0| K
1
C(s) =K, + e RS c)=|0 o] KT
s Ts+1 T <
1 1 Kp+—d
L T |

Example 2: for a decentralized controller, the transfer function and space state is:

AKl BKl

C(s) =

Note how the H-Infinity structured works with a typical example where we want to weight
So, KS, and S,P:
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Figure 4-12: A typical example for the H-infinity Structured
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First, the augment plant (Figure 4-12) is defined as:
- Having as inputs the exogenous signals (i.e. the reference and the disturbances)

- Having as outputs the weighted signals (i.e. the error, the measured outputs and
the control signals)

Then the diagonal augmented plan with weights is formed as:
OutputWeights * P * Inputs Weights

- Inputs weights are a diagonal transfer matrix composed of an identity matrix for
the references (that are not weighted) and Wg.

- Output weights are a diagonal transfer matrix, composed of Wy, an identity matrix
for the measured signals (that are not weighted) and W..

e
r »
Pl \\/ >
S
d A- G S =
> W e —
d P(“)—P
+ W, —>
u

K

n

Figure 4-13: The Structured controller in diagonal view

4.4 CDC Benchmarks results

We will confront here the following controllers for the CDC benchmark:
- Reference u controllers:
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0 The u controller in (Skogestad, 1996)

0 The optimized u controller (Lundstrom, 1999)

0 A ucontroller elaborated from (Balas, 2012)
- The new H-infinity controllers:

0 A H-Infinity Kwakeernaak controller

0 A H-infinity Christeen Geering controller

0 A H-infinity Structured (Apkarian) controller

4.4.1Reference pn controller (SKO96)

We use as a first reference the u controller given in (Skogestad, 1996). We have
synthetized the controller using the Matlab script ‘sec8_124.m’ provided in the reference
(Skogestad, 1996). It shall be noted that the Matlab script uses a filter T=1/(5s+1) on the
reference signal when performing the simulations. This assumption is not part of the
original CDC benchmark problem so we provide here the results without filtering the step
reference.

The number for the criteria S2 is given in the following tables. The rise time is never met
and the cross-coupling is always greater than allowed, in particular for plants gzi3, gi3s.
The steady error limits are also violated but the deviations are in general minor. In
general the control presents to big overshoots.

plant ch | set-point tracking | interaction

Scenario 1

plant  |t=30 |max |[t=100|max [t=100
9223 _u1{0.660(0.930{0.930{0.770(0.057
0113 u1{0.599(0.888|0.888(0.735(0.091
9133 _u1{0.613(0.924|0.924(0.551(0.059
0313 _u1{0.688(0.923|0.923|1.051(0.067
0333_u1{0.699(0.957|0.957{0.826|0.035

Scenario 2

plant  |t=30 |max |[t=100|max [t=100
9223 _u2(0.785(0.987|0.954(0.770(0.056
0113 u2{0.731(0.939|0.927{0.735(0.089
g133_u2(0.818(1.212|0.953{0.948(0.061
0313 _u2{0.740(0.946|0.946|0.631|0.062
g333_u2|0.805(1.052(0.972{0.826|0.034

Scenario 3
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plant (=30 [max [t=100{max |t=100
0223_u3(0.434(0.718(0.406{0.900{0.595
0113_u3(0.420(0.684(0.409|0.857|0.593
0133_u3(0.437(0.734(0.406|0.923|0.595
0313_u3(0.432(0.702(0.406{0.877{0.595
0333_u3(0.426(0.768(0.403|0.962|0.597

Table 4-3: S2 criteria for SKO96 controller

The responses to a Monte Carlo simulation to the scenario 1, 2 and 3 for a set of 25
plants with maximum delay are shown in (Figure 4-14), (Figure 4-15) and (Figure 4-16).

0 10 20 30 40 50 60 70 80 90 100
Time (minutes)

Figure 4-14: SKO96 mu controller response to scel
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Figure 4-15: SKO96 mu controller response to sce2
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Figure 4-16: SKO96 mu controller response to sce3
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The lack of robustness of the design is shown in (Figure 4-17) with big peaks in S,P, To.
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Figure 4-17: SKO96 mu controller SoP and T,

The specification S3 (KS, < 50 dB) is fulfilled. The specification S4 (KS, = 0.6 < 1 for ® >
105 rad/min) is fulfilled (Figure 4-18).
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Figure 4-18: SKO96 mu controller K and KS,
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4.4.2 Second reference pu controller (LUND99)

We use as a second reference the first u controller given in (Lundstrom, 1999)

The results presented in the original article satisfy the criteria of the CDC benchmark.
We have synthetized the controller using the Matlab script ‘sec8_124.m’ provided in the
reference (Skogestad, 1996) with weights of Lundstrom because we are not able to
reproduce exactly the results of the article. (We guest that the article uses also a filter on
the reference. As the CDC benchmark does not allow a filter on the reference, we have
not included it).

The results for the criteria S2 are shown hereafter.

plant ch | set-point tracking | interaction

Scenario 1

plant  |t=30 |max [t=100|max [t=100
9223 _u1{0.850(1.004|1.001{0.595(-0.001
0113 u1{0.773(0.998|0.998(0.583(0.001
9133 _u1{0.691(1.017|1.001|0.482(-0.000
0313 _u1{0.978(1.030{1.000{0.959(-0.001
0333_u1{0.920(1.025|1.000{0.609(0.000

Scenario 2

plant  |t=30 |max [t=100|max [t=100
g223_u2{0.905(1.002|1.000{0.595-0.001
9113 u2{0.856(0.999|0.999(0.583(0.001
g133_u2{1.038(1.170{1.000{0.761{-0.001
0313 _u2{0.753(1.019{1.001{0.523(-0.000
0333_u2(0.949(1.016{1.000{0.610{0.000

Scenario 3
plant  |t=30 |max |t=100|max |[t=100
g223 u3|0.413(0.551|0.400{0.689(0.600
0113_u3(0.419(0.542(0.400{0.679{0.600
g133_u3(0.425(0.558(0.400{0.701{0.600
0313_u3(0.403(0.544(0.400{0.679|0.600
0333 _u3|0.407{0.565|0.400{0.708(0.600

Table 4-4: S2 criteria for the LUND99 controller

This controller presents much better results than previous. The rise time is violated in
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some case but the violation is small except for plant gi33 and gzi13. The maximum is only
violated for gis3 in scenario 2. The stationary error is always fulfilled. The worst behavior
is on the cross-coupling than exceeds the allowed values. Violation is only important for
g313in scenariol.

The responses to a Monte Carlo simulation to the scenario 1, 2 and 3 for a set of 25
plants with maximum delay are shown in (Figure 4-19), (Figure 4-20) and (Figure 4-21):
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Figure 4-19 LUND99 mu controller response to scel
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Figure 4-20 LUND99 mu controller response to sce2
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Figure 4-21: LUND99 mu controller response to sce3
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Note however that the controller does not fulfill the criteria S3 and S4. At high
frequencies the maximum gain allowed is surpassed (Figure 4-22).
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Figure 4-22: LUND99 mu controller K and KS,

The singular values diagram of SoP and T, demonstrate the robustness of the plant (Figure

4-23). The maximum singular value of S,P is always well below the maximum singular
value of T,.
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Figure 4-23: LUND99 mu controller SoP and T,

4.4.3 Third reference p controller (Balas 2012)

This controller is a development by the author elaborated from several ideas and
examples proposed in a course by (Balas, 2012) at the European Space Agency (ESTEC).
The interest of this controller is basically to check the improvement of the Matlab Robust
Control p toolbox routines along last 10 years.

The weighting strategy is unchanged with previous p design. A weight Wy models the
actuators uncertainty with an error of 20% at low frequency and 200% at high frequency.
The weight is taken from (Lundstrom, 1999)

0.2 2555 ++11
W, = 93
0 0o oS+l
2.55+1

A second weight W, is derived from an ideal second order model that fulfills the
specifications:

- @p=10/75 (rad/min) ; delta = 1.0; (‘ten times faster than the open loop’)
A ‘LTI uncertain object’ is created and added to the perturbed plant with:

Delta = ultidyn("Delta®,[2 2]);
GPert = G * (ss(eye(2))+ Delta *WD);
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The system is formed as shown in (Figure 4-24).

e

WS >

|—§Wd—>D
e
i K G

Y |G

v <

\ 4

Pert

Figure 4-24: block diagram with controller Balas 2012

The p toolbox function dksyn() is invoked. The generated controller has 32 states.

Note: The new dksyn() function is able to find the controller in seconds (as opposite with
previous version of u toolbox that can take hours).
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The results for the criteria S2 are shown in the following tables

plant ch | set-point tracking | interaction

Scenario 1
plant  |t=30 |max [t=100|max [t=100
0223 u1]0.852{1.002|1.002|0.573(-0.002
9113 u1|0.779{0.997|0.997|0.575(0.001
0133_u1|0.835{1.025(0.997|0.318|-0.007
0313 u1|0.840{1.130|1.006{1.216{0.003
9333 _u1]0.916{1.009|1.002|0.571{-0.003
Scenario 2
plant  |t=30 |max |[t=100|max |[t=100
0223 u2|0.906{1.001|1.001|0.573(-0.002
0113 u2|0.859(0.998]0.998|0.575(0.001
9133 u2|0.900{1.337|1.005{0.964(0.001
0313 u2|0.895(1.036/0.997|0.334(-0.005
0333 _u2|0.947(1.006|1.001|0.571{-0.003
Scenario 2
plant  |t=30 |max |t=100|max |[t=100
0333 _u2|0.947(1.006|1.001|0.571{-0.003
0223 u3|0.413{0.552|0.399{0.697{0.600
0113 u3|0.419(0.557|0.400{0.704(0.599
9133 u3|0.414(0.587|0.400{0.743(0.600
0313 u3|0.414(0.518]0.399|0.652(0.599
9333 _u3|0.407{0.547]0.399{0.690(0.600

Table 4-5: S2 criteria for the Balas 2012 controller

This controller is quite comparable to the LUND99 controller. The rise time is violated in
some cases but the violation is small except for plant gi33 and gzi13. The maximum is only
violated for gsiz in scenario 1 and giss in scenario 2. The stationary error is always
fulfilled. The worst behavior is on the cross-coupling than exceeds the allowed values.
Violation is only important for gzi13in scenariol.

The responses to a Monte Carlo simulation for the scenario 1 and 2 for a set of 25 plants
with maximum delay are shown in (Figure 4-25), (Figure 4-26) and (Figure 4-27).
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Figure 4-25 Balas 2012 mu controller response to scel
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Figure 4-26 Balas 2012 mu controller response to sce2
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Figure 4-27: Balas 2012 mu controller response to sce3

The specification S3 (KS, < 50 dB) is fulfilled. The specification S4 (KS, = < I for ® > 105
rad/min) is not fulfilled (KS, = 100) (Figure 4-28).
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Figure 4-28: Balas 2012 mu controller KSo
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The singular values diagram of S,P and T, demonstrate the robustness of the plant (Figure

4-29). The maximum singular value of S,P is always well below the maximum singular
value of To.
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Figure 4-29: Balas 2012 mu controller SoP and T,

As summary, the controller LUND99 and the controller Balas2012 controller perform
similarly. The controller LUND99 has 33 states and the controller Balas2012 has 32
states so are almost identical in term of complexity.

A big difference however is the degree of tuning needed. The authors of LUND99
recognize that the controller tuning required a lot of effort (a lot of hours for tuning). The
Balas controller designed in this chapter has good results without requiring extensive
tuning (less than 2-3 hours).

The previous results testimonies the big improvement on the u toolbox in the last years.

4.4.4 H-Infinity Kwakeernaak (KWA) controller

We follow the guidelines proposed before for the selection of weight for S,. We select as
ideal T, system a second order system with:

- ®n = 0.0075; delta = 1.5; (channel 1)
- @ =0.010; delta = 1.5; (channel 2)
- (i.e. the channel 2 is slightly faster)
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s? +0.0225s 0
W._—inyl 8% +0.02255 +5.625¢ - 005
P 0 s® +0.003s
s® +0.003s +0.0001

The literature suggests a high pass filter for the KS, weight (so limiting the control effort
at thigh frequencies). We select:

5s+1
_|10.1s+1
W, = 0 5s5+1

0.1s+1

For the pre-filter V:
- Take a SVD of Go: [V,S,U] = svd(Go)
- Define the filter as an additive uncertainty A over P, but with the same
directionality that the plant P,i.e. V=P + V *A * U, where A is [0.2 0; 0 0.2]

We select as pre-filter V:

VP4 -0.6246 -0.7809(0.2 0 |-0.7066 -0.7077
- -0.7809 0.6246 | 0 0.2] 0.7077 -0.7066

Note that P in the previous expression is not Py (static plan) but the plant itself (g223).
This is required on the Kwakernaak formulation because the representation on space
state proposed assumes that the denominators of V and P are identical.

The results for the criteria S2 are shown in the following tables. In general the control is
quite acceptable. The rise time is generally satisfied. The maximum is generally not
satisfied but the exceedings are small. The cross coupling is generally fulfilled in the
scenario 1 but not in the scenario 2. The control is worst for the plants with ki<> ks (gi33
and gs13) as usual.

plant ch | set-point tracking | interaction

Scenario 1
plant  |t=30 |max |t=100|max |[t=100
0223 u1|1.023(1.165|1.012|0.415(-0.003
0113 u1]0.922(1.159|1.045|0.361(-0.013
0133 u1|1.126{1.268|1.009{0.411(-0.016
g313_u1{0.876{1.095(1.025|0.901|0.008
0333 _u1]1.098(1.174|1.001|0.496{-0.000
Scenario 2
plant  |t=30 |max |[t=100|max [t=100
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0223 u2|1.014{1.040|1.002|0.731{-0.010
0113_u2{0.990(1.038(1.010{0.704|-0.036
0133 u2|0.883(1.412|1.013|1.039(-0.007
0313_u2(1.142(1.172{0.994|0.638|-0.020
0333 _u2|1.031{1.085|1.000{0.861(-0.001
Scenario 3
plant (=30 [max [t=100{max |t=100
0223_u3(0.399(0.575{0.399|0.720|0.600
0113_u3(0.406{0.549(0.396{0.691|0.601
0133 u3|0.390{0.587|0.399|0.737(0.601
0313_u3(0.410{0.563(0.398|0.703|0.599
0333 _u3|0.393(0.678/0.400|0.849{0.600

Table 4-6: S2 criteria for the H-inf KWA controller

The temporal response for a set of 25 Monte Carlo plants for the scenario 1, 2 and 3 is
shown in (Figure 4-30), (Figure 4-31) and (Figure 4-32).
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Figure 4-30: KWA Controller response to scel
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Figure 4-31: KWA Controller response to sce2
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Figure 4-32: KWA Controller response to sce3

The (Figure 4-33) shows however that the criterion S3 is very slightly surpassed at 10
rad/min frequencies. The specification S4 (KS, < I for @ > 105 rad/min) is fulfilled (KS, =
0.37).
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Figure 4-33 KWA controller KS,

The (Figure 4-34) shows the robustness on the control on the low variability of S.P and T,
under disturbances on the actuator’s gain.
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Figure 4-34: KWA SoP and To Perturbed
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The KWA controller has 12 states.

As summary, the optimization KWA improves a lot the results of the H-infinity
Mixed Sensitivity controller.

4.4.5 H-Infinity Christen-Geering (CHGE) controller

We follow the guidelines proposed before for the selection of weight for S,P.

For the S, part we select ideal second order systems with:
- ®n=10/75; delta = 0.9; (channel 1)

- ®n =5/75; delta = 0.9; (channel 2)
- (i.e. we select ideal systems 10 and 5 times faster than the open loop)

For the Py part of the weight, we attempt the two variants proposed previously:

Variant 1: proposed by CHGE, take Py as the steady gain of scaled P nominal (g22«) i.€.

P _ 100 0 | 0.8780 -0.8640
°| 0 126{1.0820 -1.0960

Variant 2: proposed by us, take the weight for P as the inverse of a multiplicative
perturbation (A) over Po, for example:
WP_Part = inU(PO * (1 + A))

And the following method for deciding the Ai values:
- Build a set of uncertainties PO * (1 + A), where

A=[A1 0; 0 Ag] and A; €[-0.2, 0.2]
- Plot the svd() of these uncertainties
- Find the one with maximum singular values and gets its Ai, A>

The selected values are A = [0.1666 0; 0 0.1374]. Note that these values differs from the ‘a
priori’ supposition of A = /0.2 0; 0 0.2] as optimal values.

For the weight W, for Ti: We take the same ideal second order systems that for S.:
- ®n=15/75; delta = 0.9; (channel 1)
- ®n=10/75; delta = 0.9; (channel 2)

- asecond order zero (0.0001 s + 1) has been added to the previous ideal systems to
make the weight proper

As previously said, in the standard H-infinity Mixed Sensitivity problem S,W and T,W are
of the same magnitude. In the CHGE variant, S,P and T; are of different magnitude in a
factor equal to the ‘static gain of P. We have to introduce this factor in the weight for T;
in order to achieve good results of the minimization algorithm.
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A gain equal to the maximum singular value of the nominal plant gi3 has been
introduced in the W, weight.

Summarizing, we take the following weights (expressed in rad/min).

For the variant 1, Ws:
0.13332

1.00001-—; 5 0
szinv(PO)inv s°+0.245+0.1333

0 1.00001 -

0.06672
s? +0.12s+0.06672

For the variant 2, Wp:

. 0.1666 0
W, =inv| P, |1+
P { ( { 0 0.1374DJ

2
1.00001 - 0.1333 0

inv s? +0.24s +0.1333?
2
0.0667

0 1.00001-—; 5
$°+0.125+0.0667

For both variants, W, :

0.2° (1e°s+0.002s +1)
W =inv| 299.84 s? +0.36s +0.022

0

0

0.13332 (le"®s +0.002s +1)
s? +0.24s +0.1333°

The results for the criteria S2 are shown in the following tables. The results of both
variants are shown. In general the behaviors of both variant are very similar, being
variant 2 a bit better (less number of violations). The worst case is gsi3 with a cross-
coupling of 1.317 and 1.289, much greater of the maximum allowed 0.5.

The stationary error of the tracking at t = 100 min is also out of spec in all cases, but the
error is not too big (around 0.05).

Variant 1 (CHGE pure): inv(P0) Variant 2: inv(PO (1 + A)
plant ch | set-point tracking | interaction plant ch | set-point tracking | interaction
Scenario 1 Scenario 1
plant  |t=30 |max |t=100|max [t=100 plant  [t=30 |max (t=100|max |t=100
0223_u1(0.910{1.040{1.037|0.738|-0.100 0223 u1{0.893(1.035(1.035|0.743|-0.087
0113 u1]0.879{1.033|1.033|0.752(-0.071 9113 u1|0.865(1.026|1.026|0.758-0.045
0133 u1]0.532(1.233|1.116|0.634(-0.011 9133 u1{0.521{1.195|1.119|0.636-0.005
0313 u1|1.176{1.269|0.973|1.317(-0.145 9313 ul1|1.155(1.233|0.973|1.289(-0.113
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0333 _u1]0.942(1.049|1.031|0.856{-0.099 0333 _u1{0.923(1.042|1.033|0.856-0.097
Scenario 2 Scenario 2
plant  |t=30 |max |t=100|max |[t=100 plant  [t=30 |max (t=100|max |t=100
0223_u2(0.640(1.081{1.081|0.406|-0.030 g223_u2|0.615(1.070(1.070{0.406|-0.028
g113_u2(0.585(1.057{1.057|0.364|-0.027 g113_u2|0.564(1.036(1.036(0.364|-0.021
0133_u2(1.075(1.163{1.009|0.729|-0.094 9133_u2|1.039(1.112(1.003{0.703|-0.096
0313 u2|0.296(1.117|1.117|0.433(0.022 0313 u2|0.280(1.092|1.092|0.432(0.022
0333_u2(0.695(1.088(1.080{0.480|-0.025 0333_u2|0.665(1.080(1.078{0.479|-0.027
Scenario 3 Scenario 3
plant  |t=30 |max |t=100|max |[t=100 plant  [t=30 |max (t=100|max |t=100
0223_u3(0.420(0.478(0.397|0.608|0.608 g223_u3|0.422(0.479(0.397{0.607|0.607
g113_u3(0.428(0.462(0.397|0.606|0.606 g113_u3|0.429(0.463(0.398(0.604|0.604
0133_u3(0.456(0.498(0.390{0.641|0.601 g133_u3|0.457(0.496(0.390{0.636|0.600
0313_u3(0.395(0.522(0.402|0.647|0.612 g313_u3|0.397(0.522(0.402{0.647|0.610
0333_u3(0.415(0.564(0.397{0.700{0.608 0333_u3|0.417(0.564(0.397{0.699|0.608

Table 4-7: S2 criteria for CHGE controllers

The responses to a Montecarlo simulation (25 plants) with the CHGE variant 2 (variant 1
is very similar) are shown in (Figure 4-35), (Figure 4-36) and (Figure 4-37). It can be appreciated a
fulfillment of raise time for most of the cases, but also a cross-coupling greater than 0.5
in a lot of cases.
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Figure 4-35: CHGE controller response to scel
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Figure 4-36: CHGE controller response to sce2
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Figure 4-37: CHGE controller response to sce3

The specification S3 (KS, < 50 dB) is fulfilled. The specification S4 (KS, < I for ® > 105
rad/min) is also fulfilled (KS, = 0.016) (Figure 4-38).
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Figure 4-38: CHGE controller KS,
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The diagrams of S,P and T, for the set of 25 Monte Carlo plants show the robustness of
the design (Figure 4-39).
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Figure 4-39: CHGE SoP and T,

The following points are noted:
- The CHGE variant made the control robust to the uncertainties in the plant
actuators.

- The controller generated has 14 states (less than half that the p controllers that
has 32-33 states).

- The improved robustness of the CHGE method has as prize the reduced
performances of the nominal plant goox or plants with k; = ko (i.e. plants giix, g33x)-
- The performances for gsi3 are still not satisfactory, in particular for the cross-
coupling
- Efforts to improve the performances of gzi13 have been not satisfactory:
0 Design based on the P for gzi3 (instead of g203 produces results inside specs
for this plant but deterioration of the performances of all the other plants

0 It has been also attempted to introduce a bigger variation of A (for example
instead a 20% a 30%. In particular, allowing a bigger delta value for the
second channel decreased the cross-coupling on gzi3 below 1, but this is at
cost of decreasing the rise time for all the plants

4.4.6 H-Infinity Structured (Apkarian) controller
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We propose in this chapter an H-Infinity Structured controller elaborated from the
example provided in the (Gahinet, 2011), ‘Section V, Distillation Column example. (Note
that the example is also available on Apkarian website as ‘Decoupling Controller for a
Distillation Column’).

We introduce significant modifications in our work:

- Note that the plant proposed in (Gahinet, 2011) is the “normalized” plant of
Skogestad, not the original of the CDC benchmark. In order to be fair in the
comparison with other controllers we use also here the original plant of the CDC
benchmark.

- Note that no time delay is taken into account in the original article. We re-
introduce the time delay as required in the CDC benchmark.: the plant with delay
is more difficult to control.

- Remove of the weight on the noise (as noise not part of the CDC benchmark)

- Introduction on a weight in the actuator control signal

The H-Infinity structured controller allows imposing a structure for the controller. The
structure chosen is a decoupler filter in series with a diagonal PI control, in each input
channel.

Then, the following weighting scheme is designed (Figure 4-40):
- A weight W5, weighting S
- A weight Wy, weighting the disturbance at plant input
- A weight W,, weighting the control signal has been introduced
- The weight W,, related to noise has been removed

A
u, dl
e
> >
Wy w, | [w,
A
SN B S T ) 1 Y
e Ol | D - »O—p| G >
?-‘ PI,

Figure 4-40: Block diagram for the H-infinity Structured controller

The augmented plant is created with the standard Matlab function ‘connect’. The
equations are created as follows.

% Label block 1/0s: Inputs and outputs of the plant
G.InputName = {"L","V"};
G.OutputName = {"yD","yB"};

% Input to the decoupler is the error signal
DM.u = "e"; DM.y = {"yDL","yDV"};
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% Input to each PID are the decoupler
PI_L.u = "yDL"; PI_L.y = "yPL";

PI_V.u = "yDbV"; PI_V.y = "yPV~;

% Error is reference minus output of the plant. Call ref components rD, rB
Suml = sumblk("e = %r - %y", {"rD","rB"}, G.y);

% Input to plant G is sum of disturbance and controller output (PID output)
Sum2 = sumblk("%up = %uc + d*, G.u, [PI_L.y ; PL_V.y]); % disturbances

CLO = connect(G,DM,P1_L,P1_V,Suml,Sum2,
{"rD","rB","d"},{"e","yD","yB","yPL","yPV " });

% We have to build the diagonal as:

% output weights * plant * inputs_weights

% Output weight Is Ws, identity weight for y (eye(2)) and Wu

% Input weight is identity weight for references (eye(2)) and Wd
CLO = blkdiag(Ws, eye(2), Wu) * CLO * blkdiag(eye(2), Wd*eye(2));

Note how the H-Infinity structured toolbox functions works:

First, the augment plant is defined as:
- Having as inputs the exogenous signals {"rD","rB","d"} (i.e. the reference and
the disturbance)
- Having as outputs the weighted signals {"e","yD","yB","yPL","yPV"} (i.e. the
error, the measured outputs and the control signals)

Then the diagonal augmented plan with weights is formed as shown in (Figure 4-41):
OutputWeights * Pa, * InputsWeights

- Inputs weights are a diagonal transfer matrix composed of an identity matrix for
the references (that are not weighted) and Wa.

