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Chapter 1

Introduction

In the past few decades, information and communication technologies (ICTs) are having

an increasing impact on education. Widespread technologies such as the Internet, web

services, video conferences and others have prompted crucial improvements in education.

The 2001 “Redefining Education” report of the Software & Information Industry

Association (SIIA) of the United States of America concludes that technology is redefin-

ing education. The report states that “the paradigm shift in our education goals and

models is just beginning as 21st century solutions merge with 20th century infrastruc-

ture and 19th century educational tradition” (SIIA 2001). Such a diagnosis not only

acknowledges the tremendous improvements brought by information technologies, but

it also reveals the deep changes that the current educational paradigm is facing, moving

from a static to a continuous process, better suited for the demand of a life-long learning

society (see Figure 1.1).

The use of ICTs provide indeed great opportunities for education. In the last years,

the scientific community has made a great effort to take advantage of these new possibil-

ities, developing successful solutions in many different disciplines, including engineering

Figure 1.1: Towards a new paradigm of education.
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education (Heck 1999, Dormido 2002, Sánchez 2001, Latchman et al. 2001).

Virtual and remote laboratories

In control education the impact of these technologies is even more significant. Experi-

mentation in traditional laboratories is essential for students, who need to understand

the fundamental concepts from both perspectives: theoretical and practical. Many ex-

amples of traditional laboratories can be found in the literature, see for instance (Leva

2003, 2004, Wellstead 1983, Chandrasekara & Davari 2004, Spong & Block 1995, Rad-

haramanan & Jenkins 2007). However, the high costs associated with equipment, space,

and maintenance staff, impose certain constraints on resources, therefore much research

has focused on ways to overcome this limitation (Latchman et al. 1999, Gillet et al.

2008, Dormido et al. 2008, Farias et al. 2010, Gomes & Bogosyan 2009, Leva & Donida

2008).

Two of the most important results are virtual and remote laboratories. Table 1.1

presents a classification of these learning resources based on the following criteria:

The type of resource indicates whether the resource is a real equipment or a model

of a physical system.

The type of access indicates whether the resource and the student are in the same

or different locations.

Table 1.1: Types of learning resources

Resource︷ ︸︸ ︷
Real Simulated

A
c
c
e
s
s {

Local Traditional Laboratory Simulation
Remote Remote laboratory Virtual laboratory

According to these criteria, a traditional laboratory consists of a real resource with

local access. Which implies that the student needs access to the location of the real

equipment in order to experiment with it.

Simulations, which have become commonplace in the past few years, usually consist

of a computer-based model of a real plant. However, in control education, typical
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simulations must still be run on the university’s computer, because they normally require

some specialized, usually expensive, engineering software.

The remote operation of real equipment is commonly referred to as remote laboratory

and it allows students to manipulate physical plants, located at the university, from their

home computers. This kind of experimentation reduces the time and location constraints

of traditional laboratories.

Finally, those simulations that can be run remotely from the student’s computer are

commonly referred to as virtual laboratories, or distributed simulations.

Both virtual and remote laboratories provide, thanks to remote access, great oppor-

tunities for teachers to support the continuous process required for a life-long learning,

as mentioned above. This thesis focuses on providing instructors tools to facilitate the

creation of virtual and remote laboratories.

Interactivity and visualization

There are two additional aspects of computer simulations relevant to control education:

interactivity and visualization (Dormido, Dormido-Canto, Dormido, Sánchez & Duro

2005, Sánchez et al. 2005). In control engineering simulations, typical analysis of the

response of a system comes from the characteristics of its output signals such as the

waveform and the period (Uran & Jezernik 2008, Wu et al. 2008). Since the output

signals are actually not human-readable, the analysis of the response of the system is

neither explicit nor intuitive, therefore without suitable visualization, simulations can be

hard-to-understand learning objects. Moreover, much of the analysis is done off-line or

statically, which means that signals are obtained and observed only after the simulation

has finished, with students rarely interacting with the system, changing parameters or

inputs, while the simulation is running. This passive role of students slows down the

learning process considerably.

Used properly, interactivity and visualization help minimize these two problems.

Instructors can use the graphical power of modern computers to add to simulations a rich

level of visual content in order to produce more intuitive and natural learning objects.

This sophisticated layer of interactivity and visualization is called human interface.

On-line (or on-the-fly) interaction provides students with the possibility of modifying

some inputs or parameters of the system while the simulation is running, which allows
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them to better understand the input/output relationships and also to appreciate the

influence of specific input on the global response of the system.

Although the importance of interaction is accepted by the engineering education

community, its use in actual simulations is not the norm. The main reason is that

the development of interactive simulations can be a difficult task from a computer pro-

gramming point of view. Instructors, who are commonly not programming experts, can

encounter problems trying to add user interaction or advanced visualization to exist-

ing engineering simulations. This is further complicated by the presence of different

computer languages, programming techniques, network protocols, etc.

A second source of frustration is the lack of reusability. Typically, each engineering

software has its own framework to add advanced graphical user interfaces (GUIs) to

simulations created with it. However, these GUIs are incompatible with other engineer-

ing software or even with other simulations generated by the same engineering software.

This lack of modularity of human interfaces is common among engineering software.

Both problems are addressed in this thesis, as it introduces a systematic approach

to interoperate engineering software and general purpose programming languages. The

solution proposed, called interoperate approach, allows authors to design and im-

plement separately the GUI and the engineering simulation, connecting them using a

standardized protocol. This modularity permits the use of authoring tools that ease the

creation of GUIs together with the use of standard engineering software for the sim-

ulation of the system. It also promotes the reuse of both simulations and GUIs. The

proposed approach is a generalization of previous work described in (Sánchez et al. 2002,

2004, 2005) to connect MATLAB with Java applications. This new approach is used in

this thesis to interoperate standard engineering software such as MATLAB, Simulink,

Scilab and Sysquake, with interfaces created in Java (Dormido, Esquembre, Farias &

Sánchez 2005, Farias et al. 2010, Farias, Keyser, Dormido & Esquembre 2009, Fabregas

et al. 2010).

Real-time control systems

In addition to establishing a general approach valid for any engineering simulation,

the thesis considers in especial detail the simulation of real-time control systems. These

systems are the subject of recent interest since, contrary to the traditional design, a novel
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methodology of analysis takes into account the real-time and control aspects together.

This new perspective is attractive in itself, but a real-time control system also provides a

perfect case study for the interoperate approach thanks to the availability of TrueTime.

TrueTime is a freeware MATLAB/Simulink-based simulator for networked and em-

bedded control systems that has been developed at Lund University since 1999. True-

Time provides mainly two kinds of blocks, TrueTime Kernel and TrueTime Network.

These blocks simulate the behaviour of the computer and the network used by the real-

time control system. Instructors can then build Simulink simulations by connecting the

plant dynamics, modelled using ordinary Simulink blocks, with the input and outputs

of the Kernels and Network blocks.

Since TrueTime is a MATLAB toolbox, the interface created in this thesis to inter-

operate MATLAB and Java was used directly to add interactivity and visualization to

the TrueTime simulations. The virtual laboratories of real-time control systems thus

developed showed that the interoperate approach works perfectly.

Real-time control systems require a high number of event in order to perform the

TrueTime simulation. This has led to the necessity of adding particular methods to the

interoperate approach, customized for Simulink models with a high number of events,

that can substantially improve performance (Farias, Årzén, Cervin, Dormido & Esquem-

bre 2009, Farias et al. 2007).

The need for a MATLAB license to create and use real-time simulations always

brings inconveniences, especially when the simulations must be distributed to students

for their study. To minimize this problem, this thesis addressed the creation of a Java

library that would reproduce part of the functionality of TrueTime’s task model. This

Java library, called JavaTrueTime (JTT), does not implement all the functionality that

TrueTime provides, but focuses on providing instructors with the basic elements required

to build effective real-time control simulations for teaching purposes (Farias, Cervin,

Årzén, Dormido & Esquembre 2009, 2008). The thesis shows how to develop plain Java

virtual laboratories of real-time control systems using JTT. These examples can be used

in any introductory course on real-time control systems.
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Experimentation environment

A third topic considered in this thesis is the generation of experiments. The ultimate

goal of building a simulation is to execute experiments with it. An experiment consists of

extracting data from the model’s outputs by modifying its inputs. Typically, engineering

simulation tools have a very basic script language to create experiments which does not

exploit all the possibilities of modern software technology. Some desirable features, such

as adding new events at run-time, or comparing the output plots of two instances of

a simulation (in the same graph), are not currently supported by standard simulation

tools.

The thesis proposes a basic experimentation environment, a set of tools that allows

instructors a wide and very flexible use of their simulations (and others created by

colleagues) by manipulating them in the same way that programmers manipulate classes

and objects in object-oriented languages. The key features offered by the proposed

experimentation environment are discussed in detail in this thesis.

To certify its utility, the proposed experimentation environment has been imple-

mented in the authoring tool Easy Java Simulations. Authors can then use this exper-

imentation environment to build all the functionality required to perform experiments

with virtual laboratories (Esquembre et al. 2007). Some examples of use are given in

order to demonstrate the power of the resulting implementation.

The three issues discussed in the thesis, adding interactivity and visualization

to engineering simulations, the interactive simulation of real-time control sys-

tems, and the use of an experimentation environment, are extensively analyzed

in order to provide engineering instructors with authoring tools that thoroughly exploit

the features of modern technologies.

1.1 Objectives

The general objective of this thesis is to provide authoring tools for instructors to ease

the design and building of engineering simulations with pedagogical purposes. Given the

extremely wide range of topics to be considered, this thesis focuses on control engineering

education. Nevertheless, many of the results obtained in the thesis can be easily applied

to other topics in engineering.
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The following specific objectives are addressed in this thesis:

• Design an approach to add interactive human interfaces to simulations created

with any engineering software.

• Implement libraries to manipulate, locally and remotely, well-known engineering

software from Java programs.

• Provide authoring tools to ease the creation of interactive simulations of real-time

control systems.

• Define and implement an advanced environment to perform sophisticated experi-

ments with simulations.

These objectives are elaborated on each part of the thesis as described in the following

section.

1.2 PhD thesis outline

This work can be divided in three main parts. The first one introduces the key features of

an approach to interoperate engineering software with standard programming languages

in order to create interactive simulations. A Java implementation of this approach

is described in detail. This part ends with examples of complete and sophisticated

laboratories created using the libraries developed.

The second part studies the creation of interactive simulations of real-time control

systems for teaching purposes. The libraries developed in the previous part are first

used to create simulations for the study of these systems using the TrueTime MATLAB

toolbox. This part also develops a dedicated library to design Java-based real-time

control simulations.

The final part of this thesis focuses on the specification and implementation of an

experimentation environment to carry out experiments by flexibly manipulating existing

simulations.

Further details of each chapter are given below.
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Chapter 2

This chapter describes the key features of the interoperate approach. The idea is to

provide a generic way to add interactive human interfaces to simulations created using

standard engineering software. The approach helps authors cope with the creation of

interactive simulations by dividing the process in two separated stages. The first stage

involves the description and implementation of the model using a suitable engineering

software. The second stage consists in building the interactive interface using a high-level

programming language, which allows final users to interact naturally with the simulation.

The link between the user interface and the engineering simulation is accomplished by

using the set of methods introduced in this chapter, providing complete control of the

engineering simulation from the interactive user interface.

Chapter 3

According to the description of the interoperate approach given in the previous chapter,

a set of methods are implemented in Java language to allow manipulation of various

well-known engineering software tools. The final result is a group of Java libraries that

provides a uniform way to control different engineering software such as MATLAB,

Scilab, and Sysquake. A Java program, called JIM server, that supports the interop-

erate approach for remote control of MATLAB/Simulink simulations, is also described

in this chapter.

Chapter 4

Once the main libraries for controlling well-known engineering software have been dis-

cussed, this chapter focuses on the creation of actual interactive user interfaces. This

very important topic is usually a difficult task for instructors, who are not generally

experimented programmers. The authoring tool Easy Java Simulations, specifically de-

signed to help building interactive interfaces in Java, is introduced. This tool can make

direct use of the libraries developed in the previous chapters in order to manipulate

the engineering simulations from an interactive user interface. Although this direct

use already helps to build the desired simulations, a deeper integration of the libraries

within Easy Java Simulations’ architecture was carried out to simplify even more the

manipulation of the engineering software.
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Chapter 5

The integration of real-time systems and control theory has been treated in recent re-

search by the scientific community. The novel analysis of co-design of control and

real-time systems requires new tools. One of them is the MATLAB/Simulink-based

toolbox called TrueTime (M. Ohlin & Cervin 2007). The tool offers great flexibility

and potentiality to perform a deep design and analysis by simulating real-time control

systems. However, the simulations obtained using the toolbox lack the interactivity

and visualization capabilities required for pedagogical purposes. This chapter uses the

results of previous chapters to add interactive human interfaces to TrueTime simula-

tions. The work in this chapter goes a step further and introduces JavaTrueTime, a

Java library based on TrueTime’s task model, which is specifically designed for simu-

lations with pedagogical purposes. The library reproduces currently only part of the

existing functionality of TrueTime, but it does allow authors to build a great variety of

interactive simulation of real-time control systems.

Chapter 6

This chapter aims to specify the basic elements of an environment to perform experi-

ments with a simulation. The manipulation of the simulations by using this experimen-

tation environment exploits sophisticated features provided by modern programming

languages and technology. This set of elements are implemented in Easy Java Simula-

tions to create a working prototype of the experimentation environment. The chapter

includes some simple examples which highlight the main features of the environment.

Some aspects of the experiments, particularly interesting from the pedagogical point of

view, are also discussed in the chapter.

Chapter 7

The chapter discusses the main conclusions and further work of the research lines de-

scribed in the thesis.

9



Chapter 1. Introduction

1.3 Main contributions

The contributions of this thesis are divided in two main aspects: Software components

and Publications.

1.3.1 Software components developed

The concrete results of this Ph. D. thesis include the design of protocols and environ-

ments, the development of programming libraries, and the creation of a server program

and pedagogical laboratories. The most important results are summarised below:

• Protocols: Perhaps the most interesting contribution of this thesis consist in the

definition of a protocol to implement the interoperate approach. This protocol is

based on a number of experiences carried out during years until a final description

was established. The protocol allows the interoperation of standard engineering

software with general purpose programming languages to make it easy for instruc-

tors to create advanced, pedagogically meaningful, reusable interactive simulations

of engineering processes. The protocol that supports the experimentation environ-

ment described in Chapter 6 is a second contribution of this thesis.

• Libraries: Two libraries were developed in this thesis: the Java Internet Matlab

Client libray, JIMC (Department of Computer Science and Automatic Control,

UNED 2010a), and the Java TrueTime library, JTT (Department of Computer

Science and Automatic Control, UNED 2010c). The JIMC library can be used by

instructors to manipulate the MATLAB/Simulink software from Java programs,

according to the specification introduced by the Interoperate Approach described

in Chapter 2. The JTT library was developed to ease the creation of interactive

simulations for the teaching of real-time control systems. The library is inspired

on the MATLAB toolbox TrueTime.

• Programs: The most interesting program developed in this thesis is the JIM

server (Department of Computer Science and Automatic Control, UNED 2010b).

This software, described in Chapter 3, allows the remote use of the simulations

developed with the engineering software MATLAB/Simulink from a Java program.

• Laboratories: Many simulations were developed during the doctoral period. Of
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special interest are the example simulations used to show the manipulation of

MATLAB, Scilab, and Sysquake from Easy Java Simulations. Other interesting

simulations are described in Chapter 5, which can be used as part of an introduc-

tory course about real-time control systems. Also noteworthy is the remote lab

created to perform network-based control of a servo motor. This laboratory has

been used in an introductory control course at Ghent University in Belgium.

1.3.2 Publications

During the PhD thesis several articles have been published in specialized journals and

international conferences. Many of the papers have been obtained as direct result of

this thesis. Others works, however, have been developed in collaborations by the author

with different research groups.

Journal papers published

The following publications have been published in journals and are directly related with

the PhD thesis:

• G. Farias, K. Årzén, A. Cervin, S. Dormido, F. Esquembre (2010) Teaching Em-

bedded Control Systems, International Journal of Engineering Education (accepted

for publication).

• G. Farias, R. De Keyser, S. Dormido, F. Esquembre (2009) Developing Networked

Control Labs: A Matlab and Easy Java Simulations Approach, IEEE Transactions

on Industrial Electronics, (accepted, DOI: 10.1109/TIE.2010.2041130).

• N. Duro, R. Dormido, H. Vargas, S. Dormido-Canto, J. Sánchez, G. Farias, F.

Esquembre, S. Dormido (2008) An Integrated Virtual and Remote Control Lab:

The Three-Tank System as a Case Study, Computing in Science and Engineering

Magazine, Vol. 10, Issue 4, pp:50-58. Ed: IEEE.

• H. Vargas, J. Sánchez, N. Duro, R. Dormido, S. Dormido-Canto, G. Farias, S.

Dormido, F. Esquembre, C. Salzmann, and D. Gillet. (2008) A Systematic Two-

Layer Approach to Develop Web-based Experimentation Environments for Con-

trol Engineering Education, Intelligent Automation and Soft Computing, Vol. 14,

Num. 4, pp:505-524, ISSN: 1079-8587.
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• R. Dormido, H. Vargas, N. Duro, J. Sánchez, S. Dormido-Canto, G. Farias, F.

Esquembre, S. Dormido (2008) Development of a Web-based Control Laboratory

for Automation Technicians: The Three Tank System, IEEE Transaction on Edu-

cation, Vol. 51, Num. 1, pp: 35-44.

Journal papers under revision

The following papers are also the result of the thesis, but they are still under the revision

process in different international journals.

• G. Farias, A. Cervin, K. Årzén, S. Dormido, F. Esquembre (2009) Java Simulations

of Embedded Control Systems, Submitted to Real-Time Systems (Springer).

• E. Fabregas, G. Farias, S. Dormido-Canto, S. Dormido, F. Esquembre (2010)

A Practical Approach for Remote Interaction with a Real Plant, Submitted to

Computer & Education (Elsevier).

• J. Sánchez, S. Dormido-Canto, G. Farias, S. Dormido, F. Godoy (2010) Under-

standing Automatic Control Concepts by Playing Games, Submitted to Interna-

tional Journal of Engineering Education.

Papers in conferences

The following articles have been published in national and international conferences

mainly related to control engineering. Given the high number of the contributions, only

the most important papers are listed.

• G. Farias, R. De Keyser, S. Dormido, F. Esquembre (2009) Building Remote Labs

Using Easy Java Simulation and Matlab, The European Control Conference 2009,

August 23-26, 2009, ISBN: 978-963-311-369-1, Budapest, Hungary.

• G. Farias, A. Cervin, K. Årzén, S. Dormido, F. Esquembre (2008) Multitasking

Real-Time Control Systems in Easy Java Simulations, Proceedings of the 17th

IFAC World Congress 2008, ISBN: 978-1-1234-7890-2, Seoul, Korea.

• G. Farias, S. Dormido, F. Esquembre, H. Vargas, S. Dormido-Canto (2008) Lab-

oratorio Virtual Para la Enseñanza de Técnicas de Reconocimiento de Patrones,

XIII Latin-American Congress on Automatic Control. Mérida, Venezuela.
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• G. Farias, M. Santos, V. López (2008) Brain Tumour Diagnosis with Wavelets and

Support Vector Machines, 3rd International Conference on Intelligent System and

Knowledge Engineering, Proceedings of the 2008 3rd ISKE, IEEE Press, ISBN:

978-1-4244-2197-8, pp: 1453-1459, November 17-19, Xiamen, China.

• F. Esquembre, S. Dormido, G. Farias (2007) Defining and Performing Experi-

ments in Virtual Laboratories. International Conference on Engineering Educa-

tion, ICEE2007. September 3-7. Coimbra Portugal.

• G. Farias, K. Årzén, A. Cervin (2007) Interactive Real-Time Control Labs with

TrueTime and Easy Java Simulations, In Proceedings of the International Multi-

conference on Computer Science and Information Technology, International Work-

shop on Real Time Software, pp.811-820. Wisla, Poland.

• G. Farias, F. Esquembre, J. Sánchez, S. Dormido, H. Vargas, S. Dormido-Canto,

R. Dormido, N. Duro (2006) Laboratorios Virtuales Remotos Usando Easy Java

Simulations y Simulink, Jornadas de Automática. Almeŕıa, España.

• H. Vargas, R. Dormido, N. Duro, J. Sánchez, S. Dormido-Canto, G. Farias, S.

Dormido, F. Esquembre (2006) Heatflow: Un laboratorio basado en web usando

Easy Java Simulations y Labview para el entrenamiento de técnicas de automati-

zación, XII Latin-American Congress on Automatic Control. Bah́ıa, Brasil.

• G. Farias, F. Esquembre, J. Sánchez, S. Dormido, H. Vargas, S. Dormido-Canto,

R. Dormido, N. Duro (2006) Desarrollo de laboratorios virtuales, interactivos y

remotos utilizando Easy Java Simulations y Modelos Simulink, XII Latin-American

Congress on Automatic Control. Bah́ıa, Brasil.

• S. Dormido, F. Esquembre, G. Farias, J. Sánchez (2005) Adding interactivity to

existing Simulink models using Easy Java Simulations, 44th IEEE Conference on

Decision and Control and European Control Conference (CDC-ECC’05) Seville,

Spain.

Journal papers obtained in collaboration

The following papers are the result of collaboration with different groups. Only a selected

number of works are presented. The main topic in these articles is pattern recognition
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applied to the experimental fusion reactor TJ-II of CIEMAT.

• S. Dormido-Canto, G. Farias, J. Vega, R. Dormido, J. Sánchez, N. Duro, H. Vargas,

A. Murari, and JET-EFDA Contributors. (2008) Classifier based on support vector

machine for JET plasma configurations, Review of Scientific Instruments, Vol. 79,

pp: 10F326-1/10F326-3, ISSN: 0034-6748.

• S. Dormido-Canto, G. Farias, R. Dormido, J. Sánchez, N. Duro, H. Vargas, J. Vega,

G. Ratta, A. Pereira, A. Portas (2008) Structural pattern recognition methods based

on string comparison for fusion database, Fusion Engineering and Design, Vol. 83,

Issue 2-3, pp: 421-424. ISSN: 0920-3796. Ed. Elsevier.

• G. Farias, S. Dormido-Canto, J. Vega, J. Sánchez, N. Duro, R. Dormido, M.

Ochando, M. Santos, G. Pajares (2006) Searching for patterns in TJ-II time evo-

lution signals, Fusion Engineering and Design, Vol. 81, pp: 1993-1997, ISSN:

0920-3796, Ed. Elsevier.

• G. Farias, R. Dormido, M. Santos, N. Duro (2005) Image Classifier for the TJ-II

Thomson Scattering Diagnostic: Evaluation with a Feed Forward Neural Network,

Lecture Notes in Computer Science. Springer-Verlag, Vol. 3562, Part 2, pp: 604-

612, ISSN: 0302-9743.

1.3.3 Research projects

The PhD thesis have been developed under the following research projects:

• Herramientas interactivas para el modelado, visualización, simulación y control de

sistemas dinámicos (Interactive tools for modelling, visualization, simulation and

control of dynamic systems). Reference: DPI 2004-01804.

• Control de sistemas complejos en loǵıstica y producción de bienes y servicios (Con-

trol of complex systems in logistic and production of goods and services). Refer-

ence: S-0505/DPI/0391.

• Modelado, simulación y control basado en eventos (Event-based modelling, simu-

lation, and control). Reference: DPI2007-61068.

The main tasks performed in these projects are the following:
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• Development of virtual laboratories for control teaching.

• Definition of a homogeneous approach to add interactivity and visualization to

engineering simulation.

• Development of the JIMC library and the Jim server program.

• Implementation in Easy Java Simulations of a local and remote link with MAT-

LAB/Simulink.

• Implementation in Easy Java Simulations of a local link with Scilab and Sysquake.

• Development of an approach to build networked control laboratories with MAT-

LAB.

• Development of real-time control systems virtual laboratories using TrueTime and

Easy Java Simulations.

• Implementation of the Java TrueTime (JTT) library to ease the creation of edu-

cational simulations of real-time control systems.

• Definition and implementation of an experimentation environment for simulations.

The collaboration with other research groups implied the following activities:

• MATLAB programming of custom pattern recognition tools.

• Application of support vector machines and wavelet transform for pattern recog-

nition.

• Structural pattern recognition applied to the search of specific waveforms.

• Image classification in scattering Thompson diagnostic.

• Detection of different anomalies in atomic fusion signals.
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Chapter 2

Design of Interactive Interfaces

for Engineering Education

Information and communication technologies provide great new opportunities for ed-

ucation. In the last years, the scientific community has devoted great efforts to tak-

ing advantage of these new possibilities, applying them to various fields of engineering

education, including control engineering (Heck 1999, Dormido 2002). Among all the

opportunities that these technologies offer, three present features of special interest to

teaching engineering: network communications, visualization, and interactivity.

The connectivity between many different computational devices is increasing every

year. Networks such as the Internet are widely distributed in society, connecting people

from almost any point of the globe. This situation gives educators the opportunity to

offer their students new ways to access learning resources without time and location

constraints.

On the other hand, visualization and interactivity have proved to be crucial aspects

when designing simulations that are to be used for pedagogical purposes in the field of

control engineering. The graphical capabilities of computers, using images or anima-

tions, can help students to understand more easily the key concepts of the system under

study. Moreover, interactivity allows students to simultaneously see the response of

the systems to any change introduced by the user (Dormido, Dormido-Canto, Dormido,

Sánchez & Duro 2005, Sánchez et al. 2005). These features add to engineering simu-

lations rich visual content and the possibility of an immediate observation of system

response, which turns a virtual laboratory into a natural and human-friendly way to
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learn, helping the student to get useful practical insight into control systems fundamen-

tals.

Despite the educational importance of the three mentioned features, most of the

engineering software currently used by teachers and students is far from the mentioned

recommended way to teach and learn. Software for technical computing comes full

of toolboxes for the design and rapid-prototyping of an engineering system, but it fre-

quently lacks tools to facilitate adding user interaction and rich visualization capabilities

to the simulations.

Another problem arises when an educator finally achieves (sometimes with great

effort) to build an interactive simulation by using the facilities of a particular engineering

software. He/She then realizes that the graphical user interface thus created can not be

used with a similar simulation developed using a different engineering software, which is

somewhat frustrating. User interfaces of standard simulations usually display common

features, and it is reasonable to assume that they should be reused, independently of

the software selected to create the model of the engineering simulation.

The purpose of this chapter is to describe a novel approach that defines a simple, but

at the same time generic, protocol to help add human interfaces to engineering simula-

tions. This approach splits the development of an interactive simulation for engineering

in two separate tasks. On the one hand, the model of the engineering simulation is

created using a standard simulation software for engineering. On the other hand, the

interactive graphical user interface of the simulation is created using any high-level com-

puter language or software tool specialized in the design and implementation of graphical

user interfaces and which benefits from the graphical capabilities of modern computers.

Finally, these two separate components are connected using a communication protocol

in a clean, effective, and reusable way. The proposed approach is a generalization of

previous work developed at the Department of Computer Science and Automatic Con-

trol in the UNED. Seminal ideas about the necessity to separate the model and the user

interface, and about the manipulation of MATLAB (an engineering software) from a

Java application (an user interface) can be found in (Sánchez et al. 2002, 2004, 2005).

The chapter starts with a short description of the current state of the art of the

creation of engineering simulations, followed by a discussion of why interactivity and

visualization are important in the field of engineering education. Then the interoperate
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approach is introduced, the proposal of this thesis for the design of simulations that

will help add human interfaces to engineering software. The chapter continues with a

detailed description of the protocols that have been defined to support the interoperate

approach, together with sample code that exemplifies their use. These protocols present

variants according to how the model and the user interface are connected, either in local

or remote form and, in this latter case, either synchronously or asynchronously.

2.1 Simulations with standard engineering tools

There are currently many tools that can help build a simulation of a large class of

systems in control engineering. Most of these tools are extraordinarily useful to study

the behaviour of the systems under different scenarios. For that reason, these tools are

widely used by instructors to teach the main aspects of a particular control system.

Nowadays MATLAB is the de facto standard software tool in control engineering.

MATLAB is a technical and numerical computing environment. The software pro-

vides a high-level programming language, which belongs to the so-called fourth gener-

ation software. Developed by The MathWorks, MATLAB allows matrix manipulation,

plotting of functions and data, implementation of algorithms, creation of user interfaces,

and interfacing with programs in other languages. The capabilities of the environment

are extended by a family of add-on application-specific solutions called toolboxes. These

toolboxes, similarly to packages or libraries, allow users to apply advanced solutions to

typical problems of a specific engineering area. Further information about MATLAB

features can be found in Chapter 3.

The MATLAB environment allows the development of advanced graphical user in-

terfaces using the set of tools named GUIDE. These tools greatly simplify the process

of designing and building user interfaces. GUIDE can be used to lay out the graphical

user interface using the GUIDE Layout Editor, the creation of the interface is done

easily by clicking and dragging visual components (such as panels, buttons, text fields,

sliders, and menus) into the layout area. GUIDE automatically generates an M-file (i.e.,

a file with MATLAB code) that controls how the user interface operates. Following an

event-based programming paradigm (Faison 2006) (such as that used in languages like

Visual Basic), authors can use the properties of each visual component to add callbacks

in order to control the flow program by executing specific M-files when end users click
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on a corresponding component of the graphical user interface.

Figure 2.1 shows a graphical user interface created with the GUIDE feature of MAT-

LAB. The application performs image classification for a Scattering Thomson diagnostic

employing very sophisticated algorithms like wavelet transform (Mallat 2001) and neu-

ronal network (Hilera & Mart́ınez 1995). The transform and the neuronal network are

applied by means of executing some built-in functions of the Wavelet (Misiti et al.

2009) and Neuronal Networks (Demuth et al. 2009) toolboxes. Among other functions,

the methods appcoef2 and detcoef2 were used here to perform the two-dimensional

wavelet transform, and the newff method is used to create and perform a feed-forward

backpropagation network. The wavelet transform strongly reduces the dimensionality

of the original image (up to less than 1%), extracting the main features of the signal and

eliminating the unnecessary noise. Once the image is processed, it is entered into the

neuronal network to provide a classification of the signal in one of five possible classes.

This application allows the design of many kind of classifiers by modifying the wavelet

transform and neuronal network parameters. The different classifiers designed offer sev-

eral classification performance (i.e., percentage of correct classifications). The classifier

can be used by students of an introductory pattern recognition (Duda et al. 2001) course

to observe the effect of wavelet transform and neuronal network parameters over the clas-

sification (Farias, Dormido, Santos & Duro 2005, Farias, Santos & Dormido-Canto 2005,

Farias et al. n.d.).

Listing 2.1 presents part of the M-file (generated by GUIDE) of the image classifier.

The main visual component is a figure type (named h0 in the code), which creates the

frame where other components can be added. The creation of two other components:

a push button (named h1) and a list box (named h2) can also be observed in the

code. The push button represents the button with the caption classify in Figure 2.1,

and performs the image classification by executing the M-file classify.m defined in its

callback property. The list box allows end users to plot a specific image from the list

of signals named Data in Figure 2.1. When a signal is selected from the list, the M-file

paintdata.m is executed in order to show the corresponding image in Figure 2.1.

The image classifier is only a simple example of how engineering community can use,

for researching or educational purposes, some of the state-of-the-art algorithms that

MATLAB provides. Other similar examples of the use of GUIDE and MATLAB tool-
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Figure 2.1: Image classifier GUI built in MATLAB.

boxes for pattern recognition can be found in (Farias, Dormido-Canto, Vega, Sánchez,

Duro, Dormido, Ochando, Santos & Pajares 2006, Dormido-Canto, Farias, Dormido,

Sánchez, Duro, Vargas, Vega, Ratta, Pereira & Portas 2008, Dormido-Canto, Farias,

Vega, Dormido, Sánchez, Duro, Vargas, Murari & Contributors 2008, Vega et al. 2005).

Although instructors can use GUIDE to add interfaces to their engineering simula-

tions, this is not the common situation on many areas of engineering. Maybe the main

reason is that GUIDE helps to build easy simple control panels to manipulate a batch

or static simulation. However, dynamic simulations require more advanced mechanisms

to take into account any user interaction while the simulation is being performed. The

implementation of these mechanisms requires a greater effort from the programming

point of view.

As a consequence, the creation of graphical user interfaces finally requires some

programming skills; this is specially true when the user interface includes many visual

components.

With the exception of this programming barrier, MATLAB also provides many other

sophisticated tools that do not require GUIDE to obtain a minimal graphical user in-

terface. For example, Simulink can be used to simulate dynamic systems by connecting
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pre-defined blocks of this MATLAB toolbox. The input and output of the system can

be controlled by adding the suitable blocks to the Simulink model.

A typical example of a simulation developed in Simulink is displayed in Figure 2.2.

The Simulink model (Figure 2.2a) simulates a non elastic bouncing ball under the effects

of gravity.

The simulation of the bouncing ball works fine, and the plots of the speed and the

position of the ball (Figure 2.2b) show clearly that the ball:

• Starts from a height of 10 meters with an initial speed of 15 meters per second.

• At the beginning goes up, reaching the maximum height at about 1.8 seconds.

• Stops bouncing after 20 seconds.

• Switches its speed from a negative to positive magnitude every time the ball hits

the floor.

1 function f i g = stneurona l ( )
2 load s tneurona l . mat
3 h0 = f igure ( ’ Color ’ , [ 0 . 8 0 . 8 0 . 8 ] , . . .
4 ’ Colormap ’ ,mat0 , . . .
5 ’ FileName ’ , ’ s tneurona l .m’ , . . .
6 ’MenuBar ’ , ’ none ’ , . . .
7 ’Name ’ , ’ S ca t t e r i ng Thomson C l a s s i f i e r ’ , . . .
8 ’ NumberTitle ’ , ’ o f f ’ , . . .
9 ’ PaperPos i t ion ’ , [ 1 8 180 576 432 ] , . . .

10 ’ PaperUnits ’ , ’ po ints ’ , . . .
11 ’ Po s i t i on ’ , [ 2 98 129 434 513 ] , . . .
12 ’Tag ’ , ’ Fig1 ’ , . . .
13 ’ ToolBar ’ , ’ none ’ ) ;
14 . . .
15 h1 = uicontrol ( ’ Parent ’ , h0 , . . .
16 ’ Units ’ , ’ po ints ’ , . . .
17 ’ BackgroundColor ’ , [ 0 . 8 3 0 . 81 0 . 7 8 ] , . . .
18 ’ Cal lback ’ , ’ c l a s s i f y .m’ , . . .
19 ’ Enable ’ , ’ o f f ’ , . . .
20 ’ ListboxTop ’ , 0 , . . .
21 ’ Po s i t i on ’ , [ 2 70 . 75 76 . 5 34 . 5 1 2 . 7 5 ] , . . .
22 ’ S t r ing ’ , ’ C l a s s i f y ’ , . . .
23 ’Tag ’ , ’ PushButtonClass i fy ’ ) ;
24 . . .
25 h2 = uicontrol ( ’ Parent ’ , h0 , . . .
26 ’ Units ’ , ’ po ints ’ , . . .
27 ’ BackgroundColor ’ , [ 1 1 1 ] , . . .
28 ’ Cal lback ’ , ’ paintdata .m’ , . . .
29 ’ Po s i t i on ’ , [ 2 28 . 75 265.5 88 . 5 99 ] , . . .
30 ’ S t r ing ’ ,mat5 , . . .
31 ’ S ty l e ’ , ’ l i s t b o x ’ , . . .
32 ’Tag ’ , ’ ListBoxData ’ , . . .
33 ’ UserData ’ ,mat6 , . . .
34 ’ Value ’ , 24) ;
35 . . .

Listing 2.1: Code of the image classifier GUI.
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a) b)

Figure 2.2: A typical simulation with low level of interaction and visualization. a) Simulink
model, b) Plots of the speed and vertical position of the ball.

• Loses energy after each bounce.

The common way to learn using this simulation is that users, maybe beginner en-

gineering students, analyse the bouncing ball model by simply modifying the block

parameters and running the simulation as many times as they need to.

Inspired by MATLAB, many other engineering tools have appeared in the last years.

Many of these tools have a programming language compatible with MATLAB such as

Sysquake (Calerga 2010) or the open source solutions Scilab (Scilab Consortium 2010)

and Octave (Eaton 2002, 2010). However these tools do not offer all the functionality

that MATLAB provides. For example, neither Scilab nor Octave have a feature simi-

lar to GUIDE that allows authors to generate automatically graphical user interfaces.

Moreover, Sysquake offers a nice way to create interactive user interfaces, but does not

provide the wide set of libraries included in powerful MATLAB toolboxes. This situa-

tion makes MATLAB the preferred tool in many scientific communities such as control

engineering.

2.1.1 The importance of interactivity and visualization

The process of construction of simulations using tools such as Simulink can be easy from

an authoring point of view. However, from a pedagogical point of view, to understand

the response of the systems to any input changes is not trivial for beginner students. In

engineering a typical system response analysis comes from the characteristics of output
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signals: the waveform, the period, the amplitude, etc. Therefore, the analysis of the

system response is neither direct nor intuitive, because output signals are not very

human-readable, which means that it is not intuitive to understand the input/output

relationship of a system by observing plots of signals only. Hence, instead of using just

signal plots, teachers need to add to their simulations a rich level of graphical content

such as animations, images, two- or three-dimensional graphics, etc., in order to produce

more intuitive and natural learning objects.

As a second important aspect of the learning process, many of the analyses are

done off-line. That is, the signals can only be observed in full when the simulation

has finished, with students rarely interacting with the system, changing parameters or

inputs, while the simulation runs. However, recent research has shown that, especially

in control engineering, interactivity is a fundamental element in the learning process

(Dormido 2002, Dormido, Dormido-Canto, Dormido, Sánchez & Duro 2005, Sánchez

et al. 2005, 2004).

The simulation displayed in Figure 2.2 models very well the system under study.

But it clearly lacks a sufficiently rich level of interaction and visualization. In particular,

there is no way to interact with the model while the simulation is running. Hence, if

a student wants to interact with the simulation to see what happens if the gravity is

decreased, or if the elastic coefficient of the ball is increased, or if the ball is moved to

another position after 5 seconds, etc., he/she will need to stop the model, change the

parameters, run the simulation again, and wait until its end to analyze the output data.

This situation introduces unnecessary interruptions in the study of the input/output

effects of the variables, which finally delays and encumbers the learning process of the

system.

An alternative simulation of the bouncing ball with a higher degree of interactivity

and visualization is displayed in Figure 2.3. In Figure 2.3a, a more suitable graphical

user interface (GUI) is displayed. This GUI shows a ball (the blue particle) bouncing

on the floor. The parameters, such as gravity and elasticity coefficient, can be modified

by using sliders, and in addition, the vertical position of the ball can be changed by

dragging up or down the particle in run time. Observing the plots in Figure 2.3b, it is

easy to appreciate the effect of the change of the elasticity coefficient of the ball at t=5s

to 1, and at 10s back to the previous value of -0.8.
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This level of interactivity and visualization allows students to interact with the sim-

ulation while it is running, which provides them with a more natural way to study the

bouncing ball system. This kind of simulations reduces significantly the learning curve

of engineering systems.

a) b)

Figure 2.3: A simulation of a bouncing ball with higher level of interaction and visualization.
a) Graphical user interface, b) Plots of the speed and vertical position of the ball.

The two simulations of the bouncing ball model represent two different paradigms to

learn the behaviour of systems in engineering (Guzmán 2006). The differences between

them are shown in Figure 2.4.

The non interactive paradigm splits the learning process into two sequential phases:

analysis and synthesis. On the contrary, in the interactive paradigm, analysis and

synthesis are done in the same phase, which, compared to the first paradigm, triggers

Figure 2.4: The two learning paradigms to study the behaviour of a system.
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more easily the analysis of the process in the student’s mind. This faster comprehension

reduces the time required to understand some input/output relations, and therefore, to

learn the process behaviour of the global system.

In opposition to the off-line simulation, this thesis favours the on-line (or on-the-fly)

interactive way of learning, which allows students to modify system inputs or parameters

while the simulation is running. This interactive process helps students better under-

stand the input/output relations and appreciate or evaluate the degree of influence that

any input has in the global response of the system.

2.2 The interoperate approach

The alternative simulation shown in Figure 2.3 was created reusing the Simulink model

of Figure 2.2a, by adding to it a graphical user interface created in Java, a high-level

programming language that offers many advantages for the creation of sophisticated

user interfaces.

In this thesis, the claim is that this combined use of different tools, each suited best

for a given task (engineering software specialized in modelling engineering systems for the

model of the simulation, and authoring tools suited for the design and implementation

of user interfaces), makes a perfect combination that brings the best of both worlds

to educators in order to develop their learning simulations. This will be the preferred

approach in this thesis, to reuse existing models of simulations, created using standard

engineering software, by adding a human interface with a high level of interactivity and

visualization to produce a complete, teaching-efficient virtual laboratory.

Alternatively, instructors can always try to add the required interactivity and visu-

alization to an existing engineering simulation using the same engineering software they

used to create the model (e.g. using GUIDE in MATLAB). However, this approach

usually has the following shortcomings:

• An interactive simulation created with a given engineering software requires that

the engineering software be installed on the user’s computer.

• Different engineering software require different ways to create similar user inter-

faces.
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• Engineering software does not always provide tools to ease the building of inter-

active simulations.

On the contrary, since the interoperate approach splits the interactive simulation

into two components, instructors can take advantage of high-level programming lan-

guages to develop the user interface independently of the engineering software used.

Instructors can even use specialized authoring tools (such as Easy Java Simulations (Es-

quembre 2010), see Chapter 4 for further information) to facilitate the creation of the

user interface of the interactive simulation. This approach also facilitates the reuse of

components, either using the same engineering simulation with a more elaborate graph-

ical user interface or using the same user interface with a simulation described in a

different engineering software. Finally, the approach can benefit from network commu-

nications to interoperate the human interface and the engineering software on different

computers, eliminating the need to install the engineering software on the student’s

computer.

After this analysis, an exact definition of the interoperate approach is now provided:

The Interoperate Approach is a uniform and effective way to create in-

teractive engineering simulations by manipulating the engineering software

from an interactive human interface.

The key concept of the interoperate approach is interoperability, which is the ability of

two or more systems or components to exchange information and to use the information

that has been exchanged (IEEE 1990). The two systems that exchange information are

the engineering software and the human interface.

A scheme of the interoperate approach is shown in Figure 2.5. The human interface

is created using a high level computational language to build the graphical user interface

of the interactive simulation, and it is later connected to the existing (non-interactive)

model of the engineering simulation using a standardized communication protocol (see

Section 2.3) that controls the engineering application.

27



Chapter 2. Design of Interactive Interfaces for Engineering Education

Figure 2.5: Adding a human interface to an existing, non interactive, engineering simulation.

2.2.1 Adding interactivity and visualization

The graphical user interface of the interactive simulation shown on the right in Figure 2.5

can be created using any high level computer language. In this thesis, Java has been

chosen as the implementation language of the proposed approach. The main reason

is that Java is currently one of the most popular programming languages, addressing

not only the design of graphical interfaces, but also a huge range of applications such

as applets, network communications, image, video, and sound processing, 3D graphics

manipulation, physics and mathematics, interoperation, mobile programming, etc. This

popularity is especially true in the educational world, which benefits noticeably from

the pedagogical advantages of the use of computer simulations in the learning process

(Heck 1999, Dormido 2002, Dormido, Dormido-Canto, Dormido, Sánchez & Duro 2005).

Even with the use of a flexible programming language such as Java, creating advanced

visualizations and interactive user interfaces to be used with engineering simulations is

not an easy task, specially for teachers who are not experts in computer programming.

It is actually a time consuming task for even advanced programmers. Fortunately,

there are utility libraries and specialized authoring tools that enormously facilitate the

task. In this thesis, the Easy Java Simulations (EJS) authoring tool has been chosen,

because with this software tool authors do not need advanced programming skills to

produce virtual labs with a high level of interactivity and visualization. Since EJS is a

Java-based program, it can easily use the Java implementation of the communication

protocol provided in this work. Furthermore, the thesis has even contributed to the
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development of EJS, embedding the protocol into it, so that it naturally helps implement

the interoperate approach (see Chapter 4).

2.3 Defining a communication protocol

Conceptually, in any interactive simulation that uses the model of an existing engineering

software, two separate components that interoperate can be distinguished: the client

application and the external application.

The client application represents the human interface, i.e., the computer program

or graphical interface that the user observes and manipulates. The external applica-

tion runs the engineering simulation, that is, the simulation created with the standard

engineering software that models the process of interest. The external application is

controlled by the client application and provides it data for visualization. The client ap-

plication adds to the underlying (external) engineering application an upper layer that

allows students to manipulate and visualize the system’s response interactively.

For this scheme to work correctly, both client and external applications must ex-

change data continuously as the simulation is running. And they do so for a number of

tasks. For example, the external application should be correctly configured and launched

at start-up. It should also provide a way for the client to read, in run-time, the value of

variables of the model, for visualization. The external application should also allow the

client to start the simulation, pause it to modify any parameter or state variable of the

system, and resume the simulation, as required by the user.

For its part, the client should be configured to control, query, and send data to

the external application using a protocol that the external application can understand,

without interrupting the execution of the external application and keeping perfect syn-

chronization between the visualization offered to the user and the model of the external

application.

As part of the work of this thesis, different prototypes that implemented the inter-

operate approach have been extensively tested, until a standard, coherent definition of

the required communication protocol was finally established. The following protocol

represents a simple, but powerful application programming interface (API) that any

engineering software must conform to, in order to provide all the features required to

effectively implement the interoperate approach.
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The protocol comes in two levels: low and high. A low-level protocol has been

defined that lists all the required communication mechanisms that will offer the client

application a complete and flexible control of the external application. Any external

application must follow this low-level protocol in order to successfully implement the

interoperate approach. But a high-level protocol has also been defined. This high-

level protocol offers a simplified list of communication instructions that can, in most

practical circumstances, help authors successfully implement the interoperate approach

with a minimum of programming effort. The high-level protocol is based on the low-

level protocol, in the sense that it ultimately uses the API provided by the external

application, and offers the client application the minimum, but sufficient, set of rules to

manipulate the exchange of data.

This two-level communication protocol scheme allows authors the choice to manip-

ulate the engineering simulation in two different ways. On one hand, the high level

protocol gives authors the control of the non-interactive simulation at a simple, high

level of abstraction, hiding a number of details, but still providing an effective link be-

tween the non-interactive model and the interactive user interface of the simulation. On

the other hand, the low level protocol gives authors total control of the external simu-

lation, providing an enhanced link between both simulations, bringing a higher level of

interaction and visualization.

Usually, the high level protocol is all that most authors will need to fulfill their in-

teraction requirements, it being therefore the recommended entry level for authors who

are not expert programmers or do not need a very detailed control of the communica-

tion between client and external applications. The low level protocol is the preferred

choice for authors that need full control of the original simulation and the communi-

cation mechanism. Needless to say, a correct use of the low level protocol to design

an interactive simulation requires some more programming effort than that of the high

level protocol. But it should also be noted that it can also result in a more efficient final

application (in terms of communication traffic and execution times).

Because Java was chosen as the programming language to create the graphical user

interfaces, this section uses also Java to exemplify the implementation of the communi-

cation protocol and to provide some sample code with examples of use. The choice of

this well-known language allows to make the protocol explicit in a way that any pro-
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grammer of a different language can understand and adapt. It is important to note that

there is in principle nothing in this Java implementation that prevents the communi-

cation protocol to be implemented using a different programming language. However,

the use of any particular programming language in a computer implementation always

leaves traces of a peculiar accent. In what follows, any special Java feature that may

have been used in the implementation that would require a special adaptation to other

languages will be explicitly mentioned.

2.3.1 The Java language

Java is a programming language originally developed by James Gosling at Sun Microsys-

tems and released in 1995 as a core component of Sun Microsystems’ Java platform. The

language derives much of its syntax from C and C++ but has a simpler object model and

fewer low-level facilities. Java applications are typically compiled to bytecode (class file)

that can run on any Java Virtual Machine (JVM) regardless of computer architecture.

Among others, Java provides many interesting features such as:

Platform Independence The Write-Once-Run-Anywhere ideal has been achieved for

almost all platforms. Java programs can in general be executed without any prob-

lems in different operating systems such as Windows, Solaris, and Linux. Even

more, there are many small Java applications (normally games) running today in

mobile phones.

Object Oriented Object oriented throughout - no coding outside of class definitions,

including the main() method. An extensive class library in the core language

packages is available.

Compiler/Interpreter Combo Code is compiled to bytecodes that are interpreted

by a Java virtual machine (JVM). This provides portability to any machine for

which a virtual machine has been written. The two steps of compilation and

interpretation allow for extensive code checking and improved security.

Robust Exception handling built-in, strong type checking (that is, all data must be

declared an explicit type), local variables must be initialized.

Security No memory pointers, no preprocessor, and array index limit checking. Pro-

grams run inside the virtual machine sandbox.
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Automatic Memory Management Automatic garbage collection - memory man-

agement handled by the JVM.

Good Performance Interpretation of bytecodes slowed performance in early versions,

but advanced virtual machines with adaptive and just-in-time compilation and

other techniques now typically provide performance up to 50% to 100% the speed

of C++ programs.

Threading Lightweight processes, called threads, can easily be spun off to perform

multiprocessing. Java can take advantage of multiprocessors where available.

Built-in Networking Java was designed with networking in mind and comes with

many classes to develop sophisticated Internet communications.

This extensive list of good attributes justifies the selection of Java as the language

for the implementation of the algorithms and protocols of this thesis. This decision is

also suggested by the high popularity of Java in the computer and Internet. This is spe-

cially true in the educational world, which is benefiting noticeably from the pedagogical

advantages of the use of computer simulations in the learning process (Sánchez et al.

2002, Vormoor 2001, Piguet & Gillet 1999, Yen et al. 2003, Balestrino et al. 2009).

2.3.2 Low-level protocol

To manipulate and visualize the system’s response interactively, client and external ap-

plications must keep a continuous flow of information composed of data and commands.

The data is provided by the external application as the simulation runs. The commands

are used by the client application to control the execution of and query the external

application.

The first command required in this communication flow is a request for connection.

Some engineering programs may require an initialization command, for instance when

some code has to be executed in order to prepare the engineering simulation before it

is actually run. Once the connection is established, the external application is manip-

ulated by the client application according to its logic, executing commands, retrieving

information about the results of the executed commands (which can be very useful to fix

problems found during the simulation), and setting and getting the value of variables.
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There are, therefore, three blocks of communication actions an external application

must support:

Connection and configuration These are actions that initialize the external appli-

cation, prepare it for operation, and eventually quit it in an orderly way.

