
DEPARTMENT OF

ARTIFICIAL INTELLIGENCE

Universidad Nacional de Educación a Distancia

Probabilistic Graphical Models

for Decision Making

in Medicine

by

Manuel Luque Gallego

Dissertation submitted to the Department of Arti�cial Intelligence

of the Universidad Nacional de Educación a Distancia as partial ful�lment

of the requirements for the European PhD degree in Computer Science

Madrid, September 2009



DEPARTMENT OF

ARTIFICIAL INTELLIGENCE

Escuela Técnica Superior de Ingeniería Informática

Universidad Nacional de Educación a Distancia

PhD Thesis Dissertation:

Probabilistic Graphical Models

for Decision Making

in Medicine

by

Manuel Luque Gallego

Computer Engineer

Supervised by

Dr. Francisco Javier Díez Vegas

Madrid, September 2009



Index

I INTRODUCTION 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II FUNDAMENTALS 7

2 State of the art: Probabilistic graphical models 9

2.1 Basic concepts about graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 In�uence diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Policies and strategies . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Evaluation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Unconstrained in�uence diagrams . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Limitations of IDs for partially ordered decisions . . . . . . . . . . . 26

2.4.2 UID representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Solving a UID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Explanation in expert systems . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Importance of explanation in expert systems . . . . . . . . . . . . . 36

2.5.2 Features of explanation in expert systems . . . . . . . . . . . . . . . 37

2.6 Cost-e�ectiveness analysis in medicine . . . . . . . . . . . . . . . . . . . . 37

2.6.1 Net bene�t and incremental cost-e�ectiveness ratio . . . . . . . . . 38

2.6.2 Deterministic CEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



ii INDEX

2.6.3 Probabilistic CEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Sensitivity analysis in probabilistic decision problems . . . . . . . . . . . . 45

2.7.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7.2 Sensitivity analysis in in�uence diagrams . . . . . . . . . . . . . . . 48

2.8 Elvira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III METHODOLOGICAL ADVANCES 53

3 Variable elimination for in�uence diagrams with super value nodes 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 In�uence diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Basic de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.3 Redundant variables . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Variable-elimination on a tree of potentials . . . . . . . . . . . . . . . . . . 62

3.2.1 Elimination of a chance variable on a ToP . . . . . . . . . . . . . . 63

3.2.2 Elimination of a decision variable on a ToP . . . . . . . . . . . . . . 68

3.2.3 Summary: Variable elimination algorithm using a ToP . . . . . . . 73

3.3 Variable elimination on an ADG of potentials . . . . . . . . . . . . . . . . 73

3.3.1 Elimination of a chance variable on an ADGoP . . . . . . . . . . . 74

3.3.2 Elimination of a decision variable on an ADGoP . . . . . . . . . . . 76

3.3.3 Summary: algorithm VE . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Variations of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Division of potentials (algorithm VE-D) . . . . . . . . . . . . . . . 76

3.4.2 Subset rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Unity potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.1 Algorithm for generating IDs randomly . . . . . . . . . . . . . . . . 81

3.5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Explanation of the reasoning in in�uence diagrams 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Explanation of in�uence diagrams in Elvira . . . . . . . . . . . . . . . . . . 107

4.3.1 Explanation of the model . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.2 Displaying the results of inference . . . . . . . . . . . . . . . . . . . 109



INDEX iii

4.3.3 Introduction of evidence . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.4 What-if reasoning: analysis of non-optimal strategies . . . . . . . . 114

4.3.5 Utility plots as a way of explanation . . . . . . . . . . . . . . . . . 114

4.4 Policy tables and policy trees . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5.1 Sensitivity of a decision to a parameter . . . . . . . . . . . . . . . . 117

4.5.2 Computation of sensitivity analysis measures . . . . . . . . . . . . . 118

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 An anytime algorithm for evaluating unconstrained in�uence diagrams127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Unconstrained in�uence diagrams . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 An anytime algorithm for solving UIDs . . . . . . . . . . . . . . . . . . . . 129

5.3.1 A search based solution Algorithm . . . . . . . . . . . . . . . . . . 131

5.3.2 Selecting a Heuristic Function . . . . . . . . . . . . . . . . . . . . . 133

5.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.1 Anytime strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.2 De�nitions of evaluation metrics . . . . . . . . . . . . . . . . . . . . 137

5.4.3 Normalization of the metrics . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.1 Generation of UIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Applications of the proposed method . . . . . . . . . . . . . . . . . . . . . 155

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

IV APPLICATION 161

6 Application: Mediastinal staging of non-small cell lung cancer 163

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Medical problem: mediastinal evaluation (staging) of lung cancer . . . . . 164

6.3 Mediastinal staging of non-small cell lung cancer . . . . . . . . . . . . . . . 166

6.3.1 Grading and staging of cancer (in general) . . . . . . . . . . . . . . 166

6.3.2 Types (grading) and staging of lung cancer . . . . . . . . . . . . . . 167

6.3.3 Preoperative lymph node staging for non-small cell lung cancer . . . 168

6.3.4 Treatment of lung cancer . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4 Construction of Mediastinet . . . . . . . . . . . . . . . . . . . . . . . . 179



iv INDEX

6.4.1 Construction of the structure of the graph . . . . . . . . . . . . . . 180

6.4.2 Numerical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.4.3 Cost-e�ectiveness with Mediastinet . . . . . . . . . . . . . . . . . 186

6.5 Optimal strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5.1 Maximum-e�ectiveness strategy . . . . . . . . . . . . . . . . . . . . 188

6.5.2 Maximum-bene�t strategy . . . . . . . . . . . . . . . . . . . . . . . 189

6.5.3 Comparison of both strategies . . . . . . . . . . . . . . . . . . . . . 191

6.6 Sensitivity analysis in Mediastinet . . . . . . . . . . . . . . . . . . . . . 193

6.6.1 Uncertainty on the numerical parameters of Mediastinet . . . . . 193

6.6.2 Results of the SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

V CONCLUSION 207

7 Conclusions 209

7.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A Appendix of Chapter 3 221

A.0.1 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.0.2 Proof of Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.0.3 Correctness of the algorithm VE-D . . . . . . . . . . . . . . . . . . 223

B Appendix of Chapter 5 229

B.1 Figures and table of experimental results for comparing DP and BF-A . . . 229

C Software developed in Elvira 235

D Resumen en Español (Spanish Summary) 237

D.1 Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

D.2 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

D.3 Metodología . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

D.4 Organización de la tesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

D.5 Principales contribuciones . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

D.6 Trabajo futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242



List of tables

2.1 Commonly used distributions in SA in medical decision making. [Taken

from http://www.york.ac.uk/inst/che/pdf/teehtacosteff04.pdf] . . 46

3.1 Ratio of the times required by AR and VE. . . . . . . . . . . . . . . . . . . 85

3.5 Ratio of the times required by VE-D and VE. . . . . . . . . . . . . . . . . 86

3.2 Ratio of the maximum storage space required by AR and VE. . . . . . . . 87

3.3 Ratio of the times required by AR and VE-D. . . . . . . . . . . . . . . . . 88

3.4 Ratio of the maximum storage space required by AR and VE-D. . . . . . . 89

3.6 Ratio of the spaces required by VE-D and VE. . . . . . . . . . . . . . . . . 90

3.7 Comparison of the number of redundant variables between AR, VE and

VE-D. Each cell (i, j) shows how many times the algorithm in the i-th row

outperformed the algorithm in the j-th column. For instance, VE returned

smaller policies than AR for 448 out of the 2,000 IDs (22.4%), while AR

has beaten VE only in 8 cases. TheWon column indicates how many times

each algorithm beat each of the others. The percentages in this column are

computed over 2,000×2=4,000 cases, because each algorithm is compared

twice for each ID. The interpretation of the Lost column is similar. 990 is

the number of cases in which there was a winner. . . . . . . . . . . . . . . 90

3.8 Ratio of the spaces required by AR-SR and AR. . . . . . . . . . . . . . . . 92

3.9 Ratio of the times required by AR-SR and AR. . . . . . . . . . . . . . . . 93

3.10 Ratio of the spaces required by VE-SR and VE. . . . . . . . . . . . . . . . 94

3.11 Ratio of the times required by VE-SR and VE. . . . . . . . . . . . . . . . . 95

3.12 Ratio of the spaces required by VE-D-SR and VED. . . . . . . . . . . . . . 96

3.13 Ratio of the times required by VE-D-SR and VED. . . . . . . . . . . . . . 97

4.1 Expected utilities for decision D in the ID in Figure 4.1. . . . . . . . . . . 111

4.2 Optimal policy for decision D in the ID in Figure 4.1. . . . . . . . . . . . . 111

v

http://www.york.ac.uk/inst/che/pdf/teehtacosteff04.pdf


vi LIST OF TABLES

5.1 Table for BF-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Meaning of T, N and M factors. . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 Categories T, N, and M. See also Figures 6.1 and 6.2 for a better under-

standing of the anatomy of the lungs and the regional lymph nodes. . . . . 169

6.3 Independent parameters of Mediastinet. . . . . . . . . . . . . . . . . . . 183

6.4 Parameters of economic costs of Mediastinet. . . . . . . . . . . . . . . . 188

6.5 Probability distribution assigned to each parameter of Mediastinet. The

second columns refers to the Parameter Number (PN), which is a number

used to indentify each parameter in following tables and �gures. . . . . . . 194

6.6 Intervals where the optimal strategy changes. The correspondence of the

�rst column (PN) is given by Table 6.5. Each of the rest columns indicates

the interval where the optimal policy of the corresponding decision changes.

Each row shows the results for each parameter of Mediastinet. . . . . . 197

6.7 EVPI in Mediastinet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.8 Sensitivities in Mediastinet. The correspondence of the �rst column

(PN) is given by Table 6.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.1 Table for BF-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229



List of �gures

1.1 Phases in the development of this doctoral thesis. . . . . . . . . . . . . . . 5

2.1 An in�uence diagram representation of the test problem (Example 2.3.1). . 13

2.2 ID obtained after reducing SV node U0 in ID of Figure 2.1. . . . . . . . . . 17

2.3 Example of ID where nodes U2 and U3 are going to be merged. . . . . . . . 18

2.4 ID obtained from the ID of Figure 2.3 when merging utility nodes U2 and

U3. SV node U4 has been added to the ID and will be reduced. . . . . . . . 19

2.5 ID after reducing U4 in ID of Figure 2.4. . . . . . . . . . . . . . . . . . . . 19

2.6 ID obtained by eliminating chance node X from the ID of Figure 2.5. . . . 21

2.7 ID in which decision D is removable. . . . . . . . . . . . . . . . . . . . . . 23

2.8 ID after reducing U2 in ID of Figure 2.7. . . . . . . . . . . . . . . . . . . . 23

2.9 ID obtained by eliminating D from the ID of Figure 2.8. . . . . . . . . . . 24

2.10 ID after reversing arc X → Y in ID of Figure 2.1. . . . . . . . . . . . . . . 25

2.11 ID for modeling the diabetes diagnosis problem. . . . . . . . . . . . . . . . 27

2.12 An unconstrained in�uence diagram representation of the diabetes diagno-

sis problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Example of UID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.14 SDAG for the UID of Figure 2.13. . . . . . . . . . . . . . . . . . . . . . . . 31

2.15 GS-DAG of the UID of diabetes problem (see Figure 2.12. . . . . . . . . . 33

2.16 Comparison of interventions A and B. The scope of line through A and B

is the incremental cost-e�ectiveness ratio (ICER) of A and B. . . . . . . . 40

2.17 Example of CEA with more than two interventions. The set S = {I0,I1,I3}
is the e�cient set of interventions. For any positive value of λ the most

bene�cial intervention will always belong to S. . . . . . . . . . . . . . . . . 41

2.18 Utility plot on the prevalence of the disease, which is represented in the the

x-axis. The y-axis represents the expected utility. The treatment threshold

is 0.17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



viii LIST OF FIGURES

2.19 A tornado diagram. [Image taken from (Díez, 2007)]. . . . . . . . . . . . . 48

2.20 A spider diagram. [Image taken from (Díez, 2007)]. . . . . . . . . . . . . . 48

3.1 Decision-support system for the mediastinal staging of non-small lung cancer. 57

3.2 Graph of a small ID containing two super-value nodes: one of them is of

type product, and the other of type sum. . . . . . . . . . . . . . . . . . . . 61

3.3 Tree of potentials (ToP) for the ID of Figure 3.2. . . . . . . . . . . . . . . 62

3.4 (a) A ToP, where both n1 and n2 depend on the chance variable to be

eliminated, A. (b) A ToP equivalent to (a), in which n2 has been distributed

with respect to n1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 (a) ToP equivalent to that in Figure 3.2.b, in which P (A) has been dis-

tributed with respect to the sum node. (b) ToP equivalent to (a), in which

the leaves dependent on A have been compacted and replaced by two new

potentials, U ′1(A) and U ′2(A,D). . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 (a) Graph of an ID with super value nodes, in which U2 has two children.

The global utility potential is ψ = U1 +U2 + (U2 ·U3). (b) Acyclic directed

graph of potentials (ADGoP) for this ID. . . . . . . . . . . . . . . . . . . . 74

3.7 (a) An ADGoP, in which n2 is forked wrt A. (b) ADGoP after the node

n2 in (a) compacts its leaves dependent on A. . . . . . . . . . . . . . . . . 75

3.8 An ADGoP equivalent to the potential in Figure 3.4.a, in which n2 has

been distributed with respect to n1. . . . . . . . . . . . . . . . . . . . . . . 75

3.9 In�uence diagram whose variable-elimination evaluation is detailed in Ex-

ample 3.4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.10 A random in�uence diagram generated by Algorithm 3.8, with nNodes = 8. 83

3.11 Ratio of the times required by AR and VE. . . . . . . . . . . . . . . . . . . 85

3.12 Ratio of the maximum storage space required by AR and VE. . . . . . . . 87

3.13 Ratio of the times required by AR and VE-D. . . . . . . . . . . . . . . . . 88

3.14 Ratio of the maximum storage space required by AR and VE-D. . . . . . . 89

4.1 ID with two decisions (rectangles), two chance nodes (ovals) and three

utility nodes (hexagons). Please note that there is a directed path T�Y �

D�U1�U0 including all the decisions and the global utility node U0. . . . . 106

4.2 Cooper policy network (CPN) for the ID in Figure 4.1. Please note the

addition of the non-forgetting link T → D and that the parents of node U0

are no longer U1 and U2 but FPred(U0) = {X,D, T}, which were chance

or decision nodes in the ID. . . . . . . . . . . . . . . . . . . . . . . . . . . 107



LIST OF FIGURES ix

4.3 ID resulting from the evaluation of the ID in Figure 4.1. It shows the

probability P∆(v) of each chance and decision node and the expected utilities.110

4.4 ID resulting from the evaluation of the ID in Figure 4.1. It shows two

evidence cases: the prior case (no evidence) and the case in which e = {+y}.113
4.5 Policy table for Decision_PET in Elvira. . . . . . . . . . . . . . . . . . . . 115

4.6 A policy tree example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7 Augmented ID for parameter Θsens of test problem (Figure 2.1). . . . . . . 119

5.1 (a) A UID model for Ictneo. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 (b) A partial UID model of Ictneo . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Example of Template 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Example of Template 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Example of Template 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.6 Example of Template 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.7 Comparison of FreqDec(t) between DP and BF-A . . . . . . . . . . . . . . 146

5.8 Comparison of FreqOpt(t) between DP and BF-A . . . . . . . . . . . . . . 146

5.9 Comparison of EU1(t) between DP and BF-A . . . . . . . . . . . . . . . . 147

5.10 Comparison of EU2(t) between DP and BF-A . . . . . . . . . . . . . . . . 147

5.11 Comparison of EU3(t) between DP and BF-A . . . . . . . . . . . . . . . . 148

5.12 Comparison of AccFreqDec1(t) between DP and BF-A . . . . . . . . . . . 148

5.13 Comparison of AccFreqDec2(t) between DP and BF-A . . . . . . . . . . . 149

5.14 Comparison of AccFreqDec3(t) between DP and BF-A . . . . . . . . . . . 149

5.15 Comparison of FreqDec(t) between DP and BF-N . . . . . . . . . . . . . . 150

5.16 Comparison of FreqOpt(t) between DP and BF-N . . . . . . . . . . . . . . 150

5.17 Comparison of EU1(t) between DP and BF-N . . . . . . . . . . . . . . . . 151

5.18 Comparison of EU2(t) between DP and BF-N . . . . . . . . . . . . . . . . 151

5.19 Comparison of EU3(t) between DP and BF-N . . . . . . . . . . . . . . . . 152

5.20 Comparison of AccFreqDec1(t) between DP and BF-N . . . . . . . . . . . 152

5.21 Comparison of AccFreqDec2(t) between DP and BF-N . . . . . . . . . . . 153

5.22 Comparison of AccFreqDec3(t) between DP and BF-N . . . . . . . . . . . 153

5.23 Ictneo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.1 Anatomy of the lungs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Regional lymph node stations for lung cancer staging. [Taken from http:

//ejcts.ctsnetjournals.org]. . . . . . . . . . . . . . . . . . . . . . . . . 170

http://ejcts.ctsnetjournals.org
http://ejcts.ctsnetjournals.org


x LIST OF FIGURES

6.3 Image of a CT scan. [Taken from http://www.tobacco-facts.info/

images_html/lung_cancer_ct-scan-1.htm]. . . . . . . . . . . . . . . . . 171

6.4 A PET image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.5 A mediastinoscopy image.[Taken from http://visuals.nci.nih.gov/preview.

cfm?imageid=7242&fileformat=jpg]. . . . . . . . . . . . . . . . . . . . . 173

6.6 EBUS image.[Taken from http://www.ctsnet.org/graphics/experts/

Thoracic/d_rice_endobronc_ultrasnd/Figure-3.jpg]. . . . . . . . . . . 175

6.7 EUS image.[Taken from http://www.meb.uni-bonn.de/cancer.gov/Media/

CDR0000466552.jpg]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.8 In�uence diagram of Mediastinet. . . . . . . . . . . . . . . . . . . . . . 180

6.9 A new version of Mediastinet, including economic costs. . . . . . . . . . 187

6.10 Optimal strategy for Mediastinet (disregarding costs). . . . . . . . . . . 190

6.11 Optimal strategy for Mediastinet with economic costs. . . . . . . . . . . 192

6.12 Augmented in�uence diagram of Mediastinet for performing SA over the

prevalence of node N2N3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.1 Bayesian network for the ID in Figure 3.9 (see the proof of Lemma A.0.2). 225

B.1 Comparison of FreqDec(t) between DP and BF-A . . . . . . . . . . . . . . 230

B.2 Comparison of FreqOpt(t) between DP and BF-A . . . . . . . . . . . . . . 230

B.3 Comparison of EU1(t) between DP and BF-A . . . . . . . . . . . . . . . . 231

B.4 Comparison of EU2(t) between DP and BF-A . . . . . . . . . . . . . . . . 231

B.5 Comparison of EU3(t) between DP and BF-A . . . . . . . . . . . . . . . . 232

B.6 Comparison of AccFreqDec1(t) between DP and BF-A . . . . . . . . . . . 232

B.7 Comparison of AccFreqDec2(t) between DP and BF-A . . . . . . . . . . . 233

B.8 Comparison of AccFreqDec3(t) between DP and BF-A . . . . . . . . . . . 233

D.1 Fases en el desarrollo de esta tesis doctoral. . . . . . . . . . . . . . . . . . 239

http://www.tobacco-facts.info/images_html/lung_cancer_ct-scan-1.htm
http://www.tobacco-facts.info/images_html/lung_cancer_ct-scan-1.htm
http://visuals.nci.nih.gov/preview.cfm?imageid=7242&fileformat=jpg
http://visuals.nci.nih.gov/preview.cfm?imageid=7242&fileformat=jpg
http://www.ctsnet.org/graphics/experts/Thoracic/d_rice_endobronc_ultrasnd/Figure-3.jpg
http://www.ctsnet.org/graphics/experts/Thoracic/d_rice_endobronc_ultrasnd/Figure-3.jpg
http://www.meb.uni-bonn.de/cancer.gov/Media/CDR0000466552.jpg
http://www.meb.uni-bonn.de/cancer.gov/Media/CDR0000466552.jpg


List of algorithms

2.1 reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 eliminateChance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 eliminateDecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 reverseArc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Algorithm AR (Arc Reversal) . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 CEA in IDs using the method byArias (2009). . . . . . . . . . . . . . . . . 44

3.1 distribute (for a ToP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Unfork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 eliminateDecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 changeSign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Variable elimination for IDs with SVNs on a ToP . . . . . . . . . . . . . . 73

3.7 Algorithm VE-D (variable elimination with divisions) . . . . . . . . . . . . 78

3.8 Generate a random ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Calculus of the change of the policy of a decision to a each value of a

parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Calculus of the policy change thresholds for a parameter . . . . . . . . . . 122

4.3 Calculus of the expected value of perfect information for a parameter . . . 123

4.4 Calculus of the sensitivity of a decision to a parameter . . . . . . . . . . . 124

5.1 Template 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Template 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 Template 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Template 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Generate a UID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xi



Part I

INTRODUCTION

1





Chapter 1

Introduction

1.1 Motivation

Probabilistic Graphical Models (PGMs), in particular Bayesian networks and in�uence

diagrams (IDs), were developed in the 1980's by researchers in Arti�cial Intelligence,

Mathematics and Economy with the purpose of solving problems whose complexity ex-

ceeded the capacity of the methods existing so far. Nowadays, PGMs are applied to many

areas and there exists an increasing interest in the academic �eld as well as in the business

world. Probabilistic graphical models (PGMs) allow to deal with problems that could not

be addressed with traditional probabilistic methods or other arti�cial intelligence tech-

niques.

Several Spanish research groups interested on PGMs arose independently in di�erent

universities. The work on PGMs at UNED started in 1990 with Díez (1994)'s doctoral

thesis, which consisted of the construction of the expert system DIAVAL, a Bayesian

network for the diagnosis of heart diseases by echocardiography.

Some years later, Dr. Carlos Disdier, a pneumologist at the Hospital San Pedro de

Alcántara, in Cáceres (Spain), and Javier Díez, at UNED, began the construction of an

in�uence diagram for the mediastinal staging of non-small cell lung cancer. When the

author of this thesis joined the group, at UNED, in 2003, he was assigned as a research

topic the completion of that in�uence diagram, which was then in an incipient state.

The research of this group has always been led by concrete medical problems: the

needs that have arisen when building them has motivated the development of new models,

algorithms, and software tools, which have been later applied to other problems, not only

in medicine. It has also been the case in the present thesis.

Firstly, the form of the function that combines utilities (i.e. the decision's maker

preferences, in our case, the quantity and quality of life for lung cancer patients) led

us to a structure of utility nodes in our in�uence diagram. This led us to develop a

3
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new evaluation algorithm that could improve the only algorithm existing so far for these

in�uence diagrams.

Secondly, during the interaction with the expert we felt the need of explanation capa-

bilities for in�uence diagrams, which would help us in the construction of the model in

its debugging, and when trying to convince the expert of the results. For this reason we

implemented new explanation methods in Elvira.

Third, due to the uncertainty in the parameters of the in�uence diagram, assessed by

the expert based on the literature and on his own date, we implemented some sensitivity

analysis techniques.

And forth, due to the discussion in the medical literature about the optimal order in

which the tests for the staging of non-small cell lung cancer should be performed, and given

that in�uence diagrams require a total of decisions, we explored the use of unconstrained

in�uence diagrams, a representation that allows a partial order and developed a new

anytime algorithm that provides a recommendation for the �rst decisions when �nding

the optimal strategy would require an excessive amount of time.

In this report, we describe these algorithms and methods, which are not speci�c for

medicine, and also the medical decision-support system for the mediastinal staging of

non-small cell lung cancer, called Mediastinet.

1.2 Objectives

Because of the needs described in the previous section, the objectives of this research can

be summarized as follows:

• To develop a variable-elimination algorithm for in�uence diagrams (IDs) with super-

value (SV) nodes, and to compare it with the arc-reversal algorithm by Tatman and

Shachter (1990).

• To have explanation capabilities and sensitivity analysis tools for IDs with SV nodes.

• To develop an anytime algorithm for unconstrained in�uence diagrams.

• To build and evaluate a decision-support system for the mediastinal staging of non-

small cell lung cancer, which we have called Medistinet.
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Figure 1.1: Phases in the development of this doctoral thesis.

1.3 Methodology

The methodology followed for achieving the objectives corresponds to several phases, as

shown in Figure 1.1.

The �rst phase consisted of compiling the literature in probabilistic graphical models

applied to solving decision problems. The next phase was the study and analysis of the

state of the art. The next stage consisted of starting to build the in�uence diagram of

Mediastinet with the help of the pneumologist Dr. Carlos Disdier. The construction

of the in�uence diagram made us develop new methods and implement them as software

tools. The last phase was the validation of the system, which led to the modi�cation of

the model with the expert's help in an iterative process.

It is important to notice that, after the initial phases (colored in green in Figure 1.1)

corresponding to the compilation and analysis of the bibliography, the work was guided

by the needs that appeared during the construction of Mediastinet. Thus, feedback

between the di�erent phases of the research has been essential.
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1.4 Organization of the thesis

We have structured the thesis in four parts.

Part I explains the motivation, objectives, and methodology of this thesis.

Part II reviews the state of the art and presents the mathematical foundations for the

rest of the dissertation.

Part III contains the methodological advances of the thesis. Chapter 3 describes a

variable algorithm for in�uence diagrams with super-value nodes. Chapter 4 presents

the explanation capabilities and sensitivity analysis techniques implemented for in�uence

diagrams with super-value nodes. Chapter 4 explains an anytime algorithm for evaluating

unconstrained in�uence diagrams.

Part IV presents a decision support system for the mediastinal staging of non-small

cell lung cancer.

Chapters in Part III and IV have been written by following the hierarchy of levels,

introduced by Marr (1982). In Computer Science, Marr proposed the next hierarchy of

levels for any computational problem:

• Computational Theory, which indicates the goal of the computation, its justi�-

cation and the theory that is necessary for its implementation. In our case, it

corresponds basically to the study of probabilistic graphical models.

• Algorithms, which consists in establishing which the inputs and outputs of each

computational task, and which is the algorithm that relate them.

• Implementation, which translates the algorithms into a program that can be

executed on a computer.

Finally, Part ?? presents the conclusions and future work.
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Chapter 2

State of the art: Probabilistic graphical

models

In this chapter we present the basic concepts about probabilistic graphical models and

the state of the art about explanation in Bayesian networks.

2.1 Basic concepts about graphs

A graph G = (V,E) consists of a �nite set of nodes V and a �nite set of edges E. An

edge is a pair of nodes (X, Y ), where X, Y ∈ V and X 6= Y ; if X and Y are ordered in

the edge (X, Y ) then it is said to be directed ; otherwise it is undirected. A directed edge

will be referred to as an arc. If every arc in E is directed then G is a directed graph. On

the other hand, if every arc is undirected then G is said to be an undirected graph.

A path from a node X to a node Y in a graph G = (V,E) is a sequence X =

X0, X1, ..., Xn =Y of distinct nodes such that (Xi−1, Xi) is an edge in E for each i such

that 1 ≤ i ≤ n. The path is a directed path if (Xi, Xi−1) is a directed arc from Xi−1 to

Xi, for each i such that 1 ≤ i ≤ n. A graph is said to be a tree if each pair of distinct

nodes is connected by exactly one path.

A cycle is a path with the exception that X0 = Xn, and a directed cycle is a directed

path with X0 = Xn. A directed graph with no directed cycles is said to be an acyclic

directed graph (ADG).

Given an arc (X, Y ) from X to Y , the node X is said to be a parent of Y and Y is a

child of X. The set of parents for a node Y is denoted by Pa(X), and the set of children

for a node X is denoted by Ch(X). The set of nodes from which there exists a directed

path from X is named the ancestors of X (denoted by an(X)). Similarly, the set of nodes

to which there exists a directed path from X is termed the descendants of X (denoted by

de(X)).

9
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2.2 Bayesian networks

A Bayesian network (Pearl, 1988)B = (G,P ) consists of two elements: an ADG G =

(V,E) in which each node X ∈ V (named chance node) is drawn as a circle and corre-

sponds to a chance variable X; and a probability distribution over V, P(V), which can

be factored as:

P (v) =
∏
X∈V

P (x|pa(X)), (2.1)

where pa(X) denotes a con�guration of the parents of X.

Since there is a bijection between a variable in a Bayesian network B = (G,R) and a

node in G, the terms node and variable will be used indi�erently.

The quantitative information of a Bayesian network B = (G,R) is given by assigning

to each node X ∈ V a conditional probability distribution P (X|Pa(X)). Conditional

probability distributions are also referred to as potentials. A potential is a real-valued

function over a domain of �nite variables. The domain of a potential φ = P (X|Pa(X))

is dom(φ) = {X}∪ Pa(X).

We will assume in the dissertation that Bayesian network B = (G,P ) is discrete, which

means each chance node X ∈ V corresponds to a discrete chance variable X with a �nite

set of mutually exclusive and exhaustive states; the domain of a variable X is denoted by

dom(X) = (x1, x2, ..., xl).

2.3 In�uence diagrams

An in�uence diagram is basically a Bayesian network augmented with decision nodes and

value nodes. Thus, an in�uence diagram consists of an ADG G = (V,E), where the set

V has three types of nodes: chance nodes VC , decision nodes VD and utility nodes VU .

As in Bayesian networks, chance nodes (drawn as circles) represent chance variables,

i.e., events which are not under the direct control of the decision maker. Decision nodes

(drawn as rectangles) correspond to actions under the direct control of the decision maker.

Utility nodes (drawn as diamonds) represent the expected bene�t or loss, or more gener-

ally, the preferences of the decision maker. Utility nodes can not be parents of chance or

decision nodes.

Tatman and Shachter (1990) proposed an extended framework of IDs with SVNs.

They distinguished two types of utility nodes: ordinary utility nodes , whose parents are

decision and/or chance nodes, and super-value nodes (SVNs), whose parents are utility
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nodes. We assume that there is a utility node U0 that is a descendant of all the other

utility nodes, and therefore has no children.1

There are three types of arcs in an ID, corresponding to the type of node they go into.