- Output weights are a diagonal transfer matrix, composed of W,, an identity matrix
for the measured signals (that are not weighted) and W..

e

r | -

—»{ W >

0T T s
d A- G »l | >
> VVd >(O—Pp

A+ W >

| 4,
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PI,

Figure 4-41: The Structured controller in diagonal view
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This is equivalent of weighting a diagonal transfer matrix with diagonal elements:

- WsP (TF r to e)
- SoP Wy (TF d to y)

Pre-selection of gains in decoupler and PIDs

The decoupler proposed in the original article is free. After one iteration of design we
have noted that is better to leave free only the cross-coupled terms (1,2) and (2,1) and
instead fix the terms (1,1) and (2,2) to (0.5, -0.5). The justification is that we want to have
the overall gain provided by the decoupler near to 1. The sign is justified by the sign of
the stationary plant.

Equivalently, we fix the gain term of the PIDs as in the original article. Instead to fix to 1
we fix to 0.8 for the first channel and 1 for the second channel. This mimics the original

gains of the open loop plant (second channel has 25% more gain).

Choice of Weight Ws

We follow the strategy used previously, an ‘ideal 2nd order system’ instead of the original
weight proposed by Apkarian.

- Choose a 2nd order system that meets the specifications (chose ., and delta)
- Toia = a2/ (s2+ 2 delta on s + 0n2)

- Calculate Spia =1—-Toia

- Define the weight as the inverse of S, i

By the physics of the plant we know that the plant has low gain when both inputs
increase or decrease simultaneously. So we introduce a small asymmetry in the weights
making the inputs u; slightly faster than the inputs for u, (because the second channel
of the open loop plant as a 20% more gain).

We take o, = 10/75 for the first channel (i.e. 10 times faster than the open loop
response) and o, = 8/75 for the second channel. For both channel delta = 1.0.

2
1.0001 - 0.1333 0

W, =inv s? +0.2667s +0.1333° i
0.1067

0 1.0001 -
s® +0.2133s + 0.1067°

Choice of Weight W4

The actuators have a 20% uncertainty. This is a multiplicative uncertainty 1*(1+0.2) that
in closed loop evaluates as 1.2 (or 0.8 if uncertainty is -20%). We change static weight
proposed in the original article as:

Page 134 of 296



The problems of the H-Infinity method when applied to ill-conditioned plants

12 0
W, =
0 1.2

Choice of Weight W,

We want to penalize the actuators effort at high frequencies. We chose the standard form
of a weight.

1
S+,
W, =

u

S+ w, A

We choose bandwidth @ = 0.06 rad/min, A = 316 (= 50 dB, max gain allowed for the
actuators). Again we know by the physics of the plant that the plant has low gain when
both inputs increase or decrease simultaneously. So we introduce a small asymmetry in
the parameter M limiting the actuator effort (M = 0.75 for first channel and M = 0.25 for
second channel).

The weights are:

1 1
— S+, —~_5+0.06
M 0 0.75
W o—| ST@A _| s+0.06*0.316
is+a)b is+0.06
0 M 0 0.25
s+w, A s+0.06*0.316

The results for the criteria S2 are shown in the following tables. In general the control is
quite acceptable. The rise time however is generally not satisfied for scenarios 1 and 2.
The maximum is generally not satisfied in scenario 1 but the exceedings are small. The
cross coupling has 10% exceedings in the scenario 1 but greater in the scenario 2. The
control is worst for the plants with ki<> ks (gi133 and gs13) as usual. Scenario 3 is fulfilled
in almost all indicators.

plant ch | set-point tracking | interaction

Scenario 1
plant  |t=30 |max |t=100|max |[t=100
0223 u1]0.802(1.113]1.113|0.533-0.007
9113 u1|0.766{1.096|1.096|0.555(0.072
0133 u1|0.579{1.103|1.103|0.288(0.046
0313 u1|1.046{1.138|1.077|0.907(-0.077
0333 _u1|0.835(1.122|1.117|0.582(-0.058
Scenario 2

plant ch | set-point tracking | interaction
9223 u2|0.616{1.006|1.006|0.594 (-0.089
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9113 u2|0.586(0.944|0.944|0.535(-0.075
0133 u2|0.783(1.116/0.964|0.863(-0.080
9313 u2|0.412{1.062|1.062|0.292(-0.060
0333 _u2|0.646(1.047|1.047|0.659(-0.092
Scenario 3
plant  |t=30 |max |[t=100|max [t=100
0223 _u3(0.421{0.537{0.392|0.682|0.601
0113 u3|0.425(0.490|0.393|0.622(0.595
0133 u3|0.436{0.598|0.393|0.758(0.597
9313 u3|0.404(0.477]0.395|0.606 {0.606
0333 u3|0.417{0.592|0.392|0.751{0.605

Table 4-8: S2 criteria for H-inf Structured controller
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The temporal response for a set of 25 Monte Carlo plants for the scenario 1, 2 and 3 is
shown in (Figure 4-42), (Figure 4-43) and (Figure 4-44).
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Figure 4-42: H-inf structured controller response to scel
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Figure 4-43: H-inf structured controller response to sce2
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Figure 4-44: H-inf structured controller response to sce3

The singular values diagram of S,P and T, demonstrate the robustness of the plant (Figure

4-45). The maximum singular value of S,P is always well below the maximum singular
value of To.
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Figure 4-45: H-inf structured controller SoP and T,
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The specification S3 (KS, < 50 dB) is fulfilled. The specification S4 (KS, < I for ® > 105
rad/ min) is not fulfilled (Figure 4-46). Note that K does not roll-off at higher frequencies.
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Figure 4-46: H-inf structured controller K and KS,

Now we can put in place the flexibility of the H-infinity structured approach. As we know
the structure of the generated controller we can simply add a roll-off filter for making KS,
to roll-off (Figure 4-47). (This could be introduced also as a weight on T,, but we prefer to
introduce it as a design imposed filter demonstrating the ability of tuning the design).

Choosing a roll off filter:

60

Wm" —| S+ 60 60
0

s+60
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Figure 4-47: Block diagram for the H-infinity Structured controller with roll-off term

The specification S4 (KS, = 0.61< 1 for @ > 105 rad/min) is still not fulfilled (KS, = 24)
however we have a control that roll-overs at high frequency (Figure 4-48) (i.e. physically

implementable) with no penalty on the performances (Figure 4-49) and (Figure 4-50). The
controller generated has only 4 states.
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Figure 4-48: H-inf structured controller K and KS, with roll-off filter
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Figure 4-49: H-inf structured controller with roll-off response to sce 1
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4.5 Conclusions of applying H-Infinity to the CDC benchmark

In this chapter several H-infinity controllers have been compared for the CDC
benchmark. For reference these new controllers have been compared with several u
controllers (Skogestad, 1996), (Lundstrom, 1999) and (Balas, 2012). These u controllers
represent well the evolution of u synthesis along the last 15 years.

The conclusion of (Skogestad, 1996) stating that the H-Infinity method is not appropriate
for ill conditioned plants is correct only when referring to the H-infinity Mixed Sensitivity
variant. Other variants of H-infinity provide satisfactory results with ill conditioned
plants.

The variant KWA (Kwakernaak, 1993) was the first optimization proposed to the H-
infinity Mixed Sensitivity for dealing with ill-conditioned plants. It has been
demonstrated that this method as first optimized in (Cao, 1997) and further optimized in
this thesis (including a pre-filter obtained as a multiplicative perturbation over the open
loop plant P) provides a satisfactory control for the benchmark problem. The
performances of this KWA controller are better that the ones of the older u controller and
comparable with the most modern ones of (Lundstrom, 1999) and (Balas, 2012).

It has been also demonstrated that the variant of the H-infinity CHGE proposed by
Christen Geering in (Christen, 1997) can be also used for control of ill-conditioned
plants, achieving results comparable to KWA and the modern u controllers.

Finally it has been demonstrated that the variant of H-infinity Structured proposed by
Apkarian and Gahinet (Gahinet, 2011) as improved in this thesis can be used for control
of ill-conditioned plants, achieving results comparable to KWA and the modern u
controllers.

It can be concluded that H-Infinity is a valid method for the control of ill-
conditioned plants, providing that one of the new optimized variants is adopted.

The following table summarizes the controller performances and complexity:

Controller S1 S2 S3(KSo) | S4 (KS, bis) | Num States Tuning
(Stable) | (performance) effort
u SKO96 OK Worst OK OK 33 High
wLUN99 OK Best FAIL FAIL 33 High
uBALAS 2012 OK Good OK FAIL 32 Medium
H-inf KWA OK Good FAIL OK 12 Medium
H-inf CHGE OK Good OK OK 14 Medium
H-inf Structured OK Good OK OK 4 Low

Table 4-9: Summary of CDC controllers

The advantage of the KWA, CHGE or “H-Infinity Structured” compared with the pu
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controllers are:
- Provides a more automatic methods for the design of the controller (although some
trial and error is unavoidable in the selection of the weights),
- Generate controllers of less order (12-14 states vs. 32-33 of the u controllers)

An additional advantage of the H-infinity structured controllers over all the others is the
ability to select a particular control structure. This has been demonstrated adding a roll-
off term to comply with the specification S4.

After applying the previous methods to the CDC benchmark that is an ‘academic
example of control’ we will proceed to apply it to a real work case: the control of the
VEGA Launcher during first stage.
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5 Application to a real world application: the VEGA
Launcher

On this second part of the thesis we will apply the previous theoretical results to a real
example: the VEGA Launch Vehicle of the European Space Agency. The control of the
Launch Vehicle during the atmospheric phase of flight (first stage) will be attempted and
confronted against the classical controllers implemented in the real Launch Vehicle.

This part of the thesis has the following structure:
- First the VEGA Launcher vehicle is introduced

- Then the problem of controlling the LV during the atmospheric flight in presence
of roll is introduced

- The Physical equations of a Launcher in presence of significant roll rate are
described. A linear model is deduced

- A minimalistic but 6DoF representative simulator named “miniVEGA” is developed
- Finally a comparison of several controls is performed:

0 The previous existing controllers (PID based) are described

0 The proposed new H-Infinity controller is designed and synthetized

5.1 Introduction to the VEGA Launcher

The VEGA LV is the new European Small Launcher developed by the European Space
Agency. It will be the reference European launcher for the market of the ‘small launchers
segment’ in the next decade. It completes the European strategy for independent access
to the space from French Guiana based also in Soyuz for the medium launchers segment
and Ariane 5 for the heavy launchers segment.

The VEGA Launch Vehicle is a 30 meters tall, four stage launcher able to deliver
payloads of up to 1700 kg to low Earth orbits (Figure 5-1). The first 3 stages use SRM (Solid
Rocket Motors) technology. The fourth stage uses a LPS (Liquid Propulsion System)
motor. The LPS motor can be re-ignited several times along the flight. This is remarkable
for a small launcher and made possible to perform multi-payload missions, being each
payload released at a different orbit.

The main benefit of VEGA is its economic design, manufacturing and operation. The
economic design is due to two facts: reusability of components from Ariane 5 and
economic manufacturing, and operation.

The reusability of components already developed and qualified for Ariane 5 reduces the
cost of development (VEGA development cost is estimated to be 1/10th of the Ariane 5
development cost).
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The economic manufacturing and operation is provided by two facts: the single-string
Avionics (i.e. not redundant Avionics except the Safety Subsystem that is redundant) and
the presence of Solid Rocket Motors (SRM) instead of the big Cryogenic Liquid Motor
(named Vulcain) present on Ariane S. In effect, the preparation and operation of a
cryogenic engine during the launch campaign increases enormously the costs. (The
estimated final cost for a VEGA fight it is estimated in the range of 35/40 m€ compared
with 150 m€ of Ariane 5 in figures of year 2012).

The VEGA LV performs its maiden flight the 13t of February 2012. The mission
was a remarkable success with no major problems detected and nominal injection
of the payload into the desired orbit.

A second flight took part on the 7t May 2013. The mission was again an
astounding success with nominal injection of two payload into different orbits.

Third flight (30t May 2014) and fourth flight (11t February 2015) have followed
with success. The fact of having the first flights fully successful is very
remarkable and totally uncommon for a new launcher.

More information can be found at:

http:/ /www.esa.int/Our_Activities/Launchers/Launch_vehicles/Vega2
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Figure 5-1: Schema of the VEGA Launcher
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5.1.1The Avionics of the VEGA Launcher

The VEGA Avionics is made of several subsystems:

GNC Avionics subsystem: in charge of the flight management, navigation,
guidance and control of the Launcher

TLM Avionics subsystem: in charge of sending telemetry on real time to ground for
safety needs and for post flight analyses

Safeguard Subsystem: in charge of the auto destruction or commanded
destruction under Ground command in case of problems

Power subsystem: in charge of providing the power to the avionics equipment’s

Only the GNC Avionics subsystem is of interest here.

The GNC Avionics Subsystem is composed of the following HW equipment:

The OBC (On Board Computer), executing the FPS (Flight Program Software) a
new development specific for VEGA.

The IMU (Inertial Management Unit) also known by IRS (Inertial Reference
System): reused from the Ariane 5 Launcher

The MFU (Multifunction Unit). A new development specific for VEGA. In charge of
converting the digital commands elaborated by the FPS in orders for the following
actuators;

0 Valves of the Reaction Control Thrusters (RCT): used by the Roll Attitude
and Control Subsystem

0 Valves of the Main Engine AVUM: user for switching on / off of the Liquid
Motor engine
0 Pyro charges activation: used for SRM ignitions, separations of stages,
separation of payloads, etc...
0 Electrical orders, dry-loops: are services offered to the payload
The TVCs (Thrust Vector Control). Four TVCs are present, one for each stage. A
new development specific for VEGA. In charge of deflection of the nozzle according
to the digital commands elaborated by the FPS
o Each TVC is made of:
* The Integrated Power and Digital Unit (IPDU): executes the small loop
control (described later)

» Two Electromechanical Actuators (EMA): the physical actuators that
moves the nozzle

The (Figure 5-2) describes how the GNC subsystem operates:
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Figure 5-2: The closed loop of the VEGA Launcher

The GNC subsystem operates on a basic cycle of 40 ms (called major cycle)

- The FPS request to the IMU the navigation information (accelerations in IMU body
frame, velocities in inertial IMU frame, quaternion of the IMU frame with regard
the inertial frame)

- The FPS executes the Guidance, Navigation, Control loop.

0 First the Navigation algorithms are executed. They compute the LV velocity

(0]

(0]

(0]

and attitude based on the raw data provided by the IMU

Then the Guidance navigations are executed. The delta attitude error is
computed as difference between the programmed (reference) attitude and
the measured one. Same for the position and velocity

Then the Control algorithms are computed. The Control algorithms
calculates

» The ‘set point’ commands for the TVC control: the desired deflection
for the active nozzle is transformed to linear elongations for each
EMA actuator

» The open/close commands for the RCT valves of the Roll and Attitude
Control System

By LV controllability reasons, the time from ‘get data to the IRS’ to the
generation of the actuators command is required to be < 12 msec. The rest
of the time inside the major cycle the FPS executes other functionality
(flight management, FDIR, telemetry, etc...)
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The information is acquired from the sensors (IMU) and transmitted to the
actuators electronics through a MIL-STD-1553B bus

The Integrated Power and Digital Unit (IPDU) of the TVC receive the desired EMA
elongations. The TVC SW executes the so called ‘small-loop’ control, elongating
each EMAs up to achieve the desired nozzle deflection, and keeping this elongation

(and so the deflection) in face of disturbances until a new set point position is sent
by the FPS

The torque produced by the deflected nozzle motivates a change of attitude of the
launcher

The IMU senses the new attitude and position, and made it available for the FPS,
that will start a new cycle 40 ms later

It is important to mention the delays that are present due to the digital processing by the
OBC, IMU and TVC computers (the MFU has no digital computer but a FPGA):

The IMU guarantees that the data provided has a maximum ageing of 10 ms

The OBC takes the data from the IMU and produces a new pair of TVC commands
with a deterministic delay of 12 ms

The TVC receives the TVC commands and process them initiating the EMAs
movement in less than 15 ms

The MFU receives the MFU commands and process them commanding the RCT
valves opening - closing in less than 2 ms
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5.1.2The GNC algorithms of the VEGA Launcher

The algorithms are divided on 3 main blocks:
- Navigation (where I am?)
- Guidance (where I should go?)
- Control (how shall I command my actuators to get there?)

The control in turn is divided on two blocks:

-  TVC control: in charge of commanding the TVC and thus the nozzle of the active
stage. Only used when one of the motors is active

- RACS control: in charge of commanding the RCT (Reaction Control Thrusters) for
roll rate control and fine attitude control during the orbital phases

The (Figure 5-3) shows an overview of the dependencies

NAVIGATION GUIDANCE CONTROL
: Angular On Board
Proc quaternion Program —t Sched Tables
quaternion N N

IRS-frame Angular (Geo \—¢
Data centric
frame) Calc Gain Scheduling

Angular [ dTheta

IRS | [ Deviations dpsi
deltaV Proc
Vel w, W' [ Pitch
Data (vel, acc)

RS . Yaw XEMAL
deltance || (LVBody) Calc dy, dy Control XEMA2
Lateral —> BN e
. dz, dz
]: Deviations Pressure
Proc VO, RO Comp
0, h
Coord 1 9 éatefml Angle to
ontro
(Geo- Stroke
centric
On Board frame)
Gravity
Model

Figure 5-3: Simplified schema of the algorithms

It shall be taken into account that the previous figure is very simplified:

- The Flight Management (FM) algorithm is not shown. The FM is in charge of
detection of the events during the flight (ignitions, separations). For example, the
SRM separations are detected when the longitudinal acceleration decreases (due
to SRM thrust exhaustion) under a threshold (mission defined). In addition, the
FM activates or deactivates the other GNC algorithms according to the phase of
the flight.

- The Guidance algorithm is implemented by 2 algorithms along the flight.
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0 An Open Law Guidance is implemented during the atmospheric (P80 and
Z23) phases. On these phases the guidance sends the preprogrammed
attitude commands to the Launcher on an open loop fashion: there is no
intent of correction of the trajectory errors other that limit the lateral
deviations. This is because correcting them would imply a big loss of
energy. The philosophy is first, get out of the lower atmosphere, when out
of the atmosphere, correct the deviations’

0 Both, and Open Loop and a Closed Loop Guidance are implemented during
the Z9 and AVUM phases (orbital phases). The predicted orbit is calculated
and compared against the target orbit. The TVC are commanded to
compensate the deviations

- The RACS control is not shown on the figure

0 During the SRM phases, the role of the RACS is limited. Just the roll rate is
kept under a threshold by using the RCT actuators

0 During the orbital phase, the RACS performs 3D attitude control of the
spacecraft

The approach of the VEGA GNC algorithms is a classical ‘gain scheduling approach’.
Depending of the phase of the flight and as commanded by the Flight Management, the
control strategy is changed, affecting:

- Change of the control strategy (measures selected): example usage or not of lateral
feedback

- Change of filters and PIDs gains
- Usage of open loop or closed loop Guidance

5.1.3The original TVC control of the VEGA Launcher

The (Figure 5-4) describes on more detail the TVC control that is the object to be studied on
the frame of the thesis.
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Figure 5-4: The original TVC control

Note that the control is basically divided on 2 decoupled loops (this is only true on
absence of LV roll, see later discussion). One loop is the control on the Psi plane. The
other loop is the control on the Theta plane.

Note:

Reader shall be aware of the different conventions used for the Euler angles in the
aerospace field. For VEGA Phi is the roll angle (around X), Psi is the yaw angle (around
Y), Theta is the pitch angle (around Z). These conventions are defined formally later.

The Psi control takes as inputs the Psi angle deviation and the Z lateral error and its rate
(as computed by the Guidance).

The theta control takes as inputs the theta angle deviation and the Y lateral error and its
rate (as computed by the Guidance).

First, the Psi error shall be filtered (filter H;), because the signal elaborated by the
Guidance is noisy. This is due to physical limitations of the IRS equipment: the
measured angles and velocities increments are noisy.
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The Psi deviation is also processed by the filter H> that is a derivative filter that in fact
calculates the Psi error rate. These elaborated signals are the input for a classic PD
controller.

The lateral error Z and the lateral error rate Zi: are the inputs of a proportional
controller. A low pass filter Hs is added on the atmospheric phase of flight in order to
decrease the activity due to high frequency lateral deviations that shall be not
compensated at risk of losing too much energy. In fact, this filter made the control on
lateral velocity and position very limited.

The difference between the angular and lateral terms is feed to a third filter, Hs. This
filter is an unstationary notch filter that limits the actuation to a given interval of
frequencies. The mission of this filter is to control the bending modes.

The same applies to the other channel (theta and Y).

The previous processing calculates the required deflections of the nozzle on Psi and Theta
planes. Several operations have still to be performed:

- Compensation of the nozzle pivot point displacement. This is an effect due to the
high pressure that the combustion exercises on the nozzle pivot point (the
pressure is so high that the bottom case of the engine is deformed, so the nozzle
pivot point descends). The compensation is based on a prediction of the SRM
thrust along time. The control algorithm shall elongate the TVC EMAs for
compensating this effect and keep the nozzle ‘aligned’ with the longitudinal axis of
the LV

- Conversion to the TVC EMA actuation plane (rotated 45 deg with regard Psi and
Theta planes)

- Conversion of angles to EMA elongation (linear displacement of each actuator)
Note that these operations shall be applied independently of the control method used.

It shall be taking into account that all the filters and gains are scheduled during the
flight, based on the flight time (for the P80 stage, based on current velocity).

The tuning of such filters to respect the requirements on the entire flight envelope is one of
the most time consuming and difficult tasks of the GNC development. The approach is both,
analytical and empirical. The GNC experts select initial filters and gains based on its
experience that are tuned by means of repetitive Montecarlo simulations.

5.2 VEGA atmospheric flight in presence of roll

5.2.1Background of the roll problem
The VEGA LV is a symmetrical body around the longitudinal axis.

In principle, the system is decoupled with respect the TVC inputs:
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- A deflection on the nozzle on a given plane only changes the orientation of the
launcher on that plane (Figure 5-5).

- This is different from an airplane, where a change on one of the inputs is coupled
with more than one state: for example, increasing the power of the engine of the
airplane not only changes its longitudinal speed, but also its vertical speed
because the increment of velocity increments the lift (making the airplane to
climb)

2. LV rotates
strictly on the

1. Nozzle deflects
on the pitch plane

<L’.J
-
il
il
BESa
m@r}h
<—

Figure 5-5: No coupling in absence of roll

A decoupled system is less interesting for the modern control techniques because a
classical SISO approach ‘a loop at a time’ can be adopted with good results.

This approach (a loop at a time) was the first originally considered for the design of the
VEGA LV Thrust Vector Control. The control on the pitch and yaw planes were
considered decoupled, and each channel was designed separately.

In an ideal flight, the launcher does not rotate. (In small missiles, auto-rotation can be
induced for improving the stability, but this is not the case for a big vehicle as a
launcher). But in a real flight, an amount of roll rate will be present.

The causes of roll have been modeled and studied in detail in (Cruciani, 2008)
. These causes are:
- Roll torque induced by geometrical imperfections

0 Imperfections on the distribution of the propellant inside the SRM case.
This made the COG not aligned in the longitudinal axis
0 Imperfections on the alignment of the nozzle and the longitudinal axis

0 As result, the SRM thrust axis, the LV longitudinal axis and the COG will
be not totally aligned

- Roll torque induced by the combustion

0 Due to the internal dynamics of the combustion flux and not symmetrical
erosion of the nozzle

- Aerodynamics and winds: the LV is not totally symmetrical due to the presence of
the ‘raceways’ (external conducts for the harness). The wind induces an
aerodynamic roll when interacts with these protuberances

The most important of the previous causes is the geometrical imperfections. A
misalignment of the COG of several centimeters is able to product a torque of thousands
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of newtons. These imperfections depend on the manufacturing process of the launcher
and can be reduced by strict quality control but never removed.

Under the presence of roll rate, the system becomes coupled. This can be explained
intuitively as follows: if we need to change the pitch angle (and only the pitch angle), we
command the actuator EMA-i for doing this. If an amount of roll is present, the deflection
takes place with some delay (the accumulated of the digital delay due to the computers
and the physical delay associated to the EMA elongation). As the LV is rotating, the order
will be executed with the actuator rotated from the original position, so giving a main
contribution to change the pitch but also a small contribution to the yaw axis.

The VEGA LV control is required to be robust to roll rates as high as 45 deg/s
during the first stage (if roll rate is greater than 90 deg/s, the IMU would be out of its
qualification domain and disaster may occur).

Note:

Even if high roll rates are needed to destabilize the launcher, the effect is in general
undesirable for two reasons:

First reason is that stability margins are decreased under high roll rate. Even if the high
roll rate would not de-stabilize the launcher a wind gust in such moment could create
problems.

The second reason is a lesson learned from the Ariane 5 second flight. A roll rate greater
than expected was present. In principle, the roll rate was under the limits tolerated by
the GNC but created a secondary effect: the liquid propellant accumulated against
lateral walls of the tank propellant. The sensor that measured the amount of propellant
was located in the center of the tank. So it provided to the central computer
underestimated measures of available propellant. As result, the On Board SW decided to
shut down the main engine when in fact there was still propellant to complete the
mission. The result was a high degradation of the orbit (orbit was too low).

Note:

During the first flight the roll during the P80 stage was minor than 10 deg/s. This can
explained by low geometrical imperfections and low winds found. Of course, it is not
guaranteed that this value is not surpassed in successive flights.

The coupling under the presence of a roll rate has been taken into account in VEGA
design as follows:

- Studies were made for the characterization of the problem, refer to (Roux, 2007).

- The SISO approach has been kept, but a gyroscopic compensation term has been
introduced. This approach is described later.
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In order to limit the roll rate the control strategy was changed in VEGA. Note that the
design team faced a difficult trade-off:

- If a low roll rate is to be achieved during atmospheric flight, powerful RCTs
actuators are required to limit the roll rate. But powerful RCT are a disadvantage
during the orbital phases, where small thrust pulses are required to achieve a fine
orientation of the payload. Basically a powerful RCT is imprecise and vice versa.