Setting and getting values These actions allow the client to set and get the value of

any (accessible) variable of the external application.

Control commands These actions control the execution of the external application

from the client.

These actions are supported by a number of methods, as defined by the Java interface

ExternalApp. In the rest of this subsection, this interface is analysed in detail.

Connection and configuration methods

The methods of the ExternalApp interface that make the connection and configuration

block are listed in Listing 2.2

1 /∗∗
2 ∗ Sta r t s the connect i on with the ex t e r na l app l i c a t i on
3 ∗ @return boolean true i f the connect i on was s u c c e s s f u l
4 ∗/
5 public boolean connect ( ) ;
6

7 /∗∗
8 ∗ Fin i s h e s the connect i on with the ex t e r na l app l i c a t i on
9 ∗/
10 public void di s connect ( ) ;
11

12 /∗∗
13 ∗ Checks i f the connect i on was s u c c e s s f u l
14 ∗ @return boolean true i f the connect i on was s u c c e s s f u l
15 ∗/
16 public boolean i sConnected ( ) ;
17

18

19 /∗∗
20 ∗ Accepts an i n i t i a l i z a t i o n command to use whenever the system i s r e s e t
21 ∗ @param command Str ing
22 ∗/
23 public void setInitCommand ( Str ing command) ;
24

25 /∗∗
26 ∗ Gets the i n i t i a l i z a t i o n command
27 ∗ @return Str ing the i n i t i a l command
28 ∗/
29 public Str ing getInitCommand ( ) ;

Listing 2.2: Connection and configuration methods of the ExternalApp interface.
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Setting and getting values

The ExternalApp interface includes the methods displayed in Listing 2.3 to set and read

the values of variables of the external application. Notice that variables are identified

in the external application by a unique name. The external application will take care of

the internal work required to connect this name to the actual variable. Not all variables

of an external application need to be accessible through these methods.

1 /∗∗
2 ∗ Sets the value o f the given va r i ab l e o f the app l i c a t i on
3 ∗ @param var i ab l e Str ing the va r i ab l e name
4 ∗ @param value Str ing the de s i r ed value
5 ∗/
6 public void setValue ( Str ing var i ab l e , St r ing value ) ;
7

8 /∗∗
9 ∗ Gets the value o f a Str ing va r i ab l e o f the app l i c a t i on

10 ∗ @param var i ab l e Str ing the va r i ab l e name
11 ∗ @return Str ing the value
12 ∗/
13 public Str ing ge tS t r i ng ( Str ing va r i ab l e ) ;
14

15 /∗∗
16 ∗ Sets the value o f the given va r i ab l e o f the app l i c a t i on
17 ∗ @param var i ab l e Str ing the va r i ab l e name
18 ∗ @param value double the de s i r ed value
19 ∗/
20 public void setValue ( Str ing var i ab l e , double value ) ;
21

22 /∗∗
23 ∗ Gets the value o f a double va r i ab l e o f the app l i c a t i on
24 ∗ @param var i ab l e Str ing the va r i ab l e name
25 ∗ @return double the value
26 ∗/
27 public double getDouble ( Str ing va r i ab l e ) ;
28

29 /∗∗
30 ∗ Sets the value o f the given va r i ab l e o f the app l i c a t i on
31 ∗ @param var i ab l e Str ing the va r i ab l e name
32 ∗ @param value double [ ] the de s i r ed value
33 ∗/
34 public void setValue ( Str ing var i ab l e , double [ ] va lue ) ;
35

36 /∗∗
37 ∗ Gets the value o f a double [ ] v a r i ab l e o f the app l i c a t i on
38 ∗ @param var i ab l e Str ing the va r i ab l e name
39 ∗ @return double the value
40 ∗/
41 public double [ ] getDoubleArray ( Str ing va r i ab l e ) ;
42

43 /∗∗
44 ∗ Sets the value o f the given va r i ab l e o f the app l i c a t i on
45 ∗ @param var i ab l e Str ing the va r i ab l e name
46 ∗ @param value double [ ] [ ] the de s i r ed value
47 ∗/
48 public void setValue ( Str ing var i ab l e , double [ ] [ ] va lue ) ;
49

50 /∗∗
51 ∗ Gets the value o f a double [ ] [ ] v a r i ab l e o f the app l i c a t i on
52 ∗ @param var i ab l e Str ing the va r i ab l e name
53 ∗ @return double the value
54 ∗/
55 public double [ ] [ ] getDoubleArray2D ( Str ing va r i ab l e ) ;

Listing 2.3: Setters and getters methods of the ExternalApp interface.
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Control commands

Finally, the ExternalApp interface contains a number of methods that allow the client

application to send control commands to the external application. Listing 2.4 shows

these methods.

1 /∗∗
2 ∗ Evaluates a given command in the ex t e r na l app l i c a t i on
3 ∗ @param command Str ing to be executed
4 ∗/
5 public void eva l ( Str ing command) ;
6

7 /∗∗
8 ∗ Resets the app l i c a t i on
9 ∗/
10 public void r e s e t ( ) ;
11

12 /∗∗
13 ∗ The r e s u l t o f l a s t act i on can be read us ing
14 ∗ t h i s method .
15 ∗ @return Str ing the r e s u l t o f l a s t act i on
16 ∗/
17 public Str ing getAct i onResu l t ( ) ;

Listing 2.4: Control methods of the ExternalApp interface.

2.3.3 Sample use of the low-level protocol

The use of the interface is straightforward. Listing 2.5 shows an example of use of a given

external application (MyExternalApp) that implements the ExternalApp interface.

1 import es . uned . dia . i n t e r ope r a t e . ExternalApp ;
2

3 public class LowLevelExample {
4 public stat ic void main ( Str ing [ ] a rgs ) {
5 // Declare l o c a l v a r i a b l e s
6 double time=0, f r equency=1, value =0;
7 // Create the Externa lAppl i cat i on
8 ExternalApp externalApp = new MyExternalApp ( ) ;
9 // Star t the connect i on
10 i f ( ! externalApp . connect ( ) ) {
11 System . e r r . p r i n t l n ( ”ERROR: Could not connect ! ” ) ;
12 return ;
13 }
14 // Set the f r equency
15 externalApp . setValue ( ” f ” , f r equency ) ;
16 // Perform the s imulat i on
17 do {
18 externalApp . setValue ( ” t ” , time ) ;
19 externalApp . eva l ( ”y=s i n (2∗ pi ∗ f ∗ t ) ∗ cos ( t ) ” ) ;
20 value=externalApp . getDouble ( ”y” ) ;
21 System . out . p r i n t l n ( ” time : ”+time+” value : ”+value ) ;
22 time=time +0.1;
23 } while ( time <=10) ;
24 // Fin i sh the connect i on
25 externalApp . d i s connect ( ) ;
26 }
27 }

Listing 2.5: Sample code of use of the low-level protocol.

When run, the program produces the following output:

35



Chapter 2. Design of Interactive Interfaces for Engineering Education

time:0,000 value: 0,000

time:0,100 value: 0,585

time:0,200 value: 0,932

time:0,300 value: 0,909

time:0,400 value: 0,541

time:0,500 value: 0,000

time:0,600 value:-0,485

time:0,700 value:-0,727

time:0,800 value:-0,663

time:0,900 value:-0,365

time:1,000 value:-0,000

...

The very simple sample code in Listing 2.5 above shows the basic operation required

to control an external application. A more sophisticated example, which involves the use

of the Easy Java Simulations for the visualization of results is displayed in Figure 2.6.

Figure 2.6: A virtual lab to perform Fast Fourier Transform. The three plots represent the
signal, the sampled signal and the amplitude of the FFT.

In this example, the user enters a one-dimensional signal by indicating its analytic

formula. This signal is sent to an engineering software (for instance MATLAB), which

returns the computed Fast Fourier Transform (FFT) (Oppenheim et al. 1997). Both

the original signal and the computed transformation are plotted in the user interface

of the virtual lab. Users can also modify the frequency at which the original signal is

sampled. The effect of this frequency on the processed signal and the computed FFT can

be immediately observed by students. Note that the two frequencies (2Hz and 20Hz)

of the signal:

y = sin(2 · 2π · t) + 0.5 · cos(20 · 2 · π · t)

36



2.3. Defining a communication protocol

are correctly identified by the computed FFT.

Other, more sophisticated examples, created with the help of Easy Java Simulations

are shown in the next chapters.

2.3.4 High-level protocol

As the sample code above shows, the low-level protocol provides all that is needed

by a programmer to control an external application. (Although extensions of the

ExternalApp interface will be required for remote communication of client and ex-

ternal application, as discussed in Section 2.4.) However, as simulations grow in size

and sophistication, it becomes more and more difficult for a not-so-expert programmer

to keep control of all the method invocations required to keep the client and external

applications perfectly synchronized.

For this reason, additional methods have been added to the ExternalApp interface

that make use of the low-level protocol to provide a higher level protocol for instructors

to set up an efficient communication scheme between client and external applications

using a reduced set of instructions. The use of this high level protocol may make the

final simulation slightly less efficient, but the gain in simplicity provides advantages in

the form of shorter development times and also in the reduced possibility of introducing

synchronization errors.

The concept of this utility high-level protocol comes from the identification of the

basic mechanism of communication between client and external application. In a large

percentage of simulations, the author just needs to connect and configure the external

application and then make sure that a number of variables of the user interface are

linked to corresponding variables of the external application. Interactive communica-

tion between both applications requires that any change in the user interface of the

client application immediately be reflected by the external application and vice versa.

That two variables are linked means that both must hold the same value, and that

changes occurring in one of them must be automatically propagated to the other one.

The high-level protocol implementing class must then assume the responsibility of this

synchronization, not the author of the simulation.

The flow of information between the applications is needed because the system is

dynamic, i.e., responds to changes as time increases. To control this situation, the high-
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level protocol should provide a way to configure the simulation, which means to define

when and how the simulated system has to respond to a change in time. In many cases,

for instance, an engineering simulation consists of a set of ordinary differential equations

(ODE), so that the way to simulate the system uses a suitable ODE solver (such as a

Runge-Kutta method), and to control when to execute an integration step. In other

cases, a simulation consists of a sequence of statements that have to be continuously

executed by the external application to run the simulation. The protocol should take

into account all those situations.

The protocol is conceived as an extension of the methods of the low-level protocol,

and therefore offers all the previous functionality, and is included in the ExternalApp

interface. The new methods added by the high-level protocol can be divided in two main

groups: The linking methods and the control methods.

Linking variables

The first group of the additional methods of the high-level protocol are used to link

variables of the client to variables of the external application. This linking process is

done by name and is accomplished by using the methods in Listing 2.6.

1 /∗∗
2 ∗ Sets the c l i e n t app l i c a t i on
3 ∗ @param cl i entApp Object the c l i e n t app l i c a t i on . Re f l e c t i on i s used to ac c e s s

the v a r i a b l e s in the c l i e n t .
4 ∗/
5 public void s e tC l i e n t ( Object c l i e n tApp l i c a t i o n ) ;
6

7 /∗∗
8 ∗ Links a c l i e n t va r i ab l e with a va r i ab l e o f the ex t e r na l app l i c a t i on
9 ∗ @param c l i e n tVa r i a b l e Str ing the c l i e n t va r i ab l e

10 ∗ @param ext e r na lVar i ab l e Str i ng the ex t e r na l app l i c a t i on va r i ab l e
11 ∗/
12 public boolean l i nkVar i ab l e s ( Str ing c l i en tVar i ab l e , Str ing ex t e r na lVar i ab l e ) ;
13

14 /∗∗
15 ∗ Clear s a l l l i n k i n g between va r i a b l e s
16 ∗/
17 public void c l e a rL i nk s ( ) ;

Listing 2.6: Methods to link variables of client and external applications.

This linking process uses the low-level protocol to access the variables of the external

application and reflection to access the variables of the client. Reflection is a Java

mechanism that allows one class to access public variables of another object; as it is

the single Java artifact that has been used here, it may require a different programming

implementation in a different language.
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Control commands

The control of the external application is extended done through a reduced set of meth-

ods, listed in Listing 2.7.

1 /∗∗
2 ∗ Some ex t e r na l app l i c a t i on s , such as Matlab , can cont inuous l y execute
3 ∗ a command a f t e r every s tep ( ) .
4 ∗ @param command a Str ing to be executed
5 ∗/
6 public void setCommand( Str ing command) ;
7

8 /∗∗
9 ∗ Gets the command to be executed by the ex t e r na l app l i c a t i on .
10 ∗ @return Str ing the command
11 ∗/
12 public Str ing getCommand ( ) ;
13

14 /∗∗
15 ∗ Steps the app l i c a t i on a given s tep or a number o f t imes .
16 ∗ I f getCommand ( ) i s non−nu l l the command i s executed that number o f t imes .
17 ∗ I f getCommand ( ) i s nu l l , the dt parameter i s passed down to the e x t e r n a l l

app l i c a t i on ,
18 ∗ and the actua l meaning o f t h i s parameter dt w i l l depend on the implementing

c l a s s
19 ∗ @param dt double
20 ∗/
21 public void s tep (double dt ) ;
22

23 /∗∗
24 ∗ Synchronizes c l i e n t and ex t e r na l a pp l i c a t i o n s
25 ∗/
26 public void synchron i ze ( ) ;

Listing 2.7: Control methods of the high-level protocol.

A simple example will be used to discuss how the high-level protocol works.

2.3.5 Sample use of the high-level protocol

Listing 2.8 shows the high-level protocol in action. This is a version of the same program

in Listing 2.5, but now using the high-level protocol.

1 import es . uned . dia . i n t e r ope r a t e . ExternalApp ;
2

3 public class HighLevelExample {
4 // Declare l o c a l v a r i a b l e s
5 public double time=0, f r equency=1, value =0;
6

7 public stat ic void main ( Str ing [ ] a rgs ) {
8 new HighLevelExample ( ) ;
9 }
10

11 public HighLevelExample ( ) {
12 // Create the ex t e r na l app l i c a t i on
13 ExternalApp externalApp = new MyExternalApp ( ) ;
14 // Set the c l i e n t app l i c a t i on
15 externalApp . s e tC l i e n t ( this ) ;
16 // Link va r i a b l e s with the ex t e r na l app ’ s
17 externalApp . l i nkVar i ab l e s ( ” time ” , ” t ” ) ;
18 externalApp . l i nkVar i ab l e s ( ” f r equency” , ” f ” ) ;
19 externalApp . l i nkVar i ab l e s ( ” value ” , ”y” ) ;
20 // Conf igure the ex t e r na l app l i c a t i on
21 externalApp . setCommand( ”y=s i n (2∗ pi ∗ f ∗ t ) ∗ cos ( t ) ” ) ;
22 // Star t the connect i on
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23 i f ( ! externalApp . connect ( ) ) {
24 System . e r r . p r i n t l n ( ”ERROR: Could not connect ! ” ) ;
25 return ;
26 }
27 // Perform the s imulat i on
28 do {
29 externalApp . s tep (1) ; // s tep once
30 System . out . p r i n t l n ( ” time : ”+time+” value : ”+value ) ;
31 time=time +0.1;
32 } while ( time <=10) ;
33 // Fin i sh the connect i on
34 externalApp . d i s connect ( ) ;
35 }
36 }

Listing 2.8: Sample code of use of the high-level protocol.

When the program is run, it produces the same following output as the previous

example of Listing 2.5.

There are five blocks of code required to run a simulation using the high-level pro-

tocol: linking of variables, connection, configuration, stepping, and disconnection. The

stepping phase is where the real work is done.

Once the client’s variables are linked to the external variables, the connection is es-

tablished and the external application is configured, successive calls to the step method

handle automatically all required calls to methods of the low-level protocol. The step

command performs sequentially three actions:

• Sets all external variables to the corresponding client values.

• Runs or executes the engineering simulation as many times as indicated by the dt

parameter.

• Gets all external values and sets the corresponding client variables.

After the call to the step method, therefore, the variables of the client which have a

link will hold the same values as those of the external application linked to them. The

client can then use them for whatever visualization is required. If the client changes any

of these variables (for instance, due to user interaction), the step method will take care

of updating the external variables prior to stepping the external application.

Sometimes, changing a client’s variable has implications to the external applications

other than the mere change of the value of a variable. In these cases, a call to the

synchronize method is required and it is the author’s responsibility to include it in the

program.
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Figure 2.7 shows a diagram of the execution of an external application using the

high-level protocol.

Figure 2.7: High-level protocol in action. There are five main phases in the execution of a
simulation using the protocol: linking variables, configuration, connection, stepping and discon-
nection.

2.3.6 Low or high level protocol?

In a large number of simulations, the high-level protocol is all that is required to control

interactively the original engineering simulation. However, there are situations where

an interactive simulation requires more flexibility. For example, to execute some piece

of code in the engineering software at a specific time, or when the simulation uses

a large number of variables which are not changed very often. In these latter cases,

the use of the low-level protocol is preferred, both to give to the user interface of the

interactive simulation the possibility to control the engineering software in a more refined

form than the high-level protocol permits, and also to improve performance, minimizing

communication traffic.

When instructors face the design process of the interactive simulation following the

interoperate approach, they have to decide what level of control of the engineering soft-

ware is required. Normally the high-level protocol should be enough for developing a

wide range of interactive simulations. A good idea is to start using the high-level proto-

col, and, only if it does not offer full control of all aspects of the interactive simulation,
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partial or full use of the low-level protocol should be introduced.

Another application field where the low-level protocol may be preferred is the im-

plementation of virtual labs of a non dynamic nature. This type of laboratories is

used mainly to perform some given actions over collected data. For example, a typical

application of the low-level protocol is the implementation of a virtual lab for signal

processing displayed in Figure 2.1 above (or the image classifier shown in Figure 2.1).

In this virtual lab students can calculate the Fast Fourier Transform (FFT) of a given

signal.

2.4 Remote interaction of engineering software

Network communications are ubiquitous in modern life. This interconnection provides

challenges and also opportunities to engineering education. Web-based courses are being

increasingly used by educational institutions to support (or even a substitute) commu-

nication with students.

The interoperate approach can benefit from the network communications to connect

the human interface and the engineering software. In other words, client and external

applications can be located and run on different computers using the network to commu-

nicate. This feature can be used to offer access to limited resources to a wide audience

of students.

The possibility of using a network connection between both applications introduces

a new factor that differentiates between two types of connections: local links and remote

links. If the client application and the external application are located on the same

computer, then the connection is called a local link. This is the situation that has been

described so far. If, on the contrary, the client application and the external application

are located on two different computers and communicate through a network connection,

then the connection is called a remote link. This section analyses this latter mode of

operation of the interoperate approach.

2.4.1 Remote link

Performing engineering simulations over networks can be especially useful when hard-

ware or software resources are limited. On some occasions, the simulation needs a high

level of computational power, requires special hardware (such as hardware-in-the-loop
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simulations (Obaidat & Papadimitriou 2003, Karayanakis 1995)), or the engineering

software is not installed on the students’ computers.

Instructors can then develop a simulation where all the computation required by

the simulation (the model) can be run on a computer where the needed hardware and

software resources are available, and at the other end, a computer at the student’s desk

is used to show the results of the simulation and offer user interaction. The two ends of

this connection are normally named server and client sides, respectively. The network

is used to connect both sides.

The interoperate approach also gives instructors the possibility of building these type

of simulations by using a remote link. The only requirement is to solve the technical

problem of providing a Java class that offers the protocol API that will handle the com-

munication to an engineering simulation running in a separate computer. An example

of how this challenge can be solved is described in detail in Chapter 3.

Figure 2.8: The interoperate approach for a remote link.

Once this technical problem is solved, the use of the communication protocol in

a remote link is (in principle) straightforward. The scheme of such a remote link is

presented in Figure 2.8. Notice that the communication protocol is implemented on

both the client and server sides. The approach encapsulates the network in such a way

that it becomes transparent to the end user. The only differences observed by end

users, with respect to a a simulation using a local link, can be a slower performance

caused by network delays. From the design point of view, the creation of the interactive

simulations in both local and remote links is similar.

In practise, according to the experience obtained during the doctoral period, the
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possibility of network delays introduces additional requirements for the protocol. It is

true that, if network delays are negligible (such as in a fast intranet), authors can use

the interoperate approach indistinguishably of the type of the link selected to deploy

the interactive simulation. However, if network delays are noticeable, the simulation

will give a poor performance. For this reason, and in order to minimize this undesired

effect, a new version of the communication protocol was introduced. This new version

is termed asynchronous to distinguish it from the standard one, that will be referred

to as synchronous.

The introduction of asynchronous links has an effect only when authors use the high-

level protocol, because the flow of information between client and external application

will be accomplished differently depending on the version used. Because the low-level

protocol provides authors with a direct control over the exchange of information among

the applications, it is the responsibility of the programmer to decide how to handle this

flow of information, taking into account or not the possible network delays. Automatic

handling of these aspects is another feature that makes the high-level protocol attractive

for not-so-expert programmers.

In order to explain the difference in the execution of synchronous and asynchronous

links, Table 2.1 lists all individual phases of the stepping of a simulation using the remote

link.

Table 2.1: Phases of the stepping operation in a remote link.

Phase Action
1 The client side gets the values of the client variables.
2 The client side sends to the server side the values obtained.
3 The server side sets the corresponding variables of the external application.
4 The external application runs the engineering simulation once.
5 The server side gets the values of the external variables.
6 The server side sends these values back to the client side.
7 The client side sets the corresponding variables of the client application.
8 The client application updates the user interface.

Figure 2.9 shows the phases of Table 2.1 in a visual form. Note that all phases have

to be executed independently of the version of the remote link selected. The order in

which they are executed will establish the difference between both versions.
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Figure 2.9: Phases of the interoperate approach for a remote link.

2.4.2 Synchronous remote link

The synchronous link between client and external application is bidirectional. By this, it

means that in every remote simulation step, all phases of Table 2.1 are executed. Hence,

information flows constantly in both directions.

Figure 2.10a shows a chronograph of the synchronous link in action. Note that, in

the remote execution of a synchronous link, possible delays may be caused not only

by the network, but also when the client or external application are computing. This

delay can be more noticeable because when one of the applications is being executed,

the other application must wait, even if the corresponding computer is idle. Therefore,

the total delay in every remote execution step is the sum of the network delay and the

processing time of both applications. However, network delays usually play the major

part in observed delays when running a remote simulation, since network delays are, in

general, longer than computing delays.

Despite the problem of an increased delay, the synchronous link presents some advan-

tages, since it is similar to a local connection between client and external applications.

It actually looks the same from the author’s point of view. This means that a simulation

created originally to work using a local link can be easily transformed into a simulation

that uses a synchronous remote link. The single change required to transform the orig-

inal simulation into a remote one is to indicate the network location of the computer

where the engineering software is running.

For example, in the sample program of Listing 2.8, the only change required would

be to replace the line:
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Figure 2.10: Remote links in action, a) Synchronous b) Asynchronous.

ExternalApp externalApp = new MatlabExternalApp ();

with the following one:

ExternalApp externalApp = new RemoteMatlabExternalApp("configuration ");

where the string configuration should indicate the network address of the external

application.

2.4.3 Asynchronous remote link

The performance of a synchronous link is acceptable whenever network delays are neg-

ligible, such as in a local area network (LAN). However, in a wide area network (WAN),

e.g. Internet, the evolution of the simulation could become sluggish. This is where the

asynchronous link comes in handy, because this link has been developed to minimize the

effects of network delays.

The synchronous link requires a huge amount of transaction between the client and

external applications to exchange information when the remote simulation is running.

Obviously, the more transactions are required, the slower is the simulation.

To reduce these execution delays, the asynchronous link intendedly does not keep

a continuous synchronization between both applications. This carelessness is based on
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the key idea that the end user does not interact with the simulation at every moment.

Usually, the end user make changes to the simulation using its GUI only sporadically,

spending most of the time precisely observing the system response after any modification

in the parameters that govern the system.

Based on this idea, the communication between the applications is not bidirectional

as in the case of the synchronous link, but unidirectional for most remote steps, showing

bidirectionality only whenever the end user interacts with the view of the simulation.

Hence, most of the time, the external application will just be continuously running

the engineering simulation, sending back the values of external variables to the client

application. The client will spend most of its time just receiving and displaying those

values. This situation will be interrupted only if and when the end user introduces

a change in the values of the client variables that has to be reported to the external

application.

Figure 2.10b shows a chronograph of the asynchronous link in action. Note that

phases 1 and 2 are only executed when the end user interacts with the client application.

This fact speeds up the remote simulation reducing the idle time in the asynchronous

remote link since, unlike the synchronous version, the external application does not

waste time waiting for any information from the client application.

The implementation of the asynchronous remote link leads to implement an extended

version of the synchronous remote implementation of the external application.

The extension of the implementation requires among other things a suitable codifi-

cation of the synchronize method, which needs now to update the external application

with all the values of linked client’s variables. The synchronize method must be used

by the author in the asynchronous link to inform the external application that a user

interaction has taken place. The method will then accomplish phases 1 and 2 of Ta-

ble 2.1.

To perform the remote operation (using either synchronous or asynchronous links)

two new methods can be used by authors when designing the simulation. These methods

are listed in Listing 2.9.

1 /∗∗
2 ∗ Sets the package s i z e used to group va lus o f the ex t e r na l v a r i a b l e s
3 ∗/
4 public void s e tPackageS i ze ( int s i z e ) ;
5

6 /∗∗
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7 ∗ Empty the bu f f e r
8 ∗/
9 public void f l u s h ( ) ;

Listing 2.9: New methods required for remote links.

Grouping data in packages is a natural way to send information in commuted net-

works. The new setPackageSizemethod can be used by authors to increase the amount

of information that the external application sends to the client application in one package

of data.

Using packages of suitable size can reduce network delays in some cases, although

it can also increase the computational time required to show this information while

viewing the simulation. This action can improve the Quality of Service (QoS) of the

network application. Determining the optimal size is left to the author, since it depends

on the network delays observed or expected, the protocol used for network transport,

the computational time of the simulation, and other parameters. More sophisticated

way to improve the QoS can be found in (Salzmann et al. 2005, Perritaz et al. 2009).

Figure 2.11 shows a package of data for the bouncing ball simulation. In this sim-

ulation, three external variables are being sent to the client application: the time, and

the height and speed of the ball at that time. The size of the package indicates how

many values of these three variables are sent in one package.

Figure 2.11: A package of data of size 4 is sent from the server side to the client side. The
package then transports the first four registers of the bouncing ball simulation.

The sending of packages is controlled automatically by the operating system, ac-

cording to the transport network protocol implementation. However, the sending can

be forced by calling the flush method, which allows authors to send packages immedi-

ately, without predefined delays.
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2.4.4 Synchronous or asynchronous link?

The selection of either the synchronous or asynchronous link for a given remote link

should be based on the particular situation expected for the end user. If the remote

simulation will be executed through a LAN, the best option is probably to use the syn-

chronous link. This option is the simplest, since it requires only minimal changes of the

author on the virtual lab’s code to transform the local version to a remote version of the

engineering simulation. For execution of the remote simulation through a WAN, authors

should favour the asynchronous version to help reduce the network traffic, and hence

delays. This choice will however require more changes in the code of the engineering

simulation to transform the local version of the simulation into a remote one.

2.5 Advantages of the interoperate approach

This chapter has been on introduction of the interoperate approach to add human in-

terfaces to engineering software, the communication protocol defined by it, and an im-

plementation in Java that supports it.

The main advantage of the approach is that it separates the development of inter-

active simulations into two qualitatively different parts: the model of the engineering

simulation and its human interface.

This scheme helps instructors design and implement the interactive simulations in

two separated activities. On the one hand, the creation of the model of the simulation

can be done using a specialized engineering software. On the other hand, the design of

the user interface to display the response of the system and to capture user interaction

can be done using graphics-enabled programming languages or authoring tools. Notice

that this is not the common situation when instructors design simulations for pedagogical

purposes, because they are normally experts mainly in the building of the engineering

simulation, but not in the programming of the interactive user interface.

The approach can also add robustness to the instructor’s application, because the

author can have a list of replacements, to an initial engineering software, that can

accept the role of external applications. Thus, external applications that can be used as

alternative, in case the connection with a primary engineering software fails. Using an

suitable use of this list, the author’s application should seek the first available external
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protocol and redirect all future commands to it. This nice feature is implementing in

the use of the interoperate approach from Easy Java Simulations in Chapter 4.

A third important advantage of the approach is the possibility of reusing a given

user interface to manipulate different engineering simulations which model essentially

the same system. This feature of the approach helps reduce the development time of

interactive simulations. For instance, an existing human interface that students are

familiar with, and can use comfortably, can be used again to control a new simulation

with a totally different engineering software. Figure 2.12 visualizes this idea. In it, the

same user interface can be selected to control one of two distinct engineering simulations.

Note that one of these engineering simulations is located on a remote computer.

Figure 2.12: The Interoperate Approach allows to use the same simulation GUI with different
engineering simulations. The figures correspond to: a) The Simulink model of the bouncing ball,
b) The Scicos model of the bouncing ball, c) The human interface of the interactive simulation.

2.6 Conclusions

This chapter has focused on the definition of a communication protocol API for engi-

neering software, and on the implementation of high-level and low-level protocols that

it uses to support the interoperate approach.
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The final aim of the interoperate approach is to highlight the design and implemen-

tation of the human interfaces as totally different activities in the creation of engineering

simulations. For this reason, new methods and tools are required to produce virtual labs

with high graphical level to represent the response of the system and especially oriented

towards capturing the user interaction.

The next chapter describes the technical details of the implementation of the low-

level protocol for different standard engineering programs. Chapter 4 describes how

the authoring tool Easy Java Simulations has been modified to naturally support the

interoperate approach, thus helping instructors in the process of building educational

engineering simulation with interactive human interfaces.
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Chapter 3

Implementing the Interoperate
Approach

Nowadays, most engineering software tools provide an interface for their external con-

nection from other programming languages. This connection offers the opportunity to

control these software tools from practically any kind of application.

This external interface can profit from the interoperate approach to add human

interfaces to the simulations created by using a particular engineering software.

The communication protocol for local connections defined in Chapter 2 will be

implemented in this chapter for three well-known engineering software tools: MAT-

LAB/Simulink, Scilab, and Sysquake. An extension for a remote link with MAT-

LAB/Simulink will also be described, given the popularity of this engineering software.

The low-level protocols with engineering software is a generalization of previous expe-

riences with MATLAB described in (Sánchez 2001, Sánchez et al. 2002, 2004, 2005,

Buccieri et al. 2005, Hernandez et al. 2008, Guzmán et al. 2005, Mart́ın et al. 2004).

The high-level protocols, for MATLAB and others engineering software, described in

this chapter are totally novel. The final result of these implementations are software

components freely available to the engineering education community.

3.1 Interfacing MATLAB with standard languages

MATLAB is a high-performance language for technical computing (The MathWorks

2010, The MathWorks 2009b). Figure 3.1 shows the typical elements that this engineer-

ing software offer to users.

The tool provides a system whose basic data element is an array that does not

require dimensioning. This allows the user to solve many technical computing problems,
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especially those with matrix and vector formulae, in a fraction of the time it would take

to write a program in a scalar non interactive language such as C or Fortran. Typical

uses include:

• Math and computation.

• Algorithm development.

• Data acquisition.

• Modelling, simulation, and prototyping.

• Data analysis, exploration, and visualization.

• Scientific and engineering graphics.

• Application development, including graphical user interface building.

The name MATLAB stands for matrix laboratory. MATLAB was originally written

to provide easy access to matrix software developed by the LINPACK and EISPACK

projects. Today, MATLAB engines incorporate the LAPACK and BLAS libraries, em-

bedding the state of the art in software for matrix computation. MATLAB has evolved

over a period of years until becoming the de facto standard in many fields of engineer-

ing such as control engineering. In university environments, MATLAB is the standard

Figure 3.1: The MATLAB environment.

54



3.1. Interfacing MATLAB with standard languages

instructional tool for introductory and advanced courses in mathematics, engineering,

and science. In industry, MATLAB is the tool of choice for high-productivity research,

development, and analysis.

MATLAB features a family of add-on application-specific solutions called toolboxes.

These toolboxes allow users to learn and apply specialized technology. Toolboxes are

comprehensive collections of MATLAB functions (M-files) that extend the MATLAB

environment to solve particular classes of problems. Areas in which toolboxes are avail-

able include signal processing, control systems, neural networks, fuzzy logic, wavelets,

simulation, and many others.

Because of this widespread use, MATLAB was selected as the main engineering

software tool to apply the interoperate approach to. Next sections will show how the

local and remote connections were implemented to support the communication proto-

col. There is also a special implementation for the Simulink toolbox, because of the

many existing Simulink simulations which have been developed for years by the control

engineering community.

The results of the implementation process are two Java software components called

JIM Client and JIM server, which are freely available for the education engineering

community (Department of Computer Science and Automatic Control, UNED 2010b,a).

Both software components allow engineering teachers to use them to manipulate MAT-

LAB and Simulink directly from Java programs.

This section focuses on the implementation of the communication protocol for a

local connection with MATLAB. The analysis starts with a detailed discussion about

how this local link was implemented, showing the main elements required to support

the local connection with MATLAB. The sections ends describing a Java library that

implements the communication protocol, which can be used by instructors to build

interactive simulations with MATLAB.

3.1.1 Calling MATLAB from C

In order to implement a local link of the communication protocol with MATLAB, it

will first be described how MATLAB is controlled from an external program written

in the C language. After this, a short description about Java Native Interface (JNI) is

given. This framework allows Java programs to call routines or libraries written in other
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languages like C. Using the JNI, the Java library JMatLink manipulates MATLAB in

a way similar to what the low-level protocol requires. Finally, a Java implementation

of the communication protocol which interfaces with MATLAB using the Java library

JMatLink will be presented.

The Engine Library

The MATLAB engine library is a set of routines that allows programmers to call MAT-

LAB from custom software, thereby employing MATLAB as a computation engine.

MATLAB engine programs are C or Fortran programs that communicate with a sepa-

rate MATLAB process via pipes, on UNIX, and through a Component Object Model

(COM) interface, on Windows. There is a library of functions provided with MATLAB

that allows programmers to start and end the MATLAB process, send data to and from

MATLAB, and send commands to be processed in MATLAB (The MathWorks 2009a).

Table 3.1 shows the routines of the engine library for C programs in order to control

the MATLAB computation engine. The name of these methods all begin with the

three-letter prefix eng.

A typical example using the MATLAB engine is to call a mathematical routine, for

instance, to invert an array or to compute a FFT in MATLAB, and then to get back

the result of one of these operations to a front end (GUI), which has been programmed

in C. See a simple example in Listing 3.1. In this C program, MATLAB is opened (by

engOpen) to evaluate in MATLAB the square function of an array of values stored in the

variable X. This variable and its values are defined in the MATLAB workspace by the

method engPutVariable. The routine engEvalString performs the evaluation of the

square function described by the String ‘‘Y = X.^2;’’. The results of the computation

are obtained by the C program using engGetVariable. The program ends printing the

array values and the results. Note that some auxiliary routines of engine.h, such as

mxCreateDoubleMatrix or mxGetPr, are also used for a suitable treatment of the C and

MATLAB variables.

Besides these C functions, the engine library has routines to control the MATLAB

engine from Fortran programs or even from MEX-Files1. However, in this work, only C

1MEX stands for MATLAB Executable. MEX-files are dynamically linked subroutines produced
from C, C++, or Fortran source code that, when compiled, can be run from within MATLAB in the
same way as MATLAB M-files or built-in functions.
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Table 3.1: C Engine Routines.

Function Description

Engine *engOpen (const char *startcmd) Start up MATLAB engine. A pointer to an
engine handle is returned. On Windows, the
startcmd string must be NULL.

int engClose (Engine *ep) Shut down MATLAB engine. The input pa-
rameters is the engine pointer.

mxArray *engGetVariable (Engine *ep, const char
*varname)

Get a MATLAB array from the MATLAB en-
gine. The input parameters are the engine
pointer and the name of mxArray to get from
MATLAB respectively.

int engPutVariable (Engine *ep, const char *var-
name, const mxArray *arrayptr)

Send a MATLAB array to the MATLAB en-
gine. Input parameters are the engine pointer,
the name given to the mxArray in the engine’s
workspace and the mxArray pointer.

int engEvalString (Engine *ep, const char *string) Execute a MATLAB command. Input param-
eters are the engine pointer and the string to
execute.

int engOutputBuffer (Engine *ep, char *p, int n) Create a buffer to store MATLAB text output.
Input parameters are the engine pointer, the
pointer to character buffer and the length of
the buffer.

Engine *engOpenSingleUse (const char *startcmd,
void *dcom, int *retstatus)

Start a MATLAB engine session for single, non
shared use. On Windows, the startcmd string
must be NULL. input parameter dcom is re-
served for future use, and it must be NULL.
The last input parameter returns the status of
the operation.

int engGetVisible (Engine *ep, bool *value) Determine visibility of MATLAB engine ses-
sion. The input parameters are the engine
pointer and a pointer to value returned from
engGetVisible.

int engSetVisible (Engine *ep, bool value) Show or hide MATLAB engine session. Input
parameters are the engine pointer and the value
to set the visible property to (1 means visible
and 0 invisible).

routines are taken into account since these functions can be directly manipulated from

Java programs as shown in the next subsection.

3.1.2 Calling C routines from Java

The Java Native Interface (JNI) enables the integration of code written in the Java

programming language with code written in other languages such as C and C++. JNI

allows programmers to take full advantage of the Java platform without having to aban-

don their investment in legacy code (Liang 1999).

The very simple, hello world program shown in Listing 3.2 illustrates briefly how

JNI works in Windows systems. A native method declaration must contain the native
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1 #include ” engine . h”
2 . . .
3 int main ( ) {
4 Engine ∗ep ; int i ; mxArray ∗X = NULL, ∗Y = NULL; double ∗x , ∗y ;
5

6 // Create the va r i ab l e X
7 X = mxCreateDoubleMatrix(1 , 10 , mxREAL) ;
8 x = (double ∗)mxGetPr (X) ; for ( i =0; i <10; i++) x [ i ] = (double) i ;
9

10 // Open MATLAB
11 ep = engOpen ( ”\0” ) ;
12

13 // Place va r i ab l e X in to MATLAB workspace
14 engPutVariable ( ep , ”X” , X) ;
15

16 // Evaluate Y=X∗X
17 engEvalStr ing ( ep , ”Y=X. ˆ 2 ; ” ) ;
18

19 // Get r e s u l t o f the f unc t i on eva luat i on
20 Y = engGetVariable ( ep , ”Y” )
21 y = (double ∗)mxGetPr (Y) ;
22

23 // Pr int X and Y
24 p r i n t f ( ”\n” ) ; for ( i =0; i <10; i++) p r i n t f ( ”x[%d]=%f \n” , i , x [ i ] ) ;
25 p r i n t f ( ”\n” ) ; for ( i =0; i <10; i++) p r i n t f ( ”y[%d]=%f \n” , i , y [ i ] ) ;
26

27 //Free memory
28 mxDestroyArray (X) ; mxDestroyArray (Y) ;
29

30 // Close MATLAB
31 engClose ( ep ) ;
32 }
33 . . .

Listing 3.1: An example of using MATLAB engine from C.

modifier. This declaration means that the native method is implemented in another

language. That is the reason why the print() method has no implementation in the

class itself. In this case such implementation is given by the C file of Listing 3.3.

However, before using the print()method, the C implementation has to be compiled

as a native library named HelloWorld.dll. This library is loaded into the system

memory with the Java method System.loadLibrary. Once the library is loaded into

memory, the native print() method can be invoked as a standard Java method.

1 class HelloWorld {
2 //Native method
3 private native void pr i n t ( ) ;
4

5 public stat ic void main ( Str ing [ ] a rgs ) {
6 //Load HelloWorld . d l l i n system memory
7 System . l oadLibrary ( ”HelloWorld ” ) ;
8

9 // Cal l to the nat ive method pr i n t
10 new HelloWorld ( ) . p r i n t ( ) ;
11 }
12 }

Listing 3.2: A Java program declaring and using JNI.

To implement the native method, the programmer needs first to compile the Java
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class HelloWorld of Listing 3.2 by using the command javac HelloWorld.java. A

header file, named HelloWorld.h, must also be created to support the implementation

of the native method. The header file is generated by using the Java command javah

-jni HelloWorld. This file provides the programmer with the following C declaration

(i.e. the signature) of the print() method:

JNIEXPORT void JNICALL Java_HelloWorld_print(JNIEnv *env , jobject obj)

This declaration is then used in the C file that implements the native method as

Listing 3.3 shows. A more detailed description about implementing the Java Native

Interface can be found in (Liang 1999).

1 #inc l ude < j n i . h>
2 #inc l ude <s td i o . h>
3 #inc l ude ”HelloWorld . h”
4 JNIEXPORT void JNICALL Java Hel l oWor ld pr int (JNIEnv ∗env , j o b j e c t obj )
5 {
6 p r i n t f ( ” He l l o World !\n” ) ;
7 return ;
8 }

Listing 3.3: The implementation of the JNI print method.

3.1.3 Calling MATLAB from Java

With the previous discussion about the implementation of JNI method in mind, the

next step is to code a Java library to call the native methods of the MATLAB engine

library. Fortunately, the existing JMatLink (Müller 2010) library does exactly this.

This Java library is an open source project available at:

http:// jmatlink.sourceforge.net/index.php

JMatLink works exactly as explained above to support the native methods that call

the routines of the engine library. Check for instance the implementation in Listing 3.4

of the native engEvalStringNATIVE method. This native method is declared in the

CoreJMatLink class and is used to call the engine routine engEvalString. All the

native methods are implemented in the jmatlink.dll native library.

1 . . .
2 /∗∗
3 ∗ i n t engEvalStringNATIVE ( long epI , Str ing evalS )
4 ∗ @param epI
5 ∗ @param evalS
6 ∗ @return
7 ∗/
8 JNIEXPORT j i n t JNICALL Java jmatlink CoreJMatLink engEvalStringNATIVE
9 ( JNIEnv ∗env , j o b j e c t obj , j l ong enginePtr , j s t r i n g evalS JNI )
10 {
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11 int r e tVa l I = 0 ;
12 const char ∗ evalS = (∗ env )−>GetStringUTFChars ( env , evalS JNI , 0) ;
13

14 // eva luate exp r e s s i on in MATLAB
15 r e tVa l I = engEvalStr ing ( ( Engine ∗) enginePtr , evalS ) ;
16

17 i f ( r e tVa l I != 0)
18 p r i n t f ( ”engEvalStringNATIVE : r eturn value !=0 , some e r r o r \n” ) ;
19

20 (∗ env )−>ReleaseStringUTFChars ( env , evalS JNI , evalS ) ; // f r e e memory
21

22 return r e tVa l I ;
23 }
24 . . .

Listing 3.4: Part of jmatlink.dll to implement the native method engEvalStringNATIVE.

The package consists of three following classes:

JMatLink, CoreJMatLink, and JMatLinkException.

The first class, JMatLink, provides all the public Java methods that other Java programs

can use to connect to MATLAB. The second class, CoreJMatLink, as its name indicates,

is a utility class that represents the core of the JMatLink package. CoreJMatlink extends

the standard Java class Thread to keep continuous information of the various MATLAB

engines. In this class, all the native methods (such as engEvalStringNATIVE commented

above) are declared. The third class, JMatLinkException, is used by JMatLink to treat

and throw exceptions of the native link. So, both CoreJMatlink and JMatLinkException

are used internally by JMatLink and should not be called directly by programmers.

JMatLink offers Java methods similar to the C routines of the engine library of

MATLAB. Table 3.2 shows the main methods of JMatLink.

Listing 3.5 shows an example of use of JMatLink. The purpose of this simple Java

program is to compute the inverse of a matrix. The matrix x to be inverted is de-

fined in line 15. Then, in order to connect to MATLAB, a new instance of JMatLink,

called matlab, is created. This instance of JMatLink offers the programmer all the

methods provided by the JMatLink library. A MATLAB console is opened by us-

ing engOpenSingleUse. This function returns an identifier for the MATLAB ses-

sion. Note that other consoles can also be opened by repeatedly calling the method

engOpenSingleUse. With the primitive engPutArray, the matrix x is sent to the MAT-

LAB workspace. The inverse of the matrix x is computed with the execution of the

method engEvalString(ep,"Y=inv(X)"). The inverted matrix is then saved in the

variable Y, which is recovered from the MATLAB workspace with engGetArray. Fi-

nally, both matrices, x and y, are printed.
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Table 3.2: Main methods of the library JMatlink.

Method Description

void engClose(long epI) Close a specified connection to an instance of
MATLAB.

void engEvalString(long epI, java.lang.String
evalS)

Evaluate an expression in a specified
workspace.

double[][] engGetArray(long epI, java.lang.String
arrayS)

Get an array from a specified instance/-
workspace of MATLAB.

java.lang.String[] engGetCharArray(long epI,
java.lang.String arrayS)

Get an ’char’ array (string) from MATLAB’s
workspace.

java.lang.String engGetOutputBuffer(long epI) Return the ouputs of previous commands in
MATLAB’s workspace.

boolean engGetVisible(long epI) Return the visibility status of the MATLAB
window.

long engOpenSingleUse() Open engine for single use and returns the iden-
tifier of the MATLAB session.

void engPutArray(long epI, java.lang.String ar-
rayS, double valueD)

Put an array into a specified instance/-
workspace of MATLAB.

void engPutArray(long epI, java.lang.String ar-
rayS, double[] valuesD)

Put an array (1 dimensional) into a specified
instance/workspace of MATLAB.

void engPutArray(long epI, java.lang.String ar-
rayS, double[][] valuesDD)

Put an array (2 dimensional) into a specified
instance/workspace of MATLAB.

void engSetVisible(long epI, boolean visB) Set the visibility of the MATLAB window.

1 import jmat l i nk . ∗ ;
2

3 public class te s t jmat {
4

5 //Declare v a r i a b l e s
6 double [ ] [ ] x ;
7 double [ ] [ ] y ;
8

9 public stat ic void main ( Str ing [ ] a rgs ) {
10 new te s t jmat ( ) ;
11 }
12

13 public te s t jmat ( ) {
14 // Set the matrix x
15 x = new double [ ] [ ]{{1 , −2 ,4} ,{3 ,1 , 0} ,{ −1 ,1 , 2}} ;
16

17 // Create i n s tance o f JMatLink
18 JMatLink matlab = new JMatLink ( ) ;
19

20 // Open and s t a r t MATLAB
21 long ep = matlab . engOpenSingleUse ( ) ;
22

23 // Put x i n to MATLAB
24 matlab . engPutArray ( ep , ”X” , x ) ;
25

26 // Compute in MATLAB the i nve r s e o f x
27 matlab . engEvalStr ing ( ep , ”Y=inv (X) ” ) ;
28

29 //Get the i nve r s e o f x
30 y = matlab . engGetArray ( ep , ”Y” ) ;
31

32 // Pr int x and y
33 for ( int i =0; i <3; i++)
34 for ( int j =0; j <3; j++) System . out . p r i n t l n ( ”x ( ”+i+” , ”+j+” )=”+x [ i ] [ j ] ) ;
35

36 for ( int i =0; i <3; i++)
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37 for ( int j =0; j <3; j++) System . out . p r i n t l n ( ”y ( ”+i+” , ”+j+” )=”+y [ i ] [ j ] ) ;
38

39 // Close MATLAB
40 matlab . engClose ( ep ) ;
41 }
42 }

Listing 3.5: Computing the inverse of matrix using JMatLink.

JMatLink offers a very good connection with MATLAB, allowing programmers full

control of the engine library using Java. However, the methods provided by JMatLink

lack the functionality required by the communication protocol of the Interoperate Ap-

proach. This disadvantage is covered in the following section.

3.2 An implementation of ExternalApp for MATLAB

Observing the methods of JMatLink described in Table 3.2, it can be concluded that

much of the functionality required by the low level protocol is covered. Actions like

setting and getting values from MATLAB are done directly with the JMatLink meth-

ods engPutArray and engGetArray, respectively. Evaluating commands in MATLAB

is also provided by JMatLink through the engEvalString method. Even more, the per-

formance of the JMatLink methods to open (engOpenSingleUse) and close (engClose)

MATLAB, is quite similar to that required by the methods connect and disconnect of

the high level protocol. However, other actions like linking external and client variables,

or stepping (i.e, executing a predefined command and updating variables), are clearly

not supported by JMatLink.

Therefore a new layer of functionality has to be added to JMatLink so that it im-

plements the capability of interfacing with MATLAB required by the communication

protocol. Hence, from a software point of view, the Java library required to support an

implementation of the ExternalApp interface should be composed like Figure 3.2 shows.

Figure 3.2: The local connection with MATLAB/Simulink.
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3.2.1 The MatlabExternalApp Java class

In order to support of the interoperate approach with MATLAB, a Java class called

MatlabExternalAppwas coded following the requirements of the interface ExternalApp.

As it was said before, the implementation of the low level protocol using JMatLink is

quite direct. For example, Listing 3.6 shows the Java code that supports the func-

tionality needed by the actions to evaluate a command in MATLAB (eval), to set the

value of an array in MATLAB (setValue), and to get the value of an array from MAT-

LAB (getDoubleArray). Note that the MatlabExternalApp class implements the Java

interface ExternalApp defined previously in Chapter 2.

1 . . .
2 public class MatlabExternalApp implements ExternalApp{
3 . . .
4 public void eva l ( Str ing command) {
5 i f ( matlab==null ) return ;
6 matlab . engEvalStr ing ( id , command) ;
7 }
8

9 public void setValue ( Str ing name , double [ ] va lue ) {
10 i f ( matlab==null ) return ;
11 matlab . engPutArray ( id , name , value ) ;
12 }
13

14 public double [ ] getDoubleArray ( Str ing va r i ab l e ) {
15 i f ( matlab==null ) return null ;
16 double [ ] [ ] r eturnValue = matlab . engGetArray ( id , va r i ab l e ) ;
17 return returnValue [ 0 ] ;
18 }
19 . . .
20 }

Listing 3.6: MatlabExternalApp class: Implementation of methods eval, setValue, and
getDoubleArray.

To support the high-level protocol, the implementation of the methods of the inter-

face ExternalApp is more elaborate than before. For instance, Listing 3.7 shows the

methods connect and disconnect that start and finish the connection with MATLAB.