Arcs into chance nodes represent probabilistic dependency. Arcs into decision nodes,

named informational arcs , represent availability of information; i.e., if there is an arc

from a node X to a decision node D then the state of X is known when decision D is

made. Arcs into utility nodes represent functional dependency: arcs into ordinary utility

nodes indicate the domain of the associated utility function; arcs into a SVN U indicate

that the associated utility function is a combination (generally a sum or a product) of the

utility functions of the parents of U .

We assume that there is a path in the ID that includes all the decision nodes, which

induces a total order among the n decisions {D1, . . . , Dn} and indicates the order in which
the decisions are made. Such order originates a partitioning of VC into a collection of

disjoint subsets C0,C1, ...,Cn, where Ci contains every chance variable C such that there

is an arc C → Di but there is not an arc C → Dj, j < i; i.e., Ci is the subset of chance

variables known for Di but unknown for any previous decision. This induces a partial

order ≺ in VC ∪VD:

C0 ≺ D0 ≺ C1 ≺ ... ≺ Dn ≺ Cn . (2.2)

The set of variables known to the decision maker when deciding on Dj is termed the

informational predecessors of Dj and is denoted iPred(Dj). By assuming the no-forgetting

hypothesis, which states that the decision maker remembers all previous decisions and

observations, we have iPred(Di) ⊆ iPred(Dj) (for i ≤ j). In particular, iPred(Dj) is the

set of chance variables that occurs before Dj under ≺, i.e., iPred(Dj) = C0 ∪ {D0} ∪
C1 ∪ . . . ∪ {Di−1} ∪Ci. If we have a chance or decision variable X, two decisions Di and

Dj such that i < j, and two arcs X → Di and X → Dj, then the latter is said to be a

no-forgetting arc.

The quantitative information that de�nes an ID is given by (1) assigning to each

chance node C a conditional probability potential p(C|pa(C)) for each con�guration of

its parents, pa(C)2, (2) assigning to each ordinary utility node U a potential ψU(pa(U))

that maps each con�guration of its parents onto a real number, and (3) assigning a

utility-combination function to each SVN. Every utility function ψU of a utility node U

1Clearly, an ID having only one utility node satis�es this condition by identifying such a node with
U0. An ID having several utility nodes assumes that the global utility is their sum, and can be modi�ed
to ful�ll that condition by adding a new node U0, of type sum, whose parents are the original utility
nodes. Therefore, this assumption does not restrict the types of IDs that our algorithm can solve.

2We denote with Pa(X) the set of parents of X, and with pa(X) a con�guration of the parents of X.
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can �nally be expressed as a function of chance and decision nodes, termed the functional

predecessors of U and denoted by fPred(U). Thus, the functional predecessors of an

ordinary utility node are its parents, fPred(U) = Pa(U), and the functional predecessors

of a SVN are all the functional predecessors of its parents: fPred(U) = ∪{fPred(U ′) | U ′ ∈
Pa(U)}. The algorithms described in this thesis assume that all the SNs in the ID are

either of type sum or product.3 In analogy with the terms of variable and node, we will

use the terms utility function and utility node interchangeably.

For example, in the ID of Figure 2.1 we have fPred(U1) = {X,D}, fPred(U2) =

{T} y fPred(U0) = {X,D, T}. Similarly, considering that U0 is a sum node, we have

ψU0(T,X,D) = ψU1(T ) + ψU2(X,D).

In order to simplify the notation, we shall sometimes assume without loss of generality

that fPred(U) = VC ∪ VD for every utility node U , i.e., U depends on all the chance

variables and decisions.

For each con�guration vD of the decision variables in VD we have a joint probability

distribution de�ned over the set of random variables VC :

P (vC : vD) =
∏

X∈VC

P (x|paC(X) : paD(X)) =
∏

X∈VC

P (x|pa(X)) , (2.3)

where PaC(X) and PaD(X) denotes the parents of X that are chance and decision vari-

ables respectively, i.e., PaC(X) = Pa(X) ∩ VC , and PaD(X) = Pa(X) ∩ VD. Equa-

tion 2.28 represents the probability of con�guration vC when the decision variables are

externally set to the values given by vD. This notation, introduced by Cowell et al. (1999),

is equivalent to the notation used by Pearl (1994, 2000), P (vC |do(vD)).4

A very simple example of in�uence diagram is the test problem.

Example 2.3.1 (Test problem) A physician has to decide whether to treat or not a

patient, who may su�er from a disease (X). Before deciding if to treat the patients (D),

the physician can decide to perform a test (T ). This test will produce the test result (Y ),

which would help to determine whether the patient su�ers from the disease.

3A super-value node Ui representing a combination function other than the sum or the product can
be transformed into an ordinary utility node as follows: if Uj is a parent of Ui, we remove Uj from the
ID and add its parents as new parents of Ui, and proceed recursively until no parent of Ui is a utility
node. The new utility function for Ui derives from the original utility function of Ui and from those of
its utility ancestors in the original ID. This transformation is necessary for both our algorithm and arc
reversal (Tatman and Shachter, 1990).

4P (vC : vD) should not be confused with P∆(vC |vD), which we will present further and that is directly
derived from the joint probability distribution P∆(vC ,vD) by using Eq. 2.4 and which only makes sense
after selecting a strategy ∆. On the contrary, P (vC : vD) represents the probability of vC if the actions
given by vD are externally set, independently of the values of the variables observed when making each
decision.
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Figure 2.1: An in�uence diagram representation of the test problem (Example 2.3.1).

An ID representation of this decision problem is given in Figure 2.1. The decision

node T designates the decision about whether or not to perform the test to the patient.

The chance node Y represents the result of the test (if the test is performed). The utility

function associated with the utility node U1 encodes the cost of performing the test. The

decision D is the decision whether or not to treat for the disease. The chance node X

corresponds to the diagnosis of the patient. The utility function associated with the utility

node U2 speci�es the health state of the patient as a function of the treatment and the

diagnosis. The SVN U0 represents the health state as a sum of the cost of the test (U2)

and the health state of the patient after treating him (U1).

The directed path from T to D indicates that the physician decides on T before

deciding on D. The informational arc from Y to D speci�es that the test result is known

before deciding on D. On the other hand, as there is no informational arc from X to

either of the decision nodes, the state of X is observed (possibly never) after deciding

on D. The nodes U1 and U2 have as parents to the variables in the domain of their

respective utility functions. Thus, the SVN U0 has as parents to U1 and U2, which are

combined with sum. The utility function of U0 can therefore be expressed in terms of

pa(U1) ∪ pa(U2) = {T,X,D}.

Finally, with respect to the states of the variables in the ID of Figure 2.1, decision test

T has two states +t and ¬t, and the result of the test (Y ) has three states: +y, ¬y and

no-result. Thus, the probability distribution of Y has to re�ect that the result of the test

is only available if the physician decides to perform it.
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2.3.1 Policies and strategies

A stochastic policy for a decision D is a probability distribution de�ned over D and con-

ditioned on the set of its informational predecessors, PD(d|iPred(D)). If PD is degenerate

(consisting of ones and zeros only) then we say that the policy is deterministic.

A strategy ∆ for an ID is a set of policies, one for each decision, {PD | D ∈ VD}.
If every policy in the strategy ∆ is deterministic, then ∆ is said to be deterministic;

otherwise ∆ is stochastic. A strategy ∆ induces a joint probability distribution over

VC ∪VD de�ned as follows:

P∆(vC ,vD) = P (vC : vD)
∏

D∈VD

PD(d|iPred(D)) =
∏
C∈VC

P (c|pa(C))
∏

D∈VD

PD(d|iPred(D)) .

(2.4)

Let I be an ID, ∆ a strategy for I and r a con�guration de�ned over a set of variables

R ⊆ VC ∪VD such that P∆(r) 6= 0. The conditional probability distribution induced by

the strategy ∆ given the con�guration r, de�ned over R′ = (VC ∪VD) \R, is given by:

P∆(r′|r) =
P∆(r, r′)

P∆(r)
. (2.5)

For example, in the ID of Figure 2.1 we have:

P∆(vC ,vD) = P (x) · P (y|t, x) · PT (t) · PD(d|t, y),

where PT and PD are the policies contained in strategy ∆. If we have R = {T, Y }, then
the conditional probability distribution induced P∆(r′|r) is:

P∆(r′|r) = P∆(x, d|t, y) =
P∆(x, d, t, y)

P∆(t, y)
. (2.6)

Thus, we have in Equation 2.6 the conditional probability distribution P∆(x, d|t, y), which

represents the posteriori probability of x and d, given the values t and y.

Using the distribution P∆(r′|r) de�ned in Equation 2.5 we can compute the expected

utility of U under the strategy ∆ given the con�guration r as:

EU U(∆, r) =
∑
r′

P∆(r′|r)ψU(r, r′). (2.7)

For the terminal utility node U0, EUU0(∆, r) is said to be the expected utility of the

strategy ∆ given the con�guration r, and denoted by EU(∆, r). For example, in the ID
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of Figure 2.1, if we have R = {T, Y }, then the expected utility the strategy ∆ given the

con�guration r = {t, y} is as follows:

EUU(∆, r) =
∑
x

∑
d

P∆(x, d|t, y) ·ψU0(x, y, d, t) =
∑
x

∑
d

P∆(x, d, t, y)

P∆(t, y)
(U1(x, d) +U2(t)),

(2.8)

by using Equation 2.6.

We de�ne the expected utility of U under the strategy ∆ as EUU(∆) = EUU(∆,�),

where � is the empty con�guration. We have that

EUU(∆) =
∑
vC

∑
vD

P (vC ,vD)ψU(vC ,vD). (2.9)

We also de�ne the expected utility of the strategy ∆ as EU(∆) = EUU0(∆).

An optimal strategy is a strategy ∆opt that maximizes the expected utility:

∆opt = arg max
∆∈∆∗

EU(∆), (2.10)

where ∆∗ is the set of all the strategies for I. Each policy in an optimal strategy is said

to be an optimal policy . The maximum expected utility (MEU ) is

MEU = EU (∆opt) = max
∆∈∆∗

EU (∆). (2.11)

The evaluation of an ID consists in �nding the MEU and an optimal strategy, com-

posed by an optimal policy for each decision. It can be proved (Cowell et al., 1999)

that

MEU =
∑
c0

max
d0

. . .
∑
cn−1

max
dn−1

∑
cn

P (vC : vD)ψU0(vC ,vD). (2.12)

An optimal policy δDi is therefore a function that maps each con�guration of the

variables in iPred(Di−1), i.e., those at the left of maxDi in the above expression, onto the

value di of Di that maximizes the expression at the right of Di (in the case of a tie, any

of the values of Di that maximize that expression can be chosen arbitrarily):

δDi(iPred(Di)) = arg max
di∈Di

∑
ci

max
di+1

. . .
∑
cn−1

max
dn

∑
cn

P (vC : vD)ψU0(vC ,vD) . (2.13)
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For instance, the MEU for the ID in Fig. 2.1 is

MEU = max
t

∑
y

max
d

∑
x

P (x) · P (y|t, x) · (U1(x, d) + U2(t)) (2.14)

and an optimal policy δD is

δD(b) = arg max
d∈D

∑
x

P (x) · P (y|t, x) · (U1(x, d) + U2(t)) (2.15)

There can be more than one optimal strategy for an ID. However, we can always �nd

an optimal strategy that is deterministic. The literature about IDs usually assume that

the strategies in IDs are deterministic. We will also assume in the dissertation that the

strategies are deterministic, except when we point out that they can also be stochastic.

2.3.2 Evaluation algorithms

Several algorithms have been proposed for evaluating IDs without SVNs (Shachter, 1986;

Jensen et al., 1994; Dechter, 1996; Cowell et al., 1999). However, there is only one algo-

rithm for IDs with SVNs (Tatman and Shachter, 1990), which is described in this section.

Algorithm of Tatman and Shachter Tatman and Shachter (1990) proposed the �rst

algorithm for evaluating IDs with SVNs. They employed a similar scheme to the arc

reversal (AR) algorithm (Olmsted, 1983; Shachter, 1986) used for IDs without SVNs. It

was adapted for ID with SVNs by maintaining the separability of the utility function ψ

as long as possible during the evaluation of the ID.

The algorithm accomplishes successive transformations on the ID. The new ID ob-

tained after each transformation preserve theMEU and the optimal policies of the original

ID. The transformations operate over the probability potentials of the chance nodes and

over the utility functions, and compute the optimal policies of the decisions.

We explain the �ve basic transformations performed by algorithm of Tatman and

Shachter: reduce, merge, eliminateChance, eliminateDecision and reverseArc.

reduce The most basic method is reduce (see Algorithm 2.1), which converts a SVN

U of the ID in other utility node with same utility function ψU , but whose parents are

fPred(U). The utility nodes that are ancestors of U and their incoming and outgoing

links are removed from the ID5.
5The utility nodes ancestors of U can be removed from the ID because Tatman and Shachter's algo-

rithm assume that for each utility node there is an only path connecting it to U0. Otherwise, those utility
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Figure 2.2: ID obtained after reducing SV node U0 in ID of Figure 2.1.

For, example, SVN U0 can be reduced in ID of Figure 2.1, which would convert the ID

into the new ID of Figure 2.2. Utility nodes U1 and U2 and their links have been removed.

Moreover, while U0 was a SVN in the original ID, it has been converted into an ordinary

utility node. The parents of U0 in the new ID are all the parents of U1 and U2 in the

original ID. The utility function of U0 has not changed. However, it is not decomposed

with a structure of SVNs. On the contrary, the operation of reduction has calculated the

values of the utility function of U0 as:

U0(x, t, d) = U1(x, d) + U2(t).

merge Another basic method is merge (see Algorithm 2.2). It combines several

utility nodes that have a common child U into a new SVN U ′ and then reduces U ′. If

the set of utility nodes to be merged is the entire set of parents of U , then merging them

simply reduces U .

For example, let us consider an example with the ID in Figure 2.3. Utility nodes U2

and U3 can be merged. That operation would create a SVN U4 that combines with a sum

the nodes U2 and U3, as we can see in the ID of Figure 2.4. U4 is then reduced, obtaining

the new ID of Figure 2.5.

eliminateChance The third operation of the algorithm is given by method elimi-

nateChance, described by Algorithm 2.3, which eliminates a chance node.

The next de�nition and theorem establishes the conditions that a node must satisfy

nodes should not necessarily be removed from the ID.
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Algorithm 2.1 reduce

Input: U : a utility node of an ID I;
E�ects: the node U is converted in an ordinary utility node, the utility nodes ancestors

of U are eliminated from I, the new parents of U are fPred(U) and the utility function
ψU is computed.

1. if U /∈ VOU then
2. for all U ′ ∈pa(U) do
3. reduce(U ′);
4. end for
5. ΦU := {ψU ′ | U ′ ∈ pa(U)};
6. if U is a sum node then
7. ψU :=

∑
{ψ | ψ ∈ ΦU};

8. else
9. ψU :=

∏
{ψ | ψ ∈ ΦU};

10. end if
11. fPred := ∪{pa(U ′) | U ′ ∈ pa(U)};
12. for all U ′ ∈ pa(U) do
13. delete U ′ from I;
14. end for
15. for all X ∈ fPred do
16. add the arc X → U ;
17. end for
18. end if

 

D X 

U1 U2 

+ 

U0  
U3 

Y 

Figure 2.3: Example of ID where nodes U2 and U3 are going to be merged.
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Figure 2.4: ID obtained from the ID of Figure 2.3 when merging utility nodes U2 and U3.
SV node U4 has been added to the ID and will be reduced.
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Figure 2.5: ID after reducing U4 in ID of Figure 2.4.
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Algorithm 2.2 merge

Input: U : a set of utility nodes of an ID I, parents of the same SVN U ′;
E�ects: the nodes in U are merged.
1. if pa(U ′) = U then
2. reduce(U ′);
3. else
4. for all U ∈ U do
5. eliminate the arc U → U ′;
6. end for
7. add a new SVN U ′′ of the same type that U ′;
8. add the arc U ′′ → U ′;
9. for all U ∈ U do

10. add the arc U → U ′′;
11. end for
12. reduce(U ′′);
13. end if

Algorithm 2.3 eliminateChance

Input: I : an ID with SVNs; A: chance node to be eliminated, whose only successor is
the utility node U ;

E�ects: the chance node A is eliminated from I.
1. ψ′U :=

∑
a

P (a|pa(A))ψU(pa(U));

2. for all X ∈ pa(A) do
3. add the arc X → U ;
4. end for
5. replace ψU with ψ′U as utility function of U ;
6. delete the node A from I;
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Figure 2.6: ID obtained by eliminating chance node X from the ID of Figure 2.5.

before it can be eliminated.

De�nition 2.3.1 A chance node C is said to be removable if all its children are utility

nodes.

Theorem 2.3.1 Let C be a removable chance node. Then C can be eliminated from the

ID by using Algorithm 2.3, after possibly previous reductions and/or merges of utility

nodes to leave it with an only child.

The proof of the correctness of the theorem can be found in (Tatman and Shachter,

1990).

When a chance node A is going to be eliminated its only child is a utility node U .

The elimination basically consists in updating the utility function of U according to:

ψ′U :=
∑
a

P (a|pa(A))ψU(pa(U)).

The parents of A in the original ID are parents of U in the new ID. Finally, node A and

its links are removed from the ID.

Let us see the ID of Figure 2.3. Chance node X satis�es the conditions of Theo-

rem 2.3.1 and can therefore be eliminated, after previous reductions and/or merges of

utility nodes. The operations required for leaving X with an only child have been de-

scribed when explaining the method merge, i.e, merging U2 and U2 becomes X in remov-

able (see Figure 2.5). Finally, chance node X can be eliminated from the ID of Figure 2.5,

obtaining the ID of Figure 2.6.
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eliminateDecision Another method of the algorithm is eliminateDecision, described

by Algorithm 2.4, which eliminates a decision node.

Algorithm 2.4 eliminateDecision

Input: D: decision node to be eliminated, whose only successor is the utility node U ;
E�ects: the decision node D is eliminated from I;
Output: an optimal policy δD for D.
1.

2. ψ′U := maxD ψU(Pa(U));
3. δD := arg maxD ψU(Pa(U));
4. replace ψU with ψ′U as utility function of U ;
5. delete the node D from I;
6. return the optimal policy δD;

The conditions to be satis�ed by a decision node before eliminating it are described

by the next theorem.

De�nition 2.3.2 A decision node is said to be removable if all utility nodes take on only

non-negative values and all its children are utility nodes.

Theorem 2.3.2 Let D be a removable decision node. Then D can be eliminated from

the ID by using Algorithm 2.4, after possibly previous reductions and/or merges of utility

nodes to leave it with an only child whose parents are D or any of the parents of D.

The proof of the correctness of the theorem can be found in (Tatman and Shachter,

1990).

When a decision node D is going to be eliminated its only child is a utility node U .

The elimination basically consists in updating the utility function of U according to:

ψ′U := max
D

ψU(Pa(U)).

Finally, node D and its links are removed from the ID. The removal of D can leave some

nodes without descendants. Such nodes are said to be barren. Barren nodes can be

removed directly from the ID because they do not in�uence the optimal policy of any

decision nor the MEU.

For example, let us focus on the ID of Figure 2.7. Decision D is removable, because

all its children are utility nodes. If we reduce U2 we obtain the ID of Figure 2.8, where D

appears with an only child, U2, and can be eventually eliminated. The ID obtained after

eliminating D is given by Figure 2.9.
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Figure 2.7: ID in which decision D is removable.
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Figure 2.8: ID after reducing U2 in ID of Figure 2.7.
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Figure 2.9: ID obtained by eliminating D from the ID of Figure 2.8.

reverseArc Algorithm 2.5 describes the �fth operation to perform on the ID, named

reverseArc, which reverses an arc in the ID by applying Bayes' rule.

Algorithm 2.5 reverseArc

Input: X → Y : arc to be reversed in the ID;
E�ects: the arc X → Y is reversed.
1. Pa ′Y := (Pa(Y ) \ {X})∪ Pa(X);
2. Pa ′X := (Pa(X) ∪ {Y })∪ Pa(Y );

3. P ′(Y |Pa ′Y ) :=
∑
x

P (x|Pa(X))P (Y |Pa(Y ));

4. P ′(X|Pa ′X) :=
P (X|Pa(X))P (Y |Pa(Y ))

P ′(Y |Pa ′Y )
;

5. eliminate the arc X → Y ;
6. for all Z ∈ (Pa ′X\ Pa(X)) do
7. add the arc Z → X;
8. end for
9. assign to X the conditional probability distribution P ′(X|Pa ′X);

10. for all Z ∈ (Pa ′Y \ Pa(Y )) do
11. add the arc Z → Y ;
12. end for
13. assign to Y the conditional probability distribution P ′(Y |Pa ′Y );

The next theorem states that, under certain conditions, a chance node is removable

after the appropriate arc reversals.

Theorem 2.3.3 Let C be a chance node. If C is a functional predecessor of U0 and none

of the decision nodes is child of C, then, after reversing the arcs in the set {C → C ′ | C ′

is chance node and child of C}, the node C is removable. We will say in this case that

the chance node C is removable after arc reversals.
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Figure 2.10: ID after reversing arc X → Y in ID of Figure 2.1.

Proof. After the arc reversals, there can only be utility nodes as children of C. Thus,

the node C is removable.

Let us consider the ID of the test problem, displayed in Figure 2.1. There are two

chance nodes in that ID: X and Y . Node Y is not removable because decision D is child of

Y . However, children of X are utility node U1 and chance node Y . Thus, X is removable

after arc reversals. The only arc to be reversed is X → Y .

After reversing the arc X → Y the only parent of Y is T , and the new parents of X

are Y and T . The new conditional probability distribution of X and Y , P ′(x|y, t), is and
P ′(y|t) respectively, are:

P ′(y|t) :=
∑
x

P (x|y, t)

P ′(x|y, t) :=
P (x)P (y|x, t)

P ′(y|t)
.

The ID obtained after reversing the arc X → Y of the ID of the test problem is

illustrated by Figure 2.10. Node X is removable on that ID.

Additionally, Tatman and Shachter (1990) proposed a heuristic for reducing the storage

size of the utility functions during the evaluation, termed subset rule. They explain that,

if two utility nodes U1 and U2 have the same successor, a SVN U , and Pa(U2) ⊆ Pa(U1),

then eliminating U1 and U2 will not increase the size of any operation necessary for solving

the ID, and should therefore be merged.

The algorithm of Tatman and Shachter is shown as Algorithm 2.6. We will name it

Arc Reversal and we will refer to it as AR in the rest of the dissertation.
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Algorithm 2.6 Algorithm AR (Arc Reversal)

Input: I : an ID with SVNs;
Output: the MEU of the ID and an optimal policy δD for each decision variable D.
1. delete barren nodes from I;
2. while pa(U0) 6= ∅ do
3. if the subset rule can be applied to some set of utility nodes U then
4. merge(U);
5. else if there exists a chance node C that is removable then
6. merge and reduce the necessary utility nodes for eliminating C;
7. eliminateChance(C);
8. else if there exists a decision node D that is removable then
9. merge and reduce the necessary utility nodes for eliminating D;

10. eliminateDecision(D);
11. delete barren nodes from I;
12. else if there exists a chance node C that is removable after arc reversals then
13. for all X ∈ Children(C) do
14. reverseArc(X → C);
15. end for
16. end if
17. end while

2.4 Unconstrained in�uence diagrams

Unconstrained in�uence diagrams (UIDs) were proposed by Jensen and Vomlelova (2002)

to represent and solve decision problems in which the order of some decisions is unspeci�ed

and the decision maker is interested in knowing the best ordering. Let us see the limita-

tions of IDs with partially ordered decisions through a simpli�ed medical example: the

diabetes diagnosis problem (Demirer and Shenoy, 2001). After that, we will review

the UIDs framework.

2.4.1 Limitations of IDs for partially ordered decisions

Example 2.4.1 [Diabetes diagnosis problem]A physician is trying to �nd a policy for

treating a patient who may su�er from diabetes. After an initial examination of his symp-

toms, the physician has to diagnose whether he su�ers from diabetes. Diabetes has two

symptoms, glucose in urine and glucose in blood. The physician can decide to perform

a urine test and/or a blood test. Their corresponding test results are observed before de-

ciding on whether to treat the patient. The order in which the tests are performed is not

speci�ed. The physician can decide to not perform any test.
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Figure 2.11: ID for modeling the diabetes diagnosis problem.

IDs are not suitable for a problem like this in which decisions are not totally ordered.

We would need to circumvent this limitation by representing the unspeci�ed order of the

tests as a linear ordering of decisions. To model the diabetes diagnosis problem it can be

done by introducing two decision variables T1 and T2, as shown in Figure 2.11; these two

variables model the �rst test and the second one, respectively. The arc R1 → R2 indicates

that a repetition of a test would give an identical result.

With respect to the states of the variables, the test decisions (T1 and T2) have three

states, bt, ut and no-test. The result nodes (R1 and R2) have �ve states, +t, ¬t, +u, ¬u,
and no-result. It has been necessary to add the state no-result to re�ect the fact that the

result of the test is unknown if the physician decides not to perform it.

Unfortunately, the structure of the decision problem is not apparent from the model

and for large decision problems this technique would be prohibitive, as all possible sce-

narios should be explicitly encoded in the model.

As an alternative model, Jensen and Vomlelova (2002) introduced unconstrained in-

�uence diagrams to represent this kind of decision problems. In the UID framework, the

combinatorial problem of representing non-sequential decision problems is postponed to

the solution phase.
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2.4.2 UID representation

An unconstrained in�uence diagram (UID) is an ADG over three sets of nodes: decision

nodes VD, chance nodes VC , and utility nodes VU . The semantics of these sets of nodes is

identical to the case of IDs. Nevertheless, the set of chance nodes nodes VC is partitioned

into two subsets: observable nodes, VO (drawn as double circles), and non-observable

nodes, VN (single circles).

As in IDs, the quantitative information associated with a UID consists of probabil-

ity distributions and utility functions. However, UIDs do not have super-value nodes

and assume that the utility functions combine additively into a joint utility function, ψ.

Moreover, a convention in UIDs establishes that each decision variable D has a cost. If

this cost only depends on D, it is not represented graphically, and the cost function is

attached to D.

The semantics of the links is equivalent to the case of IDs, and the no-forgetting

hypothesis is also assumed. However, a total ordering of the decision nodes is not required.

While non-observable variables are variables that will never be observed, an observable

variable will be observed when all its antecedent decisions have been made, i.e., an option

has been chosen for each decision.

The structural speci�cation of a UID yields a partial temporal order. If a partial order

is extended to a total order we get an in�uence diagram. Such an extended order is called

an admissible order.

For example, a UID for the diabetes diagnosis problem is shown in Figure 2.11. Deci-

sion nodes BT and UT model the decisions of performing the blood test and the urine test

respectively. The results of these tests are represented by the observable chance variables

B and U . The chance variable D models the presence or absence of diabetes, and the

symptom is presented in the UID by variable S. The decision node Tr designates the

decision about whether to treat the patient. The utility node V represents the health

state of the patient as a function of the treatment and the diagnosis. Contrary to the case

of the ID in Figure 2.11, the UID of Figure 2.12 does not require to represent the costs of

the urine and the blood tests graphically because their utility functions only depend on

the test decision.

With respect to when the variables are observed, for instance, in Figure 2.12 S is

observed before the �rst decision, since it has no antecedent decision variables, and B is

observed after deciding on BT .

The directed paths from BT and UT to D indicate that the physician decide on BT

and UT before deciding on D. The arc from BT to B speci�es that the result of the
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Figure 2.12: An unconstrained in�uence diagram representation of the diabetes diagnosis
problem.

blood test B can be observed after deciding on BT . Similarly, the result of the urine test

U is available after making decision UT . Variable S can be observed before making any

decision, since it has no antecedent decision variables. On the other hand, as variable D

is non-observable, it cannot be observed before deciding on Tr. Let us note that the UID

of Figure 2.12 does not specify the order of decisions BT and UT .

Finally, with respect to the states of the variables in the UID of Figure 2.12, the test

decisions (BT and UT ) have two states +bt and ¬bt, and +ut and ¬ut, respectively. The
result of the test B has three states: +b, ¬b and no-result. Similarly, the states of U are

+u, ¬u and no-result. The fact that the result of a test is only available if the physician

decides to perform it is encoded in the probability distributions of B and U ; for instance,

P (+b|¬bt) = P (+b|¬bt) = 0, and P (no-result |¬bt) = 0.

2.4.3 Solving a UID

Solving a UID means calculating an optimal strategy. However, the concept of strategy

is more complex than in IDs.

An S-DAG is a DAG G whose nodes contain variables from VD ∪ VO. The set of

variables contained in a node N of G is called labels of N , and denoted by labels(N). Each

maximal directed path in G represents an admissible ordering of the variables in VD∪VO.

A GS-DAG is a minimal GS-DAG containing all admissible orderings for computing an
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optimal strategy.

Let N be a node in the S-DAG G. The history of N , denoted by hst(N), contains

labels(N) and the labels of its ancestors. We distinguish two kinds of policies : step-policy

and decision-policy. A step-policy for a node N in an S-DAG is a conditional probability

potential PN(ch(N)|hst(N)) that maps each con�guration of the history of N into a

probability distribution over the children of N . A decision-policy for a decision D of

a node N in a S-DAG is a probability distribution PN,D(d|hst(N)) that assigns to each

con�guration of hst(N) a distribution over the alternatives for D. If a policy is degenerate

(consisting of ones and zeros only) then we say that the policy is deterministic.6

De�nition 2.4.1 Let I be a UID and let G be a S-DAG for I. A strategy for I is a pair

∆ = {∆S,∆D}, where:

• ∆S = {PN | N is a node in G and PN is a step-policy for N}, and

• ∆D = {PN,D | N is a node in G, D is a decision node in labels(N), and PN,D is a

decision-policy for decision D of N}.

Let us see the example of UID in Figure 2.13 for clarifying the concepts de�ned for solving

a UID.

According to the semantics of UIDs, decisions T1 and T2 are unordered in the UID, but

both precede T3. Finally, T4 is the last decision to be made. The partial order of decisions

speci�ed by the UID is used by Jensen and Vomlelova (2002) for building an S-DAG where

the UID is solved. An S-DAG for the UID of Figure 2.13 is presented in Figure 2.14. It is

also a GS-DAG because it is the minimal S-DAG containing all admissible orderings for

solving the UID.