- Adding new actuators— i.e. a set of power but low precision RCTs for the
atmospheric flight and a second set of small but high precision RCTs for the
orbital phases was estimated prohibitive on term of complexity, weight and costs

The alternative chosen by the VEGA designers is that only the roll rate is to be limited
(i.e. the RCT actuators only acts when the roll rate is over a threshold). There is no
attempt to control the roll angle. Note also that due to the low torque achievable with the
implemented RCT when compared to the huge LV inertia of the vehicle during the first
stage it is not possible to keep a roll rate near to zero. Instead a roll rate threshold that
increases along the stage and reach about 45 deg/s is defined.
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5.2.2The updated TVC control with roll compensation

The control strategy was modified by introducing a gyroscopic compensation term (Figure
5-6). This term computes the angular rates from the quaternion (elaborated by the
Navigation algorithms). With the angular rate and a gain a compensation factor is
calculated for each channel.
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Figure 5-6: TVC control with gyroscopic compensation

The introduction of the gyroscopic compensation requires the inclusion of a new
derivative filter H5. This HS filter computes the derivative of the quaternion (the IMU
does not provide angular velocities).

The angular velocity is obtained from the quaternion and quaternion rate as follows. The
quaternion rate is obtained with a derivative filter (HS filter) from the quaternion.

W= qflql
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And then:
p=2.0*q(2)
q=2.0*q(3)
r=2.0 *q(4)

Finally, the compensation is calculated as:
ThetaGyro = KGyro *p *q
PsiGyro = - KGyro *p *r

Also the gain KGyro that shall be scheduled along the flight based on the flight time.

The gyroscopic compensation method has several disadvantages:

- It is based on a nominal inertia model and can produce more problems that
benefits if during the flight the real inertia differs significantly from the model.

- Even if gyroscopic compensation is perfect it will cancel only the roll coupling in
the rotational dynamics and not on the translational dynamics. This limitation is
intrinsic to the method.

- The use of the gyroscopic compensation implies a new set of gains and filters that
shall be tuned adding complexity and work

5.3 Physical Equations of the VEGA Launcher

5.3.1 Reference Frames and Conventions
5.3.1.1 Reference Frames

There are a lot of different reference frames defined for the VEGA Launcher. We will
define in this work some of them but for the scope of this thesis we will work only with
three of them.

LV Body Reference Frame
It is a non-inertial frame, fixed to the Launch Vehicle (Figure 5-7).

Axis X is parallel to LV longitudinal Axis positive pointing versus the tip of the rocket.
Axis Z vs. RCT cluster 1 (EMA 1 is on +Z).
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Figure 5-7: LV Body frame

The (Figure 5-8) details the position of the thrusters (the body frame is displayed close to
the thrusters just for clarity).
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CLUSTER1
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Figure 5-8: View of the RTCs

The (Figure 5-9) details the position of the EMAs.
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EMAZ

Figure 5-9: Position of the EMA actuators
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Initial Starting Reference Frame

It is an inertial RF. Axis Y is aligned with the longitudinal LV Axis (i.e. Y is aligned with
the local vertical). X is in the launch azimuth axis (roughly the orbit inclination). Z
completes a right handed axis. Origin is at Kourou launch pad (Figure 5-10).

Figure 5-10: LV Initial Starting reference frame

Initial Starting Geocentric RF:

It is an inertial RF, parallel to previous but with origin in the Earth Center.

(Real) Navigation Reference Frame

In the real Launcher the inertial Navigation Reference frame has origin in the IMU
equipment. The orientation is the same that the Initial Starting Reference frame. This
frame is set when the IMU is configured in ‘flight mode’ 2 seconds before the Launch.

In the scope of this thesis we will consider just that this frame is inertial and has some
initial known position (see next paragraph).

Trajectory Reference Frame

It is a non-inertial frame that moves along the ideal trajectory, being X tangent to the
trajectory and Z parallel to local horizon.

Other Reference Frames
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More frames are used for the computation of the orbit: the Orbital basic Frame, the
Sidereal frame, etc. These are used only for long term guidance and are of no interest
here.

5.3.1.2 Simplified Reference Frames

In spite of all the previous frames we only need to consider 3 frames when working with
the short term dynamics (attitude control) that is the one addressed in this thesis:

- The Navigation reference frame (Fy). Considered full inertial in a given instant
along the trajectory.

- The Guidance reference frame (Fg). Rotates with the vehicle (Yo parallel to Yg, (i.e.
the Guidance frame see a roll angle zero and a roll rate zero). Plane YZg remains
parallel with the plane YZy inertial (i.e. in some figured sense the plane YZg
remains inertial)

- Body reference frame (Fg). Attached to the vehicle and moves with it (not inertial)
In an initial instant we consider the origin of the 3 frames coincides and are aligned.

The (Figure 5-11) shows the 3 frames the launch vehicle. (Warning: for clarity in the figures
the 3 axis do not have the same origin).

Note that:

- Yg is parallel to Ys (i.e. guidance frame rotates with body frame and launch
vehicle)

- Xg remains parallel to Xy (plane YZg remains parallel with the plane YZy)
- X, Zp are not parallel to Xg, Zc.

0 The pitch angle is the angle around Zg between Xg and Xg

0 The yaw angle is the angle around Yq between Zg and Zg
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Figure 5-11: Navigation, Guidance and Body RFs

The (Figure 5-12) shows another perspective for clarifications purposes:
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Figure 5-12: Navigation, Guidance and Body RFs (2)

5.3.1.3 Angle conventions

The Euler convention in VEGA is: for conversion from Navigation (inertial) to LV Body RF:
- First rotation about Zy (theta)
- Second rotation about Yg (yaw)
- Third rotation about Xg (phi)

So Navigation (inertial) to LV body RF is defined in order (pitch, yaw, roll).
Conversely, LV Body to Navigation is defined in order (roll, yaw, pitch).

The sign of rotation is defined by the “right hand rule”.

5.3.2Description of the forces and momentums acting on the LV

5.3.2.1 Aerodynamics forces and momentums

The flight of the LV through the atmosphere generates aerodynamics forces and torques.
These effects are only significant during the P80 phase and begin of the Z23 phase. At
higher altitudes the low density of the atmosphere made aerodynamics contributions
negligible.

The aerodynamics forces are obtained as empirical laws function of:
- The square of the modulus of the velocity
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- The reference surface (average surface normal to the velocity vector)

- The aerodynamic coefficients CN, function of the angle of attack and the Mach
number

- The Centre of Pressure CP point, also function of the angle of attack and the Mach
number

- The air density

For a launch vehicle as VEGA without aerodynamic surfaces and when the vehicle
follows a gravity turn maneuver (explained later) the aerodynamics forces do not create
lift but only drag.

The aerodynamics forces act in the Centre of Pressure CP point. The aerodynamics
momentums depend on the relative position of the CP and the COG.

The coordinates of the CP varies along flight. The position is calculated extracted from
tabulated tables extracted from the wind tunnel tests. The position of the COG also
varies during flight because the propellant mass is being consumed. For the VEGA LV
the COG is always behind the CP.

The air density is tabulated and defined empirically in function of the altitude.

The angular momentum due to aerodynamics is composed of two terms:
- Angular moments due to the aerodynamics forces
- Pure aerodynamic roll

5.3.2.2 Propulsive forces and momentums

The propulsive forces are due to the burning of the propellant in the combustion
chamber. These forces act in the Pivot Point of the nozzle (PP). If the nozzle is aligned
with the LV longitudinal axis (X axis), the propulsive force is aligned to the LV
longitudinal axis. The nozzle can be rotated in the XY or XZ planes. When the nozzle
rotates the propulsive force is not aligned with the LV longitudinal axis and creates a
torque. This is the main way to control the LV trajectory. See (Figure 5-13) and (Figure 5-14).

It shall be noted that by definition the torque due to a propulsion force has the opposite
sign to the torque due to an aerodynamic force of the same sign. This is due to the fact
that the torque force acts in the PP (pivot point) that is behind the COG. Instead the
aerodynamics force acts in the CP (center of pressure) that is ahead of the COG.
Example, a propulsive force with Z component negative and an aerodynamic force with Z
component negative will provoke a torque with different sign (i.e. made the vehicle rotate
along Y axis on opposite senses).
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Figure 5-13: Propulsive and aerodynamics forces in XZ (yaw) plane
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Figure 5-14: Propulsive and aerodynamics forces in XY (pitch plane)

The propulsive force varies along the time. The SRM for the first stage has the typical
profile as shown in (Figure 5-15). (The duration of the first stage is about 115 seconds).

a Thrust

A 4

time (sec)

Figure 5-15: Thrust profile for first stage
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The thrust increases very fast in the first seconds of burning, then reaches a maximum
and decreases to a value were remains almost constant. At the end of the combustion the
thrust decreases very fast and finishes with a slow decrease called the “tail-off”. The SRM
thrust profile depends on the propellant chemical characteristics and the layout of the
propellant inside the stage. In fact the profiles are different for the second and third
stages.

5.3.2.3 Nozzle torque

The P80 nozzle has a significant mass and inertia, although it is much minor that the
“LV Total Mass” during the first stage.

However in the tail-off the relation “Nozzle Mass” to “LV Total Mass” increases (as “LV
Total Mass” decreases). Also the TVC is TVC is commanded with higher angles during the
tail-off in order to compensate the lack of thrust.

As this work refers mainly to the region of maximum dynamic pressure (t = 55 seconds)
where the relation “Nozzle Mass” to “LV Total Mass” is small, the nozzle torque has not
been modeled in miniVEGA.

5.3.2.4 Gravity force

The Earth Gravity field is function exclusively of the position with regard the Earth
center. As the Earth is not a perfect sphere, the gravity on the surface depends on the
concrete latitude and longitude.

The applicable model to VEGA is the WGS-84.

During the first stage the LV follows a “Gravity turn” (or zero-lift) maneuver. This is a
trajectory where the LV uses the gravity force for changing slowly the trajectory from the
vertical to the desired inclination. The utility of the gravity turn is double: first by using
the gravity instead of deflecting the nozzle all the thrust is dedicated to increase the
longitudinal velocity. Second, the no deflection of the nozzle allows to flight with nearly
zero angle of attack minimizing the structural loads.

The gravity is used for changing the trajectory but it can be demonstrated that for steady
changes of the flight path angle the effect on the LV acceleration is minor. A
demonstration is given in the appendix 8.4.1.

Of course, this approximation is only valid for the atmospheric phase, for small time
periods and in the scope of short term attitude control (but this is indeed the scope of
this thesis).

5.3.3 Non-linear equations (6DoF rigid body)
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We first recall the problem of the rotational and translational dynamics of a rigid body
with six degrees of freedom when observed from an inertial reference frame.

5.3.3.1 Need of the transport theorem

Suppose a rocket that is rotating with regard a fixed frame. Let’s define a body frame Fg
attached to the rocket. Let’s define an external frame F;. Fgis rotating with regard F; with
an angular velocity o (Figure 5-16).

Figure 5-16: Inertial and rotating frames

Rc is the position of the center of mass of the rocket in Fi.
Ry is the position of the tip (nose) in Fg.

We want to compute the acceleration and torque of the tip of the nose in Frassuming we
know it in body frame. We must be careful: the Newton equations are valid only in
inertial reference frames.

d'v
F, =ma= mE ONLY in inertial frame!

However, we deduce the expression of the acting forces usually in body frame. Any of the
following would be incorrect:
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| B
FB;tmﬂ or F, ;tmd v
dt dt

We have to apply the ‘Transport Theorem’ that relates any vector in inertial frame
knowing it in body frame (where it is supposed that the body frame is rotating wrt the
inertial frame). See appendix 8.4.2 for a demonstration of the Transport theorem. For
example the expression that relates inertial velocity with body velocity is:

d'r d°r .
T:T'Fa)mnl @ Fing)

The transport theorem is used extensively on the following sections.

5.3.3.2 Rotational equation

The angular momentum L is given by:
L=lw

Let’s assume we take a frame Fp with origin at the center of mass of the body. In this
reference frame the inertia value does not change. Let’s assume also a constant mass.

B
dd—t|=0, il’lFB

B B B B B
d°L_d®(le) _d°() ., d%@)_,, d°(@)
dt dt dt dt dt

The Torque T is the temporal derivative of the angular momentum. We can express the
Torque T in an inertial reference system F; knowing it in body applying the transport
theorem:

M' = dld(t")= dz(t")m@l_: I%(tw)+a)®(la))

This is the general form of the rotational dynamics.

Let’s now take the body frame such that their axes are oriented in the principal axis of
the body. By doing this the inertia matrix in body reference frame becomes a diagonal
matrix. With this choice of orientation of the body frame we can obtain the Euler
Equations of rotational motion:

4*(@)

M'=1 +0®(lo)
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M, I, 0 0 J @, I, 0 0 D,
M, =0 I, 0 u @, | |[to®| 0 I 0 @,
M, 0 0 I, @, 0 0 I, @,
M, I, 0 O J @, I o, 0 0
M, =10 I, O 7 a,|l[+to® 0 I o, 0
M, 0 0 I, @, 0 0 I o,
Developing the vector product:
i J k o l,0 -0l 0,
@, o, o, |=|- (a)xlua)z -l o
lo, 1 o I,0, ol o -0l o
We arrive to the Euler rotational equation:
M. 0 0 o\ [,-1, )0
d
M, |=|0 I, 0 A (I.-1,)00, (Eq 5-1)
M, | |0 o0 1, o |) |1, -1, 00,

The equation is coupled and not linear. In general the equation can be solved analytically
only if some simplifications are assumed:

- Inertia varies slowly
- Mass varies slowly
- Roll rate is constant

5.3.3.3 Translational equation (Tsiolkovsky formula)

The translational equation for a 3DOF rocket is the Tsiolkovsky formula. Consider a
rocket that is exhausting propellant (Figure 5-17):

El
<
2 )
v
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t = At

<
Epo
v

V + AV

Figure 5-17: Deduction of Tsiolkovsky formula

In a inertial frame of an external observer, at t = 0, the momentum is
P,=(m+Am)v

And att =0 + At is,
P=m(v+Av) +Am * v,

Where v. is the exhaust velocity of the particles in the inertial frame

We can express Ve in the body frame as vep = Ve - Vv
P=m(v+Av) +Am * (Vep + V)

P,—-Pr=m({v+Av)+Am * (vep + V) — (M + Am) v) =
=mAv + Am Ve

Then, taking the limit
F— -1 P 2 - I)l
EoAts0 A

Having the translational formula:

DF, =m@+d—mv¢
de dt

The Tsiolkovsky formula is useful when computing the orbit of the rocket. However when
we are studying the control of the LV as a 6DoF body (short term attitude dynamics) we
are not interested on the longitudinal dynamics (X axis). We cannot control the thrust
level but only control the LV attitude by deflecting the nozzle. We also consider that the
mass and inertia are constant (or change very slow) in the time interval considered.

5.3.3.4 Translational equation

We have seen that the Transport theorem relates the velocity of a point in an inertial
frame knowing the velocity on a body frame.
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L dr_dr
'odt dt

+odry,

We apply the transport theorem again for computing the acceleration of a point in the
inertial frame:

d'v,
a, =—-="
dt
Substituting previous expression for vy we have:

B
d'(ddtr+a)®r3]

! dt

Applying derivative of a sum:

d’ LBr
dt +d'(a)®rB)

dt dt

a, =

Applying the transport rule to each term:

2B B B
a, =[d r+a)®d er{d (w®r5)+w®(w®rB)J

dt dt dt

2B B B 5
a - d r+a)®d r 4 d (a))®r8+a)®u +(a)®(a)®l’3))
dt dt dt at

We arrive to the general formula:

2B B B
:d r+2w®d r+d 1)

o e r, +(0®(0er,)) (Eq5-2)

a

That says that the acceleration that an inertial observer sees in a point of the body
subject to rotation and acceleration is composed of the following four terms:

Term 1: is the usual expression for the acceleration (the one an observer attached to the
body frame would see)

B
Term 2: is the Coriolis term (20)@%}

This term is due to the fact that the rotating axis is moving.
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E.g. suppose a free particle is thrown from the center of a disk that is rotating (we
suppose no friction). From the point of view of the inertial observer, the particle follows a
straight line (no acceleration). From the point of view of an observer attached to the disk
the particle moves away from the axis (so is accelerating).

B
Term 3: is the variable angular velocity (dd—ta)(@ rB}

This term only exist if the angular velocity of the rotating frame is changing (increasing
or decreasing)

Term 4: is the centrifugal force (a)® (a)® M ))

5.3.4 Derivation and solution of the Linear equations for a rocket

In this chapter we apply the previous general results to the specific case of a rocket. It is
considered in this thesis that the rocket is a rigid body.

5.3.4.1 Solution of the Rotational equation

We start by the general Euler equation (Eq 5-1) in presence of external torques derived in
5.3.3.2:

d
Ixx_a)x
MEX ((:Ijt (I z Iyy ya)z
Z MEy = Iyyaa)y + (Ixx_lzz)a)xa)z
MEZ IZZEO)Z (Iyy - I>(x)0‘)xa)y
L Tdt "

As seen in chapter 5.3.2, the external torque is due to aerodynamics and propulsion.

Deduction of propulsive torques

The propulsive force in body axis is the Thrust as deflected by the nozzle in theta and psi
planes:

Foropx =T €0S(3,, )cos(5,)
FpropY =T COS(ﬁ\y )Sin( 9)
FPropZ =-T Sin(ﬂq’ )COS( 19)

The propulsive torque applies at nozzle pivot point (rep). The torque is:
M Prop — (rPP — leoc )® FPROP
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If we consider that rpp is behind of the rcoc and that a positive propulsive force creates a
torque in opposed sense to a positive aerodynamic force. If we consider the arm of the
torque from rcoc to repwe have instead to consider:

M Prop — _<rcoe —Iep )® FPROP

Let’s name

r Xpp — Xcog
fy 1= Yer = Yeos
r, Zpp — Zcog

Making the vector product and taken only moments around y and z, we have:

M, =—(r,F, -1,F,)=—r,(=Tsin(B, )cos(8, ) +r,(T cos(B, )cos(B,))
M, =r,F, —r,F, =r,(T cos(B, )sin(B,))-r, (T cos(B, )cos(5,))

Now let’s assume that we have small angles for the actuators. In this case we can
approximate:

Due the long shape of the LV the distance between the X coordinates of the rcoc and the
rep (i.e. the distance along the longitudinal axis) is of the order of meters. It is much
bigger that the distance between the Y, Z coordinates of COG and PP that is of the order
of centimeters. This is because the LV mass is distributed almost symmetrically in the
plane normal to the X axis.

(re >>ry) and (re >> 1)

This allows the simplification of the equations as follows:

M, ~—r, (=T sin(8, J1))+r, (T @)1))
M, ~r,(T@)sin(B,))-r,(T(1)2)

Q

My (XPP_XCOG)TﬁW
M, = (X

( pp ~ Xcoc )Tﬁg

Q

Or if we consider rcog to rep:
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M, = _(Xcoe — Xpp )Tﬁ\}f

(Eq 5-3)
M, ~ _(XCOG — Xpp )Tﬂs

Deduction of aerodynamics torques

The empiric laws for the aerodynamics forces in body frame are:

1
I:Aerox = _E VZSRCX(a,M)

F _Loves.c

Aeroy — 2

I:Aeroz = _% VZSRC

N(a,M) ycomp

N (a,M)Zcomp

Being:
o = air density (function of the altitude)
V = modulus of the relative velocity (taking into account wind effects)
a = angle of attack
M = Mach number
Sr = reference surface (roughly the surface of the transversal area)
Cx = axial coefficient (function of the angle of attack and the Mach number)
Cvy = normal coefficient (function of the angle of attack and the Mach number)

_ Vy _ Vy

ycomp - 5 2 V_
Vy +V, T

b v = V_Z

The minus sign is justified because the aerodynamics forces in a gravity turn trajectory
are drag forces, i.e. in opposite direction that the velocity of the LV.

The Yeomp, Zcomp are simply the normalization of the lateral velocities with regard the
modulus of the total transversal velocities.

As said the aerodynamic coefficients depends on the angle of attack on each plane and
the Mach number and are based in empirical measures (wind tunnel tests). However, in
a first approximation the dependency can be expressed as product of a constant CN
(value of the C(a,M) coefficient at that Mach and angle) by the angle of attack.

CN(a,M)=C,a

The dynamic pressure is defined as:

1
pdyn = Epv 2
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With these simplifications we have:

FAerox = pdynSRCX (aM)
Vy
I:Aeroy == pdynSRCN ag—
Ve
Vv
F

_ z
Aeroz — pdynSRCN az// V_

T

The general expression for the aerodynamic torques is:
M Aero — (rCP - rCOG )® I:Aero

Because the aerodynamics forces acts on the CP (center of pressures) and creates a
torque that rotates the LV around the COG.

Let’s name

Iy Xep — Xcoo
ry =| Yer = Ycos
I, Zep — Zeog

Making the vector product and taken only moments around y and z, we have:

M y — _(erz - Fx): _rx[_ pdynSRCNaw z_zj_'_ r, (_ pdynSRCX)

T

T

Vy
Mz = ery _rny =Ll - pdynSRCNagv_ - ry(_ pdynSRCX)

Again, due the long shape of the LV the distance between the X coordinates of the rcoc
and the rpp and symmetry on planes perpendicular to X axis we take:

(re >>ry) and (re >> 1)

This allows neglecting the second terms in r, and r, and the simplification of the
equations as follows:

\Y
M y = (XCP — Xcos { pdynSRCNav/ V_ZJ
.

(Eq 5-4)
vy
M, = (XCP — Xcos )(_ pdynSRCN Uy V_J

T

Putting all together
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Coming back to the Euler equation (Eq 5-1):

d
Mo + M Sl (P
Propx + Aerox d z lyy ya)z
MPropy + I\/lAeroy = Iyy aa)y + (Ixx - Izz )a)xwz
M Propz + M Aeroz | d (I Val I XX )a)xa)y
z aa)z
And naming:
W, P
W, | = q
w, r
We have
MPropx +MAerox Ixxp (I z I}’Y)qr

MPropy+MAeroy = Iyyq + (Ixx_lzz)pr
M +M Aeroz Izzr (I Va Ixx)pq

Propz

We use now the previously deduced propulsion torque (Eq5-3) :
M y = _(Xcoe — Xpp )Tﬂ\y
M, = _(Xcoe — Xpp )Tﬁs

And the aerodynamics torque (Eq 5-4):

\Y
M y = (XCP — Xcos )( pdynSRCNay/ V_ZJ

T

Vy
M, :(XCP —Xcog | — pdynSRCNagv_

T

By substitution of all previous expressions into the Euler equation:

\'} .
(_ (Xcoe — Xpp )-l-ﬂ‘P)+|:(XCP - Xcoe)(pdynSRCNav/ V_ZH = Iyyq+(| T Izz)pr

T

v .
(_ (XCOG — Xpp )-I-ﬁ3)+|:(XCP — Xcoe {_ pdynSRCNaé} V_yﬂ = Izzr+(| w o Ixx)pq

T

We arrive to:
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T

(_ (Xcoe — Xpp )-I-ﬁ‘P)+|:(XCP - Xcoe)(pdynSRCNaw X_ZH_(IM - Izz)pr = Iyyq
( ( Xcos — PP)TﬂB) |:( cp COG{ pdynS C 0‘9\\: J:| (Iyy_lxx)pq=|zzr

We want to express the previous equation only in variables on the guidance reference
frame removing the dependence on the angles of attack on body frame. The angle of
attack expressed on inertial variables is given by the following formula (see
demonstration in appendix 8.4.3) where 6 and yg are the orientation of the body frame
in the inertial frame:

Y

oy =-9; +V—
o
Olw —WG +\7

Substituting in the previous equation:

I y{q = (_ (Xcoe — Xpp )Tﬂ\},)

Vv
+ (XCP COG)[pdynS Cy Zj v
Vi ]

v Z
+ (X -X p nS C _Zj __(Ixx_lzz)pr
cP COG)( dynPRN v, _V

I,r= (_ (Xcoe — Xpp )Tﬁs)

+ (XCP coe)[ pdynS Cy J (-9)

I Iy
+ (XCP coe){ pdynS C j (+\7J_(Iyy_lxx)pq
- T -

The following simplifications are usually taken:

- If vy and v, are of similar magnitude, we can say (with an error of 1 over square
root of 2') that

v, v, 1
2 2 2

\/vy +V; \/ 2v,

- By symmetry of the LV, the transversal inertia moments are similar. We can

substitute Iyy and Y., by Ir
I, ~1

Q
|

vV, =V, >

zz’l :IT’IZZ:IT
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- Assuming that the roll rate is constant

P= P,

So we have:

l.q= ( (COG PP)TﬂW)
+[(XCP COG (pdyns C )}V

+[(XCP coe (pdyns Cy )] "’ - pl’

V4
v
r= ( ( Xcoc ~ Xpp )Tﬂg)
[( — Xcos )( pdynSRCN )k—S)
(e

o e K Pon G |0 1)

IT

The following definitions are commonly used in the aerospace field:

Ae = (XCP Xcoe )(pdynSRCN)
T
T
K=

Xcoe ~ Xpp )
IT

A= IT _Ixx -1— Ixx

I, I
Ag is the stability parameter. It is defined as positive. K; is the controllability parameter.

Finally we obtain a more simplified expression of the Euler rotational equation that
relates the angular acceleration in function of the current angular rates, the LV attitude
(aerodynamics) and the actuator positions:

(K, B, )+ Ay + (%jz +2p,r

= (K, 2, )+ A9 (Aﬁjv Apyd

(Eq 5-5)

Note: by symmetry of the Launcher, we know that under a positive turn of 90 deg on the
roll axis, the dynamics shall be identical (i.e. the selection of the Y and Z axis is just a
convention). This symmetry shall be observed on the rotational equation. Refer to
appendix 8.4.5 for such demonstration.
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5.3.4.2 Solution to the Translational equation

We want to find the expression of the translational formula in the Guidance frame, i.e.
we want to know how sees the rocket an inertial observer knowing the forces in body
frame.

For small deviations from the steady state and small angles this Guidance frame is
inertial (in Y and Z axis) and aligned with the Trajectory reference frame. In the next
instant the Guidance frame follows the body frame in rotation around X (roll).