1 public boolean connect ( ) {
2 i f ( matlab==null ){
3 matlab = new JMatLink ( ) ;
4 i d = matlab . engOpenSingleUse ( ) ;
5 return true ;
6 }
7 . . .
8 }
9

10 public void di s connect ( ) {
11 i f ( matlab !=null ){
12 matlab . engClose ( id ) ;
13 matlab=null ;
14 . . .
15 }
16 }

Listing 3.7: MatlabExternalApp class: Implementation of methods connect and disconnect.
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Another, very important method required by the high level protocol is setClient,

which provides the external application with a pointer to the client application. This

pointer is used to link the client and external variables. The implementation of setClient

in the MatlabExternalApp class is shown in Listing 3.8. The method just saves two nec-

essary variables, the Object client (varContextObject) and an array of the Field (i.e.,

the public variables and methods) of the client (varContextFields). Both variables

will be used to perform the linking of external and client variables.

1 import java . lang . r e f l e c t . ∗ ;
2 . . . .
3 public class MatlabExternalApp implements ExternalApp{
4 . . .
5 // The c l i e n t o f the ex t e r na l app l i c a t i on
6 protected Object varContextObject=null ;
7 //An array o f f i e l d s o f the c l i e n t
8 protected Fie ld [ ] varContextF i e lds=null ;
9 . . . .

10

11 public boolean s e tC l i e n t ( Object c l i e n t ) {
12 i f ( c l i e n t==null ) return ( fa l se ) ;
13 varContextObject=c l i e n t ;
14 varContextF i e lds=c l i e n t . ge tClas s ( ) . g e tF i e l d s ( ) ;
15 return ( true ) ;
16 }
17 . . .
18 }

Listing 3.8: MatlabExternalApp class: Implementation of methods setClient.

As it was also mentioned in Chapter 2, the linking of variables is done using the

Java Reflection API. This method uses the ability of the reflection feature to examine

or modify the runtime behaviour of applications running in the Java virtual machine.

Thus, by using reflection, the values of client public variables can be set to the values

obtained from the external variables.

Listing 3.9 shows the implementation of the linkVariables method, which links

client and external variables. Note that this method looks for the variable named cvar

in the array of client variables varContextFields. If the client variable cvar exists,

then the method obtains the type of the variable. The type of the client variable is

obtained by calling the reflection API:

varContextFields[i].getType().getName()

The call to getName() returns a String which defines the type of the client variable.

The string ‘‘[[D’’, for instance, represents a matrix of doubles.

Take into account that not all Java types are supported. Only the double, double[],

double[][], and String types can be linked with external variables, since these types
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suffice to work with most MATLAB applications. Once the type of the variable cvar is

found, the type itself and the index of the variable cvar in the array varContextFields

are saved (in linkIndex and linkType respectively) for future use by the setValues

and getValues methods. Finally, the name of both client and external variables (cvar

and evar) are saved in the linkVector Vector.

1 . . .
2 public boolean l i nkVar i ab l e s ( Str ing cvar , Str ing evar ) {
3 i f ( varContextObject==null ) return ( fa l se ) ;
4 int type ;
5 // Search i f the cvar e x i s t s
6 for ( int i =0; i < varContextFi e lds . l ength ; i++) {
7 i f ( cvar . equa l s ( ( varContextF i e lds [ i ] ) . getName ( ) ) ) {
8 //Detect type
9 i f ( varContextF i e lds [ i ] . getType ( ) . getName ( ) . equa l s ( ” double ” ) )
10 type=DOUBLE;
11 else i f ( varContextF i e lds [ i ] . getType ( ) . getName ( ) . equa l s ( ” [D” ) )
12 type=ARRAYDOUBLE;
13 else i f ( varContextF i e lds [ i ] . getType ( ) . getName ( ) . equa l s ( ” [ [D” ) )
14 type=ARRAYDOUBLE2D;
15 else i f

( varContextF i e lds [ i ] . getType ( ) . getName ( ) . equa l s ( ” java . lang . Str ing ” ) )
16 type=STRING;
17 else return ( fa l se ) ;
18 i f ( l i nkVector==null ) {
19 l i nkVector=new java . u t i l . Vector ( ) ;
20 l i nkIndex= new int [ 1 ] ;
21 l i nkIndex [0 ]= i ;
22 l inkType = new int [ 1 ] ;
23 l inkType [0 ]= type ;
24 }else {
25 int [ ] l i nk Index=new int [ l i nkIndex . l ength +1] ;
26 System . arraycopy ( l inkIndex , 0 , l i nkIndex , 0 , l i nkIndex . l ength ) ;
27 l i nk Index [ l i nkIndex . l ength ]= i ;
28 l i nkIndex= l i nk Index ;
29 int [ ] l inkType=new int [ l inkType . l ength +1] ;
30 System . arraycopy ( linkType , 0 , l inkType , 0 , l inkType . l ength ) ;
31 l inkType [ l inkType . l ength ]=type ;
32 l inkType= l inkType ;
33 }
34 l i nkVector . addElement ( cvar+” ; ”+evar ) ;
35 return ( true ) ;
36 }
37 }
38 return ( fa l se ) ;
39 }
40 . . .

Listing 3.9: MatlabExternalApp class: Implementation of the linkVariables method.

The linked variables are updated every time the method step is called. The imple-

mentation of this function is shown in Listing 3.10. The execution of each step implies

a call to the methods setValues, eval, and getValues. The method eval is executed

as many times as the parameter dt indicates. The implementation of the methods

setValues and getValues is shown in Listing 3.11.

When the method setValues is called by step, all the information saved by the

linkVariables about the linked variables is used to update the external variables. This
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1 . . .
2 public void s tep (double dt ) {
3 // Set a l l ex t e r na l v a r i a b l e s
4 s e tVa lues ( ) ;
5

6 //Evaluate the command
7 int s t ep s=( int ) dt ;
8 for ( int i =0; i<s t ep s ; i++)
9 eva l (command) ;

10

11 // Set a l l c l i e n t v a r i a b l e s
12 getValues ( ) ;
13 }
14 . . .

Listing 3.10: MatlabExternalApp class: Implementation of the step method.

modification of the values of the external variables is done according to the type of the

linked client variable. Thus, if the type of a client variable is an array of doubles, then

its value is used to modify the corresponding external variable by calling the method

setValue of Listing 3.6. Again, the reflection API is used, in this case to get the value

of the client variable by calling:

(double []) varContextField.get(varContextObject)

Note that the values obtained by the reflection method get have to be converted to the

correct type using the corresponding type casting (e.g. double[]). Note also that in

the case of the double type, the method of the reflection API used is getDouble.

1 . . .
2 public void s e tVa lues ( ) {
3 int k=0;
4 Str ing cvar , evar ;
5 for ( int i =0; i<l i nkVector . s i z e ( ) ; i++){
6 cvar= l inkVector . elementAt ( i ) ;
7 evar=cvar . s ub s t r i ng ( cvar . indexOf ( ” ; ” )+1, cvar . l ength ( ) ) ;
8 try {
9 Fie ld varContextFie ld = varContextF i e lds [ l i nkIndex [ k ] ] ;

10 switch ( l inkType [ k++]){
11 case DOUBLE:
12 setValue ( evar , varContextFie ld . getDouble ( varContextObject ) ) ; break ;
13 case ARRAYDOUBLE:
14 setValue ( evar , ( double [ ] ) varContextFie ld . get ( varContextObject ) ) ; break ;
15 case ARRAYDOUBLE2D:
16 setValue ( evar , ( double [ ] [ ] ) varContextFie ld . get ( varContextObject ) ) ; break ;
17 case STRING:
18 setValue ( evar , ( Str ing ) varContextFie ld . get ( varContextObject ) ) ; break ;
19 }
20 } catch ( java . lang . I l l e ga lAcce s sExcep t i on e ) {
21 System . out . p r i n t l n ( ”Error Step : s e t t i n g a value ” + e ) ;
22 }
23 }
24 }
25

26 public void getValues ( ) {
27 int k=0;
28 Str ing cvar , evar ;
29 for ( int i =0; i<l i nkVector . s i z e ( ) ; i++){
30 cvar= l inkVector . elementAt ( i ) ;
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31 evar=cvar . s ub s t r i ng ( cvar . indexOf ( ” ; ” )+1, cvar . l ength ( ) ) ;
32 try {
33 Fie ld varContextFie ld= varContextF i e lds [ l i nkIndex [ k ] ] ;
34 switch ( l inkType [ k++]){
35 case DOUBLE:
36 varContextFie ld . setDouble ( varContextObject , getDouble ( evar ) ) ; break ;
37 case ARRAYDOUBLE:
38 varContextFie ld . s e t ( varContextObject , getDoubleArray ( evar ) ) ; break ;
39 case ARRAYDOUBLE2D:
40 varContextFie ld . s e t ( varContextObject , getDoubleArray2D( evar ) ) ; break ;
41 case STRING:
42 varContextFie ld . s e t ( varContextObject , g e tS t r i ng ( evar ) ) ; break ;
43 }
44 } catch ( java . lang . I l l e ga lAcce s sExcep t i on e ) {
45 System . out . p r i n t l n ( ”Error Step : g e t t i ng a value ” + e ) ;
46 }
47 }
48 }
49 . . .

Listing 3.11: MatlabExternalApp class: Implementation of setValues and getValues methods.

Regarding the method getValues, the process is obviously inverse to setValues.

The values of the external variables are obtained with the corresponding methods to get

values from MATLAB (e.g. getDoubleArray of Listing 3.6). These values are then used

to modify the respective client variables by calling the reflection API as follows:

varContextField.set(varContextObject ,getDoubleArray(evar))

Note that, except for doubles, the set method of the reflection API is used to modify a

client variable of any type. In the case of doubles the correct method of the reflection

API is setDouble.

The rest of the Java class MatlabExternalApp is not very different from what has

been described so far. The next subsection will show how the class MatlabExternalApp

can be used to build Java applications that use the communication protocol with MAT-

LAB.

3.2.2 Using the class MatlabExternalApp from a Java program

Once the MatlabExternalApp Java class has been described, it can be used to create

interactive Java simulations with MATLAB.

A first example comes from revisiting the Listings 2.5 and 2.8 of Chapter 2. Those

listings can be easily transformed to be used with the MatlabExternalApp class, just

by replacing the line:

ExternalApp externalApp = new MyExternalApp();

With the following one:
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ExternalApp externalApp = new MatlabExternalApp();

Since all methods of the MatlabExternalApp class are implemented following the re-

quirements of ExternalApp, the execution of this new example produces exactly the

same output for the evaluation of the function as before.

A slightly more sophisticated example of the use of the MatlabExternalApp class

can be achieved if, instead of printing in the console the values of the function, these

values are drawn in a plot. To do that, the Java features of the packages AWT and

Swing can be used to generate a graphical user interface that plots the function outputs.

Moreover, other nice visual elements such as buttons, a text field, and a slider can be

added to the user interface in order to capture user interaction. Such an interactive

application is presented in Figure 3.3.

Figure 3.3: An interactive application using MATLAB.

Using this application, users can input directly in the text field the function to

be evaluated by MATLAB. For instance, the plot shows the output for the function

y = sin(2 ∗ pi ∗ f ∗ t) ∗ cos(t). Another interaction provided by the application is offered

by dragging the slider. This visual element controls the value of the variable f, which in

the case of the function y = sin(2 ∗ pi ∗ f ∗ t) ∗ cos(t), changes the frequency of the sine.

Finally, the two buttons, Play and Pause, allow users to start or pause the execution of

the application.

The source code of the application that plots the function is shown in Listing 3.12.

The code starts importing the Java packages AWT and Swing required for the visual

elements. After that, the client and other auxiliary variables are declared. The graphical

interface is implemented in the evaluatingFunctionPlot method. Here, the buttons
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(Play and Pause), the slider, and the text field are initialized. Note how the user

interaction to the text field is added. This action allows users to introduce a new

function to be evaluated in MATLAB by using the setCommand method. Then, the

connection to the MatlabExternalApp class is configured. To perform the simulation, a

do-while cycle is used. However, on this occasion, instead of printing the output values

of the function, these values are drawn as a trace in a plot.

The trace is simply a line between two points (point1 point2). The points are

obviously the last and the current values of the function output. The object plot is an

instance of the PlotPanel class which is, in turn, an instance of the Canvas Java class.

The PlotPanel overrides the update method of the Canvas class. The update method

is called in response to a call to plot.repaint(). The plot is first cleared by filling it

with the background color, and then completely redrawn by calling the update method.

Finally, the action performed by checkBorders makes sure that the trace is drawn

inside the borders of the plot. This is done using adequately the copyArea method,

which moves to the left the trace drawn before adding a new line. The application ends

and disconnects with MATLAB when the user clicks on the close button of the window.

The two applications described are just very simple examples of what can be done

by using the MatlabExternalApp class. More elaborate simulations will be presented in

the next chapter.

3.3 Interfacing Simulink models with Java

A special link with Simulink is now described in detail. Simulink is one of the most fa-

mous toolboxes of MATLAB. There is a huge number of simulations built using Simulink

models. For this reason, it was decided to develop a dedicated connection with this tool-

box in order to facilitate the creation of interactive simulations using Simulink.

Simulink is an environment for multi domain simulation and Model-Based Design

for dynamic and embedded systems (see Figure 3.4). It provides an interactive graphical

environment and a customizable set of block libraries that let users design, simulate, im-

plement, and test a variety of time-varying systems, including communications, controls,

signal processing, video processing, and image processing.

Simulink is integrated with MATLAB, providing immediate access to an extensive

range of tools that let users develop algorithms, analyze and visualize simulations, cre-
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1 // Import packages
2 import javax . swing . ∗ ;
3 import java . awt . ∗ ;
4 . . .
5 public class eva luat ingFunct i onPlot {
6 // Declare the c l i e n t and aux i l i a r y v a r i a b l e s
7 public double time=0, f r equency=1, value =1;
8 . . .
9

10 public stat ic void main ( Str ing args [ ] ) {
11 new eva luat ingFunct i onPlot ( ) ;
12 }
13

14 public eva luat ingFunct i onPlot ( ) {
15 //Create v i s u a l e l ements
16 JFrame frame = new JFrame( ” P l o t t i ng an External Function” ) ;
17 p l o t = new PlotPanel ( ) ;
18 s l i d e r = new JS l i d e r (minFreq , maxFreq , ( int ) ( f r equency ) ) ;
19 funct ionText = new JTextFie ld ( ”y=s i n (2∗ pi ∗ f ∗ t ) ∗ cos ( t ) ” ) ;
20 . . .
21 //Add i n t e r a c t i o n to the text f i e l d
22 Act i onLi s tener alText = new Act i onLi s tener ( ) {
23 public void act ionPer formed ( ActionEvent act ionEvent ) {
24 externalApp . setCommand( funct ionText . getText ( ) ) ;
25 }
26 } ;
27 funct ionText . addActionListener ( alText ) ;
28 . . .
29 //Create Matlab connect i on and Link va r i a b l e s
30 externalApp = new MatlabExternalApp ( ) ;
31 . . .
32 //Perform the s imulat i on
33 do{
34 i f ( ! pauseSimulat ion ) {
35 externalApp . s tep (1) ;
36 point1 = point2 ;
37 point2 = new Point2D . Double ( time , value ) ;
38 l i n e = new Line2D . Double ( point1 , point2 ) ;
39 checkBorders ( ) ;
40 p l o t . r epa i n t ( ) ;
41 time = time+dt ;
42 }
43 delay (10) ;
44 }while ( true ) ;
45 }
46 . . .
47 public class PlotPanel extends Canvas{
48 public void update ( Graphics g ) {
49 . . .
50 //Draw the t r a c e
51 ( ( Graphics2D )g ) . draw ( l i n e ) ;
52 //Move the t r a c e
53 i f ( del ta >0) g2D . copyArea ( i n i , 0 , f i n , s izeY ,−del ta , 0 ) ;
54 . . .
55 }
56 }
57 . . .
58 } //end o f eva luat ingFunct i onPlot

Listing 3.12: Computing a Function Using the High Level Protocol.

ate batch processing scripts, customize the modelling environment, and define signal,

parameter, and test data (The MathWorks 2009c).

Some of the key features of Simulink are its:

• Ability to manage complex designs by segmenting models into hierarchies of design
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Figure 3.4: Simulink environment. a) The block library of Simulink, b) a Simulink model, and
c) an animation of the model.

components.

• Extensive and expandable libraries of predefined blocks.

• Availability of Embedded MATLAB Function blocks for bringing MATLAB algo-

rithms into Simulink and embedded system implementations.

• Model Explorer to navigate, create, configure, and search all signals, parameters,

properties, and generated code associated with your model.

• Simulation modes (Normal, Accelerator, and Rapid Accelerator) for running sim-

ulations interpretively or at compiled C-code speed using fixed- or variable-step

solvers.

• Full access to MATLAB for analyzing and visualizing results, customizing the

modelling environment, and defining signal, parameter, and test data.

• Application programming interfaces (APIs) that let users connect with other sim-

ulation programs and incorporate hand-written code.

• Interactive graphical editor for assembling and managing intuitive block diagrams.
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These features have expanded the use of Simulink over many fields of engineering,

and, together with MATLAB, it has become a very popular tool in the academic world,

specially for engineering education and research purposes.

For modelling purposes, Simulink provides a graphical user interface for building

models in the form of block diagrams, using click-and-drag mouse operations. With this

interface, users can draw the models just as they would with pencil and paper (or as

most textbooks depict them). This is far ahead other simulation packages that require

to formulate differential equations and difference equations in a language or program.

Simulink includes a comprehensive block library of sinks, sources, linear and nonlinear

components, and connectors. It is also possible to customize existing blocks or create

custom ones.

Models are hierarchical, so users can build models using both top-down and bottom-

up approaches. Users can view the system at a high level, then double-click blocks to go

down through the levels to see increasing levels of model detail. This approach provides

insight into how a model is organized and how its parts interact.

After a model is defined, it can be simulated using a choice of integration methods

(e.g. Runge-Kutta), either from the Simulink menus or by entering commands in the

MATLAB Command Window. The menus are particularly convenient for interactive

work, while the command-line approach is very useful for running a batch of simulations

(e.g., Monte Carlo simulations). Using scopes and other display blocks, users can see

the simulation results while the simulation is running. In addition, users can change

parameters by using dialogue boxes and immediately see what happens, for “what if”

exploration. The simulation results can be put in the MATLAB workspace for post

processing and visualization.

As it can be noticed, the integration between MATLAB and Simulink is complete.

Therefore, this fact can be exploited of in order to build interactive simulations of

Simulink models. This will be the object of this section.

3.3.1 Controlling Simulink simulations from MATLAB

Controlling Simulink from MATLAB can be done programmatically by using the API

that Simulink provides. The API allows users to open, simulate, pause, stop, or close a

Simulink model. It is also possible to add or remove blocks from the Simulink model,
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and to modify any block parameter while the simulation is stopped or even while it is

running.

Table 3.3: Some common Simulink functions.

Function Description

open system Open existing model or block.
close system Close open model or block.
add block Add new block.
delete block Delete a block.
add line Add a line.
delete line Remove a line.
set param Set parameter values for model or block.
get param Get simulation parameter values from model.

Table 3.3 shows some common functions of the Simulink API. The functions open

and close open and close a Simulink model, respectively. The model can be modified

by adding or deleting blocks with add block and delete block. Functions add line

and delete line allow to connect or disconnect blocks.

The function set param modifies a parameter of a block or model, which can affect

strongly the behaviour when simulated. This function is used as follows:

set_param(’blockpath’,’parameter’,’value’);

The ’blockpath’ string defines the path to the block. The path represents the route

to the block inside the model. The parameter string indicates the parameters that will

be modified, and the value string is the new value of the modified parameter.

There are some common parameters for the blocks and models, but obviously differ-

ent blocks can present an important set of different parameters. To get all the parameters

of a block, the function get param can be used as follows:

params=get_param(’blockpath’,’objectparameters’);

The ’objectparameters’ string indicates the information of all parameters of the block

or model that are requested.

Using the described functions, a programmatic control of a Simulink simulation can

be performed. This will be exemplified by using a Simulink model named fsmk.mdl that

evaluates a function similar to the example described using the Java class MatlabExternalApp

in Figure 3.3.

The Simulink version of the evaluating function is shown in Figure 3.5. Here the

model (Figure 3.5a) uses simple blocks to evaluate the function: sin(2πft) · cos(t).
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Figure 3.5: Simulink version of evaluating function. a) The model, b) a plot of the function,
c) some parameters of the block frequency, d) some parameters of the block function.

The Simulink model needs to be transformed to the one shown in Figure 3.6 by

adding standard Simulink blocks. These extra blocks are necessary to manipulate the

Simulink model from MATLAB. For instance, the block FromWS uses the value of the

variable f as the frequency of the function. The block ToWS modifies the variable y with

the computed value of the function. The submodel stepCtrl allows to add a pause after

each integration step, and to write the variable t with the value of the simulation time.

A more detailed description of this example can be found in Appendix A.

3.3.2 Controlling a modified Simulink model from Java

After modifications of the Simulink model are carried out, the simulation of the Simulink

model can be performed from a Java program. Listing 3.13 shows the Java code that sim-

ulates the modified Simulink model fsmkM.mdl using the MatlabExternalApp class.

The code starts declaring the variables and calling the main method of the class

evaluatingFunctionSimulink. In the method evaluatingFunctionSimulink() an
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Figure 3.6: A modified version of the Simulink model of the Figure 3.5a. a) The modified model,
b) the submodel stepCtrl, c) the parameters for the block FromWS, and d) the parameters for
the block ToWS.

instance of MatlabExternalApp is first obtained. This object is used to communicate

with MATLAB as was explained above. After the connection with MATLAB is started,

the Simulink simulation is prepared. To do that, the model is first opened with the

MATLAB command open system(’fsmkM’). Then, the MATLAB variable f is set to

the value given by the Java variable frequency. Then, the parameter MATLABfcn of

the block function is set to sin(u(1)) ∗ cos(u(2)). After that, the simulation is started,

with the MATLAB command set param(’fsmkM’,’SimulationCommand’,’start’).

At this moment, the Simulink model is ready to be simulated.

The simulation is run by executing three main action inside of a do-while cycle. The

first action steps the Simulink model, which means that the simulation advances one

integration step. After that, it is necessary to check if the execution of this integration
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step has finished. This checking is done by verifying that the value of the parameter

SimulationStatus of the model is the ’paused’ string. Take into account that, sooner

or later, the Simulink will be paused when the block named Pause Simulink is executed.

The second action, after this check, is to get the values of the MATLAB variables t and

y, which represent the time and the output of the function block. The third action

just prints these values to the console.

The do-while cycle is executed until the time is greater than 10. The Simulink model

is then stopped and the MATLAB connection finished.

1 public class eva luat ingFunct i onS imul ink{
2 // Declare v a r i a b l e s
3 public double time=0, f r equency=2, value =0;
4 Str ing s ta tu s ;
5

6 public stat ic void main ( Str ing [ ] a rgs ) {
7 new eva luat ingFunct i onS imul ink ( ) ;
8 }
9

10 public eva luat ingFunct i onS imul ink ( ) {
11 //Create a Matlab connect i on
12 ExternalApp externalApp = new MatlabExternalApp ( ) ;
13

14 // Star t the connect i on
15 externalApp . connect ( ) ;
16

17 //Open and prepare s imulat i on
18 externalApp . eva l ( ” open system ( ’ fsmkM ’) ” ) ;
19 externalApp . setValue ( ” f ” , f r equency ) ;
20 externalApp . eva l ( ” set param ( ’ fsmkM/ func t i on ’ ,
21 ’MATLABfcn ’ , ’ s i n (u (1) ) ∗ cos (u (2) ) ’ ) ” ) ;
22 externalApp . eva l ( ” set param ( ’ fsmkM ’ , ’ SimulationCommand ’ , ’ s t a r t ’ ) ” ) ;
23

24 //Perform the s imulat i on
25 do{
26 //Step the model
27 externalApp . eva l ( ” set param ( ’ fsmkM ’ , ’ SimulationCommand ’ , ’ continue ’ ) ” ) ;
28 do{
29 externalApp . eva l ( ” s=get param ( ’ fsmkM ’ , ’ S imulat i onStatus ’ ) ” ) ;
30 s t a tu s=externalApp . g e tS t r i ng ( ” s ” ) ;
31 }while ( ! s t a tu s . equa l s ( ”paused” ) ) ;
32

33 //Get v a r i a b l e s
34 value=externalApp . getDouble ( ”y” ) ;
35 time=externalApp . getDouble ( ” t ” ) ;
36

37 System . out . p r i n t l n ( ” time : ”+time+” value : ”+value ) ;
38 } while ( time <10) ;
39

40 //Stop the Simulink s imulat i on
41 externalApp . eva l ( ” set param ( ’ fsmkM ’ , ’ SimulationCommand ’ , ’ s top ’ ) ” ) ;
42

43 // Fin i sh the connect i on
44 externalApp . d i s connect ( ) ;
45 }
46 }

Listing 3.13: Computing a Function Using a Simulink model.
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3.3.3 General process to simulate Simulink models from Java

The process described opens the way to simulate any Simulink model from a Java

program. The process required to create interactive simulations using Simulink is now

summarized in the following actions:

• Modify the original Simulink model to indicate that the simulation ends at the

time inf.

• Modify the original Simulink model, adding blocks to read and write variables

from the MATLAB workspace.

• Modify the original Simulink model, adding blocks to obtain the simulation time

and also to pause the model by calling the function set param to set the parameter

SimulationCommand to the string ’pause’.

• In the Java program, and after the MATLAB connection is started, the modified

model has to be opened with the open system function. Then, the variables re-

quired by the Simulink model have to be initiated. After that, the model is started

setting the parameter SimulationCommand of the model to the string ’start’.

• The simulation is performed, by calling three actions: advancing one integration

step of the model, checking that the model has finished the integration process,

and recovering the values of the variables than are written by the model to the

MATLAB workspace.

• After performing the simulation of the Simulink model, stop the model by setting

the parameter SimulationCommand to the string ’stop’.

• Finally, close the MATLAB connection.

3.3.4 Specific modifications for integrator blocks

In principle, the previous process can be used to simulate any Simulink model from a

Java program. This is especially true for static systems like the model fsmk. However,

the simulation of dynamic systems can be different. In this kind of models, apart from

a static description, differential or difference equations may concur, producing time-

varying systems. Thus, contrary to static systems, the behaviour of dynamic systems
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depend on the initial conditions. For this reason, in the bouncing ball example, if two

identical balls are dropped from different heights (initial conditions), they will stop

bouncing at different moments.

Hence, an interactive simulation of a dynamic system should be prepared to accept

that users can change the initial conditions at any moment. Thus, for example, an

interactive simulation of a bouncing ball could be paused by the user, who moves the

ball to a different height to restart again the simulation from there.

The description of time-varying systems in Simulink can be done in many ways, but

the most common method to formulate dynamic systems in Simulink is to add Integrator

blocks to the model (see Figure 3.7).
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Figure 3.7: Various Integrator blocks. The appearance of each Integrator depends on the
configuration defined in the dialog box.

An integrator block outputs the integral of its input at the current time step. Equa-

tion (3.1) represents the output of the block y as a function of its input u and an initial

condition y0, where y and u are vector functions of the current simulation time t. Take

into account that the Integrator block outputs the initial condition at the beginning of

the simulation and also when the Integrator is reset.

y(t) =
∫ t

t0

u(t)dt + y0 (3.1)

In order to implement a correct manipulation of the Integrator block from the inter-

action point of view, it will be discussed now how to control from Java both the moment

when an integrator is reset and the value of the initial condition.

Consider the model (named integrator) shown in Fig.3.8, which uses the simplest

case of the Integrator block. Since the Integrator block is integrating a constant equal

to 1, the output after the integration is a straight line with slope equal to 1. This line

is shown in Figure 3.9.

To control the integrator model, it needs to be modified to obtain a new model

(named integratorM) like Figure 3.10 shows. Now, the integrator accepts an external
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Figure 3.8: A model with an integrator.
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Figure 3.9: A plot of the model output.

reset and external initial condition. The two new inputs of the block integrator are

connected to two MATLAB Fcn blocks to manipulate from the MATLAB workspace

the reset moment and the initial condition. The two MATLAB Fcn are used to read the

variables in the same way as the block named FromWS was used in Figure 3.6 to read the

value of the variable f. The two variables read by the blocks MATLAB Fcn are rst and

ic, which control the reset moment and the initial condition respectively. The output

of the Integrator is sent to the MATLAB workspace (as variable y) using a block To

Workspace similar to the block toWS used in the model of Figure 3.6a. Additionally, a

sub model similar to the stepCtrl shown in Figure 3.6b is required to get the simulation

time and to pause the Simulink model after each integration step.
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Figure 3.10: A modified model of the integra-
tor.
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Figure 3.11: The output of the modified
model.

After the modifications are done, the model integratorM can be used directly from

a Java application to reset the integrator. Listing 3.14 shows the code of an application

that resets the integrator at time=5. Note that the integrator is reset only once, because

the reset is only triggered when a rising change in the variable rst (e.g., from -1.0 to
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1.0) is detected. Fig.3.11 shows a plot of the output of the integrator. Observe that, at

the beginning of the simulation, the initial condition (ic) was 0, and when the reset is

triggered, the initial condition is set to -5 and therefore the state restarts from -5.0.

1 . . .
2 //Prepare the s imulat i on
3 externalApp . setValue ( ” r s t ” ,−1.0) ;
4 externalApp . setValue ( ” i c ” , 0 . 0 ) ;
5 externalApp . eva l ( ” set param ( ’ integratorM ’ , ’ SimulationCommand ’ , ’ s t a r t ’ ) ” ) ;
6 //Perform the s imulat i on
7 do{
8 //Step the model
9 externalApp . eva l ( ” set param ( ’ integratorM ’ , ’ SimulationCommand ’ , ’ cont inue ’ ) ” ) ;

10 do{
11 externalApp . eva l ( ” s=get param ( ’ integratorM ’ , ’ S imulat i onStatus ’ ) ” ) ;
12 s t a tu s=externalApp . g e tS t r i ng ( ” s ” ) ;
13 }while ( ! s t a tu s . equa l s ( ”paused ” ) ) ;
14 //Get In t eg r a to r ’ s output and s imulat i on time
15 output=externalApp . getDouble ( ”y” ) ;
16 time=externalApp . getDouble ( ” t ” ) ;
17 // r e s e t at time=5
18 i f ( time>=5){
19 externalApp . setValue ( ” r s t ” , 1 . 0 ) ;
20 externalApp . setValue ( ” i c ” ,−5.0) ;
21 }
22 System . out . p r i n t l n ( ” time : ”+time+” output : ”+output ) ;
23 }while ( time <10) ;
24 . . .

Listing 3.14: Resetting an Integrator block from Java.

The simple case of the integrator described previously is however not common. Most

of the dynamic systems in Simulink present more complex configurations, which means

that sometimes the model itself uses the external reset and external initial condition to

model events in the system. To correctly treat the events of the system with the events

triggered by Java, the scheme of the Fig.3.12 has to be used.

Figure 3.12: An scheme to treat Java and Simulink events in integrators.

The scheme requires the substitution of an integrator (with any configuration) by

a sub model composed by an integrator with external reset(Reset) and external initial

condition (IC). Both Reset and IC are computed according to the state of the signals

obtained from Simulink and Java. The Simulink signals reflect the situation of the
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original integrator in the Simulink model. The Java signals allow manipulating from Java

to reset the integrator when, for instance, the user interacts with the Java simulation.

Thus, both types of reset have been taken into account in the simulation. In the case

that both types of reset are triggered at the same time, the Java reset should have

priority over the Simulink reset in order to provide a good interaction experience to the

end user. Obviously, the configuration of the original integrator (i.e. the limitation and

the state port) has to be preserved in the new integrator.

3.3.5 An example of a dynamic system

An example of a non elastic bouncing ball will be used to show how the previous ideas

are implemented. A rubber ball is thrown into the air with a velocity of 15 meters per

second from a height of 10 meters. The position and velocity of the ball are shown in a

Scope. This system uses a reset-integrator to change the direction of the ball as it comes

into contact with the ground. Figure 3.13 shows the Simulink model of the bouncing

ball system and the plots generated when the simulation is run.

a) b)

Figure 3.13: The simulation of a bouncing ball. a) Simulink model, b) Plots of the velocity
and vertical position of the ball.

The model is quite simple. There are two continuous states, the velocity and the

position. These states are available as outputs of the two integrators. The position is

obtained by integrating the velocity, and the latter is obtained by integrating the gravity

given by a Constant block. The integrator for the velocity also has another two inputs,

that are used to reset the velocity to an initial state given by the third input. This allows
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to model the bouncing of the ball when it reaches the ground (i.e., the position is zero).

Since the ball is not elastic, the velocity of the ball is reset to a new velocity, which is

computed multiplying the velocity just before the bouncing by an elastic constant equal

to −0.8. The negative sign simply changes the vertical direction of the velocity. Note

that the value of the velocity previous to the bouncing is taken from the state port (the

second output) of the Velocity block in order to avoid algebraic loops. The integrator

for position has its output limited to a minimum value of zero. This ensures that the

position of the ball will never be negative. The Initial Condition block named IC outputs

15 when the simulation is started. This is used as the initial condition of the integrator

Velocity. The Initial Condition block does not have any effect once the simulation is

started.

A modified version of the dynamic system

Figure 3.14 shows the modified model of the bouncing ball. Since there were two inte-

grators, both have been modified following the scheme shown in Figure 3.12. The two

new sub models that represent the original integrators Position and Velocity are now

PositionM and VelocityM, respectively. The necessary stepCtrl submodel to get the

simulation time and to pause the Simulink model after each integration step has also

been added.

1

s

VelocityM

1

s

PositionM[15]

IC

−9.81

Gravity

−0.8

Elasticity

stepCtrl

Figure 3.14: The modified model of the bouncing ball.

The submodel PositionM is shown in Figure 3.15. The submodel follows the scheme

described in Figure 3.12. The new integrator has three inputs and one output. One

input is used for the standard input of the signal to be integrated, and two inputs for

supporting the external reset and external initial condition. The single output is used
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for the standard output of the integrator, which gives the position of the ball. Note that

the position is also written to the MATLAB workspace so that it can be read by the

Java application. Observe also that the output limitation of the original integrator is

replicated by the new integrator.
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Figure 3.15: The PositionM submodel.

The standard input of the integrator is taken from the sole input, In1, of the sub-

model. This input is connected to the first output of the velocityM submodel, which

is the velocity of the ball.

The external reset of the integrator is connected to the block named Any reset?,

which implements an OR logic gate. This block sends out 1 (or the boolean true) if at

least one of its two inputs are 1, otherwise the output is 0 (or the boolean false). The two

inputs of the OR block are used to detect one of two possible resets. These inputs come

from the submodels: Reset from Java and Reset from Simulink. If there is a reset,

the initial condition is taken from either the submodel IC from Java or the submodel

IC from Simulink. If both Simulink and Java reset are triggered at the same time, the

block NOT, named Java priority, is used to prioritize the Java reset.

See Appendix A for further details of the modifications of the other blocks of the

Simulink model of the bouncing ball.

Using the modified dynamic system from Java

After the modifications are done, the modified bounce model, named bounceM, can be

used directly from a Java application to reset the integrators. Listing 3.15 shows the

code of an application that resets the integrators at time = 10. The reset implies setting

the initial conditions to 10 for the position and 0 for the velocity.

1 . . .
2 //Prepare the s imulat i on
3 externalApp . setValue ( ” r s t ” , −1.0) ;
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4 externalApp . setValue ( ” i c p o s i t i o n ” , 10 . 0 ) ;
5 externalApp . setValue ( ” i c v e l o c i t y ” , 15 . 0 ) ;
6 externalApp . eva l ( ” set param ( ’ bounceM ’ , ’ SimulationCommand ’ , ’ s t a r t ’ ) ” ) ;
7 //Perform the s imulat i on
8 do{
9 //Step the model

10 externalApp . eva l ( ” set param ( ’ bounceM ’ , ’ SimulationCommand ’ , ’ continue ’ ) ” ) ;
11 do{
12 externalApp . eva l ( ” s=get param ( ’ bounceM ’ , ’ S imulat i onStatus ’ ) ” ) ;
13 s t a tu s=externalApp . g e tS t r i ng ( ” s ” ) ;
14 }while ( ! s t a tu s . equa l s ( ”paused ” ) ) ;
15 //Get In t eg r a to r ’ s outputs and s imulat i on time
16 po s i t i o n=externalApp . getDouble ( ” p o s i t i o n ” ) ;
17 v e l o c i t y=externalApp . getDouble ( ” v e l o c i t y ” ) ;
18 time=externalApp . getDouble ( ” t ” ) ;
19 // r e s e t at time=10
20 i f ( time >=10){
21 externalApp . setValue ( ” r s t ” , 1 . 0 ) ;
22 externalApp . setValue ( ” i c p o s i t i o n ” , 10 . 0 ) ;
23 externalApp . setValue ( ” i c v e l o c i t y ” , 0) ;
24 }
25 System . out . p r i n t l n ( ” time : ”+time+” po s i t i o n : ”+po s i t i o n+” v e l o c i t y ”+ve l o c i t y ) ;
26 }while ( time <20) ;
27 . . .

Listing 3.15: Simulating the modified bounce model with reset.

Figure 3.16 shows the plots of the position and velocity of the bouncing ball. The

ball starts with a velocity of 15 meters per second and a height of 10 meters. A reset

from Java is performed after 10 seconds. When this reset is triggered, the ball position

and velocity are changed to 10 meters and 0 meters per second respectively.
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Figure 3.16: Plots of the position and velocity of the modified bounce model with reset at
t=10.

Other situations

Using the described scheme to treat the Java and Simulink event in the integrators it

should be enough to manipulate Simulink models with dynamic behaviour from Java.

Fortunately there is a huge number of dynamic models that are described using integra-
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tor blocks. However, there are also simulations or models described using other Simulink

blocks such as Transfer Function, State-Space and S-Function. The first two types

of blocks can always be replaced using integrators, since they describe linear models.

However, the S-Function can describe much more complex models (e.g. non linear or

hybrid models) which can not be formulated only using integrators. In that cases, users

should try to modify these complex models to read and write in to MATLAB workspace

the values to be controlled from the Java application.

3.3.6 Speeding up the simulations

Sometimes, the simulation of a Simulink model can be slow. This can be a consequence

of diverse factors.

One of the most common situations is due to the many integration steps required

by the simulation. This can produce a very slow simulation of the Java application

because after every integration step, a pause is added by the submodel stepCtrl (see

3.6b) to update the connected variables, i.e., to read and write the variables from/to

the MATLAB workspace.

t

timeToWS

12:34

fixedStep

MATLAB
Function

Pause Simulink

Clock

Figure 3.17: An alternative for the submodel stepCtrl to speed up the simulation.

Normally, the integration steps can be reduced by conveniently modifying the pa-

rameters of the solver of the Simulink model. For example, by selecting a Fixed-step

solver with a bigger sample time. However, the many integration steps can also be due

to the occurrence of many state or time events. This is specially true in the simulation

of hybrid models. In this case, a good option is to update the variables not after two in-

tegration steps, but after a given time has elapsed. To do that, the submodel stepCtrl

can be slightly modified by replacing the Ground block, named Gr, with the Digital

Clock, named fixedStep, as Figure 3.17 shows. The Digital Clock block outputs

the simulation time at the specified sampling interval to the Pause Simulink block.

Thus, when the simulation time arrives to the block Pause Simulink, the simulation

is paused. Incrementing the parameter sample time of the Digital Clock can then
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speed up the simulation.

Other factors that normally affect the simulation speed are the animation blocks.

This kind of blocks are useful when the simulation is run directly from Simulink, but

not when it is going to be controlled from Java. These blocks are very time-consuming,

which affects the performance of the simulation from Java. This is the case, for instance,

with the Scope blocks of the models shown in Figure 3.13a) and Figure 3.5a). Probably

the best option in this case is simply to delete them in the modified model, and to

reconnect or eliminate the unlinked lines, to avoid warnings.

There can also be other factors that slow down the simulation of a Simulink model,

and the modifications required probably depend on the particularities of each model.

However, by implementing the recommendations above, the execution speed of the sim-

ulation can be considerably improved.

3.4 A direct implementation of ExternalApp for Simulink

Considering the way to control the Simulink model from Java, and the modifications

required to simulate dynamic systems and to speed up the simulation, it is clear that

the simulation can be performed by using only the Java class MatlabExternalApp.

However, it would be preferable if these modifications required by the described process

could be generated automatically depending only on the block’s inputs and outputs to

be manipulated, saving authors from doing all the necessary modifications to create

the interactive simulation with Simulink models. This is the aim of the Java class

SimulinkExternalApp.

3.4.1 The Java class SimulinkExternalApp

The SimulinkExternalApp Java class extends the MatlabExternalApp class. This im-

plies that all methods of the MatlabExternalApp class are inherited by it. Thus, both

the low and high level protocols are supported by this Java class SimulinkExternalApp.

However, the methods implemented in the MatlabExternalApp class to support the high

level protocol of the interoperate approach are overridden by the new class in order to

provide a suitable simulation, manipulating correctly the linked variables, which are

now connected with a block’s input or output of the Simulink model. Listing 3.16 shows

some of the methods overridden by the SimulinkExternalApp class.
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1 . . .
2 public class SimulinkExternalApp extends MatlabExternalApp{
3 . . .
4 public SimulinkExternalApp ( Str ing mdlFi l e ) {
5 . . .
6 }
7 public boolean l i nkVar i ab l e s ( Str ing cvar , Str ing epath ,
8 Str ing etype , St r ing eport ) {
9 . . .
10 }
11 public Str ing connect ( ) {
12 . . .
13 }
14 public void s e tVa lues ( ) {
15 . . .
16 }
17 public void getValues ( ) {
18 . . .
19 }
20 public void s tep (double dt ) {
21 . . .
22 }
23 public void synchron i ze ( ) {
24 . . .
25 }
26 stat ic private f ina l Str ing conversionCommand = ” . . . ” ;
27 . . .
28 }

Listing 3.16: SimulinkExternalApp class: Some of the methods implemented.

The constructor of the class SimulinkExternalApp requires a String input parame-

ter, which provides the name of the Simulink model to be controlled from Java. There

is a second constructor to support a fixed-time updated implementation (as described

previously) to speed up the simulation.

Linking the variables

The implementation of the link between client and external variables is different from

how the class MatlabExternalApp does it. Now, the connection is between a Java

variable and an input, output, or a parameter of a Simulink block. This implementa-

tion requires a slight modification of the method linkVariables to support this Java

variable-block’s signal connection.

product

2*pi

gain

MATLAB
Function

function

2

frequency

clock

Scope

Figure 3.18: The model fsmk. The Simulink version of the evaluating function.

The method linkVariables has now four input parameters, the first one represents
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the name of the client variable. The next three inputs represent the external connection.

The input epath is the path of the route of a block inside the model. The parameter

etype indicates the type of connection. The last parameter, eport, normally represents

the port to be connected. For instance, the following instruction links the client variable

frequency with the first input of the block product of the model fsmk (see Figure 3.18):

linkVariables("frequency","fsmk/product","in","1");

Note that the parameters "in" and "1" indicate the first input of the block product. The

next instruction links the client variable value with the output of the block function

of the model fsmk:

linkVariables("value","fsmk/function","out","1");

The method linkVariables can also be used to link a client variable with a block’s

parameter as the following instruction shows:

linkVariables("fsinus","fsmk/function","param","MATLABfcn");

The third input of linkVariables("param") indicates that the connection of the vari-

able fsinus will be with a parameter (in this case MATLABfcn) of the block function.

Listing 3.17 shows the code to implement the linkVariablesmethod. It is similar to

the version of the class MatlabExternalApp. First, the code checks if the client variable

cvar exists. If the variable exists, then the value of the variable is obtained depending

on its type. The variable and its value are used to generate the string evarInitValue.

This string creates and initializes the external variable. Note that the external variable

is formed as the concatenation of the client variable and the PREFIX string. The value

of this PREFIX is defined as the string "Ejs ". Thus, the external variable resulting of

the connection in linkVariables("value","function","out","1") is Ejs value.

The evarInitValue string is concatenated to initCommand, which accumulates all

the external variable initializations. Furthermore, the variable initCommand adds a

register to the MATLAB structure vars to each external variable. The structure has four

fields for each connection. The fields vars.path, vars.fromto, and vars.port have the

same meaning as epath, etype and eport of linkVariables. The name of the external

variable (product of the concatenation of the PREFIX and the client variable) is set in

the vars.name field. The vars structure will be used later to modify automatically the
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Simulink model according to the connection defined by linkVariables.

1 public boolean l i nkVar i ab l e s ( Str ing cvar , Str ing epath ,
2 Str ing etype , St r ing eport ) {
3 i f ( varContextObject==null ) return ( fa l se ) ;
4 int type ;
5 // Search i f the cvar e x i s t s
6 for ( int i =0; i < varContextFi e lds . l ength ; i++) {
7 i f ( cvar . equa l s ( ( varContextF i e lds [ i ] ) . getName ( ) ) ) {
8 //Detect type
9 . . .
10 //Get value o f the c l i e n t va r i ab l e
11 Str ing evar In i tVa lue=PREFIX+cvar+”=” ;
12 try {
13 switch ( type ) {
14 case DOUBLE:
15 evar In i tVa lue=evar In i tVa lue
16 +varContextF i e lds [ i ] . getDouble ( varContextObject ) ; break ;
17 case ARRAYDOUBLE:
18 . . .
19 case ARRAYDOUBLE2D:
20 . . .
21 case STRING:
22 . . .
23 }
24 //Add to s t r i n g initCommand
25 initCommand=initCommand+evar In i tVa lue+” ; ”
26 +”vars . path{end+1,1}=’”+epath+” ’ ; ”
27 +”vars . name{end+1,1}=’”+PREFIX+cvar+” ’ ; ”
28 +”vars . fromto{end+1,1}=’”+etype . toLowerCase ( )+” ’ ; ”
29 +”vars . port {end+1,1}=’”+eport+” ’ ; ” ;
30 Str ing [ ] e l ement={cvar , epath , etype , eport } ;
31 l i nkVector . addElement ( e lement ) ;
32 return ( true ) ;
33 }catch ( java . lang . I l l e ga lAcce s sExcep t i on e ) {
34 . . .
35 return ( fa l se ) ;
36 }
37 }
38 }
39 return ( fa l se ) ;
40 }

Listing 3.17: SimulinkExternalApp class: method linkVariables.

Modifying automatically the Simulink model

The modification of the model is done when the method connect() is called. This

methods first opens the Simulink model and then executes a MATLAB code to transform

the original Simulink model. This code is defined in the variable conversionCommand.

Listing 3.18 shows part of the code used for the model transformation. Here, the vars

structure previously defined is used to modify suitably each block. The modification

depends on the fromto field, which can be: in, out, param, or delete. The first three

options treat the type of connection defined by the etype input of the linkVariables

method. The delete option is defined by the deleteBlock method, which allows the

elimination of a specific block in the modified model.

If the connection is of in type then a MATLAB Fcn block, named FromWS, is added
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to read the value of the variable defined in vars.namei. Note that the block FromWS is

added in a submodel named with the value of sub in. The first output of this submodel

is connected to the required input block using the instruction:

add_line(parent ,[sub_in ,’/1’],[vars.path{i},’/’,vars.port{i}]);

When the connection is of out type, it is necessary to check if the block is either a

common block or an integrator. In the case of an integrator, the original integrator is

replaced by a submodel as described before. The main actions here are to:

• Get the configuration of the original integrator. This determines the configura-

tion of the new integrator and also the composition of the submodel Reset from

Simulink and IC from Simulink.

• Create the submodel integrator. This puts all the blocks required inside the sub-

model that replaces the original integrator.

• Set the new integrator with the original configuration. Original values of some

parameters, such as upper limit and lower limit, are set in the new integrator.

• All functional blocks, such as those required to implement Reset from Simulink,

IC from Simulink, Reset from Java, IC from Java, are added. Note also that

a To Workspace block is added to send to the MATLAB workspace the output of

the new integrator, which is written in the variable given by vars.namei.

The case of a common block is much easier to deal with, since this case is similar to

the in option. Here a block To Workspace is added to send to the MATLAB workspace

the output of connected block. The output obtained is written in the variable given by

vars.namei. Note also that the block ToWS is added in a submodel named by the value

of sub out.

The option delete simply deletes the block defined by vars.pathi using the MAT-

LAB function delete block.

If the connection is of type param, a string cmd is created. This string forms the

MATLAB function set param, which will be executed after each integration step to

update the value of the required block parameter.

After all the blocks are processed, the submodel stepCtrl is added to the modified

model. Here the commands to pause the Simulink model after each integration step
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and to update the defined block parameters are incorporated in the MATLAB Fcn block,

named Pause Simulink.