Following the S-DAG of Figure 2.14, a strategy for the UID of Figure 2.13 has to

contain:

• A step-policy for the branch point in node S, P (ch(S)|s), which assigns a probability
of selection of the upper and lower branches created by the outgoing arcs from S.

• Six decision-policies: One for each decision variable appearing in the S-DAG. With

regard to the domain of the decision-policies, the policy P{T3} required in the node

appearing T3 is P{T3}(t3|s, t1, r1, r2, t2, r3). A policy P{T1}u in the node appearing T1

in the upper branch of the S-DAG has the form P{T1}u(t1|s), which is di�erent from

the policy P{T1}l for the node with T1 in the lower branch: P{T1}l(t1|t2, r3, t1, r1, r2).

6Our de�nition of policy di�ers from that Jensen and Vomlelova (2002) proposed in the original
formulation of UIDs because we allow policies to be not only deterministic functions but also probability
distributions.
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Figure 2.13: Example of UID.
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Figure 2.14: SDAG for the UID of Figure 2.13.
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A strategy ∆ induces a joint probability distribution over VC ∪VD de�ned by:

P∆(vC ,vD) =
∑
N

∏
N

PN(ch(N)|hst(N))
∏
C∈VC

P (c|pa(C)) (2.16)

=
∏

D∈(VD∩var(N))

PN,D(d|hst(N)) (2.17)

De�nition 2.4.2 Let N be a node of the S-DAG G and let X and Y be two subsets of

variables in N such that X ⊆ var(N) and Y = var(N) \X. The expected utility of ∆

for a node N and a con�guration e of E ⊆ hst(N) is denoted by EU∆(N, e). If Y 6= ∅,

then EU∆(N, e) is given by:

EU∆(N, e) =
∑
y

P∆(y|e)EU∆(N, {e, y}) (2.18)

where Y ∈ Y and P∆(y|e) = P∆(y, e)/P∆(e). If Y = ∅, then EU∆(N, e) is de�ned by:

EU∆(N, e) =


∑

N ′∈ch(N) PN(N ′|e)EU∆(N ′, e) if ch(N) 6= ∅

U(e) if ch(N) = ∅
(2.19)

We de�ne the expected utility of strategy ∆ as EU∆ = EU∆(N0,�), where N0 is the root

node in G and � is the empty con�guration.

An optimal strategy is a strategy ∆opt that maximizes the expected utility. Similarly

to IDs, we can always �nd an optimal strategy that is deterministic.

Jensen and Vomlelova (2002) proposed to solve UIDs by constructing a GS-DAGG and

solving G through dynamic programming in way similarly to solving in�uence diagrams

(i.e., eliminating the variables in variables in reverse temporal order). Initially, we have

a set of probability and utility potentials. The non-observable variables are eliminated

�rst. Then chance and decision variables are eliminated as in variable-elimination for

IDs. When a bifurcation point is met, the elimination branches out and the potentials are

transferred to the di�erent branches. When several branches meet, the probability tables

will be identical, and the utility potentials are uni�ed through maximization. The latter

also generates the step-policy for the branching node.

Let us see how the evaluation of the diabetes diagnosis problem is performed by

the algorithm proposed by Jensen and Vomlelova (2002). A GS-DAG for the diabetes

diagnosis problem appears in Figure 2.15.

The solution of the Diabetes diagnosis problem through the GS-DAG is as follows.
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BT UT B U 

Tr 

UT BT U B 

S 

Figure 2.15: GS-DAG of the UID of diabetes problem (see Figure 2.12.

We start with the sets of potentials:

Φ = {φ1(B,BT,D), φ2(U,UT,D), φ3(S,D), φ4(S,D)}

Ψ = {ψ1(BT ), ψ2(UT ), ψ3(D,Tr)} ,

where:

φ1(B,BT,D) = P (B|BT,D)

φ2(U,UT,D) = P (U |UT,D)

φ3(S,D) = P (S|D)

φ4(S,D) = P (D)

ψ1(BT ) = ψBT (BT )

ψ2(UT ) = ψUT (UT )

ψ3(D,Tr) = ψV (D,Tr) .

Let us note that ψBT and ψUT are the costs of the urine and blood tests, not represented

graphically in the UID.

First the non-observable variable D is eliminated. We therefore obtain the sets:

Φ′ = {φ5(S,B, U,BT, UT )}

Ψ′ = {ψ1(BT ), ψ2(UT ), ψ4(S,BT,B, UT, U, Tr)} ,
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where

φ5(S,B, U,BT, UT ) =
∑
D

φ1(B,BT,D)φ1(B,BT,D)φ3(S,D)φ4(S,D)

ψ4(S,BT,B, UT, U, Tr) =

=
1

φ5(S,B, U,BT, UT )

∑
D

φ1(B,BT,D)φ1(B,BT,D)φ3(S,D)φ4(S,D)ψ3(D,Tr) .

Next the variable Tr is eliminated. Then, we get the next potentials:

Φ′ = {φ5(S,B, U,BT, UT )}

Ψ′ = {ψ1(BT ), ψ2(UT ), ψ5(S,BT,B, UT, U)} ,

where

ψ5(S,BT,B, UT, U) = max
Tr

ψ4(S,BT,B, UT, U, Tr) .

After that a bifurcation point is met, so we branch. In the upper branch, after elimi-

nating U we obtain the next potentials:

ΦU = {φU6 (S,B,BT, UT )}

ΨU = {ψ1(BT ), ψ2(UT ), ψU6 (S,BT,B, UT )} ,

where

φU6 (S,B,BT, UT ) =
∑
U

φ5(S,B, U,BT, UT )

ψU6 (S,BT,B, UT ) =
1

φU6 (S,B,BT, UT )

∑
U

φ5(S,B, U,BT, UT )ψ5(S,BT,B, UT, U) .

In the lower branch, after eliminating B we obtain the next potentials:

ΦB = {φB6 (S, U,BT, UT )}

ΨB = {ψ1(BT ), ψ2(UT ), ψB6 (S,BT,B, UT )} ,
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where

φB6 (S, U,BT, UT ) =
∑
B

φ5(S,B, U,BT, UT )

ψB6 (S,BT, UT, U) =
1

φB6 (S, U,BT, UT )

∑
B

φ5(S,B, U,BT, UT )ψ5(S,BT,B, UT, U) .

When BT has been eliminated in the upper branch, and UT is eliminated in the lower

branch, we have two sets of potentials:

Φ′U = {φU7 (S)}

Ψ′U = {ψU7 (S)}

Φ′B = {φB7 (S)}

Ψ′B = {ψB7 (S)} .

The probability potentials of the two branches are identical. The utility potentials

must be uni�ed through maximization, thus the utility potential obtained is:

Ψ′′ = {max(ψU7 (S), ψB7 (S)}

and the step-policy generated is:

σ(s) =

BT if UB(s) ≥ UU(s)

UT otherwise

A measure of the complexity of solving a S-DAG is the number of eliminations per-

formed. The evaluation requires one elimination per each variable in a node of the S-DAG.

Thus, methods are devised to construct small S-DAGs. We shall, however, not deal with

this issue in the current dissertation.

2.5 Explanation in expert systems

Bayesian networks and in�uence diagrams are probabilistic graphical models widely used

for building diagnosis- and decision-support expert systems. Explanation of both the

model and the reasoning is important for debugging these models, for alleviating users'

reluctance to accept their advice, and for using them as tutoring systems. We describe in

this section the importance of explanation of expert systems and its main features.
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2.5.1 Importance of explanation in expert systems

In the context of expert systems, either probabilistic or heuristic, the development of

explanation facilities is important for three main reasons (Lacave and Díez, 2002; Lacave,

2003). First, because the construction of those systems with the help of human experts is

a di�cult and time-consuming task, prone to errors and omissions. An explanation tool

can help the experts and the knowledge engineers taking part in the project to debug the

system when it does not yield the expected results and even before a malfunction occurs.

Second, because human beings are reluctant to accept the advice o�ered by a machine if

they are not able to understand how the system arrived at those recommendations; this

reluctancy is especially clear in medicine (Wallis and Shortli�e, 1984). And third, because

an expert system used as an intelligent tutor must be able to communicate the apprentice

the knowledge it contains, the way in which the knowledge has been applied for arriving

at a conclusion, and what would have happened if the user had introduced di�erent pieces

of evidence (what-if reasoning).

These reasons are especially relevant in the case of probabilistic expert systems, be-

cause the elicitation of probabilities is more di�cult than the assessment of uncertainty

in heuristic expert systems and because, even though probabilistic reasoning is just a

formalization of (a part of) common-sense reasoning, the algorithms for the computation

of probabilities and utilities are very di�erent from the way a human being would draw

conclusions from a probabilistic model.

Unfortunately, the explanation methods proposed so far are still unsatisfactory, as

shown by the fact that most expert systems and commercial tools available today, either

heuristic or probabilistic, have virtually no explanation capability (Lacave and Díez, 2002,

2004). Despite the practical interest of this issue, very little research is currently carried

out about explanation in probabilistic graphical models. As an attempt to palliate this

shortcoming, in this paper we describe some methods for explaining both the model and

the reasoning of probabilistic expert systems as in�uence diagrams, which have been

implemented in Elvira, a public software tool developed as a joint project of several

Spanish universities. We also discuss how such methods respond to the needs that we

have detected when building and debugging medical expert systems (Díez et al., 1997;

Lacave and Díez, 2003; Luque et al., 2005) and when teaching probabilistic graphical

models to pre- and postgraduate students of computer science and medicine Díez (2004).
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2.5.2 Features of explanation in expert systems

Explanation methods are characterized by several properties, corresponding to the main

concepts on which an explanation is based (Lacave and Díez, 2002, 2004): content, com-

munication and adaptation. The content of an explanation deals with the model, the

reasoning, or the available evidence. Explanation of the model, also known as static ex-

planation (Henrion and Druzdzel, 1990), consists in showing the information represented

by the knowledge base of the expert system in a way that can be easily understood by

the user. Explanation of the reasoning, or dynamic explanation, describes how and why

the system has obtained certain results. Explanation of evidence usually consists in �nd-

ing the most probable con�guration that justify the evidence (Pearl, 1988), which is also

known as abduction. Dynamic explanations can be generated at the micro or the macro

level (Sember and Zukerman, 1989): micro-level explanations try to justify why the prob-

ability of a certain variable has varied, why the belief on a certain hypothesis has changed,

or why a rule has �red as a consequence of the variations in its neighbor variables or rules;

on the contrary, macro-level explanations analyze the main lines of reasoning (the paths

in the Bayesian network, the chains of rules, etc.) that led from the evidence to a certain

conclusion. The second main aspect of explanation, namely communication, is related to

the way of interacting with the user and the way of presenting the explanations, either

textually or graphically or by a combination of both. Finally, adaptation refers to the

ability to modify the explanations and the interaction depending on the user's expertise

and needs. See (Lacave and Díez, 2002, 2004) for a more detailed analysis of these features

and for a detailed review of the most relevant methods and systems o�ering some kind for

explanation, both for Bayesian networks (Lacave and Díez, 2002) and for heuristic expert

systems (Lacave and Díez, 2004).

2.6 Cost-e�ectiveness analysis in medicine

Cost-e�ectiveness analysis (CEA) in medicine is a particular case of multicriteria decision

making with two objective functions: the health bene�t, measured in clinical units (ef-

fectiveness), which we want to maximize, and the economic cost, measured in monetary

units, which we want to minimize. In this section we describe the methods of CEA.
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2.6.1 Net bene�t and incremental cost-e�ectiveness ratio

In multicriteria decision making, the most usual way of combining the objectives is a

weighted linear sum (Steuer, 1986). In the case of CEA, the global utility is called net

bene�t, and de�ned by:

NB = λE − C, (2.20)

where E is the e�ectiveness, C is the cost, and λ, sometimes called willingness to pay, is

used here to convert the e�ectiveness into a monetary scale. Its value depends on each

decision maker. NB is the net bene�t, and can be seen as the e�ectiveness (converted into

monetary value) minus the associated economic costs.

In health-related CEA, the e�ectiveness is measured in clinical units, such as the

number of deaths avoided. CEA assumes parameter λ is positive but unknown.

Cost-utility analysis is a particular case of CEA in which e�ectiveness is identi�ed

with the quality-adjusted life expectancy (QALE) (Drummond et al., 2005) whose unit is

the quality-adjusted life year (QALY)7. When the quality of life varies along the time, the

QALE corresponding to the interval of time [t1, t2] is given by:

QALE =

t2ˆ

t1

Q(t)dt, (2.21)

where Q(t) represents the quality of life. When the quality of life is constant in the

interval, being Q its value, the QALE can be calculated as:

QALE = Q · [t2 − t1]. (2.22)

The quality of life, Q, is measured in a scale where value 1 represents the best possible

health state, 0 represents death, and negative values indicate health states that people

deem than being dead. Thus, 1 QALY represents one year of life at the best possible

health state, or 2 years with a quality of life of 0.5, etc.

7Some authors distinguish between cost-e�ectiveness analysis and cost-utility analysis, while others
use the term cost-e�ectiveness for both. In general, the British and Canadians tend to make such a
distinction; for example, the famous book by Drummond et al. (2005), written by researchers from the
Universities of York (United Kingdom) and McMaster (Ontario, Canada) devotes a chapter to each type
of analysis, explaining the di�erences between them. In contrast, in the United States it is frequent to
refer to both types of studies as cost-e�ectiveness analysis. Thus, the book of Gold (1996), although it
is titled Cost-E�ectiveness in Health and Medicine, focuses on cost-utility analysis. In Spain we have a
mixed situation: there are those who distinguish between cost-e�ectiveness and cost-utility, while others
use the term cost-e�ectiveness for both types of studies.
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2.6.2 Deterministic CEA

Deterministic CEA assumes that we have a set of interventions, each one with known

e�ectiveness and cost. An intervention can be very simple. For example, the interventions

I1 can be not to perform a test, while I2 can be not to do it; I3 can be not to apply any

treatment, I4 can be to apply chemotherapy, and I5 can be to apply supportive care. We

can also have complex interventions. For example, an intervention can be �do the test 1;

if the result is positive then apply treatment T1; otherwise do the test 2, and then...�.

The interventions can be represented in a bidimensional plot, where the e�ectiveness

is in the X-axis, and the economic cost is in the Y-axis (see Figure 2.16).

Having λ unknown, the purpose of CEA is investigating which is the best intervention

by taking into account all the possible positive values for λ. (We assume that λ is positive

because everyone is willing to pay a certain amount of money, perhaps very small, for

obtaining some bene�t).

Comparison of interventions

We are going to see how to compare interventions, which is the basis of CEA.

Comparison of two interventions When comparing two interventions there are three

possible cases: coincidence, dominance and non-dominance. The �rst case consists in

having two interventions with identical e�ectiveness and cost. According with the utility

theory by von Neumann and Morgenstern (1944) in this case the decision maker will have

no preference independently of the value of λ. Cases of dominance and non-dominance

are explained below.

Dominance We introduce below the de�nition of dominance and a corollary for

analyzing this case.

De�nition 2.6.1 When A and B are two possible interventions, it is said that B domi-

nates A if:

• EB ≥ EA and CB ≤ CA, and

• EB > EA or CB < CA .

Corollary 2.6.1 If B dominates A, then NBB > NBA for any positive value of λ.

Therefore, when B dominates A the decision maker will prefer B independently of the

value of λ.
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CB - CA

Cost

Effectiveness

EB - EA

A

B

Figure 2.16: Comparison of interventions A and B. The scope of line through A and B
is the incremental cost-e�ectiveness ratio (ICER) of A and B.

Non-dominance When no intervention dominates the other, it implies one, say B,

is more e�ective but more costly: CB > CA and EB > EA.

De�nition 2.6.2 Let A and B be two interventions, such that CB > CA and EB > EA.

The incremental cost-e�ectiveness ratio (ICER) of A and B is de�ned by:

ICER(A,B) =
(CB − CA)

(EB − EA)
.

The ICER can graphically be interpreted as the slope of the line through the points

A and B, as can be seen in Figure 2.16.

From Equation 2.23 we can deduce:

NBB > NBA ⇐⇒ λEB − CB > λEA − CA ⇐⇒ λ(EB − EA) > (CB − CA) (2.23)

⇐⇒ λ >
(CB − CA)

(EB − EA)
. (2.24)

Therefore:

ICER(A,B) > λ⇒ NBA > NBB (2.25)

ICER(A,B) = λ⇒ NBA = NBB (2.26)

ICER(A,B) < λ⇒ NBA < NBB (2.27)

Put another way, the maximization of the NB, which is the objective of CEA, can be

performed by comparing the ICERs. Even though this is the most common approach, in
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Cost

Effectiveness

I1

I0

I4

I2

I3

Figure 2.17: Example of CEA with more than two interventions. The set S = {I0,I1,I3}
is the e�cient set of interventions. For any positive value of λ the most bene�cial inter-
vention will always belong to S.

the medical application described in Chapter 6, we have performed a CEA based directly

on the NB (see Section 6.4.3).

Comparison of several interventions When having more than two interventions the

situation is a bit more complicated. Let I be the set of possible interventions. The subset

of interventions S ⊆ I is said to be e�cient if it is a minimal set satisfying that for any

positive value of λ the most bene�cial intervention of I belongs to S. Given that an

e�cient set is minimal, an intervention dominated by another one can not belong to an

e�cient set (Steuer, 1986).

For example, let us see Figure 2.17, where we have the set of interventions I ={I0, I1, I2, I3, I4}.
The subset {I0, I1,I3} constitutes the only e�cient set. We can discard interventions I2

and I4 because for any positive value of λ the most bene�cial action will be I0, I1 or I3.

A possible algorithm for �nding the e�cient set of interventions is described in (Arias,

2009). It orders by cost the interventions of the e�cient set, and by using the ICER

for consecutive interventions it establishes a partitioning of the interval (0,+∞) for the

parameter λ. Each subinterval is mapped into the intervention of the e�cient set that

maximizes the net bene�t in the subinterval. For example, for the Figure 2.17 we would

have the subintervals (0, l0,1), (l0,1, l1,3), and (l1,3,+∞), where li,j = ICER(Ai, Aj). Each

of these subintervals for λ is assigned to A0, A1, and A3, respectively.
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2.6.3 Probabilistic CEA

Let us see a more general situation, where we have a set of interventions and we can also

have uncertainty due to the presence of chance variables.

CEA with decision trees(Arias, 2009)

When the cost and e�ectiveness is known for every intervention, we can apply the standard

method of CEA. It assumes that we have a decision tree representation of the problem

(Rai�a and Schlaifer, 1961), with an only decision, denoted by D, which is placed in the

root of the tree. Leaves of the tree represent the scenarios of the problem. Each scenario

is labeled with an economic cost and an e�ectiveness.

Having the parameter λ as unknown to the decision maker, the objective of performing

a CEA of the DT with an only decision, placed in the root, is to obtain a partitioning of

the interval (0,+∞) for λ, where each interval of the partition is mapped into an option

of D that maximizes the net bene�t in that interval of λ.

The CEA of the DT is performed from the leaves towards the root as follows:

• When a chance node is reached the cost and the e�ectiveness are separately cal-

culated by expectation by using the corresponding cost and e�ectiveness of each

child.

• When the root of the tree is reached we perform CEA as described in in each interval

as described in Section 2.6.1, which can split some intervals.

A clear limitation of the standard method is that there can only be one decision in the

DT, placed in the root. This is very restrictive constraint for many real problems. There

are several possibilities for solving this limitation: (1) represent in the root of the DT a

decision with one intervention per each possible strategy, (2) evaluate the decision tree

assuming λ as known, or (3) repeat the evaluation of the DT for all the possible values

of λ. However, the �rst two possible solutions are unsatisfactory (Arias, 2009), while the

third is impossible because the there are in�nite values of λ.

Given the limitations of standard method of CEA, Arias (2009) propose a method

for performing CEA of a decision problem represented in a DT that can contain several

decisions located in any place of the tree. Having the parameter λ as unknown to the

decision maker, the objective of performing a CEA of a DT is now to assign to each decision

node D in the DT a partitioning of the interval (0,+∞) for λ, where each interval of the

partition is mapped into an option of D that maximizes the net bene�t in that interval

of λ.
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The CEA of the DT is performed from the leaves towards the root. Initially, each leaf

is labeled with an economic cost, an e�ectiveness, and its initial set of intervals for λ is

{(0,+∞)}.
When a chance node C is reached the interval (0,+∞) is partitioned by joining all

the points that determine the intervals of λ in the children. For each interval obtained

in C the costs and the e�ectiveness are separately calculated by expectation by using the

corresponding cost and e�ectiveness of each child.

When a decision node D is reached the interval (0,+∞) is partitioned as in the case

of chance nodes. A CEA is performed in each interval as described in Section 2.6.1, which

can split some intervals. Two consecutive intervals in D could eventually be merged if

they have identical cost, e�ectiveness and optimal decision option.

CEA with in�uence diagrams

One possibility to cope with the multiobjective problem of CEA in the framework of IDs

would be to apply the extension proposed by Nielsen et al. (2007). They represented

the di�erent objectives as a set of ordinary utility nodes and developed an algorithm for

analyzing the solution of this kind of IDs. The method allow to solve in�uence diagrams

with any number of objective functions, n. Decision regions in method by Nielsen et al.

(2007) are hyperplanes of the space Rn, each one with dimension n − 1. In the case of

CEA, where n = 2, R2 is a plane, and the hyperplane is a straight line. The method is

thus perfectly applicable to CEA and would give to the decision maker a solution highly

satisfactory.

Despite of the possibility of applying multi-currency in�uence diagrams Nielsen et al.

(2007)for performing CEA in in�uence diagrams, Arias (2009) adapted the method pro-

posed by Nielsen et al. (2007) to the particular case of CEA, where there are only two

objective functions. Arias (2009) constructs an in�uence diagram with two utility nodes:

one for the cost, and other for the e�ectiveness. He proposes a variable elimination-based

algorithm for performing the CEA. The output of the analysis is a cost-e�ectiveness pol-

icy (CEP) for each decision D of the diagram, which assigns to each con�guration of D

a partitioning of the interval (0,+∞) for λ, where each subinterval of the partition is

mapped into an decision option of D that maximizes the net bene�t in that interval of λ.

The basic schema of the method is proposed in Algorithm 2.7.

Similarly to variable elimination algorithms, it utilizes a set of probability potentials.

It also uses a cost-e�ectiveness partition table (CEPT), which assigns to each con�guration

of its domain a partitioning of the interval (0,+∞),where each subinterval is assigned to
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two values: a cost and an e�ectiveness.

There are only three operations in the variable-elimination scheme of Algorithm 2.7

that are speci�c of CEA:

• The CEPT is initialized by combining the utility nodes of cost and e�ectiveness into

an only table that keep its values separately, and assigns the interval (0,+∞) to

each con�guration.

• The summation of a CEPT over a chance variable combines, for each con�guration,

the partitions corresponding to the values of X, similarly to the case of DTs (see

Section 2.6.3).

• The CEA when eliminating a decisionD do the next: for each con�guration y ∈dom(CEPT )\
{D}, it modi�es the CEPT to an equivalent table where we have the same interval

for y for any decision option of D. This allow to eliminate D from the CEPT by

maximization, which originates a CEP for D.

Algorithm 2.7 CEA in IDs using the method byArias (2009).

Input: I: an ID that may contain SVNs;
O: a legal sequence elimination for the variables in VC ∪VD;

Output: a CEP for each decision variable D.
1. initially the CEPT of the diagram;
2. for all V ∈ O do
3. ΦX :={φ ∈ Φ|V ∈ dom(φ)};
4. φX :=

∏
φ∈ΦX

φ;
5. if V ∈ VC then
6. φ′X :=

∑
X φX ;

7. φ′′X :=
φX
φ′X

;

8. multiply the CEPT by φ′′X and calculate the summation over X;
9. else

10. //V ∈ VD

11. φ′′X :=project φX over X;
12. peform CEA over the CEPT, which originates a CEP for V ;
13. end if
14. Φ:=(Φ \ ΦX) ∪ {φ′X};
15. end for

Examples and details of the algorithm can be found in (Arias, 2009). The main

advantage of their method compared to the proposed by Nielsen et al. (2007) is that the

use of a parameter during the method instead of two weights used by Nielsen et al. (2007)

when combining the two objectives functions simplify the evaluation and provide with
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a representation, the CEP, which is more understandable for a human expert. Authors

have also implemented the method as a plugin available in the free software tool Carmen

(Arias and Díez, 2008), which is very

2.7 Sensitivity analysis in probabilistic decision prob-

lems

The object of decision analysis on a probabilistic decision problem, represented for ex-

ample in a decision tree, an in�uence diagram or an unconstrained in�uence diagram,

is twofold: to determine an optimal strategy, consisting of an optimal policy for each

decision, and on the other hand, to compute the maximum expected utility (MEU). In

general it is usual to computes �rst the optimal policies and the MEU for a particular

model, called the reference case, in which all the parameters are assumed to be known

with certainty, and in a posterior phase, the decision analyst investigates whether these

results depend on (are sensitive) to the uncertainty about the model. This post-hoc in-

vestigation is called sensitivity analysis. The optimal policies and the MEU are sensitive

to variations in both the qualitative part of the ID (arcs and nodes) and the quantitative

part (the utilities and the probabilities).

2.7.1 Basic concepts

Sensitivity analysis (SA) consists in determining whether the conclusions obtained for

the reference case (optimal strategy and MEU) hold in spite of the uncertainty about the

accuracy of the model itself.

There exist several types of SA. Depending on the part of the model studied, SA can

be:

• qualitative, also referred to as structural, which examines how variations of the

structure of the model can a�ect the conclusions;

• quantitative, which explores the e�ect of the variations in the probabilities and

utilities.

Depending on the types of conclusions studied, we can distinguish two types of SA:

• value sensitivity analysis, which measures variations in the expected utility;

• decision sensitivity analysis, which explores the changes in the optimal strategy.
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Parameters Distribution Details

Probabilities Beta Between 0 and 1

Costs
Log-normal
Gamma

Ranging from 0 to ∞

Utilities
Beta

Gamma (1− U) −∞ to 1

Relative risks Log-normal
Ratios

Additive in log scale

Table 2.1: Commonly used distributions in SA in medical decision making. [Taken from
http://www.york.ac.uk/inst/che/pdf/teehtacosteff04.pdf]

Quantitative SA can furthermore be characterized as:

• interval-based SA: each parameter to be within a certain interval; for example,

considering that the prevalence of sensitivity of N2_N3 is between 0.26 and 0.29,

but we do not know its value with certainty.

• probabilistic SA: it assigns a probability distribution to each parameter; for ex-

ample, by assuming that our estimation of the prevalence of N2_N3 is given by a

Gaussian distribution with a mean of 0.14 and a standard deviation of 0.03. For

example, a particular type of probabilistic SA consists of computing the probabil-

ity that the optimal strategy be di�erent from that obtained for the reference case

(Doubilet et al., 1985).

• policy change thresholds SA: it investigates the admissible values a parameter

(or a set of parameters) can be assigned without changing of the optimal strategy

of the reference case. For example, let us assume that the prevalence of N2_N3

is 0.28 in the reference case. A threshold of 0.26 and 0.29 would mean that if the

prevalence were less than 0.26 or greater than 0.29, then the optimal strategy would

be di�erent.

The distributions commonly used in probabilistic SA when applied to medical decision

making are shown in Table 2.1.

Quantitative SA can be classi�ed into three types (Díez, 2007):

• one-way: it is concentrated on just one parameter; for example, the prevalence;

• n-way independent analysis, which consists in considering the consequences of

individual variations of each of n parameters;

• n-way joint analysis: it analyzes the joint variation of a set of n parameters.

http://www.york.ac.uk/inst/che/pdf/teehtacosteff04.pdf
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Figure 2.18: Utility plot on the prevalence of the disease, which is represented in the the
x-axis. The y-axis represents the expected utility. The treatment threshold is 0.17.

There are three graphical representations very popular in SA of Bayesian decision

problems (Díez, 2007; Clemen and Reilly, 2001):

• Utility plots: They can be used for �nding treatment thresholds in di�erent sce-

narios (van der Gaag and Coupe, 2000) and, in consequence, to explain the optimal

policies. For instance, in Fig. 2.18, which shows the results of one-way sensitivity

analysis on the prevalence of X for the ID given in Fig. 4.1. This graph is obtained

by evaluating several instances of the ID, each having a di�erent value of P (+x). We

can see that the treatment threshold is approximately 0.17, i.e., when P (+x) < 0.17

the best option is not to treat the patient, and when P (+x) > 0.17 it is better to

treat. This way, utility plots show graphically the policy changes thresholds and

why they emerge.

• Tornado diagrams: They are a form of interval-based n-way independent analysis.

They show graphically which parameters in the model have the greatest in�uence

on the expected utility. Each parameter is assigned to a bar whose length indicates

the variation of the expected utility. The graph is laid out so that the most sensitive

parameter (the one with the longest bar) is at the top, and the least sensitive is at

the bottom, with the bars arranged in this order. An example of tornado diagram

is presented in Figure 2.19. The vertical bar represents the MEU for the reference

case.

• Spider diagrams: The analysis is identical to the tornado diagram. The only

di�erence is in how the results are presented. In a spider diagram, the utility is not
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Figure 2.19: A tornado diagram. [Image taken from (Díez, 2007)].

Figure 2.20: A spider diagram. [Image taken from (Díez, 2007)].

represented on the horizontal axis but on the vertical one; the percentage variation

of each parameter over its reference value is represented on the horizontal axis. An

example of spider diagram is presented in Figure 2.20.

2.7.2 Sensitivity analysis in in�uence diagrams

One of the initial steps towards a coherent approach for SA in IDs was proposed by Bielza

et al. (1996). They consider the situation where some of the utilities and probabilities

have only partially assessed. Uncertain values are represented by parameters, and a set

of non-dominated strategies is computed based on that parametric model.