We start from the equation (Eq 5-2) expressed as force instead of acceleration. It is
assumed a constant (or slow varying) mass.

d?Br d®r d®w

F,=m +2Mo ® o +mT®rB+m(a)®(a)®rB))

The following simplifications are also assumed:

The angular velocity of the Body frame with regard the Guidance (inertial) frame is
constant, so its time derivative is zero. This made the third term of previous formula
Zero.

The centrifugal force does not play any role, as:

- In the roll axis, it is compensated by the structure of the launcher (i.e. the LV
preserves its integrity)

- In the pitch and yaw axis, the angular velocity are negligible against the roll axis

With these simplifications we have arrived to:

2B B
F, = mu+2ma)® dr
dt dt

Developing the vector product we have

i ] Kk qv, —rv

dBr y
2mo ® pm =2m p q r |[=2m —pv, +1V,
Ve Vv,V pv, —qv,

And we obtain the following equation for the forces in inertial frame

v, +2(qv, —rv,)
I:I =m Vy - 2( pv, — rvx) (Eq 5'6)
vV, +2(pv, —qv,)
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Expression of the forces

First, we have to find the expression of the forces in body frame. We start with the
propulsive forces:

I:propX = T COS( g )COS(IBS )
I:propY :T COS(ﬁ\{, )Sin( 9)
I:propZ =-T Sin( b )COS( 8)

We should ignore the Fprpx as the thrust on axis X is not to be controlled. Assuming that
we have small actuation angles we can approximate:

cos(B, )=1, cos(s,)=~1
sin(g, )= 8, sin(B,)~

I:propy = T (1)S|n(ﬂ3 ) = TIBB
I:propz =-T (1)S|n(ﬁy/ Xl) = _Tﬁy/

We continue with the aerodynamics forces with the same simplifications taken in the
rotational dynamics:

- If vy and v, are of similar magnitude, we can say (with an error of V2 ) that
1

Vy Vy 1
y z
MR

Arriving to:

I:Aerox == pdynSRCX (a,M)
I:Aeroy == pdynSRCN Uy
I:Aeroz = pdynSRCN az//

In order to express the previous forces in inertial frame we need to express the body
variables in inertial variables. The body variables are the angles of attack that can be
expressed in Guidance frame variables as follows (see demonstration in appendix 8.4.4)

Y
ag :—19G +\7
()(W =V +V

We arrive to the expressions for the forces:
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Y
I:propy + I:Aeroy = (Tﬁs )+ (_ pdynSRCN X_lg) + (_ pdynSRCN {\TJ
5 (Eq 5-7)
I:propz + I:Aeroz = (_TIB\P )+ (_ pdynSRCN )l/ + (_ pdynSRCN {\Tj

Expression of the accelerations

We start from the equation (Eq 5-6) deduced previously:

v, +2(qv, —rv,)
Fo=mv, —2(pv, —rv,)
v, +2(pv, —qv,)

Now let’s express the velocities in body (vy, v,) in function of variables in the (inertial)
guidance frame.

For XY axis we have that the angle of the total velocity vector V with regard the X axis in
guidance frame is the sum of the angle theta of the body frame with regard the guidance
frame plus the angle of the vector Vin the body frame. We have an analogous relation for
the XZ axis. See demonstration on appendix 8.4.4.

Vv, ==V +Y
V, =V +Z

We can derive the previous expression ‘normally’ as the variables are all inertial.
U, =N - +Y
V, =N +yN +7
We want to derive now a formula for expressing the angular velocity of the body frame in

function of inertial angles in guidance. The expression is (refer to demonstration in
8.4.3):

q:l/)G_plgG
r=38+py;

Let’s substitute in F, and F, the variables in body frame

F V, —2pV, +2rv,
=m
F, v, +2(pv, —qv,)
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By their equivalences in guidance frame (we remove from here all the explicit reference to
the sub-index that indicates guidance frame):

v, =—3V +Y V, =—N - +Y
V,=yV+Z V, =+ + N + 7
q=y-pJ
r=9+py

Also, due to the physics of the problem, Vis similar to vx and much greater than v, and
Uz (almost all the velocity of the rocket is along the X axis and the angles are small)

We have:

[FY} m{(_gv -V +Y)-(2p)epy +2)+2(8+ pt//)\/}

F, (+yN + N +Z)+2p(- NV +Y )-2(y - pIV

Developing and grouping terms:

R ) oV -V +¥)-2pyv —2pZ +26v +2pyv
F, | oV +gV +7)-2pV +2pY — 20V +2p
_Fy__m_ (QV—S\/ +Y')—2pZ'
R LEwv e +Z)42pY

Also we know that the acceleration in x body axis is similar to V and is given by the
expression:

v _T_D_T_pdynSRCX
oom m
Replacing in previous:

(. T-p,S.C . ]
(W—S[MJ+YJ—2pZ
F, m
[F }:m T-p, S.C
¢ (—!/'/V+l//(—d;: i XJ+Z'J+2pY'

And restoring in the equation the angular rates (p, q, 1)

I T- § ]
[(r— pyV —S(MJ+YJ—2pZ

m

[FY}

=m (Eq 5-8)
F T-p,.S:C . .

z (—(q+p9)V+y/(%]+zj+2pY
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Putting all together

Now let’s put together the expressions for the forces (Eq 5-7) and the expressions for the
accelerations (Eq 5-8):

Y . . T — PgnSgC
(Tﬂ9)+(_ pdynSRCN )(_‘9)+(_ pdynSRCN {‘F\Tj: m[Y _ZpZ _‘9($] +V(r_ pl//)J

Z N , T — PgnSkC
(_Tﬂ‘P )+ (_ pdynSRCN )// +(_ pdynSRCN {VJ = m£z +2 pY +l//(%j -V (q + p‘g)j

And then reordering
V=5, +1(p,.5.C0 )9= L (py,SaC )i+2p2+ T~ Pan5eCx 9=V (r-py)
m 3 m dyn~¥R™~N m dyn¥R™N vV m

T 1 T- pdynSRCX
m

2=, = (PunSeCu b~ (PaeS:Cu )= ~2pY —[ y+V(a+pd)

;T 1 1 Y :
Y :EIBS +E(T - pdynSRCX + pdynSRCN )'9_E(pdynSRCN )\7+2pz _V(r_ p‘//)

. T 1 1 Z :
L= _Eﬂw _E(T - pdynSRCX - pdynSRCN »_E(pdynSRCN )V_ZpY +V (q+ p.9)

Grouping terms we arrive to the final expression for the lateral accelerations in function
of the actuator angles, of the angles of the velocity vector in guidance frame and of the
lateral velocities:

T +T - pdynSR(CN _Cx )3_ pdynSRC

Y:E,Bg ~ v VY +2pZ -Vr+Vpy

(Eq5-9)
LT T-PnSe(Cy —=Cx)  PunSeChy :
Z=-—p, - TRIIN TX y — dym\; “Z-2pY +Vq+Vpd

Note: by symmetry of the Launcher, we know that under a positive turn of 90 deg on the
roll axis, the dynamics shall be identical (i.e. the selection of the Y and Z axis is just a
convention). This symmetry shall be observed in the translational equation. Refer to
appendix 8.4.5 for such demonstration.

5.3.5State space model of the LV

The linear state space model chosen for the open loop plant is the following:

States:
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=N

x=[y ¢ r 2z y (]

Measured outputs:

Control inputs:

y=[9 v]
u= [:8 9 ﬁw]
Being the state space representation:
- AVIat Atheta -V 2 Po VpO 0 ] _l 0 ]
0 o 1 0 -p m
A ’ 0 0
-y A 0 o 0 —ap, 0
A = , B = 1
-2 po Vpo 0 - Avlat - Apsi \ 0 _ l
0 0 0 0 1 m
Po A 0 0
] 0 0 Ap, v A 0 | 0 K,
0 1 0 0 00O 0 0
C= D=
000010 0 0
T- Pg nSref (CN _CX) Pg nSrefCN
Atheta = Apsi = ! m ) A\/Iat = yT

The choice of measures and states is justified by the requirements. The more important
requirements during the first stage are:

Maximum “ p,, *a” (according to a gabarit on Mach number)

Lateral deviations: first flight < 500 m, second flight < 1000 m
Lateral velocity errors: first flight < 15 m/s, second flight < 35 m/s

Transversal rate at stage separation (not applicable in the paper as simulation is
performed before separation)

TVC actuator: max deflection 4.9 deg, max deflection rate 10 deg/s

The more important requirement is that the load “p,,*a ” cannot surpass a gabarit

because the structural integrity of the vehicle would be compromised. As ppy» cannot be
controlled (because depends on the aerodynamics and longitudinal velocity that cannot
be controlled) the requirement is imposed on the angle of attack.

However due to a variety of technological reasons VEGA has no angle of attack sensors.
The angle of attack can be expressed in inertial components as done previously. This
justifies the choice of 6 and y as part of the state and as the measured outputs.
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The second and third requirement on lateral deviations and lateral velocity errors justify
the choosing of the lateral deviations and velocities as states. Note that during the
atmospheric flight this second requirement is of lower importance with regard the one in
angle of attack. We do not impose a tight control of these and we will not include as
measured outputs. This choice will be justified by the results obtained later.

The choice of the actuators is obvious: the deflection of the nozzle.

We add delays to the 6DoF plant. These delays are due to digital processing by the IMU
(10 ms), the OBC (12 ms) and TVC (15 ms). The delays are modeled with a Padé
transform of second order at plant input.

5.3.5.1 Study of the open loop plant in the frequency domain

Taken the Laplace transform in the rotational equation (Eq 5-5), neglecting the
translational dynamics and setting a zero roll rate we have:

q= (Klﬂy/ )"’ Ay
i =(K, B, )+ A9

The Laplace transform is:

v _ K
B, s*-A
g K

ﬂg SZ_AG

The transfer function has a double pole in s=x%,/A; . This means that the Launcher in

open loop is not stable. It is needed to describe the evolution of the parameters K; and As
during the atmospheric phase.

At low velocities Asis very small. It increases very fast with the square of the velocity but
start decreasing after a given altitude due to low air density. K; is increases slowly during
the first phase of the flight while the thrust is the dominant effect (because thrust is
almost constant but the distance between the Xpr and Xcoc increases as propellant is
being consumed). At the end of the stage the thrust descent very fast and so does K;. See
(Figure 5-18).
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Ag

v
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Figure 5-18: Evolution of K; and As along the first stage

In order to be able to control the Launcher the torque provided by the TVC when
deflecting the nozzle (related to K;) shall be always greater than the aerodynamic torque
(related to As). If the previous is not true the vehicle becomes unstable. The more
dangerous region is the region at about 55-60 seconds after launch (called the
“maximum dynamic pressure” region) where the margin between the torques is
dangerously small.

The influence of the roll rate in the stability margin has been deeply studied in (Cruciani,
2008). Basically there is a double effect. First effect is direct, due to the coupling
introduced by the term “Apor”. Second effect is indirect due to the feedback lack. The TVC
angle commanded will be computed with some control law based on the measures taken
in inertial frame by the IMU that shall be transformed to the Guidance frame. Expressed
in Guidance frame these measures depend on the roll angle.

5.3.5.2 Study of the model uncertainty for the plant

The sensitivity of the open loop plant with regard variations of parameters as mass,
thrust, Xcoa, poyn is not strong. We plot in (Figure 5-19) a set of plants where the previous
parameters have been scattered by a 5%.
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Figure 5-19: Scattering of open loop (except roll)

The sensitivity is much higher against variations in the roll rate.

The (Figure 5-20) shows the sigma values for a roll rate of O, +5 and +45 deg/s. Basically we
are introducing coupling between the pitch and yaw channels. In the sigma diagram this
is manifested as a big difference between the major and minor singular values at
frequencies at around 1-3 Hz. This is the coupling. Under roll rate the plant becomes ill
conditioned.
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Figure 5-20: Influence of roll rate in open loop plant

The (Figure: 5-21) shows the sigma values of a set of uncertainty plants in a range -45 to
+45 deg/s.
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Figure: 5-21: Sigma values variation with roll rate

5.4 miniVEGA: a non Linear Simulator for the VEGA Launcher

In any control problem is fundamental to have a good model of the plant. This chapter
explains the design and synthesis of a minimalistic (but 6DoF realistic) model of the
VEGA Launcher.

5.4.1 Introduction to the VEGA Launcher simulators

The reference simulator of the VEGA Launcher project is VEGAMATH. This is an
advanced and fully representative simulator of the VEGA Launch Vehicle. The
representativity of the simulator has been demonstrated by the success of the VEGA first
and second flights and the good according between the simulated and real flight found in
the post flight analysis. VEGAMATH is written with Simulink.

VEGAMATH is a proprietary product and technical details cannot be disclosed. We will
just enumerate the features of the simulator:

- Simulation of the four LV stages with one or two payloads

- Simulation of the stage ignitions, separations

- Simulation of the 6DoF dynamics

- Propulsive model for the solid stages and liquid engine motor
- RACS detailed model
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A second reference simulator used on VEGA is VESAT, developed for ESA at ESTEC.
VESAT is a work in progress and has been cross-checked with VEGAMATH for the first

Atmospheric model (winds and gusts)

Gravity model

Bending modes

Sloshing modes

Full capacity to introduce uncertainties and scatterings

Full representative models of the TVC, nozzle and IMU (with noise, drift and

scatterings)

Ability to execute the GNC algorithms either as prototype on C or the real flight

Ada code
Ability to run Montecarlo simulations

mission. VESAT is also written with Simulink.

Also VESAT is too complex for using in the scope of our thesis, but will serve as a model
to derive a more simplified simulator. We will call it “miniVEGA” that stands for “mini

simulator for VEGA”.

“miniVEGA” contains a number of simplifications with regards VEGAMATH and VESAT.

The following are the main simplifications introduced:

Only first stage is modeled (no lift-off, no separation)
No bending modes. No sloshing models.
Simplified support uncertainties and scatterings
Ideal IMU
TVC model is a non-linear second order model (with actuation and rate limiters)
GNC algorithms:
0 Navigation and guidance are perfect.
0 Control is implemented by a linear controller
The simulation is representative only during short times

These simplifications are justified and detailed on the next chapters.

5.4.2 Structure of mini-VEGA

5.4.2.1 Overall structure

The top level of the simulator (Figure: 5-22) follows the typical layout of a feedback system:

The Launch Vehicle’ subsystem models the Launch Vehicle dynamics behavior
The ‘TVC’ subsystem models the Thrust Vector Control dynamics

The ‘GNC’ subsystem implements the GNC algorithms

The ‘Measurement’ subsystem models the measurement instruments

The ‘Winds’ subsystem models the external winds
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- Auxiliary subsystems as ‘Figures’, ‘Logging’

miniVEGA
SIMPLIFIED VEGA LAUNCH VEHICLE SIMULATOR

winds
_L> winds
—
Guidance Winds s
Scenario sce
acts P(cmd_angle  real_angle TVC
(Inl Outl »|meas
IMU GNC e Launch
Vehicle

o (o

Figures Logging

Figure: 5-22: Top level of miniVEGA

5.4.2.2 The Measurement subsystem

In the real LV, the Measurement subsystem is implemented by the IMU (Inertial
Measurement Unit). This Unit includes laser gyro meters and accelerometers that senses
the forces and torques acting on the LV. The IMU embeds an ERC32 processor that
executes the algorithms to transform these sensed forces and torques measured on IMU
body frame to acceleration and velocities measures on the IMU inertial reference system.
The OBC computer requests this information from the IMU at 40Hz.

VEGAMATH includes a full model of the IMU that has been cross-compared with the real
equipment. This model elaborates the accelerations and velocities (linear and angular)
based on the forces sensed by the IMU sensors. Effects as misalignments, noise, drifts,
etc... are modeled. The operative modes of the IMU (alignment, flight mode) are also
modeled.

VESAT includes a simplified model of the IMU. Only the flight mode is implemented.

miniVEGA implements an ideal IMU model. The measurements are assumed to be taken
at the COG and to be perfect: i.e. the IMU model just receives the accelerations and
velocities of the 6DoF model and propagates them.
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A delay block models the time that takes the computation on the real IMU that is 10 ms
in the worst case.

5.4.2.3 The GNC subsystem

We will provide first an overview of the real GNC algorithms. Then we will comment the
simplifications performed in our work.

The GNC subsystem is implemented by the central OBC (On Board Computer). The OBC
includes an ERC32 processor and a special chip (COCOS) for management of 1553
communications with the instruments. During the flight the OBC executes the Flight
Program Software (FPS) that is in charge of:

- Execute the GNC algorithms

- Receive measurements from the IMU

- Send actuators commands to the TVC and to the RACS

- Flight Management: command the stages separation, PL separation, etc...
- Scheduling

- Telemetry: send TLM to Ground for Safety (location of the LV) and post-flight
analysis

- FDIR (Failure Detection Isolation and Recovery)

The FPS is divided on 3 main layers:
- LN1 in charge of management of the OBC HW (i.e. drivers)
- LN2 in charge of scheduling
- LN3 in charge of GNC, FDIR, Telemetry, Flight Management

The LN3 contains the Navigation, Guidance and Control algorithms. The algorithms are
implemented in Ada.

The Navigation Algorithm

The Navigation algorithm receives the data of the IMU: current velocities and angular
position with regard the initial IMU reference frame (set when the IMU changes to flight
mode 2 seconds before lift-off). The navigation algorithms shall compute the current
inertial velocities and angular position with regard the ECI (Earth Centered Inertial)
reference frame. It shall be taken into account also that the IMU is not mounted in the
COG of the LV but in the upper stage and that the IMU has an angle of 45 degrees with
regard the LV body frame.

The Guidance Algorithm

The Guidance algorithm during the P80 atmospheric phase has several modes. The first
mode is active from lift-off until the Launch Pad is cleared (a few seconds). In this mode
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the Guidance commands a vertical flight (the nozzle is kept vertical) to avoid collision
with the Launch Pad.

The second mode (pitch over maneuver) and third mode (gravity turn) are described
together. The objective of the Guidance on these modes is to achieve a flight with zero
angle of incidence. This minimizes the load imposed to the LV structure and maximizes
the velocity reached. In absence of wind this is achieved by keeping the nozzle angle close
to zero.

However, the objective is not to perform an exact vertical climb. In fact, to get advantage
of initial velocity provided by the Earth rotation the trajectory has to be made
progressively horizontal to the Earth surface. Both objectives are compatible (kept the
nozzle to zero and change the inclination of the trajectory) by using the Earth gravity.
The pitch over maneuver deflects slightly the nozzle to achieve some deviation from the
vertical. From this instant the gravity made the LV to rotate slowly.

The Control Algorithm

The TVC control algorithm receives the error in the controlled variables and generates
the appropriate commands for the TVCs. In the real algorithms the following has to be
taken into account:

- The compensation of the pivot point offset due to the SRM pressure

- The conversion from angles in pitch, yaw planes to linear elongations of the EMAs.
It shall be taken into account that the EMAs are not aligned on pitch and yaw
planes but have an angle of 135 deg

- The scheduling of the control law (gain and filters) during the flight

The RACS control algorithm only limits the roll rate of the LV under a threshold. If the
roll does not reach 45 deg/s the thrusters are no activated. If the roll rate exceeds this
margin the thrusters are activated until roll is decreased.

The implantation of the GNC into the simulators

VEGAMATH and VESAT are able to execute the complete GNC algorithms but not the
complete FPS. It shall be noted that the FPS is designed to run in top of an ERC32
processor and the LN1 and LN2 layers are dependent on that specific HW. These layers
cannot run on a standard PC. Instead the code of the GNC algorithms is portable and
can be executed in Windows with minor adaptations.

The GNC algorithms are so compiled and called from the simulators using the standard
Simulink capabilities to call external code (MEX files).

miniVEGA follows a much more simplified approach:
- Navigation is ideal:

0 We have full access to all the LV state vector and so the measurements are
perfect

0 The measures are performed at the COG of the LV
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- Guidance is simplified:
0 i.e. basic orders as steps, ramps, given on the LV body frame
- Control is simplified:
0 A TVC linear controller (in the continuous domain)
o0 The pivot point offset and conversion to EMA elongation is not managed

0 No RACS control is performed: it is assumed that if roll rate is above 45
deg/s the RACS would act and decrease it below 45 deg/s

As summary the full GNC subsystem is modeled as miniVEGA as (Figure 5-23):

- A Simulink ‘Controller’ block
- A delay block, modeling the time that takes the computation in real OBC (12 ms)
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Figure 5-23: Model of the GNC in miniVEGA
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The name of the desired controller is passed as parameter to the simulation. Some
Matlab code replaces the block ‘controller’ with the desired block before the start of the
simulation.

5.4.2.4 The TVC subsystem

The Thrust Vector Control Subsystem is made of the IPDU (Integrated Power and
Dynamics Unit), the EMA (Electro Mechanical Actuator) and batteries, harness, etc. The
TVC is a full new development with regard the hydraulic actuators used in Ariane 5. The
usage of electromechanical actuators allows a decrease of costs in maintenance and
simplifies the preparation of the Launch.

The IPDU includes an specifically designed digital computer that is able to perform
‘closed loop control’ of the nozzle position with extreme performances (the control loop is
made of 3 feedback loops in electrical current, velocity and position, being the frequency
of the inner loop (the current loop) of the order of kHz.

VEGAMATH incorporates several TVC models that can be selected depending on the
needs of the simulation:

- A high representative model provided by the TVC manufacturer

- A second order function model (with saturations of position and velocity) and
delays

VESAT implements only the second order model.

miniVEGA implements also only the nonlinear second order model. The full TVC
subsystem is modeled as (Figure 5-24):

- A second order model or

- A second order nonlinear actuator (with limits in actuation angle and rate). This is
used by default

- A delay block, modeling the time that takes the computation in real IPDU (15
msec)
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Figure 5-24: Model of the TVC

Each second order nonlinear actuator is as follows (Figure 5-25):

1 1
O > B e o
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A4
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Figure 5-25: Second order model with position and rate limiters

5.4.2.5 The Wind model

The wind models in VEGA are based on:

- Real Winds: models generated from real measurements (observations made with
balloons along many years in French Guyana)

- Synthetic models: typical scenarios generated from previous

Winds are significant only during the first stage and at the beginning of the second stage.
At higher altitudes the air density decreases fast and the wind effect is negligible.

The wind data in VEGAMATH and VESAT are tables that are interpolated versus the
altitude of the LV.
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Usually the winds are described as intensity (m/s) of North-South wind and East-West
wind for a given position (longitude, latitude) and altitude with regard the sea level. In
addition to steady winds, wind gusts are also defined.

In VEGAMATH and VESAT the wind vector is interpolated based on the current LV
position (longitude, latitude and altitude). This wind vector is transformed into ECI
coordinates and then into LV Body coordinates, where it contributes to calculate the
relative velocity of the LV with regard the surrounding air.

In miniVEGA we perform a small simplification. Basically assume that the wind model
described in the interpolation tables is already described on ECI coordinates system.
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5.4.2.6 The Launch Vehicle model

This is the most important part of the simulator. The overall structure is shown in (Figure
5-26):
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Figure 5-26: The Launch Vehicle model

5.4.2.6.1 The time interpolated variables subsystem

VEGAMATH and VESAT integrate four different propulsive models, one for each stage of
the vehicle. The first 3 stages are solid rocket motors (SRM) and the fourth stage is a
Liquid Propulsion System (LPS). We will describe here only the SRM first stage.
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VEGAMATH and VESAT integrate a complex SRM model that computes the SRM
parameters based on interpolation tables. These variables are mass consumption, thrust
(nominal and at nozzle exit), thrust perturbations (oscillations of thrust called chuffing).
From the SRM mass consumption is calculated the overall LV mass, inertia and COG
position.

These SRM interpolation tables are predicted tables provided by the SRM manufacturer.
The mass consumption and nominal thrust depend on the specific layout of the solid
propellant inside of the SRM case. In addition these parameters depend also on the
specific batch of production. For each SRM, the manufacturer takes a sample of the
propellant and performs a dedicated test to fine tune the predicted propulsive tables. For
our purposes we only have to know that the SRM manufacturer provides these tables
(usually a set of 3 curves: nominal, upper and lower limit) and that these tables only
depend on the combustion time.

The SRM model of VEGAMATH and VESAT takes more factors into account: chuffing
(thrust oscillations), pressure at the nozzle exit that depends on the external atmospheric
pressure that in turn depends on the altitude.

As the SRM tables are proprietary information that cannot be disclosed, miniVEGA
follows a much more simplified approach. The following variables are a linear
interpolation of the data of a nominal flight see (Figure 5-27).

-  The SRM Thrust
-  The LV Mass and Inertia
- The COG position
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Figure 5-27: The interpolation variables model

5.4.2.6.2 The Propulsion Forces and Torques

This subsystem takes as inputs:

- The SRM Thrust

- The TVC actuators position

- The distance between the COG and the PP (actuator pivot point)
And calculates:

- The propulsive forces

- The propulsive torques
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The block is implemented with embedded Matlab. Basically the propulsive force (that is
aligned to the nozzle longitudinal axis) is projected into LV Body axis and the cross vector
product of -(COG-PP) X F gives the torques

function [F, M] = calcPropForcesTorques(T, dTheta, dPsi, COGToPP)
% #codegen

% Calculates propulsion forces and torques
% Inputs

% T: SRM Thrust

% dTheta, dPsi: TVC angles

% Vector PP to COG

[0 0 O]";
[0 0 0]";

% Fx, Fy, Fz

F(1) = T * cos(dPsi) * cos(dTheta);
F(2) T * cos(dPsi) * sin(dTheta);
F(3) -T * sin(dPsi) * cos(dTheta);

M = cross_product(-COGToPP, F);

function ¢ = cross_product(a, b)

% cross vector product
c =[000]";

c(1) = a(2)*b(3) - a(3)*b(2);
c(2) = -(@a(1)*b(3) - a(3)*b(1));
c® = a()*p(2) - a(2)*b(1);

5.4.2.6.3 The Aerodynamics Forces and Torques

This subsystem takes as inputs:
- The position in ECI
- The velocity in Body
- The winds in Body
And calculates:
- The aerodynamic forces
- The aerodynamic torques

It is implemented with the following Simulink diagram (Figure 5-28).
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Figure 5-28: The aerodynamics model

The calculus is performed in 4 steps:
- From relative air velocity compute the angle of attack and dynamic pressure

- From position calculate altitude and from altitude calculate air density and Mach
number

-  From Mach and angle of attack calculate aerodynamic coefficients CN, CX and
XCP

- From the previous calculate aerodynamics forces and torques

Calculus of angle of attack and dynamic pressure

The relative velocity (with regard the air flow) is Vel Body minus Wind Body. From this we
calculate the angles of attack as

Alpha = asin(norm(VLat)/ norm(V)), being VLat = sqrt(vy?+vz2)

The dynamic pressure is calculated as
pDyn = %2 * airDensity * V2
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Calculus of altitude, air density and Mach number

The position in ECI is used by the Atmosphere model. This model receives as input the
current ECI position and the ECI position at start of the simulation. The sum of both
minus the normalized radius of Earth is the altitude over the sea level. The altitude is
used to lookup into interpolation tables the air density and the Mach number. The Mach
number is the velocity of sound at a given altitude divided by the module of the velocity
in LV body coordinates

Calculus of aerodynamics coefficients

These are taken from interpolated tables based on Mach and angle of attack (alpha). The
data of the tables are result of extensive test campaign into wind air tunnels performed
specifically for VEGA.