1 . . .
2 %Process the s t r u c tu r e vars
3 for i =1: length ( vars .path)
4 switch vars . fromto{ i }
5 case ’ i n ’
6 . . .
7 %Create submodel in
8 add block ( ’ bu i l t−i n / subsystem ’ , [ parent , ’ / ’ , sub in ] ) ;
9 add block ( ’ bu i l t−i n /matlabfcn ’ , [ parent , ’ / ’ , sub in , ’ /FromWS ’ ] ) ;
10 set param ( [ parent , ’ / ’ , sub in , ’ /FromWS ’ ] , ’MATLABFcn ’ , vars . name{ i }) ;
11 add block ( ’ bu i l t−i n / outport ’ , [ parent , ’ / ’ , sub in , ’ /OUT’ ] ) ;
12 add block ( ’ bu i l t−i n /ground ’ , [ parent , ’ / ’ , sub in , ’ /G’ ] ) ;
13 . . .
14 add l i n e ( parent , [ sub in , ’ /1 ’ ] , [ vars .path{ i } , ’ / ’ , vars . port { i } ] ) ;
15 case ’ out ’
16 i f i s I n t e g r a t o r ( vars . path{ i })
17 %Get con f i gu r a t i on o f the o r i g i n a l i n t e g r a t o r
18 f l a g i n t e r=get param ( vars . path{ i } , ’ ExternalReset ’ ) ;
19 f l a g i n t l u=get param ( vars . path{ i } , ’ UpperSaturat ionLimit ’ ) ;
20 . . .
21 %Create submodel i n t e g r a t o r
22 add block ( ’ bu i l t−i n / subsystem ’ , s ub i n t eg r a to r ) ;
23 add block ( [ ’ bu i l t−i n / ’ , i n t type ] , [ s ub i n t eg r a to r , ’ / I ’ ] ) ;
24 %Set the new i n t e g r a t o r with o r i g i n a l con f i gu r a t i on
25 set param ( [ s ub i n t eg r a to r , ’ / I ’ ] , ’ UpperSaturat ionLimit ’ , f l a g i n t l u ) ;
26 . . .
27 %Add f un c t i o n a l b l ocks to submodel i n t e g r a t o r
28 add block ( ’ bu i l t−i n / toworkspace ’ , [ s ub i n t eg r a to r , ’ /toWS ’ ]
29 set param ( [ s ub i n t eg r a to r , ’ /toWS ’ , ’ VariableName ’ , vars . name{ i }) ;
30 i f not (strcmp ( f l a g i n t e r , ’ none ’ ) )
31 add block ( ’ bu i l t−i n / subsystem ’ , [ s ub i n t eg r a to r , ’ / r es e t smk ’ ] ) ;
32 . . .
33 else
34 %Create submodel out
35 add block ( ’ bu i l t−i n / subsystem ’ , [ parent , ’ / ’ , sub out ] ) ;
36 add block ( ’ bu i l t−i n / inpor t ’ , [ parent , ’ / ’ , sub out , ’ /IN ’ ] ) ;
37 add block ( ’ bu i l t−i n / toworkspace ’ , [ parent , ’ / ’ , sub out , ’ /ToWS ’ ] )
38 set param ( [ parent , ’ / ’ , sub out , ’ /ToWS ’ ] , ’ VariableName ’ , vars . name{ i }) ;
39 . . .
40 end ;
41 case ’ d e l e t e ’
42 d e l e t e b l o c k ( vars .path{ i }) ;
43 . . .
44 case ’ param ’
45 cmd=[cmd , ’ set param ( ’ ’ ’ , vars . path{ i } , ’ ’ ’ , ’ ’ ’ ,
46 vars . port { i } , ’ ’ ’ , [ ’ ’ [ ’ ’ , num2str ( ’ , vars . name{ i } , ’ ) , ’ ’ ] ’ ’ , ] ) ; ’ ] ;
47 . . .
48 end ;
49 end ;
50 %Create submodel s t epCt r l
51 . . .
52 cmd=[cmd , ’ set param ( ’ ’ ’ ,model , ’ ’ ’ , ’ , ’ ’ ’ ’ ,
53 ’ SimulationCommand ’ , ’ ’ ’ ’ , ’ , ’ , ’ ’ ’ ’ , ’ Pause ’ , ’ ’ ’ ’ , ’ ) ; ’ ] ;
54 cmd=[ ’ eva l ( ’ ’ ’ , strrep (cmd , ’ ’ ’ ’ , ’ ’ ’ ’ ’ ’ ) , ’ ’ ’ ) ; ’ ] ;
55 %Add pause command
56 set param ( [ name stepCtrl , ’ /Pause Simulink ’ ] , ’MATLABFcn’ ,cmd) ;
57 . . .

Listing 3.18: MATLAB code to modify the original model.

Controlling the simulation of the Simulink model

After this automatic modification of the model, the simulation is ready to be executed

by calling the method step. A part of the implementation of this method is shown
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in Listing 3.19. Here the methods setValues and getValues are called similarly to

the implementation of step in the class MatlabExternalApp. The difference in this

implementation comes from the simulation of the Simulink model. First the method

step checks the variable resetIC in order to execute a reset of the integrators. The

value of resetIC is set to true calling the method synchronize(). As described before,

the reset is performed by modifying from zero (or positive) to a negative value the

MATLAB variable rst.

1 . . .
2 public void s tep (double dt ) {
3 // Set a l l ex t e r na l v a r i a b l e s
4 s e tVa lues ( ) ;
5

6 //Step the model
7 . . .
8 i f ( r e s et IC ) {
9 eva l ( ” r s t = 1 − r s t ” ) ;

10 s tar tRequ i r ed = true ;
11 r e s e t IC = fa l se ;
12 }
13 . . .
14 i f ( s tar tRequ i r ed ) {
15 s tar tRequ i r ed = fa l se ;
16 eva l ( ” set param ( ’ ”+theModel+” ’ , ’ SimulationCommand ’ , ’ S tar t ’ ) ” ) ;
17 . . .
18 }
19 for ( int i =0, t imes=( int ) dt ; i<t imes ; i++) {
20 eva l ( ” set param ( ’ ”+theModel+” ’ , ’ SimulationCommand ’ , ’ Continue ’ ) ” ) ;
21 do{
22 eva l ( ” s=get param ( ’ bounceM ’ , ’ S imulat i onStatus ’ ) ” ) ;
23 s t a tu s=ge tS t r i ng ( ” s ” ) ;
24 }while ( ! s t a tu s . equa l s ( ”paused” ) ) ;
25 }
26

27 // Set a l l c l i e n t v a r i a b l e s
28 getValues ( ) ;
29 }
30 . . .

Listing 3.19: MatlabExternalApp class: Implementation of method step.

The step method also checks if it is the first time that the model is stepped. In this

case, the model has first to be started using the parameter SimulationCommand.

Once the model has been started, it is stepped by modifying properly the parameter

SimulationCommand to Continue. This advances the model one integration step. Note

that, after this, it is necessary to check if the Simulink model is paused to perform again

an integration step. The number of steps performed is given by the input parameter dt.

After the description of the main methods of the Java class SimulinkExternalApp,

the next subsection presents a simple example of the use of this class.
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3.4.2 Using the class SimulinkExternalApp from a Java program

In this subsection, the Java class SimulinkExternalApp will be used to create simple

interactive Java simulations with Simulink models.

A first example

The first example is described in Listing 3.20. Here the model fsmk, shown in Fig-

ure 3.18, to evaluate a function using Simulink is again considered, but now using the

Java class SimulinkExternalApp. First, an instance of the SimulinkExternalApp ob-

ject is created using the constructor. Note that in the constructor the input parameter

defines the Simulink model (in this case fsmk.mdl) to be used. After that, the client ob-

ject is set in order to connect the client and external variables. Then, the linkVariables

method connects the Java frequency variable with the first input of the product block.

The linkVariables method also connects the Java value variable with the first output

of the function block. The linkVariables method connects the Java variable time

with the parameter time of the Simulink model fsmk.

After linking the variables, the connection with the external application is started.

The simulation is performed by executing continuously the step method. When the vari-

able time is equal to 10, the simulation ends and the connection with the application is

finished. Although, in this simple example, the performance of the simulation is not a

problem, note that the block Scope can be eliminated using deleteBlock("fsmk/Scope")

to speed up the simulation.

1 . . .
2 public eva luat ingFunct i onS imul ink ( ) {
3 //Create a Simulink connect i on
4 SimulinkExternalApp externalApp = new SimulinkExternalApp( ” fsmk . mdl” ) ;
5

6 // Set l o c a t i o n o f the Java va r i a b l e s
7 externalApp . s e tC l i e n t ( this ) ;
8

9 //Link Java and Simulink v a r i a b l e s
10 externalApp . l i nkVar i ab l e s ( ” f r equency” , ”fsmk/product ” , ” in ” , ”1” ) ;
11 externalApp . l i nkVar i ab l e s ( ” value ” , ” fsmk/ f unc t i on ” , ”out ” , ”1” ) ;
12 externalApp . l i nkVar i ab l e s ( ” time” , ”fsmk” , ”param” , ” time ” ) ;
13

14 // Star t the connect i on
15 externalApp . connect ( ) ;
16

17 //Perform the s imulat i on
18 do{
19 //Step the model
20 externalApp . s tep (1) ;
21

22 System . out . p r i n t l n ( ” time : ”+time+” value : ”+value ) ;
23 } while ( time <10) ;
24
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25 // Fin i sh the connect i on
26 externalApp . d i s connect ( ) ;
27 }
28 }

Listing 3.20: Second version Computing a Function Using a Simulink model. of Listing 3.13
using the SimulinkExternalApp Java class.

A second example

The second example is described in Listing 3.21. Here, the model of the bouncing ball,

shown in Figure 3.13a, is used again but now with the SimulinkExternalApp Java class.

The application starts creating an instance of the SimulinkExternalApp class. Then,

the client object is set with the setClient method. This informs SimulinkExternalApp

where the Java variables are located. After that, the process to link variables starts. The

Java variable position is linked to the first output of the Integrator block Position.

The Java variable velocity is connected to the first output of the Integrator block

Velocity. Finally, the Java variable time is linked to the parameter time of the model

bounce. Observe that the parameter time is always available for any Simulink model

using the Java class SimulinkExternalApp. After the connection between client and ex-

ternal application is established, the simulation is executed by calling the step method.

Note that an integrator reset is executed at time = 10. At this time, the position and

the velocity of the ball are set to the values 10 and 0 respectively. After 20 seconds of

simulation, the execution ends and the connection with the external application finishes.

1 . . .
2 //Create a Simulink connect i on
3 SimulinkExternalApp externalApp = new SimulinkExternalApp( ”bounce . mdl” ) ;
4

5 // Set l o c a t i o n o f the Java va r i a b l e s
6 externalApp . s e tC l i e n t ( this ) ;
7

8 //Link Java and Simulink v a r i a b l e s
9 externalApp . l i nkVar i ab l e s ( ” p o s i t i o n ” , ”bounce / Pos i t i on ” , ”out ” , ”1” ) ;

10 externalApp . l i nkVar i ab l e s ( ” v e l o c i t y ” , ”bounce / Ve loc i ty ” , ”out ” , ”1” ) ;
11 externalApp . l i nkVar i ab l e s ( ” time” , ”bounce ” , ”param” , ” time ” ) ;
12

13 // Star t the connect i on
14 externalApp . connect ( ) ;
15

16 boolean f i r s t R e s e t=true ;
17 //Perform the s imulat i on
18 do{
19 //Step the model
20 externalApp . s tep (1) ;
21 // r e s e t at time=10
22 i f ( time>=10 && f i r s tR e s e t ) {
23 po s i t i o n =10; v e l o c i t y =0;
24 externalApp . synchron i ze ( ) ;
25 f i r s tR e s e t=fa l se ;
26 }
27 System . out . p r i n t l n ( ” time : ”+time+” po s i t i o n : ”+po s i t i o n+” v e l o c i t y ”+ve l o c i t y ) ;
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28 }while ( time <20) ;
29

30 // Fin i sh the connect i on
31 externalApp . d i s connect ( ) ;
32 . . .

Listing 3.21: Simulating the bounce model.

Obviously, more elaborate examples can be obtained without too much effort. For

instance, similar functionality to the one described in the Listing 3.12 could be used to

plot the position and velocity of the bouncing ball. In addition, some visual elements

such as sliders and buttons could be considered to provide a natural way to perform a

reset of the ball.

3.5 Remote interfacing MATLAB and Simulink with Java

To extend the capabilities of the local link between Java and MATLAB/Simulink, a

remote link has been also implemented. This remote link was developed following the

design proposed by the communication protocol of the interoperate approach.

The design of the remote link implies the implementation of two components of

software: the client and server side implementation of the communication protocol. The

client side provides all the functionality required by the communication protocol, but

instead of controlling directly MATLAB/Simulink, the client implementation executes

remote calls to the server implementation. This server side accepts and replies to client

calls by using all the features developed in the local connection with MATLAB/Simulink.

The server side implementation is supported by a Java software tool named Java

Internet MATLAB (JIM for short). Similarly to the local link, the library JMatLink is

used to control MATLAB. The client side is coded as an extension, with new function-

alities, of the local Java package developed in the local link among MATLAB and Java.

This new and wider Java package is called JIMC (Department of Computer Science

and Automatic Control, UNED 2010b).

3.5.1 The software JIM server

In order to support the remote calls from JIMC, the JIM server uses the Java class

MatlabExternalApp to control MATLAB. The normal state of the server is to wait for

a remote connection from the client application. When a remote call arrives through

the network, the server executes the corresponding method of the MatlabExternalApp
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class. Listing 3.22 shows a piece of code of the JIM server that supports some remote

calls such as eval, setDouble, and getDouble.

1 . . .
2 // Evaluate a command
3 i f ( RemoteFunction . equa l s Ignor eCase ( ” eva l ” ) ) {
4 Str ing command = ( Str ing ) bu f f e r Input . readUTF() ;
5 matlab . engEvalStr ing ( id , command) ;
6 }
7

8 // Set a double
9 i f ( RemoteFunction . equa l s Ignor eCase ( ” setValueDouble ” ) ) {

10 Str ing va r i ab l e = ( Str ing ) bu f f e r Input . readUTF() ;
11 double valueDouble = bu f f e r Inpu t . readDouble ( ) ;
12 matlab . engPutArray ( id , var i ab l e , valueDouble ) ;
13 }
14

15 // Get a double
16 i f ( RemoteFunction . equa l s Ignor eCase ( ” getDouble ” ) ) {
17 Str ing va r i ab l e = ( Str ing ) bu f f e r Input . readUTF() ;
18 double valueDouble = matlab . engGetScalar ( id , va r i ab l e ) ;
19 buf ferOutput . wr i teDouble ( valueDouble ) ;
20 buf ferOutput . f l u s h ( ) ;
21 }
22 . . .

Listing 3.22: Part of the code that implements JIM server.

Since the main idea is to manipulate simulations over networks, the remote link is

based on a client/server implementation of a TCP connection. This network protocol

stands for Transmission Control Protocol, and is widely used for well-known Internet

applications such as the Web, FTP, e-mail, Telnet, etc. Unlike UDP (User Datagram

Protocol), TCP offers a reliable transmission, flow control, and congestion control.

On the Internet, information is transmitted in small pieces of data called packets.

These packets can suffer errors during the transmission or even arrive to the final destina-

tion in disorder. To avoid these problems, TCP uses a mechanism of acknowledgements

and retransmissions to make sure that the end-to-end communication is free of errors

and the packets are received in the original order.

TCP also uses an end-to-end flow control protocol to avoid having the sender send

data too fast for the TCP receiver to reliably receive and process it. Having a mecha-

nism for flow control is essential in an environment where machines of various network

speeds communicate (Kurose & Ross 2009). For example, if the server sends data much

faster than a slow client can process, the client must regulate data flow so as not to be

overwhelmed. This way, the flow control protocol matches the rates at which the client

consumes and the server produces data.
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The final main aspect of TCP is congestion control. TCP uses a number of algorithms

to achieve high performance and avoid congestion collapse, where network performance

can fall by several orders of magnitude. These mechanisms control the rate of data

entering the network, keeping the data flow below a rate that would trigger collapse.

Despite the fact that congestion control can occasionally reduce the transmission

rate, the selection of TCP to support the remote manipulation of simulations is preferred

especially because it provides reliable transmission and flow control, which must be

implemented in the case of UDP.

Figure 3.19: The interoperate approach for a remote link.

The scheme of the remote link is presented in Figure 3.19. Note that the communi-

cation protocol is implemented in the client and server sides. The approach encapsulates

the network in such a way that only network delays could be appreciated by end users

as differences from a simulation using a local link. In addition, from the design point

of view, the creation of the interactive simulations for both local and remote links is

similar. Hence, if network delays are negligible, then authors can use the interoperate

approach independently of the type of the link selected to deploy the interactive simu-

lation. However, if network delays are high, then the simulation could perform poorly.

For this reason, to avoid this undesired effects, there are two versions of the remote link

implemented: synchronous and asynchronous.

Graphical User Interface of JIM

The graphical user interface of JIM is depicted in Figure 3.20. In the user interface, it

is possible to use the following options to set a TCP/IP link between JIM and the Java

program and MATLAB/Simulink (default values are in bracket):

• Service Port: This option sets the socket port number of the TCP/IP link at

the server side (2005).
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• Buffer In Size: Maximum size of the input buffer for both server and client

applications (1024).

• Buffer Out Size: Maximum size of the output buffer for server and client appli-

cations (1024).

• Work Directory: Directory where the user’s MATLAB/Simulink files are down-

loaded (\JimWD). The directory is relative to the path of the MATLAB installa-

tion.

• Max MATLAB Sessions: Maximum number of MATLAB sessions allowed (5).

• Allow OS Functions: If this option is checked, then a remote user can use

MATLAB functions (e.g. DOS or Bang Operator ”!”). These functions call upon

the shell to execute the given command for Windows systems (not checked).

• Allow External Files: If this option is checked, then a remote user can use

his/her own MATLAB/Simulink files (checked).

• Log File: If this option is checked, then the server saves a log file with the remote

user activities (checked).

• Authenticate: If this option is checked, then the remote user must authenticate

to connect the remote MATLAB (not checked). The database with the information

about authorized users must be indicated if the authentication is required.

• User: The username of the administrator of the database(blank).

• Pwd: The password of the administrator of the database(blank).

The service port number indicates the socket port where the JIM server provides the

TCP connection. This number has to be between 0 and 65535, and it should be chosen

carefully to avoid any port conflict with another service. A list of well-known service

port numbers can be found in (Kurose & Ross 2009). Normally, a number above 1024

should not cause any conflict.

The buffer sizes affect indirectly the flow and congestion control of the TCP protocol.

Small buffers can reduce drastically the transmission rate of the server, introducing

delays artificially in the remote connection. Big buffers do not have, in principle, negative

98



3.5. Remote interfacing MATLAB and Simulink with Java

effects on the performance of the network communication and are limited only by the

size of the memory of the client and server computers. However, take into account that a

big buffer can be only an artificial number since the congestion control can automatically

reduce the transmission rate if any collapse on the network is detected.

Normally, to execute a remote simulation, some M or Simulink files on the server

side are needed. These files must be allocated to the work directory defined in JIM’s

options. By default, the path to this directory is \JimWD, which is relative to the path of

the MATLAB installation (e.g. C:\MATLAB). The files can be uploaded from the client

to server over the TCP connection if the option Allow External Files is checked.

When a remote user connects to the server, an exclusive MATLAB session is opened.

This gives an independent workspace to each user. However, too many MATLAB ses-

sions can decrease the server performance drastically. Therefore, a maximum number of

sessions is set by JIM. Obviously, this number depends on the capacity of the computer

where the server is running.

MATLAB allows users to access directly the shell functions of the Operating System.

In principle, this opens the applications widely, but can also be dangerous for the in-

tegrity of the server. For that reason, a custom filter has been included in the options of

JIM. However, instructors must consider this filter a basic barrier, since MATLAB has

no built-in functionality yet to avoid access the shell. To decrease this risk, instructors

can also use the authentication feature of JIM.

If the authentication is on, remote users must send their credentials (i.e., username

and password) to the server. JIM will check in a database if the received credentials are

correct. When the authentication is successful, JIM also checks if the user has a reser-

vation to use the server. The booking defines a slot of time in which the authenticated

user can access the remote service. Both credentials and booking information have to be

located in a MySQL database system. The database consists of at least one table named

accesslist with the following fields: username, password, starttime, endtime, and

valid. The third and fourth fields define the booking slot. All fields are of the String

type.

Finally, JIM provides a message area where the main actions of the server are saved.

This information can be highly detailed if the option log is selected as full.
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The server can be stopped at any time by the server administrator to change any of

the options. Obviously, if a remote user is using JIM, then the link will be broken and

the user must connect the client application again.

Figure 3.20: Graphical user interface of JIM.

3.5.2 Implementation of the communication protocol for remote links

In order to implement the interoperate approach for remote experimentation, one Java

class has been implemented for MATLAB and Simulink.

Following the requirements of the communication protocol, the remote simulations

with MATLAB and Simulink accept two versions of the remote link: synchronous and

asynchronous. Both modes of the remote link have been implemented to support the

connection with MATLAB and Simulink.

Next blocks describe both MATLAB and Simulink implementations of the Java

interface ExternalApp to support the communication protocol.

The Java class RMatlabExternalApp

Listing 3.23 shows the three methods required to initiate the remote simulation: The

constructor and the two methods for starting the connection.

1 . . .
2 public class RMatlabExternalApp implements ExternalApp{
3 . . .
4 public RMatlabExternalApp ( Str ing con f i g ) {
5 //Process con f i g
6 Str ing [ ] params=con f i g . s p l i t ( ” : ” ) ;
7 . . .
8 i f ( params [ 0 ] . equa l s ( ”matlabas” ) ) asynchronousMode=true ;
9 SERVICE IP = params [ 1 ] ;

10 SERVICE PORT = Intege r . par s e Int ( params [ 2 ] ) ;
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11 . . .
12 }
13

14 public boolean connect ( ) {
15 r e s u l t=connect ( ”” , ”” ) ;
16 . . .
17 return r e s u l t ;
18 }
19

20 public boolean connect ( Str ing user , Str ing pwd) {
21 . . .
22 i f ( jimTCP!=null ){
23 i f ( ! jimTCP. i sC l o s ed ( ) ) return true ;
24 }
25 jimTCP = new java . net . Socket (SERVICE IP , SERVICE PORT) ;
26 bufferInputTCP = new DataInputStream (
27 new Buf feredInputStream (jimTCP. getInputStream () ) ) ;
28 bufferOutputTCP = new DataOutputStream(
29 new BufferedOutputStream(jimTCP. getOutputStream () ) ) ;
30 . . .
31 //Check i f au tho r i z a t i on i s r equ i r ed
32 Boolean au tho r i z a t i on=bufferInputTCP . readBoolean ( ) ;
33 // Authent i cat i on
34 int r e s u l t =2; // r e s u l t o f au tho r i z a t i on
35 long r t ime=−1; // time ava i l a b l e
36 i f ( au tho r i z a t i on ) {
37 bufferOutputTCP . writeUTF( user ) ;
38 bufferOutputTCP . writeUTF(pwd) ;
39 bufferOutputTCP . f l u s h ( ) ;
40 r e s u l t=bufferInputTCP . r eadInt ( ) ;
41 r t ime=bufferInputTCP . readLong ( ) ;
42 }
43 . . .
44 //User author i zed
45 i f ( r e s u l t==2) {
46 . . .
47 return true ;
48 }
49 //User not author i zed
50 . . .
51 di s connect ( ) ;
52 return fa l se ;
53 }
54 . . .
55 }

Listing 3.23: RMatlabExternalApp class: Some of the methods to initiate the remote operation.

The first pre-requisite in the remote connection is to define the IP (SERVICE IP)

and the Port number (SERVICE PORT) of the JIM server. This is done by using the

constructor of the RMatlabExternalApp class, as the following example shows:

RMatlabExternalApp("<matlab :62.204.192.27:2005>")

In this case the IP is 62.204.192.27 and the Port is 2005.

The constructor of RMatlabExternalApp is also used to set the mode of remote

link required, i.e., synchronous or asynchronous. For instance, in the previous example,

the link selected was synchronous, indicated by the matlab keyword. To select an

asynchronous version, the keyword required is matlabas, as the following example shows:

RMatlabExternalApp("<matlabas:62.204.192.27:2005>")
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Once the IP and Port numbers are given, the TCP connection with the JIM server

can be executed by using the connect method. This method accepts a simple connection

between the client and the external application. However, it is also possible to support

an authorized connection by indicating the username (user) and password(pwd) as input

parameter when the method connect is invoked.

The TCP connection creates a Socket with an output (bufferOutputTCP) and input

(bufferInputTCP) buffers. Both buffers are used to communicate RMatlabExternalApp

with the JIM server. The output buffer is used by the RMatlabExternalApp class to send

the request message to the server, and the input buffer is used to receive the response

from the server. For instance, the following instruction gets a Boolean from the input

buffer, which indicates if the server needs an authorized connection or not:

Boolean authorization = bufferInputTCP.readInt()

If the server requires an authorized connection, then the RMatlabExternalApp class

has to send the username and the password to the JIM server, using the output buffer

as follows:

bufferOutputTCP.writeUTF(user)
bufferOutputTCP.writeUTF(pwd);

Note the use of bufferOutputTCP.flush() after sending the username and password

to the server. This forces the data out onto the network. Otherwise, the Java class

RMatlabExternalApp could wait forever for a response (i.e., whether or not the user is

authorized) from the server.

Once the connection is started, the Java application can use the communication

protocol to manipulate the remote MATLAB. Some implementations of the low-level

protocol are shown in the Listing 3.24. Review Listing 3.22 to analyse how the remote

calls of the methods eval, setValue, and getDouble are processed in the JIM server.

Observe that all methods implemented in the RMatlabExternalApp class use the

input and output buffers to exchange information with the server. This process is

always divided in the following steps:

• Send an identification number (i.e., the value ID).

• Send the name of the method.
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• Send (if required) the input parameter of the method.

• Get (if required) the result of the remote execution of the method.

1 . . .
2 public void eva l ( Str ing command) {
3 bufferOutputTCP . wr i t e In t ( ID) ;
4 bufferOutputTCP . writeUTF(” eva l ” ) ;
5 bufferOutputTCP . writeUTF(command) ;
6 bufferOutputTCP . f l u s h ( ) ;
7 . . .
8 }
9

10 public void setValue ( Str ing name , double value ) {
11 bufferOutputTCP . wr i t e In t ( ID) ;
12 bufferOutputTCP . writeUTF(” setValueDouble ” ) ;
13 bufferOutputTCP . writeUTF(name) ;
14 bufferOutputTCP . wr i teDouble ( value ) ;
15 bufferOutputTCP . f l u s h ( ) ;
16 . . .
17 }
18

19 public void setValue ( Str ing name , double value , boolean f lushNow ) {
20 bufferOutputTCP . wr i t e In t ( ID) ;
21 bufferOutputTCP . writeUTF(” setValueDouble ” ) ;
22 bufferOutputTCP . writeUTF(name) ;
23 bufferOutputTCP . wr i teDouble ( value ) ;
24 i f ( flushNow ) bufferOutputTCP . f l u s h ( ) ;
25 }
26

27 public double getDouble ( Str ing name) {
28 i f ( ! i sSynchron i zed ) return getDoubleAS ( ) ;
29 i f ( asynchronousMode ) haltUpdate ( true ) ;
30 . . .
31 bufferOutputTCP . wr i t e In t ( ID) ;
32 bufferOutputTCP . writeUTF(” getDouble ” ) ;
33 bufferOutputTCP . writeUTF(name) ;
34 bufferOutputTCP . f l u s h ( ) ;
35 double valueDouble = bufferInputTCP . readDouble ( ) ;
36 return ( valueDouble ) ;
37 }
38

39 protected double getDoubleAS ( ) {
40 double valueDouble= bufferInputTCP . readDouble ( ) ;
41 return ( valueDouble ) ;
42 }
43 . . .

Listing 3.24: RMatlabExternalApp class: Some of the methods implemented of the low-level
protocol.

The methods eval and all the methods setValue execute the steps of the pro-

cess described before. The method to evaluate a command and all the methods to

set values have two versions. One standard version (such as setValue(String name,

double value)) and another version that controls the functionality provided by the

bufferOutputTCP.flush() method. This latter version allows the accumulation of

more than one remote calls in just one package, which decreases network delays when

for instance various setValue methods are executed at the same time.
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There are also two versions for all the methods to get data from the server (such as

getDouble). One version to support the synchronous link (such as the getDouble itself)

and another version to support the asynchronous link (such as the getDoubleAS). The

first version implements the steps described before, but the second version only gets from

the input buffer the results of the remote execution. All the second versions are only

called internally by the corresponding first version when the variable isSynchronized

is true. This variable is used in asynchronous mode to indicate when a synchronization

between client and remote applications has been performed. Note that if the variable

isSynchronized is false, but the mode is asynchronous, then the method haltUpdate

is executed. This method clears the input buffer of old data sent by the server. Take

into account that, on some occasions, the server produces data faster than the client

can consume. The synchronization between client and server applications is executed

by calling the method synchronize, which is shown in the Listing 3.25.

1 . . .
2 public void synchron i ze ( ) {
3 i sSynchron i zed=true ;
4 }
5

6 public void s tep (double dt ) {
7 i f ( asynchronousMode )
8 stepAS ( dt ) ;
9 else

10 stepSYN ( dt ) ;
11 }
12

13 protected void stepAS (double dt ) {
14 i f ( i sSynchron i zed ) {
15 s e tVa lues ( ) ;
16 haltUpdate ( true ) ;
17 . . .
18 bufferOutputTCP . wr i t e In t ( ID) ;
19 bufferOutputTCP . writeUTF (”stepMatlabAS ” ) ;
20 bufferOutputTCP . writeUTF ( externa lVar s ) ;
21 bufferOutputTCP . writeUTF (command) ;
22 bufferOutputTCP . wr i t e In t ( ( int ) dt ) ;
23 bufferOutputTCP . wr i t e In t ( packageSize ) ;
24 bufferOutputTCP . f l u s h ( ) ;
25 i sSynchron i zed=fa l se ;
26 }
27 getValues ( ) ;
28 }
29

30 protected void stepSYN (double dt ) {
31 s e tVa lues ( ) ;
32 int s t ep s=( int ) dt ;
33 for ( int i =0; i<s t ep s ; i++)
34 eva l (command , fa l se ) ;
35 getValues ( ) ;
36 }
37 . . .

Listing 3.25: RMatlabExternalApp class: Some of the methods implemented of the high-level
protocol.
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Listing 3.25 also shows the step method. Note that two types of steps can be exe-

cuted depending on the mode of the remote link selected. If the mode is asynchronous,

then the method stepAS is called, otherwise the method stepSYN is executed. Note that

the latter method is almost the same as in the implementation of the step method of

the local connection with MATLAB (see Listing 3.10). The only difference is the control

over the bufferOutputTCP.flush()method to avoid network delays when dt is greater

than 1.

The stepAS method is radically different. Here, the external variables are set (by

using setValues()) only the first time. Besides, this first time is used to communicate

to the server the command to be executed by MATLAB. Note also that a string named

externalVars is sent to the server. This string has all the names of the external variables

to be collected. A value of the externalVars could be:"time,value". This string is

created each time that the linkVariables method is called.

Using the information provided by the stepAS method, the server only takes care of

executing the value of the string command and returning the variables declared in the

string externalVars.

After the main methods of the Java class RMatlabExternalApp have been described,

the following sections show how to use it.

Using the class RMatlabExternalApp

As the first example for the Java class MatlabExternalApp, Listings 2.5 and 2.8 of

Chapter 2 are selected to show how RMatlabExternalApp is used. Those listing can be

easily transformed to be used with the class RMatlabExternalApp by just replacing the

line:

MyExternalApp externalApp = new MyExternalApp();

With the following line:

ExternalApp externalApp =
new RMatlabExternalApp("<matlab:ipserver:portserver >");

Where the strings ipserver and portserver are the IP address and the Port number

of the JIM server. The execution of this new example produces exactly the same output

for the evaluation of the function as before.
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In order to use the asynchronous link, Listing 2.8 has to be modified by replacing

the line:

MyExternalApp externalApp = new MyExternalApp();

with the following line:

ExternalApp externalApp =
new RMatlabExternalApp("<matlabas:ipserver:portserver >");

However, in this asynchronous version it is also necessary to modify the command

to be evaluated in the remote MATLAB. So the line:

externalApp.setCommand("y=sin(2*pi*f*t)*cos(t)");

is changed to the following line:

externalApp.setCommand("y=sin(2*pi*f*t)*cos(t),t=t+0.1");

Thus the variable t (the time) is increasing directly in the remote MATLAB. Obviously,

to capture any change in the variables of the client application (e.g. the command), the

synchronize method has to be executed.

The Java class RSimulinkExternalApp

Listing 3.23 shows some methods required to initiate the remote simulation: The con-

structor, and the methods for starting the connection.

1 . . .
2 public class RSimulinkExternalApp extends RMatlabExternalApp{
3 . . .
4 public RSimulinkExternalApp ( Str ing con f i g ) {
5 //Process con f i g
6 Str ing [ ] params=con f i g . s p l i t ( ” : ” ) ;
7 . . .
8 i f ( params [ 0 ] . equa l s ( ”matlabas” ) ) asynchronousMode=true ;
9 SERVICE IP = params [ 1 ] ;

10 SERVICE PORT = Intege r . par s e Int ( params [ 2 ] ) ;
11 model = params [ 3 ] ;
12 . . .
13 }
14

15 public boolean connect ( Str ing user , St r ing pwd) {
16 . . .
17 i f ( jimTCP!=null ){
18 i f ( ! jimTCP. i sC l o s ed ( ) ) return true ;
19 }
20 jimTCP = new java . net . Socket (SERVICE IP , SERVICE PORT) ;
21 . . .
22 //Check i f au tho r i z a t i on i s r equ i r ed
23 . . .
24 //User author i zed
25 i f ( r e s u l t==2){
26 . . .
27 //Check the model f i l e
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28 F i l e modelFi l e = new F i l e (model ) ;
29 i f ( ! modelFi l e . e x i s t s ( ) ) {
30 i f ( ! r emoteF i l eEx i s t ( ) ) {
31 System . out . p r i n t l n ( ”Error Model ” + model +
32 ” doesn ’ t e x i s t i n Local or Remote Place ” ) ;
33 di s connect ( ) ;
34 return fa l se ;
35 }
36 } else {
37 createModel ( ) ;
38 }
39 //Open the model
40 openModel ( ) ;
41 return true ;
42 }
43 //User not author i zed
44 . . .
45 di s connect ( ) ;
46 return fa l se ;
47 }
48

49 private boolean r emoteF i l eEx i s t ( ) {
50 boolean r e s u l t=fa l se ;
51 bufferOutputTCP . wr i t e In t ( ID) ;
52 bufferOutputTCP . writeUTF(” r emoteF i l eEx i s t ” ) ;
53 bufferOutputTCP . writeUTF(model ) ;
54 bufferOutputTCP . f l u s h ( ) ;
55 r e s u l t=bufferInputTCP . readBoolean ( ) ;
56 return r e s u l t ;
57 }
58

59 private void createModel ( long f i l eLeng th ) {
60 byte modelBytes [ ] ;
61 Fi leInputStream fstream = new Fi leInputStream (new F i l e (model ) ) ;
62 DataInputStream in = new DataInputStream ( fstream ) ;
63 modelBytes= new byte [ ( int ) f i l eLeng th ] ;
64 i n . r eadFul l y ( modelBytes ) ;
65 i n . c l o s e ( ) ;
66 //Create model in remote s e r v e r
67 model=importModel (model , modelBytes ) ;
68 . . .
69 }
70 . . .
71 }

Listing 3.26: RSimulinkExternalApp class: Some of the methods implemented.

The constructor is similar to the class RMatlabExternalApp. However, here the

name of the Simulink model is required from the string config. The method connect

also shows differences. The main one is the necessity to check for the existence of the

Simulink model on the client side or on the remote side. If the model is located on

the client side then the model is sent to the remote server. The upload of the model is

executed by the methods createModel and importModel.

Probably the most interesting method in the class RSimulinkExternalApp is the

implementation of the asynchronous step named stepAS as in the RMatlabExternalApp.

This method works slightly differently here (see Listing 3.27). This is because there is

no synchronization between client and remote application, and the Simulink model can

be executed at a different time than the client application shows. Hence, when the end
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user interacts with the simulation, the time at which the Simulink model should be reset

is probably different from the time of the Simulink model. To solve this problem, the

Simulink model has to be stopped and restarted again at the time given by the client

application. Note that this could produce some problems, since some Simulink models

execute initialization functions when they are started. So, the author of the interactive

simulation should consider how to fix this. Fortunately, these cases are not common

in most simulations, and it is always possible to execute the simulation in synchronous

mode.

In Listing 3.27 the stepAS method is described. Note that it is similar to the version

for RMatlabExternalApp, but the set of eval indicates that there are some differences

as explained before. This set of evaluations just initiate the state of the Simulink model

when it will be stopped. So, the initial state of the model when it is restarted will be

the last state that the model had before being stopped.

1 protected void stepAS (double dt ) {
2 i f ( i sSynchron i zed ) {
3 haltUpdate ( true ) ;
4 s e tVa lues ( ) ;
5 //Reset a l l s t a t e s o f the Simulink model
6 eva l ( ” xFinal =[ ] ” , fa l se ) ;
7 eva l ( ” set param ( ’ ”+model+” ’ , ’ Load In i t i a l S t a t e ’ , ’ on ’ ) ” , fa l se ) ;
8 eva l ( ” set param ( ’ ”+model+” ’ , ’ I n i t i a l S t a t e ’ , ’ xFinal ’ ) ” , fa l se ) ;
9 eva l ( ” set param ( ’ ”+model+” ’ , ’ SaveFina lState ’ , ’ on ’ ) ” , fa l se ) ;

10 eva l ( ” set param ( ’ ”+model+” ’ , ’ FinalStateName ’ , ’ xFinal ’ ) ” , fa l se ) ;
11 //Send in format i on to the s e r v e r about the Step r equ i r ed
12 bufferOutputTCP . wr i t e In t ( ID) ;
13 bufferOutputTCP . writeUTF (” stepSimulinkAS” ) ;
14 . . .
15 bufferOutputTCP . f l u s h ( ) ;
16 i sSynchron i zed=true ;
17 }
18 //Get Values
19 getValues ( ) ;
20 }

Listing 3.27: RSimulinkExternalApp class: Asynchronous step.

Listing 3.28 shows the piece of code required to attend the asynchronous step in the

JIM server. This function first tries to get the name and class of the variables to be sent

back to the client application. Note that the MATLAB structure vars(created when

the model is modified) is used to get from the field fromto the output variables of the

Simulink model.

1 i f ( RemoteFunction . equa l s Ignor eCase ( ” stepSimulinkAS” ) ) {
2 . . .
3 i f ( theFir stTime ) {
4 theFir stTime = fa l se ;
5 //Get from MATLAB workspace the v a r i a b l e s to send back
6 matlab . engEvalStr ing ( id , ” var2back=vars . name ( ( strcmp ( vars . fromto , ’ out ’ ) ) ) ” ) ;
7 . . .
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8 //Get the Output types
9 outVars = getVars ( ”varComma” ) ;
10 c l a s sVar = getClas s ( outVars )
11 . . .
12 }
13 //Get in f ormat i on from the c l i e n t about the Step r equ i r ed
14 model=(Str ing ) bu f f e r Input . readUTF( ) ;
15 // Set Star t Time
16 matlab . engEvalStr ing ( id , ” set param ( ’ ”+model+” ’ , ’ StartTime ’ , ’ time ’ ) ” ) ;
17 . . .
18 //Stop and s t a r t the model
19 matlab . engEvalStr ing ( id , ” set param ( ’ ”+model+” ’ , ’ SimulationCommand ’ , ’ s top ’ ) ” ) ;
20 matlab . engEvalStr ing ( id , ” set param ( ’ ”+model+” ’ , ’ SimulationCommand ’ , ’ s t a r t ’ ) ” ) ;
21 . . .
22 do{
23 for ( int i = 0 ; i < s t ep s ; i++) stepModel ( ) ;
24 //Get va lues from MATLAB
25 for ( int i = 0 ; i < outVars . l ength ; i++) {
26 switch ( c l a s sVar [ i ] [ 0 ] ) {
27 case 1 : //Get Str ing
28 . . .
29 case 2 : //Get doubles
30 // double
31 i f ( ( c l a s sVar [ i ] [ 1 ] ∗ c l as sVar [ i ] [ 2 ] ) <= 1) {
32 double value = matlab . engGetScalar ( id , outVars [ i ] . tr im ( ) ) ;
33 buf ferOutput . wr i teDouble ( value ) ;
34 }
35 // double Array
36 . . .
37 // double Matrix
38 }
39 }
40 buf ferCount++;
41 i f ( bu f f e r count >= PACKAGE SIZE) {
42 buf ferOutput . f l u s h ( ) ;
43 buf f e r count = 0 ;
44 }
45 }while ( ( bu f f e r Input . a v a i l a b l e ( )==0) && jimMonitor . s t a t eSe r ve r ( ) ) ;
46 buf ferOutput . f l u s h ( ) ;
47 buf f e r count = 0 ;
48 synchron i ze = true ;
49 }

Listing 3.28: JIM server: code to support the asynchronous step for Simulink models.

After the name and class of the output variables are obtained, the StartTime pa-

rameter, which represents the initial time of the simulation, is set to the value given by

the MATLAB variable time. This variable has been previously modified (by the method

setValues) to the value of the client variable. The model is then stopped and started

using the parameter SimulationCommand.

Once the model is started, a do-while cycle is executed. This cycle ends when data

arrives from the client to the input buffer or when the JIM administrator stops the

server. Within the cycle, the model is stepped as many time as the variable step

indicates. Then, depending on the values of the variables outVars and classVar, the

server sends back to the client the corresponding values of the output variables. Note

that these output values are accumulated in a package, which is actually sent to the

client side when the value of buffercount is greater than PACKAGE SIZE.
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The rest of the RSimulinkExternalApp class is either already implemented by the

RMatlabExternalApp or very close to methods described in the SimulinkExternalApp

class. In addition, other options implemented in the SimulinkExternalApp class, such

as those needed to speed up the simulation, can be used. The next section includes

further discussion about the use of the RSimulinkExternalApp Java class.

Using the class RSimulinkExternalApp

The use of the RSimulinkExternalApp class is quite similar to the previous class,

SimulinkExternalApp. In fact, any example developed with the SimulinkExternalApp

class can be easily transformed to perform a remote simulation.

For instance, the example shown in Listing 3.20 can be modified, in order to use the

class RSimulinkExternalApp, by simply changing the following line:

SimulinkExternalApp externalApp =
new SimulinkExternalApp("fsmk.mdl");

to the following line:

RSimulinkExternalApp externalApp =
new RSimulinkExternalApp(<matlab:ipserver:portserver >"fsmk.mdl");

where the strings ipserver and portserver are the IP address and the Port number

of the JIM server.

The execution of this new example produces exactly the same output for the evalu-

ation of the function as before. In order to use the asynchronous link with the Simulink

model, the constructor of the class should be initiated as follows:

RSimulinkExternalApp externalApp =
new RSimulinkExternalApp(<matlabas:ipserver:portserver >"fsmk.mdl");

The same modifications can be introduced in the example of Listing 3.21 in order to

have a synchronous or asynchronous link with the remote version of the bouncing ball.

3.5.3 The package JIMC

The package JIMC is a freely available open source Java library (Department of Com-

puter Science and Automatic Control, UNED 2010a). Authors who want to implement

their own interactive simulation in Java using this library, can find and download it with

some examples at:
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http://lab.dia.uned.es/rmatlab.

In this web location authors can also find the JIM server.

The library contains the four Java classes described in this chapter to control the

software MATLAB/Simulink. Table 3.4 summarizes the classes implemented by the

package JIMC.

Table 3.4: The available classes in the Java package JIMC.

Class Description

MatlabExternalApp This class allows users to manipulate MATLAB from Java. The class
implements the Java interface ExternalApp.

SimulinkExternalApp The class extends the class MatlabExternalApp and adds special meth-
ods to manipulate MATLAB/Simulink from Java.

RMatlabExternalApp A class to manipulate a remote MATLAB from Java. It requires to
start the JIM server where the remote MATLAB is installed. The class
implements the Java interface ExternalApp.

RSimulinkExternalApp This class extends the class RMatlabExternalApp to manipulate remote
Simulink models from Java. It requires to start the JIM server where
the remote MATLAB is installed.

In order to use the package, it must be imported by adding the following line in the

code of a Java application:

import jimc.*;

The described classes can then be used in the same way as in the previous examples.

3.6 Interfacing other engineering software with Java

Similar to the cases described before, other implementations with different engineering

software can be performed in order to support the communication protocol of the inter-

operate approach. The first and main requirement is the possibility to call the desired

engineering software from Java. Fortunately, this feature is present nowadays in most

engineering software, which is commonly named External Interface.

Following the implementations developed for MATLAB and Simulink, this section

discusses how to create a Java class that implements the ExternalApp interface for two

engineering software: Scilab and Sysquake. Both implementations describe only the

local connection, but they could also be developed for remote operations as before.
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3.6.1 Scilab

Scilab is a scientific software package for numerical computations providing a power-

ful open computing environment for engineering and scientific applications, see Fig-

ure 3.21. Scilab was developed in 1990 by INRIA and the École Nationale des Ponts et

Chaussées(ENPC). Since the creation of the Scilab consortium in May 2003, it has been

developed and maintained by the INRIA. The software is distributed freely along with

the source code via the Internet (Scilab Consortium 2010).

Scilab is a high-level and numerically oriented programming language. It provides an

interpreted programming environment, using matrices as main data type. The software

can be used for signal processing, statistical analysis, image enhancement, fluid dynamics

simulations, and numerical optimization. The syntax of the language is quite close

to the language provided by MATLAB. For this reason, many of the functionalities

implemented in MATLAB can be found in Scilab as well. So, similarly to MATLAB,

this software expands its capability by using specific toolboxes called Modules.

The package also includes a module called Scicos for modelling and simulation of

explicit and implicit dynamical systems, including both continuous and discrete sub-

systems. This toolbox (written in Fortran, C, and Scilab language) provides many

functionalities available in Simulink.

A Java class to manipulate Scilab

Since version 4.0, a Java interface was incorporated to Scilab. This interface allows

calling Scilab’s computational engine from Java programs. The link works similarly to

the functionality provided by JMatLink to manipulate MATLAB, i.e., there is a Java

package named javasci.jar which calls a dynamic or shared library (Javasci.dll) by

using the Java Native Interface to control Scilab.

The methods implemented in the Javasci package are a little less sophisticated than

the methods provided by JMatLink. There are only a few methods to execute Scilab

commands and to get values of variables previously created by using the package. How-

ever, it is not difficult to develop the functionality required by the Interoperate Ap-

proach. For example, Listing 3.29 shows some methods implemented (getDoubleArray

and setValue) to support the low-level protocol. Other methods required to support

the high-level protocol are similar to the corresponding implementation described for
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Figure 3.21: Scilab software.

the Java class MatlabExternalApp.

1

2 public class Sci labExternalApp implements ExternalApp {
3 . . .
4 public double [ ] getDoubleArray ( Str ing varName ) {
5 i f ( ! s c i l abConnected ) return new double [ ] { 0 } ;
6 SciDoubleArray s i z e S c i l a b = new SciDoubleArray ( ”EjsSciLength ” ,1 , 2 ) ;
7 Sc i l ab . Exec ( ”EjsSciLength=s i z e ( ”+varName+” ) ; ” ) ;
8 double [ ] s i z e = s i z e S c i l a b . getData ( ) ;
9 SciDoubleArray var=new SciDoubleArray ( ” ”+varName , ( int ) s i z e [ 1 ] , 1 ) ;
10 Sc i l ab . Exec ( ” ”+varName+”=”+varName+” ; ” ) ;
11 double [ ] va lue=var . getData ( ) ;
12 Sc i l ab . Exec ( ” c l e a r ”+varName+” EjsSciLength ”+” ; ” ) ;
13 return value ;
14 }
15

16 public void setValue ( Str ing varName , double [ ] va lue ) {
17 i f ( ! s c i l abConnected ) return ;
18 new SciDoubleArray (varName , 1 , value . l ength , value ) ;
19 }
20 . . .
21 }

Listing 3.29: A Java class that implements the communication protocol for Scilab.

Using the Java class to manipulate Scilab.

The use of the Java class that implements the communication protocol is similar to the

previous examples shown for MATLAB and Simulink. For instance, Listings 2.5 and 2.8

of Chapter 2 can be easily modified in order to use Scilab as the external application.
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Thus, the following line:

ExternalApp externalApp = new MyExternalApp();

has to be replaced by:

ExternalApp externalApp = new ScilabExternalApp();

But, since the Scilab language is not exactly the same as MATLAB, the function to be

evaluated has to be modified from:

y=sin(2*pi*f*t)*cos(t)

to

y=sin(2*%pi*f*t)*cos(t)

Other, more elaborated examples, such as the one shown in Listing 3.12 for MAT-

LAB, can be also easily transformed to be used with Scilab.

3.6.2 Sysquake

Sysquake is an innovative, powerful, and flexible software for understanding systems,

solving problems, and designing products (Calerga 2010). It is used in teaching, re-

search, and engineering. Sysquake is a numerical computing environment based on a

programming language almost compatible with MATLAB.

It also offers facilities for interactive graphics, which give insights into the problems

being analyzed. The interactivity provided in the graphics is quite close to that required

for a good and quick understanding of the relations between different variables. For

example, on the right-side of the Figure 3.22, there is an interactive graph which shows

the response of a linear system controlled by a digital controller. Thus, when users

drag one of the closed-loop poles with the mouse (shown as crosses on the upper left

of the graphic) a new controller is computed and all the figures are updated nearly

instantaneously. This way, users see how the system responds to the manipulations

and can observe, for instance, how the frequency of the step response is related to the

position of the poles. This interactivity aids in understanding how quantities are related

to each other and designing better controllers extremely quickly.
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Figure 3.22: Sysquake software.

A Java class to manipulate Sysquake

SysquakeLink is a Java package to communicate with Sysquake 3.5 and later from other

applications. It relies on OLE Automation on Windows and on the XML-RPC server

of Sysquake on unix platforms (Mac OS X and Linux). Similar to JMatLink or Javasci

packages, SysquakeLink uses the Java Native Interface to provide a link between Java

programs and Sysquake.

SysquakeLink is made of a set of cross-platform Java classes and architecture depen-

dent native methods. Java classes are written in such a way that native methods are

loaded from the shared libraries (.so or .dll files).

The methods implemented in the SysquakeLink package are similar to those de-

scribed for the JMatLink and Javasci packages. As in previous cases, it is not com-

plicated to implement the communication protocol of the interoperate approach. List-

ing 3.30 describes the implementations of two methods of the low level protocol for

this class: getDoubleArray and setValue. Other methods to implement the high

level protocol are similar to the implementations shown in the case of the Java class

MatlabExternalApp.
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1

2 public class SysquakeExternalApp implements ExternalApp ,
3 com . ca l e r ga . sysquake . SQLinkVar iableListener {
4 . . .
5 public double [ ] getDoubleArray ( Str ing va r i ab l e ) {
6 Object obj = null ;
7 In t eg e r n = varTable . get ( va r i ab l e ) ;
8 try {
9 i f (n != null ) obj = SysquakeLink . var i ab l eVa lue ( sqID , va r i ab l e ) ;

10 else obj = SysquakeLink . lmeVar iableValue ( va r i ab l e ) ;
11 i f ( obj instanceof double [ ] [ ] ) return ( (double [ ] [ ] ) obj ) [ 0 ] ;
12 return (double [ ] ) obj ;
13 }catch ( Exception e ) { e . pr intStackTrace ( ) ;}
14 return null ;
15 }
16

17 public void setValue ( Str ing var i ab l e , double [ ] va lue ) {
18 In t eg e r n = varTable . get ( va r i ab l e ) ;
19 i f (n != null )
20 try {
21 SysquakeLink . s e tVar i ab l eVa lue ( sqID , var i ab l e , value ) ;
22 }catch ( Exception e ) {e . pr intStackTrace ( ) ;}
23 else {
24 St r i ngBu f f e r cmd = new St r i ngBu f f e r ( va r i ab l e ) ;
25 cmd . append ( ” = [ ” ) ;
26 for ( int i =0; i< va lue . l ength ; i++) {
27 i f ( i >0) cmd . append ( ” , ” ) ;
28 cmd . append ( Double . t oS t r i ng ( value [ i ] ) ) ;
29 }
30 cmd . append ( ” ] ; ” ) ;
31 try {
32 SysquakeLink . execute (cmd . toS t r i ng ( ) ) ;
33 }catch ( Exception e ) {e . pr intStackTrace ( ) ;}
34 }
35 }
36 . . .
37 }

Listing 3.30: A Java class that implements the communication protocol for Sysquake.