A method based on value sensitivity was proposed in (Felli and Hazen, 1998). This

method uses the expected value of perfect information, and it requires that a probability

distribution is assigned to each parameter under investigation. Formally, let t be an

uncertain parameter, and let ∆0 be the optimal strategy found with the initial values of

the parameters t, denoted by t0. Let EU(∆, t) denote the expected utility of the ID under

strategy ∆ and values of parameters t. Then, the expected value of perfect information
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(EVPI) is given by:

EV PI = Et[(max∆EU(∆, t))− EU(∆0, t)], (2.28)

where Et denotes the expected value with respect to probability distribution of parameters

t. Monte Carlo methods are usually applied to sample values for the parameters in order

to calculate EVPI. The expectation Et in Equation is then approximated by calculating

the mean over the set of generated samples.

Nielsen and Jensen (2003) proposed a method that performs decision SA in IDs based

on threshold-proximity. They proposed very e�cient algorithms for performing one-way

and n-way SA. Their method is based on an explicit representation of the parameters in

question, and the calculations are performed in the underlying junction tree representation

of the ID.

2.8 Elvira

Elvira8 is a tool for building and evaluating graphical probabilistic models (Elvira Con-

sortium, 2002). It resulted from a joint research project of several Spanish universities.

It is implemented in Java, so that it can run on di�erent platforms. It contains a graph-

ical interface for editing networks, with speci�c options for canonical models (e.g., OR,

AND, MAX...), exact and approximate algorithms for discrete and continuous variables,

explanation facilities, learning methods for building networks from databases, algorithms

for fusing networks, etc. Although some of the algorithms work with both discrete and

continuous variables, the explanation capabilities (see Chapter 4) assume that all the

variables are discrete.

Architecture of Elvira

Elvira is structured in four main modules:

• Data representation, which contains the de�nition of the data structures needed for

managing BNs and IDs in Java.

• Data acquisition, including the necessary classes for saving and loading a network

both from a �le and from a data base, the parser, etc. It also contains classes for

exporting and importing the networks in several formats.

8At http://www.ia.uned.es/~elvira it is possible to obtain the source code and several technical
documents about Elvira.

http://www.ia.uned.es/~elvira
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• Processing. This module implements the algorithms for processing and evaluating

the models. It is organized in several submodules, one for each task: inference,

learning, fusion, decision trees, sensitivity analysis...

• Visualization, which mainly de�nes the Elvira GUI and which, obviously, makes use

of the classes included in the previous modules. This module contains the classes

for generating explanations and for the internationalization of the whole program,

i.e., for showing the dialogs in a certain language. At this moment, only Spanish

and English are supported, but thanks to this module, it can be easily extended to

other languages.

The main advantages of this modular design is that the groups working at di�erent uni-

versities can focus on di�erent tasks and that the program can be easily extended with

new functionality or adapted to di�erent processing needs.

Working with the Elvira GUI

In addition to invoking Elvira's classes from the command line and using it as an API, it

is possible to interact with Elvira by means of its GUI, which has two working modes:

• edit, for graphically editing BNs and IDs. This is possible by means of several

windows which help the user to build or to modify the model manually, by requesting

all the data associated to the nodes, the arcs and the properties of the whole BN or

ID. Alternatively, BNs can be built from data bases by applying some of the many

learning algorithms implemented in Elvira; and

• inference, for propagating evidence and explaining the results. The introduction of

evidence can be done by clicking on the node, as in other software tools, or by means

of an editor of cases (Lacave et al., 2000), which provides a list of the variables

in the model. With respect to the inference process, the user can choose one of

several algorithms, with many variations, and in the case of a BN, she can select

either evidence propagation or abduction9, and whether the evidence is propagated

automatically (i.e., just after the user introduces or removes a �nding) or manually

(under demand). Most of the explanation capabilities provided by Elvira are o�ered

in the inference mode.

9In the context of BNs, evidence propagation usually refers to computing the posterior probability
of each single variable given the available evidence, while abduction consists in computing the joint
probability of a set of variables of interest given the evidence, what is also called most probable explanation
(MPE) (Pearl, 1988).
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How to obtain the software of Elvira

Elvira has been implemented in Java 6.0. Java is a programming language originally

developed by Sun Microsystems. Java applications are typically compiled to bytecode

that can run on any Java virtual machine (JVM) regardless of computer architecture.

There is a version of a JVM for each speci�c architecture available on the website

http://java.sun.com/. A user interested in running Elvira only needs to download a Java

Runtime Environment (JRE). However, Sun also distributes a superset of the JRE called

the Java SDK (more commonly known as the JDK), which includes development tools

such as the Java compiler, Javadoc, Jar and debugger. A user interested in programming

by using the API of Elvira would need a JDK.

Having obtained the corresponding JVM, the user has mainly two options for obtaining

Elvira software:

1. The source code, a user manual, and other documents can be downloaded from

http://www.ia.uned.es/ elvira. This web page has a hyperlink to the source code,

which is compressed periodically in a �le in format tar.gz and made available through

the web page. This method does not guarantee to the user to have the last version

of the code of Elvira. It is a very simple method for obtaining the source code of

Elvira.

2. The last version of Elvira can be obtained directly from the CVS repository of

Elvira. There are instructions for downloading the source code logging in the CVS

server through the link http://leo.ugr.es/elvira/. We recommend this method for

advanced users.

Appendix B presents the software developed in Elvira by the author of this thesis.

http://java.sun.com/
http://www.ia.uned.es/~elvira
http://leo.ugr.es/elvira/
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Chapter 3

Variable elimination for in�uence

diagrams with super value nodes

In the original formulation of in�uence diagrams (IDs), each model contained exactly one

utility node. Tatman and Shachter (1990), introduced the possibility of having super

value nodes that represent a combination of their parents' utility functions. They also

proposed an arc reversal algorithm for IDs with super value nodes. In this paper we

propose a variable-elimination algorithm for in�uence diagrams with super value nodes

which is faster in most cases, requires less memory in general, introduces much fewer

redundant (i.e., unnecessary) variables in the resulting policies, may simplify sensitivity

analysis, and can speed up inference in IDs containing canonical models, such as the noisy

OR.

The content of this chapter is based on (Luque and Díez, 2008).

3.1 Introduction

3.1.1 In�uence diagrams

An in�uence diagram (Howard and Matheson, 1984) is a probabilistic graphical model

for decision analysis, having three kinds of nodes: chance, decision, and utility�see Sec-

tions 2.3 and 3.1.2 for a formal de�nition. The goal of evaluating an ID is to obtain the

expected utility and an optimal strategy, which consists of a policy for each decision. The

�rst algorithm for evaluating IDs proceeded by expanding and evaluating an equivalent

decision tree (Howard and Matheson, 1984). Later, Olmsted (1983) proposed the arc

reversal (AR) algorithm, which evaluates the ID recursively by eliminating its nodes and

inverting arcs when necessary�see also (Shachter, 1986).

In the original proposal (Howard and Matheson, 1984), each in�uence diagram (ID)

55
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had only one utility node. A node like this, whose parents are chance nodes or decision

nodes, is nowadays called an ordinary utility node, in contrast with super value nodes

(SVNs), whose parents are other utility nodes; an SVN represents a utility that is a

combination of the utilities of its parents. SVNs were introduced in 1990 by Tatman and

Shachter (1990), who also extended the AR algorithm to deal with SVNs of type sum

and product. A description of the algorithm proposed by Tatman and Shachter (1990) is

described in Section 2.3.2.

In the next decade, several variable-elimination algorithms were proposed for IDs,

some of them combined with clustering algorithms (Cowell et al., 1999; Dechter, 1996;

Jensen et al., 1994; Jensen and Nielsen, 2007; Ndilikilikesha, 1994; Shenoy, 1992). They

allow the ID to contain several ordinary utility nodes, under the assumption that the

global utility is the sum of all of them, but none of those algorithms can deal with SVNs.

Our interest in SVNs arose during the construction of a decision-support system for

the mediastinal staging of non-small cell lung cancer (Luque et al., 2005), whose utilities

combine additively and multiplicatively, as shown in Figure 3.1. In order to evaluate this

ID, we wanted to have an algorithm for IDs with SVNs, such that it:1

1. were faster than AR;

2. required less memory;

3. avoided redundant variables;

4. simpli�ed sensitivity analysis;

5. could be integrated with state-of-the-art algorithms for inference in IDs containing

canonical models.

The �rst two objectives are obvious. We conjectured that a variable elimination algorithm

for IDs with SVNs might ful�ll them because, unlike AR, it does not need to divide

potentials and the number of potentials stored in the working memory is smaller.

The third objective refers to redundant variables, i.e., those whose value is known

when making a decision but that do not a�ect the optimal policy�see Section 3.1.3. As

the complexity of a policy grows exponentially with the number of variables in its domain,

it is desirable to remove as many redundant variables as possible, not only to reduce the

storage space but, more importantly, to communicate the policy to a human being. In fact,

the explanation of reasoning is a crucial issue for building and deploying decision-support

1In fact, the fourth objective was not set at the beginning of our study, but emerged as a possibility
during the design of the algorithm.
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Figure 3.1: Decision-support system for the mediastinal staging of non-small lung cancer.

systems because it helps to debug the model and to convince the user that the results

are correct, building intelligent tutoring systems (Lacave and Díez, 2002; Lacave et al.,

2007, 2006). Policies containing redundant variables are more di�cult to understand and

debug. Even worse, the inclusion of structurally-redundant variables (cf. Sec. 3.1.3), i.e.,

those that cannot a�ect the policy due to the nature of the causal relations involved in

the problem, undermines the user's con�dence in the policies recommended by the expert

system. Several algorithms have been proposed in the literature (Faguiouli and Za�alon,

1998; Shachter, 1998; Nielsen and Jensen, 1999; Nilsson and Lauritzen, 2000; Vomlelova

and Jensen, 2004) for detecting structurally redundant variables e�ciently by analyzing

the graph in IDs, but none of them can analyze IDs with super value nodes.

The fourth objective refers to sensitivity analysis, which consists of studying how the
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expected utility and the optimal strategy vary as a consequence of changes in the model

(Clemen and Reilly, 2001; Nielsen and Jensen, 2003). Parametric sensitivity analysis

in IDs is performed by assigning a range of variation or a probability distribution to

(some of) the utilities and conditional probabilities that de�ne the ID, or by detecting

the thresholds that determine a change in the optimal policies. However, in some cases

the structure of the graph that de�nes an ID implies that the values of a certain potential

(namely, a conditional probability table or a utility function) do not a�ect the expected

utility or the optimal policies of some decisions. In that case, it is not necessary to analyze

such parameters, thus saving computations and simplifying the reporting of the results.

Section 3.2.2 shows an example of this.

Finally, the �fth objective is concerned with canonical models, which are probabilistic

relations de�ned by some constraints usually stemming from casual assumptions (Díez

and Druzdzel, 2006). They are called �canonical� because they can be used as elementary

blocks that combine to build up more sophisticated probabilistic models (Pearl, 1988).

In particular, the relation between a node and its parents in a Bayesian network (or

a chance node and its parents in an ID), which in the case of discrete variables takes

the form of a conditional probability table (CPT), can sometimes be represented by a

particular canonical model, while other CPTs in the same network might be based on

di�erent models. The canonical models that appear more often in practice are the noisy

OR and its extension, the noisy MAX. Canonical models do not only simplify the process

of building CPTs, but may also lead to drastic computational savings in both memory and

time. For instance, CPCS (Pradhan et al., 1994) is a large medical Bayesian network that

for many years was resistant to exact inference algorithms, because all of them ran out of

memory when trying to compute some marginal queries�see the references in (Takikawa

and D'Ambrosio, 1999). Even most of the approximate algorithms converged very slowly

when the evidence introduced was very unlikely (Cheng and Druzdzel, 2000). However,

Takikawa and D'Ambrosio (1999) proposed a new factorization of the noisy MAX that was

able to do exact inference on that network in less than a second, and the factorization by

Díez and Galán (2003) further reduced that time to 0.05 seconds. Those factorizations can

be integrated with both variable elimination and clustering algorithms, but not with arc

reversal. That was an additional reason for developing a variable elimination algorithm

for IDs with SVNs, in order to obtain savings similar to those of Bayesian networks.

Our algorithm is an extension of variable-elimination algorithms for IDs (Cowell et al.,

1999; Dechter, 1996; Jensen et al., 1994; Jensen and Nielsen, 2007; Shenoy, 1992); in fact,

when the ID has no SVN, it performs essentially the same operations as them. The main
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di�erence is that it represents the utility function of the ID in the form of a tree, and in

a re�ned version of the algorithm, in the form of an acyclic directed graph (ADG). The

algorithm usually transforms that tree or ADG before eliminating each variable, trying

to preserve its separability as long as possible, in order to reduce the space complexity

and to avoid redundant variables in the policies.

The remainder of this chapter is structured as follows. Section 3.1.2 presents the

basic de�nitions for IDs and Section 3.1.3 analyzes the problem of redundant variables.

Section 3.2 presents a new algorithm for eliminating chance variables (Sec. 3.2.1) and

decision variables (Sec. 3.2.2) from a tree of potentials (ToP) (and also exposes a variable-

elimination algorithm for IDs with SVNs on a ToP). Section 3.3 improves the previous

algorithm by using an acyclic directed graph of potentials (ADGoP) instead of a ToP.

Section 3.4 proposes three variations of that algorithm that in some cases may lead to

more e�cient computations. Section 3.5 describes the empirical evaluation of di�erent

versions of our algorithm, comparing them with arc-reversal. We discuss related work,

conclusions and future research lines in Section 3.6.

3.1.2 Basic de�nitions

In�uence diagrams with super value nodes framework was exposed and detailed in Sec-

tion 2.3. We encourage the reader to have a quick look on the de�nitions given in that

section, because most of them will be used in this chapter.

A concept not de�ned there and that is crucial in this chapter is the term matrix. The

matrix of an ID ψ, is de�ned by

ψ(VC ,VD) = P (vC ,vD)ψU0(vC ,vD) . (3.1)

Then, by using the de�nition of matrix, the expression of the maximum expected utility

(MEU ) of an ID, already de�ned in Equation 2.12, is

MEU =
∑
c0

max
d1

∑
c1

. . .
∑
cn−1

max
dn

∑
cn

ψ(vC ,vD) , (3.2)

and an optimal policy δDi , de�ned in Equation 2.13, is:

δDi(iPred(Di)) = arg max
di∈Di

∑
ci

max
di+1

. . .
∑
cn−1

max
dn

∑
cn

ψ(vC ,vD) . (3.3)
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3.1.3 Redundant variables

According to Equation 2.13, in principle, the domain of a policy consists of all the variables

whose value is known when making that decision: dom(δDi) = iPred(Di). However, in

some cases the policy δDi does not depend on a particular variable X of iPred(Di); we

then say that X is redundant. The formal de�nition is as follows.

De�nition 3.1.1 Let D be a decision variable in an ID and X an informational pre-

decessor of D: X ∈ iPred(D). Variable X is said to be redundant for D if and only

if

∀x, ∀x′,∀y, δD(x,y) = δD(x′,y)

where x and x′ are values of X and y is a con�guration of the other informational prede-

cessors of D: Y = iPred(D) \ {X}.

Shachter (1998) distinguished two types of redundant variables, under the names

of �irrelevant� and �probabilistically irrelevant�. Following partially the terminology of

(Faguiouli and Za�alon, 1998), we prefer to use the terms �structurally redundant� and

�numerically redundant�, which are de�ned as follows.

De�nition 3.1.2 A redundant variable for decision D in an ID I is structurally redun-

dant if and only if it is redundant for all the IDs having the same graph as I. Otherwise,

it is numerically redundant.

Therefore, the structural redundancy only depends on the graph of the ID, while

numerical redundancy depends on the assignment of probability and utility potentials.

Several algorithms have been proposed in the literature for detecting structurally redun-

dant variables by analyzing the graph (Faguiouli and Za�alon, 1998; Nielsen and Jensen,

1999; Nilsson and Lauritzen, 2000; Shachter, 1998; Vomlelova and Jensen, 2002), but

none of them can cope with SVNs. In a future paper we will propose a new algorithm

that solves this problem, but in our opinion this is a not crucial issue, as the variable

elimination algorithm that we describe in this dissertation rarely includes structurally

redundant variables�see the experiments in Section 3.5. However, we could always apply

the redundancy-detection algorithm if redundant variables were a relevant problem in our

domain of application.

An additional advantage of our algorithm, related to this topic, is that it usually avoids

the introduction of quasi-structurally redundant variables, which we de�ne as follows:
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Figure 3.2: Graph of a small ID containing two super-value nodes: one of them is of type
product, and the other of type sum.

De�nition 3.1.3 An ordinary utility node in an ID is monotonic if its utility function

contains only non-positive or non-negative values.

De�nition 3.1.4 A variable X in an ID is quasi-structurally redundant for a decision

D with respect to a subset of utility nodes if the monotonicity of all those nodes implies

that X is redundant for D.

Please note that quasi-structural redundancy is related with numerical redundancy,

because it depends on the values of some parameters in the ID, but on the other hand,

such a variable will be redundant in all the IDs having the same graph and satisfying that

condition, which implies that quasi-structural redundancy is a property of the graph, not

of a particular ID�hence the name �quasi-structural�.

For instance, for the graph given in Figure 3.2 the optimal policy for decision D, given

by Equation 2.15, depends on B. That equation can be rewritten as

δD(b) = arg max
d∈D

P (b) · [u′1 + U ′2(d) ∗ U3(b)] (3.4)

where u′1 =
∑

a P (a) · U1(a) and U ′2(d) =
∑

a P (a) · U2(a, d). Given that P (b) is always

non-negative and u′1 is a constant,

δD(b) = arg max
d∈D

U ′2(d) ∗ U3(b) (3.5)
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Figure 3.3: Tree of potentials (ToP) for the ID of Figure 3.2.

If the utility node U3 is monotonic, then its values are either all non-negative or all

non-positive. In the former case,

∀b, U3(b) ≥ 0 =⇒ ∀b, max
d∈D

U ′2(d) ∗ U3(b) = U3(b) ∗max
d∈D

U ′2(d) (3.6)

=⇒ ∀b, δD(b) = arg max
d∈D

U ′2(d) (3.7)

and in the latter

∀b, U3(b) ≤ 0 =⇒ ∀b, max
d∈D

U ′2(d) ∗ U3(b) = U3(b) ∗min
d∈D

U ′2(d) (3.8)

=⇒ ∀b, δD(b) = arg max
d∈D

− U ′2(d) (3.9)

In both cases δD(b) is independent of B, i.e., B is quasi-structurally redundant for decision

D with respect to the subset of utility nodes {U3}.

3.2 Variable-elimination on a tree of potentials

The basic idea of our algorithm consists of representing the matrix of an in�uence diagram,

de�ned in Equation 3.1, as a tree of potentials (ToP), whose leaves (also called terminal

nodes) represent probability potentials φi or utility potentials ψj, and each non-terminal

node indicates either the sum or the product of the potentials represented by its children.

For instance, Figure 3.3 shows the ToP for the ID in Figure 3.2, whose matrix is

P (a) · P (b) · [U1(a) + U2(a, d) · U3(b)].

The construction of the ToP proceeds as follows. The root will always be a non-

terminal node of type product. Each probability potential of the ID is added as a child

of the root. If the bottom node of the ID, U0, is an ordinary utility node or a super value

node of type sum, it is also added as a child of the root. On the other hand, if U0 is a
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super value node of type product, its parents in the ID are added as children of the root

in the ToP. All the other utility nodes in the ID must be added in the same way. As a

result, the ToP represents the matrix of the ID, i.e., the tree of utility nodes in the ID,

although upside down, together with the probability potentials.

A non-terminal node in a ToP is said to be duplicated if it is of the same type as its

parent. A duplicated node in a ToP can be removed by transferring its children to its

parent.

We describe in the next two subsections how the elimination of chance and decision

variables in an ID can be handled by applying the sum and max operators, respectively,

to the ToP. We will assume that the ToP does not contain duplicated nodes.

3.2.1 Elimination of a chance variable on a ToP

The elimination of a chance variable A consists of applying the operator
∑

A to the ToP.

We divide this process into two phases: we �rst unfork the ToP, and then eliminate A in

the leaves of the new ToP, according to the following de�nitions.

De�nition 3.2.1 A variable X appears in a ToP t if it belongs to its domain, i.e., if it

belongs to the domain of some of the terminal nodes of t.

De�nition 3.2.2 A node n of type product is forked with respect to (wrt) a variable A

if A appears in more than one of the branches of n.

De�nition 3.2.3 A ToP is forked wrt A if at least one of its product nodes is forked wrt

A. Otherwise, it is non-forked.

For example, variable A appears in the ToP in Figure 3.3. The root node is forked wrt

A because A appears in two of its three branches. Consequently, the ToP in that �gure is

forked wrt variable A. In contrast, the subtree rooted at the sum node is not forked wrt

A because it only contains one product node, which is not forked.

Algorithm for eliminating forked nodes

Using an object-oriented programming representation, each node in a ToP may be imple-

mented as an object of class ToP-node having three properties:

• dependsOnVariable, a Boolean value that indicates whether the node depends on

the variable A to be eliminated;
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Figure 3.4: (a) A ToP, where both n1 and n2 depend on the chance variable to be elimi-
nated, A. (b) A ToP equivalent to (a), in which n2 has been distributed with respect to
n1.

• dependentChildren, a list of the children of the node that depend on variable A;

• mayBeForked, a Boolean value used by the method unfork to avoid visiting each

subtree several times; it is initialized to true for all nodes and is also set to true

when the method unfork has to visit the same subtree again for a di�erent variable.

The class ToP-node has a main method, unfork, which uses two auxiliary methods: dis-

tribute and compact. The method distribute transforms the tree in Figure 3.4.a, in which

both siblings n1 and n2 depend on A, into the tree in Figure 3.4.b. Nodes n1 and n2

are children of a product node forked wrt A. The procedure distribute is described by

Algorithm 3.1�see also Figure 3.4.

Under the conditions of the method distribute, illustrated in Figure 3.4, it is clear that

the potential obtained after distributing n2 is equivalent to the original potential, because

ψ2 ×
k∑
l=1

ψ1,l =
k∑
l=1

ψ2 × ψ1,l . (3.10)

For instance, in the example in Figure 3.3, whose potential was P (a) · P (b) · [U1(a) +

U2(a, d) · U3(b)], after distributing P (a) with respect to the sum node, the new potential

will be P (b) · [P (a) · U1(a) + P (a) · U2(a, d) · U3(b)] (see Figure 3.5.a).

Please note that the product node that represents P (a) · U1(a) in Figure 3.5.a is

forked, but since P (a) and U1(a) are terminal nodes, it can be unforked by multiplying

its children. This process is performed by the method compact, shown as Algorithm 3.2.
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Algorithm 3.1 distribute (for a ToP)

Input: n1: a sum node depending on A, child of a product node n forked wrt A;
n2: another node depending on A, sibling of n1;
A: a chance variable.

E�ects: the subtrees under n1 are multiplied by n2.
1. for all n1,i ∈ children(n1) do
2. if n1,i is a terminal node then
3. remove n1,i as a child of n1;
4. add a new product node n′1,i as a child of n1;
5. add both n1,i and n2 as children of n′1,i;
6. n′1,i.mayBeForked := true;
7. else
8. // n1,i is a product node
9. add n2 as a child of n1,i;

10. n1,i.mayBeForked := true;
11. end if
12. end for
13. n1.mayBeForked := true;

Algorithm 3.2 Compact

Input: n: a product node, whose children depending on A are all terminal nodes.
E�ects: the children of n that depend on A are replaced by their product.
1. remove from n.dependentChildren and n.children all the leaves that depend on A

and remove them as children of n;
2. add the product of all to n.children and to n.dependentChildren;
3. if n has only one child (say n1) then
4. replace n with n1 in the tree;
5. end if
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Figure 3.5: (a) ToP equivalent to that in Figure 3.2.b, in which P (A) has been distributed
with respect to the sum node. (b) ToP equivalent to (a), in which the leaves dependent
on A have been compacted and replaced by two new potentials, U ′1(A) and U ′2(A,D).

Figure 3.5.b displays the result of applying the method compact to the product nodes

of the ToP of Figure 3.5.a, when A is the variable to be eliminated.

Finally, the method unfork, invoked as n.unfork(A), transforms the subtree under

node n into a new subtree representing an equivalent potential, but unforked wrt A. The

method unfork is described by Algorithm 3.3.

Please note that the while loop in this algorithm executes only when at least two

children of n depend on A, and at least one of them�which we have called n1�is of type

sum, because after executing compact(n) node n cannot have two leaf children depending

on A.

Theorem 3.2.1 For every ToP, the algorithm unfork terminates in a �nite number of

steps, returning a non-forked ToP.

The proof can be found in Appendix A.0.1.

Elimination of a chance variable from a non-forked tree

When a tree is non-forked, the process of eliminating a chance variable A can be under-

stood as �transferring� the
∑

A operator from the root of the ToP down to the leaves that

depend on A, according to the following theorem.

Theorem 3.2.2 Let t be a ToP, non-forked wrt A, representing the potential ψ. The

potential
∑

A ψ is equivalent to the potential represented by the ToP t′ obtained by replacing

in t each terminal node ψi depending on A with the potential
∑

A ψi.
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Algorithm 3.3 Unfork

Input: n (object receiving the message): a node in the ToP;
A: a chance variable.

E�ects: n is unforked wrt A, its attribute mayBeForked is set to false and the attribute
dependsOnVariable indicates whether n depends on A.

1. if n.mayBeForked = true then
2. if n is a terminal node then
3. if the potential of n depends on A then
4. n.dependsOnVariable := true;
5. else
6. n.dependsOnVariable := false;
7. end if
8. else
9. // n is a non-terminal node

10. for all ni ∈ children(n) do
11. ni.unfork(A);
12. end for
13. dependentChildren := children ni of n such that ni.dependsOnVariable = true;
14. if (size(dependentChildren) > 0) then
15. n.dependsOnVariable := true;
16. else
17. n.dependsOnVariable := false;
18. end if
19. if n is of type product then
20. compact(n);
21. while (size(dependentChildren)> 1) do
22. n1 := a sum node in dependentChildren;
23. n2 := other node in dependentChildren;
24. distribute(n1, n2);
25. n1.unfork(A);
26. end while
27. end if
28. end if
29. n1.mayBeForked := false;
30. end if
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The proof can be found in Appendix A.0.2.

Going back to the example in Figure 3.2, the potential P (b) · [U ′1(a) +U ′2(a, d) ·U3(b)]

was represented by the tree in Figure 3.5.b, which is non-forked wrt A. The elimination of

chance variable A is performed by replacing U ′1(a) with the constant u′1 =
∑

a U
′
1(a), and

replacing U ′2(a, d) with U ′2(d) =
∑

a U
′
2(a, d). The result is ψ = P (b) · [u′1 + U ′2(d) · U3(b)].

3.2.2 Elimination of a decision variable on a ToP

The elimination of a decision variable D from a potential ψ that does not depend on D

is trivial, because maxD ψ = ψ. The elimination from a terminal potential that depends

on D is also immediate. Let us assume that ψ is represented by a ToP, whose root node

r is not terminal, and ψi is the potential represented by the i-th child of r.

We analyze �rst the case in which r is of type sum. If more than one of the ψis

depend on D, it is not correct to eliminate D by replacing each ψi with maxD ψi, because

maxD(ψi +ψi′) may be di�erent from maxD ψi + maxD ψi′�please note the contrast with

Theorem 3.2.2. The correct procedure when r is of type sum is to add all the potentials

that depend on D before eliminating D; the rest of the potentials are not modi�ed.

Formally, if J is the set of subindices such that ψj does not depend on D, and K contains

the other subindices, then:

max
D

ψ = max
D

∑
i

ψi =
∑
j∈J

ψj + max
D

∑
k∈K

ψk︸ ︷︷ ︸
ψD

. (3.11)

If r is of type product, we de�ne J as the set of subindices such that ψj is monotonic

and does not depend on D, and K as its complementary. We also de�ne m as the number

of indices in J such that ψj has at least one negative value (the other values of ψj must

be either negative or null, because ψj is monotonic). If m is even, then
∏

j∈J ψj is non-

negative, and consequently,

max
D

ψ = max
D

∏
i

ψi =
∏
j∈J

ψj ·max
D

∏
k∈K

ψk︸ ︷︷ ︸
ψD

. (3.12)

If m is odd, then −
∏

j∈J ψj is non-negative and

max
D

ψ = (−1) ·
∏
j∈J

ψj ·max
D
−
∏
k∈K

ψk︸ ︷︷ ︸
ψD

. (3.13)
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This analysis leads to Algorithm 3.4, which corresponds to the elimination of a decision

variable D on a ToP. The method for changing the sign of a subtree rooted at n, used in

step 23, is given by Algorithm 3.5. Please note that when only one of the children of n

depends on D, namely nk′ , then the algorithm is invoked recursively on nk′ , preserving

the structure of that subtree (steps 11 and 25). On the contrary, when more than one

children depend on D, those branches collapse into a potential ψD (steps 13 and 3.12),

which after maximizing on D, is reinserted as a terminal node (step 36).

For example, we have already shown that, for the ID in Figure 3.2 (see also Fig. 3.5),

after eliminating A the matrix is ψ = P (b) · [u′1 +U ′2(d) ·U3(b)]. When eliminating D, we

have maxd ψ = P (b) · [u′1 + maxd(U
′
2(d) · U3(b))]. In general,

δD(b) = arg max
d∈D

(U ′2(d) · U3(b)) . (3.14)

However, if U3 is non-negative, then maxd ψ = P (b) · [u′1 + u′2 · U3(b)], where u′2 =

maxd U
′
2(d), and the optimal policy is

δD = arg max
d∈D

U ′2(d) , (3.15)

which does not depend on B. If U3 is non-positive, then maxd ψ = P (b) · [u′1 + (−1) · u′2 ·
U3(b)], where u′2 = maxd(−U ′2(d)), and the optimal policy is

δD = arg max
d∈D
−U ′2(d) , (3.16)

which does not depend on B, either. Therefore, when U3(b) is monotonic, our algorithm

does not include in the domain of δD the quasi-structurally redundant variable B. In

contrast, the arc-reversal algorithm (Tatman and Shachter, 1990) would collapse all the

utility nodes into a single node when eliminating A; as the parents of the new utility node

are B and D, the elimination of D would always include B in the domain of δD.