The calculated aerodynamics coefficients are:

- CX: axial coefficient (i.e. into the longitudinal axis of the LV, X coordinate in LV
Body)

- CN: normal coefficient (i.e. into the normal axis of the LV, Y, Z coordinates in LV
Body)

- Xcp: position of x coordinate of center of pressure

Calculus of the aerodynamics torques and forces

This subsystem takes as inputs:

- The modulus of the relative velocity

- The CN, CX coefficients

- The dynamic pressure

- The reference surface (a constant)

- The COG position

- The CP (Center of pressure) position
And calculate as outputs:

- The aerodynamic forces

- The aerodynamics torques

This calculus is performed with embedded Matlab as follows:

function [F, M] = calcAerodynamicForcesTorques(V, CNAIpha, CX, pDyn, SRef, COG,
CP
% #codegen

% Calculates propulsion forces and torques
% Inputs

% T: SRM Thrust

% dTheta, dPsi: TVC angles

%  COG
F=1[000]";
M = [0 0 0]";
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% Fx, Fy, Fz
F(1) = -CX * pDyn * SRef;

if V(2) == 0 && V(3) ==
F(2) = 0;

F(3) = 0;
|
¢ SeF(2) = CNAlpha * ( -V(2)/ sqrt(V(2)"2+V(3)"2) ) * pDyn * SRef;
F(3) = CNAIpha * ( -V(3)/ sqrt(V(2)"2+V(3)"2) ) * pDyn * SRef;

end

M = cross_product(CP - COG, F);

5.4.2.6.4 The Rotational Dynamics

This subsystem takes as inputs:

- The inertia

- The total torques (aerodynamics minus propulsive)
And calculates as outputs:

- The angular acceleration, position and velocity

- The quaternion Body to ECI

- The quaternion ECI to Body

It is implemented with the following Simulink diagram (Figure 5-29).

D T
angAccBody > -
s angPosody
Inlegratoed Manual Switch
Tr—) T
Inestia angVelBody ﬁ
¥
» 4 vadot » ; o N
Ll Lkl
eulerRotEq N]E v \ o |—b 1 4 N 1;‘\‘\.1 my J = ¥2 —b.
a a ¥ uatProdu =
(2% i la  quat_progapation % | quattiormalize l — quaiToEule™YR  Temmmnaior?
Tomues Inlegrator] quat quaiPro
Rotaional b
Euler Equalion >{ )
L qECIToBody
e A ()
b quatConjugate qBodyToECH
quaiConjugate 1
B
angVeBody init

GECIToBodyd

Figure 5-29: The rotational dynamics

The subsystem performs the calculus on 2 steps:
- Resolve the rotational Euler Equation, finding the angular acceleration into body

- Integrate the acceleration to find the angular velocity and angular position both in
ECI and in LV Body

The rotational Euler equation is implemented with an embedded Matlab block. Basically,
we have to resolve:
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M =ld+ o ® (Iw)
As:
&=1"(M - 0® (Iw))

function wdot = eulerRotEq(l, w, M)
% #codegen

% Given M =1 * wdot + wx (1 *w)
% resolves
% wdot = /1 * (M - w x C I *w))

aux = cross_product( w, I * w );
wdot = inv(l) * ( M - aux );
function ¢ = cross_product(a, b)
% cross vector product
c=1][000]";

c(l) = a(2)*b(3) - a(3)*b(2);

c(2) = -(a(1)*b(3) - a(3)*b(i));
c(3) = a(l)*b(2) - a(2)*b(1);

With this we obtain the angular acceleration that can be integrated twice for obtaining
the angular velocity and position into Body. However a ‘serious’ simulator should not
follow this approach as may cause inconsistencies due to the discontinuities inherent to
the Euler angles.

Instead, the ‘propagation of the quaternion’ method is preferred. The acceleration is
integrated to give the angular velocity. Then, the quaternion ECI to Body is calculated as:

Gg=05 q,q

Were g, is a ‘fake’ quaternion build with © as:
9o = [0 ©(1) @(2) o(3)]}

Refer to appendix 8.4.6 for a demonstration of the quaternion derivative.

The quaternion rate is integrated for calculating quaternion. Note that this quaternion
rate is ECI to Body. We can integrate it to find the quaternion ECI to Body (i.e. how to
rotate ECI to arrive to LV Body).

We can obtain the Euler angles using the utility function quatToEulerPYR(). We have to
use the order (pitch, yaw, roll) because this is the order when changing from ECI to
Body. The quaternion Body to ECI is just the quaternion conjugate of ECI to Body.

Notes:

- The constant term for the integration of the angular acceleration (i.e. the angular
velocity at the start at the simulation) will be defined according to our simulation
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needs (example, we will select [roll, yaw, pitch] = [20, O, O] deg/s if our intention is
to simulate with an initial roll rate of 20 deg/s.

- The constant term for the integration of the quaternion is [1, 0, O, O] that is LV
body frame is not rotated’. This is a license we take. We impose that at the
beginning of the simulation the reference frames ECI and LV Body are aligned.
This made easier the interpretation of the simulations.

5.4.2.6.5 The Translational Dynamics

This subsystem takes as inputs:

-  The mass

- The total forces (aerodynamics plus propulsive
And calculates as outputs:

- The linear acceleration, position and velocity

All of this is implemented with the following Simulink diagram (Figure 5-30).
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Figure 5-30: The translational dynamics

The process is very simple. The acceleration is calculated applying the Newton formula.
Then it is integrated (LV body) to find the velocity and position. Note that we take as
constant integrator term of the velocity the initial velocity at the beginning of the
simulation (usually is a high velocity on the X coordinate and zero or near to zero in Y,
and Z coordinates). For the position, we take [0, O, O] as initial position at the start of the
simulation.

5.4.2.6.6 Body to ECI Blocks

This auxiliary subsystem just transforms parameters from Body to ECI. It takes as
inputs:

- The quaternion Body to ECI
- The angular velocity and positions in LV Body
- The velocity and positions in LV Body
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And calculates as outputs:
- The angular velocity and positions in ECI
- The velocity and positions in ECI

5.4.2.6.7 GenMeas Blocks

This auxiliary subsystem just generates the LV state. From this LV state we take the
individual measures needed by the controllers. It takes as inputs:

- The angular velocity and positions in LV Body
- The velocity and positions in LV Body
and calculates as outputs:
- The angular velocity components (p,q,7)
- The angular position components (phi, psi, theta)
- The velocity components (vx, vy, vz)
- The position components (x,y,2)

5.4.2.7 The mathematical library

This is a Simulink library with mathematical functions as:
- Quaternion operations

0 product

0 norm

0 conjugate

O quaternion propagation

0 quaternion to Euler and Euler to quaternion conversions

- Norm of a vector

The library is coded in “Embedded Matlab”.

5.4.2.8 Non modeled parts in miniVEGA

The following LV features are not modeled
- Second, third and fourth stages
- Stages ignition and separation
- Bending modes
- Sloshing modes
- Nozzle inertia dynamics
- Gravity (Gravity is considered constant)

A justification of why the gravity model is not included follows. First, the P80 stage is
separated at the altitude of about 60 km. At this altitude g is about 9.62 m/s2. Att = 55
sec (time of maximum dynamic pressure) the altitude is about 12 km and the gravity is
about 9.77 m/s2. So for the first stage and in a first approximation we can consider the
gravity constant.
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5.5 Comparison of controllers for the VEGA Launcher
5.5.1The reference ELV controllers

5.5.1.1 The original ELV PID controller

The structure of the controller has been described in 5.1.3.

The original ELV controller is designed as a discrete PID controller plus a number of
discrete filters. For the P80 phase the tuning is composed of a set of 12 groups that are
scheduled based on the non-gravitational velocity. At a time t = 50 s this corresponds to
the group number 7.

The original filters are described on the digital domain. The conversion to the continuous
domain is achieved with the function d2c() using a step of 0.001 ms and the method
‘Tustin’.

It has been noted that the simulation on the continuous domain has problem with the
derivative filter H>. We have replaced it with a perfect derivative filter, i.e. Hz =tf{[1 0],1)

The Matlab commands to build the controller are:

sysPsi = series( H.P80.H1.tf, H.P80.gains.ks ) + series( H2, H.P80.gains.kd );
sysPsi = series( sysPsi, H.P80.H3.tf);

sysTheta = sysPsi;

K = append(sysTheta, sysPsi);

Note also that the purpose of the filter Hs is to control the bending modes. In our exercise
we do not incorporate bending modes so the behavior with and without Hj; filter are
almost identical (with Hs, small oscillations in the TVC actuators are filtered out).

5.5.1.2 The ELV PID controller with gyroscopic compensation

The structure of the controller with gyroscopic compensation has been described in
S5.2.2.

The controller is very similar to the previous but the gyroscopic filter Hs is introduced.

It shall be noted that the gyro controller is a non-linear controller (due to the products
‘P*q’ and ‘p*r’). Due to this a linear controller cannot be fully implemented with Matlab
commands only: instead, we define the components of the controller in Matlab and
compound the controller with Simulink.

The Matlab commands to build the first component of the controller are:
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sysPsi = series( H.P80.H1.tf, H.P80.gains.ks ) + series( H2, H.P80.gains.kd );
sysPsi = series( sysPsi, H.P80.H3.tf);

sysTheta = sysPsi;
H5 = H.P80.H5.tf;

The Hs controller is a derivative filter able to compute the p, g, r from the quaternion. As
we are supposing perfect navigation, we have access to p, g, r directly and the filter Hs is
not used. (Note: as separate exercise we have synthetized the gyro controller also using
the Hs filter and the results are similar, except that the Hs as any derivative filter is noisy
and made the TVC actuation to be noisier).

As with the previous controller, the only purpose of the filter Hs is to control the bending
modes. In our simulation we do not use them, so the behavior with and without Hj; filter
are almost identical (with Hs, small oscillations on the TVC actuators are filtered out).

The two parts of the controller are composed in Simulink as follows (Figure 5-31):
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Figure 5-31: Schema of the ELV controller with Gyroscopic compensation
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5.5.2The proposed H-infinity controllers

Two H-Infinity controllers are proposed in this thesis: one based on the CHGE method
and other based on the Structured method.

5.5.2.1 The proposed H-infinity controller (CHGE)

The approach of ‘Christen-Geering’ described in previous chapters has been followed for
the design and synthesis of the controller.

Note: A paper based on this controller has been presented during the ACA 2013, IFAC
Symposium on Automatic Control in Aerospace (Sanchez, 2013).

The controlled variables chosen are theta and psi. The y and z states are removed from
the lineal plant. We have decided not to control the lateral deviations. This is justified
because the original requirements states the lateral control is of less importance during
the atmospheric phase. In fact, the previous ELV controllers set low gains for the lateral
channels. If the result is not satisfactory the control of the lateral deviations would be
implemented.

With this election of measures (theta and psi) the plant does not need input-output
scaling. (It would have been different if the lateral deviations were included in the
control). Note however that the CHGE methods needs scaling of the transfer functions
(see later).

A total delay of 37 ms (IMU = 10 ms, OBC = 12 ms, TVC=15 ms) is introduced as a Padé
second order transform.

Choice of Weight W4

A weight W, << 1 is taken. This made that KS, and S, does not contribute too much to
the norm, so practically we are weighting only T; and S,P.

Choice of Weight W, for S.P

For the S, part we select ideal second order systems with:
- No overshoot

- Setling time of 0.400 ms (10 times the period of control of 40 ms)
One of the possible second order systems with these performances is given by:
- on=20;delta=1

Due to the symmetry of the plant for both channels (pitch and yaw), the same weight is
chosen for them.

For the Py part of the weight, we take just the nominal steady gain of the open loop plant:

- A = max(sigma(G)) = 13.35
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2
1 20 : 0
P 0 20
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Choice of Weight W, for T;

W, weights both T; and KS, in the CHGE formulation:
dy] [-W,T, —W,KSW,T du
z | |W,S,P W, TW, |dw
We presented in the previous chapters the guidelines for selection of the weight for To.

Note that on MIMO, T; is in general not equal to T, but in a first approach they are
similar. We can follow the same strategy for the S, part of W,: choose a weight T; as the
inverse of an ideal system T, .s. The weight needs to be a proper transfer function so we
have to add zeros.

An alternative strategy is to think that W, is weighting KS, (i.e. references to actuators).
In this case the weight shall be a high pass filter so its inverse limits the actuation at
high frequencies.

In any of the alternatives, the fact that the transfer functions being weighted shall have a
similar magnitude have been explained in (4.3.3). A factor similar to 1/P, has been
introduced in the weight W,. We should introduce a similar factor in the weight for W,,
restoring the situation where both weighted TF contribute equivalently to the norm.

In this concrete problem we chose a minimalistic W, weight that is simply the identity
weight plus the scalar factor ‘A’ (equal to the maximum singular value of Py).

Summarizing, W, is chosen as:
- Choose the weight as inv(A * eye(2))

e

The following figures show the singular values diagrams of the controller and closed loop
plant. We have introduced uncertainty on the plant that as was discussed in (5.3.5.1)
depends mostly on the roll rate.
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The synthetized controller K and KS, are shown in (Figure 5-32).

KHINFGST K, KSo

Singular Values (dB)

Frequency (rad/s)

Figure 5-32: K and KS, for the CHGE controller

The figures of S,P and T, (Figure 5-33) for a set of uncertainty plants shows that the
magnitude of S,P is always below T,. This means that the system will have a good degree

of robustness and will be in principle robust to input uncertainties (uncertainty at plant
inputs: actuators and winds)
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Figure 5-33: SoP and T, for the CHGE controller
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The figures of S,, S,P (Figure 5-34) and the inverse of W, are shown. S, changes with the
uncertainty (roll rate) so the performances of the system will change depending on the

roll rate. All the S, curves are under the weight so in principle all the plants will meet the
required performances.

KHINFGST So, SoP and w eights

40— ——
------------- So
SoP L
201 I R inv(wy) ||

Singular Values (dB)

_100" 1 1ol 1 [ A | 1 Lo a1l ! TN

2 1 0 1 5

10 10 10 10 10
Frequency (rad/s)

Figure 5-34: S, and SoP for the CHGE controller
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The figures of T,, T; and W, (Figure 5-35) are shown.

KHINFGST To, Ti and w eights
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Figure 5-35: To, Ti and weights for the CHGE controller

5.5.2.2 The proposed H-infinity controller (Structured)

The Structured ‘Apkarian’ approach described in previous chapters has been followed for
the design and synthesis of the controller.

We will follow for the control a similar strategy for the CDC plant. A static decoupler and
2 PIDs are chosen as control structure (note PIDs are used instead PI). Also a roll-off
block is used.

Then, the following weighting scheme (Figure 5-36) is designed:
- A weight Ws, weighting S
- A weight Wy, weighting the disturbances at plant input
- A weight W,, weighting the control signal has been introduced
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Figure 5-36: Setup for the K-infinity Structured controller

The augmented plant is created with the standard Matlab function ‘connect’. The
equations are created as follows.

DM = Itiblock.gain("Decoupler”,eye(2));

% PIDs
PID _Theta = Itiblock.pid("PID Theta","PID");
PID_Psi = Itiblock.pid("PID Psi®,"PID");

% Label block 1/0s: Inputs and outputs of the plant
GDesign.InputName = {"iTheta", "iPsi"};
GDesign.OutputName = {"oTheta", "oPsi"};

% Input to the decoupler is the error signal
DM.u = "e"; DM.y = {"oDTheta", "oDPsi"};

% Input to each PID are the decoupler outputs
PID _Theta.u = "oDTheta®"; PID _Theta.y = "oPID Theta“;
PID Psi.u = "oDPsi®; PID Psi.y = "0oPID _Psi~;

% Error is reference minus output of the plant. Ref components rTheta, rPsi
Suml = sumblk("e = %r - %y", {"rTheta", "rPsi"}, GDesign.y);

% Input to plant G is sum of disturbance and controller output (PID output)
Sum2 = sumblk("%up = %uc + d*, GDesign.u, [PID_Theta.y ; PID_Psi.y]);

CLO = connect(GDesign,DM,PID_Theta,PID_Psi,Suml,Sum2,
{"rTheta","rPsi","d"},{"e","oTheta","oPsi","oPID_Theta","oPID_Psi"});
CLO = blkdiag(Wp, eye(2), Wu) * CLO * blkdiag(eye(2), Wd);

hinfstructOptions(“RandomStart”®,3);
hinfstruct(CLO, op);

op
CL
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Choice of Weight Ws

We follow the strategy used previously, an ‘ideal 2nd order system’ instead of the original
weight proposed by Apkarian.

- Choose a 2nd order system that meets the specifications (chose o, and delta)
- Toia = wn2/ (s2+ 2 delta wn s + @n?)

- Calculate Sy g =1-Toia

- Define the weight as the inverse of S, i

We take wn = 20 and delta = 1.0 for both channels. This corresponds to a response time
of 400 msec that is 10 times greater than the control period (40 msec).

1.00001—% 0
W, =inv s°+40s+20

0 1.00001 - L

s® +40s + 202

Choice of Weight W4

In this problem the main source of uncertainty at plant input is the roll rate.
From the open loop diagram of the uncertainty plant we can see that static gain at 45

deg/s is about 7 dB greater that the static gain at O deg/s. This means about 2.3 times
greater. This suggests taking a uncertainty of about a 230%, so the weight is:

2 0
W, =
0 2

Choice of Weight W,

We want to penalize the actuators effort at high frequencies. We chose the standard form
of a weight.

The thrust vector control for the VEGA nozzle has the following limits:
-  Maximum deflection +7 degrees
-  Maximum deflection rate 10 degrees/s

Following the rules described in chapter 2 for selection of the actuator weight we have:

- A frequency for the actuator w.: = 2.24 rad/s and we should take bandwidth
about wp=22.4 rad/s

-  Maximum deflection, A = 7*pi/ 180.
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- We take M = 0.9.

The weight is identical for both channels:

1 is+22.4
S, Qﬁ__7_ 0
—A 0 s+22.4—7[
W, = S+ w, . _ 180 .
—S+m, —S+22.4
0 M 0 0.9
S+w, A I
b §S+22.4 —
180

We know that the PID controller will not roll-off at high frequencies. For the Launcher
this is undesirable because it will mean coupling with the bending modes of the
Launcher. Even if they are not taken into account we will add a roll-off term a posteriori.

% Obtain the blocks of the controller
DM2 = getBlockVvalue(CL, "Decoupler®);

PID_Theta2 = getBlockValue(CL, "PID_Theta");
PID Psi2 = getBlockvalue(CL,"PID Psi");
K = blkdiag(PID_Theta2,PID _Psi2) * DM2;

% roll off
K = blkdiag(tf(1,[0.005 1]), tf(1,[0.01 1])) * K;

The following figures show the singular values diagrams of the controller and closed loop
plant. We have introduced uncertainty on the plant that as was discussed in (5.3.5.1)
depends mostly on the roll rate.
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The synthetized controller K and KS, are shown (Figure 5-37).

KHINFSTRUCT K, KSo
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Singular Values (dB)
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Figure 5-37: K and KS, for the structured controller
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The figures of S,P and T, (Figure 5-38) for a set of uncertainty plants shows that the
magnitude of S,P is always below T,. This means that the system will have a good degree
of robustness and will be in principle robust to input uncertainties (uncertainty at plant
inputs: actuators and winds)

KHINFSTRUCT Sigma SoP, To Perturbed
20 T LA L LR L | T T T T T T T

101

-10+

30} _4“::””‘

Lo

Singular Values (dB)
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-70F

-80 L Lol Lol L Lol
-2 -1 0 1 2
10 10 10 10 10
Frequency (rad/s)

Figure 5-38: SoP and T, for the structured controller
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The figures of T,, T; and W, (Figure 5-39) are shown.

KHINFSTRUCT To, Ti and w eights
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Figure 5-39: T,, Ti and weights for the structured controller

5.5.3Simulation scenarios

A number of scenarios have been defined to evaluate the performances of the controllers.
Each scenario defines different LV inputs and different wind conditions. Three scenarios
have been defined:

- Response to ramps commands in theta, psi in absence of winds
- Response to ramps commands in theta, psi in presence of light winds
- Response to medium to strong winds and wind gusts (regulation problem)

The ramp commands are defined as:
- For theta, a ramp that starts at t = to and reaches 1 degatt=to+ 3 s.
- For psi, a ramp that starts at t = toand reaches 1.5 degatt=to+ S s.

Note: the slope of these ramps is even greater that the commands typically sent by the
guidance during the atmospheric flight. For a launcher the commands for changing the
direction are very smooth.

Each scenario is run with combinations of:
- The controller under test
- A set of roll rates:
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no roll (O deg/s),

slight roll (10 deg/s),
medium roll (30 deg/s),

high roll (45 deg/s)

negative high roll (-45 deg/s)

O O O O ©O

We use the following notation for the controllers:
-  KHINFGST: the proposed H-infinity CHGE controller
- KHINFSTRUCT: the proposed H-infinity KHINFSTRUCT controller
- KELVIG: the ELV PID controller (with gyro compensation and outer loop
disconnected)

- KELVGF: the ELV PID controller (with gyro compensation and outer loop
connected)

Note: the scenarios are run at from t = 50 s to t = 65 s (t = O is lift-off). The justification is
that at these times the maximum dynamic pressure along the flight is reached. This is
considered the most difficult phase of the atmospheric flight because the stability margin
is minimum.
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5.5.4 Simulation analysis

5.5.4.1 Scenario 1: response to ramps in absence of winds

Ramp inputs are commanded in theta and psi with different roll rates. It shall be noted
that for the ELV controllers the outer loop in position and velocity is disconnected in this
scenario. The justification is as follows: if a constant pitch angle is required, we should
also command a change on the yDot velocity and y position. If yDot and y are kept to
zero, we are sending contradictory orders to the controller. In order to keep the guidance
as simple as possible, the outer loop is disconnected in this scenario.

First let’s analyze the simulation at zero roll rate. Results are very similar between the
compared controllers (Figure 5-40). The KHINFSTRUCT controller is the more aggressive
(more activity in the actuators). Note also that the results of the ELV PID and the ELV
PID Gyro controller are identical as expected: the gyro compensation does not have any
effect with p = O deg/s.

Tetha, Psi [deg] actuators (pitch,yaw) [deg]
2r 0.3

151 B T

]
15

r, q [deg/s] y,z ECI[m]

>,
ey

02 I I 1.300 I I
0 5 10 15 0 5 10 15

angle of attack [deg] yDot, zDot ECI [m/s]

KELVIG
KHINFSTRUCT
KHINFGST

1 ]
10 15

Figure 5-40: Scenario 1 roll rate p = 0 deg/s

Note: in all the figures the continuous line is the variable for the pitch plane and
the dotted line the variable on the yaw plane. Each color represents a controller.

The results are almost similar for the simulation at 10 deg/s of roll rate.

In the simulation at 30 deg/s of roll rate is appreciated an interesting effect: the ELV PID
controller has an error in the stationary on the tracking of theta and psi. In both ELV PID
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Gyro and KHINFGST controller this stationary tracking error is not present. However this
effect is very small in absence of winds.

The effect is more visible in the simulation at 45 deg/s (or the one at -45 deg/s), (Figure
5-41). The stationary error for the yaw command is 0.15 deg for ELV PID and a peak of
0.25 deg is present. For the ELV PID GYRO the error is 0.05 deg and the peak is 0.12
deg. For the KHINFGST and KHINFSTRUCT controller the error is almost zero and the
peak is 0.05 deg.

Tetha, Psi [deg]

actuators (pitch,yaw) [deg]

5 10 15 0 5 10 15
1, g [deg/s] y,z ECI [m]
151 300
1k TR 200
05F . 100
05} 100 e
-1F 2000 TR
15 ! ! 1300 L . Tl
0 5 10 15 0 5 10 15
angle of attack [deg] yDot, zDot ECI [m/s]
0.08 20 .
KELVIG r
0.07 KHINFSTRUCT
KHINFGST
0.06
0.05 -20
0.04 I I 1 30 I I 1
0 5 10 15 0 5 10 15

Figure 5-41: Scenario 1 roll rate p = 45 deg/s
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5.5.4.2 Scenario 2: response to ramps in presence of winds

Ramp inputs are commanded in theta and psi with different roll rates and this time with
lateral winds. As in the previous scenario the outer loop in position and velocity is

disconnected for the ELV PID and ELV PID Gyro controller.

First let’s analyze the simulation at zero roll rate (Figure 5-42). The presence of lateral winds
introduces stationary errors in for KELVIG even when the roll rate is zero. The error is
about 0.25 deg for yaw. The KHINFGST AND KHINFSTRUCT controller does not have
stationary error. The results of the KELVI and the KELVIG controller are identical as the
gyro compensation does not have any effect with p = O deg/s (only the KELVIG is shown

for clarity).