Using the Java class to manipulate Sysquake.

The use of the Java class that implements the communication protocol is similar to the

previous examples shown for MATLAB, Simulink, and Scilab. Thus, Listings 2.5 and 2.8

of Chapter 2 can be again easily modified to use Sysquake as the external application.

So, the following line:

MyExternalApp externalApp = new MyExternalApp();

is replaced by:

ExternalApp externalApp = new SysquakeExternalApp();

Unlike the example shown for Scilab, the command does not need to be modified in

order to use Sysquake.

Other, more elaborate examples, such as the one shown in Listing 3.12 for MATLAB,

can be also easily transformed to be used with Sysquake.
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3.7 Conclusions

The chapter presents the implementation of Java classes for standard engineering soft-

ware tools according to the communication protocol of the interoperate approach pre-

sented in Chapter 2. Some examples of use of each Java class are shown. The implemen-

tation requires that tools provide a way to interface with it. Fortunately, the existence

of such interfaces is a common feature of standard engineering software tools.

The first external application implemented is the MatlabExternalApp class, which

allows the interoperation of MATLAB from a Java program. The MatlabExternalApp

class uses the open source library JMatLink mainly to implement the low-level protocol.

Other methods, required by the high-level protocol, are also implemented following the

requirements of the communication protocol.

Since Simulink models can be controlled from MATLAB, is possible to use the

MatlabExternalApp class to run interactive simulations using Simulink models. How-

ever, this approach demands many changes in the original Simulink model in order

to successfully execute the interactive simulations. For this reason, in order to gen-

erate automatically all the changes needed by the Simulink model, the Java class

SimulinkExternalApp was implemented. The SimulinkExternalApp class extends the

MatlabExternalApp class by overriding mainly the methods to link variables and to

step the simulation.

A remote interoperation was described also for both MATLAB and Simulink simu-

lations. The Java classes RMatlabExternalApp and RSimulinkExternalApp implement

the client side of the remote operation, whereas the server side is supported by theJIM

server. The two type of remote links, synchronous and asynchronous, are implemented

as well. The synchronize method is introduced here in order to treat correctly the in-

tegrator blocks of Simulink models and to synchronize asynchronous remote operations.

The four Java classes to manipulate MATLAB and Simulink, local and remotely, are

packaged into the freely available Java library JIMC. This library and the JIM server

can be found at:

http://lab.dia.uned.es/rmatlab

The chapter ends describing, similarly to MATLAB and Simulink, how to implement

the communication protocol in other external applications such as Scilab and Sysquake.
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After the implementation of the communication protocol has been described, the

next chapter focuses on facilitating the creation of interactive human interfaces.
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Chapter 4

Interactive Applications Using
Engineering Software

Once the implementation of the Java interface ExternalApp has been described for

various Engineering Software, the next step is to build interactive applications with

pedagogical purposes. This can be a very hard task for teachers, who are not used to

programming rich graphical user interfaces. This is why this chapter introduces the

Easy Java Simulations authoring software tool.

Easy Java Simulations helps instructors to create complex Java applications, with a

high level of user interaction and sophisticated computer graphics, which, however, does

not require expert knowledge in Java programming.

The chapter begins with a brief introduction on the use of Easy Java Simulations.

It describes in detail how to integrate the package JIMC in the applications created

with Easy Java Simulations. Although this process does not present difficulties, a

built-in feature was developed in Easy Java Simulations to manipulate not only MAT-

LAB/Simulink, but also other engineering applications such as Scilab or Sysquake. The

facilities provided by this built-in feature will ease, even more, the creation of interactive

applications that use engineering software.

The final section of the chapter describes a real-life example of the integration be-

tween Easy Java Simulations and MATLAB. The application developed, a networked

control laboratory, was used in a basic engineering control course in Ghent University,

and received positive feedback from the students.
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4.1 Easy Java Simulations: EJS

Easy Java Simulations(EJS) is an open source (and therefore completely free) software

tool designed to create simulations in Java with high-level graphical capabilities and with

an increased degree of interactivity (Esquembre 2004, 2005, 2010). The tool provides its

own mechanism for describing models of scientific and control engineering phenomena,

and, as such, can be used to create virtual laboratories on its own. Figure 4.1 shows the

EJS user interface.

Figure 4.1: The graphical user interface of EJS.

EJS is different from most other authoring tools in that it is not designed to make

life easier for professional programmers, but has been conceived for science students and

teachers. That is, for people who are more interested in the content of the simulation,

the simulated phenomenon itself, and much less in the technical aspects needed to build

the simulation.

The tool structures a simulation in two main panels, the Model and the View.

Apart from the Model and the View, there is also an introductory part, named De-

scription, to describe (using HTML files) the system to be simulated.
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Figure 4.2: Subpanel Variables of EJS. Figure 4.3: Subpanel Evolution of EJS.

The Model describes the simulated system by means of variables (both state variables

and parameters), that completely characterize the system, and of computer algorithms

that state how the system evolves in time and how it responds to user interaction.

Authors need to declare the variables using a simple table, and write the Java code

needed to specify the algorithms. EJS offers specialized help to solve models based on

ordinary differential equations (ODEs) by providing an editor to write these equations

and automatically generating the code required using the most popular solvers.

The Model is divided in five subpanels: Variables, Initialization, Evolution,

Fixed relations and Custom. In the Variables subpanel the global variables of the

simulation are declared. The Initialization subpanel allows authors to execute code of

initialization before stepping the simulation. In the Evolution subpanel authors can

input two type of descriptions: pure Java code or ordinary differential equations by

using the ODEs editor. Both types of descriptions are evaluated continuously while the

simulation is performed. The Fixed relations subpanel provides an additional way to

execute Java code when the user interacts with the view while the simulation is paused.

The Custom subpanel can be used by authors to implement their own Java methods.

Figure 4.2 and Figure 4.3 show the Variables and Evolution subpanels respectively.

The View provides the visualization of the simulated system, either in a realistic form

or using one or several data graphs, and the user interface elements required for user

interaction. These view elements can be chosen from a set of predefined, ready-to-use

components, to build a tree-like structure in a kind of block construction game for the

view. There are elements of several types. Each type specializes in a given visualization

or interaction task, but can also be customized using the so-called properties, a set
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of internal values that modify the aspect and behaviour of the element on the screen.

This way, the job of the author when building the view consists in choosing the right

elements from those offered and in customizing them for the interaction desired for the

simulation. Figure 4.4a shows the View used to build the graphical user interface shown

in Figure 4.4b.

Both, model and view need to be interconnected. Any change in the model state must

be immediately reflected by the view in order to keep a dynamic, on-the-fly visualization

of the system. In turn, any interaction of the user with the view must immediately affect

the model so that the desired interactivity is achieved. This communication is based

on connecting model variables and view elements properties. This connection is very

easily established by typing, in the table of properties of view elements, the names of

the model variables to be connected to the properties. Once the model and the view

have been created and the required connections established, EJS creates the ready-to

run simulation at a single mouse click, taking care of a good number of technical issues

that thus becomes completely transparent to the author. The result is an independent,

high performance, interactive simulation which can either be run as a stand-alone Java

program, or be embedded as an applet in an HTML page. More description about

using Easy Java Simulation, some examples, and the software can be obtained from

http://www.um.es/fem/Ejs/.

Figure 4.4: a) The View panel of Easy Java Simulations. b) A graphical user interface created
by the View shown in a).

In order to give a brief introduction about how EJS can be used to create interactive
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simulations, two examples are presented in next sections.

4.1.1 A first example with EJS: evaluation of a function

Consider again the problem of evaluating a function described in Listings 2.5 and 2.8 of

Chapter 2. This simulation can be easily implemented in EJS.

The first step is to declare the variables of the simulation. In this case the following

six are needed: function, time, value, frequency, pi, and dt.

All the variables are of type double, except the variable function which is of type

String. The declaration of these variables is done by using the Variables subpanel of

EJS. After the declaration, the section should look like the example in Figure 4.2.

The computation of the function can be declared in the Evolution subpanel of EJS.

This computation is executed continuously while the simulation is running. After each

evaluation of the function, the time has to be incremented in order to perform the

simulation. The code required to evaluate the function and to increment the time is

shown in Figure 4.3. The trigonometric functions for the sine (sin) and the cosine(cos)

are obtained from the Java package Math. This package is imported by the following

statement1:

static java.lang.Math.*;

The statement has to be entered in the parameter Imports of the Information Panel

of EJS as Figure 4.5 shows.

Figure 4.5: Declaring the Math Java package.

After the model of the simulation is defined, the view is built using the visual elements
1In EJS the import of the Math Java package is not needed. This package is imported in EJS by

default. This is done here only for illustrative purposes.
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provided by EJS. The user interface developed is shown in Figure 4.4b and the visual

elements used for it are shown in Figure 4.4a. Note that the tree-like structure gives

shape to the view. Two types of windows can be added to the simulation view, the root

of the tree: Frames or Dialogs. The first type is used normally as the main window of

the simulation. The second type can be selected to show a subordinate window. In this

simulation, a frame has been selected.

Two panels have been added to the main window: a PlottingPanel and a basic

Panel. The first one is used normally to display a panel with axis, where visual elements

from the set of 2D Drawables can be added to plot a graph. For instance, in this

simulation a trace is used to display the value of the sinusoidal function versus time.

The basic Panel element is simply used to organize suitably the position of the other

visual elements in the user interface.

The Panel has four children elements: slider, button1, textField, and button2.

The first component is a slider used to modify the frequency of the sinusoidal function.

The second and fourth elements are two push buttons to play or pause the simulation.

The textField shows the function being evaluated.

In order to connect the model and the view of this simulation, the properties of the

visual elements are customized as Figure 4.6 shows.

In Figure 4.6a the properties of the button1 Text and Action are modified to show

the text Play and to play the simulation by using the predefined method play(). The

action of the button is triggered when users push the button. In the case of button2,

the text and the action are Pause and the predefined method pause() respectively.

In Figure 4.6b the property Variable is used to display the value of the function

String variable. Note that here any action is executed when the user interacts with this

element.

Figure 4.6c shows the properties for the trace. This element plots a line, where

each new point is given by the properties Input X and Input Y. These properties are

updated with the values of time and value respectively as the simulation is running.

The frequency of the sinusoidal function is controlled by the slider. The connec-

tion between this visual element and the variable frequency is defined in the Variable

property as Figure 4.6d shows.

This simple example introduces the use of EJS to build interactive simulations. More
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Figure 4.6: Properties for some visual elements. a) button1 b) textField c) trace d) slider.

elaborate examples can be found in (Esquembre 2004, 2005, Dormido & Esquembre 2003,

Dormido et al. 2004, Sánchez et al. 2010). However, the creation of the example can be

compared to the simulation in Chapter 3 shown in Figure 3.3. Note that the amount of

code required by the EJS simulation is much less than that needed by the example of

Chapter 3 as described in Listing 3.12. This is a consequence of the simplified way that

EJS provides to build the interactive user interfaces.

4.1.2 A second example with EJS: manipulating ODEs

EJS can be also used to simulate directly a model described by ordinary differential

equations. For example, consider again the model of a bouncing ball. In this case, the

model consists of two first-order ODEs:

dv

dt
= g (4.1)

dp

dt
= v

where t is the time, g the gravity, v is the vertical velocity, and p is the vertical position

of the ball.

Assuming that variables have already been declared in the Variables subpanel, the

model can then be easily described in EJS by using the special editor of ODEs. The
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editor, which is located in the model part of the simulation, allows authors to enter the

required ordinary differential equations. Figure 4.7a shows the model of the simulation of

the bouncing ball in EJS. Note that, apart from the equations, authors have to indicate:

the independent variable (time, in this case), the size of the integration step (0.01), and

the solver algorithm to perform the integration of the equations.

Figure 4.7: The model of the bouncing ball. a)The ODEs of the system b)The event when the
ball hits the ground.

The model of the bouncing ball needs also to account for the event triggered when the

ball hits the ground. In EJS, events can be added easily by using the event editor. This

editor is accessed by clicking on the Events button, which is located next to the solver

list (see Figure 4.7a). The event is edited introducing two parts: the Zero Condition

and Action.

The Zero Condition is used to detect the exact moment when the event occurs, i.e.

when the value returned by the Zero Condition passes from positive to negative.

The Action is used to execute the required actions when the event is triggered.

The event for the bouncing ball is shown in Figure 4.7b. Note that the event in this

case occurs when the ball’s vertical position switches from a positive to a negative value

(i.e., when the ball hits the ground). Once the event is triggered, the velocity of the ball

is recalculated by multiplying its previous value by the elasticity of the ball2.

Once the model description is finished, the view of the simulation is created in EJS as

displayed by Figure 4.8. Here, two new visual elements are introduced: A DrawingPanel

and a Particle element named ball. The first element is a basic container for 2D

drawing. This element can contain any element of the group 2D drawables. The ball

2Note that here, for convenience, the elasticity is considered negative.
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Figure 4.8: The design of the view of the bouncing ball in EJS.

is an element used to display a circular shape which looks like a ball. The properties of

the ball are described in Figure 4.9. The main parameters of the particle (Pos X and

Pos Y) define the position of the ball. Other three properties (On Press, On Drag and

On Release) are used to process any user interaction with the ball. Thus, when the

user clicks on the ball to drag it to another position, the simulation is paused. Once the

user releases the ball, the simulation is restarted but with its velocity reset to zero.

Figure 4.9: The properties of the visual element ball.

Apart from the DrawingPanel and the Particle, there are also other visual elements

to add interactivity to the simulation. The two sliders (slider1 and slider2) allow
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end users to modify the gravity and the elasticity parameters respectively. The three

buttons (button1, button2, and button3) allow end users to play, pause, and reset the

simulation. Note also that, similarly to the previous EJS example, two plotting panels

and two traces are used to draw the position and velocity of the ball.

The result of the view created in Figure 4.8 is shown in Figure 4.10. Observing

the graphs of velocity and position (Figure 4.10b), it can be inferred that the ball was

dragged and released by the end user from 2.5m to 10m at time = 6s.

Figure 4.10: User interface of the simulation of the bouncing ball.

4.2 Using the JIMC package from EJS

As described in Chapter 3, authors can build interactive simulations using Java and

MATLAB/Simulink software. The link between MATLAB and Java is provided by the

Java class MatlabExternalApp of the JIMC package. Since it is possible to use from

EJS any Java package (as the Math package of the previous section), authors can select

the package JIMC in order to create simulations with MATLAB in a similar way to that

shown in Chapter 3.

In order to use the JIMC package, authors need first to import this library. This

is done by using the Information Panel of EJS, and adding to the Imports field the

following statement:

jimc.*;

The location of the package in the hard disk needs also to be indicated in the JAR
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Figure 4.11: Declaring the package JIMC.jar.

libraries field of the Information Panel of EJS. This is needed because, unlike the

Math package used before, JIMC is a user-defined Java package. Figure 4.11 shows the

Information Panel of the simulation after JIMC has been defined.

After importing the JIMC package, authors can use any of the four classes that the

library contains.

4.2.1 Using the MatlabExternalApp Java class from EJS

The first example with EJS shown in Subsection 4.1.1 can be revisited in order to obtain

a similar simulation but now using MATLAB to evaluate the function.

After importing the JIMC package, the variables have to be declared. In this exam-

ple, the variables are exactly the same as before, but a new variable is required to get

an instance of the MatlabExternalApp class. This variable is named externalApp and

its type is then jimc.MatlabExternalApp. Figure 4.12 shows the variables defined for

this simulation.

During the initialization of the simulation the connection to MATLAB has to be

customized. Figure 4.13a shows this action. First, the variable externalApp has to get

an instance of the MatlabExternalApp class. This is done by using the constructor of

the class. Then the EJS variables time, value, and frequency have to be linked to the

MATLAB variables t, y, and f, respectively. The linking is done by using the methods

setClient and linkVariables. Note that the client is defined with the Java keyword

this to set the owner of the Java variables. In the case of EJS the owner is always the

object this. After linking, the setCommand method is used to indicate that the value of
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Figure 4.12: Declaring the variables in EJS.

the variable function will be evaluated as many times as the method step is executed.

Finally, the connection with MATLAB is started by calling the method connect.

Figure 4.13: An example of using of MatlabExternalApp class of JIMC from EJS. a)Initializing
the simulation b)Evaluating the function.

To evaluate repeatedly the command defined by setCommand, the step method has

to be called from a page in the Evolution subpanel of EJS. In order to update the time,

the same page is used to increase the time as in the first version of the example. The

result of these actions is shown in Figure 4.13b. Note also that in this new version, the

evaluation of the function is done only by MATLAB.

The design of the view of the original simulation is kept unmodified for this ver-

sion with MATLAB. However, a new interaction must be added to the visual element

textField in order to set a new MATLAB command, if the variable function is modi-
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fied by the end user. This interaction is treated by the Action property, which executes

the necessary Java code when end users modify the text of the variable function. Fig-

ure 4.14 shows the required modification of Action property.

Figure 4.14: An example of using of MatlabExternalApp class of JIMC from EJS. The prop-
erties of the textField needed to capture the modification of the variable function.

Another modification to the original view needs to be added to finish the connection

with MATLAB when end users close the simulation window. The On Closing property

of the visual element Frame can be used for this purpose. This property executes the

specified Java code when end users close the window, and in this case, the code to be

used is simply the disconnect method.

4.2.2 Using the RMatlabExternalApp Java class from EJS

The class RMatlabExternalApp can also be used from EJS. In fact, the previous example

can be used with minor modifications to perform a simulation with a JIM server.

The first modification is to declare the type of the externalApp variable as the class

jimc.RMatlabExternalApp. This is done as before in the Variables subpanel of EJS.

The second modification is to get an instance of RMatlabExternalApp indicating a

synchronous link, with the IP and Port number of the JIM server. This modification is

accomplished with the following instruction:

externalApp = new jimc.RMatlabExternalApp("<matlab:IP:Port >");

After these modifications, end users can execute the simulation with the remote

server without any other change. This is the advantage of using the synchronous mode

of the remote link.

However, if end users report a slow simulation due to the network delays, authors

could improve the performance of the simulation by using the asynchronous mode of

the remote link. In this case, more modifications than for the synchronous mode are

required.
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First, as in the synchronous case, authors have to declare the type of the variable

externalApp as jimc.RMatlabExternalApp.

Then, an instance of RMatlabExternalApp is obtained, but indicating now an asyn-

chronous link. This modification is done by the following instruction:

externalApp = new jimc.RMatlabExternalApp("<matlabas:IP:Port >");

After that, the variable function needs to be modified in order to increase the time

on the server side, i.e., the value of the function has to be now:

"y=sin(2*pi*f*t)*cos(t),t=t+0.01"

Accordingly, the code of the Evolution subpanel that increases the time has to be elim-

inated.

Finally, the synchronize method has to be used to respond to user interaction. This

is required in the case of the slider that controls the variable frequency. To capture

user interaction, the On Release property of this slider has to include the following Java

code:

externalApp.synchronize();

With these modifications, the simulation works similarly to the synchronous case,

but improving the performance over the network. Note that no further modification

is required when the user modifies the value of the function variable (by interacting

with the textField element). This is because the setCommand method defined in the

property Action calls internally the synchronize method.

4.2.3 Using the SimulinkExternalApp Java class from EJS

The second example with EJS, shown in 4.1.2, can be considered again in order to

describe how to use the SimulinkExternalApp Java class from EJS.

In this case, the original model, which is described by the ODEs system in (4.1),

is replaced by the Simulink model of the bouncing ball presented in Figure 3.13a of

Chapter 3.

As before with the MatlabExternalApp and RMatlabExternalApp classes, the vari-

able externalApp has to be declared with the suitable type, in this case the type cor-

responds to the jimc.SimulinkExternalApp Java class.
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Then, the connection with the external application is set again in the Initialization

subpanel of EJS. The code required is shown in Listing 4.1. Similarly to the use of the

MatlabExternalApp class, the connection with Simulink is set using the constructor of

the SimulinkExternalApp class and the setClient and linkVariables methods. The

connection is started by a call to the connect method.

1 //Create a Simulink connect i on
2 externalApp = new j imc . SimulinkExternalApp ( ”bounce . mdl” ) ;
3

4 //Set l o c a t i o n o f the Java va r i a b l e s
5 externalApp . s e tC l i e n t ( this ) ;
6

7 //Link Java and Simulink v a r i a b l e s
8 externalApp . l i nkVar i ab l e s ( ” p o s i t i o n ” , ”bounce / Pos i t i on” , ”out ” , ”1” ) ;
9 externalApp . l i nkVar i ab l e s ( ” v e l o c i t y ” , ”bounce / Ve loc i ty ” , ”out ” , ”1” ) ;
10 externalApp . l i nkVar i ab l e s ( ” e l a s t i c i t y ” , ”bounce / E l a s t i c i t y ” , ”param” , ” gain ” ) ;
11 externalApp . l i nkVar i ab l e s ( ” g r av i ty ” , ”bounce / Ve loc i ty ” , ” in ” , ”1” ) ;
12 externalApp . l i nkVar i ab l e s ( ” time ” , ”bounce ” , ”param” , ” time” ) ;
13

14 // Star t the connect i on
15 externalApp . connect ( ) ;

Listing 4.1: Simulating the bouncing ball in EJS with JIMC, code to initiate the Simulink
connection.

Obviously, this version of the simulation does not require the ODE editor of the

Evolution subpanel. In this case, it is only necessary to call the step method to advance

the time of the Simulink model. Thus, the code required in the Evolution subpanel in

this simulation is simply:

externalApp.step(1);

Finally, the simulation has to capture the user interaction with the ball. This is

necessary because when the user changes the position of the ball, the two integrators

of the Simulink model need to be reset. The new values of the two integrators will be

the velocity equal to zero and the position as given by the user. To reset the Simulink

model, the On Release property of the ball visual element has to call the synchronize

method. This modification can be seen in Figure 4.15.

The rest of the original simulation does not require any modification.

4.2.4 Using the RSimulinkExternalApp Java class from EJS

Similarly to the class RMatlabExternalApp, the Java class RSimulinkExternalApp has

two modes of operation: synchronous and asynchronous.

Only two steps are required to turn the previous example into a simulation that uses

the synchronous link. The first one is to define the type of the externalApp variable as
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Figure 4.15: Resetting the Simulink model when the user releases the ball by calling the
synchronize method.

jimc.RSimulinkExternalApp. The second modification is simply to get an instance of

the RSimulinkExternalApp class, instead of SimulinkExternalApp, indicating the IP

address and the Port number of the JIM server as follows:

externalApp =
new RSimulinkExternalApp("<matlab:IP:Port >bounce.mdl");

These two actions allow authors to readily convert a local simulation into a remote

version.

The asynchronous link can be selected however if end users report slow performance

of the remote simulation. In this case, additional changes are needed. The first one is

to define the type of the externalApp variable as jimc.RSimulinkExternalApp. The

second one is to get an instance of the RSimulinkExternalApp class, indicating the IP

address and the Port number of the JIM server, but selecting the asynchronous mode

as follows:

externalApp =
new RSimulinkExternalApp("<matlabas:IP:Port >bounce.mdl");

In order to capture the user interaction the synchronize method again needs to

be used. This method was added to the local version of the simulation to execute a

synchronization when the user releases the ball. Thus, the synchronization also needs to

be added to the slider1 and slider2 sliders that control the gravity and the elasticity

parameters. Similarly to the previous case, the following code needs to be added to the

On Release property of both sliders.

externalApp.synchronize();
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After these changes, end users should obtain a better performance of the simulation.

4.3 A built-in implementation of the ExternalApp in EJS

As described above, Easy Java Simulations can be used to create interactive simulations

with standard engineering software. Authors can simply take Java packages, such as

JIMC or others created by a programmer, that implement the interface ExternalApp

for different tools.

However, observing the previous examples with JIMC, it can be concluded that a

big part of the Java code required to connect the simulation with an external software,

could be generated automatically with a suitable implementation of the ExternalApp

Java interface directly in EJS.

This built-in implementation of the interface ExternalApp has been incorporated in

EJS in order to ease, even more, the creation of highly interactive simulations that use

engineering applications. For the time being, four engineering software are supported

by this sophisticated feature of EJS: MATLAB, Simulink, Scilab, and Sysquake. Also,

the remote connections of MATLAB and Simulink have been incorporated.

In order to connect EJS with an external application, authors have to create in the

Variables subpanel a so-called external page. This special page is a new option of the

Variables subpanel and is similar to a standard page to define variables to be used by

the simulation. However, in this case, the page accepts the connection with a predefined

external application, and also allows authors to link EJS variables to external variables.

The selection of the external application is done in the External File field. Here,

the author sets one of the four external applications supported at this moment. The

connections are defined for each external application with the corresponding strings.

These strings are shown in Table 4.1.

In addition to the selection of the external application, authors can link variables to

use the high-level protocol for the connection. This linking process is done simply by

indicating the name of the external variable in the new Connected to column.

The methods supported by the implementations of the interface ExternalApp in

EJS are now accessed by using the new predefined external object. The way to use

this functionality is much simpler than before. Firstly, is not necessary now to import

any package, EJS imports all that is needed automatically. Secondly, the methods are
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Table 4.1: The strings to set a connection with an external application in EJS.

Application String Description

MATLAB <matlab> Sets a connection with MATLAB.

Scilab <scilab> Sets a connection with Scilab.

Sysquake <matlab> Sets a connection with Sysquake.

Simulink <matlab>mdlfile.mdl Sets a connection with Simulink. The
string mdlfile.mdl is the name of the
Simulink model.

Simulink <matlab(fixedtime)>mdlfile.mdl Sets a connection with Simulink with fixed-
time updated. The string fixedtime is a
number used to speed up the simulation.
The string mdlfile.mdl is the name of the
Simulink model.

Remote MATLAB <matlab:IP:Port> Sets a remote connection with MATLAB.
The IP and Port are the IP address and
the Port number of the JIM server. The
mode of the operation is synchronous.

Remote MATLAB <matlabas:IP:Port> Sets a remote connection with MATLAB.
The IP and Port are the IP address and
the Port number of the JIM server. The
mode of the operation is asynchronous.

Remote Simulink <matlab:IP:Port>mdlfile.mdl Sets a remote connection with MATLAB.
The IP and Port are the IP address and
the Port number of the JIM server. The
mdlfile.mdl is the name of the Simulink
model. The mode of the operation is
synchronous.

Remote Simulink <matlabas:IP:Port>mdlfile.mdl Sets a remote connection with MATLAB.
The IP and Port are the IP address and
the Port number of the JIM server. The
mdlfile.mdl is the name of the Simulink
model. The mode of the operation is
asynchronous.

called in a similar way as before but now using the external object. For instance, to

start the connection with an external application the method connect has to be used

as follows:

_external.connect();

The next sections describe in more detail how authors can connect EJS with a

predefined external application.

4.3.1 A built-in feature to connect MATLAB with EJS

In order to show how to use the new feature provided by EJS to connect with MATLAB,

the example described in Section 4.2.1, evaluating a function in MATLAB, is revisited.

As explained above, first of all a new external page of the Variables subpanel needs to
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be created. In this page, the string < matlab > that sets the connection with MATLAB

is entered in the External File field.

The next step consists in linking client and external variables. Thus, the client

variables time, value, and frequency need to be linked to the external variables t, y,

and f. But, instead of using the linkVariables method, these connections are set in

the Connect to column for each client variable.

After all modifications are done, the Variables subpanel of this new version should

look like in Figure 4.16.

Figure 4.16: Setting external connection with EJS.

This way of setting the external application and linking the variables avoids writing

the Java code required to get an instance of the MatlabExternalApp class and to link

the variables, shown in Figure 4.13a. In this new version, the page of the Initialization

subpanel is just used to set the function to be evaluated and to start the connection

with MATLAB. This is done using the external object instead of an instance of the

MatlabExternalApp class as shown in Figure 4.17a.

Once the connection with MATLAB is established, the simulation updates the val-

ues of the linked variables and executes the command defined, by calling the step

method from the external object as shown in Figure 4.17b. Note that the code used

here is similar to that shown in Figure 4.13b but, instead of using an instance of the

MatlabExternalApp class, the external object is used. Obviously, this new way to

call the methods of the interface ExternalApp needs to be used wherever a simulation

uses this built-in feature of EJS.
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Figure 4.17: An example of using of the built-in implementation of MatlabExternalApp class
in EJS. a) Initializing the simulation b) Evaluating the function.

4.3.2 A built-in feature to connect a remote MATLAB with EJS

The remote connection to MATLAB is also supported by EJS. The strings defined in

Table 4.1 show how to use this feature. Both modes of operation can be set simply

by using the suitable string in the External File field. The linking among client and

external variables is similar to the process described for the local case. Some examples

of this remote connection can be found in (Farias, Dormido, Esquembre, Vargas &

Dormido-Canto 2008, Farias, Keyser, Dormido & Esquembre 2009, Farias et al. 2010).

All the commands used in the local connection work similarly to the remote case

described in Section 4.2.2 to use JIMC with EJS.

4.3.3 A built-in feature to connect Sysquake and Scilab with EJS

Easy Java Simulations also provides a built-in implementation of the Java interface

ExternalApp for the software Sysquake. The way to use Sysquake is the same as de-

scribed before for MATLAB. In fact, the previous simulation can be easily transformed

for use with Sysquake by just replacing the string <matlab> of the External File field

(see Figure 4.16) with the corresponding string for Sysquake (<sysquake>). No other

change is required to run the simulation with Sysquake.

The same modification can be done to transform the simulation to be used with

Scilab. However, it is also necessary to modify the string “y = sin(2∗pi ∗ f ∗ t)∗ cos(t)”

variable function to the string “y = sin(2∗%pi∗f ∗ t)∗cos(t)”. This is needed because
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the constants in Scilab must be written with the % prefix. Apart from this change, no

other modification is required to the simulation in order to execute it with Scilab.

4.3.4 A built-in feature to connect Simulink with EJS

In order to describe the connection between EJS and Simulink using the built-in feature,

the example commented in Section 4.2.3 is analyzed again.

Similarly to what has been done, the connection with Simulink is set in the External

File field of an external page in the Variables subpanel of EJS. The string to indicate

this connection was <matlab>mdlfile.mdl as described in Table 4.1. In this case, the

mdlfile.mdl parameter is replaced with the name of the model to be used, bounce.mdl.

The string mdlfile.mdl also accepts a relative path of the Simulink model if it is not

located in the same directory where the simulation is. This path can also be obtained

by clicking on the External File button, which opens a file selection dialog to select

the Simulink model from any location in the file system.

The linking between client and external variables is done again by using the Connect

to column. However, for Simulink connections, authors can indicate in a much more

sophisticated way the link between an EJS variable and an input/output or parameter

of a block of the Simulink model. The process starts by right clicking on the row of

the variable to be connected. This opens a pop-up menu where the option Connect to

external has to be selected. Figure 4.18a shows this pop-up menu for the connection

of the gravity variable.

Figure 4.18: An example of use of the EJS built-in implementation for Simulink. a) Setting
the external application b) The result of the variables linking.

After selecting the option Connect to external from the menu, a connection dialog

appears to select the external variable (i.e., an input/output or parameter of a block)
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from the Simulink model. This dialog is shown in Figure 4.19a.

The connection dialog displays initially the global variables and parameters of the

model, such as time. The connection to an external variable of any block of the model

can be done by either selecting the block in the combo box included in the dialog or,

more naturally, displaying the Simulink model itself (clicking on the check box on the

upper-left corner of the dialog) and directly clicking on the desired block. The connection

dialog will then display the variables and parameters of the block selected.

The connection dialog contains three white areas in its upper half part. These areas

list separately input variables, output variables, and parameters of the selected block.

To select one of the variables, it is only necessary to double click on it and it will be

added to the corresponding area in the lower-half-part of the dialog. Unselecting is done

in a similar way.

The category from which the variable is selected has an effect on what can be done

with it:

• Input variables can be freely changed from EJS. That is, any of the mechanisms

of EJS can be used to change them, at any time, either in the model or in the

view. Any change in these variables will be immediately reflected in the Simulink

model.

• Output variables can, on the contrary, only be read by EJS. Hence, any change

executed to their associated variables in EJS will not affect their value in the

Simulink model. Note that there is an exception with the integrator blocks, which

can be changed using the reset mechanism.

• Finally, parameters can also be changed from EJS.

For instance, the gravity variable needs to be connected with the first input of the

Velocity block. This is done by selecting this block on the Simulink model and then

double clicking the external variable input1. Figure 4.19 shows this process. Finally,

clicking the button OK establishes the link.

The final result of the linking between client and external variables is shown in

Figure 4.18b.

Once the connection and linking of the variables is done, the next step is to start
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Figure 4.19: Connection dialog to link client and external variables to the Simulink model.
a)The dialog b)The Simulink model.

the connection with Simulink in a page of the Initialization subpanel. Thus, the code

in the Initialization page is simply:

_external.connect();

Compare this code with the code required by the example of Section 4.2.3 shown in

Listing 4.1. Observe that, now, only the connect method is needed in the Initialization

page, since the connection and linking of the client and external variables was done

previously in the Variables subpanel of EJS.

The rest of the simulation is similar to the example of Section 4.2.3. Again, the

methods have to be called by using the external object instead of using the instance

of the SimulinkExternalApp class (i.e., the externalApp variable).

The deleteBlock method and the <matlab(fixedtime)>mdlfile.mdl string can

also be used in order to speed up the simulation. This last option has to be used by

replacing the fixedtime string with the value of the sample time desired.

A more detailed description of the use of Simulink models from EJS can be found

in (Dormido, Esquembre, Farias & Sánchez 2005).

4.3.5 A built-in feature to connect a remote Simulink with EJS

The synchronous and asynchronous modes for a remote connection with Simulink are

also supported by EJS. The use of either of these modes depends only on the string

written in the External File field. However, there is a slight difference from the

connection with a local Simulink when the variables are linked. The connection with an
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external variable of any block of the model can be done only by selecting the block in

the combo box included in the dialog, since the Simulink model is open in the remote

server and no blocks can be clicked by the author. However, if the check box of the

dialog is ticked then an image of the Simulink model stills appears in order to facilitate

the recognition of the role of the blocks in the model. Although this option can help

authors in the linking process, the recommendation is simply to set the connection with

a local Simulink and then change the connection to a remote server.

Once the connection and linking is finished, a similar way to initiate the connection

and control the execution of local Simulink models can be done for a remote simulation.

Once more, the synchronize method needs to be used to reset the integrators and to

synchronize the asynchronous simulations. Some examples of the use of this remote

connection can be found in (Farias, Esquembre, Sánchez, Dormido, Vargas, Dormido-

Canto, Dormido & Duro 2006b,a, Fabregas et al. 2010).

4.3.6 Other built-in features in EJS

Easy Java Simulations has also implemented two nice, very useful features to perform

special simulations.

The first feature is the implementation of the setAlternative method. Using this

method authors can provide a second engine to run a simulation which uses an external

application. Thus, for instance, a simulation designed to be executed with a local

MATLAB can be optionally executed using a remote MATLAB if the computer of

the end user lacks a MATLAB installation, but a remote server is available. The local

MATLAB is still preferred to a remote MATLAB for performance reasons but the remote

will be used as a safe resource. To support this option, the author should use the

following code:

_external.setAlternative("<matlab:IP:Port >");

This code has to be executed before the connect method is called. Additionally,

alternative applications (e.g. other remote servers) can be added by repeated use of the

setAlternative method.

The second feature implemented in EJS allows authors to control more than one

external application. This is easily done by simply creating more than one external

pages in the Variables subpanel of EJS. Thus, each external page can be associated with

142



4.3. A built-in implementation of the ExternalApp in EJS

a different external application. For instance, it is possible to modify the example of

Section 4.3.1 to compute two functions, one function in a local MATLAB and another

function in a remote MATLAB.

Figure 4.20: A simulation setting the connection with two external applications. a) The
connection with a local MATLAB. b) The connection with a remote MATLAB.

Figure 4.20 shows the two external pages created. The Var Table page sets a con-

nection with the local MATLAB, and the Var Table 2 page sets a connection with

the remote MATLAB. Observe that two groups of similar variables in EJS are con-

nected to the respective external variables. Thus, for instance the variables function1

and function2 are used to set the command to be evaluated in the local and remote

MATLAB, respectively.

The manipulation of the external applications can be done in two different ways:

globally or separately. The first way allows to control all the applications at the same

time, and the second way allows to controls a specific external application.

The global manipulation is done simply by using the external object as described

above. To specifically manipulate one of the applications, its name has to be used. The

name of the application is the string used to set the link in the external page of the

Variables subpanel of EJS.

For instance, to start the connection with both external applications, the following

code has to be used:

_external.connect();

To only start the connection with the local application, the following code can be

used:

_external.connect("<matlab>");
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In all the methods supported by external, if the specific manipulation is required,

the first parameter has to be used to indicate the name of the application.

Figure 5.22a shows the initialization page of the simulation. In this case, both

applications are connected at the same time. However, each command to be evaluated

is set to its respective function variable.

Figure 4.21: Manipulating two external applications. a) Initialization page b) Evolution page.

The Figure 4.21b shows the evolution page of the simulation. Note that here, both

applications are stepped at once.

The possibility of using more than one applications is useful for example to distribute

complex calculations in two or more machines. This gives authors the possibility to use

parallel algorithms in their simulations.

4.4 Building remote laboratories with MATLAB and EJS

Traditional laboratories (labs for short) are a fundamental pedagogical tool for the

education of engineering students. In particular, control engineers need to be in touch

with real equipments (also called plants) to apply all the theory learnt in university

lectures. However, traditional labs present temporal and geographic constraints that

normally make it impossible to access these pedagogical resources at any time and even

less from any location.

Remote laboratories have been increasingly used in control engineering education

(Gillet et al. 2000, Gomes & Bogosyan 2009, Leva & Donida 2008). The main reason

being the opportunities that technologies of information and communications provide

nowadays. Great capabilities of graphical computing, interaction and networking make

it possible to bring to students new ways to experiment with real plants without time

and location constraints.
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However, taking advantage of these fascinating possibilities is not easy for most in-

structors, who are normally non programming experts. This is why specialized authoring

tools are highly needed. In this section, a new approach to ease the building of remote

labs is described. The approach is different to other alternatives (Leva 2006, Duro et al.

2008, Lazar & Carari 2008, Vargas et al. 2008) because instructors can use the de-facto

standard software MATLAB as the main tool to control the real plant.

The two main software tools used are MATLAB and EJS, which have both been

described above. On the one hand MATLAB will be used to implement all the technical

aspects to control the real plant. On the other hand, the Easy Java Simulations author-

ing tool is used to simplify the creation of an interactive human interface for the remote

lab. Further details about this approach can be found in (Farias, Keyser, Dormido &

Esquembre 2009, Farias et al. 2010).

Commonly, remote labs come with predefined controllers that can only be tuned

or mixed by end users in order to produce a customized controller, see for example

(Leva & Donida 2008, Lazar & Carari 2008, Gomes et al. 2007, Duro et al. 2008, Gillet

et al. 2005, Vargas et al. 2006). However, and taking advantage that MATLAB script

is an interpreted language, the approach presented here enhances the customization,

allowing also students to define on-the-fly their own control algorithm, which provides

great flexibility for the designing of many control strategies.

4.4.1 Types of remote labs

A remote control labs actually consists in the remote operation of equipment. This

implies considering a network one component of the control of a real plant.

Two main groups of remote labs can be considered depending on whether the network

is part of the control loop or not. If the network is considered, then the remote lab

is called Networked Control Lab, otherwise the remote lab can be denominated

Remote Monitoring Control Lab.

In Figure 4.22, a scheme of a Networked Control Lab is shown; here, the controller

is located at the client side, which means that the network effects are taken into account

for control purposes. If the controller is located at the server side, then network effects

are not considered, the control of the real plant can be much easier, and the client

side application is used only for monitoring the control of the real plant. Common and
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Figure 4.22: A networked control lab. On the client side an application is used to monitor
the state of the plant and to compute the control action. On the server side, the real plant is
manipulated according to the controller outputs.

particular aspects for both types of remote labs are described in more detail in the next

subsection.

4.4.2 Common aspects of implementing remote labs

The approach presented here can be summarized in Figure 4.23. As this figure shows,

other elements are required in order to make the remote lab available on-line for students.

Among others, at least a web-server, an IP camera, and a Data Acquisition Card (DAQ

Card) are needed.

The web-server is required if authors want to make the remote lab available as an

applet. A web-server will also be needed if the teacher adds some simulation applets

in the web-site. A good option to provide web access to students is to use the open

source software called Apache Tomcat. This web-server also offers security features to

allow use only to authorized students of a remote lab. A second level of security can

be added in order to provide a basic booking system of the lab. This feature could be

implemented in the application itself using the authorization feature of JIM server and

the connect(user,pwd) method.

To show students a view of the real plant, a simple web camera can be used. However,

it is preferable to use an IP camera because of its built-in web server that can stream

video images directly to the Internet. Moreover, EJS has a specific visual element to

display video from stream servers, so the access to the streams of IP cameras is quite

direct and simple to use in EJS.

There are many options for developers who require controlling external hardware

(plants) from computers. In this case, different data acquisition(DAQ) cards can be

used, the only restriction in this approach is that the selected card has to be compatible

with MATLAB. The communication process with the DAQ card can be done using the

Data Acquisition toolbox. This toolbox is a collection of M-file functions and DLLs that
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Figure 4.23: Elements required for a networked control lab implemented with the MATLAB-
EJS approach.

enable users to interface with specific hardware. The toolbox provides users with these

main features:

• A framework for bringing live, measured data into the MATLAB workspace using

PC compatible, plug-in data acquisition hardware.

• Support for analog input (AI), analog output (AO), and digital I/O (DIO) sub-

systems including simultaneous analog I/O conversions.

• Support for popular hardware vendors/devices.

For further information about the toolbox see (The MathWorks 2007).

Acquisition Process from DAQ Cards

A typical code to initiate the data acquisition process using the toolbox of MATLAB

is shown in code Listing 4.2. In this case, there are two input channels and also two

output channels. The input channels are created to read the position and the speed of a

servo motor. One output channel is used to send the command signal to the motor, and

the other one is used to feed the position sensor (a potentiometer). After the channels

have been created, it is necessary to configure the DAQ card to continuously acquire

the data.

After the initialization is completed, the channels can be read using:
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1 %Create input channel s
2 AI=analoginput ( ’ nidaq ’ , ’ 1 ’ ) ;
3 Speed=addchannel (AI , 1 ) ;
4 Pos i t i on=addchannel (AI , 0 ) ;
5 set (AI , ’ InputType ’ , ’ SingleEnded ’ ) ;
6 AI . Channel . InputRange =[−10 1 0 ] ;
7

8 %Create output channel s
9 AO=analogoutput ( ’ nidaq ’ , ’ 1 ’ ) ;

10 VoltOutSpeed=addchannel (AO, 0 ) ;
11 VoltOutPos i t ion=addchannel (AO, 1 ) ;
12

13 %Conf i gurate sampling and t r i g g e r
14 set ( [ AI ,AO] , ’ SampleRate ’ , 1 /0 . 05 ) ;
15 set (AI , ’ TriggerType ’ , ’ Immediate ’ ) ;
16 set (AO, ’ TriggerType ’ , ’ Immediate ’ ) ;
17

18 %Acquire data cont inuous ly
19 set (AI , ’ SamplesPerTrigger ’ , i n f ) ;
20

21 %Send out i n i t i a l v o l t s
22 putdata (AO, [ 0 , 1 ] ) ;
23 s t a r t ( [AO AI ] ) ;

Listing 4.2: Initiate data acquisition process.

peekdata (AI , numberOfInputChannel);

and written using:

putdata(AO , numberOfInputChannel);

Notice that the code to read and write channels can be executed from EJS using the

methods eval and getDouble. Listing 4.3 shows the Java code used to read and write

the input/output channels. Notice that the code required to interface the DAQ card

is sent to MATLAB from the application using the external.eval(String) built-in

function.

1 public double [ ] getData ( ) {
2 double [ ] data ;
3 //Read input channel s
4 e x t e r n a l . eva l ( ” s=[ toc , peekdata (AI , 1 ) ] ; ” ) ;
5 data= ex t e r n a l . getDoubleArray ( ” s ” ) ;
6 return ( data ) ;
7 }
8

9 public double sendOut (double cmd) {
10 // Saturat i on o f command s i g n a l
11 cmd=commandLimits (cmd) ;
12 //Write output channel s
13 e x t e r n a l . eva l ( ” putdata (AO, [ ”+cmd+” , 1 ] ) ” ) ;
14 e x t e r n a l . eva l ( ” s t a r t (AO) ” ) ;
15 return (cmd) ;
16 }

Listing 4.3: Read and Write the channels from EJS.
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On the selection of a type of remote laboratory

A few additional considerations are required when the particular type of remote lab is

implemented.

First of all, the real plant has to be selected carefully, since even for remote moni-

toring control labs, the time constant of the plant cannot be too small. A fast plant can

generate a lot of data that can be difficult to visualize and transport over the network.

This could produce a poor user experience in the client application used by the students.

Therefore, slow plants are preferred to fast ones for remote labs.

Depending on where the controller is located, the main loop for controlling the plant

will be different. In networked control labs, the main control loop of the application is

done at the client side, since in these labs the control signal is computed there. This

requires adding the code of the main loop on the model panel of the EJS application.

The main loop of the networked control lab is displayed in Listing 4.4. The code

presented is part of the EJS application and has to be located in an evolution page of the

model panel in order to execute the code continuously. The code has three main parts:

open loop, closed loop, and getting data. In the open loop mode, the input, given by

the user (commandUser), is sent directly out to the real plant. In the closed loop mode,

the control signal is computed using the controller function, and the signal is then

sent out to the motor. Finally, once the open or closed loop stages have been executed,

the data is read from the sensors of the plant. Notice that the functions for reading and

writing the channels (getData and sendOut) have been defined earlier in Listing 4.3.

1 //Open Loop
2 i f ( isOpenLoop ) {
3 commandUser=sendOut ( commandUser ) ;
4 inputAppl ied=commandUser ;
5 //Closed Loop
6 } else {
7 i f ( speedControl ) cs=c o n t r o l l e r ( r e f e r enc e , speed ) ;
8 else cs=c o n t r o l l e r ( r e f e r enc e , p o s i t i o n ) ;
9 con t r o l S i gn a l=sendOut ( cs ) ;
10 inputAppl ied=con t r o l S i gna l ;
11 }
12 //Gett ing data
13 data=getData ( ) ;
14 po s i t i o n=data [ 2 ] ;
15 speed=data [ 1 ] ;
16 time=data [ 0 ] ;

Listing 4.4: Main loop of the remote lab in the EJS application.

On the contrary, in the remote monitoring control labs, the main control loop of the

application is done on the server side. For this purpose, authors can use the feature of
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Program Scheduling of MATLAB (by using timers)(The MathWorks 2009b) to compute

continuously the control action on the server side. This way, the client side is used only

to modify some control parameters or to show the main signals. An example of timer

object to compute the control action by calling periodically (every 50ms) an M-function

(computeCS) is the following:

t = timer(’TimerFcn’,’computeCS’,
’ExecutionMode’,’fixedRate’,’period ’ ,0.05);

Finally, with respect to the synchronous and asynchronous links of JIM, the choice

between both options depends also on the kind of remote lab that the instructor wants

to implement. On the one hand, an asynchronous link is preferred if the controller is

located on the server side, which means that the lab is used mainly to monitor the

remote plant. In this case, the network effects are not interesting from the control point

of view, and therefore, by using the asynchronous link, the network delays are reduced

considerably in comparison to the synchronous link.

On the other hand, if the controller is located on the client side, the synchronous

link has to be used, since the network effects must be considered.

4.4.3 Networked control lab implemented

The lab discussed here is a Java application designed to control a simple servo-motor

through the Internet. This lab uses a real servo-motor of FEEDBACK located at Ghent

university in Belgium. The selected DAQ card was the 6024E card manufactured by

National Instruments. In Figure 4.24, a scheme of the implemented lab is presented.

Notice that the continuous-time system is controlled by a discrete-time controller with

a sampling period of 50 ms. The networked control lab is divided in three sections: the

client side, the network, and the server side.

The implemented lab uses two MATLAB sessions, one located on the client side

to compute the control signal, and another one located on the server side, to interface

the servo motor through the DAQ card 6024E. At each sampling time, the JIM server

collects data from the plant by using the MATLAB engine at the server side. Then, JIM

server sends data to the EJS application by using standard TCP/IP Java methods. The

application uses the data and the local MATLAB engine to compute the control signal

by executing a given MATLAB script (which can be modified on line by the student).
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Figure 4.24: Scheme of the implemented remote lab.

Then, the application retrieves the value of the control signal from the local MATLAB

engine and sends it via TCP/IP to the JIM server. Finally, the JIM server sends out the

computed control action to the servo motor by means of the server MATLAB engine.

4.4.4 Computing the control signal

As previously mentioned, the lab uses a local connection to MATLAB to evaluate the

control action. This means that students can write on line the MATLAB code to control

the plant. The code used by default (a PID controller) is shown in Listing 4.5. Here, a

MATLAB function named computeControlwill be called from the controller function

of Listing 4.4.

The computeControl function has five input and one output variables. The input

variables are r (set point or reference), y (controlled variable for position or speed of

motor), and three optional variables a, b, and c (in this case, these free variables are

used as gain, integral time, and derivative time of the PID controller). The output

variable cs is returned to the controller function, in order to send out the control

action to the real plant (see Listing 4.4).

4.4.5 Model of the remote servo motor

From the control point of view, the model of the networked control lab can be divided in

three main parts: a model for the network delay, and models for the speed and position

of the servo motor, see Figure 4.25.