Sensitivity analysis

Another advantage of our algorithm, closely related to the attempt to avoid redundant

variables, is the possibility of simplifying sensitivity analysis. For instance, in the above

example the policy for D was given by Equation 3.14, where U ′2(d) =
∑

a P (a) · U2(a, d).

Consequently, if we perform a sensitivity analysis for variable D in order to determine

which variations of the parameters of the ID may lead to a di�erent policy, we need only
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Algorithm 3.4 eliminateDecision

Input: n: a node in the ToP;
D: a decision variable.

E�ects: the decision variable D is eliminated from the tree rooted at n.
Output: an optimal policy δD for D.
1. if n depends on D then
2. if n is a terminal node with associate potential ψ then
3. replace ψ with maxD ψ;
4. return the optimal policy, δD := arg maxD ψ;
5. else
6. // n is non-terminal; ψi is the potential represented by ni, the i-th child of n
7. if n is of type sum then
8. K := set of subindices such that ψk depends on D;
9. if |K| = 1 then

10. // K contains only one index, k′

11. return eliminateDecision(nk′ , D);
12. else
13. ψD:=

∑
k∈K ψk; // cf. Equation 3.11

14. end if
15. else
16. // n is of type product
17. J := set of subindices such that ψj is monotonic and does not depend on D;
18. K := set of subindices complementary of J ;
19. m := number of subindices in J such that ψj has at least one negative value;
20. if |K| = 1 then
21. if m is odd then
22. add a node with the constant potential −1 as a child of n;
23. changeSign(nk′);
24. end if
25. return eliminateDecision(nk′ , D);
26. else
27. // several potentials depend on D
28. ψD:=

∏
k∈K ψk; // cf. Equation 3.12

29. if m is odd then
30. add a node with the constant potential −1 as a child of n;
31. ψD:= −ψD; // cf. Equation 3.13
32. end if
33. end if
34. end if
35. for every k ∈ K, remove the k-th child of n;
36. add a node with the potential maxD ψD as a child of n;
37. return the optimal policy δD := arg maxD ψD;
38. end if
39. end if
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Algorithm 3.5 changeSign

Input: n: a node in the ToP, representing the potential ψ.
E�ects: The subtree rooted at n is modi�ed to represent the potential −ψ.
1. if n is a terminal node then
2. replace ψ with −ψ;
3. else
4. // n has several children, {ni}i∈I
5. if n is of type sum then
6. for all i ∈ I do
7. changeSign(ni);
8. end for;
9. else

10. // n is of type product;
11. add a node with the constant potential −1 as a child of n;
12. end if
13. end if

to examine the probabilities in P (a) and the utilities in U2(a, d) and U3(b), because δD

does not depend at all on the other parameters, namely those in P (b) and U1(a). This

may lead to a signi�cant simpli�cation of sensitivity analysis.

Additional simpli�cations occur when U3(b) is monotonic. In this case, Equations 3.15

and 3.16 tell us that the policy only depends on the values of P (a) and U2(a, d), and

on the sign of the values of U3(b). This is important because usually human experts are

uncertain about the exact value of a parameter, but not about its sign.

In contrast, in this example arc reversal (Tatman and Shachter, 1990) would eliminate

D by maximizing on a potential derived from all the potentials that de�ne the ID, namely

P (a), P (b), U1(a), U2(a, d), and U3(b), which seems to indicate that every parameter in

ID might a�ect the policy δD.

In summary, our variable-elimination algorithm may simplify sensitivity analysis if we

keep track (for instance, by maintaining a set of pointers) of the ID potentials that have

been involved in the computation of each potential at the ToP.

Inclusion of redundant variables

Although the distribution of potentials in general avoids the inclusion of redundant vari-

ables in the policies, as we have seen in the previous examples (see also the experiments

in Section 3.5.2), it may fail to avoid them in some cases. The following example explains

why.

Let us assume that we are interested in computing maxd
∑

a ψ, where ψ = [ψ1(a) +

ψ2(b)] · [ψ3(a) + ψ4(d)]. When eliminating A, the node that represents ψ is forked wrt A.
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If the algorithm takes [ψ1(a) + ψ2(b)] as n1 and [ψ3(a) + ψ4(d)] as n2, the result of the

distribution is ψ = ψ1(a) · [ψ3(a) + ψ4(d)] + ψ2(b) · [ψ3(a) + ψ4(d)]. The �rst summand

is represented by a product node, which is still forked. A new distribution leads to

ψ = ψ1(a) · ψ3(a) + ψ1(a) · ψ4(d) + ψ2(b) · [ψ3(a) + ψ4(d)] and
∑

a ψ = ψ13 + ψ′1 · ψ4(d) +

ψ2(b) · [ψ′3 + ψ4(d)], where ψ13, ψ
′
1, and ψ′3 are the constant potentials that result from

summing out A from the terminal leaves of the previous potential. Then, the elimination

of D will explicitly compute ψ′1 · ψ4(d) + ψ2(b) · [ψ′3 + ψ4(d)], which yields a terminal

potential that depends on both B and D:

max
d

∑
a

ψ = max
d

ψ′1 · ψ4(d) + ψ2(b) · [ψ′3 + ψ4(d)]︸ ︷︷ ︸
ψ(b,d)

.

Therefore the algorithm will include B in the policy δD.

However, the algorithm would have been able to detect that B is quasi-structurally

redundant (wrt ψ′1 and ψ2) if it had distributed the top factors in a di�erent way:

max
d

∑
a

ψ = max
d

∑
a

[ψ1(a) + ψ2(b)]︸ ︷︷ ︸
n2

· [ψ3(a) + ψ4(d)]︸ ︷︷ ︸
n1

= max
d

∑
a

{[ψ1(a) + ψ2(b)] · ψ3(a) + [ψ1(a) + ψ2(b)] · ψ4(d)}

= max
d
{ψ13 + ψ2(b) · ψ′3 + [ψ′1 + ψ2(b)] · ψ4(d)}

= ψ13 + ψ2(b) · ψ′3 + [ψ′1 + ψ2(b)] ·max
d
ψ4(d) .

As we have seen, the �rst distribution performed in this example failed to detect that ψ4

is a common factor for ψ′1 and ψ2.

This example underlies the importance of deciding which candidates for a distribution

(i.e., those factors of type sum depending on the variable to be eliminated) should be

chosen as n1 and n2. The problem is that our algorithm performs myopically, in the sense

that when eliminating a variable it does not take into account the e�ect that it will have

on the subsequent elimination of other variables. The re�nement of our algorithm in order

to avoid redundant variables is an open problem, as mentioned in Section 3.6.2

2It is worthy of note that in this example our algorithm can obtain the correct domain for decision
D if it selects the right distribution of potentials, while arc reversal (Tatman and Shachter, 1990) would
always include the redundant variable B in the policy of D. However, the experiments in Section 3.5
show that in some exceptional cases arc reversal may include fewer redundant variables than ours�an
issue that deserves further investigation.
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3.2.3 Summary: Variable elimination algorithm using a ToP

Finally, Algorithm 3.6 integrates all the steps described so far. Please note that the

input of this algorithm is not only an ID, but also an elimination order for the variables

in VC ∪ VD. This order has to be a legal elimination sequence (Nielsen and Jensen,

1999), which means that it must eliminate �rst the variables in Cn, then Dn, then those

in Cn−1, and so on (see Equation 3.2). However, this condition only imposes a partial

ordering on the variables in VC∪VD: it is still necessary to order the variables inside each

Ci. The similarity of this problem with others in Bayesian networks make us conjecture

that �nding an optimal elimination sequence for our algorithms is NP-complete. Finding

near-optimal orderings is an open issue, that we will discuss in Section 3.6.

Algorithm 3.6 Variable elimination for IDs with SVNs on a ToP

Input: I: an ID that may contain SVNs;
O: a legal sequence elimination for the variables in VC ∪VD;

Output: the MEU of the ID and an optimal policy δD for each decision variable D.
1. construct the ToP t of I;
2. remove the duplicate nodes from t; // see Section 3.2
3. for all V ∈ O do
4. if V ∈ VC then
5. unfork t wrt V ; // Algorithm 3.3;
6. for each terminal node ni in t depending on V , replace that node with

∑
v ψi;

7. else
8. // V ∈ VD

9. eliminateDecision(r, V ); // Algorithm 3.4;
10. end if
11. end for
12. MEU := numerical value of the potential at t (a constant);

The correctness of Algorithm 3.6 is ensured given that the elimination of chance and

decisions variables are performed according to a legal elimination sequence, and each

transformation of the ToP preserves the MEU and the optimal policies.

3.3 Variable elimination on an ADG of potentials

In Section 3.2, the matrix of an ID was represented as a ToP. However, the matrix can also

be represented as an acyclic directed graph of potentials (ADGoP). The main advantage of

this representation is twofold: the saving of space in memory when a subtree appears more

than once in a tree, and the saving of computational time when distributing a potential
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and when eliminating a variable. Another advantage is the ability to cope with IDs in

which a utility node can have two or more super-value children, as shown in Figure 3.6.
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Figure 3.6: (a) Graph of an ID with super value nodes, in which U2 has two children. The
global utility potential is ψ = U1 +U2 + (U2 ·U3). (b) Acyclic directed graph of potentials
(ADGoP) for this ID.

The construction of the ADGoP from an ID is very similar to that of the ToP. The

next two subsections explain how to eliminate chance and decision variables from an

ADGoP, under the assumption that redundant nodes have already been removed�see

Section 3.2.

3.3.1 Elimination of a chance variable on an ADGoP

The elimination of a chance variable A consists in applying the operator
∑

a to the

ADGoP. This process is divided in two phases: unforking the ADGoP, and eliminating A

from the leaves of the new ADGoP.

Algorithm for eliminating forked nodes

The process of unforking the ADGoP is similar to that of the ToP. This way, each node

in a ADGoP may be implemented as an object of class ADGoP-node, which has the same

properties and methods as ToP-node (see Sec. 3.2.1). The method unfork is identical,

but distribute and compact are slightly di�erent in both classes, because when a node

compacts its leaves, their children having other parents can not be removed from the

ADGoP.
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For instance, in Figure 3.7.a, the node n2 is forked wrt A. When n2 compacts its

leaves φ1(A) and φ2(A), the leaf φ1(A) can not be removed from the ADGoP because it

is also a child of n3. The link n2 → φ1(A) will be removed and φ1(A) will be multiplied

by φ2(A), but link n3 → φ1(A) will remain, as shown in Figure 3.7.b.
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Figure 3.7: (a) An ADGoP, in which n2 is forked wrt A. (b) ADGoP after the node n2

in (a) compacts its leaves dependent on A.

In turn, the method distribute di�ers in that instead of creating several copies of n2,

as we did in the case of a ToP (see Fig. 3.4.b), we will draw several links from the children

of n1 to n2 (see Fig. 3.8).
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Figure 3.8: An ADGoP equivalent to the potential in Figure 3.4.a, in which n2 has been
distributed with respect to n1.

Elimination of a chance variable from a non-forked ADGoP

When the ADGoP is non-forked, the process of eliminating a chance variable A is per-

formed as in a ToP, i.e., the
∑

a operator is �transferred down� from the root of the

ADGoP to the leaves that depend on A. Even if a leaf has several parents, the
∑

a

operator is applied to it only once, thus saving time with respect to the case of a ToP.
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3.3.2 Elimination of a decision variable on an ADGoP

The elimination of a decision variable D from an ADGoP is similar to its elimination

from a ToP (cf. Algorithm 3.4, in Section 3.2.2): Algorithm 3.4 can also be applied when

eliminating a decision variable in an ADGoP, but when a node compacts its leaves, as

required by some steps of Algorithm 3.4, their children having other parents can not be

removed from the ADGoP. Then, if a child n1 of n has other parents, the link n → n1

must be removed, but n1 cannot be eliminated from the graph. This is the same situation

that appears when compacting the leaves of a node in an ADGoP before eliminating a

chance variable.

3.3.3 Summary: algorithm VE

The variable-elimination algorithm on an ADGoP is performed as in a ToP (see Algo-

rithm 3.6), with the only di�erence in step 1 we construct an ADGoP instead of a ToP, and

then we perform all the operations of Algorithm 3.6 in the ADGoP as we have described

in this section, i.e., by adapting the corresponding algorithms.

3.4 Variations of the algorithm

The previous section has presented the basic algorithm of variable elimination (VE) on

an ADGoP. We discuss now three variations of that algorithm that may lead to more

e�cient computations. In Section 3.5 we will compare empirically these versions with the

standard VE.

3.4.1 Division of potentials (algorithm VE-D)

The VE algorithm presented above does not distinguish between probability and utility

potentials. In this respect, it is similar to some variable-elimination algorithms for IDs

without SVNs (Cowell et al., 1999; Dechter, 1996; Shenoy, 1992). On the contrary, the

variable-elimination algorithm proposed in (Jensen and Nielsen, 2007) for IDs without

super-value nodes di�erentiates both types of potentials and, when eliminating a chance

variable, normalizes the probability potentials by means of a division. The main advantage

of this process is that the utility potentials obtained after multiplication by the normalized

potentials represent the utilities associated with di�erent scenarios, which may be useful

for explaining the decision process to the user (Lacave et al., 2007).
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Similarly, it is possible to design a new version of our VE algorithm for ID with SVNs,

called VE-D (where �D� stands for divisions), which instead of storing all the potentials in

the same ADGoP, manages a list of probability potentials (LoPP) and an ADG of utility

potentials (ADGoUP). Their product represents the matrix of the ID. The construction

of the ADGoUP for an ID is identical to that of the ADGoP (cf. Secs. 3.2 and 3.3), with

the only di�erence that it does not include the probability potentials.

The procedure of VE-D is described by Algorithm 3.7. This algorithm substitutes the

variable elimination algorithm on an ADGoP (Algorithm 3.6 adapted for using an ADGoP

instead of a ToP). The main di�erence between both algorithms is that Algorithm 3.7

keeps the probability potentials in a LoPP, separated from the utility potentials contained

in the ADGoP. The LoPP and the ADGoP are modi�ed when a variable V is eliminated as

follows. The LoPP is updated by removing the probability potentials dependent of V and

adding to it their marginalization. The ADGoP is prepared to proceed to the elimination

of V , which is performed in the ADGoP as described in Sections 3.3.1 and 3.3.2.

In Algorithm 3.7, the operator projectV in step 16 only makes sense when applied to

a potential that does not depend on V , i.e., a potential whose value is the same for all the

con�gurations having the same value of V . For instance, given a potential φ(v1, v2) such

that φ(+v1,+v2) = φ(¬v1,+v2) = 0.9 and φ(+v1,¬v2) = φ(¬v1,¬v2) = 0.4, which does

not depend on V1, the operator projectV1 gives a new potential φ′(v2) = projectV1φ(v1, v2)

such that φ′(+v2) = 0.9 and φ′(¬v2) = 0.4.

In Appendix A.0.3 we prove the correctness of VE-D, including the fact that when

Algorithm 3.7 applies the operator projectV φV , this potential does not depend on V .

Example 3.4.1 For the ID in Figure 3.9, we have

MEU =
∑
b

max
d1

∑
c

max
d2

∑
a

P (a) · P (b|a) · P (c|a, d1) · ψ(a, d2) . (3.17)

When eliminating A we have φA(a, b, c, d1) = P (a) · P (b|a) · P (c|a, d1), φ∗A(b, c, d1) =∑
a φA(a, b, c, d1), and

MEU =
∑
b

max
d1

∑
c

max
d2

φ∗A(b, c, d1)
∑
a

φA(a, b, c, d1)

φ∗A(b, c, d1)
· ψ(a, d2)︸ ︷︷ ︸

ψ(b,c,d1,d2)

, (3.18)

When eliminating D2 there is no probability potential depending on D2. Therefore, it is
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Algorithm 3.7 Algorithm VE-D (variable elimination with divisions)

Input: I: an ID that may contain SVNs;
O: a legal sequence elimination for the variables in VC ∪VD;

Output: the MEU of the ID and an optimal policy δD for each decision variable D.
1. construct the LoPP l and the ADGoP g of I;
2. remove the duplicate nodes from g;
3. for all V ∈ O do
4. remove from l all the potentials that depend on V ;
5. let φV be the product of all of them;
6. if V ∈ VC then
7. φ∗V :=

∑
V φV ;

8. // multiply g by φV /φ
∗
V

9. if the root of g (say r) is of type product then
10. add φV /φ

∗
V to the children of r;

11. else
12. replace r by a product node r′, and add r and φV /φ

∗
V as children of r′;

13. end if
14. else
15. // V is a decision
16. φ∗V := projectV φV ;
17. end if
18. add φ∗V to l;
19. eliminate V from g, as explained in Sections 3.3.1 and 3.3.2;
20. end for
21. MEU := numerical value of the potential at g (a constant);
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B D1 C
A

D2 U
Figure 3.9: In�uence diagram whose variable-elimination evaluation is detailed in Exam-
ple 3.4.1.

not necessary to perform any multiplication nor any projection:

MEU =
∑
b

max
d1

∑
c

φ∗A(b, c, d1) ·max
d2

ψ(b, c, d1, d2)︸ ︷︷ ︸
ψ(b,c,d1)

. (3.19)

When eliminating C only one probability potential depends on this variable, namely φ∗A.

Therefore, φC(b, c, d1) = φ∗A(b, c, d1), φ∗C(b, d1) =
∑

c φC(b, c, d1), and

MEU =
∑
b

max
d1

φ∗C(b, d1)
∑
c

φC(b, c, d1)

φ∗C(b, d1)
· ψ(b, c, d1)︸ ︷︷ ︸

ψ(b,d1)

. (3.20)

When eliminating D1 only one probability potential depends (apparently) on this variable:

φD1(b, d1) = φ∗C(b, d1). However, Lemma A.0.2 (cf. Appendix A.0.3) states that φD1(b, d1)

does not depend on d1. We then have φ∗D1
(b) = projectD1

φD1(b, d1). Then,

MEU =
∑
b

φ∗D1
(b) ·max

d1
ψ(b, d1)︸ ︷︷ ︸
ψ(b)

. (3.21)

Finally, when eliminating B we have φB(b) = φ∗D1
(b), φ∗B =

∑
b φB(b), and

MEU = φ∗B
∑
b

φB(b) · ψ(b) . (3.22)

When the algorithm VE-D eliminates a decision Di, the ADPoUP represents a poten-

tial that depends on the informational predecessors of Di: ψi(c0, d1, . . . , di−1, ci−1, di). It

is possible to show that the value of ψi is the utility of the scenario in which (1) the vari-

ables in Cj (0 ≤ j ≤ i) take the values dictated by the con�guration cj, (2) the decision

maker chooses option dk for each decision Dk (1 ≤ k ≤ i) and (3) chooses the best option

for the decisions after Di.
3 This is the main reason for dividing the probability potentials:

3The proof is similar to that o�ered in (Jensen and Nielsen, 2007) for the variable-elimination algorithm
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when a user of the decision-support system is often interested in knowing why the system

recommends option di for scenario (c0, d1, . . . , di−1, ci−1) rather than option d′i, it is useful

to display the values ψi(c0, d1, . . . , di−1, ci−1, di) and ψi(c0, d1, . . . , di−1, ci−1, d
′
i), i.e., the

utilities of the two options (Luque and Díez, 2006). When evaluating an ID with the

arc-reversal algorithm, these values can be read directly from the utility table of the ID

before eliminating Di. However, in general VE (variable elimination without divisions)

can not show these utilities, and this is the main reason for using VE-D instead of VE.

3.4.2 Subset rule

Tatman and Shachter (1990) proposed a heuristic, called the subset rule, for reducing the

storage space required by their arc reversal algorithm: if two utility nodes U1 and U2

have the same successor U , being a super-value node of type sum/product, and Pa(U2) ⊆
Pa(U1), it is possible to replace them by a new node U ′, such that [1] Pa(U ′) = Pa(U1),

[2] U ′ is a parent of U , and [3] U ′ = U1+U2 or U
′ = U1×U2, respectively. This replacement

seems to be advantageous in general because it does not increase the size of any operation

necessary to solve the ID, and may simplify subsequent combinations of potentials.

The subset rule can also be introduced in the algorithms VE and VE-D: when two

leaves n1 and n2 representing potentials φ1 and φ2, respectively, have the same parent in

the ToP of in the AGDoUP and dom(φ1) ⊆ dom(φ2), then compacting n1 and n2 liberates

storage space and may simplify the next operations.

However, the application of the subset rule needs to check if dom(φ1) ⊆ dom(φ2) for

every pair of children of each potential, which has a certain computational cost, thus

this rule is counterproductive in some cases. In Section 3.5.2 we analyze empirically the

changes in the time and space required when the subset rule is applied.

3.4.3 Unity potentials

The e�ciency of the algorithms VE and VE-D can be improved by avoiding certain

computations. For example, when eliminating a barren node Xi,
4 the ADGoP (for VE)

or the LoPP (for VE-D) contains a potential P (Xi|pa(Xi)). The elimination of Xi implies

computing
∑

xi
P (xi|pa(xi)), which is 1. Similarly, if φX = P (x|pa(X)) and X is a chance

variable, the VE-D algorithm will compute φ′X =
∑

x φX , which is also 1. In other cases,

for IDs without super value nodes: the proof remains valid if ψ is given by an ADGoUP instead of a sum
of utility potentials.

4According with (Shachter, 1986), a chance or decision node without descendants is said to be barren.
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it will be necessary to perform the marginalization
∑

x[φX/φ
∗
X ], which is equal to 1 even

if φX was not a conditional probability, because φ∗X =
∑

x φX�see Algorithm 3.7, Step 7.

If the algorithm recognizes these situations, it can save the computational cost of

summing out X. More importantly, the algorithm will be able to replace
∑

x P (x|pa(X))

with 1�a constant, while the computation of
∑

x P (x|pa(x)) may return a potential whose

domain is apparently pa(X), and this may lead to including redundant variables in the

policies.

An open line for future research is how to integrate in our variable elimination algo-

rithm the recent improvements for the lazy evaluation of IDs (Madsen and Jensen, 1999;

Vomlelova and Jensen, 2002), whose purpose is to avoid the operations that yield unity

potentials.

3.5 Empirical evaluation

We have performed a series of experiments for assessing the e�ciency of the variable

elimination algorithm proposed in this paper. The �rst problem we faced is that we only

have a few real-world examples of IDs with SVNs, and these are not complex enough for

comparing the di�erent versions of our algorithm between themselves and with the arc

reversal (AR) algorithm of Tatman and Shachter. The repositories of graphical proba-

bilistic models available on Internet do not contain IDs with SVNs. For this reason, we

have run the experiments on randomly generated IDs.

3.5.1 Algorithm for generating IDs randomly

Vomlelova (2003) proposed an algorithm for randomly generating IDs with several (or-

dinary) utility nodes. We have adapted and extended it in order to generate IDs with

SVNs. The parameters of the algorithm are: nNodes, the total number of chance and

decision nodes; decisionRatio, the probability that a node is a decision (otherwise, it is a

chance node); N, the number of iterations, each adding or deleting an arc; nParents, the

maximum number of parents for a chance or decision node; nUtil , the number of ordinary

utility nodes; and nParentsUtil, the number of parents per utility node. The procedure

for generating an ID is described by Algorithm 3.8.

We must note in step 13 that the fact that i and j are not ordered (step 12) implies

that there is no path from one node to the other. Therefore, drawing a link between them

(step 13) can not create a loop nor a cycle.
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Algorithm 3.8 Generate a random ID

Input: nNodes, decisionRatio, N, nParents, nUtil and nParentsUtil (cf. Sec. 3.5.1).
Output: an in�uence diagram.
1. create a tree having nNodes nodes;
2. for each node, randomly decide whether it is a decision (with probability decisionRa-

tio) or a chance node;
3. for k = 1 to N do
4. select randomly a pair of distinct nodes i and j ;
5. if the arc i→ j exists in the graph then
6. if the graph remains connected, delete this arc;
7. else
8. if the graph remains acyclic and the number of parents of j does not exceed

nParents, add the arc;
9. end if

10. end for
11. while there are at least two decisions i and j such that i /∈ ancestors(j) and j /∈

ancestors(i) do
12. select two distinct decision nodes i and j such that i /∈ ancestors(j) and j /∈

ancestors(i);
13. randomly decide whether the arc i → j or i → j is added to the graph (with

probability 0.5);
14. end while
15. generate nUtil ordinary utility nodes, each with nParentsUtil parents randomly se-

lected among the decision and chance nodes;
16. while there are several utility nodes without descendants do
17. if the number of utility nodes without descendants is greater than nParentsUtil

then
18. randomly select nParentsUtil utility nodes without descendants and add arcs

from them to a new super-value node;
19. else
20. draw arcs from them to a new super-value node;
21. end if
22. randomly decide if the new super-value node is sum (with probability 0.5) or prod-

uct;
23. end while
24. generate a probability table for each chance node;
25. generate a utility table for each ordinary utility node;
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We have assigned random non-negative values to the potentials, with the only restric-

tion that probabilities must be normalized.

3.5.2 Experimental results

We executed the above algorithm with decisionRatio = 0.3, N = 300 (additions or re-

movals of arcs), nParents = 3, nUtil = 7, and nParentsUtil = 7. All the variables were

binary. The number of nodes, nNodes, varied from 5 to 24. We generated 100 in�uence

diagrams for each number of nodes, which amounts to a total of 2,000 IDs. Figure 3.10

displays the graph of one of the in�uence diagrams generated.

Figure 3.10: A random in�uence diagram generated by Algorithm 3.8, with nNodes = 8.

Each ID was evaluated with three algorithms: Tatman and Shachter's arc reversal

(AR), variable-elimination without divisions (VE) and with divisions (VE-D). We only

calculated the global utility of the ID and the optimal policy for each decision because

VE cannot compute the expected utility of each option.

All the algorithms employed the same elimination order of variables when evaluating

each ID in order to compare them in the same conditions. The elimination order was

previously established by evaluating the ID qualitatively with Tatman and Shachter's

algorithm.5

5The time necessary to evaluate an ID qualitatively with AR is negligible compared with the time
required by a full evaluation. Therefore, the fact that VE and VE-D would need an additional amount of
time to obtain the elimination order does not a�ect the results of our experiments�see also Section 3.6.
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The algorithms were implemented in Java 6.0 with the Elvira software package.6 The

tests were run on an Intel Core 2 computer (2.4 GHz) with 2 GB of memory under

Windows XP.

Comparison of AR, VE, and VE-D (without the subset rule)

Time and space e�ciency First, we computed the ratio of the times required by AR

and VE for each ID. Table 3.1 summarizes the results, grouped by the number of nodes.

Given that the distribution is very skewed, we show both the median and the mean along

with some other percentiles in this table.7

By observing the means (second column), we can see that on average VE is around

10 times faster than AR. The last column in this table tells us that, for one ID, AR was

339 times slower than VE�see also Figure 3.11.8 The 95th percentile column shows that

in around 5% of cases VE is at least 30 times faster than AR. On the contrary, the cases

in which AR is faster than VE (those in which the ratio is smaller than 1) are infrequent,

as shown by the 5th percentile column.

The minimum displayed in the table means that in the most favorable case for AR,

it was only 5 times faster than VE, and this di�erence occurred for an ID having only 6

nodes, for which the time spent by both algorithms is negligible. For bigger diagrams,

AR could never be twice faster than VE. In contrast, Figure 3.11 shows that for several

in�uence diagrams VE was over 100 times faster than AR, with a maximum of around

340 times.

When comparing the storage space required by these algorithms, measured as the

total size of the numerical tables, we observe that in general VE needs less memory than

AR�see the �means� column in Table 3.2. In the case of large IDs, in which the limit of

memory is a critical issue, AR requires on average around 3 or 4 times more space than

VE, with a median ratio of almost 2. The 5th and 95th percentile columns in Table 3.2

also show the superiority of VE over AR in the case of large IDs: the former rarely needs

twice more space than the latter (the maximum shown in the �min�column is 1/0.14 =

7 times), while in 5% of the cases AR needs at least 10 times more space than VE (the

maximum being almost 60). Correspondingly, in Figure 3.12 we can see that for several

6The Elvira program was developed by several Spanish universities (Elvira Consortium, 2002). The
source code, a user manual, and other documents can be downloaded from www.ia.uned.es/~elvira.

7The minimum, the median, and the maximum are the 0th, 50th, and 100th percentiles, respectively.
8In this �gure we have used boxplots, which provide a summary of a set of data in graphical terms.

The top and bottom of each box represent the upper and lower quartiles of each group of data, and the
line in the middle represents the median. The extremes of the Whiskers that extend from each end of the
box are 1.5 times the interquantile range from the ends of the box. Outliers, represented by red circles,
are individuals whose value is higher or lower than the extremes of the whiskers.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 13.20 2.91 7.58 13.06 17.72 37.93
6 11.78 0.20 6.50 11.62 17.00 26.39
7 10.81 3.70 4.88 11.10 16.27 20.26
8 11.21 2.59 6.40 10.78 19.51 22.77
9 9.19 2.23 4.30 8.49 15.66 21.04
10 9.90 3.14 3.80 9.34 18.27 28.33
11 9.81 1.96 2.65 9.09 19.97 24.85
12 11.12 1.50 3.21 10.11 22.76 34.25
13 9.36 0.76 2.42 6.82 17.89 64.99
14 11.41 0.89 2.06 8.07 35.51 62.27
15 12.22 0.74 2.18 9.60 35.28 45.46
16 12.07 1.08 2.42 8.15 29.26 101.98
17 16.84 0.97 2.14 8.04 79.22 112.67
18 13.58 0.98 1.80 7.48 45.85 96.57
19 15.08 1.29 2.10 6.13 57.53 122.20
20 11.37 0.54 1.48 7.43 40.54 79.38
21 15.80 0.88 1.64 7.12 46.42 338.84
22 14.03 1.24 1.72 6.54 39.77 219.88
23 12.62 0.74 1.42 5.87 53.02 90.36
24 12.29 0.82 1.54 6.64 39.21 157.80

Total 12.18 0.20 2.16 9.15 30.76 338.84

Table 3.1: Ratio of the times required by AR and VE.
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Figure 3.11: Ratio of the times required by AR and VE.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.00 0.23 0.67 0.99 1.39 4.07
6 0.96 0.02 0.79 0.97 1.19 1.41
7 1.00 0.67 0.82 0.98 1.16 2.48
8 1.01 0.69 0.86 1.00 1.24 1.39
9 1.01 0.39 0.81 1.00 1.19 1.31
10 1.03 0.79 0.88 1.01 1.21 1.35
11 1.03 0.42 0.80 1.00 1.33 1.51
12 1.08 0.58 0.91 1.03 1.44 1.94
13 1.06 0.43 0.83 1.02 1.44 1.77
14 1.06 0.74 0.85 1.01 1.42 1.71
15 1.03 0.27 0.77 1.02 1.33 1.42
16 1.08 0.63 0.73 1.06 1.45 1.64
17 1.16 0.51 0.80 1.03 1.52 7.90
18 1.12 0.50 0.86 1.08 1.50 1.90
19 1.34 0.69 0.81 1.11 1.70 20.82
20 1.12 0.32 0.80 1.05 1.69 2.05
21 1.15 0.28 0.87 1.10 1.52 1.86
22 1.15 0.48 0.82 1.11 1.58 2.42
23 1.17 0.19 0.77 1.11 1.68 3.46
24 1.13 0.10 0.64 1.11 1.63 1.87

Total 1.09 0.02 0.80 1.03 1.44 20.82

Table 3.5: Ratio of the times required by VE-D and VE.