Tetha, Psi [deg]

actuators (pitch,yaw) [deg]

05 I I
0

r, q[deg/s]
0.6

y,z ECI [m]

TLtraa .

angle of attack [deg]

yDot, zDot ECI [m/s]

KELVIG L
KHINFSTRUCT [
KHINFGST

..........
LTI EIETE

Figure 5-42: Scenario 2 roll rate p = 0 deg/s

At 10 deg/s the effect of the lateral winds on the tracking errors in theta and psi start to
manifest (Figure 5-43). The difference between the KELVI and the KELVIG is very small
because the gyro compensation is tuned for relative high roll rates.
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Tetha, Psi [deg] actuators (pitch,yaw) [deg]
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Figure 5-43: Scenario 2 roll rate p = 10 deg/s

When the roll rate increases the situation changes. As the LV is rolling the wind is not
received always on the same side of the lv. At p = 10 deg/s, after 9 seconds the LV has
rolled 90 deg. At this time the wind is received on the yaw plane. This is more evident
when the roll rate increases. At 45 deg/s the LV completes a full rotation in 8 seconds.
This creates oscillations in the figures of theta, psi and the actuators that try to
counteract the changing wind. The situation is symmetric for a roll rate of minus 45
deg/s (Figure 5-44).
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Tetha, Psi [deg] actuators (pitch,yaw) [deg]
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Figure 5-44: Scenario 2 roll rate p = 45 deg/s

Only the KHINFGST and KHINFSTRUCT controllers are able to keep a low stationary
error and to decrease the amplitude of the oscillations on theta and psi. The (Figure 5-45)
shows a comparison between these 2 controllers. The KHINFGST controller is slightly
better than the KHINFSTRUCT that present a less dumped behavior.
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Figure 5-45: Scenario 2 roll rate p = 45 deg/s (zoom)
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5.5.4.3 Scenario 3: disturbance rejections with wind gusts

This is a disturbance rejection problem in presence of winds. The references are
commanded to zero. Medium to strong winds and wind gusts are injected. The controller
has to reject the effect of the disturbance on the regulated variables. The scenario is
evaluated with several roll rates.

It shall be noted that for the ELV controllers the outer loop in position and velocity is
connected on this scenario. This is a regulation scenario where we want to keep the
trajectory (theta, psi and lateral velocities and positions near) to zero.

First let’s analyze the simulation at zero roll rate (Figure 5-46). The presence of lateral winds
(received in component Y) motivates an appreciable deviation on theta (pitch plane) for
the KELVGF and KELVF controllers. (Note that the curves are identical for these 2
controllers). The deviation is of almost 1.5 degrees in theta and 1 deg/s in r. In turn, this
provokes a lateral deviation of almost 150 m in y and of 25 m/s in yDot. The
KHINFSTRUCT and KHINFGST controller instead is able to counteract the wind
disturbances: maximum error on theta is about 0.15 deg and 0.5 deg/s in r. Maximum
lateral deviation is 50 m in y and of S m/s in yDot.

Tetha, Psi [deg] actuators (pitch,yaw) [deg]

r, g [deg/s] Y,z ECI [m]

15 1 1 I 50 1 1 ]

angle of attack [deg] yDot, zDot ECI [m/s]

KELVGF
KHINFSTRUCT |
KHINFGST

Figure 5-46: Scenario 3 roll rate p = 0 deg/s
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At roll rate 10 deg/s the situation changes (Figure 5-47). The LV rotates 90 deg on 9
seconds, so the perturbation moves from the pitch plane to the yaw plane. For the
KELVGF and KELVF controllers the error in theta is 1 deg/s at t = 8 s and then inverts.
At the end of the simulation the lateral deviation is about 50 m in y and 150 m in z. The
velocity error is 5 m/s in yDot and 15 m/s in zDot.

Tetha, Psi [deg] actuators (pitch,yaw) [deg]
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Figure 5-47: Scenario 3 roll rate p = 10 deg/s
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At roll rate 45 deg/s the LV rotates 360 deg on 8 seconds. This creates oscillations on
theta and psi being for the KELVGF and KELVF controllers the maximum deviations of
about 1 deg at the time of the wind gust. The maximum lateral deviation is about 100 m
and the maximum lateral velocity deviation of about 14 m/s (Figure 5-48).

There is no significant difference on the KELVGF and KELVF controller because the gyro
compensation can compensate the roll in the rotational dynamics but not on the lateral
dynamics: i.e. the wind does not increase or modifies the roll rate.
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Figure 5-48: Scenario 3 roll rate at p = 45 deg/s (ELV controllers)
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The KHINFSTRUCT and KHINFGST controllers have better behavior than the previous
controllers being the KHINFGST controller the best (Figure 5-49).

The KHINFSTRUCT has a maximum deviation in theta or psi of about 0.33 deg. The
maximum lateral deviation is about 40 m and the maximum lateral velocity deviation of
about 6 m/s at around the wind gust. The KHINFSTRUCT has a maximum deviation in
theta or psiof about 0.33 deg.

The KHINFGST has a maximum deviation in theta or psi of about 0.1 deg. The maximum
lateral deviation is about 30 m and the maximum lateral velocity deviation of about 3.5
m/s at around the wind gust.
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Figure 5-49: Scenario 3 roll rate at p = 45 deg/s (H-Infinity controllers)

The angle of attack is almost identical for all the controllers. The actuator range
(deflection and deflection rate) are respected in all the cases.
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5.5.5 Comparison of controllers

Two satisfactory H-Infinity controllers have been developed for the first stage of the VEGA
LV. The first one “KHINFGST” uses the CHGE technique. The second one
“KHINFSTRUCT” used the H-Infinity Structured technique.

Both controllers perform better that the real controllers in presence of roll rate and
lateral winds without penalizing the angle of attack. The cause is that the ‘knowledge’
about how the roll rate affects the translational and rotational dynamics is present on
the MIMO open loop plant. The original KELV controllers are instead basically SISO
controllers with a gyroscopic compensation term.

The original KELV gyro compensation algorithm can only limit the roll rate effects on the
rotational dynamics. It “does not see” the effects of the roll on the translational
dynamics. Due to this cannot compensate deviations due to lateral wind. This is
important in case of steady lateral winds.

The benefits of the H-infinity controllers are present without introducing penalties in the
angle of attack criteria that is almost identical for all the controllers.

Of the H-infinity controllers each one has some advantages and disadvantages:
- The KHINFGST has performances better than the KINFSTRUCT.

- The KHINFSTRUCT has of less order (6 states vs. 18 states) that means less CPU
time

- The KHINFSTRUCT has a well-known structure (decoupler plus PIDs plus roll-off
filter). This means that could be much easier to tune by slightly changing the PID
parameters if needed. This fact could help the new technology to be accepted by
‘classical GNC engineers’.

- A drawback of the KHINFSTRUCT algorithm is that being based in a random
search of a local minimum, it could obtain different results in different synthesis
even if nothing has been changed. This is a point that surprises when found by
first time. In the practicum it can be solved by indicating the number of “restarts”
of the algorithm (4 restarts was used)

The synthetized H-infinity controllers are not ‘qualified’ controllers in the aerospace
sense. For achieving this goal the controllers shall be tested on the full flight domain (full
scatterings, different payloads, etc.). The bending modes cannot be neglected. This is a
work to be done. However results seem quite promising.
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6 Contributions, Overall Conclusions and Future Work

6.1 Contributions

The main contributions of this thesis are:

e Demonstrates that H-Infinity is a valid method for controlling of ill-conditioned plants
when the appropriate H-infinity “variants” are used. This is done with an academic
example (the CDC benchmark) and one real life example (VEGA Launcher on first
state). It is demonstrated that some remarks in literature claiming inadequacy of the
H-Infinity method in general for controlling ill-conditioned plants are not exact: only

the H-Infinity Mixed Sensitivity is affected.

e Provides an in depth comparison in terms of performances, robustness and design
effort of the different H-Infinity improvements to cope with ill conditioned plants. In
particular an exhaustive study of the CDC problem is performed. Some u controllers

are included also as reference.

e Applies the previous results to a real world aerospace problem, the VEGA Launcher
using two of the H-Infinity optimizations (Christeen-Geering technique and
Structured technique). In our knowledge it is the first time that the H-infinity
Structured technique is applied to a Launcher. The synthetized controllers are cross
compared in the most critical point of the first stage (maximum dynamic pressure).
The real controller used in the VEGA Launcher (classical PIDs plus filters) is included
in the comparison. The comparison is done with a representative nonlinear simulator
of the LV named “miniVEGA” developed at hoc from scratch for this thesis. The

results are satisfactory.

e Provides a good compendium (with value as tutorial) of the optimization approach to
H-Infinity (LMI solution). This topic is relatively new. The existing papers are usually
highly mathematical and complex. The chapter 3 can be used as base for a course or

presentation in LMI techniques applied to H-Infinity theory.
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6.2 Overall Conclusions

We offer here the overall conclusions of this thesis.

First conclusion is theoretical: the H-Infinity method has a solid theoretical background
is very mature and the new LMI solution has been given “new life” to it because
introduces a wider approach to new control problems (multi-objective minimization,
LPV).

This has been described in chapter 3 where the theoretical background of the H-Infinity
theory has been introduced, the modern LMI solution has been studied in detail.

Second conclusion applies to one of the objectives of the thesis: the possibility of using
H-Infinity theory for ill conditioned control plants is confirmed, providing the appropriate
variant is adopted.

Two interesting examples of ill conditioned plants have been selected: one academic
problem (CDC distillation process) and one real world problem (Control of the first stage
of the VEGA Launcher in presence of roll).

Third conclusion applies to the particular field of aerospace.

On chapter 5 two controllers based on the H-Infinity CHGE method and on the H-Infinity
Structured approaches have been developed. Both controllers compare favorably with the
original control used in VEGA (PID plus gyroscopic gain) in term of robustness to roll rate
and automation of design.

The H-infinity Structured technique seems very suitable for aerospace applications (in
particular space applications) because allows the GNC engineer to impose a predefined
control structure (and this is important because the aerospace world is very conservative
and reluctant to adopt revolutionary changes). The resulting controller can be further
tuned manually by the engineer. This is important because allows the experienced GNC
engineer to apply its know-how and provides the feeling of “mastering the design”. The
order of the designed controller is chosen a priori. This allows designing low order
controllers that for the space world is still an issue due to the low computational power
of “radiation hardened” computers.

6.3 Future work

We mention two lines of investigations as future work: the control of the VEGA LV with
inclusion of the flexible dynamics (bending modes) and the synthesis of a LPV controller.

Inclusion of the VEGA LV flexible dynamics
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The classical way to take into account the flexible body dynamics is to manage it
separately from the rigid body. The frequency of the bending modes is calculated by FEM
methods (Finite Elements Methods). A band-pass filter is designed and added to the
output of the rigid body controller. In principle this filter should be independent of the
rigid dynamics and could be used with any controller designed for the rigid body
dynamics.

The problem with this approach is that the rigid and flexible body dynamics are not
totally independent. What happens in practique is that the GNC team designs first the
rigid body controller and after the flexible body controller. When the controllers are put
together there are some interactions that force to re-design and tune each one.

Adopting an H-Infinity approach for a LV 6DoF model containing both rigid and flexible
dynamics would allow designing the controller in a single step, with the advantage that
the optimization would be done globally for both dynamics and in a unique step.

Connections to Linear Parameter Varying (LPV)

A rocket is a paradigmatic example of a Linear Parameter Varying plant because the
thrust, inertia and mass change during the trajectory as the propellant is exhausted. The
control algorithms used in VEGA uses gain scheduling of classical PIDs. There are 12
stationary points along the first stage (that implies 12 manual tunings). The flight SW
executes a smooth interpolation between each 2 design points.

The LPV technique is a good candidate for improving the design cycle: it could guarantee
robustness by design, reduce cost and effort without penalizing the performances.
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7.2 Comments on bibliography
There are three classic books for the student of the theory of Robust Control.

The book “Multivariable Feedback Design” (Maciejowski, 1989) is a classical reference.
Only inconvenient is that is becoming outdated. The demonstration of the state space
solution shown in the book is the 1984 solution.

The book Multivariable Feedback Control (Skogestad, 1996) is also a classical reference.
It is an excellent reference book because it contains in addition to the theory a lot of
examples and practical experience and know-how.

The book “Robust and Optimal Control” (Zhou, 1995) is totally different from the
previous two. It is a highly mathematical book very useful as reference but not valid as
introductory text due to its complexity.

Internet has changed the way we work: at today there are thousands of links with very
high quality electronics books, presentations and online video courses. We will try to
enumerate some of the links used in this thesis.

The theory of H-Infinity of chapter 3 and supporting appendix has been elaborated from
several sources between them:

- The “Robust Control” course of professor Masayuki Fuyita
(http:/ /www.fl.ctrl.titech.ac.jp/course /ROC)

- The “Multivariable Feedback Control” course of professor Masayuki Fuyita
(http:/ /www.sites.mech.ubc.ca/~nagamune)

- The course (Balas, 2012) presented by A. Packard and P. Seiler

The modern convex approach to robust control and in particular the LMI solution
described in chapter 3 has been elaborated from several sources between them

- The very interesting presentations of professor Scherer
(http:/ /www.dcsc.tudelft.nl/~cscherer/Imi.html) (now in the university of
Sttutgart)

- The “Robust Multivariable Control” presentations of professor Anders Helmersson
(http:/ /users.isy.liu.se/en/rt/andersh/teaching/robkurs.html)

- The book “A Course in Robust Control Theory: a convex approach” (Dullerud,
200595)

- The slides of a presentation in university of Calabria by professor Apkarian
(http:/ /pierre.apkarian.free.fr/COURS/CALABRIAseminar.pdf)

For chapter 5, the classical reference for deriving the equations of a rocket is (Greensite,
1970) . A quite complete and compressive reference specific to the VEGA Launcher is the
PhD (Cruciani, 2008). The 6DoF equations of chapter 5 and supporting appendix are
mainly elaborated from this reference but with ideas taken from several courses between
them:
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-  The MIT course “Aerospace Dynamics” (http://ocw.mit.edu/courses/aeronautics-
and-astronautics/16-61-aerospace-dynamics-spring-2003)

- The MIT course “Dynamics” (http://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-07-dynamics-fall-2009)

- For the “transport theorem” the course “Robot Kinematic and Dynamic”
(http:/ /www.control.aau.dk/~jan /undervisning/Mechanicsl/Robot-
ST8 /mechbook.pd{)

- For the quaternion formalism, the main source has been the website
(http:/ /www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternion

s/index.htm)

The referenced MIT courses are part of the fantastic Open CourseWare MIT website
(http://ocw.mit.edu/index.htm).
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Appendix: Demonstrations
8 Appendix: Demonstrations

8.1 Mathematical background

Some mathematical notes are recalled in this appendix.
8.1.1Some notes on complex functions

8.1.1.1 Cauchy Riemann equations

A complex function f{z) where z is a complex variable (z = x + iy) can be written as made
of two parts:

fz) = ulxy) +iv(xy)

The derivative is defined by analogy with real functions as:

d(f(2)) _ "m( f(z+A7)- f(z))
dz Az—0 AZ

With real functions, the existence of the derivative means that the function is smooth. In
complex functions, it implies also that the derivative is the same in all the approaching
directions to the point.

&(z) _&(2)
X S(iy)
o (X+1y) o (x+1y)
x  S(y)
Applying the usual rules of differentiation:
A(x,y)  H6Y) _ A(xy) . M(KY)

R R s(iy)  S(y)
% y) L Mxy) _Axy) . w(xy)

R R io(y)  is(y)
aux,y) ovlxy) L dlxy) Hxy)

P & oy a(y)

Equating real and imaginary parts the Cauchy-Riemann equations are deduced.

a(xy) _av(xy) H(x,y) __du(xy)
X & X &

(Eq 8-1)

A function is called analytic if the Cauchy-Riemann equations are fulfilled.
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Using the notation:

Xxy) _
5X XX

Taking the derivative of the Cauchy-Riemann equations a second time on x:

U =V, V,, =-U

XX yX

Taking the derivative a second time on y:

Uy =Vyy Vg = Uy

A consequence of Cauchy-Riemann equations is that for complex analytic functions,
there cannot be a point zp where the second derivative on all the directions has the same
sign (except when derivative is zero, i.e. function is a constant). This means that for
complex functions there are not maximums or minimums but saddle points. This fact
will be used later for demonstrating the “Maximum Modulus Theorem”.

A representation of the complex function f{z) = z2 follows (Figure 8-1). The magnitude of the
function is the real part of f(z). The imaginary part of f(z) would the phase of the small
vector (made of the real part and imaginary part of f{z). The function has a minimum
along the real axis but a minimum along the imaginary axis, i.e. a saddle point in zero.

Figure 8-1: The complex function z2
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8.1.1.2 Cauchy Goursat theorem

Let be f{z) an analytic function. Be C a closed contour. Then
j f(2)dz=0
C

We will not perform a rigorous demonstration but instead show an intuition of the
demonstration. A formal demonstration can be found in (Churchill, 1986).

This intuitive demonstration requires a number of steps.

Analogies with real functions

Note that the concept of integration through a closed contour can be generalized from the
integration through a closed path in the real domain. First, the integral of the real
function f{x) between A and B is:

B

j f (x)dx = F(B)— F(A)

A
And so:

A B

j f (x)dx =F (A)— F(B) = —j f (x)dx

B A
So in the real domain the integral over a path that starts in A, goes to B then back to A is
equal to zero. Note also that the integral along an interval that goes from A to B through

an arbitrary list of intermediate steps (not necessarily located between A and B) is exactly
equal to the integral along the direct path A to B (all the back and forth steps cancels).

Definition of complex integral along an arbitrary path

This can be generalized to the complex domain. Given a variable z and a complex
function of the variable z, both the variable and the function can be expressed as a real
part and an imaginary part:

Z=X+ly
f(z) =ulx,y)+i v(x.y)

Where x, y € R and u(x,y) and v(x,y) are real valued functions. In other words the
function f{z) can be considered made of two real functions of two variables. This fact
made easy to introduce the concept of derivative, integral, etc. for imaginary functions.
Just the desired operation is applied to each part separately.

When the variable z is evaluated about a path C (being the path C parametrized by a
parameter t, i.e. C = C(t)) we have:
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z(t) = x(t) +iy(t)
f(z(t)) = u(x(0), y(©) +1 v(x(1), y(1))

Then the integral through a path C from A to B in the complex plane is defined as:
- Partition the path [A, B| in n sub-intervals [t; t+:/, being At = t+; - t;
- Define the distance between 2 points in the path: As; = z(t+1)-z(t)= z(t+1+At)-z(t)
- Evaluate the Riemann sum in the usual way

S= AI:TOZH“ f(z(t,))As,

But as:
As, =z(t,, +At)—z(t,) = z'(t)At

With this we have:

S= lmznl f(z(t))z' (t)At

And passing to the limit

S :T f(2(t)Z (t)dt

A

Let’s study some simple paths in the complex plane.

Integral of a complex function along a path on the real axis

First case is a path from A to B where both A and B are real numbers. This case is
exactly the real integral along the real axis. So:

S :.T. f(z)dz :T f(z(t))z'(t)dt
As along the real axis: Z(t) = x(t) + 10 = x(t)
S= j'. f(z(t))x'(t)dt = T(U(X(t),O) +iv(x(t),0))x'(t)dt = Tu(x(t))x' )+ i.T.V(X(t))X' (1)

Where the integral is splits on two real integrals of a real valued function.

If the path is from B to A along the real axis we know that:

S= 'Ef f(z)dz = —IA f(z)dz

Integral of a complex function along a path on the imaginary axis
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Second case is a path from A to B where both A and B are pure imaginary numbers.
As along the imaginary axis: z(t) = 0 + iy(t) = y(t)

S = [ f(z®)x' ()dt = [(u(0, () +iv(0, ye))y' ()t =i [u(y(®)y' (1) [ v(y®)y'(t)

Where the integral is splits on two real integrals of a real valued function.

If the path is from B to A:
S = [ F ()X (©)dt = [(u(0, y(©) +iv(0, yO)ly' ()t =i [u(y®)y' ) - [v(y(®)y'(t)

An again we know that for real integrals if the limit are exchanged the integral changes of
sign:

B B
S =i [u(y@®)y'®+[v(y®)y'®
A A
So also for complex functions, for an integration path in the imaginary axis:

S :.B[ f(z)dz= —f f(z)dz

From this result, we can see that the integral along a closed horizontal or vertical path A
to B and back to A is zero because the integral in a direction and the opposite cancels
each other (see the analogy with real functions in the real axis).

Then, any closed path compound of straight segments can be approximated by a closed
path that duplicates each segment in opposite direction (Figure 8-2). Each segment cancels
with the opposite as previously. We can pass from the left path to the right path in a
continuous differentiable process without cutting / pasting.

'Y iy 'Y i};
cancels each
other
i
k :JI. Fh
X

Figure 8-2: Complex integral along a rectangular path
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In turn any closed arbitrary path (not straight) could be approximated by a double path
and in turn could be approximated by a connected set of small ‘straight paths’ (Figure 8-3).

A |y A |y

cancels each
other

]

-
<

v
v

Figure 8-3: Complex integral along an arbitrary closed path

So we have demonstrated (informally) that the integral of a complex analytic function
along a closed path C is zero because the path can be approximated by a number of
small double paths that cancels each other.

Path independence of the integral between 2 points

Finally, we show (also intuitively) that the integral along 2 points A and B on the complex
plane is independent of the path chosen.

In (Figure 8-4), two paths are used. Each deviation of path P, from path P; can be deformed
continuously to be a closed subpath, that we know is zero.
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Path1
toiy Path2 —» by

integral is zero

Af A — X

Figure 8-4: Path independence of complex integrals

8.1.1.3 Laplace transform

The Laplace transform is defined as:
F(s) = j f (t)edt
0

The Laplace transform is a lineal operator: we take the original function and multiply by
the exponential function on each point.

Example: Let’s be f (t) =e *u(t) , where u(t) is the step function (0 if t <0, 1 if t >=0) and ‘@’
is a positive constant. Then

F(s) :J' f (t)e—stdt _ J'e—atu(t)e—stdt _ J'ef(a+s)tu(t)dt
0 0 0

1 1

_ 1 —(a+s)t _ _ —
F(s)= (e | (s+a) ©0-D (s+a)

—(a+s)t )_
— e _ =
(s+a) =

t=c0

That is stable iff s > -a.

Note that functions as f(t) = 1, f(t)=z", that have not defined real integral in [0, ©] has a
perfectly defined Laplace transform. Note that the Laplace transform is defined for any
functions that growth slower than e«

The Laplace transform changes derivative into multiplication by s and integral into
division by s.

L(f'(t))— sF(s) - f(0)
1
([ (t))—>§F(s)
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Example: the Laplace transform of the derivative is:

F@):j%%am*wt

0
As the derivative of a product is:
(fv)'=f'v+ fv'
f'v=(fv)-fv
[frv=[((fvy-tv)
[frv=tv—[tv
Identifying
df
f'v=—;()e™
.

We have:

F(s)= Tz—i(t)e‘“dt = f(t)e ™|y —T f(t)(-s)e *'dt =—f (0) + ST f (t)e *dt

F(S)

8.1.2 Introduction to norms

A norm is a mathematical operation that assigns a scalar to each element of a space. In
order to be a norm, the following properties shall be observed:

- Non negative: norm(v) >= 0

- Positivity: norm(v) iif v = 0

- Homogeneity: norm (a v) = a norm(v) for any scalar a

- Triangle inequality: norm (el + e2) < norm(el) + norm(e2)

It is precise to introduce the following concepts: norm of a vector, norm of a matrix, norm
of a temporal signal, norm of a system.

Norm of a vector

There are several types of vector norms.
- l-norm for a vector is the sum of the absolute value of the elements

-  2-norm for a vector is the square root of the sum of the squares of the (absolute
value of the elements). This is the usual ‘Euclidean norm’.

- Infinity-norm for a vector is the maximum of the absolute value of the components

Induced norm of a matrix
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The norm of a matrix could have been defined in a similar way that for a vector (i.e. the
norm only depends on the elements of the matrix). It is however much more useful to
introduce the concept of “induced matrix norm by a vector”, because it has a connection
with the classical concept of ‘gain’.

Given:
z=Aw
The induced norm of A by the vector norm-p is:

A,

|,

i.e. the induced norm is max ratio between the norm of the vector as transformed by the
matrix divided by the norm of the vector.

A ], = max

The induced vector norm of a matrix satisfies the triangle inequality:
- Norm (A B) <= norm(A) norm(B)

Norm of a signal that varies along time or with frequency

Given a signal e(t) or e(s), we can define the signal norm in different ways:

- Take something proportional to the area of the signal (for example square root of
the signal square would be a 2-norm)

- Take the maximum value over time (this is an infinity norm)

For multidimensional signals, we shall evaluate first the norm at each instant or
frequency (using a vector nom) and then evaluate over time or frequency using Hz or H.
norm.

The choice of the vector norm made the criteria more or less conservative. In (Figure 8-5), it
can be appreciated the location of points with induced p-norm = 1 for p in (-1, -2 or —):

inf-norm = max(x,y)

Figure 8-5: Visualization of norms
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Example, the vector u = (I, 0) has 1-norm = 1, 2-norm = 1, inf-norm = 1.
The vector u = (0.5, 0.5) has 1-norm = 1, 2-norm = 0.7071, inf-norm = 0.5.

Let’s suppose that the criteria is to have p-norm greater than 1 (to stay far from the point
(-1,0). The point A will not satisfy the inf-norm. Point B will satisfy the 1-norm but not
the 2-norm. Point C will satisfy all the norms (Figure 8-6). This means that a criteria based
in 1-norm is the less conservative. A criterion based in inf-norm instead discarded valid
points as “too close to the origin”. Usually the 2-norm is a good compromise.

inf-norm

O A

Figure 8-6: Conservatism of p-norms

Norm of a system

A SISO system is represented by a transfer function. The transfer function has a state
space representation associated as matrices [A,B,C,D]. These matrices [A,B,C,D] form a
composed matrix for which we can associate a matrix norm.