It can be assumed that all delays from the network can be represented by a single

variable dead-time, which can have different values depending mainly on the distance

between server and client and the traffic overhead in the network. The speed model is a

first-order system (FOS) plus two non linearities: a saturation (limiter) and a dead-zone.
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1 function cs=computeControl ( r , y , a , b , c )
2 %r=r e f e r e n c e y=output [ a b c ]=EJS parameters
3 %cs=cont r o l s i g n a l
4 %I n i t i a l i z a t i o n
5 p e r s i s t e n t I o l d Dold yold
6 i f isempty ( I o l d )
7 I o l d =0;Dold=0; yold=0;
8 end
9 %Calcu late Control S i gna l

10 beta=1;N=10;h=0.1;
11 P = a ∗(beta∗ r−y ) ;
12 I = Io l d ;
13 D = c /(N∗h+c ) ∗Dold+N∗a∗c /(N∗h+c ) ∗( yold−y ) ;
14 cs = P + I + D;
15 I o l d = Io l d + a∗h/b∗( r−y ) ;
16 Dold = D;
17 yold = y ;

Listing 4.5: Default code to calculate a PID controller.

Figure 4.25: Model of the networked control lab. The remote servo motor is divided in three
parts: the network model, the speed model and the position model.

The FOS system represents the dynamics of the amplifier, the motor, the brake and the

tachometer of the servo motor plant. Regarding the dead-zone, the range detected in

the real plant is located in [−δ1, δ1], where δ1 = 0.1V . In the case of the saturation of

the amplifier, it allows input values into the range [−δ2, δ2], where δ2 = 0.2V .

To get the position of the servo motor, a potentiometer was used. The potentiometer

is fed by the DAQ Card with 1V . So, the voltage obtained indicates the position of

the motor. This position model can be represented by a gain plus a pure integrator.

However, in order to have a better model of the real plant behaviour, an automatic reset

can be added to the pure integrator to limit and handle the discontinuity of the servo

position sensor, which produces a signal between 0V and 1V to represent the angular

position from 0◦ to 360◦.

The motor dynamics can be modified by means of the position of the magnetic brake.

Normally two positions are used: partial brake and full brake. For instance, when full

brake is selected, then the gain κ and the time constant τ are smaller than when the
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partial brake is used. In the full brake case, typical values for κ and τ are about 10 and

1s respectively. On the other hand, in the partial brake, normally the values for κ and

τ are about 14 and 2.5s respectively.

4.4.6 Control aspects of the remote servo motor

There are two control objectives regarding the implemented lab configuration: speed

control and position control. However, in this work only the position control will be

further analysed, since it is more difficult than speed control. In a feedback control of

the remote servo, the model of the motor can be considered a second order system with

a dead-time, a dead-zone, and a saturation. The effect of each part of the model will be

discussed now:

Dead-Zone

Consider a second order system composed only by the FOS model plus a gain (kp) and

a pure integrator. If a P controller (kc) is also considered, then the open loop transfer

function of this simple model is given by Equation (4.2), where K = kc · κ · kp.

GH =
K

s(τs + 1)
(4.2)

From the control point of view, this second order system can be controlled using only

the P controller. However, if the dead-zone is taken into account (see Figure 4.26a), then

the control requires an integral action to eliminate the steady-state error. Otherwise,

the system response of the remote lab can be similar to the plot presented in Figure 4.27.

The steady-state error is demonstrated by analyzing the obtained error when the

control signal (cs = kc ·e) is within the dead zone (−δ1 ≤ cs ≤ δ1). In this situation, the

output of the dead-zone block is zero, so the control loop is broken and therefore the

position signal is just a constant. It can be demonstrated that in this case the steady-

state error (ess) is different from zero and it is located in a band (see Equation (4.3)). The

extremes of this band depend on the dead-zone limits and the gain of the proportional

controller.

−δ1

kc
≤ ess ≤ δ1

kc
(4.3)
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Figure 4.26: Remote servo as a second order system plus dead-zone a) and as a second order
system plus dead-time b). Note that the block ”Controller” represents a PID controller, which
can be computed in the remote lab by the computeControl MATLAB function described in
Listing 4.5.

Dead-Zone and Saturation

Consider the previous case plus the saturation. Here, if the saturation is also taken into

account, then the integral action required to eliminate steady-state error, has to consider

the limits of the saturation block. So, if a PI controller is selected, then an anti-windup

scheme should be applied to avoid a slow control action (Åström & Hägglund 2005).

Dead-Time

If only the linear parts of the motor and the dead-time are considered (see Figure 4.26b),

then a second order system plus dead-time is obtained. A detailed description of dead-

time processes can be found in (Normey-Rico & Camacho 2007). In this situation, the

network delays can strongly affect the control performance. Here, different solutions

can be applied; one of them could be the use of a Smith predictor if the delay remains

approximately constant during the remote control session. However, if the delay con-

nection is highly variable, then more elaborated algorithms are required. To simplify

the problem here, this work will focus on fixed time-delay systems. Further analysis of

varying time-delay can be found in (Normey-Rico & Camacho 2007, Cristea et al. 2005,

Liu et al. 2007).

If the network delay is approximately constant and a P controller is used, it is possible

to calculate how much delay the system can tolerate before becoming unstable (Dorf &

Bishop 2004). To calculate this margin delay firstly, the open loop transfer function of

154



4.4. Building remote laboratories with MATLAB and EJS

0 2 4 6 8 10 12 14 16 18 20

0.2

0.3

0.4

0.5

Time (seconds)

P
os

iti
on

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

Time (seconds)

C
on

tr
ol

 A
ct

io
n

Figure 4.27: System response of the remote lab implemented using a proportional controller.
The upper plot shows the output (position) and the set point of the lab. The lower plot shows
the control action. In this experiment, the control performance is being affected mainly by the
dead-zone. Note that saturation is not limiting the control action. The network delays are
reduced by using the lab through a LAN network.

the model is computed, which in this case is given by Equation (4.2).

Secondly, computing the magnitude and the phase margin of the transfer function

given by Equation (4.2), and assuming that 1√
τK

≈ 0 (which is a common situation

when partial or full brake are selected), some useful approximations for ωgc (gain cross

over frequency) and φm (phase margin) are obtained. These approximations are given

by Equations (4.4) and (4.5), respectively.

20 log
K

ωgc

√
ω2

gcτ
2 + 1

= 0 → ωgc ≈
√

K

τ
(4.4)

φm = π − π

2
− arctan ωgcτ → φm ≈ 1√

Kτ
(4.5)

Finally, using ωgc and φm, the delay margin (T ) can be calculated using (4.6). There-

fore, this last equation indicates that the delay margin is inversely proportional to the

product of kc · κ · kp.

φm = ωgcT → T ≈ 1
kcκkp

(4.6)

Notice that even small delays could lead to an unstable closed loop. For example,

when the full brake is selected (κ = 10 and τ = 1) and assuming that kp = kc = 1,
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the delay margin is approximately 0.1s, which is a usual value for Internet delays. This

result implies that, if the system has less brake then it is less stable. Obviously, this

delay margin can be modified by changing the value of kc in the P controller.

Dead-Time, Saturation and Dead-Zone

Consider the linear model of the motor plus the dead time, saturation and the dead

zone controlled by a P controller. In this situation, the system can produce limit cycles

if there is enough dead time as Figure 4.28 shows.
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Figure 4.28: System response of the remote lab implemented under high network delays (> 0.2
seconds). The upper plot shows the output (position) and the set point of the lab. The lower
plot shows the control action. In this experiment the control performance is being affected by
all non-linearities. If the network delays are high enough then the system response is a stable
limit cycle. Here, the remote lab located at Ghent University (Belgium) was tested from UNED
(Spain).

To carry out an approximate limit cycle study of this nonlinear system, the non-

linear elements can be characterized by their describing functions (N(A,ω)), and the

linear part by its frequency response function (GH(jω)). Then, the solution of the

Equation (4.7) yields the amplitudes and frequencies of the limit cycle (Gelb & Velde

1968).

1 + N(A,ω)GH(jω) = 0 (4.7)

In this case, the linear part is given by Equation (4.2), and the dead zone combined

with the saturation have the describing function shown in (4.8), where A is the amplitude
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of the limit cycle after the P controller, and δ1 and δ2 are the limits of the dead zone and

saturation respectively. The function f(γ) is called saturation function and its values

are given by Equation (4.9).

N(A) = f(
δ2

A
) − f(

δ1

A
) (4.8)

f(γ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 for γ < −1

2
π (arcsin γ + γ

√
1 − γ2) for |γ| ≤ 1

1 for γ > 1

(4.9)

Solving Equation (4.7) and assuming that 1√
τKN

≈ 0, some useful approximations for

the frequency of the limit cycle (ω) and also for the delay margin (T ) are found. These

approximations, given by Equation (4.10), can be used for control design purposes.

ω ≈
√

KN

τ
T ≈ 1

KN
(4.10)

An interesting analysis can also be done by observing the polar plot (see Figure 4.29)

of Equation (4.7). In this figure, it can be seen that the limit cycles appear when there

is an intersection of GH(jω) and − 1
N(A) . Notice that the curve of − 1

N(A) has been

distorted to show more clearly both limit cycles. Hence, it is clear that there are no

limit cycles if there is no dead time (curve GH(jω)). However, if there is enough delay

(curve GHT (jω)), then there will be one or two limit cycles. In the case of two limit

cycles, one is unstable and the other one is stable. However, the effect of the unstable

cycle limit is constrained by the stable limit cycle.

Observing the polar plot of Figure 4.29, it is possible to conclude that at least one

limit cycle will occur in the maximum value of − 1
N(A) (i.e. when A = δ2). The minimum

value of the delay required for this situation can be calculated using (4.10). For example,

if kp = kc = 1, δ1 = 0.1, δ2 = 0.2 and the full brake is selected as in the previous case,

then the minimum delay is aproximatly: T ≈ 1
10N(0.2) ≈ 0.26s.

The complete model

In this case, the model considered is shown in Figure 4.25, which is controlled by a P

controller. The analysis is quite similar to the previous case, the only difference is the

automatic reset mechanism of the integrator. This mechanism allows the emulation of
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Figure 4.29: Polar plot representation to determine the limit cycle conditions.

the nonlinearity of the position sensor (potentiometer), which keeps the position signal

between 0 and 1. For this reason, the behaviour of this model is similar to the previous

case when the position signal is ranged from 0 to 1. Otherwise, if the signal crosses

these limits then the model could become unstable. Hence, the limit cycles analysis is

useful to determine the delay (T ) with which the system would have a limit cycle with

an amplitude before the P controller is greater than the position range. To do this, the

approximation for the time delay given by Equation (4.10) when A = 0.5kc can be used.

So, for instance, if the full brake is selected and kp = kc = 1, δ1 = 0.1, δ2 = 0.2, then

the maximum delay is about T = 0.41s.

4.4.7 Graphical user interface of the networked control lab

The many control aspects described above demand a graphical user interface (GUI) for

the application which offers a high degree of flexibility. But, at the same time, the in-

tended pedagogical use recommends keeping the interaction with the students relatively

simple and intuitive. For this reason, a considerable part of the implementation time

to discuss and test the possible designs of the interface is needed. The fast-prototyping

facilities of EJS were very useful, because they allowed faculty with not much program-

ming expertise to interact directly with the computer at the application design phase,

testing the many different possibilities. The result is a modern-looking, intuitive GUI

that offers a clear view of the process and allows flexible user interaction without over-
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Figure 4.30: Graphical user interface of the implemented remote lab.

whelming the student with too many options.

The interface of the application, displayed in Figure 4.30 has four main panels, a

menu bar, and a small task bar.

The two upper panels of the interface provide a quick view of the motor and a time

plot of the signals from and to it. The time plots on the left panel display the speed and

position signals of the motor, which are read from the JIM connection to the equipment,

as well as the reference and the input to the plant (which is the command or the control

signal depending on whether the mode is open or closed loop, respectively).

The top part of the right panel shows a real view of the actual motor at Ghent

University, obtained by EJS from an IP camera pointing at it. Although the quality

of the video thus obtained depends on the speed of the connection to the Internet,

the view of the actual equipment brings students a sense of reality. The view includes

information on the speed and position of the servo. Also on this right panel, a series

of buttons allow students to apply ready-made step up, step down, or square signal as

input to the system. The text box allows entering a constant value as input to the plant.

In open loop mode, this input represents a command to the plant, while, in closed loop,
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the input represents a reference to the controller.

The two lower panels are devoted to the control of the motor. The left bottom

panel allows the student to select an open or closed loop mode of operation, as well as

modification of the parameters of the controller in closed loop mode. An information

bar at the bottom of this panel shows the total delay in each operation cycle. This

delay includes the sampling period, the controller computing time, and the round trip

communication time between the server and the controller. Finally, a time bar indicates

the time elapsed by the current session.

The right bottom panel is used by the student to select if the signal to control is the

speed or the position of the motor and to enter the MATLAB code that will be used to

compute the control signal. This code accepts three free parameters (a, b, and c) that

can be used by the student in the control algorithm (see Listing 4.5) and whose values

can be modified using three text fields provided by the interface.

The interface is completed with a top task bar that provides buttons to start, pause,

step, and stop the application and select whether the user wants to control the real

equipment (if available) or the virtual simulation of the motor.

The components of the interface described above provide the basic functionality

required to operate the application. A menu bar provides some additional features such

as the possibility to specify the range of the axes of the plot, indicate if the values of

the signals are displayed in volts or as percentages, send to the Windows clipboard the

values of the signals for further analysis, and calibrate the location of the video of the

IP camera.

4.4.8 Using and evaluating the networked control lab

From a wide set of tasks to perform with the networked control lab, the students were

asked to do the following activities:

• Control the plant indicating suitable values for the controller (by default a PID

controller).

• Apply a step to the motor input voltage.

• Identify the main time constant and the gain from the speed response.

• On the basis of this identification exercise: derive a model for the position response.
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• On the basis of the position model: design a controller transfer function for position

control.

• Apply the position controller to the motor and evaluate the result.

This exercise was done in a basic course on control engineering in Ghent University,

taken by some 130 students. At the end of the use of the networked control lab, the

students were invited to evaluate it using an on-line poll (which allows students to vote

in a confidential way). The results, from teacher and students points of views, were

very good, specially considering it was the first experience. The on-line questionnaire,

based on the poll described in (Dormido et al. 2008), were rated for students as strongly

agree, agree, neutral, disagree and strongly disagree. The questions were divided in the

following categories:

• Learning Value: The lab helps to learn the relevant contents.

• Value Added: The lab has advantages over traditional learning methods.

• Usability: The lab was easy to use.

• Technical Functionality: The lab works well from software and hardware points of

view.

The results indicate that Technical Functionality was not a problem for most of

students because only 11% evaluated this category as disagree. Regarding the Usabil-

ity, about 84% of students did not find any difficulty in using the lab. About 55% of the

students think that the lab helps to understand the matters (Learning Value), while

only 13% disagree. Regarding the Value Added, 30% of the students think that the

lab has advantages over other learning methods. However, about 25% of the students

think the opposite. Probably, this item indicates the value that students give to the

traditional practice in the labs, which means that the remote or virtual labs have to be

considered a complement (but not a replacement) of the control engineering teaching.

4.5 Conclusions

After describing how to implement Java classes to support the communication protocol

with different well-known engineering software tools, this chapter focuses on provid-
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ing authoring tools in order to help to engineering instructors to develop interactive

engineering simulations.

The chapter starts with an introduction to the authoring software tool Easy Java

Simulations. This software eases the creation of interactive simulations in Java, which

can be deployed as standalone applications or embedded applications (i.e. applets) on

web pages.

Because the library JIMC is a Java package, it can be used by Easy Java Simu-

lations in order to create interactive engineering simulations with MATLAB/Simulink.

Although this way to add interactive human interfaces to MATLAB/Simulink simula-

tions is quite direct, the process of linking client and external variables could be cum-

bersome, specially when Simulink models are used. For that reason, the functionality

to connect to engineering software was embedded into a new version of Easy Java Sim-

ulations. Thus, instructors can use this new version of EJS to easily set the client and

external variables through the Variables subpanel. Other actions, such as connecting

to external application, can be accessed by authors using the object external. These

features have been implemented for MATLAB, Simulink, Sysquake, and Scilab.

Finally the chapter shows the development of remote laboratories using the inter-

operate approach. Concretely, the implementation of a networked control laboratory is

described. Using this laboratory, students have to consider network delays as part of the

control problem. Students can also implement and test on-the-fly their own control al-

gorithm using any MATLAB toolbox. This laboratory has been used in an introductory

course of engineering control at Ghent University with positive feedback from students.
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Chapter 5

Virtual Laboratories of
Embedded Control Systems

In this chapter some of the ideas previously shown are used to build virtual laboratories

(labs for short) in the particular field of control engineering called Embedded Control

Systems. An embedded control system consists of the use of a computer whose main

task is to apply a control algorithm in order to keep a signal from a piece of equipment

or a process within prescribed safety margins, despite disturbances. The control task

typically executes periodically and under limited implementation resources (CPU time,

communication bandwidth, energy, memory, etc.). If the limited resource is the CPU

time, then the system is generically called a real-time system.

Real-time systems and control theory both have a long, but separated, tradition.

Focus on research of real-time scheduling has been extensive, but very little of this work

has focused on control tasks. On the other hand, digital control theory has not ad-

dressed the problem of shared and limited resources in the computing system. Instead,

it is commonly assumed that the controller executes as a single loop on a dedicated

computer (Dong-Jin 2006). This misunderstanding has normally implied wrong as-

sumptions such as considering that the computation delay of the controller is fixed or

the controller deadline is always critical. Nevertheless, many control algorithms have a

varying computation time (model predictive controllers), and a single missed deadline

does not necessarily cause system failure.

Nowadays, a new interdisciplinary approach is emerging where control and real-time

issues are discussed for each of the two design levels. The development of algorithms for

co-design of control and real-time systems requires new tools. One of these new tools is

TrueTime, which is a freeware MATLAB-based simulator for networked and embedded

163



Chapter 5. Virtual Laboratories of Embedded Control Systems

control systems that has been developed at Lund University since 1999.

However, as seen before, simulations of Simulink models lack the interactivity and

visualization required to learn in a natural way. Without these aspects, simulations of

embedded control systems can be hard-to-understand learning objects. Here is where all

the work shown in previous chapters comes in handy. Two approaches to create virtual

laboratories (labs for short) for embedded control systems are presented in this chapter.

The first approach (introduced in (Farias, Årzén, Cervin, Dormido & Esquembre

2009, Farias et al. 2007)) combines the features of TrueTime and Java in order to build

simulations with a rich level of interaction and visualization. Since this approach limits

its use to MATLAB users to carry out the simulations, a second approach (introduced

in (Farias, Cervin, Årzén, Dormido & Esquembre 2008, 2009)) is presented in order to

make the study of embedded control systems possible for a wider audience.

The second approach presents an open source Java library, which is called JTT

(Java TrueTime) (Department of Computer Science and Automatic Control, UNED

2010c). The library is addressed to authors mainly to build simulations of embedded

control systems with a high degree of interactivity. Additionally, JTT can be used

for authors to create soft real-time applications as will be shown at the end of the

chapter. To simplify the implementation of the Java library, the basic real-time task

model has been adopted from TrueTime. The functionality is so far limited, only the

basic methods to describe real-time kernels and tasks have been implemented. However,

it is good enough to provide a simplified way to create simulations of real-time systems for

pedagogical purposes. Advanced TrueTime simulation features like wired and wireless

communication networks are not yet supported in JTT, and therefore authors that

require those advanced features still need to use the first approach.

The chapter is organized as follows. In Section 5.1, embedded control systems are

presented. Section 5.2 introduces TrueTime. Section 5.3 describes the implementation

and use of the first approach. In Section 5.4, the second approach is illustrated. The

creation of soft real-time applications is discussed in Section 5.5. Finally, Section 5.6

presents the main conclusions of the chapter.
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5.1 Embedded control systems

In an embedded control system, the (usually multiple) tasks are normally executed in

what is called real-time. A system is said to be real-time if the total correctness of the

operation depends not only on its logical correctness, but also on the time in which

it is performed (Burns & Wellings 2001). Real-time systems can be classified in two

subcategories: hard real-time systems, in which the completion of an operation after its

deadline may lead to a critical failure of the complete system and soft real-time systems,

which tolerate such lateness and may respond with decreased service quality (such as a

slower reaction time, or longer settling time).

A simple example is that of stabilizing an inverted pendulum by moving its base

back and forth (the academic version of the Segway shown in Figure 5.1). Suppose the

operation requirements specify that the pendulum must recover its verticality as soon

as possible after suffering any moderate perturbation. If the sampling period of the

vertical angle of the pendulum is 80ms, with a time delay of 20ms for the engines to act

on the base, a reasonable design could require that the control algorithm be executed

every 80ms and have a worst case execution time of 60ms. For the system to avoid

the pendulum from falling, the control algorithm must be both correctly designed and

applied on time.

5.1.1 Parameters of a real-time task

Real-time tasks such as the control of verticality can be periodic, aperiodic, or sporadic,

and are characterized by different parameters, among which are the:

• release time: which indicates the next instant in time when a task should be

executed.

• finish time: to signal when a task has finished its execution.

• execution time: which is the duration of the execution of the task. It can be

calculated by subtracting the release time from the finish time.

• period: to indicate the amount of time at which a periodic task has to be released.

When the task is periodic, the release time is always a multiple of the period.

• offset: a delay of the first release time.
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Figure 5.1: A Segway Personal Transporter. The inverted pendulum is an academic version of
a Segway keeping its verticality.

• deadline: which indicates the maximum allowed execution time for a correct

execution. It is common to take the period as the deadline of a periodic task.

5.1.2 Scheduling policies

Typically a control task runs in parallel with several other tasks, including other control

tasks. This puts focus on the scheduling policy of the system, which is the algorithm

that decides which task to execute at a given time. The presence of a scheduling policy

introduces a new parameter for a task, its priority or preference with respect to other

tasks in the system.

In the previous example, the control of the pendulum’s verticality would typically

be a top-priority, periodic task with a period of 80ms and execution time of less than

60ms, which makes a deadline of 80ms reasonable. In cases where there are more tasks

competing for CPU resources, a shorter deadline could be prescribed.

Under a scheduling policy, tasks may be in one of the three following states: running,

preempted (or blocked) and sleeping. Running means that the task is actually executing.

Preempted means that the task needs to be executed, but it is not being executed because

another task is running (usually one with higher priority). Sleeping indicates that the

task has finished and is waiting for its next release time. A schedule plot such as the one
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Figure 5.2: Schedule plot: three periodic tasks are running on the same CPU, tasks 1 and 3
have the highest and lowest priority respectively. Up arrows in a task plot indicate the released
times of that task, down arrows indicate the task finish times. The initials R, P, and S indicate
the possible states of the tasks (i.e., Running, Pre-empted and Sleeping respectively). Note that
task 1 is never pre-empted.

shown in Figure 5.2 is a graphical tool used to illustrate the evolution of the states of

the tasks in time. Note that task 1 and task 3 have the highest and the lowest priority

respectively, which implies that task 1 is never pre-empted and that task 3 is almost

always interrupted by task 1 and task 2.

The scheduling policy can be static or dynamic. Normally, a static policy sets the

priorities of the tasks before they are executed. On the contrary, a dynamic policy can

modify the priority of the tasks while they are running.

Fixed Priority (FP) is the simplest static scheduling policy, which assigns the priori-

ties of the tasks arbitrarily. Rate Monotonic (RM) is another popular static scheduling

policy, which assign the priorities of the tasks on the basis of their period: the shorter

the period is, the higher the priority of the task is.

Regarding the dynamic policies, a very well known one is the Earliest Deadline First

(EDF) policy, which places tasks in a priority queue. Whenever a scheduling event

occurs (a task finishes, a new task is released, etc.) the queue is searched and the process

closest to its deadline is scheduled for execution.

The selection of the scheduling policy is not straightforward. Normally, dynamic

policies offer much more flexibility than static ones. However since dynamic policies are

based on more sophisticated algorithms, the analysis required for each task from the

control point of view can be more complex than in the static case.
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5.1.3 Codesign problem

Academic interest in real-time systems and control theory have followed different ways

during last decades. Since the beginning of the 1970s, the focus on research of real-time

scheduling has been very large. Nowadays reaches far even into unconventional areas

of application on industry (Nolte & Passerone 2009, Buttazzo & Kuo 2009). However

very little of this work has focused on control tasks. On the other hand, digital control

theory, with its origin in the 1950s, does not address the problem of shared and limited

resources in the computing system. Instead, it is commonly assumed that the controller

executes as a simple loop in a dedicated computer.

Typically, the control engineer does not know (or care) about what will happen in

the implementation phase of the control algorithm. The common assumption is that

the computing platform can provide periodic sampling and the computation delay of

the controller is either negligible or constant. Reality tends to be far different. Today,

processors are built with caches and pipelines, software is divided into several modules,

signals need to be communicated through networks, and there is a strong trend towards

the use of commercial, off-the-shelf (COTS) hardware and software. These factors con-

tribute to make the time response of the computing platform, which is shared among

many tasks, too hard to predict.

On the other side of the problem, the computer engineer who implements the con-

trol system can also make wrong assumptions. It is commonly assumed that controllers

have a fixed execution-time, that all control loops are periodic, or that controllers dead-

lines are critical. In reality, many controllers have varying execution time demands

(e.g. model predictive controllers), some controllers are not sampled against time (e.g.

combustion engines controllers), and a single missed deadline does not necessarily cause

system failure. This misunderstanding between both types of engineers is now been

addressed by an emerging interdisciplinary approach, where control and real-time issues

are discussed at each design level.

Successful development of an embedded control system requires then a codesign of the

computer system and the control system. The computing platform must be dimensioned

such that all functionality can be accommodated, and the controllers must be designed

taking the hardware limitations into account. The codesign problem can be stated as:

“given a set of processes to be controlled and a computer with limited computational
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resources, design a set of controller and schedule them as real-time task such that the

overall control performance is optimized” (Cervin 2003, Cervin et al. 2003).

5.2 TrueTime

TrueTime is a MATLAB/Simulink based simulator for networked and embedded con-

trol systems that has been developed at Lund University since 1999 (Lund University

2010). The simulator software consists of a Simulink block library (see Figure 5.3) and

a collection of MEX files.

Figure 5.3: The TrueTime 1.5 block library.

TrueTime provides mainly two kinds of blocks, TrueTime Kernel and TrueTime

Network. To create real-time simulations, the plant dynamics are first modelled using

ordinary Simulink blocks. Then, the computer controlled system is formed by connecting

the inputs and outputs of the Kernels and Networks blocks to the model (see Figure 5.4).

Figure 5.4: A TrueTime simulation of a computer controlled system.

The TrueTime Kernel block simulates a computer node with a generic real-time

kernel, A/D and D/A converters, and network interfaces (Andersson et al. 2005). The

block is configured via a script (an M-file). The script may be parametrized and the pro-
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Figure 5.5: TrueTime code model. The execution of user code is modelled by a sequence of
segments that are executed in sequence by the kernel.

grammer may create objects such as tasks, timers, interrupt handlers, etc., representing

the software executing in the computer node.

Listing 5.1 shows a typical script to initiate the kernel block. The script uses the

primitive ttInitKernel to configure the kernel block. In this case, the kernel has

two inputs (for reference and output signals) and one output (for control signal). The

keyword ’prioFP’ informs the kernel that Fixed Priority is selected as the scheduling

policy. The primitive ttCreatePeriodicTask is used to create a periodic task. The

parameters indicate respectively the name of the task (’controller’), the offset (0),

the period (0.006), the priority (1), the name of the code function to be executed by

the task (’PID’), and a local variable used as local memory called data.

1 function i n i t s c r i p t
2 % Local data
3 data . u=0;
4

5 % I n i t i a l i z e TrueTime ke rne l
6 t t I n i tK e r n e l (2 , 1 , ’ prioFP ’ ) ;
7

8 % Create a p e r i o d i c task
9 t tCreatePer i od i cTask ( ’ c o n t r o l l e r ’ , 0 , 0 . 006 , 1 , ’PID ’ , data ) ;

Listing 5.1: A typical initialization function.

To model the execution time of a task or interrupt handler, a special code function

format is used. A code function is divided into code segments according to Figure 5.5.

The execution of user code is done nonpreemptively of the beginning of each segment,

and the code function returns the simulated execution time of the segment. Within code

functions, the user can access the kernel block inputs and outputs using special kernel

primitives (e.g. ttAnalogIn and ttAnalogOut).

Listing 5.2 shows the code function used by the task ’controller’ created in List-

ing 5.1. Note that a switch-case is used to divide the code function into segments (three

in this case). The value of the variable seg is automatically incremented by TrueTime
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in order to execute the code sequentially. The first output of a code function (exectime

in this case) informs TrueTime of the time used to compute a given code segment. A

negative value of this parameters indicates that the execution of the task has finished.

1 function [ exectime , data ] = PID( seg , data )
2 switch seg ,
3 case 1 ,
4 r = ttAnalogIn (1) ; % Read r e f e r e n c e ( f i r s t input )
5 y = ttAnalogIn (2) ; % Read pr oc e s s output ( second input )
6 exect ime = 0 . 0 0 1 ;
7 case 2 ,
8 data . u = contro lAct i on ( r , y ) ; % Compute con t r o l act i on
9 exect ime = 0 . 0 0 3 ;
10 case 3 ,
11 ttAnalogOut (1 , data . u) ; % Send out con t r o l act i on
12 exect ime = −1;
13 end

Listing 5.2: A typical control task code.

The TrueTime Kernel block supports various preemptive scheduling algorithms such

as Fixed Priority (FP) scheduling and Earliest Deadline First (EDF) scheduling. It is

also possible to specify a custom scheduling policy.

The TrueTime Network block and the TrueTimeWireless Network block simulate the

physical layer and the medium-access layer of various local-area networks. The types

of networks supported are CSMA/CD (Ethernet), CSMA/AMP (CAN), Round Robin

(Token Bus), FDMA, TDMA (TTP), Switched Ethernet, WLAN (802.11b), and Zig-

Bee (802.15.4). The blocks only simulate the medium access (the scheduling), possible

collisions or interference, and the point-to-point/ broadcast transmissions.

For more details about the use of this toolbox, see the references (Cervin 2003, Cervin

et al. 2003, M. Ohlin & Cervin 2007). TrueTime can be downloaded from:

http://www.control.lth.se/truetime

5.3 Virtual Labs Using TrueTime

This approach is divided in two phases that use the best features of MATLAB and

Java. First, authors design the embedded control system using TrueTime, defining the

scheme of the system, the plant to be controlled, the tasks code (e.g. the controller), the

tasks features (e.g. periods and priorities), the schedule policy, the network (if needed),

etc. Second, authors use Java to control the execution of the simulation by using the

JIMC package, and also to build the Graphical User Interface (GUI) of the virtual lab.
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Here, instructors can take advantage of the built-in feature to connect MATLAB with

Easy Java Simulations (EJS) to add an interactive human interface to the TrueTime

simulation. Authors that want to use another authoring tool to build the GUI in Java

can still do it by just following the procedure described in Chapter 3 to use JIMC, and

applying the same integration process described in this Chapter.

Since creation of simulations in TrueTime and EJS has been described previously,

the focus in this section will be on the description of the integration process between

both tools in order to get a simulation of embedded control systems with a high level of

interactivity and visualization.

5.3.1 Connection Process

Since TrueTime simulations are basically MATLAB files and Simulink models, EJS

and JIMC can be used to create simulations of embedded control systems. Chapter 4,

Section 4.3, describes how to use the link between EJS and MATLAB/Simulink. This

integration process is summarized in the following four actions:

1. Set MATLAB/Simulink as an external application.

2. Connect EJS variables with MATLAB/Simulink.

3. Control and access MATLAB/Simulink.

4. Define the visualization and interactivity.

The facilities provided by JIMC to control MATLAB/Simulink can be considered

completely in this integration process. These facilities are the methods of JIMC that

allow, for example, to read/write MATLAB variables, to evaluate MATLAB commands,

and also to simulate a Simulink model.

To build the simulations using this approach, authors just have to follow the previous

procedure for connection between EJS and TrueTime. The first two steps, setting the

external application and connecting variables, are relatively simple and require only a few

mouse clicks. Controlling the execution of MATLAB/Simulink is carried out using the

built-in methods of EJS provided by the external object. This step frequently consists

of advancing the simulation time of a Simulink model, evaluating MATLAB commands,

and reading or writing MATLAB variables. Since there are normally many interesting
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variables declared for local use in the M-files of a TrueTime simulation, accessing the

MATLAB variables from EJS can require redeclaring them as global variables.

Probably, the last step of the connection procedure, i.e. defining the visualization

and the interactivity, will require a big percentage of the total amount of the design

time. For this reason, it is recommended that authors first evaluate all the requirements

from the pedagogical point of view of the virtual lab before focusing on the technical

aspects of the connection process.

5.3.2 Improving performance

The connection procedure described above guarantees that TrueTime simulations can

be linked to EJS in a very direct way. However, in order to improve the visualization

and performance of the virtual labs, authors have to consider two aspects of TrueTime

simulations: zero crossing evaluations and schedule data.

The first aspect is taken into account because TrueTime models use scheduling al-

gorithms that involve a lot of zero-crossing evaluations, which make the simulations run

slowly. To overcome this obstacle, authors have to indicate that the link between EJS

and TrueTime models updates the connected variables at fixed time intervals, which will

make the simulation run faster and more smoothly. Otherwise, there will be too much

exchange of information among EJS and TrueTime, causing unwanted delays in the

simulation. The updating time is specified in the first step of the connection procedure.

The second aspect is related to the schedule data. This information is quite relevant

in order to do a successful analysis of a real-time system, because it indicates the states

(running, sleeping, or waiting) of a task. For this reason, authors have to force EJS in

order to get all the samples from schedule to be sure that these signals are shown in

the virtual lab (as the plot of Figure 5.2 shows). This has to be done because EJS tries

to get MATLAB variables only a given number of times by default. So, authors have

to use the built-in method external.setWaitForEver(true), to force EJS to wait for

MATLAB variables (i.e. schedule data) that sooner or later will be available for reading

from the MATLAB workspace.

5.3.3 Examples of virtual labs using first approach

Now, two virtual labs using the TrueTime-EJS integration will be shown. The first

one is about a periodic task controlling a simple system. The aim of this example is
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just to show how to use the combination between both tools to create virtual labs. The

second virtual lab shows the potential of this approach in order to obtain very interesting

simulations of embedded control system with pedagogical purposes.

Simple PID servo controller

This virtual lab uses a simple simulation from the list of TrueTime examples (M. Ohlin

& Cervin 2007). This example simulates a periodic PID-controller (Åström & Hägglund

2005), embedded in a computer to control a DC-servo process (second order system).

The controller is the only task running on the computer. This task is divided into two

code segments (see Figure 5.5), one segment to compute the control algorithm, and

another one to send out the control action.

The TrueTime simulation uses a Simulink model that represents the complete sys-

tem, and some M-files to initiate the system and to describe the code function to be

executed for the control algorithm. Four different modes of implementation of the task

are provided by the example: Built-in Task, Simulink Block, Sleep Until, and Trigger

Task.

From the pedagogical point of view, the virtual lab can be used mainly to show how

the control performance can be affected by the computing time of the control algorithm

(Cervin et al. 2003). In addition to this key concept, the virtual lab should allow students

to specify the mode of implementation of the task, to modify the PID parameters, to

change the reference, to view the output and control signals, and also to control the

period and the computing time of the control algorithm.

The Simulink model is shown in Figure 5.6a. Note that the feedback control is

Figure 5.6: An example of TrueTime simulation. a) Simulink model, b) Submodel of a Com-
puter.
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done by the submodel named Computer, and the DC-servo process is described by a

Transfer Fcn block. The Computer submodel, shown in Figure 5.6b, uses the TrueTime

kernel block to simulate a computer. The parameters of the TrueTime kernel block

(see Figure 5.7a) are used to indicate the initialization function (an M-file) that

initiates the configuration of the computer, and also to specify an argument which

represents in this example one of the four modes of implementation of the task. The

parameters of the block schedule (see Figure 5.7b) have been modified to add the

ScopeData variable. This modification will save to the MATLAB workspace schedule

data from the task after every integration step of the simulation.

Figure 5.7: Parameters of the TrueTime kernel block a) and the Schedule block b).

In order to link the TrueTime simulation with EJS, the first step consists of selecting

the Simulink model and connecting the signals to EJS variables. The selection of the

model is done by entering the text: <matlab(0.01)> servo.mdl, which means that

the Simulink model servo.mdl will be used as an external application, and that the

fixed time interval for updating, used to improve the performance of the simulation, is

0.01 (see Table 4.1 in Chapter 4).

There are in total five EJS variables connected. The variables time and mode are

connected to Simulink parameters to get the simulation time and to set the mode of

implementation of the task. The variable reference is connected to the first input of

the Computer block to feed from EJS the reference or set point. Finally, the variables

control and output are connected to the output of the blocks Computer and DC-servo

to read the control and servo-output signal, respectively. The input and output signals
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Figure 5.8: Setting a link between EJS and a TrueTime model. Note that a fixed time interval
updating is used and the EJS variables are connected to inputs or outputs of Simulinks blocks.

selected are shown as squares and circles, respectively, in Figure 5.6a. The final result of

both the selection of the model and the connection of the variables is shown in Figure 5.8.

Before being able to control and to access the MATLAB/Simulink simulation, some

modifications of the M-files are needed. The main modification is to adapt the code

functions for accessing MATLAB variables from EJS. Since the M-files of TrueTime

simulations are mainly functions, a simple way to access the local variables is to redeclare

them as global variables.

The first M-file thus modified is the initialization function (see Listing 5.3).

This M-file is used to initialize the computer where the controller (the task) is executed.

The script is divided in two parts, the initialization code and the switch code.

The initialization code comprises lines 1 to 21. This code uses ttInitKernel(2, 1,

’prioFP’) to configure a computer with two inputs (reference and DC-servo output),

one output (control signal), and a Fixed Priority policy. The initialization also defines

and initiates some variables. Note that the variables period and data are declared

as global in lines 8-9 in order to allow access to them from EJS. The variable period

indicates the period of the task and the variable data is used by the task as local

memory to save parameters such as the gain, integral time, and derivative time of the

PID controller.

The switch code is written in lines 22 to 30. This code executes one of the four

different modes to implement the periodic task. Obviously, the selected implemen-

tation depends on the input argument mode of the initialization function. The

first mode of implementation is shown in lines 23-26, here the TrueTime function

176



5.3. Virtual Labs Using TrueTime

1 function s e r v o i n i t (mode)
2 % I n i t i a l i z e TrueTime ke rne l
3

4 % nbrOfInputs , nbrOfOutputs , f i x ed p r i o r i t y
5 t t I n i tK e r n e l (2 , 1 , ’ prioFP ’ ) ;
6

7 % Link To EJS
8 global per i od ;
9 global data ;
10

11 % Task a t t r i b u t e s
12 dead l ine = per i od ;
13 o f f s e t = 0 . 0 ;
14 pr i o = 1 ;
15

16 % Create task data ( l o c a l memory)
17 data .K = 0 . 9 6 ;
18 data . Ti = 0 . 1 2 ;
19 data .Td = 0 . 0 4 9 ;
20 . . .
21

22 switch mode ,
23 case 1 , % IMPLEMENTATION 1
24 % using the bu i l t−i n support f o r p e r i o d i c tasks
25 t tCreatePer i od i cTask ( ’ p i d ta s k ’ , o f f s e t , per iod ,
26 pr io , ’ p idcode1 ’ , data ) ;
27 case 2 , % IMPLEMENTATION 2
28 . . .
29

30 end

Listing 5.3: initialization function.

ttCreatePeriodicTask is used to create the periodic task. Note that the M-file pidcode1

is the code function to be executed for the computer in this mode. Every mode of imple-

mentation has an associated code function, but here the focus will be only on pidcode1

because the modifications are quite similar in the other files.

The script of the M-file pidcode1 is presented in Listing 5.4. This code can be

analyzed in two parts, the declaration section and the code segment section. The first

section, lines 1-4, has been modified to redefine the output of the function and to re-

declare the variables data and exectime as global so that they can be accessed from

EJS. The auxiliary variable exectimeAux is used to inform TrueTime of the simulated

computing time of a code segment. The second section, lines 6-19, describe the two code

segments of the task. The first code segment is used to compute the control algorithm

and the second one to send out the control signal. Note that the M-file pidcalc is

called (line 10) to compute the PID control algorithm (Åström & Hägglund 2005). Note

also that only the execution time of the first code segment can be modified from EJS

using the global variable exectime, because in the second code segment the variable

exectimeAux is equal to a fixed value. As mentioned before, the negative value of the
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execution time means that the code segment is the last one of the task and its com-

puting time is zero. Observing this modified Listing 5.4, it becomes clear that EJS end

users will be able to modify parameters such as gain, derivative time, integral time, and

execution time of the first code segment of the control task.

1 function [ exectimeAux , data ]=pidcode1 ( seg , data )
2 % func t i on [ exectime , data ]= pidcode1 ( seg , data )
3

4 global data exect ime ; % EJS
5

6 switch seg ,
7 case 1 ,
8 r = ttAnalogIn ( data . rChan ) ; % Read r e f e r e n c e
9 y = ttAnalogIn ( data . yChan) ; % Read pr oc e s s output

10 data = p idca l c ( data , r , y ) ; % Cal cu l ate PID act i on
11 % exect ime = 0 . 0 0 2 ;
12 exectimeAux=exect ime ;
13

14 case 2 ,
15 ttAnalogOut ( data . uChan , data . u) ; % Control S i gna l
16 % exect ime = −1;
17 exectimeAux = −1;
18

19 end

Listing 5.4: Code function modified to set a link between EJS and TrueTime. Commented
lines are original lines of the function.

After the modification of the M-files, authors have to go back to EJS for controlling

and accessing the MATLAB/Simulink simulation. As mentioned in Chapter 4, EJS

simulations have two main parts (or panels): the Model and the View. In the Model

authors describe the behaviour of the system and in the View authors use the visual

elements provided by EJS to build the GUI of the virtual lab. In the Model, there are five

subpanels that help authors to systematize the system description process. These five

subpanels (see Figure 5.8) are: Variables, Initialization, Evolution, Constraints

and Custom. In this case, only the first three subpanels will be analysed since there is

no code in the other ones.

The Variables subpanel is used to define the EJS variables. Here, the main variables

of the virtual lab were already defined when the link between EJS and the TrueTime

simulations was established (see Figure 5.8).

The Initialization subpanel is normally used to prepare the simulation before it

runs. Therefore, in this virtual lab, an initialization page is used to initiate TrueTime,

to execute some MATLAB commands, and to set the initial values of some variables

(see Listing 5.5). Note that the function external.setWaitForEver(true) is used
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here to make sure that all variables will be read in every simulation step from MATLAB

workspace.

1 // I n i t i a t e TrueTime
2 e x t e r n a l . eva l ( ”addpath ( [ getenv ( ’TTKERNEL ’ ) ] ) ” ) ;
3 e x t e r n a l . eva l ( ” i n i t t r u e t im e ; ” ) ;
4

5 //Wait to r ecover MATLAB va r i a b l e s
6 e x t e r n a l . setWaitForEver ( true ) ;
7

8 //Declare Global Var i ab l e s
9 e x t e r n a l . eva l ( ” g l oba l per i od ” ) ;
10 e x t e r n a l . eva l ( ” g l oba l data ” ) ;
11 e x t e r n a l . eva l ( ” g l oba l exect ime ” ) ;
12

13 //Set i n i t i a l va lues
14 e x t e r n a l . setValue ( ” exect ime ” , 0 . 002 ) ;
15 e x t e r n a l . setValue ( ” per i od ” , 0 . 012 )
16 e x t e r n a l . eva l ( ” data .K=”+0.96) ;
17 e x t e r n a l . eva l ( ” data . Ti=”+0.12) ;
18 . . .

Listing 5.5: Initialization code in EJS.

In the Evolution subpanel the actions to be executed by EJS in every simulation

step are described. The code used in the virtual lab is shown in Listing 5.6. Two

important actions are required in this virtual lab: executing the Simulink model and

getting the schedule data.

The first action involves using the built-in method external.step(int n). The

effects of this method, as mentioned in Chapter 4, are: to send to MATLAB the values of

the connected EJS variables, to run the Simulink model as many steps as the parameter

in parentheses states, and to retrieve from MATLAB the values of all connected EJS

variables.

The second action gets the values of some particular variables like ScopeData, which

is updated by the Schedule block (see Figure 5.7b) after each simulation step. To

get this data, the built-in method external.getDoubleArray() is used. Note that

the information is retrieved separately in two EJS variables (two arrays), scopeT and

scopeS. This is because a Polygon was used as a visual element in the view of the virtual

lab to properly show the schedule data.

The final action of the combination of TrueTime-EJS approach is about the visu-

alization and interactivity. To create the graphical user interface the visual elements

provided by EJS were used. These elements are available in the View of EJS (see Fig-

ure 5.5). With these visual elements, the user interface of the virtual lab, as shown in
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1 . . .
2 // Stepping the Simulink model
3 e x t e r n a l . s tep (1) ;
4

5 // Gett ing the Scheduler Data
6 e x t e r n a l . eva l ( ”scheT=ScopeData ( end−49:end , 1 ) ’ ” ) ;
7 e x t e r n a l . eva l ( ” scheS=ScopeData ( end−49:end , 2 ) ’ ” ) ;
8 scopeT= ex t e r n a l . getDoubleArray ( ”scheT” ) ;
9 scopeS= ex t e r n a l . getDoubleArray ( ” scheS ” ) ;

10 . . .

Listing 5.6: Evolution code in EJS.

Figure 5.9, was created.

Figure 5.9: Graphical User Interface of the first example. Note that it is possible to change
the control parameters on-the-fly using the sliders.

To add interactivity to the virtual lab, it is necessary to define what will happen

when end users interact with the visual elements. For instance, note that the sliders

are used to manipulate the PID parameters (kp, ti and td) and the execution time of

the controller. Sliders allow end users to change the values of those variables while the

simulation is running easily and quickly. An example about how to add interactivity

can be observed in Figure 5.10, which corresponds to the parameters of the slider that

controls the execution time of the task (actually, it only changes the execution time of

the first code segment of the controller).

The interaction is added to the visual elements just by indicating what to do when

the slider is pressed, dragged, or released. For instance, in this virtual lab, if the slider

that controls the execution time is moved and released by the user, then the value of

the MATLAB variable exectime has to be updated to the new value using the following
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Figure 5.10: Parameters of the slider that controls the execution time of the task.

sentence:

external.setValue("exectime",exectime);.

This action also has to be invoked by the rest of the sliders that control the other

parameters of the task.

The virtual lab created allows end users to modify a great number of parameters of

the system, such as the reference type, control settings, execution time of the controller,

and the mode of the implementation of the tasks, etc. As an example of interaction,

Figure 5.11 shows the performance of the controller when the execution time is 5 ms

or 9 ms. In both cases the Period is 12 ms and the control parameters are the same.

However, the control performance of the first case is better than the second one.

Figure 5.11: Reference, control, and output signals when the execution time is a) 5 ms and b)
9 ms.

Distributed Servo Control

This example simulates a distributed control of a DC-servo (M. Ohlin & Cervin 2007).

The example contains four computer nodes, each one represented by a TrueTime kernel

block, connected by a network (see Figure 5.12). A time-driven sensor node samples the

process periodically and sends the samples over the network to the controller node. The

control task in this node calculates the control signal and sends the result to the actuator

node, where it is subsequently actuated. The simulation also involves an interfering node
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sending disturbing traffic over the network, and a disturbing high-priority task being

executed on the controller node.

Figure 5.12: Simulink model for the distributed servo control.

This system is a bit more complex than the first example. The main difference is

that here there are more M-files and also a bigger Simulink model to modify. However,

the connection process to create a virtual lab is quite similar to the previous example,

and although it is a bit longer, the integration between both tools is still easy to do.

The virtual lab created is shown in Figure 5.13. The main view (Figure 5.13a)

allows the end users to modify parameters of the network and nodes. There are also

three auxiliary dialogs to show a histogram of the end-to-end latency (Figure 5.13b), to

show the schedule data of the four tasks (Figure 5.13c), and to modify the controller code

(Figure 5.13d). This last dialog window gives great flexibility to the virtual lab, because

end users can test different control strategies to face the effects of the disturbances due,

for instance, to the network. Note also that the controller code is written in MATLAB

code, which means that end users can use any MATLAB toolbox available on their

computers.

In the main view end users can modify control parameters and also add a mock

disturbing high-priority task with different execution times. In the same window, but

in the section Sensor, end users can modify the measurement time and the package

size. This last parameter is important to see the effect of the size of the package on the

control performance. The section Interference allows end users to increase bandwidth
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Figure 5.13: Graphical user interface of the distributed servo control. Figures: a) is the main
view, b) show histograms of sensor-actuator time, c) is the scheduler data for the four nodes, d)
is the dialogCode where the user can read and modify the code of controller.

used by the interference node, which adds some disturbance to the network. The net-

work parameters, such as transmission rate or loss package rate, can be modified in the

TrueTime Settings section of the main window.

5.4 Virtual labs using JTT

Inspired by the successful ideas and architecture of the TrueTime toolbox for MAT-

LAB, the JTT Java library was implemented in order to simulate code execution and

scheduling of tasks in a real time environment. The library allows converting a Java

simulation of a control process into an embedded control system by defining one or

several kernels (which simulates a computer) that execute tasks according to a given

scheduling policy, including RM and EDF. Similarly to TrueTime, the code of a task

is divided into segments as shown in Figure 5.5. The kernels, tasks and policies are

also highly configurable. Since JTT is a Java library, the systems can be implemented

using pure Java code. The programmer creates and adds the system components using

the Application Programming Interface (API) of the library, and the library manages
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automatically all the internal data structures and organizes the execution of the tasks.

Non-programmers can use the library via Easy Java Simulations as Subsection 5.4.5

shows. The JTT library and some examples can be downloaded from:

http://lab.dia.uned.es/jtt

5.4.1 JTT’s application programming interface

The JTT package provides four public classes and one abstract class. The three most

important are: RTenv, Kernel, and Task (see Figure 5.14).

Figure 5.14: Main classes in the JTT package.

A real-time Java environment is an object of the public class jtt.RTenv, which

provides the basic functionality for implementing the real-time environment. jtt.RTenv

is a singleton class that can not be instantiated from another class. A kernel is an object

of the class jtt.Kernel that simulates a computer which can execute one or more tasks.