IDs, AR needed 10, 20, and even 60 times more space than VE, which is a signi�cant

di�erence.

We obtained very similar results when comparing AR and VE-D, both with respect

to time (Table 3.3 and Figure 3.13) and space (Table 3.4 and Figure 3.14). This result

is coherent with the experimental evidence that the performances of VE and VE-D are

very close, both in terms of time (Table 3.5) and space (Table 3.6). The cases in which

VE is signi�cantly more e�cient than VE-D, or vice versa, are very rare. If time or space

is a critical issue for a decision-support system based on an ID, it would be necessary to

perform an ad-hoc comparison for that problem.

Redundant variables We have also recorded the cases in which one algorithm included

more redundant variables than the other: Table 3.7 shows that in 22.4% of cases (448 out

of 2,000) VE included fewer redundant variables than AR, while AR outperformed VE in

only 8 cases, i.e., 0.4%. It means that for each case in which AR was superior, there were

over 50 cases in which the reverse was the case.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.96 0.51 0.69 1.00 1.05 1.16
6 0.91 0.37 0.61 1.00 1.00 1.00
7 0.88 0.31 0.41 0.99 1.17 1.27
8 1.10 0.34 0.67 1.00 1.72 2.00
9 1.24 0.35 0.56 1.14 2.22 3.97
10 1.43 0.43 0.51 1.14 3.25 4.76
11 1.67 0.39 0.50 1.23 4.27 6.28
12 1.99 0.39 0.56 1.67 4.56 8.13
13 1.76 0.14 0.56 1.32 3.71 11.81
14 2.31 0.27 0.47 1.59 7.00 16.19
15 2.80 0.22 0.45 1.88 8.96 19.49
16 3.14 0.24 0.67 1.97 8.85 33.68
17 3.26 0.27 0.64 1.94 10.49 22.42
18 2.81 0.17 0.39 1.69 8.26 12.03
19 4.02 0.34 0.53 1.91 13.84 51.36
20 3.28 0.25 0.52 1.92 10.14 25.03
21 4.18 0.42 0.68 1.96 14.41 58.86
22 3.74 0.24 0.61 1.88 12.18 58.74
23 4.28 0.33 0.41 1.98 16.25 59.89
24 3.26 0.33 0.56 1.88 11.58 16.01

Total 2.45 0.14 0.55 1.29 7.75 59.89

Table 3.2: Ratio of the maximum storage space required by AR and VE.
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Figure 3.12: Ratio of the maximum storage space required by
AR and VE.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 13.82 3.79 7.16 14.11 19.37 38.86
6 12.35 4.83 7.06 12.35 18.97 28.98
7 11.05 3.21 4.51 11.54 16.80 21.66
8 11.15 2.46 6.20 10.66 19.77 22.69
9 9.15 1.97 4.42 8.63 15.96 21.76
10 9.76 2.90 3.75 9.33 19.19 26.14
11 9.57 1.71 2.69 8.98 19.68 25.46
12 10.40 1.24 2.84 9.72 23.04 29.81
13 9.13 0.76 2.25 6.40 18.25 62.42
14 10.97 0.94 1.86 8.02 30.74 63.37
15 12.09 0.73 2.07 9.70 32.85 53.59
16 11.40 1.48 2.29 7.76 27.46 94.86
17 17.11 0.78 2.11 7.05 89.70 146.80
18 12.72 0.82 1.81 7.30 46.44 97.43
19 13.70 0.78 1.73 5.09 64.95 109.88
20 11.21 0.54 1.33 6.47 44.98 71.09
21 14.47 0.82 1.39 6.09 43.20 339.83
22 12.54 0.94 1.43 5.80 39.20 153.88
23 13.14 0.70 1.21 4.93 59.17 151.10
24 14.19 0.74 1.37 5.79 39.36 277.02

Total 12.00 0.54 1.96 8.79 29.44 339.83

Table 3.3: Ratio of the times required by AR and VE-D.
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Figure 3.13: Ratio of the times required by AR and VE-D.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.96 0.49 0.70 1.00 1.05 1.16
6 0.91 0.36 0.61 1.00 1.00 1.00
7 0.88 0.30 0.41 1.00 1.16 1.26
8 1.09 0.34 0.66 1.00 1.68 2.03
9 1.23 0.35 0.56 1.13 2.22 3.97
10 1.43 0.44 0.54 1.14 3.26 4.80
11 1.70 0.39 0.50 1.23 4.56 6.28
12 1.95 0.39 0.53 1.60 4.57 8.13
13 1.78 0.14 0.56 1.34 3.70 11.30
14 2.32 0.26 0.47 1.65 6.91 16.25
15 2.85 0.22 0.51 1.92 8.98 19.58
16 3.18 0.27 0.67 1.97 9.81 33.68
17 3.26 0.26 0.57 1.93 10.49 22.48
18 2.84 0.17 0.39 1.71 8.29 12.03
19 3.96 0.08 0.46 1.79 14.22 50.10
20 3.53 0.25 0.51 1.91 11.11 31.48
21 4.00 0.43 0.66 1.95 13.91 40.44
22 3.77 0.23 0.62 1.85 11.68 58.74
23 4.68 0.33 0.41 1.97 17.72 58.20
24 3.66 0.33 0.57 1.87 12.47 48.24

Total 2.50 0.08 0.54 1.28 7.75 58.74

Table 3.4: Ratio of the maximum storage space required by AR and VE-D.
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Figure 3.14: Ratio of the maximum storage space required by
AR and VE-D.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.00 0.99 0.99 1.00 1.00 1.08
6 1.00 0.99 0.99 1.00 1.00 1.03
7 1.00 0.99 0.99 1.00 1.08 1.11
8 1.01 0.70 0.99 1.00 1.10 1.27
9 1.01 0.99 0.99 1.00 1.10 1.22
10 1.00 0.68 0.96 1.00 1.09 1.19
11 0.99 0.50 0.87 1.00 1.08 1.20
12 1.02 0.49 0.93 1.00 1.22 1.43
13 1.00 0.40 0.74 1.00 1.17 1.44
14 1.00 0.73 0.81 1.00 1.07 1.14
15 0.98 0.30 0.86 1.00 1.08 1.12
16 1.00 0.69 0.76 1.00 1.11 1.21
17 1.05 0.66 0.87 1.00 1.18 4.72
18 0.99 0.34 0.70 1.00 1.18 1.28
19 1.16 0.50 0.86 1.00 1.18 13.65
20 1.01 0.34 0.81 1.00 1.18 1.49
21 1.03 0.49 0.80 1.00 1.15 3.28
22 1.00 0.51 0.76 1.00 1.15 1.48
23 1.07 0.28 0.77 1.00 1.24 5.21
24 1.00 0.16 0.85 1.00 1.17 1.25

Total 1.02 0.16 0.89 1.00 1.12 13.65

Table 3.6: Ratio of the spaces required by VE-D and VE.

AR VE VE-D Won
AR - 8 (0.4%) 5 (0.25%) 13 (0.33%)
VE 448 (22.4%) - 10 (0.5%) 458 (11.45%)
VE-D 461 (23.05%) 58 (2.9%) - 519 (12.98%)
Lost 909 (22.73%) 66 (1.65%) 15 (0.38%) 990 (8.25%)

Table 3.7: Comparison of the number of redundant variables between AR, VE and VE-D.
Each cell (i, j) shows how many times the algorithm in the i-th row outperformed the
algorithm in the j-th column. For instance, VE returned smaller policies than AR for 448
out of the 2,000 IDs (22.4%), while AR has beaten VE only in 8 cases. The Won column
indicates how many times each algorithm beat each of the others. The percentages in
this column are computed over 2,000×2=4,000 cases, because each algorithm is compared
twice for each ID. The interpretation of the Lost column is similar. 990 is the number of
cases in which there was a winner.
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Similarly, VE-D outperformed AR in 461 cases (23%), while the opposite happened

only in 5 cases (0.25%); i.e., for each case in which AR returned fewer redundant variables,

there were almost 100 cases in which it returned more.

VE-D was also superior to VE: the former performed better in 58 cases (2.9%), while

the latter gave better results in 10 cases (0.5%), a di�erence of almost 6 to 1. Therefore,

if avoiding redundant variables is a priority, we should use VE-D or an algorithm for

detecting redundant variables. Given that VE and VE-D have a similar e�ciency in time

and space on average, we recommend VE-D as the default algorithm for evaluating IDs.

E�ect of the subset rule

As mentioned in Section 3.4.2, Tatman and Shachter (1990) proposed the subset rule (SR)

as a heuristic for reducing the storage space required by their arc reversal algorithm, but

they did not provide any empirical evidence of such saving of space. On the other hand,

the application of the SR entails a computational cost, which might make it counterpro-

ductive, as we discussed in Section 3.4.2. For this reason, we thought it would be worthy

to test empirically the utility of the SR.

First we analyzed the impact of that rule on the space requirements of AR. (We denote

by AR-SR the version of arc reversal that uses the subset rule.) Contrary to the intuition

by Tatman and Shachter, in most of the cases the SR did not save any space in general:

if we measure the maximum storage space of both algorithms and compute the ratio

sAR-SR/sSR, we see that the mean of ratios is 1.00, up to rounding errors, and the median

is exactly 1�cf. Table 3.8. There were cases in which AR-SR saved space, but they were

quite infrequent and in general the di�erence was negligible; only in some exceptional cases

the ratio reached values as low as 0.56 or 0.69, which means that the SR saved around

half the storage space. More surprisingly, in other cases, also very exceptional, AR-SR

required 1.82 or 2.29 times more space than AR. When we compared the computational

times, we found slightly bigger di�erences (cf. Table 3.9): in one case AR-SR was almost

twice faster, but in others AR was between 2 and 4 times faster. Given the scarce number

of cases in which there was a signi�cant di�erence and the opposite signs of the di�erences,

the only conclusion that we can draw is that in general the SR has virtually no impact

on the performance of the arc reversal algorithm.

We then studied the e�ect of that rule on our variable elimination algorithm. When

we compared VE (without divisions and without the subset rule) with VE-SR (with

the subset rule), we found no consistent di�erence in the maximum storage space (cf.

Table 3.10) nor in the computational time (cf. Table 3.11), even thought the di�erences
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.00 0.90 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00
7 1.00 0.90 1.00 1.00 1.00 1.16
8 0.99 0.84 0.94 1.00 1.00 1.00
9 0.99 0.88 0.96 1.00 1.00 1.00
10 1.00 0.95 0.97 1.00 1.00 1.00
11 1.00 0.89 0.98 1.00 1.00 1.00
12 1.00 0.89 0.97 1.00 1.00 1.25
13 1.00 0.96 0.98 1.00 1.00 1.00
14 1.00 0.98 0.99 1.00 1.00 1.00
15 1.00 0.96 0.99 1.00 1.00 1.00
16 1.00 0.98 0.99 1.00 1.00 1.00
17 0.99 0.56 0.99 1.00 1.00 1.00
18 1.00 0.99 1.00 1.00 1.00 1.00
19 1.00 0.69 0.99 1.00 1.00 1.82
20 1.00 1.00 1.00 1.00 1.00 1.00
21 1.00 1.00 1.00 1.00 1.00 1.00
22 1.00 0.99 1.00 1.00 1.00 1.00
23 1.00 0.99 1.00 1.00 1.00 1.00
24 1.01 1.00 1.00 1.00 1.00 2.29

Total 1.00 0.56 0.99 1.00 1.00 2.29

Table 3.8: Ratio of the spaces required by AR-SR and AR.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.03 0.77 0.93 1.00 1.08 3.92
6 1.01 0.45 0.95 1.00 1.09 2.78
7 0.99 0.78 0.92 1.00 1.05 1.24
8 0.99 0.73 0.89 0.99 1.08 1.18
9 1.00 0.87 0.95 1.00 1.07 1.22
10 0.99 0.83 0.93 0.99 1.05 1.15
11 1.00 0.86 0.92 1.00 1.03 2.13
12 1.00 0.88 0.94 1.00 1.04 1.66
13 0.98 0.66 0.91 0.99 1.03 1.14
14 0.99 0.78 0.91 1.00 1.03 1.08
15 0.99 0.87 0.93 1.00 1.02 1.19
16 0.99 0.76 0.87 1.00 1.04 1.34
17 0.98 0.83 0.91 1.00 1.01 1.04
18 0.99 0.78 0.89 1.00 1.04 1.10
19 0.98 0.74 0.90 0.99 1.02 1.29
20 0.98 0.80 0.88 1.00 1.01 1.03
21 0.99 0.83 0.91 1.00 1.00 1.05
22 0.98 0.83 0.91 1.00 1.01 1.05
23 0.98 0.84 0.88 1.00 1.01 1.06
24 0.99 0.75 0.89 1.00 1.01 1.83

Total 0.99 0.45 0.91 1.00 1.03 3.92

Table 3.9: Ratio of the times required by AR-SR and AR.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.97 0.68 0.84 1.00 1.00 1.06
6 0.97 0.73 0.87 1.00 1.00 1.05
7 0.98 0.68 0.89 0.99 1.02 1.28
8 0.97 0.75 0.86 0.98 1.04 1.49
9 0.94 0.50 0.69 0.97 1.00 1.18
10 0.94 0.42 0.70 0.97 1.05 1.19
11 0.94 0.53 0.64 0.98 1.02 1.53
12 0.96 0.54 0.76 0.98 1.02 1.60
13 0.94 0.37 0.67 0.99 1.02 1.61
14 0.97 0.52 0.65 0.99 1.06 3.59
15 0.96 0.39 0.77 0.99 1.00 1.89
16 0.95 0.64 0.68 0.99 1.04 1.92
17 0.96 0.45 0.72 0.99 1.02 1.99
18 0.95 0.40 0.67 0.99 1.10 1.50
19 0.99 0.44 0.61 1.00 1.26 2.30
20 0.95 0.38 0.67 1.00 1.00 1.17
21 0.95 0.39 0.68 1.00 1.00 1.02
22 0.92 0.43 0.53 1.00 1.00 1.59
23 0.96 0.36 0.68 1.00 1.00 1.76
24 0.93 0.52 0.67 1.00 1.00 1.24

Total 0.95 0.36 0.68 0.99 1.01 3.59

Table 3.10: Ratio of the spaces required by VE-SR and VE.

seemed to be slightly higher than in the comparison of AR with AR-SR. We might be

tempted to say, after looking at the �mean� columns of those tables, that the subset rule

reduces slightly the maximum storage space for large IDs, on average, at the expense of

increasing the time of computation, as we expected, but a look at the �median� column

makes this conclusion doubtful.

Interestingly, in the case of the VE-D algorithm, the subset rule seems to save both

time and space for large IDs, but the average di�erence is small and the medians show no

di�erence in storage space (Table 3.12) nor in computational time (Table 3.13).

3.6 Discussion

There are several variable elimination algorithms for IDs proposed in the literature (Cowell

et al., 1999; Dechter, 1996; Jensen et al., 1994; Shenoy, 1992; Jensen and Nielsen, 2007),

but none of them can evaluate IDs with super value nodes. The algorithm that we have

presented in this chapter can be seen as an extension of those methods, designed as an
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.96 0.52 0.70 0.95 1.26 2.28
6 0.97 0.02 0.77 0.98 1.16 1.54
7 0.97 0.66 0.72 0.99 1.15 1.32
8 1.00 0.70 0.82 0.99 1.20 2.10
9 1.00 0.62 0.71 0.99 1.24 2.91
10 0.99 0.53 0.73 0.99 1.24 1.58
11 1.04 0.35 0.71 1.01 1.52 2.22
12 1.06 0.67 0.81 1.03 1.31 2.36
13 1.00 0.59 0.74 1.00 1.26 1.81
14 1.09 0.53 0.77 1.02 1.33 6.50
15 1.05 0.54 0.74 1.04 1.43 1.94
16 1.04 0.52 0.71 1.02 1.48 2.06
17 1.07 0.64 0.76 1.04 1.48 1.90
18 1.06 0.59 0.78 1.04 1.33 1.85
19 1.09 0.60 0.75 1.04 1.62 2.00
20 1.06 0.39 0.78 1.04 1.40 1.69
21 1.04 0.42 0.79 1.03 1.32 1.73
22 1.05 0.59 0.68 1.04 1.49 2.20
23 1.06 0.43 0.75 1.04 1.34 1.68
24 1.00 0.25 0.71 1.00 1.30 1.80

Total 1.03 0.02 0.74 1.02 1.34 6.50

Table 3.11: Ratio of the times required by VE-SR and VE.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 0.98 0.69 0.82 1.00 1.00 1.00
6 0.99 0.73 0.91 1.00 1.00 1.00
7 0.98 0.69 0.84 1.00 1.00 1.00
8 0.97 0.75 0.84 1.00 1.00 1.05
9 0.95 0.49 0.71 1.00 1.00 1.00
10 0.94 0.43 0.68 1.00 1.00 1.00
11 0.93 0.51 0.64 1.00 1.00 1.00
12 0.94 0.52 0.72 1.00 1.00 1.00
13 0.93 0.37 0.67 1.00 1.00 1.06
14 0.92 0.42 0.58 0.99 1.00 1.00
15 0.92 0.42 0.61 1.00 1.00 1.00
16 0.94 0.59 0.67 1.00 1.00 1.00
17 0.93 0.30 0.67 1.00 1.00 1.04
18 0.92 0.34 0.60 1.00 1.00 1.00
19 0.93 0.44 0.54 1.00 1.00 1.00
20 0.93 0.46 0.62 1.00 1.00 1.00
21 0.94 0.40 0.69 1.00 1.00 1.00
22 0.89 0.33 0.48 1.00 1.00 1.00
23 0.93 0.34 0.58 1.00 1.00 1.00
24 0.89 0.39 0.59 1.00 1.00 1.00

Total 0.94 0.30 0.66 1.00 1.00 1.06

Table 3.12: Ratio of the spaces required by VE-D-SR and VED.
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Nodes Mean Min 5th perc. Median 95th perc. Max
5 1.11 0.50 0.68 0.95 1.15 18.16
6 0.98 0.60 0.76 0.98 1.22 1.85
7 0.98 0.34 0.74 0.98 1.24 1.99
8 0.99 0.59 0.75 0.98 1.23 1.93
9 0.93 0.57 0.67 0.97 1.08 1.29
10 0.97 0.52 0.72 0.97 1.15 2.53
11 0.96 0.49 0.73 0.97 1.18 1.72
12 0.96 0.40 0.74 0.98 1.13 1.47
13 0.97 0.50 0.74 0.99 1.09 1.93
14 0.95 0.44 0.67 0.99 1.15 1.24
15 0.96 0.52 0.73 0.98 1.12 1.28
16 0.97 0.49 0.70 1.00 1.15 1.76
17 0.97 0.48 0.72 1.00 1.13 1.26
18 0.94 0.50 0.65 0.98 1.13 1.29
19 0.95 0.48 0.60 0.99 1.13 1.26
20 0.97 0.55 0.67 1.00 1.15 1.20
21 0.96 0.44 0.74 1.00 1.14 1.26
22 0.93 0.46 0.65 0.97 1.09 1.26
23 0.96 0.43 0.68 1.00 1.13 1.22
24 0.93 0.52 0.60 0.95 1.09 1.16

Total 0.97 0.34 0.70 0.99 1.14 18.16

Table 3.13: Ratio of the times required by VE-D-SR and VED.
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alternative to the arc reversal algorithm by Tatman and Shachter (1990), the only one

that could evaluate IDs super value nodes.

A problem of all these algorithms, including ours, is that they occasionally introduce

redundant variables�see Section 3.1.3. Several algorithms have been proposed in the

literature for detecting structurally redundant variables by analyzing the graph (Faguiouli

and Za�alon, 1998; Nielsen and Jensen, 1999; Nilsson and Lauritzen, 2000; Shachter, 1998;

Vomlelova and Jensen, 2004), but none of them can analyze IDs with super value nodes.

One of the advantages of the algorithm that we have proposed is that it rarely introduces

redundant variables (see the experimental results in Sec 3.5.2). However, in some real-

world applications it might be desirable to ensure that the decision-support system does

not include any redundant variables at all, and for this reason in a future work we will

propose an algorithm for eliminating them in the case of IDs with super value nodes.

This algorithm must take into account the distinction between structurally redundant and

quasi-structurally redundant variables (cf. Sec. 3.1.3), which is one of the contributions

of this paper.

Another element of crucial importance for the e�ciency of algorithms for IDs (as

in the case of Bayesian networks) is �nding an e�cient elimination order. In the �rst

experiments that we carried out, our algorithm randomly selected the elimination order

inside each Ci (we should recall that Ci is the set of variables unknown for decision Di and

known for Di+1). In these experiments our algorithm was faster than AR in general, but it

usually required more memory. Thus we realized that one of the advantages of AR is that

it automatically detects sink nodes, i.e., nodes having no outgoing arcs towards chance or

decision nodes (Olmsted, 1983; Shachter, 1986)9. When we forced our VE algorithm to

use the same elimination order as AR, VE was able to outperform AR not only in time

e�ciency, but also by requiring less storage space, as shown in Section 3.5.2.10

However, it might be desirable to have a method for �nding the optimal elimination

order for VE, which is not necessarily optimal for AR. However, given that �nding the

optimal elimination ordering for a Bayesian network is NP-complete, we conjecture that

�nding the optimal elimination order for VE is also NP-complete. For this reason, we

should concentrate our e�orts on developing heuristics that return near-optimal orderings.

9AR takes pro�t of sink nodes by eliminating them without performing any numerical computation.
In turn, VE can take pro�t of them because they lead to unity potentials�see Sec. 3.4.3.

10Fortunately, it is possible to feed our algorithm with the elimination order used by AR without the
necessity of completely executing the algorithm by Tatman and Shachter: it su�ces to reverse arcs and
delete nodes from the graph without performing any numerical computation. Given that these operations
only focus on the neighbors of each node, the cost of obtaining the elimination order is absolutely negligible
compared to the cost of operating with potentials.
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This is a very di�cult issue even when the ID has only one utility node (Gómez and

Bielza, 2004), and becomes much more complex when the utility function is given by an

ADG of potentials, since the basic operations of our algorithm (distribution and variable

elimination) treat sum nodes very di�erently to product nodes, and chance variables

di�erently to decision variables. A solution to this problem might be to examine di�erent

orderings, as in (Gómez and Bielza, 2004): we can make a qualitative evaluation of the ID

by operating on the ADGoP, without doing any numerical computation, in order to know

the sizes of the potentials involved and to estimate the time and memory space required

by a candidate elimination order.

There is another line of improvement for our algorithm. The reason why VE and VE-

D do not always perform better than AR is that, even though they try to preserve the

separability of the utility function when eliminating a variable, sometimes the subsequent

elimination of other variables merges the potentials that we wanted to keep separate. In

this way some distributions become counterproductive, �rst because they increase the

storage space and second because they prevent the algorithm from detecting common

factors, as shown in Section 3.2.2. Therefore, the methods unfork and distribute, which

in the current version of the algorithm only focus on the variable to be eliminated, should

be re�ned in order to take into account the e�ect of the next eliminations.

We might try to solve both problems at the same time: we might assess the cost of

di�erent elimination orderings and di�erent distribution strategies�also analyzing the

number of redundant variables introduced by each one of them�and then perform the

numerical computations for the optimal combination. However, it would be necessary to

prove empirically that the time spent on the qualitative evaluation of several possibilities

is compensated by �nding a more e�cient path for the evaluation of the ID.

Finally, it would be interesting to research how the ideas of lazy evaluation for IDs

without super value nodes introduced by Madsen and Jensen (1999) and extended in

(Vomlelova and Jensen, 2004) could be integrated with our algorithm and applied to more

general IDs. This might avoid unnecessary multiplications and subsequent divisions, and

also avoid redundant variables in the policies.

As conclusion, as we said at the beginning, we wanted to develop a variable-elimination

(VE) algorithm for IDs with super value nodes having �ve advantages over Tatman and

Shachter's (Tatman and Shachter, 1990) arc reversal (AR) algorithm: it were faster,

required less memory, avoided redundant variables, simpli�ed sensitivity analysis, and

could save time and memory space for IDs containing canonical models.

We conducted some experiments to discover whether we achieved the �rst three ob-
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jectives. The analysis of 2,000 IDs randomly generated shows, in the �rst place, that on

average VE is around 10 times faster than AR, especially for large IDs and in 5% of cases

it is at least 30 times faster; for some IDs, it was between 100 and 340 times faster. In

contrast, the cases in which AR is faster than VE are infrequent and the di�erences are

much smaller: for IDs having more than 6 nodes, AR could never be twice as fast as VE.

In the second place, AR requires on average 3 or 4 times more memory space than

VE, with a median ratio of about 2. For 5% of the IDs, AR needs at least 10 times more

space. In several cases, it needed between 20 and 60 times more space. On the contrary,

the cases in which VE required more memory are infrequent and the di�erences are much

smaller.

Third, our experiments showed that for each case in which AR introduces fewer re-

dundant variables than VE, there are over 50 in which VE gives better results. A version

of VE with division of probability potentials (VE-D) performs even better: for each case

in which AR introduces fewer redundant variables, there were almost 100 in which VE-D

outperformed AR. Given that the time and space e�ciency of VE-D is very similar to that

of VE, we recommend VE-D as the default algorithm for evaluating IDs with super-value

nodes.11 One weakness of VE is that it does not compute the expected utility of each de-

cision option, while AR and VE-D do. Given that in general, human decision makers are

interested in knowing such expected utilities, VE is only useful for autonomous decision

systems, not for decision-support systems.

Forth, our algorithm can simplify sensitivity analysis by keeping track of which poten-

tials have been involved in the computation of the (new) potentials on which maximiza-

tions are performed �see Section 3.2.2.

With respect to the �fth objective, we have not tested empirically the time and space

savings that our variable elimination algorithm can provide for IDs containing canonical

models, such as the noisy OR/MAX (Díez and Druzdzel, 2006). However, the important

savings obtained by the integration of variable elimination and canonical models in the

case of Bayesian networks (see Section 3.1.1 and (Díez and Galán, 2003)) indicate that

similar savings might be obtained for IDs.

In summary, we conclude that we have attained, to di�erent degrees, the �ve objectives

set at the beginning of our research.

A minor contribution of this chapter is the empirical evaluation of the subset rule

(Tatman and Shachter, 1990), which�as far as we know�had never been tested before.

Our experiments have shown that for most IDs the impact of this rule is null or almost

11This was an unexpected conclusion because, as we stated in the introduction, the motivation for
developing a variable elimination algorithm was to avoid the division of potentials.
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null and, contrary to our expectations, it can either increase or decrease the time and

space spent by the algorithms (see Section 3.5.2).
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Chapter 4

Explanation of the reasoning in

in�uence diagrams

Bayesian networks and in�uence diagrams are probabilistic graphical models widely used

for building diagnosis- and decision-support expert systems. Explanation of both the

model and the reasoning is important for debugging these models, for alleviating users'

reluctance to accept their advice, and for using them as tutoring systems. In�uence

diagrams have demonstrated to be e�ective tools for building decision support systems,

but the explanation in that formalism is hard because inference in probabilistic graphical

models have no relation with human reasoning. We are going to describe some explanation

options for in�uence diagrams that we have implemented. Some of them have been

programmed in Elvira and are available through its GUI.

4.1 Introduction

In�uence diagrams (IDs) are a probabilistic graphical model for representing and solving

Bayesian decision problems (see Section 2.3 for a description about IDs).

In the context of expert systems, either probabilistic or heuristic, the development of

explanation facilities is important for three main reasons (Lacave and Díez, 2002; Lacave,

2003). First, because the construction of those systems with the help of human experts is

a di�cult and time-consuming task, prone to errors and omissions. An explanation tool

can help the experts and the knowledge engineers taking part in the project to debug the

system when it does not yield the expected results and even before a malfunction occurs.

Second, because human beings are reluctant to accept the advice o�ered by a machine if

they are not able to understand how the system arrived at those recommendations; this

reluctance is especially clear in medicine (Wallis and Shortli�e, 1984). And third, because

an expert system used as an intelligent tutor must be able to communicate the apprentice

103
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the knowledge it contains, the way in which the knowledge has been applied for arriving

at a conclusion, and what would have happened if the user had introduced di�erent pieces

of evidence (what-if reasoning).

These reasons are especially relevant in the case of probabilistic expert systems, be-

cause the elicitation of probabilities is more di�cult than the assessment of uncertainty

in heuristic expert systems and because, even though probabilistic reasoning is just a

formalization of (a part of) common-sense reasoning, the algorithms for the computation

of probabilities and utilities are very di�erent from the way a human being would draw

conclusions from a probabilistic model.

Unfortunately, the explanation methods proposed so far are still unsatisfactory, as

shown by the fact that most expert systems and commercial tools available today, either

heuristic or probabilistic, have virtually no explanation capability (Lacave and Díez, 2002,

2004). Despite the practical interest of this issue, very little research is currently carried

out about explanation in probabilistic graphical models. As an attempt to palliate this

shortcoming, in this paper we describe some methods for explaining both the model and

the reasoning of probabilistic expert systems as in�uence diagrams, which have been

implemented in Elvira, a public software tool developed as a joint project of several

Spanish universities. We also discuss how such methods respond to the needs that we

have detected when building and debugging medical expert systems (Díez et al., 1997;

Lacave and Díez, 2003; Luque et al., 2005) and when teaching probabilistic graphical

models to pre- and postgraduate students of computer science and medicine Díez (2004).