A MIMO system is represented by a matrix of transfer functions. The matrix transfer
function has a state space representation associated (in state space the MIMO system
simply has B,C,D matrices that are not 1x1). The matrices [A,B,C,D] form a matrix for
which we can associate a matrix induced norm.

We have now all the elements for defining the H-Infinity norm of a system. We take the 2-
induced norm (singular values) as the matrix norm evaluated at each instant of
frequency and then we take the infinity-norm along the time or frequency.

H, norm of a system is defined as:

.. =supo(G(iw)) = sup o(G(s))
weR Re(s)>0
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8.1.3 Mathematical introduction to LFT

A Liner Fractional Transformation is a function of complex variable z defined by four
parameters (a, b, ¢, d):

a+hz

F(z)=
(2) c+dz

A LFT can be written also as
F(z)=a+bz(l-dz)™"c

The LFT is called also the Moebius transformation. Doyle was the first to apply the
concept to control system, replacing the variable z by a state space matrix K.

If we have a complex matrix
M — |: M 11 M 12 :|
M 21 M 22
The lower linear functional transformation Fi(M,K) is defined as
F.(M,K)=M, +M_,K(1-M,,K)*M,, (Eq 8-2)

And represents the system (Figure 8-7)

z W
— —

au

K
y u

Figure 8-7: Lower LFT

The upper linear functional transformation Fy(M,K) is defined as:
R (M,K) =M, + M, K(1-M,K) "M, (Eq 8-3)

And represents the system (Figure 8-8)
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y u
K
P
¢ A e
z w

Figure 8-8: Upper LFT

A nice property of the LFTs is that composition of LFT is again a LFT.
A lot of structures used in control can be represented as LFTs.

First one is used widely in this work: to express the composition of the augmented plant
and the controller as an LFT.

An uncertain parameter can be expressed as LFT.

For example, given a parameter p € [2.0, 2.8], it can be written as p = 2.4 + 0.4d. where
dc € [-1, 1]. And this can be put as a LFT:

= d)=F 24 04 . 4V F 0 08
L(pdo)=F {1 0}’ u(p.do)=F, {0.5 2.4}

Applying the LFT formula:
F.(M,K)=M, +M_,K(1-M,,K)'M,, = 2.4+0.4dc(1—0dc)_11= 2.4+0.4d,

More generally, additive or multiplicative uncertainty can be expressed as LFTs. The
uncertainty can be dynamic:

Additive uncertainty

G(s) =G, (s)+W(s)A(s)

G(s)=F 0 L A
SR AN T

Multiplicative uncertainty

G(8) =G, (s)(L+W (s)A(s))

s =r || 0 WO,
9= lo e/
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8.1.4Kernel and null space

Given a linear map A, its kernel or null space is defined as:
ker(A)={veV : A(v) =0}

Its image space is defined as:
Im(A) = {weW : A(v) = w}

The image and the kernel subspaces 4ill’ the original space V. The image and the kernel
subspaces are mutually orthogonal:

dim(V) = dim(ker(A)) + dim(Im(A))
Im(A)* = ker(A)
8.1.5LMlIs

Only a brief introduction is provided in this thesis. Refer to (VanAntwerp, 2000) for a
good LMI tutorial (including a lot of references) and its role in control.

A symmetric matrix P is called positive definite “P »0” (where the special font of the
“greater sign” denotes “positive definite”) if:

X"Px>0,VxeRnx=0

Example:
2 0 T 2 0] x s
P= S>xPx=[x X, =2x2 + X2 >0,x%0
01 0 1|x,
Facts:
- P>0®AP) >0 (all the eigenvalues are positive)
- P>0 ®det(P(1:3,1:7) >0 (all the upper left sub matrix are positive)
- P>0®pi>0 (all the diagonal elements are positive)

A Linear Matrix Inequality is an expression of the form:

F(x)=P, +xP, +...+x,P, =0 where P; are real symmetric matrices (P= P7)
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A Linear Matrix Inequality is a particular case of the more general Semi Definite
Programming, where it is required that the constraint F(x) is affine (i.e. depends linearly
in the P).

Examples of LMI expressions are:

1+x5%0
I +x;+2x:20

2 0 2 -5 0 8
F(x):{O J+x{_5 1}”({8 1}0

A LMI has a number of nice properties:

A LMI defines a convex set: if x; and x» are solution of a convex problem, then any convex
combination x = (I -A) x; + A x2 (with A in [0..1)) is also a solution.

Note:
x=(1-A)x:+Ax(with A in [0..1)) is the segment between x; and x»

There is an equivalent with classical real functions. To be convex we require that
F((L—A)X, + A%, )< (L= A)F(x, )+ AF(x,)

For all x;, x2 and A in [0..1). But that is simply to require that the value of the function
is always greater that the value of the first order approximation (think on a parabola and
its first order approximation).

The combination of LMIs is a LMI. Given:
F.(x)>0,F,(x)>0,..,F,(x)>0

The combined LMI is:
F(x) = diag{F, (x),F, (X),....F, (x)>0}>0

This allows expressing multiple control requirements as only one LMI.

A LMI has a number of applications in control. The stability of a system can be expressed
as a Lyapunov equation that admits a LMI formulation. The crucial Bounded Real
Lemma (studied in chapter 3) relates the size of the H-Infinity norm of a system with a
LMI. A Riccati equation can be expressed as a LMI (see demonstration in 8.2.5).

8.1.6 Schur complement

Given the matrix M
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A B
M =
CcC D
The Schur complement of D in M is given by
A-BD'C (Eq 8-4)

The Schur complement is derived when the matrix M is interpreted as the set of
equations:

A B|x c
& o),/la
And we express c and d in function of x and y
Cx+Dy=d;
y=D"(d-Cx)
Ax+ By =¢;
Ax+BD™(d -Cx) =c;
Ax+BD™'d -BD'Cx=c;
(A-BDC)x+BDd =c;

So we arrive to:
x=(A-BD"C)"(c-BDd)
And
y=D*{d-c(a-BD"C)"(c-BD"d))

And we have c and d in function of x and y:
x=(A-BDC)"c—(A-BD'C)"BDd
y=-D"C(A-BD'C) c+(D*+D'C(A-BDC)'BD*)d

But this gives the formula for the inverse of M:
'x] [A B e
'y| |C D] |d

‘A BT [ (A-BD'C)? —(A-BD'C)'BD™
C D] |-D'c(A-BD'C)* D'+D'c(A-BD'C)'BD*

That in turn, can be factorized as:
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A B]" (1 0)y(-BD™C)* 0 I -BD®
C D| |-D*C 1 0 -Dc)o |

And for M itself as:
A B| (I BD*(A-BD™C 0} I O
C D| (0 1 0 D\-D*C |

It could be argued that we have found a more complicated expression, but is not the
case: we have factorized a complex compound matrix in function of diagonal or semi-
diagonal matrices that are always easier to manage.

Now, imposing that M is symmetric, so A and D are symmetric and C = BT:

A B | BD'YA-BD'BT 0 I 0
M=l _: = ART
B" D| (0 1 0 D\-D?BT |

Connection of the Schur complement with a LMI:

Let’s be M a symmetric matrix:
A B
M=| .
B D

M » 0 (definite positive) if and only iff D » O and the Schur complement of D in M is definite
positive (i.e. A-BD-1BT > ().

Demonstration:

Any matrix is definite positive if their determinants are all positive. We have seen that M
can be decomposed as:

A B | BD'YA-BD'B" 0 I 0
M=l _: = ART
B" D| (0 1 0 D\-D?BT I

| BD™
The first factor [O | J 3> 0 because Iis positive and (I *I- 0 * BD! = ]) is positive.

The same argument applies to the third factor.

So the fact of being M » O only depends on the second factor, with the assumed
conditions D » 0 and A-BD-1BT > 0.
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8.1.7 The Congruence Transformation
A congruence transformation is simply a change of base by a non-singular matrix.

It follows that if U is a non-singular matrix, it preserves the ‘definitess’ of a LMI. The
following are equivalent:

F>0
U'FU >0

The congruence transformation is used in the LMI solution to the H-Infinity problem.

8.2 Demonstrations for chapter 3

8.2.1 Maximum modulus theorem

If f(z) is an analytic function in a closed region C, then f{z) does not achieve it maximum
(or minimum) in the interior of C, except if f(z) is constant.

Demonstration

If f(z) is analytic f{z) shall fulfill the Cauchy-Riemann conditions. But these conditions
prevents the existence of maximum of minimums for f({z) (because all the points where
the derivative is zero are saddle points). This means that f{z) achieves it maximum and
minimum over the boundary of C and not in its interior.

An application to control theory is that for each F(s) stable,

_sup o sup
FOL = 1= g o

We can choose as closed region a rectangle (as big as wanted) with left side along the
imaginary axis. We know that F(s) cannot have maximum or minimums inside the
rectangle and we know that F(s) - O when s — «. So the maximum is attained in the
imaginary axis.

8.2.2Youla Parametrization of stabilizing controllers

Given a standard feedback system, we can choose a structure for the controller that
incorporates the plant P (Figure 8-9).
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Q(s)

A 4

P(s) >

K(s) | Pis) 0

Figure 8-9: Internal model control

This is called the Youla parametrization. Q(s) is a proper stable transfer function.
The expression of K(s) gives all the stabilizing controllers:

K(s) = (1 - Q(s)P(s)}* Q(s)

8.2.3 Stability of a system with Lyapunov method

The stability of a system can be defined as follows: the LTI unforced system X'= AXis
stable (i.e. the state tends to zero as time goes to infinity) if exist a Lyapunov function

V(x) = x' Pxwith P 50 such that the derivative is negative for all the states x (intuitively, if

the ‘norm’ of the state decreases along time whatever the trajectory followed the state will
approach to zero):

d(\gEX))z X PX+ X' P)'(=(Ax)T Px + X7 P(AX)=XTAT Px+ X" P(AX): W (ATP+PA)X
(ATP+PA)<0

The Lyapunov equation is a LMI:
- P>0
- ATP+PA<0— -ATP-PA >0

That is usually expressed as:
P 0
F(x)= >0
() {0 ~ATP- PA}

Also can be written in the standard from as:

P 0
F(x)=0+x . =0
0 -AP-PA
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8.2.4 Hamiltonian and LMI equivalence for a linear system

The general Hamiltonian equation
N f(x,w) <s(w,g(x,w))
X

Has been particularized for a linear system:
X'= f(x,w)=Ax+Bw
z=9(x,w)=Cx+Dw

T Q S|w
2x"TKx'< [w Z{ST R}{ } (Eq 8-5)

z

As:

(Note: K is not the controller but a symmetric matrix).

We want to demonstrate that the previous expression is a LMI.

Demonstration:

Note that:

ot 5 1

'K 0 x| [Kx Kx
Because = and [x' X = X"KX + XKX'= 2xKx'
0 K|x] [KX KX’

Note that
wl [ w ][0 I7Tx
z| |Cx+Dw]| [C D]|w

Note that x’ = Ax + Bw, and we can write

Lol sl

b xl=lasow x|

B O

So the first term is:

et g il 5[5 <L 2l

Finally, let be:
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0 1 0 1{0 1 10
J= , Jis its own inverse: =
2o 2ot o5
We can introduce I = J*J

wteccteolg o3 o3 offs el ol

And then

SRR (S H (1 b |

Arriving to:
2x"Kx'=[x w L AJO KJL O x Eq 8-6
B 0 BJK 0]A B|w (Eq&0)

Then we can replace both terms on the general formula (Eq 8-5):

et 43 37
R R A RS

ol o o I8 o e

8.2.5Hamiltonian matrix, Riccati Equation and H., norm

8.2.5.1 Hamiltonian matrices

Let define the matrix J € R2nx2n gs:

J :{ OI I(;} (Note that JT = -J)

A second matrix A is called Hamiltonian if the product J * A is asymmetric, i.e.
JA=(JA)T

but note that:
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(JA" =A"IT =AT(-J)

So we have

(JA) —JA=0
AT(~J)=JA=0
ATJ+JA=0

We can define the space of Hamiltonian matrices as:

H" ={AeR¥™": ATJ + JA=0)

It can be demonstrated, see (Datta, 2004) that:

If A€ H and B € H®, then A+B € H* (sum of Hamiltonian is Hamiltonian)

If A€ Hrand c € R®, then cA € H» (scaling of a Hamiltonian is Hamiltonian)
If A€ H"and B € H", then “product A*B” defined as A*B - BA is Hamiltonian
What’s more, if A is an eigenvalue of H, then (-4) is also an eigenvalue

8.2.5.2 Mathematical equivalence of Hamiltonian matrix and Riccati equation

An algebraic Riccati equation has the form

0=F +A"X + XA— XGX

Where F and G are symmetric matrices (F = FT, G = GT) and X is the variable.

It is possible to associate a Hamiltonian matrix to a Riccati equation.

Define a 2n x 2n matrix:

A G
H= ]
F

Let U, V vectors defining a subspace of H.

el

From first row we obtain:

AU +GV =UZ ->U AU +U'GV =Z

From second row we obtain:

FU-A'V =VZ

And replacing Z
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FU -A"V =VU AU +VU "GV

That can be put in form of a Riccati equation,
0=FU-A"V -VU AU -VU 'GV

Multiplying by the right by U ™:
0=F-A'VU'-VU'AUU"-VU'GVU ™

if we define X =-VU
0=F-A"X - XA— XGX

A G
H= {F AT} is equivalent to Riccati: F — AT X — XA— XGX =0

8.2.5.3 Hamiltonian matrix and H, norm of a system

In previous paragraph has been demonstrated that from a mathematical point of view, a
Riccati equation has associated a Hamiltonian representation. In this paragraph we
demonstrate that the Hamiltonian representation is in fact the ‘A’ state space matrix of
the following closed loop system (Figure 8-10):

r y

—>—> G(s) | G'(-s) |-

Figure 8-10: Setup for Hamiltonian calculus
Where:

ot} o]

And we had taken y=I. (This can be done with appropriate scaling G — y 'Gand
B—y'B).

The state space representation of the closed loop is:
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H is the A matrix of the system S =1/(1 —G; (-S)G(S)) . The poles of S are described by the

eigenvalues of H. As we has assumed that (G)<1, (I-G;(-S)G(S)) is always > 0. This
implies that the denominator in Sis never zero, so S has no poles on the jo-axis.

Then we identify the ‘A’ matrix of the system with the Hamiltonian matrix that by
previous paragraph is equivalent to a Riccati equation:

A BB’
{ CcC’ AT} is equivalent to Riccati —CCT —A"X — XA—XBB" X =0

The following statements have been demonstrated to be equivalent:
- [el.<v
- the Hamiltonian matrix H of S=1/(1 -G, (-s)G(s)) has no eigenvalues in the jo-
axis

- The Riccati equation has solution
8.2.5.4 Computing the H, norm of a system

It is not easy to calculate the H, norm of a system from its state space equation. Instead,
it is easy to check that the norm is minor than a given value.

The bisection search algorithm is commonly used:
1. Select yi, yu such that y; < ||G||w < Yu
2. Test if (yu-yy, yy < tolerance (i.e. the gammas are separated enough)
- Ifyes, STOP: |G| = 0.5* (yi + yu)
If not, GOTO step 3
Doy =0.5"* (yi + yu) and test if ||G||OO <y using the Hamiltonian matrix

If Ai(H) in imaginary axis, then y; = y (try with upper semi-interval),
If Ai(H) not in imaginary axis, then y, = y (try with lower semi-interval).
GO TO step 2

oA W

8.2.6 LMI of the closed loop in plant and controller variables

Given the general expression for closed loop of the plant P and the controller K:
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A B A+B,D,C, B,C B, +B,D,D,,
Tzw Z{C - CL:|: BKCZ AK BK D21
“ . C,+D;, +DC, D,Cy | Dy, + D, DDy

The general expression for the LMI for the closed loop is:

ATX+XA XB CT
F(X)= B' X ~yA D' |<0(where A,B,C,D refers to closed loop variables!)
C D -4

Let’s do a change of notation in the closed loop plant:

_{ACL BCL}_{K+§2KC_ZZ | §1+§2K521}
" CCL DCL c_::L-i_EZI.ZKCTZ | 511+

With notation:

e sy

c-le ol ey

C, 0

_ _ 0 _
D11 = D11’ D21 :{D } 'D12 = [0 D12]
21

With a change of variables is defined as follows:
Py = [§2T X 0 Ssz]
Q= [62 521 0]

And writing the following LMI in function of A, §1 ... variables

ATX+XA XB, C/

H(X): §1TX _7’| D11T
Cl D11 _7|

We want to demonstrate that the LMI F(X) becomes:
F(X)=H(X)+Q"K'P, +P{KQ <0 (Eq 8-7)

i.e. the LMI in closed loop F(X) can be written in function of the LMI in open loop
variables (plant variables) H(X) plus the terms on Q, K, Px.
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Demonstration

Let’s calculate the terms of the right part of (Eq8-7) :

Term H(X)
— — = = A"X +XA 0| XB
ATX+XA XB, C o+ e
H(X)=| B'X -A D, |=|—3
_ L B, X 0 1
Cl D11 _7| :
C, 0| D,
Term (P; KQ):

PIKQ = [Bx 0 Dlz]T [2 D,

_ B, o
C, D o

_ B.C, A  B.D, O

[Bjx o D { Ko }
D.C, C, D,D, 0

i (o BZ]_
X
(OI O()) i BKCZ AK BK D21 O:| —
(O Dlz) _DKCZ CK DK D21 O
0 XB,
X(O (?) [ BKCZ AK BK DZl O:| —
(0 Dlz) _DKCZ CK DK D21 O

XB,D,C, XB,C, XB,D,D,,

XB,C, XA,  XB.D,
0 0 0

| D,DcC, DGy Dyp,D¢Dy

o O O O

Term (Q"K'P,):

It is the transposed of previous
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XB,D,C, XB,C, XB,D,D,,
XB,C, XA,  XB.D,
0 0 0
D12 DK CZ DlZCK D12 DK D21

o O O O

Now let’s add the 3 terms, element by element:
F(X)=H(X)+Q"K"P, +P,KQ

First element is
(ATX + XA) +(B,D,C,)" X + X(B,D,C, )=
(A+B,D,C,)" X + X(A+B,D,C,)

Other elements are calculated directly, given the matrix:

(A+B,D,C,) X +X(A+B,D,C,) (B.C,)' X+XB,C, XB,+XB,D,D, C,' +(D,D,C,)

(B,C. )" X + XB,C, A X + XA XB, D, (D,C.)
BJ-.I—X +(BZDK D21)T X (BK DZl)T X I Dfl +(D12DK D21)T
Cl + D12 DKCZ D1ZCK Dll + D12 DK D21 0
(Eq 8-8)

Let’s calculate the left part (closed loop LMI) from the general formula:
ATX+XA XB CT
F(X)=| B'X -4 D' |<0
C D -4

Where the (A, B, C, D) of the closed loop systems are given by:
A+B,D,C, B,C, | B,+B,D,D,

B
Tzw = {éﬂ DCL :| = BKCZ AK BK D21
. . C,+D;,DkC, D,Cy | D, + D, DDy

Example: terms (1, 1) to (2, 2) are:

ATy 2 xa| ATBDKC: B.Cy TX+X A+B,D,C, BC(]_
BKCZ AK BKCZ AK
(A+B,D,C,)" X +X(A+B,D,C,) (B.C,) X +X(B,Cy)
(B,C, )" X + X(B,C,) AT X + XA,
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Term XBis:
X (Bl + BZDK D21)
BK D21

Other terms are straightforward, giving the matrix:

(A+B,D,C,) X +X(A+B,D,C,) (B.C,) X+XB,C, XB,+XB,D,D, C, +(D,D.C,)

(B,C. )" X + XB,C, A X + XA XB, D, (DLCL)
BJTX +(BZDK D21)T X (BK D21)T X I D]-.I:L +(D12DK DZl)T
C1 + D12 DKCZ DlZCK Dll + D12 DK D21 0

That is identical to the matrix in (Eq 8-8) .

8.2.7 The Elimination Lemma

We want to decompose the following LMI in two LMIs, but removing the dependency on
the controller K.

F(X)=H(X)+Q'K'P, +P;KQ <0

Let’s define BPx as a basis of the kernel of Px. Let’s define Ws, as the orthogonal operator
of BPx: W,, =BP,*

Multiplying by (BPXL)T to the left and (BP>< l) to the right we have:
F(X)=(BP ] H(X)BP,*)+(BP, ] Q'K P, (BP,* )+ (BP,* | PTKQ(BP,*)<0
as
P,BP, " =0, BP,“P, =0,
We have:
F(X)=(BP,* ] H(X)BR,* <0
Or
F(X)=Wp,"H (X)W, <0

Similarly, let’s define BQ as a basis of the kernel of Q. Let’s define Wy as the orthogonal
operator of BQ: W, = BQ*

Multiplying by (BQL)T to the left and BQ" to the right we arrive to:

F(X)=(BQ'J H(X)BQ" <0
Or
F(X) =W, ) H(X)BW, <0
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So the LMI:
F(X):H(X)+QTKTPX +P;KQ-<0

Is equivalent to the two LMIs:
F(X)= (P H(X)P, <0

F(X)=(Q"JH(X)Q" <0
Or
F(X)=W,, H(X)W,, <0

F(X) =W, ] H(X)BW, <0
8.2.8 Final step of LMI demonstration

We want to demonstrate that the formulation of the problem in terms of LMI closed loop
variables:

ATY+YA B, Y'C/

WIT(Y)W, =Wg| B -/ D, W, =<0
C_:lY 511 _7|
ATX+XA XB, C/

Wy H(X)W, =Wy | B/X -A Dy, W, =<0
Cl Dll _7/'

With X and Y portioned as:

X, X
X=|" "2 Y=X"=
X5

Yp
Y2T

|

Is equivalent to the conditions expressed by the following 3 LMIs:

JATX, + XA X,B,
-7
Dll

N, 0
[ oX J By X
C1

| ATY, +Y, A Y,Cl

N, O
0 | C.Yp -
T T
- B, Dy,
Xp O >0
0 Y,

o
DllT
-

N 0
X <0,
N, O
Y <0,
0 J
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Where:
ImN, =ker[C, D,,]
ImN, =ker[B,” D"

And all is expressed in open loop plant variables.

Demonstration:

Stepl: First let’s work with the LMI on X (Eq 3-12). The LMI is:
ATX+XA XB, C/

WgH(XWo =Wg| BX - D, W, <0
Cl D11 _7"
Where:
“« - x$ X,
X7
Q:[C_:z 521 O]
ATXP+XPA ATX2 XPBl ClT
XTA XIB
WQTH(X)WQ :WQT T2 TO e OT Q<O
lep lez _7" D11
Cl 0 D11 _7/|

Move the second row as last row. Move the second column as last column:

ATX,+X,A X,B C] ATX,
BlTXP - D1Tl BlTXZ
C, Dy -/ 0 ¢
XTA XIB, 0 O

WJH (X)W, =W <0

The orthogonal vectors Q© can be built on a smart way such that cancels the X
variables. First introduce the change of rows (2 row moved last row) also in the matrix Q.

0-lc, D, 0]{0 1| 0 8}

C, 0|D,
Q_o 0 |01l
|c, D, |0]0
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Then choose the orthogonal vector

N,, O
N,, O
1 _ X2
Q= 0 |
0 0
Such that:
N,, O
0 0 0 IN,, o_0
cC, D, 0 0] 0 1|
0 0
With these we have
ATX,+X, A X,B, CI A'X,[N,, 0
N,, N,, 0 0 B X - T B/ N,, O
Wo H(X )W, =| ™ "2 Lo A D BIX ] N <0 (Eq89)
0 0 10 C, D, -A O 0 |
XA X;B, 0 0 0 0

As the last row of Q" is zero, the last column of the LMI does not constraint the LMI. As
the last column of Q" is zero, the last row of the LMI does not constraint the LMI. So
these can be removed. (It is easy to see just by performing the product and checking that
the terms on X, and X, disappear). With this we arrive to (Eq 3-13) .

N,, O][ATX+XA XB, C/|N,, 0
WJH (X)W, =|N,, 0 BTX -4 D/ |N,, 0[<0
0 | C, D, -A| 0 I

Step 2: A similar demonstration can be done for the LMI on Y.
Step 3: The third condition
X 0
P =0
0 Y

Is deduced as follows: as Y is the inverse of X
XY = XXt =1

y — Xo X[ Yo Yo| [XoYe+X,Y,  XuY,+X,
X; Y] XoYe +Y, X, Y, +1
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Identifying the elements (1,1) and (2,1) with the identity matrix:
T
XoYp + XY, =1
XZTYP+Y2T =0, Y2T :—XZTYP

Replacing on the first equation
XoYo + X, (=X3Y,) =1
Xp =X, X5 =Y,
Xo=Yo =X, X3
But X,X, is quadratic, so is definite positive
Xp=Yo ' =X,X] =0
Xp =Y, >0

Applying the Schur complement the third condition is found

X |
P =0
{I YP:|
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8.3 Demonstrations for chapter 4

8.3.1 State space formulas for augmented plants

Latest Matlab version include commands for create state space representations for
augmented plants. This was not the case some years ago: these representations had to
be constructed manually (also to guarantee that the representations were minimal, i.e.
with the minimum possible number of states).

8.3.1.1 General formulas

The following state space representations for typical matrix transfer functions are given
in the literature:

Composition of systems:

The following representation is provided in (Skogestad, 1996).

A O 0O 0]|B 0
0O A O 0|0 B,
G, G
G:{l 2}: 0 0 A 0B 0|
G, G |o 0 0 A |0 B,
C, C, 0 0|D D
0 0 C, C,|D, D,]

Representations for [GI G2], [GI G3]T can be obtained from previous removing row and
columns identical to zero.