Kernels are instantiated using the constructor:

public Kernel ();

Kernels are added to the real-time environment using the static method:

public static boolean RTenv.addKernel(Kernel kernel );

A task is obtained by using the public constructor of the jtt.Task class:

public Task();

Tasks can be later customized using standard setter and getter methods. Following

TrueTime’s code model, tasks in the JTT library are divided into code segments. A

code segment is an object, programmed by the user, that extends the jtt.CodeSegment

abstract class. Segments can also be added or removed from the task after instantiation

using convenience task methods.
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This object-oriented structure provides a flexible and powerful way to create sophis-

ticated tasks. Alternatively, for simple situations, the task’s code can also be defined

using reflection. This option can use suitable methods to run the code of the task.

To divide the method into code segments, the method can include calls to the static

method:

public static void RTenv.endSegment(double time);

With this information, the kernel object manages two internal queues to control the

execution of the tasks. The first queue is sorted by priority and keeps the identifiers

of tasks which are ready to be executed by the kernel. The second queue is sorted by

release time and keeps the identifiers of tasks which are waiting to be released. The

kernel uses this task to determine the release time of the next task and to execute the

task segments according to the scheduling policy.

Authors can use this API to modify an existing simulation which they can step in

time. They can modify their initialization to create and add the required kernels and

tasks, and then the main loop to request the time of the scheduling event of the closest

task in all kernels. If this time is the closest to the desired step, the program hands over

the control of the execution to the kernel to execute the task code.

The classes Kernel and Task are implemented using Java threads. This implemen-

tation choice allows interrupting the execution of a task and restarting it when it is

released next. To coordinate the execution of the tasks, each kernel object has an object

of the private class jtt.Token. When the kernel receives the request to run, it gives

its token to the task that is to be released. The task returns the token to the kernel

when it finishes the execution of a code segment and the kernel returns the control to

the calling program.

5.4.2 Sample implementation

To briefly exemplify this structure, suppose the original program consists of the follow-

ing, rather simplistic pseudo-code shown in Listing 5.7.

To convert this process into an embedded control system, the programmer needs to

modify this class as Listing 5.8 shows. Here, some API methods for creation and con-

figuration of the tasks and kernels were used. Note how the simulation of the embedded

process is done in the static method main. The next subsection will discuss this in detail.
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1 public class MyProcess {
2

3 // I n i t i a l i z e s the p r oc e s s
4 public MyProcess ( ) {
5 . . .
6 }
7

8 // Steps the p r oc e s s f o r an increment o f time
9 public void s tep (double dt ) {

10 . . .
11 }
12

13 // Simulate the p r oc e s s
14 stat ic public void main ( Str ing [ ] a rgs ) {
15 double time = 0 , tF i na l = 1 . 0 , dt =0.001;
16 MyProcess p r o c e s s = new MyProcess ( ) ;
17 while ( time<tF i na l ) {
18 pr oc e s s . s tep ( dt ) ;
19 time += dt ;
20 // output p r oc e s s v a r i a b l e s
21 . . .
22 }
23 } // end o f c l a s s

Listing 5.7: Original simulation.

1 import j t t . ∗ ; // Import the JTT package
2

3 public class MyProcess {
4

5 // I n i t i a l i z e the p r oc e s s
6 public MyProcess ( ) {
7 . . .
8

9 // c r ea t e a task
10 Task task1 = new Task ( ) ;
11 task1 . s e tPer i od ( 0 . 0 8 ) ; // per i od 80 ms
12 task1 . s e tPr i o r i t yVa l ue (0) //Top p r i o r i t y
13

14 // add code to a task
15 task1 . addCode (new CodeSegment ( ) {
16 // code o f the f i r s t segment
17 public double code ( ) {
18 . . .
19 return 0 . 0 3 ; // execut i on time
20 }
21 }) ;
22 . . .
23

24 // c r ea t e another task
25 Task task2 = new Task ( ) ;
26 task2 . s e tPer i od ( 0 . 1 ) ; // per i od 100ms
27 task2 . s e tPr i o r i t yVa l ue (1) // p r i o r i t y
28

29 // add code to another task
30 . . .
31

32 // c r ea t e ke r ne l and add i t the tasks
33 Kernel k e r ne l = new Kernel ( )
34 ke rne l . s e tSchedu l i ngPo l i cy ( Kernel .FP) ;
35 ke rne l . addTask ( task1 ) ;
36 ke rne l . addTask ( task2 ) ;
37

38 // add the ke r ne l to the r e a l time environment
39 RTenv . addKernel ( k e r ne l ) ;
40 }
41

42 // Step the p r oc e s s f o r an increment o f time
43 public void s tep (double dt ) {
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44 . . .
45 }
46

47 // Simulate the p r oc e s s
48 stat ic public void main ( Str ing [ ] a rgs ) {
49 double time = 0 , tF i na l = 1 . 0 , dt =0.001;
50 MyProcess p r o c e s s = new MyProcess ( ) ;
51 while ( time<tF i na l ) {
52 double nextEvent = RTenv . nextEvent ( ) ;
53 i f ( nextEvent<time+dt ) {
54 pr oc e s s . s tep ( nextEvent−time ) ;
55 RTenv . runKernel ( ) ;
56 time = nextEvent ;
57 } else {
58 pr oc e s s . s tep ( dt ) ;
59 time += dt ;
60 }
61 // output p r oc e s s v a r i a b l e s
62 . . .
63 }
64 } // end o f c l a s s

Listing 5.8: Modified simulation, version 1.

Listing 5.8 uses one way to add code to the tasks, i.e., overriding the class CodeSegment.

However, as mentioned above, there is another, much simpler way that can be preferred

by non-programming authors, called reflection.

The use of reflection provides beginner programmers with an easy way for adding

code to a task. Listing 5.9 shows how this is done. Observe that reflection is used because

the method setReflectionContext was added at the beginning of the initialization.

The input parameter of this method is used to define the Java object which implements

the code, in this case, the same class MyProcess. Adding code to a task is done by using

the method addCode, where the input parameter sets the name of the Java method that

has to be run when the task is executed. Note how the method endSegment is used to

split the task’s code in code segments. The input parameter of endSegment is used to

return the execution time of a code segment.

Both ways for adding task’s code can be used without distinction in most cases.

However, reflection may be easier to use for beginner programmers, whereas overriding

the class CodeSegment is much more useful if the task’s code is modified in runtime.

5.4.3 Integration of JTT in advanced simulations

In general, the simulation of an embedded control system consists of two main parts: the

computer and the physical system. The first part simulates a computer (i.e., a kernel)

where the control task is executing, while the second part simulates the model of the

physical system or the process to be controlled. The JTT package allows authors to
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1 import j t t . ∗ ; // Import the JTT package
2 public class MyProcess {
3

4 // I n i t i a l i z e the p r oc e s s
5 public MyProcess ( ) {
6 // Sets r e f l e c t i o n
7 RTenv . s e tRe f l e c t i onContex t ( this ) ;
8 . . .
9 // c r ea t e a task

10 . . .
11 // add code to a task
12 task . addCode ( ”mycode” ) ;
13

14 // c r ea t e ke r ne l and add i t the tasks
15 . . .
16 }
17 . . .
18 // code o f a task
19 public void mycode ( ) {
20 //code o f the f i r s t segment
21 . . .
22 RTenv . endSegment ( 0 . 3 ) ; // execut i on time
23 . . .
24 //code o f the l a s t segment
25 . . .
26 RTenv . endSegment ( 0 . 1 ) ; // execut i on time
27 }
28 . . .
29 } // end o f c l a s s

Listing 5.9: Modified simulation, version 2.

simulate the computer behaviour, but the simulation of the physical system has to be

provided by authors, who have to write the required Java code or use other suitable

Java packages or tools like EJS.

Normally, physical systems are modelled using Ordinary Differential Equations (ODE).

For this reason typical simulators have various ODE solvers (also called numerical or

integration methods) to simulate these ODE models. The implementation in Java of

a simple ODE solver simulator should not be a difficult task even for a beginner Java

programmer. In fact, there is much open source code available on the Internet such as

the Open Source Physics project (Christian 2007, 2010). However, writing all the Java

code required for creation of highly visual and interactive simulations is a hard (or at

least a time consuming) task for some authors.

Consider, for instance, the ODE model given by Equation (5.1). In this system,

the derivatives are given by the function f(t, x) and the initial state of the system is

represented by xn. To solve an ODE model means to advance the system from an initial

state xn to a final state xn+1. The experimented reader have surely noted that this

action is implemented by the method step() in the sample simulation of Listing 5.7.
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There are many solvers for ODE models, one of the most popular ODE solver is the

classical Runge-Kutta fourth-order method. This algorithm calculates the final state

xn+1 by means of a weighted average given by Equation (5.2).

ẋ = f(t, x), x(tn) = xn (5.1)

xn+1 ≈ xn +
k1 + 2k2 + 2k3 + k4

6
(5.2)

This approximation is fifth-order accurate in the step size for a single step. The values

of k1, k2, k3, and k4 are calculated by Equation (5.3), which represent the derivative at

beginning and middle times. The symbol �t represents the step size, i.e., the interval

time between the initial and final time.

k1 = f(xn)�t

k2 = f(xn + k1/2)�t

k3 = f(xn + k2/2)�t (5.3)

k4 = f(xn + k3)�t

The coordination of both elements, kernel and solver, can be easily done by a simu-

lator by just repeatedly executing the ODE solver and the kernel at specific times, see

Figure 5.15.

When both solver and kernel are executed by the simulator, they internally set their

Figure 5.15: Diagram of an embedded control system simulation with JTT. The kernel simu-
lation is provided by JTT. Solver and View have to be programmed or facilitated by other Java
tools like EJS.
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next time to be called by the simulator. In the case of the solver, this next invocation

time is the next integration step determined by the algorithm that implements the

solver. In the case of the kernel, the next invocation time is based on the time of the

next scheduling event. An event in the kernel can be for instance a task that has finished

a code segment, or a task that was sleeping and should be released.

Obviously, the simulator runs the system at the time given by the minimum of both

next invocation times. Note that when the kernel has to be invoked, the simulator also

has to call the solver in order to get the state of the ODE model at that time. Note also

that the control execution of the kernel is done by the primitive runKernel(), while the

method nextEvent() has to be used in order to get the next scheduling event of the

kernel. These ideas about the kernel and solver integration are clearly exposed in the

static method main of the modified simulation described by Listing 5.4.

5.4.4 Using JTT from Java

In this subsection, a virtual lab of an embedded control system is presented. First, the

model of a DC servo motor is presented. Then, the Java code to simulate the system is

discussed. The objective of this virtual lab is just to show how to create simulations of

embedded control systems using Java and the JTT library.

Embedded Control of a DC Servo

In this subsection a DC servo system controlled by an embedded PID controller (Åström

& Witternmark 1997) is used. The pedagogical purpose of the virtual lab is to show

how the execution time of the controller induces a delay in the feedback loop that might

deteriorate the performance.

The embedded system consists of a periodic task controlling a simple DC servo

system. The physical system to be controlled is modelled as an ODE given by Equations

(5.4) and (5.5).

⎡
⎢⎣ ẋ1

ẋ2

⎤
⎥⎦ =

⎡
⎢⎣ 0 1

0 −1

⎤
⎥⎦

⎡
⎢⎣ x1

x2

⎤
⎥⎦ +

⎡
⎢⎣ 0

1000

⎤
⎥⎦ u (5.4)

y =
[

1 0

]⎡
⎢⎣ x1

x2

⎤
⎥⎦ (5.5)
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The controller is described by a periodic task divided in two subtasks or code seg-

ments. The first code segment computes the control action using a PID algorithm. The

second code segment takes the computed control action and sends out this signal to the

servo system. Since the first subtask consumes much more time from the CPU than the

second one, it can be assumed that only the first code segment spends time.

Simulation of the embedded servo in Java

For simplicity, the simulation of the servo motor follows the same structure presented

in Listing 5.4. However, two new methods are added to this listing: getRate(double[]

state, double[] rate) and step(double dt). Part of the new modified simulation

is presented in Listing 5.6.

The method getRate(double[] state, double[] rate) is shown in line 29 of

Listing 5.6. This method is used to describe the servo as an ODE, and also to update

the derivatives (or rates) given by Equation (5.4). The ODE model of the DC servo has

two states (x1 and x2), but, for practical reasons, the time is considered another state

of the model. Hence, for convenience, the servo has three states (x1, x2 and time). The

states are coded by the array of doubles state, where x1 is state[0], x2 is state[1],

and time is state[2]. Note that the rate of the third state (time) is computed in the

last rate.

The second method, step(double dt), is added to step the process for an increment

of time (dt). This method, see line 36 of Listing 5.10, implements the Runge-Kutta

algorithm to solve the ODE model of the servo. The method uses the variable state

and the method getRate defined previously.

1 import j t t . ∗ ; // Import the JTT package
2 public class MyProcess {
3

4 // I n i t i a l i z e the p r oc e s s
5 public MyProcess ( ) {
6 . . .
7 // c r ea t e a task ( a PID c o n t r o l l e r )
8 Task task = new Task ( ) ;
9 task . s e tPer i od (0 . 012 ) ; // per i od = 12 ms
10

11 // add code to task
12 task . addCode (new CodeSegment ( ) {
13 public double code ( ) {
14 contro lAct i on=ca l c u l a t e ( r e f e r enc e , output ) ;
15 return 0 . 0 2 ; //20ms
16 }
17 }) ;
18 task . addCode (new CodeSegment ( ) {
19 public double code ( ) {
20 input=contro lAct i on ;
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21 return 0 ; // 0ms
22 }
23 }) ;
24

25 // c r ea t e ke r ne l and add i t the task
26 . . .
27 }
28

29 // Gets r a t e o f the ODE model
30 public void getRate (double [ ] s ta te , double [ ] r a t e ) {
31 r a t e [0 ]= s ta t e [ 1 ] ;
32 r a t e [1]=− s t a t e [1 ]+1000∗ input ;
33 r a t e [ 2 ]=1 ;
34 }
35

36 // Step the p r oc e s s f o r an increment o f time
37 public void s tep (double dt ) {
38 getRate ( s tate , r a t e s 1 ) ;
39 for ( int i =0; i<numEqn ; i++)
40 k1 [ i ]= s ta t e [ i ]+ s t epS i z e ∗ r a t e s 1 [ i ] / 2 . 0 ;
41 getRate ( k1 , r a t e s 2 ) ;
42 for ( int i =0; i<numEqn ; i++)
43 k2 [ i ]= s ta t e [ i ]+ s t epS i z e ∗ r a t e s 2 [ i ] / 2 . 0 ;
44 getRate ( k2 , r a t e s 3 ) ;
45 for ( int i =0; i<numEqn ; i++)
46 k3 [ i ]= s ta t e [ i ]+ s t epS i z e ∗ r a t e s 3 [ i ] ;
47 getRate ( k3 , r a t e s 4 ) ;
48 for ( int i =0; i<numEqn ; i++)
49 s t a t e [ i ]= s ta t e [ i ]+ s t epS i z e ∗( r a t e s 1 [ i ]+
50 2∗ r a t e s 2 [ i ]+2∗ r a t e s 3 [ i ]+ r a t e s 4 [ i ] ) / 6 . 0 ;
51 }
52

53 // Computes the PID
54 public double c a l c u l a t e ( r , y ) {
55 P = Kp∗( beta ∗r−y ) ;
56 I = Io l d ;
57 D = Td/(N∗h+Td) ∗Dold+N∗Kp∗Td/(N∗h+Td) ∗( yold−y ) ;
58 I o l d = Io l d + Kp∗h/Ti ∗( r−y ) ;
59 Dold = D;
60 yold = y ;
61 return (P + I + D) ;
62 }
63

64 // Simulate the p r oc e s s
65 . . .
66

67 } // end o f c l a s s

Listing 5.10: Modified simulation, version 3.

The task code of the PID controller is added in the simulation in line 11 of List-

ing 5.10. In the first segment, the task gets the control action (by calling calculate),

which is used in the second segment to feed the input of the servo. The variables

reference, input, and output represent the reference, the input, and the output of the

process, respectively. Note that the code was added by overriding the class CodeSegment.

The rest of the simulation is similar to the first modified version (see Listing 5.8).

Although this version is quite simple, designed just to show how to use the JTT package

in Java, authors with programming skills can use the Java packages awt and swing to

create a more visual and interactive version, adding only a few lines of code to this

simulation (see Figure 5.16).
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Figure 5.16: A GUI of the embedded servo created by using the JTT-Java approach.

5.4.5 Using JTT from EJS

Here, two examples using JTT library in EJS are presented. The first example is the

same simulation of the previous embedded servo system but now using JTT and EJS.

This option can be especially useful for authors who prefer to use all the facilities pro-

vided by EJS to build simulations with a high level of interaction and visualization. The

second example describes the simulation of three inverted pendulums running on one

computer.

Simulation of the embedded servo in EJS

As mentioned before, in EJS every application is divided in two main parts (or panels):

the Model and the View. In this approach, the Model is used to initialize the embedded

system and also to describe the ODE model and the code function of the task. In the

View, the visual elements of EJS are used to build the GUI of the simulation. Before

starting writing code, the JTT package has to be imported and the variables have to be

declared. To import the JTT package, EJS provides a special dialog window to browse

the file jtt.jar and to enter the corresponding import statement (see Section 4.1.1 in

Chapter 4). The Variables subpanel is used to declare the kernel and tasks variables.

In Listing 5.11 the Initialize the Embedded System script is shown. This script is

written in the Initialization subpanel of EJS. Note that the code for Initialize the

Embedded System is almost the same as the code shown in previous Listings. However,

here it is specified that the schedule data must be available for plotting purposes. This

is done using the methods setSchedule and setScheduleWindow. The second method

allows the authors to define the time extension of the schedule data available.

Regarding the task code, it can be seen that the reflection was selected to implement
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1 // I n i t i a l i z e the Embedded System
2 RTenv . s e tRe f l e c t i onContex t ( this ) ;
3 ke rne l = new Kernel ( ) ;
4 ke rne l . s e tSchedu l e ( true ) ;
5 ke rne l . setScheduleWindow (0 . 5 ) ;
6 task = new Task ( ) ;
7 task . s e tPer i od (0 . 012 ) ;
8 task . addCode ( ” taskcode ” ) ;
9 ke rne l . addTask ( task ) ;

10 RTenv . addKernel ( k e r ne l ) ;

Listing 5.11: Creation of the kernel and task in EJS.

the embedded system. Similarly to Listing 5.9, the method setReflectionContext

in Listing 5.11 defines that this is the object where the code function of the task is

located. This should be the general situation in EJS, since methods defined by users,

like the code function taskcode, are normally located in the section Custom. Obviously,

the other way to add task’s code (i.e., extending the class CodeSegment) is also possible

in EJS.

Listing 5.12 shows the method that implements the code function of the taskcode.

Note that taskcode is quite similar to the previous version of the simulation (see List-

ing 5.10). However, since reflection is used here, the task code is divided now into code

segments using the method endSegment. The input argument of endSegment represents

the execution time of the code segment previously mentioned. Other user methods like

calculate, which returns the computed control action, are also implemented in the

section Custom.

1 public void taskcode ( ) {
2 //Update Output
3 output=x1 ;
4 // Cal cu l ate Action
5 contro lAct i on=ca l c u l a t e ( r e f e r enc e , output ) ;
6 RTenv . endSegment ( executionTime ) ;
7 //Send Out Control S i gna l
8 input=contro lAct i on ;
9 RTenv . endSegment (0) ;

10 }

Listing 5.12: The method ”taskcode” used by the periodic task.

In the Evolution subpanel of the Model all the code that should be executed con-

tinuously by the simulation has to be implemented, i.e., the solver and kernel events,

and also the plotting of the schedule data.

Regarding the solver and the plant dynamics, the ODE mode given by Equation (5.4)

is implemented using the ODE editor provided by EJS (see Fig 5.17). As in the previous
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simulation, the Runge-Kutta algorithm is also selected here.

The event detection feature of EJS, by using a bisection method, will be quite useful

here for the detection of scheduling events. The events in EJS are added by pressing

the Events button (see Fig 5.17) and defining two parts. The first part represents the

so-called zero cross function, which returns zero when the event must be triggered. The

second part of the event represents the action of the event, which is a set of statements

that have to be executed when the event is triggered. Take into account that solvers in

EJS always update the state of the ODE model before calling any event.

Using this feature of EJS, the detection of the kernel event is quite simple. The zero

cross function is just the time remaining into the next scheduling event, i.e., return

RTenv.nextEvent(t);. The action is also simple, because the only statement needed

to call the corresponding kernel is RTenv.runKernel();.

To capture the schedule data, the code in Listing 5.13 is also added to the Evolution

subpanel, but in a second evolution page called getSignals (see Fig 5.17). This script

uses the method getSchedule to get schedule data (arrays time and value) of the task.

This data will be used by a polygon (a visual element of EJS) to plot the schedule state

of the task in the GUI of the simulation.

1 . . .
2 //∗∗∗∗∗∗∗ Capture Schedule S i gna l s ∗∗∗∗∗∗
3 taskSchet=task . getSchedu le ( ” time” ) ;
4 taskSchev=task . getSchedu le ( ” value ” ) ;
5 po ints=taskSchev . l ength ;
6 . . .

Listing 5.13: Getting the schedule data of the task.

After implementing the code in the Model, the visual elements provided by EJS are

Figure 5.17: Ordinary differential equations of the system using the editor of EJS. The ODE
models are defined in the Evolution subpanel in EJS.
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used to build the GUI of the simulation. Figure 5.18 presents the final result of the use

of visual elements of EJS. Four kinds of elements are quite important in this view. The

PlottingPanels used to show the axis of coordinates. The Traces: output, reference,

and control, used to plot the output, control, and reference signals of the system. The

state polygon used to graph the schedule data. And finally the executionTime slider

which allows end users to modify the execution time of the first code segment of the

controller (see Listing 5.12).

Figure 5.18: View panel of EJS. Elements on the right are provided by EJS to build the
tree-like structure on the left, which describes the GUI of the simulation of Figure 5.19.

The GUI of the simulation is shown in Figure 5.19. The virtual lab has two plots.

The upper plot shows the signals reference, control, and output of the system. The

bottom plot, presents the schedule data of the task. There is also a slider to control the

execution time and three buttons to control the simulation. Using this virtual lab, end

users can see how the increase of the execution time of the controller negatively affects

the control performance. This can be seen in Figure 5.19, where the execution time has

been changed from 2ms to 8ms at 1.5s.

Control of Three Inverted Pendulums

This virtual lab simulates a more advanced example than the previous ones. In this case,

three inverted pendulums of different lengths should be controlled by a computer with

limited computational resources (Cervin 2003). The control objective of the system is
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Figure 5.19: GUI of the virtual lab developed using the JTT-EJS approach.

to reach a desired position for the cart, while the pendulum maintains its verticality.

A linear digital controller (Åström & Witternmark 1997) is designed (by state-space

method) for each pendulum. The pendulum lengths motivate different periods for the

three controllers (since it is easier to control longer pendulums). Other parameters, such

as control gains or execution times, should be similar in all cases.

The inverted pendulums are modelled by Equations (5.6) and (5.7), see details in

(Dorf & Bishop 2004, Ogata 2006). The variables x and ẋ represent the position and

velocity of the cart, respectively, and the variables θ and θ̇ are the angle and the angular

velocity of the pendulum, respectively. The constants M,m, b, l, I are the cart mass,

pendulum mass, cart friction, pendulum length, and pendulum inertia. The control

objective of the system is to reach a desired position for the cart, while the angle of the

pendulum is totally vertical. As in the previous example, the control task is divided

in two code segments, one segment to compute the control action. The control action

is given by Equation (5.8), where k1, k2, k3, and k4 are calculated by using the LQG

algorithm (Dorf & Bishop 2004, Ogata 2006).
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Figure 5.20: A virtual lab built with EJS and JTT. Three inverted pendulums controlled by
three periodic controllers running on the same computer.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
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u = r − k1x − k2ẋ − k3θ − k4θ̇ (5.8)

The GUI of this virtual lab is shown in Figure 5.20. On the left side, an animation

of the three inverted pendulum is presented. Students can select different types of

references, manually modify desired position points, and even apply disturbances to the

angle of the pendulum. On the right side, users can modify the parameters of all tasks

such as period, execution time, and priority. It is also possible to select one of the three
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scheduling policies, among other options.

The main goal of this virtual lab, from the pedagogical point of view, is to show how

the scheduling policy affects the control performance. For instance, Figure 5.20 shows

the state of the pendulums two seconds after a moderate disturbance was applied. Note

that two pendulums have totally recovered the verticality; however, the largest pendu-

lum is still trying to become stabilized. This fact is a consequence of the scheduling

policy selected. Because the Rate Monotonic (RM at the GUI) was selected, the task’s

priorities are sorted by the period. The largest pendulum has the largest period and

hence, the lowest priority. This introduces variable delays in the execution of the con-

troller, due to the interruption of the other two pendulums (see the schedule plot at the

GUI). If the scheduling policy is changed to Earliest Deadline First (EDF on the GUI),

the CPU is shared between the task in a fairer way, and the verticality of all pendulums

can be achieved at approximately the same time. More details about this system can

be found in (Cervin 2003).

5.5 Soft real-time applications using JTT

JTT has mainly been designed to simulate embedded control systems as shown above.

However, there is also another mode of operation that can be used to create soft real-time

applications.

In some cases, authors may want to execute their embedded control systems as

real applications (possibly interfaced to real plants), and even according to real-time

constraints. This is, in principle, not possible, since the JTT library is used by ordinary

Java programs without any timing guarantees. However, given a fast enough computer,

a Java application may be time-stable over a long execution. Hence, as long as authors

do not care about hard time constraints and just want to execute an application (for

instance to control a real laboratory process), they can use JTT in soft real-time mode

for this purpose.

There are some important differences between the two modes of operation. In sim-

ulation mode, authors can use JTT to create as many kernels as they need. However,

in soft real-time mode only one kernel can be created, since this kernel represents the

computer where the soft real-time application is actually running. Another difference is

the one mentioned about time, since for a real application the time accuracy depends
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on various factors such as the hardware, the operating system, and others.

In order to be concise, only the use of JTT in EJS is explained here, although the use

of JTT in Java presents big similarities to what the reader saw in the previous section.

Since the kernel and task will be executed as Java threads, the View or GUI of the

lab can be considered a soft aperiodic task, since it will be executed only if the kernel

is idle. This aperiodic task should be used to refresh the GUI (e.g. updating schedule

data using the primitive getSchedule) and to detect any interaction of the end user

(e.g. pausing the application using the primitive pauseKernel). When the View task

has finished, it has to run the kernel, by executing the primitive runKernel without

arguments.

To adjust the execution to a defined scheduling policy, the threads (the kernel and

the tasks) are only executed when either of them has a Java monitor called token. The

sleep and wait methods of Java threads, and also the method System.nanotime are

used to control the time constraints of the schedule policy.

One limitation of this implementation is due to the fact that it is not possible to stop

a thread from another thread, this option was deprecated by Java creators because it is

inherently unsafe. This makes it impossible to correctly pre-empt a task that is currently

executing a code segment. Hence, two options were introduced: the concurrent and non-

concurrent case. In the concurrent case, a pre-empting thread is released and is allowed

execution in parallel until the pre-empted thread has finished. In the non-concurrent

case, pre-emption will not occur until the code segment has finished.

Figure 5.21 illustrates both cases. There are two tasks, T0 with three segments and

T1 with four segments. Task T1 has higher priority than task T0. The behaviour depends

on the case selected:

• Non-concurrent case: Task T1 has to wait for the end of the current segment of

task T0. When the segment of task T0 is finished then the first segment of task

T1 is executed. The next segment of task T0 will be executed when the schedule

policy indicates so.

• Concurrent case: Task T1 starts execution at the release time, even though a

segment of task T0 is still being executed. The concurrence situation will finish

when the task T0 segment finishes its code (i.e. when an EndSegment is executed).
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The next segment of task T0 will be executed when the schedule policy decides so.

Both cases have advantages and disadvantages. The concurrent case executes the

task at the release time, but the concurrence introduces an unpredictable jitter in the

execution of both tasks. Moreover, pre-empting a segment can lead to unwanted side-

effects. On the other hand, the non-concurrent case introduces release jitter in the

execution of the tasks.

Figure 5.21: Example of concurrent and non concurrent cases. There are two tasks with three
and four segments respectively. Task T1 has a higher priority than task T0. In the concurrent
case, task T1 is executed even if the segment of T0 has not yet finished, and in the non concurrent
case, task T1 has to wait for the end of the segment of task T0.

5.5.1 Example of a soft real-time application

An example of a real-time application is now described. This example is very simple

and has no real pedagogical value. However, it shows how this mode of operation can

help authors to create interactive (and even remote) real control labs. Remote labs can

be described by a scheme (Figure 5.22) where the tasks require different priorities in

order to provide a good performance for end users (Dormido et al. 2008).

In this example, it is supposed that just two tasks (communication and control tasks)

are needed to implement the server side for a remote lab. The creation of the kernel

and two tasks, task0 and task1, is shown in Listing 5.14. Since in this case no ODE

model is used (actually, a real plant should be used) the first parameter of InitKernel

is null. Note that in this case the execution will use the concurrent approach.

In the creation of the tasks, the values for the periods and offsets are given in seconds.

The scheduling policy is fixed priority, and the task1 has the highest priority. Moreover,

task0 starts after one second, and one and a half seconds later, task1 will execute its

first segment.
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Figure 5.22: Application and tasks diagram of an interactive remote lab.

1 // I n i t i a l i z e the s o f t r ea l−time system
2 RTenv . s e tRe f l e c t i onContex t ( this ) ;
3 ke rne l = new Kernel ( fa l se ) ;
4 ke rne l . s e tSchedu l i ngPo l i cy ( Kernel .FP) ;
5 ke rne l . s e tSchedu l e ( true ) ;
6 ke rne l . setScheduleWindow (10) ;
7 ke rne l . setConcurrent ( true ) ;
8

9 //Create p e r i o d i c Tasks
10 task0 = new Task ( ) ;
11 task0 . s e tPer i od (10) ;
12 task0 . s e tPr i o r i t yVa l ue (2)
13 task0 . s e tO f f s e t (1) ;
14 task0 . addCode ( ” code0” ) ;
15 task1 = new Task ( ) ;
16 task1 . s e tPer i od (10) ;
17 task1 . s e tPr i o r i t yVa l ue (1)
18 task1 . s e tO f f s e t ( 2 . 5 ) ;
19 task1 . addCode ( ” code1” ) ;
20

21 //Add tasks and ke rne l
22 ke rne l . addTask ( task0 ) ;
23 ke rne l . addTask ( task1 ) ;
24 RTenv . addKernel ( k e r ne l ) ;

Listing 5.14: Creation of the kernel and tasks for the real-time application.

The codes for both tasks are presented in Listing 5.15. Both code functions call

the method sleepAndEndSegment(), which generates a pause (using the Java sleep

method) of the thread for 1000 milliseconds. After the pause, the RTenv.endSegment

method is executed to indicate the end of the segment. Hence, task0 has three segments

of one second, and task1 has two segments of one second.

1 public void code0 ( ) {
2 sleepAndEndSegment (1000) ;
3 sleepAndEndSegment (1000) ;
4 sleepAndEndSegment (1000) ;
5 }
6

7 public void code1 ( ) {
8 sleepAndEndSegment (1000) ;
9 sleepAndEndSegment (1000) ;

10 }

Listing 5.15: Code for both tasks used in the real-time application.

When the application is executed, it is possible to visualize the state of both tasks
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for the first eight seconds. In Figure 5.23a, the schedule data is presented. In this case,

it can be observed that the state of the task1 (upper signal) indicates that the first

segment is executed at the release time (two and half seconds). Hence, the execution of

this segment is concurrent with the execution of the second segment of task0 for half a

second.

Figure 5.23: Schedule plots for a) concurrent and b) non-concurrent cases.

If a non-concurrent case is selected for this application, the schedule signals are now

different from the previous case. The results are presented in Figure 5.23b, and it can

be noticed that the first segment of task1 is delayed until the end of the second segment

of task0, before executing.

Regarding the interactive remote lab, probably the performance of the concurrent

case is better since at least the control task (the highest priority task here) will start

to execute when the period is reached. This is very important, in particular, if the user

introduces some disturbance in the plant.

5.6 Conclusions

The chapter describes two approaches to create virtual laboratories of embedded control

systems with pedagogical purposes.

The first approach uses previous work of the thesis to add interactive human inter-

faces. The engineering simulations of real-time control systems are created by using the

MATLAB toolbox TrueTime. The interactive user interfaces are built with the help

of Easy Java Simulations as Chapter 4 shows. Although this way to build interactive

simulations of real-time control systems in general produces good results, the simula-

tion performance could be too slow in some cases. This is a consequence mainly due

to the high number of events that TrueTime simulations require. In order to speed up

the interactive simulations, a new feature to manipulate Simulink models from Java was

added to the Simulink class. This approach ends describing in detail the implementation

of some embedded control virtual laboratories.
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Since TrueTime is a MATLAB toolbox, the approach described before is limited to

MATLAB users, which can be an important restriction for instructors and students.

For that reason, a Java library called JTT, based on TrueTime task model, has been

implemented. The library is focused on providing a minimal set of features to implement

educational real-time control simulations. The approach can use JTT and Easy Java

Simulations together to add interactive human interfaces to the virtual laboratories

developed. The approach shows some examples of use of the JTT library. Additionally,

the JTT library provides some interesting features to develop soft-real time application.

An example of use of this feature is also described.
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Chapter 6

Experiments on Virtual
Laboratories

The ultimate goal of building a simulation for a virtual laboratory is that of performing

interesting experiments with the simulation. A typical definition of experiment states

that an experiment is the process of extracting data from a system by exerting it through

its inputs (Cellier 1991). This definition needs to be made more general when the

experimentation system is a computer simulation. Indeed, in a computer simulation,

not only are all its inputs and outputs accessible, but modern modelling tools even

allow for a direct control of the model so that its behaviour can, to a certain extent, be

changed in run-time. Traditionally, users of virtual laboratories are expected to perform

experiments by interacting with the simulations’ graphical user interface (GUI). But

this frequently poses important limitations.

Consider, for instance, a computer simulation of the control of the level of a tank.

An experiment for this simulation could consist of the following actions:

1. Set initial conditions.

2. Let the simulation evolve until the initial set point is reached with a 5% tolerance.

3. Increase the set point by 50%.

4. Let the system evolve until the exact moment when the level reaches the new set

point with a 5% tolerance.

5. Compute the time elapsed in step 4.

6. Repeat steps 1 through 5 one hundred times with different sets of control param-

eters.
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7. Conduct an analysis on the results thus obtained.

This set of actions cannot be executed trivially, or in reasonable time, by a user

interacting with the GUI. However some actions might be simply impossible without

computer help. Instead, it would be preferable that users be able to count on a flexible

experimentation language that allowed them to instruct the simulation to automatically

run this experiment. This way, the virtual laboratory is treated as a complete system in

which all variables are observable, and all variables and the simulation’s execution itself

are controllable.

An experimentation language could be also used by teachers to run an automatic

process of student’s work evaluation. For instance, a control problem with different

design requirements can be given to the students. They are then asked to determine

the control parameters that meet the goals. Finally, teachers take the proposed control

parameters and run a simulation of the control system to check if the design requirements

are reached.

The next section introduces some previous experiences about performing experiments

with modelling tools. The chapter then presents the main elements required by an

experimentation language. These elements are implemented using the authoring tool

Easy Java Simulations. Two examples are also shown using the implementation. Finally

main conclusions and further work is discussed in the last section of the chapter.

6.1 Existing experimentation languages

This work defines a standard set of actions that computer simulation experiments should

implement. It does so by designing an Application Programming Interface (API) or set

of instructions which simulations should conform to in order to provide standard ex-

perimentation capabilities. Some modelling or simulation environments already include

scripting facilities that allow users to run certain types of experiments (Brück et al.

2002, Elmqvist et al. 1998, Fritzson et al. 2002). Among them ACSL (Software 1995),

EcosimPro (Internacional 2010), and Dymola (Brück et al. 2002).

ACSL stands for Advanced Continuous System Language, and it was one of the first

commercially available modelling and simulation tools designed for simulating continu-

ous systems. ACSL has been validated through more than 30 years of continuous use by
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the world’s most demanding simulation professionals. Nowadays its successor (acslX)

and also other simulation tools have inherited its main languages features.

A simple example of the use of ACSL is described in Listings 6.1 and 6.2. The

first listing shows the implicit program which defines a bouncing ball model. The two

simple differential equations which involve the velocity and height are computed using

the command INTEG.

1 DERIVATIVE ! bouncing b a l l
2 CONSTANT v0=0.0 , h0=10.0 ! i n i t i a l c ond i t i on s
3 CINTERVAL c i n t =0.1 ! communication i n t e r v a l
4 ! equat i ons
5 v e l o c i t y = INTEG( grav i ty , v0 )
6 he ight = INTEG( ve l o c i t y , h0 )
7 ! s top cond i t i on
8 TERMT( t . ge . 20 , ’Time Limit ’ )
9 END ! o f d e r i v a t i v e

Listing 6.1: Bouncing ball model.

The model is simulated by using the commands of Listing 6.2. Here a procedure,

called simulateball, is defined to simulate and plot the height and velocity of the

bouncing ball model (defined in Listing 6.1). The procedure is then invoked after setting

the initial height for 10.0 and 20.0 meters as the listing shows.

1 SET TITLE = ’ Bouncing b a l l example ’
2 SPARE
3 OUTPUT t , v e l o c i t y , he i ght /NCIOUT=5 ! L i s t to be pr inted dur ing run
4 PREPARE t , v e l o c i t y , he i ght ! L i s t to be saved f o r l a t e r use
5 PROCEDURE s imu l a t eba l l
6 START
7 PLOT ve l o c i ty , he i ght
8 END ! o f procedure s imu l a t eba l l
9 SET h0=10.0; s imu l a t eba l l ! Plot a f i r s t s imulat i on
10 SET h0=20.0; s imu l a t eba l l ! Plot a second s imulat i on
11 . . . .
12 SPARE
13 QUIT

Listing 6.2: Bouncing ball run time commands.

The script of Listing 6.2 shows how to manipulate programatically the simulation

in ACSL. Dymola also support a script facility that makes it possible to load model li-

braries, set parameters, set start values, simulate and plot variables by executing scripts.

The script facility is useful when running a series of simulations such as a parameter

study. Listing 6.3 shows an example of the Dymola’s scripts, here the bouncing ball

model is run ten times for different heights. Dymola’s scripts facility allows very little

flexibility, since there is no possibility to manipulate the simulation while this is being

executed.
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1 . . .
2 //Open the model
3 openModel ( ”bounce .mo” ) ;
4

5 //Compile the model
6 t r ans l ateMode l ( ”bounce .mo” ) ;
7

8 //Run the exper iments
9 for i i n 1 : 10 loop

10 bounce . he i ght=i ∗10 ;
11 bounce . v e l o c i t y =0;
12 s imulateModel ( ”bounce ” , startTime =0, stopTime=10, r e s u l t F i l e=”out ”+Str ing ( i ) ) ;
13 end for ;
14

15 // Close the model
16 c loseModel ( ) ;
17

18 // Process the r e s u l t f i l e s
19 . . .

Listing 6.3: A script to perform an experiment with Dymola.

The work described in this chapter has been inspired by these previous experiences

but has also added its own requirements to create a universal, full-fledged specification

that provides more general and flexible features.

6.2 Defining an experimentation language

In order to test the viability of the language, it has been implemented using the authoring

tool Easy Java Simulations (EJS). EJS is used due to the facilities that this software

provides to create interactive simulations in Java, described in Chapter 4. Furthermore,

the tool can incorporate existing Java packages, such as JIMC or JTT, to create the

simulation. The goal is that these interactive simulations implement the experimentation

language. Further details about the implementation of the experimentation language on

EJS can be found in (Esquembre et al. 2007).

6.2.1 Elements of an experimentation language

The objective is to be able to control every aspect of a simulation as if it were a com-

pletely observable and controllable component. The experimentation language should

then contain the following categories of elements, or functions, in its API:

• Elements to run one or more instances of a simulation.

• Elements to access variables and routines.

• Elements to specify algorithms.
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• Elements to control the execution of the simulation.

• Elements for user input.

• Elements to allow for comparison of results.

These categories are discussed now in more detail.

Elements to run one or more instances of a simulation

Users may want to run different simulations, or several instances of the same simulation,

at the same time, in order to compare results among simulations. The API should then

provide an instruction to launch any simulation users have access to, returning a unique

identifier for it.

Users should also be able to specify whether they want the running simulations to

be executed either synchronously or asynchronously.

Synchronized simulations advance (step) through their evolution cycle at the same

pace. In particular, if the simulations use the same increment of time for each step, their

internal time will remain synchronized. The synchronous case can be useful to highlight

differences between the simulations’ outputs that run at the same time but with distinct

initial conditions.

Asynchronized simulations are stepped at different moments, advancing each time

when the experiment requires it. This case could be interesting to start or pause a

simulation instance in response to an experiment condition or to some user inputs.

Elements to access variables and routines

Users need to be able to read and to set the value of the variables of the model of

a simulation at any time. This can only be restricted if the simulation designer has

declared some of the model variables as non-accessible (private). The same principle

applies to routines or functions (methods) that the simulation defines. Users should be

able to easily obtain information about available variables and methods. Notice that,

at first glance, in principle, the declaration of some methods or variables as private

could be considered a restriction of the full controllability and observability required by

the experimentation language. However, the encapsulation (information hiding) has to

be considered a good principle of the simulation design, since it can help protect the
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correctness of the model behaviour by adding a suitable interface to manipulate the

simulation.

Elements to specify algorithms

The experimentation language should allow users to perform any required computation.

These computations can make use of variables and methods from the simulation model,

as well as of additional ad-hoc (local) variables defined by users. The language must pro-

vide for standard algorithmic constructions to allow users to write complex algorithms,

if required.

Elements to control the execution of the simulation

Users may want to control the simulation execution. This includes not only standard

play and pause instructions that start/stop the simulation, but also instructions to run

the simulation until a given condition is met, such as (in human language):

run simulation until the tank’s level is higher than ten centimeters.

The experimentation environment should then be able to hand over the control of the

computer resources to the running simulation and wait until the simulation meets the

given criteria and pauses, giving then control back to the experiment.

Another feature required is the possibility of planning events in the future, such as:

run simulation increasing the set point by 50% when time is ten seconds.

This can be especially useful for instructors that want to generate demonstrations

(demos) of the use of the simulation in order to describe some specific functionality of

the virtual lab to the students.

Elements for user input

On occasion, partial results of the experiment may require user input. Functions in this

category should allow displaying messages or asking users to enter one or more numeric

values, choose a given option out of several offered, or confirm an action. Besides, if it

is necessary, the experiment can provide the possibility that end users interact with the

GUI of the simulations at any time.
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Elements to allow for comparison of results

In experiments where a simulation is run several times, each under different conditions,

users will most likely want to store intermediate or output results in order to compare

them at the end of the different runs of the simulation. Hence, the language should

provide some kind of memory where to store, and later retrieve, these values. Also, it

should provide a means to visually compare output data from a simulation produced in

the form of a graph. For instance, users can be interested in comparing the plots of the

evolution in time of the response of a controller under different tuning parameters.

6.3 Implementation

Easy Java Simulations has been chosen for the implementation because it offers several

appropriate characteristics as commented in Chapter 4. EJS falls into the category

of code generators, which makes it possible to use all the constructions provided by

a standard programming language. The fact that EJS is based on Java has also been

crucial in this work because it helps manage several instances of a simulation, or address

compound objects (such as graphs) in them, in an object-oriented way. Finally, users

of EJS can easily inspect, understand, and, if necessary even modify, other people’s

simulations, which greatly increases their observability and controllability.

The possibility of defining experiments for existing simulations has been added to

EJS by loading the XML file that describes the simulation (which may have been created

by another person) and adding pages defining experiments for it. When the simulation

is re-generated, it adds to its standard menu an entry for each of the experiments thus

defined. Users simply select the experiment as one pop-up menu option. When running

the simulation as an applet, the experiments can also be accessed using hyper links

embedded in the HTML page that contains the simulation. This feature provides a way

to include, in a very natural way, the execution of experiments on the simulation in

curricular material developed in HTML web pages.

To implement the experimentation language, new built-in methods have been added

to Easy Java Simulations that provide the necessary functionality. Figure 6.1 shows the

new panel of EJS, called Experiments, where the experiments for the simulation can be

described.
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Figure 6.1: The Experiment panel in EJS.

EJS uses the code of an experiment, described in the panel, to generate an inner

class that extends the abstract class Experiment, shown in Listing 6.4. The generated

class overrides the method run of Experiment with the experiment’s code.

1 . . .
2 public abstract class Experiment implements Runnable {
3 . . .
4 public Experiment ( Str ing name , Str ing d e s c r i p t i o n ) {
5 name = name ;
6 d e s c r i p t i o n = d e s c r i p t i o n ;
7 }
8

9 public void runExperiment ( ) {
10 i f ( thr ead !=null ) stopExper iment ( ) ;
11 thr ead = new Thread ( this ) ;
12 thr ead . s e t P r i o r i t y (Thread .NORM PRIORITY) ;
13 shouldStop = fa l se ;
14 thr ead . s t a r t ( ) ;
15 }
16

17 public void abortExper iment ( ) {
18 . . .
19 }
20

21 abstract public void run ( ) ;
22 . . .
23 } // End of c l a s s

Listing 6.4: The Java abstract class for experiments.
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The next section describes how the implementation has been done for each category

of the experimentation language.

6.3.1 Elements to run one or more instances of a simulation

The Application Programming Interface provides two instructions to create a running

instance of a simulation:

public Model runSimulation();
public Model runSimulation(String classname);

These are instance methods of a predefined object called simulation, which points

to the simulation itself. The first method creates and runs a copy of the simulation from

which the experiment is initiated, because all simulations created with EJS extend the

abstract class Simulation. The second method creates a copy of the simulation with

the given class name. Every Java simulation is an object of a given class and several

classes can be packaged together in compressed archives called JAR files. Users can

instantiate any simulation which is in the same JAR file as the original simulation or

in any other JAR file included in the simulation’s class path. EJS simulations can add

JAR files to their class path using the field Imports in the Information Panel of EJS as

was described in Chapter 4.

Listing 6.5 shows the implementation in the class Simulation of both methods to

run the simulation.

1 public abstract class Simulat ion implements Runnable , Act i onL i s tener {
2

3 public Model runSimulat ion ( ) {
4 return runSimulat ion ( null ) ;
5 }
6 public Model runSimulat ion ( Str ing classname ) {
7 try {
8 Class theClas s ;
9 i f ( classname==null ) theClas s = getModel ( ) . getC las s ( ) ;
10 else theClas s = Class . forName ( classname ) ;
11 Model simModel = (Model ) theClas s . newInstance ( ) ;
12 Simulat ion top = getTopMaster ( ) ;
13 simModel . getS imulat i on ( ) . master = top ;
14 simModel . getS imulat i on ( ) . i sP l ay i ng = i sP l ay i ng ;
15 simModel . getS imulat i on ( ) . update ( ) ;
16 top . s l a v eL i s t . add ( simModel ) ;
17 return simModel ;
18 }
19 catch ( Exception exc ) {
20 exc . pr intStackTrace ( ) ;
21 return null ;
22 }
23 }
24 . . .
25 }

Listing 6.5: Instance methods defined in the abstract Java class Simulation.
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Simulations created using either of these two methods appear automatically on the

computer screen and are by default synchronized with (i.e., they are subordinates of) the

original one. Subordinates of a simulation can be freed (made to run asynchronously)

using the simulation instance method:

public void freeSimulation (Model subordinate);

Finally, subordinate simulations can be disposed of by calling one of the following

instance methods of simulation:

public void killSimulation(Model subordinate);
public void killAllSimulations();

Although uncommon, a single simulation can create more than one subordinate

simulation, which can in turn create their own subordinate simulations. All subordinate

simulations in the same family are, by default, synchronized. By exiting any of them,

one exits all the simulations in the family.

6.3.2 Methods to access variables and routines

Experiments are created and run as part of the model of a simulation. This gives them

direct access to the model’s variables and methods. Both versions of the runSimulation

method described above return an object of the corresponding model class, which is

an implementation of the generic Java interface org.opensourcephysics.ejs.Model,

included by default in every EJS simulation’s JAR file. Users need to typecast this object

into a local variable of the correct type in order to access the model’s public variables

and methods. The standard object-oriented dot mechanism of Java can then be used to

address any variable or method in the simulation model. For example, suppose that an

experiment from a MySimModel class simulation has been run, having a variable called

x and a method called action. The experiment can then use constructions of the form

shown in Listing 6.6.

1 // Create a subord inate i n s tance o f t h i s s imulat i on
2 MySimModel sub = (MySimModel ) s imu l a t i on . runSimulat ion ( ) ;
3 x = 1 . 0 ; // Sets the x va r i ab l e o f t h i s s imulat i on
4 act i on ( ) ; // Invokes the act i on method of t h i s s imulat i on
5 sub . x = 0 . 0 ; // Sets the x va r i ab l e o f the subord inate
6 sub . act i on ( ) ; // Invokes the s u b o r d i n a t e s act i on method
7 play ( ) ; // Plays both s imu l a t i on s synchronous ly

Listing 6.6: Accessing model’s members.
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6.3.3 Elements to specify algorithms

Since EJS is a code generator tool, it can be used to allow users to write any valid

Java construction in the algorithms of the experiments. These constructions can, and

typically do, make use of the methods defined in the experimentation API. When the

simulation is generated, EJS compiles the Java code for the experiments together with

the rest of the simulation model.

6.3.4 Elements to control the execution of the simulation

EJS already includes a set of predefined methods that allow users to control the execution

of a simulation. These methods are described in the EJS manual and feature:

void _play (); // Plays the simulation

void _pause (); // Pauses the simulation

void _step (); // Advances by one time step

void _reset (); // Completely resets the simulation

Because experiments are run in a Java thread different to that of the simulation

itself, the API has extended this set with the method:

void _playAndWait();

which has a similar effect to play in the original set, but delays the execution of code

after this instruction until the simulation pauses.

Listing 6.7 shows the implementation of the methods playAndWait and pause.

Both methods call the respective methods to play and pause the simulation. However,

they also executes the methods controlForSimulation and controlForExperiment

respectively from an instance of the class SimulationExperiment shown in Listing 6.8.

As their names indicate, the last two methods are used simply to synchronize(by calling

wait and notify functions) the execution of the two threads, the simulation and the

experiment.