Section 4.3 describes the explanation methods for IDs in Elvira, and its content is based

on (Luque and Díez, 2006) and (Lacave et al., 2007).

The main output of an evaluation algorithm for IDs is the optimal strategy. Software

tools like Elvira usually present each optimal policy in the form a policy table, which

contains a column for each con�guration of the informational predecessors of the decision.

In some cases the policy tables can be huge. For example, the policy table for the ID of

the mediastinal staging of non-small cell lung cancer has 15552 columns. We have felt

the need of having a alternative representation to policy tables that could summarize the

optimal policy. In Section 4.4 we describe the representation that we have proposed for

that purpose.

In�uence diagrams can contain numerical parameters that are not known with cer-

tainty. After evaluating an in�uence diagram, the decision analyst investigates whether

these results obtained (the optimal strategy and the maximum expected utility) depend

on (are sensitive) to the uncertainty about the parameters of the model. The investiga-
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tion of the variations of parameters in PGMs is performed by using sensitivity analysis

techniques (see Section 2.7). In the context of IDs with SV nodes we needed to have

implemented algorithms of sensitivity analysis for using it with an in�uence diagram of

mediastinal staging of non-small cell lung cancer. Section 4.5 presents a description of

the algorithms implemented.

4.2 Preliminaries

We explain here the conversion of an in�uence diagram (ID) into a Bayesian network (BN),

which constitutes the basis of explanation capabilities of in�uence in�uence diagrams

presented in this chapter. A description of Bayesian networks and in�uence diagrams

were exposed in Sections 2.2 and 2.3.

If we have a strategy ∆ = {PD|D ∈ VD} for an ID, it can be used to convert the ID

into a BN, called Cooper policy network (CPN), as follows: each decision D is replaced

by a chance node with probability potential PD and parents IPred(D), and each utility

node U is converted into a chance node whose parents are its functional predecessors,

FPred(U)�see Fig. 4.2. The values of each new chance variable U are {+u,¬u} and
its probability is PCPN(+u|fPred(U)) = normU(U(fPred(U))), where normU is a linear

transformation that maps the utilities U(fPred(U)) from the interval [αU , βU ] onto the

interval [0, 1] (Cooper, 1988), where αU and βU are de�ned as:

αU = min
fPred(U)

ψU(fPred(U)) (4.1)

βU = max
fPred(U)

ψU(fPred(U)) . (4.2)

The joint distribution of the CPN is:

PCPN(vC ,vD,vU)

= P∆(vC ,vD)
∏
U∈VU

PU(u|pa(U)) (4.3)

Given two con�gurations r and r′de�ned over two set of variables, R ⊆ VC ∪VD and

R′ ⊆ (VC ∪VD), such that R ∩R′ = ∅ and P (r) 6= 0, and U a utility node, it is easy to

prove that

P∆(r′) =PCPN(r′) (4.4)

P∆(r′|r) =PCPN(r′|r) (4.5)
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Figure 4.1: ID with two decisions (rectangles), two chance nodes (ovals) and three utility
nodes (hexagons). Please note that there is a directed path T�Y �D�U1�U0 including all
the decisions and the global utility node U0.
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D 

T 

U2
 

U0 

U1 

Figure 4.2: Cooper policy network (CPN) for the ID in Figure 4.1. Please note the
addition of the non-forgetting link T → D and that the parents of node U0 are no longer
U1 and U2 but FPred(U0) = {X,D, T}, which were chance or decision nodes in the ID.

EUU(∆) = norm−1
U (PCPN(+u)) (4.6)

EUU(∆, r) = norm−1
U (PCPN(+u|r)) (4.7)

In Section ?? we will use these equations to compute on a CPN the probabilities and

expected utilities to be displayed in the GUI.

4.3 Explanation of in�uence diagrams in Elvira

Elvira1 is a tool for building and evaluating probabilistic graphical models (Elvira Con-

sortium, 2002). A brief description of Elvira has been exposed in Section 2.8. We describe

in this section the explanation capabilities for in�uence diagrams that have been imple-

mented in Elvira.

1At http://www.ia.uned.es/~elvira it is possible to obtain the source code and several technical
documents about Elvira.

http://www.ia.uned.es/~elvira
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4.3.1 Explanation of the model

The explanation of IDs in Elvira is based, to a great extent, on the methods developed

for explanation of BNs. One of the methods that have proven to be more useful is the

automatic colorings of links. The de�nitions in (Lacave et al., 2006) for the sign of

in�uence and magnitude of in�uence, inspired on (Wellman, 1990), have been adapted to

ordinary utility nodes as follows:

De�nition 4.3.1 Let U be an ordinary utility node having αU 6= βU (see Equations 4.1

and 4.2) and Pa(U) = {A}∪B. The magnitude of the in�uence (MI) for the link A→ U

is

MI(A,U) = normU(max
a,b
|ψU(a,b)− ψU(a0,b)|) (4.8)

We say that A positively in�uences variable U i� MI(A,U) 6= 0 and

∀a,∀a′,∀b, a > a′ =⇒ ψU(a,b) ≥ ψU(a′,b) (4.9)

We also say that the link is positive.

The de�nitions of negative in�uence and negative link are analogous. WhenMI(A,U) =

0 the in�uence of link A → U is said to be null ; in that case, link A → U should be re-

moved. When the in�uence is neither positive nor negative nor null, then it is said to be

unde�ned.

The magnitude of the in�uence for a link A→ U gives a relative measure of how much

variable A in�uences a utility node U . Then, the in�uence of a link A → U is positive

when the higher the value of A the higher the utility of U . Cooper's transformation

normU guarantees that the magnitude of the in�uence is normalized.

For instance, in Fig. 4.1 the link X → Y is colored in red because it represents a

positive in�uence: the presence of the disease increases the probability of a positive result

of the test. The link X → U1 is colored in blue because it represents a negative in�uence:

the disease decreases the expected quality of life. The link D → U1 is colored in purple

because its in�uence is unde�ned: the treatment is bene�cial for patients su�ering from

X but detrimental for healthy patients.

Additionally, when a policy has been assigned to a decision node, either by calculating

its optimal policy or by imposing a policy (see Sec. 4.3.4), the corresponding probability

distribution PD can be used for coloring the incoming links of that node, as shown in

Figure 4.1.
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The coloring of links in Elvira has been very useful for debugging IDs, by detecting

probability and utility tables whose numerical values do not agree with the qualitative

in�uences assessed by the expert.

4.3.2 Displaying the results of inference

In Section 4.2 we have seen that, given a strategy ∆, an ID can be converted into a Cooper

policy network (CPN), which is a true Bayesian network. Consequently, all the explana-

tion capabilities for BNs are also available for IDs by exploiting such transformation.

The information displayed for nodes depends on the kind of node�see Fig. 4.3. Chance

and decision nodes display bars and numbers corresponding to the probabilities of their

states, P∆(v), a marginal probability of P∆(vC ,vD), de�ned by Equation 4.4. P∆(v) is

the probability that a chance variable V takes a certain value v, or the probability that

the decision maker chooses option v for decision V (Nilsson and Jensen, 1998). P∆(v) can

be computed on the Cooper policy network (CPN) by means of Equation 4.4. Each utility

node U displays the expected utility EUU(∆), de�ned by Equation 2.9, which is computed

by propagating on the CPN and transforming back with the use of Equation 4.6. The

guide bar (black line) indicates the range of the utilities.

Links pointing into a decision node D are drawn with the color and thickness indicated

in Section 4.3.1, by examining the policy PD (returned by the evaluation of the ID) as

if it were the conditional probability table of a chance node. Non-forgetting links added

during the evaluation of the diagram (Olmsted, 1983; Shachter, 1986), such as link T → D

in Fig. 4.3, are drawn as a discontinuous arrows.

Elvira, as most software tools for IDs, can show the utility table associated to each

decision. For instance, in Table 4.1 each column corresponds to a con�guration (t, y) of

the informational predecessors of decision D and each cell contains the expected utility

of option d given t and y provided that every future decision will be made optimally

EU(d|iPred(d)) = EU(d|t, y). The order of the variables in IPred(D) in that table is

chosen to make it compatible with the partial order induced by the ID, i.e., the order in

which the observations and decisions are known by the decision maker during the decision

process.

This table is used by the evaluation algorithm to compute the optimal policy; in

this example, dopt = arg max
d

EU(d|t, y), as shown in Table 4.2. A toggle allows the

user to view either the expected utilities for a decision (Table 4.1) or the optimal policy

(Table 4.2).
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Figure 4.3: ID resulting from the evaluation of the ID in Figure 4.1. It shows the proba-
bility P∆(v) of each chance and decision node and the expected utilities.
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Table 4.1: Expected utilities for decision D in the ID in Figure 4.1.

The highest utility in each column is highlighted in red. We have contracted the columns that represent

impossible scenarios, i.e., con�gurations such that P (iPred(D))=0.

Table 4.2: Optimal policy for decision D in the ID in Figure 4.1.

4.3.3 Introduction of evidence

Elvira's ability to manage several evidence cases simultaneously in BNs is also available for

IDs, as shown in Fig. 4.4. The evidence is introduced in the ID by using its corresponding

Cooper policy network. Given evidence e, Elvira displays for each chance and decision

node V the probability P∆(v|e) (cf. Eqs. 2.5 and 4.5), and for each utility node U the

expected utility EUU(∆, e) (cf. Eqs. 2.7 and 4.7).

Clarifying the concept of evidence in in�uence diagrams

In order to avoid confusions, we must mention that the meaning of evidence in Elvira

is very di�erent from its meaning in some methods oriented to the computation of the

value of information in IDs, such as (Shachter and Peot, 1992; Dittmer and Jensen, 1997;

Ezawa, 1998). For those methods, the introduction of evidence e leads to a di�erent

decision problem in which the values of the variables in E would be known with certainty

before making any decision. For instance, introducing evidence {+x} in the ID in Fig. 4.1

would imply that X would be known when making decisions T and D. Therefore, the

expected utility of the new decision problem, which can be called �Ezawa's scenario�

(Ezawa, 1998), would be

max
t

∑
y

max
d
P (y|+x : t, d) · (U1(+x, d) + U2(t)︸ ︷︷ ︸

U0(+x,d,t)

)

where P (y|+x : t, d) = P (+x, y : t, d)/P (+x : t, d) = P (+x, y : t)/P (+x) = P (y| +x : t).

In spite of the apparent similarity of this expression with Equation 2.14, the optimal strat-

egy changes signi�cantly from "test, and treat only if the result is positive" to "always
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treat, without testing", because if we knew with certainty that the disease X is present

the result of the test would be irrelevant. The MEU for the new decision problem would

be U0(+x,+d,¬t) = U1(+x,+d). In contrast, the introduction of evidence in Elvira does

not lead to a new decision scenario nor to a di�erent strategy, since the strategy is deter-

mined before introducing the "evidence". Put another way, when introducing evidence in

Elvira we adopt the point of view of an external observer of a system that includes the

decision maker as one of its components. The probabilities and expected utilities given

by Equations 2.6 and 2.7 are those corresponding to the subpopulation indicated by e

when the decision maker applies strategy ∆. For instance, given the evidence {+x}, the
probability P∆(+t|+x) shown by Elvira is the probability that a patient su�ering from

X receives the test, which is 100% (it was 0% in Ezawa's scenario), and P∆(+d|+x) is

the probability that he receives the treatment; contrary to Ezawa's scenario, this proba-

bility may di�er from 100% because of false negatives. The expected utility for a patient

su�ering from X isA second di�erence is that Elvira admits the possibility of analyzing

non-optimal strategies, as we will see below. And the third signi�cant di�erence is that the

evidence introduced in Elvira may include ��ndings� for decision variables. For instance,

e = {+d} would represent the subpopulation of patients who have received therapy, and

P∆(+x|+d) is the probability that a patient receiving therapy has disease X. We must

stress that the two approaches are not rivals. They correspond to di�erent points of view

when considering evidence in IDs and can complement each other in order to perform

a better decision analysis and to explain the reasoning. We have implemented �rst the

options that, in our opinion, can be more useful, but in the future we will implement

as well Ezawa's method and the possibility of computing the expected value of perfect

information (EVPI).

Example

Fig. 4.4 shows two evidence cases. In this example, ∆ is the optimal strategy obtained

when evaluating the ID, because no policy was imposed by the user. The �rst evidence

case in Fig. 4.4 is the prior case, which was also displayed in Fig. 4.3. Its probabilities

and expected utilities are those of the general population. The second evidence case is

given by e = {+y}; i.e., it displays the probabilities and utilities of the subpopulation

of patients in which the test has given a positive result. Node Y is colored in gray to

highlight the fact that there is evidence about it. The probability P∆(+x|+y), repre-

sented by a red bar, is 0.70; the green bar close to it represents the probability of +x for

the prior case, i.e., P∆(+x), which equals P (+x) because the decision maker's actions do
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Figure 4.4: ID resulting from the evaluation of the ID in Figure 4.1. It shows two evidence
cases: the prior case (no evidence) and the case in which e = {+y}.

not a�ect X. The red bar is longer than the green one because P∆(+x|+y) > P∆(+x),

as it was expected from the fact that link X → Y is positive. The global utility for

the second evidence case, EU(∆, {+y}), represented by a red bar in node U0, is smaller

than EU(∆,∅), the expected utility for the general population, represented by a green

bar, because the presence of the symptom worsens the prognosis. The red bar for Treat-

ment=yes, which represents P∆(+d|+y), is 1.00 because the optimal strategy determines

that all symptomatic patients must be treated. Similarly, P∆(+t|+y) = 1.00 because a

positive result of the test implies that the test has been done.

Debugging in�uence diagrams by introducing evidence

The possibility of introducing evidence in Elvira has been useful for building IDs in

medicine (Luque et al., 2005): before having this explanation facility, when we were

interested in computing the posterior probability of a certain diagnosis given a set of
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�ndings, we needed to manually convert the ID into a BN by removing decision and utility

nodes. Each time the ID was modi�ed, even slightly, we had to repeat this conversion,

which was tedious and time consuming. (When building medical expert systems, the time

of interaction with the experts is a precious resource that must not be waisted.) This was

the reason for implementing a facility that allowed us to compute the probabilities directly

on the ID, which is much more convenient.

4.3.4 What-if reasoning: analysis of non-optimal strategies

In Elvira it is possible to have a strategy in which some of the policies are imposed by

the user and the others are computed by maximization. The way of imposing a policy

consists in setting a probability distribution PD for the corresponding decisionD by means

of Elvira's GUI; the process is identical to editing the conditional probability table of a

chance node. In fact, such a decision will be treated by the inference algorithms as if

it were a chance node, and the maximization will be performed only on the rest of the

decision nodes.

This way, in addition to computing the optimal strategy (when the user has imposed

no policy), as any other software tool for IDs, Elvira also permits to analyze how the

expected utilities and the rest of the policies would vary if the decision maker chose a

non-optimal policy for some of the decisions (what-if reasoning).

The reason for implementing this explanation facility is that when we were building

a certain medical in�uence diagram (Luque et al., 2005) our expert wondered why the

model recommended not to perform a certain test. We wished to compute the a posteriori

probability of the disease given a positive result in the test, P∆(+x|+y), but we could

not introduce this �evidence�, because it was incompatible with the optimal policy (not

to test): P∆(+y) = 0. After we implemented the possibility of imposing non-optimal

policies (in this case, performing the test) we could see that the posterior probability of

the disease remained below the treatment threshold even after a positive result in the

test, and given that the result of the test would be irrelevant, it was not worthy to do it.

4.3.5 Utility plots as a way of explanation

By introducing evidence about Y in the ID of Figure 4.3 we can see that P (+x|+y) =

0.83; this means that the prevalence of X in the subpopulation {+y} is 0.83, which is

above the 0.17 threshold that can be seen in the utility plot of Figure 2.18. In contrast,

P (+x|¬y) = 0.015 < 0.17. This explains why the optimal policy for D is to treat only
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Figure 4.5: Policy table for Decision_PET in Elvira.

after a positive result of the test. In the construction of more complex IDs this kind of

analysis done with the help of utility plots has been useful for understanding why some

tests are necessary or not, and why sometimes the result of a test is irrelevant, as discussed

in the previous section. Thus, utility plots, which were described in Section 2.7, have been

an important explanation tool.

4.4 Policy tables and policy trees

The optimal strategy of an in�uence diagram, consisting of an optimal policy for each

decision, can be obtained by evaluating it with Elvira. For example, Figure 4.5 displays

optimal policy for the node Decision_PET of ID of Figure 6.9, in the form of a policy

table, which contains a column for each con�guration of its informational predecessors (see

Section 2.3). The bottom cell in each column displays the optimal decision, i.e. either to

do the PET or not.

However, given that the size of the policy tables grow exponentially with the number

of informational predecessors, we prefer to present the optimal policy of each decision in

the form of a policy tree (see Figures 6.10 to 6.11)2 , which is much more understandable.

A policy tree (PT) is similar to decision trees (Rai�a and Schlaifer, 1961): it consists of

chance and decision nodes, and arcs labeled with the states of the nodes (see an example

of PT for Decision_PET in Figure 6.10). As in decision trees, the ancestors of a decision

node in the PT are informational predecessors in the ID. The leaves of the PT indicate

the optimal decision of the corresponding scenario. In contrast with decision trees, a

PT only represent scenarios that are possible by following the optimal strategy. This

reduces enormously the size of the representation and makes it more understandable for

the human expert. For example, the policy table for decision Treatment of Mediastinet

has 15552 columns, which is the size of the state space of the informational predecessors

of Treatment. In contrast, the PT of Treatment in Mediastinet disregarding costs has

9 leaves (see Figure 6.10), and the PT when considering costs has only 5 leaves (see

Figure 6.11).

2The names of some variables of Mediastinet have been abbreviated in the �gures to have a more
compact representation of the trees.
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Figure 4.6: A policy tree example.



4.5. Sensitivity analysis 117

4.5 Sensitivity analysis

Section 2.7 describes the basic concepts of SA in probabilistic graphical models. We

describe in this section some algorithms for performing SA in in�uence diagrams with

super-value nodes. In particular, we �rst de�ne a new measure of sensitivity analysis for

in�uence diagrams (Section 4.5.1). We also present how to built an auxiliary in�uence

diagram (Section 4.5.2) that will be used for computing three measures of sensitivity

analysis:

• the policy change thresholds (see Section 2.7.1),

• the expected value of perfect information (see Section 2.7.2),

• and the sensitivity of each decision to each parameter (see Section 4.5.1).

4.5.1 Sensitivity of a decision to a parameter

We want to analyze the changes in the optimal policies when varying a parameter. We

have felt the need of de�ning the next measure for this purpose.

The sensitivity of a decision Di to a parameter Θ, which will be denoted as sens(Di,Θ),

can be calculated by de�ning a Boolean variable, Ci, which indicates if the uncertainty

associated to a parameter can change the optimal policy of Di. Thus, this metrics of

sensitivity is de�ned as:

sens(Di,Θ) = P (+ci) (4.10)

=

ˆ
Θ

P (+ci|θ) P (θ) dθ (4.11)

=

ˆ
Θ

∑
x

P (+ci|x, θ) P (x|θ) P (θ) dθ (4.12)

=

ˆ
Θ

∑
x

∑
di

P (+ci|di,x, θj) P (+di|x, θ) P (x|θ) P (θ) dθ (4.13)

where X = iPred(Di) is the set of informational predecessors of decision Di in the original

in�uence diagram and x represents each con�guration of iPred(Di).

We know that P (di|x, θj) is equal to 1 when di is the optimal decision option for the

con�guration x in the diagram given for θ, and 0 otherwise. Thus, in the summation over
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di it is enough to consider the optimal policy for each con�guration:

sens(Di,Θ) =

ˆ
Θ

∑
x

P (+ci|δΘ
Di

(x, θj),x, θj) P (x|θ) P (θ) dθ (4.14)

whereδΘ
Di

is the optimal policy for Di in the in�uence diagram of parameter Θ.

On the other hand, P (+ci|δΘ
Di

(x, θj),x, θj) is equal to 1 when there is no change in the

policy when compared to the reference ID; otherwise, its value is 0. Thus, if X′θ is the

subset of con�gurations of X in which the optimal decision option given by δΘ
Di

is di�erent

from the reference ID:

sens(Di,Θ) =

ˆ
Θ

∑
x∈X′θ

P (x|θ) P (θ) dθ (4.15)

=

ˆ
Θ

∑
x∈X′θ

P (x, θ) dθ (4.16)

4.5.2 Computation of sensitivity analysis measures

We are going to compute three measures of sensitivity analysis:

• the policy change thresholds (see Section 2.7.1),

• the expected value of perfect information (see Section 2.7.2),

• and the sensitivity of each decision to each parameter (see Section 4.5.1).

We are going to describe how to built an ID, named augmented ID, for calculating these

measures. After that, we expose the algorithms for the computations.

Augmented ID

Let us assume that we have a parameter Θ in an in�uence diagram I. Let us denote

by Y one the nodes of I whose probability or utility potential φY contains Θ. Let X be

the parents of Y in the reference diagram. An augmented ID for Θ is derived from I by

making the following changes:

• Adding a discrete node,Θ.

• Adding an arc from Θ to each of the nodes Y , and another from Θ to the �rst

decision of I .
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Figure 4.7: Augmented ID for parameter Θsens of test problem (Figure 2.1).

For example, let us consider the ID for the test problem, shown in Figure 2.1. The

augmented ID for the parameter Θsens, which represents the speci�city of test Y , spec =

P (+y|+ t,+x), is shown in Figure 4.7.

The augmented ID has the same set of probability and utility potentials as I , except

for node Y , which is modi�ed to incorporate the new parent, Θ.

If Y is a chance node, its potential in I is P (y|x). Let yΘ the value of Y and xΘ the

con�guration of X such that Θ represents the value of P (yΘ|xΘ). The potential of Y in

the augmented ID is:

P ′(y|x, θi) =


θi if y = yΘ ∧ x = xΘ

sem(y, θi, P (y|x)) if y 6= yΘ ∧ x = xΘ

P (y|x) otherwise

(4.17)

where sem(y, θi, P (y|x)) is a function that assigns the residual mass probability 1−θi into
the states of Y di�erent from yΘ.

A possibility for sem(y, θi, P (y|x)) is to divide 1−θi proportionally to the probabilities
in I. However, there are some cases in which we know that 1− θi has to be redistributed
di�erently. For example, in Figure 4.7, we would always assign 1 − θspec to the state ¬y
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and 0 to the state no-result.

If Y is a utility node in I, the utility of Y in the augmented ID is:

U(x, θi) =

φY (x) if x 6= ΠΘ

θi otherwise
(4.18)

Parameter Θ is assumed to be characterized by a continuous probability distribution.

The augmented ID will be used in Section 4.5.2 to compute some measures of sensitivity

analysis, which requires to evaluate it. We could model Θ as a continuous variable in the

ID, but evaluating it with exact methods would be impossible. One possibility for per-

forming an approximate evaluation would be to use Monte Carlo methods for evaluating

it. However, we have instead preferred to discretize Θ as follows:

• For distributions with bounded domain, we partition the entire interval. For exam-

ple, in beta distributions the discretization partitions the interval [0, 1].

• For a distribution whose domain is unbounded, such as the normal or log-normal,

we select an interval [a, b] that ensures that the interval selected accumulates a high

percentage of the mass probability of the continuous distribution. For example by

taking [µ− k · σ, µ+ k · σ] and using k = 3.5 for a normal distribution, this interval

accumulates 99.953 % of the probability mass.

If [a, b] is the interval selected for the discretization, then we partition it uniformly, by

taking the medium point of each subinterval, i.e., we select N points {θ0, θ1, ..., θN−1}
such that the distance between contiguous points is h = (b − a)/N , the �rst point is

θ0 = a+ h/2, and θi = θi−1 + h for i ≥ 0.

The points of the discretization are assigned as states of node Θ.

The probability distribution of Θ is given by:

P (θi) = α · fΘ(θi)

where fΘ is the density function of distribution of Θ, and α is a normalization constant

to ensure
∑

i P (θi) = 1.

Computation on the augmented ID

In this section we suppose that we have a numerical parameter Θ to investigate in an ID

I, and we have built the augmented ID I' for Θ. The optimal policies of a decision Di in

I and I' are denoted by δDi and δ
Θ
Di

respectively.
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We describe next how to compute the measures of sensitivity analysis by using I

and I ′. We have sometimes omitted some parameters when writing invokations to the

algorithms if their values were clear from the context.

Policy change thresholds We �rst de�ne the Boolean function change(Di, θj), which

is equal to true if there exists a con�guration x of iPred(Di) such that δDi(x) 6= δΘ
Di

(x, θj),

and it is false otherwise. This function is calculated by Algorithm 4.1, which only ana-

lyzes the policy changes in the scenarios that are possible in I and I ′ according to their

respective optimal strategies.

Algorithm 4.1 Calculus of the change of the policy of a decision to a each value of a
parameter

Input: I : an in�uence diagram
Di: a decision of I;
θj: a value of a parameter of I;
I ′: augmented ID for Θ;
δDi(x): optimal policy of D in I;
δΘ
Di

(x): optimal policy of D in I';
P (x): probability of iPred(Di) in the CPN of I;

Output: change(Di, θj)
1. X := iPred(Di) in I;
2. calculate P ′(x|θj) in the CPN of I ′;
3. change := false;
4. x:= �rst con�guration of X;
5. while ¬change do
6. change:=(P (x) > 0) ∧ (P ′(x|Θ) > 0) ∧ (δDi(x) 6= δΘ

Di
(x, θj));

7. x:= next con�guration of x;
8. end while
9. return change;

When function change(Di, θj), has been calculated for every value θj of a parameter

Θ it is very easy to approximate the policy change thresholds. We assume that for a

di�erent value from the discretization points we have change(Di, θ) = change(Di, θj) if

θ ∈ [θj − h/2, θj + h/2). We �nd an approximate set of intervals where the policy does

not change by using Algorithm 4.2, which calculates the thresholds by using function

change, computed by Algorithm 4.1. The output of Algorithm ?? is a list of intervals

thresholds(Di,Θ) where the policy is the same as in the reference case. The algorithm

uses Boolean variables doesCurrentChange and doesNextChange to detect when there are

adjacent points where the policy changes in one point and does not change in the other

one; indexes l and u are used to delimit the interval where the policy does not change

and thus add it to the list thresholds(Di,Θ).
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Algorithm 4.2 Calculus of the policy change thresholds for a parameter

Input: I : an in�uence diagram
Di: a decision of I;
Θ: parameter of I;
I ′: augmented ID for Θ.

Output: thresholds(Di,Θ).
1. doesCurrentChange := change(Di, θ0);
2. if doesCurrentChange=false then
3. l := 0;
4. end if
5. thresholds := ∅;
6. for j := 1 to N − 1 do
7. doesCurrentChange := change(Di, θj);
8. if doesCurrentChange 6=doesNextChange; then
9. if doesNextChange then

10. u := j;
11. thresholds := thresholds∪{[θl − h/2, θu − h/2)};
12. else
13. l := j;
14. end if
15. doesCurrentChange := doesNextChange;
16. end if
17. end for
18. return thresholds;
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The intersection of the policy change thresholds for Θ for every decision Di in the

in�uence diagram is the interval where the strategy does not change.

Expected value of perfect information A classic metric used in SA (Felli and Hazen,

1998) is the expected value of perfect information (EVPI), de�ned in Section 2.7. Let us

have the notation:

• EUΘ
V : maximum expected utility (MEU) of I ′ ;

• EUΘ
F : expected utility (EU) of using the reference strategy in I ′.

The EVPI of Θ can be calculated as:

EVPI(Θ) = EUΘ
V − EUΘ

F

Algorithm 4.3 calculates last equation.

Algorithm 4.3 Calculus of the expected value of perfect information for a parameter

Input: I : an in�uence diagram
Di: a decision of I;
Θ: parameter of I;
I ′: augmented ID for Θ.

Output: EVPI : the EVPI of Θ.
1. EUΘ

V := MEU of I ′;
2. I ′′ := construct an ID from I ′ by replacing the decisions by chance nodes by using

the optimal policies of I;
3. EUΘ

F := MEU of I ′′;
4. EVPI(Θ) := EUΘ

V − EUΘ
F ;

Sensitivity of a decision to a parameter Calculating Equation 4.15 by exact meth-

ods can be very complicated, even impossible. We instead propose to calculate it by using

the discretization explained above.

Let {θj}0≤j≤N−1 be the resultant domain of discretizing Θ. The value of sensitivity

sens(Di,Θ) is approximated as:

sens(Di,Θ) =
∑
j

∑
x∈X′θ

P (x, θ) (4.19)

and is calculated by Algorithm 4.4.
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Algorithm 4.4 Calculus of the sensitivity of a decision to a parameter

Input: I : an in�uence diagram
Di: a decision of I;
Θ: parameter of I;
I ′: augmented ID for Θ;
δDi(x): optimal policy of D in I;
δΘ
Di

(x): optimal policy of D in I';
Output: sensitivity(Di,Θ).
1. calculate P (x, θ) in the CPN of the augmented ID;
2. sens(Di,Θ) := 0;
3. for all con�guration (x,j) do
4. if δDi(x) 6= δΘ

Di
(x, θ) then

5. sens(Di,Θ) := sens(Di,Θ) + P (x, θ);
6. end if
7. end for

4.6 Discussion

We have described new explanation methods that we have developed for both the model

(the knowledge encoded in the in�uence diagram) and the reasoning (the strategies re-

turned by it), which proved to be very useful in the construction and debugging of Me-

diastinet, and helped to convince the expert that the recommendations given by our

model are reasonable.

The coloring of links in Elvira has been very useful for debugging IDs, by detecting

probability and utility tables whose numerical values do not agree with the qualitative

in�uences assessed by the expert.

When an in�uence diagram has been evaluated with Elvira, it displays graphically the

probabilities of chance and decision variables and the expected utilities.