A 0 0 O0|B 0
0 A 00|10 B| ra g g

66, G]=| 0 © 000 0| [y sy g
0.0 00[0 0} |—cTp—p
C, C, 0 0/D, D, o2 I E P
(0 0 000 O]
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A 0 0 0]B,
0 00 0|0
G:[Gl}oo&osg
Gs)] |0 0 0 0|0
C, 0 0 0|D,

|0 0 C, 0|/D, 0]

The product of transfer functions has the following representation, see (Skogestad,
1996).

A 0| B
G= GlG2 - Blc2 A1 BlDZ (ss2)
D1C2 Cl | D.D,

8.3.1.2 Demonstration of Kwakernaak state space representation

The augmented plant is:

z,] [-Wyv -—w,pP

w
z,|=| O W, y
u -V -P

That can be factorized as:

z, -W, 0 oV P W
Z,|= 0 W, 00 1 {v}
u -1 0 0Jj0 O

The left matrix is formed (by ss1) as:

A 0 |-B 0
-W, 0| |0 A | 0 B,
{ 0 wj_ C, 0[-D, O
0 C,| 0 D,

Then
0| O O}

- O]:[o 1 0

And composing
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AL 0|-B 0 O
-W, 0 O o A/|] 0O B, O
o w, 0/=|¢ 0|-D, 0 O
—1 0 0 0 G, 0 D, O
10 0| -1 0 0]
The second factor is formed as (by ss1):
'A, 0 0 O0|B, 0]
0 AL 00| 0 B, A, 0]|B, O
V-PI |o 0 00|00 O| |0 A |0 B,
[OI}_oooooo_CvCpDvD
C, C. 0 0|D, D, 0 0| O I
' 0 0 00]O0 I
Composing...
_A\, 0 (B, O ]
V. P 0 A | 0 B,
0 1|=|C, C,|D, D;
0 0 0 O 0 |
0 0 0 0 |
The composition of both factors is (by ss2):
A0 fo0o0 B, 0 ]
-BC, -BC,:A 0 |-BD, —-BD;
Pw=| O 0 {0 A | O B,
-D,C, D,C; ;Cl 0 |-D,Db, -D,D,
0 0o !0 C,| o0 D,
 -¢, -C, |0 0| -D, -D,

8.3.1.3 Demonstration of Christen-Geering state space representation

The augmented plant is:

Z, 0 0 W, |w
Z, |=|W,P 0 WP|w,
d, -P W, -P|d,
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That can be factorized as:

Z, w, 0 O
z,|=|0 W, 0
d, 0 -1 W,

001
POP
010

Wy
W,
d

u

The left matrix is formed (applying ss1) as:

A, 0B, O
{Wy 0}= 0 0[O0 O
-1 W, ¢, 0/b, ©
0 0]-1 w,
_AU 0B, O 0]
W,| 0 0 0 A, 0 B, O
o|w, 0=C, 0D, 0 O
0 ‘—1 W, o ¢, |0 D, O
10 0|0 -1 wg|
The second matrix is formed (ssl) as:
_AP 0| B; 0]
P 0 3 0 0‘ 0 O
{o J‘ C. 0|/D, 0
10 0] 0 1
A, O 0B, 0 0]
P o P 0O 0 00 O O AP|BP 0 B,
{OIO}ZOOAPOOBP:CP D, 0 D,
C, 0 C, D, 0 D; 0,0 1 O
10 0 00 1 0]
[0 0 0 0 0]
0 0 1 0 A, |B, 0 B,
P O P|={0 0|0 0 1
0 1 0 0 C,|D, 0 D,
10 0 0 1 0|

Finally, applying the composition formula (ss2) to both factors:
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0 0 o0 0| 0 0 0 ]
O AL O 0| B, 0 B,
o 0 A O| 0 0 B,
o BC, 0 A |BD, 0 B,D,
0O 0 C, 0] 0 0 D
o pc, 0 C,|DD, 0 D,D,
0 -C, 0 0|-D, w, -D,|

That is identical to the proposed in this work if we take D,= O (so B,D, = 0, D,D, = 0) and
remove the rows and column identically zero.
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8.4 Demonstrations for chapter S

8.4.1No effect of gravity in LV acceleration (gravity turn)

We demonstrate here that the effect of the gravity during a gravity turn in the LV
acceleration is small.

Let’s take a 2-D problem with axis X and h (altitude). We have the generic Newton
equations:

MV, = F,
MV, =F,

Let’s express v in polar coordinates, in function of the modulus of the velocity and the
gamma angle (named the flight path angle, the angle between the velocity vector and the
X-axis).

v, =vsin(y)

Vy =VCos(y)

M i(vsin(;/)) =F
dt "

M %(vcos(y)) =F,

Applying the derivate chain rule (considering M constant):

M (Vsin(y) +vcos(y)y) = F,
M (Vcos(y) —vsin(y)y) = Fy

Multiplying the equation on Fy by sin(y) and the equation on Fx by cos(y) and adding
them we have:

M (Vsin(y)sin(y) + vcos(y)sin(y)y)
+ M (Veos(y)cos(y) — vsin(y)cos(y)y ) = Fy, sin(y) + F, cos(y)

First term can be simplified as:
M (Vsin(y)sin(y) +vcos(y) cos(y) +vcos(y)sin(y)y — vsin(y)cos(y)y) =
M (\'/sinz(y) +\'/c052(7))= Mv

Having
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Mv = F,, sin(y) + F, cos(y) (Eq 8-10)

Multiplying the equation on Fx by cos(y) and the equation on Fx by sin(y) and subtracting
them we have:

M (Vsin(y)cos(y) + vcos(y)cos(y)y )
— M(vcos(y)sin(y) — vsin(y)sin(y)y ) = F, cos(y) — F, sin(y)

First term can be simplified as:
M (Vsin(y)cos(y) — vcos(y)sin(y) + vcos(y)cos(y)y + vsin(y)sin(y)y ) = Mvy

Having
Mvy = F, cos(y) — F, sin(y) (Eq 8-11)

Now the forces acting on the launch vehicle are:
F, = (T - D)sin(y) — Mg
F, =(T —D)cos(y)

Substituting Fxand Fyin (Eq 8-10) we have:
MV = (T - D)sin(y) - Mg)sin(y) +((T — D)cos())cos(y)

Substituting Fxand Fyin (Eq 8-11) we have
Mvy = ((T - D)sin(y) — Mg)cos(y) - ((T — D)cos(y))sin(y)

So we arrive to:
v =(T - D)gsin(y)
vy = —gcos(y)

Substituting g in first equation:

_—Vy
9= cos(y)
We have:
(T -Vvy ). )
v=(T D)(Cos(y)jsm(y) (Eq 8-12)

So the expression of the acceleration of the rocket does not depends on g, so does not
depends on the gravity in a first approximation.
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8.4.2Deduction of the Transport Theorem

Let’s consider 2 reference frames: an inertial frame, denoted by the suffix I and a rotating
frame with regard the previous denoted by the suffix R. The frame R rotates with an
angular velocity ® with regard the frame 1. See (Figure 8-11) and (Figure 8-12).

Let be a base (u:r, Uz2r, usr) for the rotating frame.
Let be a base (ui;, uzr, us) for the inertial frame.

o]

Uzr

Fi Uy
Uz

Figure 8-11: Inertial and rotating frame

Us A =)
Usrj
Fr
Uir

>

Fi Vi
Uz
Uzr

Figure 8-12: Inertial and rotating frame with same origin

Let’s assume both frames have the same origin in a given instant (this simplifies the
demonstration). There is a particle at point P that is moving. The vector r denotes the
vector from the common origin of both frames to the point P. At each instant of time, the
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vector r is identical on both frames (but the decomposition of r in components is of
course different for each frame).

I =XgU;z + YRU,g +ZgUs;  in the rotating frame

r=XU, +Y,U, +2Uy, in the inertial frame

Let’'s take the derivative of the vector r in the inertial frame, but expressed in
components of the rotating frame (we can do this because physically, we know that the
vector is identical in both frames, even if the decomposition in components may be
different)

|
_ d’ (XgUyg + YrUyg +ZgUsg)
(inB) dt

d'r _d 'T
dt (inny dt
We apply now the usual derivative of a sum of products, having into account that both,

the components of the vector in the rotating frame (xz, yr, 2zr) and the unit vector of the
rotating frame (u:r, U2r, Usg) change along time as seen from the inertial frame.

|—>
d_r:(dditRulR + Xg dumj‘f‘(%um +Yr duZRj‘F(dZR Uy + 25 dUst

dt dt dt dt dt °F dt

d'fF (dxg dy, dz, j [ du,, du,, dug, j
= U + Uy +—Uge [+] X + +z

dt [dt Woodt f 0 odt ¢ Rt YR g R g

The first term or the previous equation is the usual derivative on an inertial frame. For
the second term, we note that in a given instant of time it describes the rotation of the
point P around the inertial frame. This means that the point P has a linear velocity

Vein) =0 ®T;

And we can write:

d'r [deu dye , 92

at Rt at Rt u3Rj+(XR(a)®ulR)+yR(w®du2R)+ZR(a)®u3R))

dt dt
Iz Ry

d_r: dr + O ®Tjop)
dt dt

That is the expression of the Transport Theorem.

Two easy scenarios are investigated hereafter:

Page 281 of 296



Appendix: Demonstrations

Scenario 1: point P is not moving on the inertial frame. The inertial observer does not see
any change along time. The observer in the rotational frame sees the point rotate in the
opposite direction

d'r dfr

dt dt

d°r

dt

R=

+o® F(inR)

0:

+o® F(inR)

=-0® F(inR)

Scenario 2: point P is rotating in a circle around the inertial frame with angular velocity
®. Suppose the rotational frame is attached to the point P (so rotates around the inertial
frame at the same angular velocity)

a'r_d'r
dt dt

That is simply a circular motion.

+O®F p =0+0®F

8.4.3 Expression of angular velocities in function of inertial variables

We will use the general expression of the transport theorem to transform an arbitrary
angular position from the body frame to an inertial frame. In particular, we are interested
in the particular transformation from the body frame to the Guidance frame. It shall be
noted that the Guidance frame rotates (with angular speed p along the X axis) but the Y
and Z axis of the Guidance frame remains inertial.

d | (angPOSBinG ) d B (angPOSBinG )

= ® (angPos.;
dt dt +w ( g BlnG)
6 (4 ¢ p] [p] [¢
| =|\y| te®ly | =19+ q |0y
_‘9_0 9 5 9 5 r r 9 5

¢ p q'gs_rl//B
v =la| +|-(p%-rds)
3, LTl | Pws—0ds

We have required that Guidance frame have the same roll orientation that the LV Body
frame, so that @s = -@p¢ and equal to zero. Also we know that the angle (Body as seen in
Guidance) is the opposite of the angle (Guidance as seen in Body), so
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We are interested only in Y and Z axis so we remove the expression for phi.

HEER SN

So we can express the angular velocities g, r of the body frame as the derivative of the
angles in the Guidance frame and the angular position and roll rate of the body frame.

a=vys—P%
r=>8 +pys
8.4.4Expression of angle of attack in inertial frame

We want to express the angle of attack in function of inertial variables.

Y
v, =—9.V +Y ay=—9+
y G V
i can be expressed as
vV, =y V+Z
O{W = l//G +\7

The demonstration is purely geometric.

Demonstration for pitch plane

The vector V is the relative velocity (i.e. velocity of the LV taking into account wind
effects). The vector V has component Yu: in the inertial frame. The vector V has
component vy, in the body frame.

The angle of attack in pitch plane is the angle between the velocity vector V and X,.
Visually this angle is the difference between the angle of V in inertial frame minus the
angle of the body frame in the inertial frame.

See (Figure 8-13).
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7 wyiv=
-~ sin(angp)

\ -~
-
-
-

Ypor/V=

sin(angy)

Figure 8-13: Angle of attack (theta)

angg =9; +ang,

/ v
arcsin| - =4, +arcsin| —-
\ \

For small vy with regard V and small theta:
/ v

i — ‘96 +_y

\Y \Y

Y =9V +y,

v, =—8V +Y

Defining,

(VY
a = arcsin| T-

We arrive immediately to the expression for the angle of attack:

/ v
arcsin| Y- =9, +arcsin| =
Vv Vv

ay =—39; +\Y7

Demonstration for vaw plane.
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The vector V is the relative velocity (i.e. velocity of the LV taking into account wind
effects). The vector V has component Zi: in the inertial frame. The vector V has
component v, in the body frame.

The angle of attack in yaw plane is the angle between the velocity vector V and X.
Visually this angle is the difference between the angle of V in inertial frame minus the
angle of the body frame in the inertial frame.

See (Figure 8-14).

7
///
A /,{
/// VZ/V:
e sin(angy) -
- ZDE)TN:)
sin(ang,
ZG
z o =7 -psi
5 // (negative)
ZE OoT
B
>
XG

Figure 8-14: Angle of attack (psi)

Note however that due to right hand convention, Zs.: positive implies angle psi (inertial to
body) negative.

angg = -y +tangs

arcsin E = +arcsin Yz
v Ve V

For small v, with regard V and small deviation between axis, angles are small

— VZ
Ve
Z=-yV+V,
V, =V +Z

Defining,
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e
@, =arcsin| o+

We arrive immediately to the expression for the angle of attack:

arcsin E =— . +arcsin V.
v Ve v

(7
arcsm(vj =y, +a,

B Z
al// —l//G +\7

8.4.5 Check of rotational and translational formulas under rotation of
90 degrees

By symmetry of the Launcher, we know that under a positive turn of 90 deg on the roll
axis, the dynamics is identical (i.e. the selection of the Y and Z axis is just a convention).
This symmetry shall be observed on the equations under such turn (Figure 8-15).

;;PYB

Figure 8-15: Rotation of LV around x axis (-90 deg)

Under this rotation, we can the following transformations:

z2y 0>y
y 2-z y >-6
Be 2 By r=q
By 2-Be q->-r

Note that the Thrust (7), the transversal inertia (I7), dynamic pressure (payn), coefficients,
X axis parameters, etc., are unchanged under this rotation. Accordingly the following
expressions are unchanged under this rotation.
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1
Aa = I_(XCP — Xcos )(pdynSRCN )
T

T
K, = _I_(Xcoe - XPP)
T

1= I =T —1— | xx

I, I,

Rotational formula

If we substitute in the original equation,

q=(k, 8, )+ Aﬁw(%)z' +2poF

r= (Kl By )+ As'g_(%)\( —ApyQ

We have:

(1) =(K, (=8,))+ A (-9) +(%j(v' )+ Ap, (@)

@<k, (8.0)+ A~ -1 m,(
And then the original equation is obtained:
(1) = (K, (8,)+ A (9) —(%j(vd—ﬂpo (@

@ =K, (ﬁw))ww){%]z NG

Translational formula

If we substitute in the original equation,

T—-panSg(Cy —C S:Cy o .
T + pdyn R( N X)lg_ pdyn R NY+2pZ—Vr+Vpl//

vl
m'Bg m mv
. T- S.(C, -C S.C, . .
Zz_lﬂy/_ pdyn R( N X)l//— pdyn R™~N Z—ZpY +Vq+Vp3
m mV
We have:
T T—-punSg(Cy —C PanOrC . )
()= (B)+—" (€G- I (<2) +2p(Y) -V (@) +VP(-9)
. T T —panSr(Cy —C PanSrCu o .
(Y)=—E(—ﬂsl9)— & F;TE : X)(—19)l//—$(Y)—2IO(—Z)+V(—F)+V|0(V/)
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And then the original equation is obtained:

T- pdynSR(CN _Cx )
m

. T PaynSrCn ,
(2)=-—(B,)- (w)- (2)=2p(Y)+V(q) +Vp(H)
m mV

+T - pdynSR(CN _Cx)
m

. T pdynSRCN / 7
(Y)=—(8,) () -————()+2p(Z)-V(r)+Vp(y)
m mV

This demonstrates the coherency of the linear model with the physic of the problem.

8.4.6 Quaternions

Quaternions where introduced in 1847 by the English mathematician W. R. Hamilton as
a way of generalize the algebra of complex numbers to higher dimensions. The
quaternion is defined as:

g=a+bi+cg+dk

With the following rules
2=jp2=k2=-]
j=k=-i, jk=i=-kj, ki=j=-ik

The sum of quaternions is the usual sum of vector on R%.
(p1. P2, ps, P4) * (q1, G2, G5, G4) = (P17q1, P2*Qq2, Ps+qs, pa+qa)

And the multiplication of quaternions is given by:
(a,x)(b,y) = (ab — x-y, ay+bx+ (x *x y))

Than can be expressed as:

O (l) -0, (2) -0, (3) -0, (4)

_ G (2) G (1) -0, (4) G (3) q
G (3) ' (4) G (1) -0, (2) ’
0 (4) -4 (3) G (2) qll()

92

A quaternion represents a rotation of an angle 0 around an axis “a”:
q p g
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_ (gj _
cos| —
2
(,9
a, sin
2

aSIn
2

(
a3sm
2

In general is not easy to interpret the quaternions in term of Euler angles but some cases
allows a direct interpretation.

cos(ﬁj 1-sin?
2

3) | =
a; sin a, sin

( ) a, sin
9 .
assln 2 a,sin

VR
N—

a, sin

~—_ N[
L

N N[ N

For small 6, the quaternion becomes:

'PH

N

o)
Q

SH o

CRVAY ARV RV

This means that a (normalized) quaternion with first component similar to 1 is a small
rotation (of “6/2” around the vector “a”).

If only one of the components 2 to 4 is not zero, the quaternion represents a rotation
around that axis. Example, a rotation of 30 deg around the axis x becomes:

cos(30/2) ] [0.9659

1*sin(30/2) | |0.2588
“lo*sin(30/2)| | 0
0*sin(30/2) 0

Rotation of a vector by means of a quaternion

Page 289 of 296



Appendix: Demonstrations

Given a vector (V) in a frame A we can express it as a vector (Vp) in a frame B if we know
the quaternion gma (quaternion to pass from A to B) just by applying the matrix
transformation:

VB = gBa Va gBal

Quaternion derivative

The derivative of the quaternion is defined as:

q= Eq q
2 @
Were g, is a ‘fake’ quaternion built with o as:
9o = [0 ©(1) @(2) o(3)]}

Demonstration:

The relation is easy to demonstrate starting from the expression of the quaternion:

ol

- asin(gj

Taking the derivative:

given J(t) = ot

And then:

(50| ofeot573) o ol25) |5
—Sin| — —COS§| —+— cos| ——— COS
2)| 2 2)| o 2 2)| o 2

. w
q=— S =— =—
2 acosﬁ 2 asin ﬁ_ﬁ 2 asin ﬁ_ﬁ 2 asin 4-r
2)] 2 2 2 2 2

Identifying with the general expression of a quaternion:

4= 2o(9-7) = Lo(S)a(-7) = %wq

Note: g(m)= q(-n)= unit quaternion ([1 O O 0]).
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9 Appendix: Developed Software
9.1 Software for the CDC benchmark

Note: the scripts have been tested only with Matlab 2011b.

9.1.1 Software User Manual Notes

9.1.1.1 Execution
Open a Matlab session and change to the directory containing the code.

Execute the following command to design the controllers:
>> doBench

(Edit the file doBench for comment or uncomment the desired controllers to design)

The execution generates a html file with the controller performances (in folder ‘rpt’, name
is <“CONTROLLER_NAME>_spec.html!’

Execute the following command for printing the figures and generate a table with the
controller performances:
>> printFig

9.1.1.2 List of important files

File Purpose

doBench Entry file that generates the controllers and executes the CDC benchmark
(Edit the file and uncomment the wanted controllers)

la.m Generates the open loop plan (nominal and disturbed)

graf.m Executes the CDC for the controller passed, generating also the figures

printFig.m Auxiliary files for generating HTML and png files

Aug_Xxx.m Auxiliary files for generating the augmented plants

khinf_mixed Generates the H-Infinity controller Mixed Sensitivity

khinf_kwa Generates the H-Infinity controller KWA

khinf_gstl Generates the H-Infinity controller CHGE Variants 1 and 2

khinf_gst2
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khinf_struct_3 Generates the H-Infinity Structured controller
kmuSK096 Generates the mu controller Skogestad 96
kmuLUND99 Generates the mu controller Lundstrom 99
kmu2012 Generates the mu controller Balas 2012

9.2 Software for the VEGA Launcher

Note: the scripts and “miniVEGA” have been tested only with Matlab 201 1b.

9.2.1 Software User Manual Notes

9.2.1.1 Execution
Open a Matlab session and change to the directory containing the code.

Edit the file “design.m” commenting out the desired controllers.

Execute it for designing the selected controllers:
>> designK

Edit the file “runBatchSim.m” and select the desired scenario. Execute the scenarios
with:
>> runBatchSim

Plot the desired results with
>> plotSim(listSim)

9.2.1.2 List of important files

File Purpose

designK Entry file that executes a simulation
(See detailed description)

loadParamsFromVMAT | Returns a set of flight parameters linearized between times passed. Returns both the
mean value and a vector with all the values

createOLPlant Creates a LV plant (open loop)
Returns:

The TVC model

The 6DoF model

The full model sys = TVC * 6DoF
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create6DoF Creates a the 6DoF model

Note the states are

% states = [ yDot theta r zDot psi q (y z) ]
% actuators = [ betaTetha betaPsi |

createKPIDELV Creates several ELV controllers ( classical PID control plus advanced filters )
Control on theta, psi

createTFs(K,G) Creates the closed loop functions for the controller and plant passed

getELVTuning Retrieves the tuning coefficients of gains and filters for the PID ELV controller at the
time passed.

The filters are defined in the digital domain. They are passed to continuous domain with
the function d2c() and the ‘Tustin’ approach.

createHINFGST Creates an H-Infinity CHGE controller
createHINFStruct Creates an H-Infinity Structured controller
runBatchSim Executes a set of simulations in Simulink (by calling runSim)
(See detailed description)
runSim Executes one simulation in Simulink
(See detailed description)
plotSim Do simulation plots

(See detailed description)

9.2.2 Function details

The more important functions are described with some detail.

9.2.2.1 Function designK()
It is the main function for designing the controllers.

The script declares 3 global structs:
- Struct “DESIGN” that will store each designed controller
- Struct “SIM” that will store input and output data for the Simulink model
- Struct “SIMDATA” that will store the results of each simulation.

First the timeBegin and timeEnd for designing the controllers are chosen. These times
are used:

- At design time for linearizing the 6DoF model

- At run time for providing the interpolation data for the Simulink block
“Interpolated time variables”

A typical choice is timeBegin = 50, timeEnd = 65 to capture the zone of maximum
dynamic pressure.
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Then the data of the LV is loaded from a predefined simulation by calling the dedicated
functions “loadParamFromVMAT()”. This function returns 2 structs. The struct “par”
contains the average value of parameters between begin and end times (e.g. average
mass, average inertia). The struct “parAll” contains instead all the samples between these
times. The struct “parAll” is used at run time.

The data of the environment (atmosphere, winds) is loaded by calling the functions
“loadAeroCoeff()” and “loadAtmoModel()”. These data are loaded in the struct
“parAll”. These data is not used for design of the controllers but at run time during the
6DoF simulations.

A given roll rate is selected as “design roll rate”. The linear model will be instantiated
with this roll rate.

Then the function “createOLPlant()” is called. It creates the linear open loop plant
(composed of the 6DoF linearized model and the TVC actuators. The struct “par” with the
linearization point is passed as argument.

Finally each controller is designed. The file is edited manually for commenting out the
desired controllers.

Each controller is stored as a field of the global struct “DESIGN”.

9.2.2.2 Function runSim()
This script executes one simulation.

Receives as parameters:
- The structs “par” and “parAll” with the linearization points
- A label identifying the simulation to be generated
- The identifier of the controller to be used
- The name of the controller to use and the simulation options
- The simulation scenario

The simulation scenario is blended with default options as:
- Default duration
- Default roll rate
- Default delays

(i.e. the caller can overwrite the value for a default option. If not done, the default value
is used).

Then several fields are added to the global struct SIM that is visible inside the Simulink
model, for example:

- SIM.par that contains the parameters of the model
- SIM.TVC that contains the state space equations of the TVC
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- SIM.K*** that contains the state space equations of the designed controllers

It is important to mention that the initial LV state (at the start of the simulation) is set in
some SIM.par.xxx variables:

- Angular velocity in Body (initial value of the angular velocity integrator)

- Quaternion at the start of the simulation. It is the unit quaternion, i.e. at the
instant of the simulation we consider that the LV body frame is aligned with the
LV reference frame

- Linear velocity at the start of the simulation

The Simulink model (by default “miniVEGA.mdl”) is opened. Several parameters are

”» o«

adjusted as “SaveFormat”, “solver” etc.

Then, a placeholder block called “miniVEGA/GNC” is replaced with the designed
controller “miniVEGA/GNC/<controllerID>". Not that the model is edited dynamically for
replacing the generic placeholder controller with the desired one.

Then the simulation is executed by called the function “sim()” passing the desired
simulation time and simulation options (as for example the desired solver).

When the simulation finish, the simulations outputs are copied to the based workspace,
to the struct SIM.outputs. Some derived outputs are computed (for example the error on
attack angle).

Finally, the full SIM struct is saved as field of a global struct called SIMDATA. (E.g.
SIMDATA.KELVI). In addition, each simulation is saved to a particular file.

9.2.2.3 Function runBatchSim

This script allows the automation of the execution of a set of simulations.

A set of scenarios are defined. Each simulation scenario defines:
- The name of the scenario
- The model to use (6DoF nonlinear or linear)
- The input references to use
- The wind profile

4

The cellarray “listSce” contains the scenarios to execute. The cellarray “listControllers’
contains the controllers to simulate. Finally the array “listRoll” contains the roll rates.

A loop invokes the function runSim():
- For each scenario in “listSce”
- For each controller in “listControllers”
- For each roll rate in “listRoll”

Page 295 of 296



Appendix: Developed Software

The names of the simulations executed are stored in the global array listSim|].

9.2.2.4 Function plotSim()

This function plots several figures for the simulations contained in the list passed.
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