1 public void playAndWait ( ) {
2 s imu l a t i on . play ( ) ;
3 cSE . contro lForS imulat i on ( ) ;
4 }
5 public void pause ( ) {
6 s imu l a t i on . pause ( ) ;
7 cSE . controlForExper iment ( ) ;
8 }

Listing 6.7: Methods to control the simulation.
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1 private class SimulationExperiment {
2 public synchronized void contro lForS imulat i on ( ) {
3 try { wait ( ) ; }
4 catch ( Exception exc ) {}
5 }
6 public synchronized void controlForExper iment ( ) {
7 no t i f y ( ) ;
8 }
9 }

Listing 6.8: Inner class SimulationExperiment.

Once the simulation is playing, it can be paused by either user interaction, an invo-

cation of the pause method included in the original simulation, or by using one of the

following new methods:

void _scheduleCondition(String conditionName);
void _scheduleEvent(String eventName);

These two methods introduce the possibility of executing code whenever a given

condition is satisfied. This code can be used to simply pause the simulation or to

execute other more complex actions. The parameter of both instructions refers to an

instance of one of the new constructions called scheduled condition and scheduled event,

respectively, which can be defined using a special editor provided by EJS.

Both constructions consist of two methods each. The first method determines

whether a given condition is satisfied by the model state. The second method allows a

user-defined action that will be invoked when this condition is met. Figure 6.2 shows

the editors to add the functionality.

a) b)

Figure 6.2: a) Editor for scheduled conditions, b) Editor for scheduled events.

There are some differences between both constructions. Scheduled conditions (see

Figure 6.2a) are determined by a method returning a boolean value, which is tested after

every simulation step. If the method returns a true value, the corresponding action is
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executed. Scheduled events (see Figure 6.2b) are associated to any of the systems of

ordinary differential equations (ODEs) defined by the model as part of its evolution

algorithm, and are triggered by the change in sign of a positive function of the variables

involved in that system of ODEs. When the function returns a negative value, the

simulation detects the event, goes back to the exact instant in time when the function

crossed zero, and applies the event action at that instant. In this sense, scheduling an

event is similar to adding new events to the original system of ODEs in runtime. In

contrast with normal events, though, scheduled events (and scheduled conditions, as

well) disable themselves automatically once they take place.

6.3.5 Elements for user input

The API provides a new predefined input object that implements a simple mechanism

for user input during an experiment. This object has the following instance methods:

int confirmMessage (String message , int type);
int selectOption (String message , String options);
boolean inputVariables (String message , String variables);

The first of these input methods is used to display a message the user must acknowl-

edge or prompt the user to confirm a yes/no type question. The second method is used

to request the user to select one of several possible options. The third method displays

a table in which the user needs to input a value for each of the variables specified by

a comma separated list of names. These names create internal variables in the input

object whose values can be retrieved using the getter methods:

boolean getBoolean (String variable);
int getInt (String variable);
double getDouble (String variable);
String getString (String variable)
Object getObject (String variable);

The last of these getter methods can be used to retrieve arrays or other Java objects

with a textual representation. The variables can be assigned values previously to user

input using the setter methods:

void setValue (String variable , boolean value);
void setValue (String variable , int value);
void setValue (String variable , double value);
void setValue (String variable , Object value);
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These values will then be displayed as default values by the input table. By contrast

to the memory object discussed below, variables in the input object are cleared at the

beginning of each experiment.

6.3.6 Elements to allow for comparison of results.

The API also provides a new predefined object called memory, which can be used to

store and retrieve data while running an experiment or across different experiments.

The memory has the same setter and getter methods as the input object, if only its

variables remain accessible from experiment to experiment, unless its instance method:

void clear ();

is explicitly invoked. Data in the memory can be used for post-experiment analysis.

Comparing graphs is possible thanks to the object oriented nature of Java. Any

graphical element in the simulation view is a public object whose methods can be ac-

cessed just like any other method of the simulation. A new instruction has been added

to the API that allows cutting and pasting drawable elements from one graphic panel

to another:

void reparentDrawable(String childName , ControlElement newParent);

Drawable is the generic name we use to refer to objects which draw on graphic panels.

ControlElement is the parent class of all graphic elements in the view of a simulation

created with EJS. This method can be used to clearly display a drawable object which

is originally part of, and receives data from, one simulation into the drawing panel of

the other simulation. See Experiment II in next section for an example of use.

6.4 Examples of experiments

In this section two examples of experiments created for a simulation of the PI (propor-

tional integrator) control of the level of a tank. The simulation’s typical behaviour for

default Kp and Ti values of the PI controller is shown in Figure 6.3.

d level

d t
=

−a

A

√
2 · g · max(level, 0) +

Kflow

A
· u (6.1)

The dynamics of this single tank simulation, given by Equation (6.1), is determined

by the Dynamics page of ordinary differential equation shown in Figure 6.4.
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Figure 6.3: Typical response of the single tank simulation.

Figure 6.4: Dynamic equations of the single tank system.

The control signal u is computed in the second page of the evolution of the model

using the code described in Listing 6.9.

1 i f ( automaticMode ) {
2 // P + I act i on
3 u = Kp∗( s e tPo int − l e v e l ) + i n t e g r a l ;
4 i f (u<0) u = 0 ;
5 // Update i n t e g r a l act i on
6 i n t e g r a l = i n t e g r a l + Kp∗dt/Ti ∗ ( s e tPo int − l e v e l ) ;
7 }

Listing 6.9: Computing the control action.

which implements a digital PI controller.

219



Chapter 6. Experiments on Virtual Laboratories

6.4.1 Experiment I. Executing a scheduled event

Here a very simple experiment is described; it consists in doubling the set point when

the time equals 200 seconds is described. For this, a scheduled event in the dedicated

panel of EJS is first defined, as shown in Figure 6.5.

Figure 6.5: An scheduled event to change the set point at 200 seconds.

As the code in the figure shows, the event is triggered when time exceeds the 200

seconds allocated for the event. When the simulation detects the crossing condition,

it regresses through the Dynamics ODE to find the exact state at instant t = 200. It

then executes the event action which doubles the set point. Notice that events defined

using this editor are independent of events the simulation may have defined as part of

its model and are not activated until explicitly set by an scheduleEvent instruction.

As mentioned above, scheduled events are automatically removed from the ODE list of

events once they take place.

Then, a new page with the code displayed in Figure 6.6 is created in the panel for

experiments in EJS’ interface.

Once the simulation is run the pop-up menu of the main drawing panel includes an

entry for the experiment. See Figure 6.7 (Experiment II defined in the next subsection

is also displayed).

Selecting this experiment in the menu produces the results of Figure 6.8.

When the simulation is finally paused, the memory object stores the values of the

set point and the level. These values can be used for further studies.
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Figure 6.6: Definition of experiment I in EJS.

Figure 6.7: Running experiment I from the simulation interface.

6.4.2 Experiment II. Comparing graphic outputs

In this example, the responses of the PI control with different Kp and Ti parameters are

compared. A simplistic solution would be to run the simulation manually twice, once

for each set of parameters, take snapshots of the evolution graphs, and then compare

them looking at each graph side by side. A better procedure, though, is to conduct

an experiment that automatically creates a second copy of the simulation, changes its

parameters, and then runs both simulations synchronously, displaying the graph of their

responses in the same plot. The experiment code is shown in Listing 6.10.

1 r e s e t ( ) ; // Resets the s imulat i on
2 // Creates a subord inate s imulat i on
3 SingleTank subord inate = ( SingleTank ) s imu l a t i on . runSimulat ion ( ) ;
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Figure 6.8: Output of experiment I.

4 subord inate .Kp = 30 ; // Sets the s u bo r d i n a t e s Kp
5 subord inate . Ti = 1 . 0 ; // Sets the s u b o r d i n a t e s Ti
6 java . awt . Color co l o r = java . awt . Color .RED; // Chooses a co l o r
7 // Changes the co l o r o f the s u bo r d i n a t e s l e v e l t r a c e
8 subord inate . v iew . l ev e lT r ac e . g e tS ty l e ( ) . setEdgeColor ( co l o r ) ;
9 // Reparents the subord inate ’ s l e v e l t r a c e i n to the p l o t t i n g panel

10 subord inate . v iew . reparentDrawable ( ” l ev e lT r ac e ” ,
11 view . getElement ( ” p l o t t i ngPane l ” ) ) ;
12 subord inate . v iew . d i s po s e ( ) ; // Hides the subord inate ’ s view
13 play ( ) ; // p lays both s imu l a t i on s

Listing 6.10: Experiment II.

The output of this experiment is shown in Figure 6.9.

Figure 6.9: Output of experiment II.

6.4.3 Advanced Experiments

Instructors can develop advanced experiments to teach control engineering by using the

experimentation environment and some Java programming knowledge.
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Figure 6.10: System responses with anti-windup method. The results shows the influence of
Tr on the output.

Figure 6.10 depicts the result after execute the experiment described in Listing 6.11.

This experiment uses a simulation of a single tank (modelled as an integrator) con-

trolled by a PI controller to demonstrate the influence of the reset time Tr parameter on

controllers with anti-windup. The same simulation is run four times but with different

values of Tr. System responses with bigger values of reset time shows worse perfor-

mance. The anti-windup techniques are required to avoid the saturation of the integral

term of a PID controller due to the limitations of actuators (Åström & Hägglund 2005).

1 //Prepare the experiment
2 a l e r t ( ” P layFi e ld” , ”Experiment 1” , ”Varying Tr in a PI c o n t r o l l e r ” ) ;
3 scheduleEvent ( ” s e tpo i n t 2” ) ;
4 scheduleEvent ( ” d i s turbance 2” ) ;
5 . . .
6 r e s e t ( ) ;
7

8 //Run the experiment
9 Tr=Ti=100.0 ;
10 antiwindup=true ;
11 for ( int i =4; i >0; i−−){
12 i f ( i==4) {
13 view . Level . g e tS ty l e ( ) . setEdgeColor ( java . awt . Color .BLUE) ;
14 view . Trace U . ge tS ty l e ( ) . setEdgeColor ( java . awt . Color .BLUE) ;
15 } else i f ( i==3) {
16 view . Level . g e tS ty l e ( ) . setEdgeColor ( java . awt . Color .RED) ;
17 view . Trace U . ge tS ty l e ( ) . setEdgeColor ( java . awt . Color .RED) ;
18 } else i f ( i==2) {
19 view . Level . g e tS ty l e ( ) . setEdgeColor ( java . awt . Color .BLACK) ;
20 view . Trace U . ge tS ty l e ( ) . setEdgeColor ( java . awt . Color .BLACK) ;
21 } else {
22 view . Level . g e tS ty l e ( ) . setEdgeColor ( java . awt . Color .GREEN) ;
23 view . Trace U . ge tS ty l e ( ) . setEdgeColor ( java . awt . Color .GREEN) ;
24 }
25 playAndWait ( ) ; // p lays the s imulat i on
26 i n i t i a l i z e ( ) ;
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27 connect=fa l se ;
28 t=u=xc=setPo int=setPo int meter s=l e v e l=I=P=0;
29 d=15; eva luateDi s turbance ( ) ; checkDisturbance ( ) ;
30 Tr=Tr / 2 . 0 ;
31 }
32

33 // Fin i sh the experiment
34 a l e r t ( ”P layFi e ld” , ”Experiment 1” , ”End of experiment ” ) ;

Listing 6.11: Experiment to evaluate the influence of reset time of the anti-windup method.

Figure 6.11: Auto-tuning of PI controller.

Other advanced experiment, described in Listing 6.12, is depicted on Figure 6.11.

In this case the experiment uses a simulation of a single tank (but now modelled as a

first order system) controlled by a PI controller to demonstrate the relay tuning method

(Åström & Hägglund 2005). The simulation starts with the tuning phase at time = 1000.

The amplitude and period of the system response is used to tune the PI controller. After

time = 2000, both controllers the original and the computed by the tuning method are

used to control the system.

1 //Prepare the experiment
2 a l e r t ( ”P layFi e ld” , ”Experiment 8” , ”PI parameters ”+” Kp: ”+K+” Ti : ”+Ti ) ;
3 scheduleEvent ( ” s e tpo i n t 2” ) ;
4 scheduleEvent ( ”manual” ) ;
5 scheduleEvent ( ” r e l ayO f f ” ) ;
6 scheduleEvent ( ” relayOn ” ) ;
7 . . .
8 r e s e t ( ) ;
9

10 //Create a subord inate
11 subord inate = ( SingleTank ) s imu l a t i on . runSimulat ion ( ) ;
12 . . .
13

14 //Compute PI parameters
15 experimentOn=true ;
16 playAndWait ( ) ;
17 cycleAT=t−cycleAT ;
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18 kcAT=4∗1/(Math . PI∗Math . s q r t ( 0 . 2 ∗ 0 . 2 ) ) ;
19 experimentOn=fa l se ;
20

21 //Test new PI parameters
22 onoffMode = fa l se ; PIDMode = true ; manualMode = fa l se ;
23 s e tPo int =50;
24 s e tPo int meter s=FS out ∗ s e tPo int / 1 0 0 . 0 ;
25 subord inate .K=0.5∗kcAT ;
26 subord inate . Ti=2∗cycleAT/Math . PI ;
27 subord inate . evaluatePID ( ) ;
28 . . .
29 playAndWait ( ) ; // p lays the s imulat i on
30

31 // Fin i sh the experiment
32 a l e r t ( ” P layFi e ld” , ”Experiment 8” , ”End of experiment ” ) ;

Listing 6.12: Experiment to demonstrate the auto-tuning method of a PID.

The advanced experiment described here, just show the possibilities provided by the

experimentation environment implemented in Easy Java Simulations. Other advanced

experiments can be obtained for instance by combined the experimentation environment

with interoperate approach or with the use of JTT library.

6.5 Conclusions

The described implementation is being used for creating different types of experiments

of practical use in teaching Automatic Control and other topics (such as Physics). The

initial results show the implementation is both simple and flexible, allowing it a great

deal of control of the running simulation. The object-oriented nature of Java has been

crucial in making the implementation very natural. The way Easy Java Simulations

lets users inspect simulations created by other people and access all its variables and

methods is also helps to reduce to a real minimum the documentation work required by

the author of the original simulation.

More generally, the API can be the basis for the definition of a standard experimen-

tation language to which other modelling and simulations tools could adhere. This is

the goal in the coming future. The current, experimental version of EJS that supports

the features described in this paper can be downloaded from:

http://www.um.es/fem/publications/2007/ Ejs070507.zip
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Chapter 7

Conclusions and Future Works

Information and communication technologies have a widespread impact on modern life

and education is no exception. These technologies have enabled many advances in an

increasing number of fields, such as the Internet, web services, video conferences, web-

based courses, interactive graphics, and others.

Control education has also been affected positively by these technologies. Virtual and

remote laboratories are increasingly being used to enhance the way in which students

interact with simulated or real resources. This interaction offers new learning elements

without the typical time, spatial, or pace constraints of traditional laboratories.

Although a lot of advances in these computer-based laboratories have been done for

the scientific community. There is room for improvement.

For instance, many simulations do not allow user interaction while the simulation

is running, which forces students to wait until the end of the simulation to be able

to experiment the system with different parameters. Other simulations provide simple

plots of the signals of the model to show the behaviour of the system, which are not

explanatory enough for students. However, the advanced graphical power of modern

computers can provide more flexible and human-readable learning material.

These interesting features can be added, as a human interface layer, to engineering

simulations in order to ease the learning process and to reduce the time required to gain

insight into fundamental engineering concepts.

However, the creation of computer-based laboratories with advanced human inter-

faces is not an easy task. Many engineering software provide good libraries to build

engineering simulations, but they normally lack tools to add advanced human inter-

faces. Thus, the creation of these laboratories can demand great effort of instructors,
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especially those who are not experts at computer programming.

On the other hand, once instructors finally create an appropriated graphical user

interface for their simulation, they might get frustrated by the fact that such interfaces

are normally incompatible between engineering software.

This thesis focused on these problems, and its main contributions consist of new

tools for instructors to create virtual and remote laboratories in an easier way.

In order to generate a standardized way to add human interfaces to existing models,

Chapter 2 introduced a novel design approach for building interactive engineering sim-

ulations. The interoperate approach splits the creation of computer-based laboratories

into two separated activities.

First, the instructor develops the engineering simulation using a standard engineering

software. Then, the instructor uses a specialized programming language, such as Java,

to create the interactive human interface. Both components are then integrated using

a generic communication protocol to manipulate the engineering simulation from the

human interface.

The thesis describes the standardized communication protocol required to support

the interoperate approach. The protocol has both a high and a low-level specification to

manipulate the external application (the engineering simulation) from the client appli-

cation (the human interface). The high-level protocol offers authors the control of the

external application at a simple, high level of abstraction, hiding a number of details,

but still providing an effective link between the engineering model and the human inter-

face of the simulation. The low-level protocol gives authors total control on the external

simulation, providing an enhanced link between both simulations, bringing a richer level

of interaction and visualization.

The high-level protocol is all that most authors will need to implement their inter-

action requirements, it being therefore the recommended entry level for authors who are

not expert programmers or do not need a very detailed control of the communication be-

tween client and external applications. The low-level protocol is the preferred choice for

authors that need full control of the original simulation and the communication mech-

anism. However, the use of the low-level protocol requires some more programming

efforts than that of the high-level protocol.

The standardized communication protocol also allows the control of engineering sim-
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ulations over networks. Thus, the interoperate approach can be used to create interactive

local and remote laboratories in a uniform way. In fact, the student using a virtual labo-

ratory designed with the interoperate approach, will not observe any difference between

a local and a remote version of the same computer-based laboratory, except for network

delays. Such delays prompted the development of two types of remote links for the

high-level protocol: synchronous and asynchronous remote link.

In Chapter 3 the implementation of the interoperate approach for various well-known

engineering software is described. This implementation follows a similar scheme for all

cases since most engineering software provides an interface to be called from external

languages such as C or Java. Using this interface, the engineering software can be

controlled from a Java class.

The Java classes implemented in this thesis allow authors to manipulate applications

such as MATLAB and Scilab according to the standardized protocol of communication

designed previously. Since the control of engineering simulations is now standardized,

human interfaces developed for a MATLAB simulation can be reused without any mod-

ification for a Scilab simulation.

Some of the Java classes implemented conform the free JIMC Java package. In-

structors can use this library to create virtual and remote laboratories using the MAT-

LAB/Simulink software. The JIM server can also be used to support a remote interac-

tion with MATLAB/Simulink simulations.

Once the manipulation of the engineering software is established according to the

interoperate approach, instructors can use Java packages, such as Swing and AWT, to cre-

ate the human interface of the interactive laboratory. The construction of this graphical

user interface typically demands a lot of effort from the implementation standpoint,

especially for non-programming instructors. For this reason, instructors can use some

specialized Java authoring tools, such as Easy Java Simulations (EJS), to build the

interactive user interface in a much easier way.

The creation of user interfaces and the use of the interoperate approach from EJS is

described in Chapter 4. This chapter is divided into two parts. The first part describes

the use a the Java package, such as JIMC, to communicate with engineering software

from EJS. The second part presents a new version of EJS which integrates all the Java

classes described in Chapter 3. Instructors can use this version of EJS to create, even
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more easily than before, interactive laboratories with MATLAB, Simulink, Scilab, or

Sysquake simulations. The two parts of the chapter provide simple examples of the use

of EJS under the interoperate approach. The chapter ends with a real-world example

of a networked control laboratory used in an introductory course of engineering control

at Ghent University in Belgium.

After the description of how to add human interfaces to any engineering simula-

tion, the thesis considers in detail the simulation of embedded control systems. These

systems are the subject of recent interest because, contrary to the traditional design,

a novel approach of analysis considers the real-time and control theory together. This

new perspective provides a perfect case study for the interoperate approach thanks to

TrueTime MATLAB/Simulink-based toolbox.

Chapter 5 discusses the creation of virtual laboratories of embedded control systems.

The chapter is also divided into two parts. The first part describes the creation of

interactive simulations using the interoperate approach. Authors can create engineering

simulations of real-time control systems using TrueTime functionalities, and then move

to EJS to add the interactive human interface, as Chapter 4 described. The second part

of Chapter 5 shows the implementation of the JTT Java package based in TrueTime

features. The main reason for this library is to provide instructors with a free solution

to create interactive simulations of real-time control systems for educational purposes.

Both parts of Chapter 5 show several examples of the use of the tools described.

The thesis finally considers a third topic, i.e. the creation of experiments with virtual

laboratories. The experiments can be used, for instance, to optimize model parameters

by running many instances of the simulation. This problem has been considered since

the first computer-based simulations. However, the creation of experiments has evolved

very little since then. The thesis proposes to exploit the capabilities of modern languages

to perform educational experiments with simulations.

Chapter 6 describes a set of elements needed to perform modern experiments. An

implementation of a basic experimentation environment is also provided. This envi-

ronment has been implemented in a version of Easy Java Simulations. Instructors can

create experiments in a new section of EJS called Experiments.

Some examples of use are presented to highlight main features of the proposed ex-

perimentation environment. From the educational standpoint, the experiments can be
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used to compare at run time the simulation outputs under different scenarios.

Future works

Although this work has provided many important results, there is still room for im-

provement. Future work is possible in the three topics treated in the thesis.

The interoperate approach has proved its validity for four different engineering soft-

ware. The scheme used in Chapter 3 can be easily followed to implement the commu-

nication protocol for other external applications such as Octave, Maple, and Dymola.

In fact, much of the engineering software presents modern external interfaces that can

provide access from Java programs. It could also be interesting to implement a dedi-

cated communication protocol for the Scicos toolbox of Scilab. Scicos is a block diagram

simulator close to Simulink. Thus, based on the experience with Simulink simulations,

a special link could also be implemented for Scicos.

Although the implementation of the communication protocol has been done using

the Java language, it could be interesting to test the validity of the interoperate approach

using another general purpose language such as C, C++, or C#.

With regards to the remote operation of the communication protocol, in this thesis

only MATLAB and Simulink have been treated to support remote links. Other engi-

neering software, such as Scilab and Sysquake, could also support an implementation of

the remote operation, following the scheme described in this work.

The networked control laboratory described in Chapter 4 presents a real-world exam-

ple of a remote laboratory. Even though this example shows that this kind of applications

can be created by using the communication protocol, there is still a lot of work to be

done. For instance, using a differentiated network protocol (TCP/IP or UDP) to treat

the incoming and outcoming data of the remote laboratory.

In low-bandwidth or congested networks, the use of the TCP/IP network protocol

can add unnecessary delays to the data traffic from the real plant. The delays are

mainly due to the congestion and flow control of the TCP/IP protocol. By contrast, the

UDP protocol can provide a faster data exchange between client and server, but at the

expense of losing the error-free mechanism that the flow control offers.

On the one hand, the incoming data flows from the remote server to the client ap-

plication transporting real data of the plant. This data is mainly used by the user
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Chapter 7. Conclusions and Future Works

interface to monitor the state of the real plant. Thus, instead of using TCP/IP to trans-

port incoming data, the communication protocol could use the UDP network protocol

to improve the performance of the remote laboratory.

On the other hand, the outcoming data flows from the client application, the user

interface, to the remote server transporting mainly control data. This data can be used

either to modify the parameters of the controller or to send the control action to the

real plant. Thus, the selection of TCP/IP or UDP should be done considering whether

or not the control of the real plant depends on error-free outgoing data.

The interoperate approach could be extended also to other platforms such as mobile

devices, in order to benefit from the computational power of mobile phones or from the

new user experience provided by touch-screen computers.

With regards to the simulation of embedded control systems, the performance of the

two approaches presented in this thesis can be optimized.

The TrueTime-EJS approach still requires a high number of zero-crossing functions

to simulate real-time control systems in Simulink. Thus, new methods to reduce the

event evaluations or to speed up the simulation could be added to the communication

protocol that manipulates Simulink models from Java programs.

Besides, the communication protocol could consider a dedicated link with the C++

implementation of TrueTime in order to improve TrueTime simulations. The TrueTime

implementation on Scicos can be also analyzed in order to provide an open source

approach to the creation of interactive simulation of real-time control systems.

The JTT-EJS approach can also be extended to support wired and wireless commu-

nication networks in the virtual laboratories created with it. Other functionalities, such

as the battery block of TrueTime could be also added to the JTT Java package.

Some examples of the use of the functionality to simulate soft real-time systems could

be also considered in the future. The use of EJS, JTT, and the collection of open-source

drivers of the Comedi project, can be used to offer a complete open-source platform to

develop remote laboratories.

Both approaches, TrueTime and JTT, can also be used to generate new virtual

laboratories in order to get a larger supply of simulations of real-time control systems.

Moreover, there laboratories could be integrated into a course of engineering control or

real-time systems.
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Future work on experiments on virtual laboratories will mainly involve the develop-

ment of new applications.

The experimentation environment could also be extended to create experiments on

remote laboratories. This feature is interesting, educationally, to show students the

effects of an incorrect selection of control parameters when controlling a real plant.

Experiments on remote laboratories can also be used to create generalized algorithms

to identify the model of a real plant.

The combination of the experimentation environment with the interoperate approach

and the real-time simulation can also be an interesting research topic in order to extend

the application field of the experiments.

Finally, in a more general context, the described API can be the basis for the defini-

tion of a standard experimentation language to which other modelling and simulations

tools could adhere.
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Appendix A

Modifying a Simulink Model to
Control it from MATLAB

A.1 General modifications of Simulink models

Controlling Simulink from MATLAB can be done programmatically by using the API

that Simulink provides. The API allows users to open, simulate, pause, stop, or close a

Simulink model. It is also possible, to add or remove blocks from the Simulink model,

and to modify any block parameter while the simulation is stopped or even while it is

running.

Table A.1: Some common Simulink functions.

Function Description

open system Open existing model or block.
close system Close open model or block.
add block Add new block.
delete block Delete a block.
add line Add a line.
delete line Remove a line.
set param Set parameter values for model or block.
get param Get simulation parameter values from model.

Table A.1 shows some common functions of the Simulink API. The functions open

and close open and close a Simulink model, respectively. The model can be modified

by adding or deleting blocks with add block and delete block. Functions add line

and delete line allow to connect or disconnect blocks.

The function set param modifies a parameter of a block or model, which can strongly

affect the behaviour when simulated. This function is used as follows:

set_param(’blockpath’,’parameter’,’value’);

The ’blockpath’ string defines the path to the block. The path represents the route
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to the block inside the model. The parameter string indicates the parameters that will

be modified, and the value string is the new value of the modified parameter.

There are some common parameters for the blocks and models, but obviously differ-

ent blocks can present an important set of different parameters. To get all the parameters

of a block, the function get param can be used as follows:

params = get_param(’blockpath’,’objectparameters’);

The ’objectparameters’ string indicates the information of all parameters of the block

or model that are requested. A subset of the most used parameters of a block can be

obtained by using ’dialogparameters’ instead ’objectparameters’. This subset of

parameters can be modified by using a dialogue box, which appears when users double-

click on the block. The obtained params variable is of type struct where all the fields

represent a parameter of the block. The following is a typical content of the variable

params.

params =
Name: [1x1 struct]
Tag: [1x1 struct]

Description: [1x1 struct]
Type: [1x1 struct]

Parent: [1x1 struct]
Handle: [1x1 struct]

HiliteAncestors: [1x1 struct]
RequirementInfo: [1x1 struct]

Ports: [1x1 struct]
...

To obtain information of a parameter such as Name, the command params.Name has

to be executed. Programmers who want to get a complete description of the block

parameters should consult the Simulink reference or user guide to learn the correct use

of the set param function.

Using the described functions, a programatic control of a Simulink simulation can

be performed. This will be exemplified by using a Simulink model named fsmk.mdl

that evaluates a function similar to the example described using the Java class of

MatlabExternalApp in Figure 3.3.

The Simulink version of this example is shown in Figure A.1. Here the model (Fig-

ure A.1a) uses simple blocks to evaluate the function: sin(2πft) · cos(t).
Note that the variable f is given by a block constant named frequency. Note also,
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Figure A.1: Simulink version of evaluating function. a) The model, b) a plot of the function,
c) some parameters of the block frequency, d) some parameters of the block function.

that the variable t (the time of the simulation) is given by a block clock named clock.

The output of the frequency (whose value 2 is entered in the dialogue box of Figure A.1c)

is multiplied by the output of the block clock, obtaining the value f · t at the output of

the block named product. The output of the block product is amplified by the block

gain named gain, which feeds with the value 2πft the first input of a multiplexor block.

The second input of the multiplexor block is fed with the time of the simulation (t).

The block multiplexor sends out both inputs as a vector of two components. This

vector has to be treated as an array called u inside the block function. The block

function is a MATLAB Fcn block, which can execute any MATLAB function or method

at each integration step of the simulation. In this case, the function to be executed by

the block function is sin(u(1)) · cos(u(2)), where u(1) and u(2) are the first and the

second components of the u array, respectively.

In Figure A.1d, the MATLAB function is entered. The results of the evaluation

of the function is sent to the block Scope. This block plots its inputs, in this case
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the output of the block function. A typical plot drawn by the Scope is presented in

Fig.A.1b.

Figure A.2: A modified version of the Simulink model of the Figure A.1a. a) The modified
model, b) the submodel stepCtrl, c) the parameters for the block FromWS, and d) the parameters
for the block ToWS.

To control this simulation from MATLAB, it is necessary to change the model as the

Figure A.2a shows. This modified model, named fsmkM.mdl, presents the following

modifications:

• The finish time of the Simulink model has to be changed to the value inf in order

to perform the simulation as long as the Java program requires.

• A block MATLAB Fcn named FromWS is added to read the value of the variable f

from the MATLAB workspace. Figure A.2c shows some parameters of this block.

• A block To Workspace named ToWS is added to write its inputs (the output of the

250



A.1. General modifications of Simulink models

block function) to the MATLAB workspace. Figure A.2d shows some parameters

of this block.

• A submodel named stepCtrl is added to write the simulation time in the MAT-

LAB workspace and also to pause the model after each integration step. The blocks

of this submodel are presented in Figure A.2b. Here, a block MATLAB Fcn named

Pause Simulink pauses the Simulink model by calling the function set param.

Note also that another block MATLAB Fcn is used to capture the simulation time.

• The rest of the blocks (Grounds and Terminators) are added to avoid having

blocks with unconnected inputs or outputs.

As mentioned, the function set param can control the simulation of a Simulink

model, by manipulating the value of the parameter ’SimulationCommand’ of a model.

Some accepted values for this parameter are:’start’, ’stop’, ’pause’ and ’continue’.

These values are used to initiate, stop, pause, or advance one integration step of the

simulation.

To advance one integration step, the following command can be used:

set_param(’fsmkM’,’SimulationCommand’,’continue’);

Obviously the model can be paused using the same function, but with the value ’pause’,

instead.

Another important parameter to control a simulation is ’SimulationStatus’. This

read-only parameter indicates the state of the simulation. Some of the values of this

parameter are: ’running’, ’paused’ and ’stopped’, which means that the model is

running, paused, or stopped, respectively.

Furthermore, to check whether the model is paused, the following command could

be executed:

get_param(’fsmkM’,’SimulationStatus’)

Which will return the string ’paused’ if the model is paused.

A.1.1 Controlling a modified Simulink model from Java

Now that the main functions to control the Simulink model have been described, the next

step is to create an interactive simulation with the Java MatlabExternalApp class. List-
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ing A.1 shows the Java code that simulates the modified Simulink model fsmkM.mdl

using the MatlabExternalApp class.

The code starts declaring the variables and calling the main method of the class

evaluatingFunctionSimulink. In the method evaluatingFunctionSimulink() a Mat-

labExternalApp instance is first obtained. This object is used to communicate with

MATLAB as was explained above. After the connection with MATLAB is started, the

Simulink simulation is prepared. To do that, the model is first opened with the MAT-

LAB command open system(’fsmkM’). Then, the MATLAB variable f is set to the

value given by the Java variable frequency. Then, the parameter MATLABfcn of the

block function is set to sin(u(1)) ∗ cos(u(2)). After that, the simulation is started,

with the MATLAB command set param(’fsmkM’,’SimulationCommand’,’start’).

At this moment, the Simulink model is ready to be simulated.

The simulation is run by executing three main action inside of a do-while cycle. The

first action, steps the Simulink model, which means that the simulation advances one

integration step. After that, it is necessary to check if the execution of this integration

step has finished. This checking is done by verifying that the value of the parameter

SimulationStatus of the model is the ’paused’ string. Take into account that, sooner

or later, the Simulink will be paused when the block named Pause Simulink is executed.

The second action, after the checking, is to get the values of the MATLAB variables t

and y, which represent the time and the output of the function block. The third action

just prints these values to the console.

The do-while cycle is executed until time is greater than 10. The Simulink model is

then stopped and the MATLAB connection finished.

1 public class eva luat ingFunct i onS imul ink{
2 // Declare v a r i a b l e s
3 public double time=0, f r equency=2, value =0;
4 Str ing s ta tu s ;
5

6 public stat ic void main ( Str ing [ ] a rgs ) {
7 new eva luat ingFunct i onS imul ink ( ) ;
8 }
9

10 public eva luat ingFunct i onS imul ink ( ) {
11 //Create a Matlab connect i on
12 ExternalApp externalApp=new MatlabExternalApp ( ) ;
13

14 // Star t the connect i on
15 externalApp . connect ( ) ;
16

17 //Open and prepare s imulat i on
18 externalApp . eva l ( ” open system ( ’ fsmkM ’) ” ) ;
19 externalApp . setValue ( ” f ” , f r equency ) ;
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20 externalApp . eva l ( ” set param ( ’ fsmkM/ func t i on ’ ,
21 ’MATLABfcn ’ , ’ s i n (u (1) ) ∗ cos (u (2) ) ’ ) ” ) ;
22 externalApp . eva l ( ” set param ( ’ fsmkM ’ , ’ SimulationCommand ’ , ’ s t a r t ’ ) ” ) ;
23

24 //Perform the s imulat i on
25 do{
26 //Step the model
27 externalApp . eva l ( ” set param ( ’ fsmkM ’ , ’ SimulationCommand ’ , ’ continue ’ ) ” ) ;
28 do{
29 externalApp . eva l ( ” s=get param ( ’ fsmkM ’ , ’ S imulat i onStatus ’ ) ” ) ;
30 s t a tu s=externalApp . g e tS t r i ng ( ” s ” ) ;
31 }while ( ! s t a tu s . equa l s ( ”paused ” ) ) ;
32

33 //Get v a r i a b l e s
34 value=externalApp . getDouble ( ”y” ) ;
35 time=externalApp . getDouble ( ” t ” ) ;
36

37 System . out . p r i n t l n ( ” time : ”+time+” value : ”+value ) ;
38 } while ( time <10) ;
39

40 //Stop the Simulink s imulat i on
41 externalApp . eva l ( ” set param ( ’ fsmkM ’ , ’ SimulationCommand ’ , ’ s top ’ ) ” ) ;
42

43 // Fin i sh the connect i on
44 externalApp . d i s connect ( ) ;
45 }
46 }

Listing A.1: Computing a Function Using a Simulink model.

A.1.2 General process to simulate Simulink models from Java

The process described opens the way to simulating any Simulink model from a Java

program. Thus, it is possible to summarize the process required to create interactive

simulations using Simulink in the following actions:

• Modify the original Simulink model to indicate that the simulation ends at the

time inf.

• Modify the original Simulink model, adding blocks to read and write variables

from the MATLAB workspace.

• Modify the original Simulink model, adding blocks to obtain the simulation time

and also to pause the model by calling the function set param to set the parameter

SimulationCommand to the string ’pause’.

• In the Java program, and after the MATLAB connection is started, the modified

model has to be opened with the open system function. Then, the variables re-

quired by the Simulink model have to be initiated. After that, the model is started

setting the parameter SimulationCommand of the model to the string ’start’.
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• The simulation is performed, by calling three actions: advancing one integration

step of the model, checking that the model has finished the integration process,

and recovering the values of the variables than are written by the model to the

MATLAB workspace.

• After performing the simulation of the Simulink model, stop the model by setting

the parameter SimulationCommand to the string ’stop’.

• Finally, close the MATLAB connection.

In principle, the previous process can be used to simulate any Simulink model from a

Java program. This is especially true for static systems like the model fsmk. However,

the simulation of dynamic systems can be different. In this kind of models, apart from a

static description, differential or difference equations may apply, producing time-varying

systems. Thus, contrary to static systems, the behaviour of dynamic systems depend

on the initial conditions. For this reason, for example, if two identical balls are dropped

from different heights (initial conditions), they will stop bouncing at different times.

Hence, an interactive simulation of a dynamic system should be prepared to accept

that users can change the initial conditions at any moment. Thus, for example, an

interactive simulation of a bouncing ball could be paused by the user, who moves the

ball to a different height to restart the simulation from there.

A.2 Specific modifications for integrators blocks

The description of time-varying systems in Simulink can be done in many ways, but the

most common method to formulate dynamic systems in Simulink is to add Integrator

blocks to the model (see Figure A.3).
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Figure A.3: Various Integrator blocks. The appearance of each Integrator depends on the
configuration defined in the dialogue box.

An integrator block outputs the integral of its input at the current time step. Equa-

tion (A.1) represents the output of the block y as a function of its input u and an initial
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condition y0, where y and u are vector functions of the current simulation time t. Take

into account that the Integrator block outputs the initial condition at the beginning of

the simulation and also when the Integrator is reset.

y(t) =
∫ t

t0

u(t)dt + y0 (A.1)

Simulink software can use a number of different numerical integration methods to

compute the Integrator block’s output, each with advantages in particular applica-

tions. Users can go to the Configuration Parameters dialogue box to select the solver

method. Simulink treats the Integrator block as a dynamic system with one state, its

output (see Equation (A.2)). The Integrator block’s input is the derivative of the state.

x = y(t)

x0 = y0 (A.2)

ẋ = u(t)

The selected solver computes the output of the Integrator block at the current time

step, using the current input value and the value of the state at the previous time

step. To support this computational model, the Integrator block saves its output at the

current time step which the solver can use to compute its output at the next time step.

The block also provides the solver with an initial condition for use while computing

the block’s initial state at the beginning of a simulation run. The default value of the

initial condition is 0. The block’s parameter dialogue box (see Figure A.4) allows users

to specify another value for the initial condition or create an initial value input port on

the block.

The dialogue box of the Integrator also allows users to:

• Define upper and lower limits on the integral.

• Create an input that resets the output of the block (state) to its initial value,

depending on how the input changes.

• Create an optional state output so that the value of the block output can trigger
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Figure A.4: The parameter dialog box of an Integrator block.

a block reset.

Note that the Integrator block is used to describe continuous systems, but in the case

of purely discrete systems, for example in models formulated using difference equations,

the suitable integration block is the Discrete-Time Integrator, which has parameters

similar to the continuous version.

Figure A.3 shows six integrators with different configurations. The first case, Fig-

ure A.3a, represents the standard configuration of the Integrator block. The second case,

Figure A.3b, shows an extra input for external reset. In this case, the reset is triggered

by a rising change of the reset input. The initial condition in this case has to be entered

on the corresponding parameter in the dialogue box. Figure A.3c is similar to the previ-

ous case, but now the initial condition is taken from the x0 input. Figure A.3d adds an

extra output for the state port. The output of the state port is the value that would

have appeared at the block’s standard output if the block had not been reset. This

special output is needed to avoid algebraic loops when the state of the block is required

to trigger the reset condition or to feed the input x0. Note that the reset is triggered by

a falling change of the reset input. The fifth case, Figure A.3e, shows an Integrator with

a limitation in its standard output. The last case, Figure A.3f, represents an Integrator

with external reset and initial condition, state port, limitations of the standard output,

and an extra output to indicate, with a 0 or a 1, when the limit conditions are being

applied or not.
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In order to implement a correct manipulation of the Integrator block for the in-

teraction point of view. This is how to control from Java both the moment when an

integrator is reset and the value of the initial condition.

Consider the model (named integrator) shown in Fig.A.5, which uses the simplest

case of the Integrator block. Since the Integrator block is integrating a constant equal

to 1, the output after the integration is a straight line with slope equal to 1. This line

is shown in Figure A.6.
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Figure A.5: A model with an integrator.
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Figure A.6: A plot of the output of the
model.

To control the integrator model, it needs to be modified to obtain a new model

(named integratorM) like Figure A.7 shows. Now, the integrator accepts an external

reset and external initial condition. The two new inputs of the block integrator are

connected to two MATLAB Fcn blocks to manipulate from the MATLAB workspace

the reset moment and the initial condition. The two MATLAB Fcn are used to read

the variables in the same way as the block named FromWS was used in Figure A.2 to

read the value of the variable f. The two variables read by the blocks MATLAB Fcn

are rst and ic, which control the reset moment and the initial condition respectively.

The output of the Integrator is sent to the MATLAB workspace (as variable y) using

a block To Workspace similar to the block toWS used in the model of Figure A.2a.

Additionally, a sub model similar to the stepCtrl shown in Figure A.2b is required to

get the simulation time and to pause the Simulink model after each integration step.

After the modifications are done, the model integratorM can be used directly from

a Java application to reset the integrator. Listing A.2 shows the code of an application

that resets the integrator at time=5. Note that the integrator is reset only once, because

the reset is only triggered when a rising change in the variable rst (e.g., from -1.0 to

257



APPENDIX A

y

ToWS

Scope

MATLAB
Function

Reset Control

1
s

xo

Integrator

MATLAB
Function

Initial Condition
Ground2

Ground1

stepCtrl

1

Constant

Figure A.7: A modified model of the integra-
tor.
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Figure A.8: The output of the modified
model.

1.0) is detected. Fig.A.8 shows a plot of the output of the integrator. Observe that, at

the beginning of the simulation, the initial condition (ic) was 0, and when the reset is

triggered, the initial condition is set to -5 and therefore the state restarts from -5.0.

1 . . .
2 //Prepare the s imulat i on
3 externalApp . setValue ( ” r s t ” ,−1.0) ;
4 externalApp . setValue ( ” i c ” , 0 . 0 ) ;
5 externalApp . eva l ( ” set param ( ’ integratorM ’ , ’ SimulationCommand ’ , ’ s t a r t ’ ) ” ) ;
6 //Perform the s imulat i on
7 do{
8 //Step the model
9 externalApp . eva l ( ” set param ( ’ integratorM ’ , ’ SimulationCommand ’ , ’ cont inue ’ ) ” ) ;

10 do{
11 externalApp . eva l ( ” s=get param ( ’ integratorM ’ , ’ S imulat i onStatus ’ ) ” ) ;
12 s t a tu s=externalApp . g e tS t r i ng ( ” s ” ) ;
13 }while ( ! s t a tu s . equa l s ( ”paused ” ) ) ;
14 //Get In t eg r a to r ’ s output and s imulat i on time
15 output=externalApp . getDouble ( ”y” ) ;
16 time=externalApp . getDouble ( ” t ” ) ;
17 // r e s e t at time=5
18 i f ( time>=5){
19 externalApp . setValue ( ” r s t ” , 1 . 0 ) ;
20 externalApp . setValue ( ” i c ” ,−5.0) ;
21 }
22 System . out . p r i n t l n ( ” time : ”+time+” output : ”+output ) ;
23 }while ( time <10) ;
24 . . .

Listing A.2: Resetting an Integrator block from Java.

The simple case of the integrator described previously is however not common. Most

of the dynamic systems in Simulink present more complex configurations, which means

that sometimes the model itself uses the external reset and external initial condition to

model events in the system. To correctly treat the events of the system using the events

triggered by Java, the scheme of the Fig.A.9 has to be used.

The scheme requires the substitution of an integrator (with any configuration) by

a sub model composed of an integrator with external reset(Reset) and external initial

condition (IC). Both Reset and IC are computed according to the state of the signals
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Figure A.9: An scheme to treat Java and Simulink events in integrators.

obtained from Simulink and Java. The Simulink signals reflect the situation of the

original integrator in the Simulink model. The Java signals allow manipulating from Java

to reset the integrator when, for instance, the user interacts with the Java simulation.

Thus, both types of reset have been taken into account in the simulation. In case that

both types of reset are triggered at the same type, the Java reset should have priority

over the Simulink reset in order to provide a good interaction experience to the end

user. Obviously, the configuration of the original integrator such as the limitation and

the state port has to be preserved in the new integrator.

A.2.1 An example of a dynamic system

An example of a non elastic bouncing ball will be used to show how the previous ideas

are implemented. A rubber ball is thrown into the air with a velocity of 15 meters per

second from a height of 10 meters. The position and velocity of the ball are shown in a

Scope. This system uses a reset-integrator to change the direction of the ball as it comes

into contact with the ground. Figure A.10 shows the Simulink model of the bouncing

ball system and the plots generated when the simulation is run.

The model is quite simple. There are two continuous states, the velocity and the

position. These states are available as outputs of the two integrators. The position is

obtained by integrating the velocity, and the latter is obtained by integrating the gravity

given by a Constant block. The integrator for the velocity also has two other inputs,

that are used to reset the velocity to an initial state given by the third input. This

allows to model the bouncing of the ball when it reaches the ground (i.e., the position

is zero). Since the ball is not elastic, the velocity of the ball is reset to a new velocity,

which is computed by multiplying the velocity just before the bouncing by an elastic
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a) b)

Figure A.10: The simulation of a bouncing ball. a) Simulink model, b) Plots of the velocity
and vertical position of the ball.

constant equal to −0.8. The negative sign simply changes the direction of the velocity,

because just before the bouncing the velocity was pointing down (i.e., negative vertical

component). Note that the value of the velocity previous to the bouncing is taken from

the state port (the second output) of the block Velocity in order to avoid algebraic

loops.

The integrator for position has its output limited to a minimum value of zero. This

ensures that the position of the ball will never be negative. The Initial Condition block

named IC outputs 15 when the simulation is started. This is used as the initial condition

of the integrator Velocity. The Initial Condition block does not have any effect once

the simulation is started.

A modified version of the dynamic system

Figure A.11 shows the modified model of the bouncing ball. Since there were two

integrators, both have been modified following the scheme shown in Figure A.9. The

two new sub models that represent the original integrators Position and Velocity are

now PositionM and VelocityM, respectively. The necessary submodel stepCtrl to get

the simulation time and to pause the Simulink model after each integration step has

also been added.

The submodel PositionM is shown in Figure A.12. The submodel follows the scheme

described in Figure A.9. The new integrator has three inputs and one output. One
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Figure A.11: The modified model of the bouncing ball.

input is used for the standard input of the signal to be integrated, and two inputs for

supporting the external reset and external initial condition. The single output is used

for the standard output of the integrator, which gives the position of the ball. Note that

the position is also written to the MATLAB workspace so that it can be read by the

Java application. Observe also that the output limitation of the original integrator is

replicated by the new integrator.
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Figure A.12: The sub model PositionM.

The standard input of the integrator is taken from the sole input, In1, of the sub-

model. This input is connected to the first output of the submodel velocityM, which

is the velocity of the ball.

The external reset of the integrator is connected to the block named Any reset?,

which implements a logic gate OR. This block sends out 1 (or the boolean true) if at

least one of its two inputs are 1, otherwise the output is 0 (or the boolean false). The two

inputs of the OR block are used to detect any of two possible resets. These inputs come

from the submodels: Reset from Java and Reset from Simulink. If there is a reset,

the initial condition is taken from either the submodel IC from Java or the submodel
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IC from Simulink. If both Simulink and Java reset are triggered at the same time, the

block NOT, named Java priority, is used to prioritize the Java reset.

The submodel Reset from Java is shown in Figure A.13. The reset from Java is

triggered switching the value of the variable rst from a positive to negative number, and

vice versa. The value of the variable is obtained by the block RS Java in the same way

as the block Reset Control of Figure A.7. When the value of the variable switches, the

output of the block named Reset Java? is 1(i.e., true). At the same time, the output of

the submodel Reset from Java is also 1. Note that at the beginning of the simulation,

the output of the submodel is always 1, since there is an IC block named Resets when

it starts with a value equal to 1.

The submodel Reset from Simulink is much simpler than the previous one (see

Figure A.14). In this case, since the original integrator for the position did not have an

external reset, the output of the submodel is always 0.

If the Java reset is triggered, the submodel IC from Java simply sends out the value

of the variable ic position, which is read by the block IC Java (see Figure A.15).

Otherwise, the output of the submodel is 0.

If the Simulink reset is triggered and there is no Java reset, the submodel IC from

Simulink(shown in the Fig. see Figure A.16) sends out the initial condition (10) spec-

ified in the dialogue box of original integrator Position. Otherwise, the output of the

submodel is 0.
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Figure A.13: Submodel Reset from Java.
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Figure A.14: Submodel Reset from
Simulink.
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Figure A.15: Submodel IC from Java.
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Figure A.16: Submodel IC from Simulink.
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The submodel VelocityM is shown in Figure A.17. The submodel follows the scheme

described in Figure A.9 and explained above for the integrator Position. The new

integrator has the three inputs and two outputs. As before, one input is used for the

standard input of the signal to be integrated, and two inputs are used for supporting

the external reset and external initial condition. One output is used for the standard

output of the integrator, which sends out the velocity of the ball. The second output

sends out the state port signal, which is used to compute the velocity when the ball comes

into contact with the ground. As before, the velocity is also written in the MATLAB

workspace to be read from the Java application.
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Reset from Java
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Integrator
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Any reset?
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In3
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1
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Figure A.17: The submodel VelocityM.

The standard input of the integrator is taken from the first input, named In1, of the

submodel. This input comes from the output of the Constant block, named Gravity,

which provides the value -9.81 for the gravity. The external reset and the external initial

condition of the new integrator are computed as the previous integrator PositionM.

The submodel Reset from Java of the VelocityM is the same used in the submodel

PositionM shown in Figure A.13. The case of the submodel IC from Java is similar,

but here the variable to set the initial condition from Java is named ic velocity.

The submodel Reset from Simulink (see Figure A.18) is now different from the case

in the PositionM. Here, the external reset of the original integrator velocity is taken into

account. The original external reset signal comes from the second input of the submodel

VelocityM, this signal is also the second input of the Reset from Simulink block. To

capture the same behaviour of the original reset, the trigger of the block Reset SMK has

to be the same (i.e., rising or falling) as the original trigger of the integrator Velocity.

Thus, when the original external reset triggers Reset SMK its input is output to the block
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APPENDIX A

Reset SMK?, implying that the output of the submodel Reset from Simulink is 1.

As in the submodel PositionM, if the Simulink reset is triggered and there is no Java

reset, the submodel IC from Simulink(shown in the Fig. see Figure A.19) sends out

the initial condition. However, in this case, this initial condition is taken from the third

input of the submodel VelocityM in order to replicate the behaviour of the original

integrator Velocity. This third input of VelocityM is connected to the output of the

Initial Condition block IC as the Figure A.11 shows.
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Reset_SMK?
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Reset_SMK

2 In21 In1

Figure A.18: Submodel Reset from
Simulink.
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Figure A.19: Submodel IC from Simulink.
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