The possibility of introducing evidence in Elvira has been useful for building IDs

in medicine (Luque et al., 2005): before having this explanation facility, when we were

interested in computing the posterior probability of a certain diagnosis given a set of

�ndings, we needed to manually convert the ID into a BN by removing decision and

utility nodes. The concept of evidence in Elvira di�ers from the proposal by Ezawa

(1998).

We have included in Elvira the possibility of having a strategy in which some of the

policies are imposed by the user and the others are computed by maximization. This has

allowed to analyze non-optimal strategies with the medical expert, which were very useful

for debugging the model.
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We have seen how utility plots in Elvira has been useful for understanding why some

tests are necessary or not, and why sometimes the result of a test is irrelevant,

Policy trees, which have been proposed as a compact way of representing the optimal

policies returned by the ID, have been very useful for a model such as Mediastinet, in

which the biggest policy table contains 15552, while the corresponding policy tree contains

only 5 or 9 leaves, depending on the evaluation criterion. In the future these explanation

facilities could be used to convert in�uence diagrams into tutoring systems.

We have implemented some sensitivity analysis algorithms which, given the uncer-

tainty in the parameters, allow us to compute:

• the probability of a change in the strategy;

• the intervals of the parameters where the optimal policies do not change; and

• the expected value of perfect information for each parameter.

These algorithms presented allows us to perform probabilistic SA to an ID with SV nodes,

when the uncertainty of every parameter is given by a continuous distribution, which can

be unbounded (for example the beta distribution) or unbounded (for example the normal).

It performs n-way independent analysis.

As future work, we could investigate some kind of explanation to tell to the expert

which variables are having more in�uence in the strategy and in the numerical value of

the maximum expected utility. We could try to �nd some quantitative measure for this

purpose. The work initiated in this direction by Elizalde et al. (2008) for Markov decision

processes would be a possible start point.

The possibility of introducing the evidence in the way proposed by Ezawa (1998) in the

GUI of Elvira would be very interesting and would complement the concept of evidence

that is now implemented.

We could also investigate how to simplify policy trees, which in some cases can still

be big for a human expert.

Our current implementation of policy trees assumes that the decision maker acts op-

timally in every decision. However, policy tables present the optimal option for every

scenario of the problem. We could try to �nd some kind of the tree representation of all

the scenarios of the problem, but without having to present the entire decision tree.

With regard to sensitivity analysis, we could try to do research on SA for IDs with SV

nodes. In particular, there are basically two issues to be investigated: how to perform n-

way joint analysis; and how to calculate with exact methods the policy change thresholds.
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Finally, building the utility plots with exact methods would also be very useful for

debugging the ID with the expert.



Chapter 5

An anytime algorithm for evaluating

unconstrained in�uence diagrams

Unconstrained in�uence diagrams (UIDs) extend the language of in�uence diagrams to

cope with decision problems in which the order of the decisions is unspeci�ed. Thus,

when solving a UID we not only look for an optimal policy for each decision, but also for

a so-called step-policy specifying the next decision given the observations made so far.

However, due to the complexity of the problem temporal constraints can force the DM to

act before the solution algorithm has �nished, and, in particular, before an optimal policy

for the �rst decision has been computed. This chapter addresses this problem by proposing

an anytime algorithm that computes an optimal strategy and at any time provides a

quali�ed recommendation for the �rst decision of the problem. The algorithm performs

a heuristic-based search in a decision tree representation of the problem. Experiments

indicate that the proposed algorithm performs signi�cantly better under time constraints

than dynamic programming.

The content of this chapter is based on (Luque et al., 2008).

5.1 Introduction

An in�uence diagram (ID) is a framework for representing and solving Bayesian decision

problems with a linear temporal ordering of decisions (Howard and Matheson, 1984).

However, in many domains �nding an ordering of the decisions is an integral part of

the decision problem, and in these situations the use of IDs would require all decision

orderings to be explicitly speci�ed in the model, possibly using arti�cial nodes and states.

Examples of such decision problems include troubleshooting and medical diagnosis.

Unconstrained in�uence diagrams (UIDs) were introduced to represent and solve de-

cision problems of this type (Jensen and Vomlelova, 2002); as a special case this also

127
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includes decision problems with a linear temporal ordering of the decisions. An optimal

strategy in this framework consists not only of an optimal policy for each decision, but

also of a step-strategy that prescribes the next decision to consider given the observations

and decisions made so far. Such strategies are computable using dynamic programming

in a way similar to that for traditional IDs (Shachter, 1986; Shenoy, 1992; Jensen et al.,

1994; Madsen and Jensen, 1999).

Unfortunately, many real world problems have an inherent complexity that makes

evaluation through exact methods intractable when time is scarce (as an example, Fig. 5.1

shows a UID model for jaundice management in infants (Bielza et al., 1999)). Moreover,

even if you had the time for solving the problem, storing the solution as a simple lookup

table may be a problem: the number of possible past scenarios to consider in a policy

may be intractably large.

Recently, a new approach for solving UIDs (Ahlmann-Ohlsen et al., 2009) has been

proposed to reduce the memory space used during the evaluation. However, by considering

the evaluation time, the method by Ahlmann-Ohlsen et al. (2009) is signi�cantly slower

than dynamic programming-based algorithm for UIDs (Jensen and Vomlelova, 2002).

In this paper we present an anytime algorithm for solving UIDs. The algorithm pro-

vides a solution whenever it is stopped, and given su�cient time it will eventually provide

a correct solution.

In comparison, the standard evaluation algorithm for UIDs (Jensen and Vomlelova,

2002) is a backward algorithm employing dynamic programming like most algorithms for

IDs. It starts computing an optimal policy for the last decision and moves backwards in

time until it reaches the �rst decision. If the process is stopped prematurely, the algo-

rithm may provide a policy, however, the prescription for the �rst decision is completely

uninformed. Furthermore, as described above, all e�ort so far may be spent on calculat-

ing a policy for a distant decision with an enormous space for the past; a task which will

decrease considerably in size when you actually approach the point of the decision. If you

consider a situation with a decision maker impatiently awaiting advice on what to do, he

most probably wants to get an informed advice on the �rst decision rather than receiving

detailed prescriptions for the last decisions.

To address this problem the proposed anytime algorithm starts with the �rst decision

and works its way forward in time. Due to the nature of the problem, we cannot be sure

of the policy for the �rst decision before the entire problem has been solved. However, the

algorithm will over time gradually improve the probability of choosing the best decision.
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5.2 Unconstrained in�uence diagrams

UIDs were proposed in (Jensen and Vomlelova, 2002) to represent decision problems in

which the order of decisions is not linear, and for which the decision maker is interested

in the best ordering as well as an optimal choice for each decision. A detailed exposition

of the representation language of UIDs and UID solution can be found in Section 2.4.

To illustrate the representational power of UIDs, consider the diagram in Fig. 5.1(a).

In the Ictneo system there is a sequence of treatment stages. At each stage there is a

non-ordered set of treatments to decide depending on the previous treatments and their

result. To represent this situation with 36 di�erent orderings in an ID we are forced

to introduce a large amount of arti�cial variables each with a large amount of arti�cial

states. The unspeci�ed order of the treatments is easily represented in a UID. A part of

it is shown in Fig. 5.1(b).

Figure 5.1: (a) A UID model for Ictneo.

5.3 An anytime algorithm for solving UIDs

In general, the basic idea with an anytime algorithm is that time constraints may cause

the user to be unable to wait for the standard solution algorithm to �nish. Thus, it should

be possible to stop the algorithm at any time, and the algorithm should then provide an
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Figure 5.2: (b) A partial UID model of Ictneo

approximate solution. With this requirement we may settle for an algorithm that may

take longer than the standard algorithm, but which in the mean time can provide a better

approximate solution than the standard algorithm.

With respect to UIDs, the standard algorithm provides a strategy by solving the

problem in reverse temporal order. If the algorithm is stopped prematurely, it can provide

a strategy, which consists of choosing completely randomly for the decisions which have

not yet been dealt with, and to follow the calculated optimal policies for the last decisions.

In this way, it can be said that you have an anytime algorithm; it provides a strategy

whenever it is stopped, the expected utility of the strategy never decreases over time, and

eventually, the algorithm provides an optimal strategy.

However, this is not satisfactory. If the user stops the algorithm prematurely, it is

because she needs to take the �rst decision, but the algorithm does not give her any clue

on what to do �rst. Therefore, the aim of an anytime algorithm for solving UIDs (or

decision graphs in general) is to provide more and more informed advice on what to do

�rst.

We propose a forward search performed in a decision tree (Rai�a and Schlaifer, 1961).

The tree is built from the root toward the leaves, and it keeps a list of triggered nodes (the
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current leaves in the tree constructed so far) as candidates for expansion.1 A triggered

node X is expanded by adding its children to the tree and calculating the expected utility

of the path from the root to X using a heuristic function to estimate the maximum

expected utility obtainable at the children of X. We give the details of the algorithm in

Section 5.3.1, and our experiments are described in Section 5.5. The main results of our

experiments can be summarized as follows. For very small UIDs dynamic programming is

faster than tree search; for small UIDs, our version of tree search provides a very reliable

proposal of the �rst decision faster than dynamic programming; for large UIDs our tree

search methods provides a reliable �rst decision much faster than dynamic programming.

5.3.1 A search based solution Algorithm

A UID can be converted into a decision tree (possibly using a dummy source node), which

in turn can be used as a computational structure for solving the corresponding decision

problem (disregarding complexity issues). A decision tree (Rai�a and Schlaifer, 1961) is a

rooted tree in which the leaves are utility nodes and the non leaf nodes are either decision

nodes (square shaped) or chance nodes (circular shaped). The decisions on the possible

orderings are made explicit in the model by partitioning the decision nodes into either

ordinary decisions or branching point decisions.

The past of a node X (denoted by past(X)) is the con�guration speci�ed by the labels

associated with the arcs on the path from the root to X; if X is a value node then past(X)

is called a scenario.

The quantitative part of the decision tree consists of probabilities and utilities. Each

arc from a chance node A is associated with a probability P (A = a | past(A)), where

A = a is the label of the arc. These probabilities can be found by converting the UID

into a Bayesian network: value nodes are removed, and decision nodes are replaced by

chance nodes having no parents and with an arbitrary probability distribution. Finally,

with each value node V in the decision tree, we associate the utility ψ(past(V )) of the

scenario past(V ). These utilities can be read directly from the UID model.

The decision tree represents each scenario in the decision problem explicitly; hence the

size of the tree can grow exponentially in the number of variables. The size can, however,

be reduced by collapsing identical subtrees, a procedure also know as coalescence (Olm-

sted, 1983). The opportunities for exploiting coalescence can be automatically detected

in the GS-DAG of the UID.

1The terminology is borrowed from AO* search algorithms (Nilsson, 1980), from which the proposed
algorithm has been inspired.
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Instead of building the decision tree in full and solving it using the �average-out and

fold-back� algorithm (Rai�a and Schlaifer, 1961), we propose to build the tree from the

root toward the leaves. A heuristic function h should provide an estimate of the maximum

expected utility obtainable at every node in the decision tree. Thus, at any point in time

we have a partial decision tree in which the heuristic can be used to estimate the maximum

expected utility at the leaf nodes. These estimates can in turn be propagated upward in

the tree, which gives an estimate of the maximum expected utility of the nodes in the

explored part of the tree, and, in particular, an estimate of the optimal policy for the

decision nodes in this part.

A collection of optimal policies for a subset of the decision nodes is called a partial

strategy ∆′, and the partial strategy based on the heuristic function is called a partial

heuristic strategy ∆̂′. Clearly, the closer the heuristic function is at estimating the maxi-

mum expected utility of the triggered nodes in the partial decision tree, the closer ∆̂′ will

be at ∆′.

A partial strategy can always be extended to a full (not necessarily optimal) strategy

by assigning random policies to the decision nodes in the unexplored part of the tree.

When we have a set of policies S, we de�ne the uniform extension of S as a strategy ∆

such that every policy in S is in ∆ and the rest of the policies in ∆ are random with a

uniform distribution.

Performing the search

The search/construction of the coalesced decision tree starts with the tree consisting

of a single root node together with its children (such a tree stump is always uniquely

identi�able). From this the method iteratively expands a node consistent with the UID

speci�cation.

When a node is expanded, its outgoing links are added to the decision tree as well as

any successor node not already in the tree; the node to be expanded is always selected

among the triggered nodes/leaves. When a node is added to the decision tree, a heuristic

estimate of the maximum expected utility for that node is calculated. The values are

propagated upwards, thereby possibly updating the current partial heuristic strategy.2

The choice of which node to expand is non-deterministic. We have experimented with

three selection schemes: (i) expand the node X with highest probability P (past(X)) of

occurring (decision nodes are given an even probability distribution), (ii) expand the

2Note that the search/exploration process is closely related to heuristic search algorithms in AND/OR
graphs (Nilsson, 1980), where chance nodes are AND nodes and decision nodes and branching points are
OR nodes.



5.3. An anytime algorithm for solving UIDs 133

node X with highest weight w(X) = P (past(X)) ·h(X), where h is the heuristic function

estimating the expected utility of node X, and (iii) expand the node of lowest depth, i.e.,

perform a breadth �rst search. Preliminary experiments suggest that the latter provides

the best results, and this is therefore the selection scheme used in the tests documented

in Section 5.5.

In summary, a triggered node X is selected for expansion based on its probability

P (past(X)) of occurring, and a heuristic function is used to estimate the maximum ex-

pected utility of the trigger nodes, i.e., the leaves in the partial decision tree. Thus, at

any time during the search we have a partial decision tree for which a heuristic based

strategy can be computed.

5.3.2 Selecting a Heuristic Function

The choice of heuristic function not only determines the policies being computed, but it

may in fact also be used to prune irrelevant parts of the tree thereby reducing complexity.

A special class of heuristic functions are the so-called admissible heuristic functions:

De�nition 5.3.1 A heuristic function h is said to be admissible if h(N) ≥ MEU(N) for

any node N in the decision tree.

An admissible heuristic can be exploited during the search: Consider a decision node

whose children X and Y are the roots in two subtrees. If the subtree de�ned by Y have

been explored and h(X) ≤ MEU(Y ), then we need not explore the subtree rooted at X.

Obviously, we would like the heuristic function h to de�ne a tight upper bound on the

expected utility, and relative to the computational complexity of solving the decision tree

we would also like for h to be easy to compute.

An Admissible Heuristic

A possible heuristic function could be

hU(X) = max
l∈L

ψ(path(X, l)), (5.1)

where L is the set of leaf nodes in the subtree rooted at X and ψ(path(X, l)) is the sum

of the utilities associated with l and the path from X to l.

It is trivial to see that hU is admissible. Moreover, hU has the advantage of be-

ing computationally e�cient, since it can be evaluated by max-marginalizing out the

variables appearing in the domains of the utility potentials. The number of required
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max-marginalizations is at most |VC ∪VD|. In contrast to the dynamic programming

approach (Section 2.4.3), the complexity of computing this heuristic does not depend on

the number of possible paths in the GS-DAG as max-operations commute.

Unfortunately, preliminary experiments have shown that hU yields a very loose bound

on the expected utility. For certain UIDs the estimated optimal policy for the �rst decision

failed to stabilize over time, and in fact a random policy would on average have provided

a similar solution in terms of expected utility. Since we have not been able to de�ne an

alternative computationally e�cient admissible heuristic, we have instead been looking

for a nonadmissible heuristic.

A Nonadmissible Heuristic

The estimation given by the admissible heuristic hU can be extremely far from the maxi-

mum expected utility. However, since it provides an upper bound on the expected utility,

we can use it in combination with a lower bound to derive a good approximation to the

expected utility.

As a lower bound, we use the expected utility of the uniform extension of the cur-

rent partial heuristic strategy; decision nodes in the unexplored part of the decision

tree are treated as chance nodes with a uniform distribution. Relative to the compu-

tational complexity of solving the UID, this heuristic can be calculated e�ciently by

sum-marginalizing out the variables in the utility and probability potentials. The number

of required marginalizations is at most |VC ∪VD| and does not depend on the number

of paths in the GS-DAG as sum-marginalizations commute (this also means that we are

not required to follow an admissible elimination order consistent with the UID).

It is easy to see that this heuristic provides a lower bound on the MEU. If we denote

the lower bound heuristic by hL, then we have the following inequalities for any node in

the decision tree:

hL(X) ≤ MEU(X) ≤ hU(X).

If all the variables in the future of nodeX are chance variables, i.e., if future(X) ⊆ VC ,

then hL(X) = MEU(X). Furthermore, as the number of decision nodes in future(X)

increases the larger the di�erence MEU(X)− hL(X) will be. The opposite holds for the

heuristic hU(X).

In order to derive a heuristic closer to the actual expected utility, we de�ne the non-

admissible heuristic h as a weighted linear combination of hL and hU :

h(X) = wL(X)hL(X) + wU(X)hU(X),
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where

wL(X) = α(X) · kX · c(X); wU(X) = α(X) · d(X).

Here c(X) and d(X) are the number of chance and decision nodes in future(X), respec-

tively, and α(X) is a normalizing factor ensuring wL(X) + wU(X) = 1. By varying the

parameter kX between 0 and +∞, one can achieve any desired mixture of conservatism

and optimism as de�ned by the two heuristics; note that kX may be the same for all

nodes.

One potential di�culty with this heuristic is how to choose a good value for kX . To

alleviate this problem, we propose to update kX automatically as the tree is expanded.

The intuition underlying the updating method is that we would in general expect the

heuristic to be more precise the closer we get to the leaves: After a node X has been

expanded we �rst estimate the expected utility of its children (using h and the current

value for kX). These estimates are then propagated upward in the tree: If X is a chance

node, then the value propagated to X is ÊU(X) =
∑

Y ∈ch(X) h(Y ) and if X is a decision

node then the value is ÊU(X) = maxY ∈ch(X) h(Y ). By treating ÊU(X) as an accurate

estimate of the expected utility for X we calculate a new value for kX by setting ÊU(X) =

h(X):

kX :=
(ÊU(X)− hU(X))d(X)

(hL(X)− ÊU(X))c(X)
.

Note that kX will always be non-negative, and that the update is not guaranteed to get us

closer to the true expected utility, since we might have started o� with the correct value

for kX .

To shed some light on the properties of the updating procedure we can consider the

di�erence between ÊU(X) and h(X). Speci�cally, assume that X is a chance variable

with children ch(C). Then h(X)− ÊU(X) can be written as:

h(X)− ÊU(X) =
∑

Y ∈ch(X)

P (X → Y )([mU(X)(hU(Y )− hL(Y ))]+

[wU(X)( max
Z∈ch(X)

hU(Z)− hU(Y ))]),

where mU(X) = wU(X)− wU(Y ) ≤ 0 and Y is any child of X. Thus, the updated value

for kX can be derived from:

∑
Y ∈ch(X)

P (X → Y )([mU(X)(hU(Y )− hL(Y ))] + [wU(X)( max
Z∈ch(X)

hU(Z)− hU(Y ))]).
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The right term in the inner sum is always non-negative, thereby decreasing ÊU(X) relative

to h(X). This decrease is maximized if only a single subtree contains the utility value

hU(X). By decreasing ÊU(X) with a value proportional to maxZ∈ch(X) hU(Z) − hU(Y )

therefore compensates for h(X) being calculated without considering how the maximum

values are distributed in the subtrees rooted at the children of X; we can consider the

calculation of hU(X) as assuming that the highest utility value appears in all subtrees

rooted at the children of X.

The left term is non-positive, since mU(X) is non-positive, hence it correspond to a

relative increase in the estimated expected utility. The value mU(X) corresponds to the

weight that is shifted from the lower bound to the upper bound when X is expanded

(recall that the weights are determined by the number of succeeding chance and decision

variables). Thus, in accordance with the de�nition of the weight, the in�uence from the

lower bounds is decreased whereas the in�uence from the upper bounds is increased.

If X is a decision variable, then the updating procedure is easier justi�ed: Before X is

expanded the subtrees rooted at the children of X jointly de�nes the heuristic value for

X. However, as X is a decision variable only a single subtree de�nes the expected utility,

and this is also re�ected in the updating of ÊU(X).

5.4 Evaluation metrics

We are going to de�ne some metrics and plots that can help us to know how good is an

anytime algorithm when evaluating an unconstrained in�uence diagram and that will be

necessary when presenting the experimental results. Some of the proposals in this section

can also be applied to in�uence diagrams, while others are speci�c for UIDs.

The metrics are oriented to measure the quality of the strategy given by an anytime

algorithm when it has to compute the policies for the �rst decisions, and, after the anytime

algorithm stops, the decision maker will have enough time to compute the optimal policies

for the rest of decisions.

First, we will discuss �rst the concept of anytime strategy. After that we will present

the evaluation metrics used in the experiments.

5.4.1 Anytime strategies

In Section 5.3.1 we saw that a partial strategy can always be extended to a full strategy

by assigning random policies to the decision nodes in the unexplored part of the tree.

That anytime strategy ∆ is consequently a function of the time t, so it can be denoted
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by ∆̂(t). It provides the decision maker with a sequence of prescriptions, each one for a

decision of the problem.

However, the necessity of having a full strategy covering all the decisions can be relaxed

in some situations. The decision maker can need the help of an anytime algorithm to

obtain a prescription for the �rst n decisions in the decision tree3, but, after that, it will

have time to continue the evaluation in the rest of decisions. The anytime strategy over

the time, when only requiring prescription for the �rst n decisions of the decision tree, and

the rest of the policies can be computed exactly by the dynamic programming algorithm,

is denoted by ∆̂n(t).

For example, if n = 0, then we have the situation in which the entire problem is

evaluated by dynamic programming (DP). If n = 1, then we need the anytime algorithm

to calculate the policy for the �rst decision, and the rest of the problem is evaluated by

DP, and so on.

We have de�ned ∆̂n(t) to monitor the performance of the algorithms and to calculate

some evaluation metrics, which are presented below.

In the rest of the section we will denote by I a UID, and by depth(I) the maximum

number of decisions in a path from the root to a leaf in the decision tree of I.

5.4.2 De�nitions of evaluation metrics

The evaluation metrics are divided in two sets depending on the value they basically

represent: (a) the expected utility of a strategy, and (b) the probability of being right in

the decisions made. After that, we will describe some metrics to summarize the results.

Metrics of the expected utility of the anytime strategy

The �rst plot that we can think about when measuring the performance of anytime

algorithm is the plot of the expected utility (EU) of the anytime strategy ∆̂i(t). Let us

denote EU(∆̂i(t)) by EU i(t). A very interesting property that relates them for every

instant time t:

EU(∆̂i(t)) ≥ EU(∆̂i+1(t)),

where i is an integer such that 0 ≤ i ≤ depth(I). It is trivial to see thatMEU(I) = EU0(t).

3We talk about number of decisions in the decision tree instead of referring to the UID. This is because
in the decision tree the decisions not only correspond to decision nodes in the UID but also to branch
points that model the possible orderings.
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Metrics of the frequency of selection of the right decision

We can measure the goodness of the decisions made in any level of the decision tree in

which we have to make a decision. Then, let i be an integer number such that 0 ≤ i ≤
depth(I), then the frequency of optimal selection in the i-th level of decisions in the tree,

denoted by FreqDeci(t), is de�ned as:

FreqDeci(t) =

∑
D∈decisions(i) FreqDec(D, t)

|decisions(i)|
(5.2)

where decisions(i) is a set that contains every decision D whose path from the root of

the tree to D has exactly i decisions; and FreqDec(D, t) takes the value 1 if the decision

in node D in instant time t is the optimal one and 0 otherwise. Equation 5.2 calculates

the mean of FreqDec(D, t) over all the scenarios de�ned by decisions(i). However, a more

sophisticated equation could calculate a weighted mean by multiplying FreqDec(X, t) by

the probability of the scenario de�ned by X.

The global goodness of the anytime algorithm when making the �rst n decisions can

be measured by accumulating the values FreqDeci(t), having 1 ≤ i ≤ n. Then, the

accumulative frequency of optimal selection in the n-th level of decisions, denoted by

AccFreqDecn(t), is de�ned as:

AccFreqDecn(t) =
n∑
i=1

FreqDeci(t)

AccFreqDecn(t) gives a measure of the number of decisions being optimal in the �rst

n levels of decisions in the decision tree.

5.4.3 Normalization of the metrics

In Section 5.5.2 we will present a summary of the experimental results. That summary

required the metrics of all the UIDs evaluated to be combined into an individual metrics.

For example, if we are interested in summarizing the results for FreqDec1(t), then we have

to �nd a way to combine the values of FreqDec1(t) for all the UIDs evaluated. However,

given that the graphs and the numbers in di�erent UIDs can be completely di�erent, the

summary for FreqDec1(t) does not simply consist in calculating the mean of the values of

the individual UIDs. Instead of that, the method used here is based on a normalization

of the evaluation of every UID, and considering the dynamic programming evaluation as

reference for the time axis.
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Let us assume that the evaluation of a UID with an algorithm γ begins in the instant

time 0 and is stopped in the instant time τγ. We also assume that dynamic programming

(DP) algorithm is always stopped when it �nishes its evaluation, and the instant time of

stopping is denoted by τDP .

Let fγ(t) be a function over the time, measuring some aspect of the evaluation of a

UID with an algorithm γ. The function fγ(t) has the domain [0, τγ], which is the interval

time while the algorithm γ has been running. Then, the normalization of fγ(t), denoted

by f ′γ(t), is a function whose domain is [0, τγ/τDP ] and is de�ned by:

f ′γ(t) :=
fγ(t · τDP )− fDP (0)

fDP (τDP )− fDP (0)

It is easy to see that f ′DP is a function whose range and domain is [0, 1], and that

veri�es f ′DP (0) = 0 and f ′DP (1) = 1. Moreover, for any algorithm γ we have f ′γ(t) ≤ 1.

Having the normalization f ′γ,r(t) of every function fγ,r(t) for every algorithm γ and

every UID r, we construct a summary function f ′′γ (t) for each algorithm γ, taking the

mean over the di�erent templates, the di�erent graphs of each template and the di�erent

UIDs of each graph. We also obtain that the summary function f ′′DP (t) satis�es the same

properties that the individual functions f ′DP : its range and domain is [0, 1], and veri�es

f ′′DP (0) = 0 and f ′′DP (1) = 1. When talking about plot in this section, we will refer to the

corresponding summary function.

Justi�cation and interpretation of the normalized metrics

The normalization of the metrics described above uses DP evaluation as reference for

normalizing the metrics because the objective of our anytime algorithm is to provide a

policy for the �rst decision(s) better than the proposed by DP algorithm. We therefore

need to see the quality of the answer of the anytime algorithm over the time, comparing it

with the obtained by DP in the same instant time. The decision maker can be impatiently

waiting advice on what to do, but he wants an informed advice on the �rst decision before

of the end of the evaluation of DP.

The interpretation of the normalization of the metrics needs also another explanation.

Every normalized metric will be presented in a two-axis graph. The X-axis represents the

time of the evaluation, and can be seen as the fraction of the time spent by DP algorithm.

The Y -axis represents how better is the anytime strategy than having random policies

for the decision nodes in question. Random policies are attached with the value 0 in the



140 Chapter 5: An anytime algorithm for evaluating unconstrained in�uence diagrams

Y -axis. Moreover, it is clear that the anytime strategy would be at most as good as an

optimal strategy, which is therefore represented in the Y -axis with value 1.

For example, let us consider the normalized metric for AccFreqDec3(t) in Figure B.8.

This metrics accumulates the number of decisions right in the �rst 3 levels with decisions

in the decision tree. Then, the value 0 for the normalized metric of AccFreqDec3(t)

would correspond to the number of decisions right when we assign random policies in the

decisions of the �rst 3 levels of the tree. Thus, if all the decisions in the �rst 3 levels

are binary, random policies in them would give us a value for AccFreqDec3(t) of 3/2 (see

Equation 5.4.3). And with optimal policies the value 1 in the Y -axis would be correspond

to the value of 3 for AccFreqDec3(t).

5.5 Experiments

We have performed a series of experiments for assessing the e�ciency of testing three

algorithms: the dynamic programming-based (DP), breadth �rst search with admissible

heuristic (BF-A) and with non-admissible heuristic (BF-N). The �rst problem we faced is

that we only have a few real-world examples of UIDs, and these are not complex enough for

comparing the algorithms among themselves. The repositories of graphical probabilistic

models available on Internet do not contain UIDs. For this reason, we have created on

randomly generated UIDs, but imposing some structures that can appear in some real

domains. Moreover, the UIDs generated had been solved with exact algorithms so that

we could obtain the exact solution and compare with our proposals.

5.5.1 Generation of UIDs

Vomlelova (2003) proposed an algorithm for generating randomly UIDs. However, we

have not used it because of two reasons. First, that algorithm generated UIDs having

a structure that does not match with the UIDs that can appear in real domains. And

second, the UIDs generated rarely present a high number of possible paths in the GS-DAG,

so the evaluation are so fast that do not require the use of an anytime algorithm.

Alternatively, we have used a di�erent approach for generating the UIDs. We have

divided the generation of a UID in two phases: (a) obtain the structure of the UID

(nodes, their kinds and the arcs); and (b) generate the numbers of the probability and

utility potentials.

We have used 4 methods for generating the structure of UID. Each method corresponds

to a template having some parameters. Templates try to vary the structure of the UID
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by representing some patterns that can appear in a real problem with partial order of

decisions. For example, let us consider the UID of Figure 5.5. It can be seen like the

representation of a medical decision problem where the unobservable variableH represents

a disease, O1 and O2 indicates two vaccinations for H, and O3 and O4 represents medical

tests. The doctor �rst has to decide which vaccinations are necessary, and in which order,

and, after that, decides on which tests (and in which order) are performed to the patient.

Finally, decision D0 represents the decision about the treatment.

We describe the parameters for each method and their corresponding pseudocode that

generates the structure of the UID.

Algorithm 5.1 is called Template 1, and its parameter is nDec, the number of decision

nodes. Figure ?? presents an example of UID generated according to Template 1, when

nDec = 3.4

Algorithm 5.1 Template 1

Input: nDec is a parameter described in Section 5.5.1.
Output: the graph of a new UID.
1. create a utility node U ;
2. for i = 1 to nDec do
3. create a new decision node Di and an observable node node Oi;
4. add the arcs (Di, Oi), (Di, U) and (Oi, U);
5. end for

Figure 5.3: Example of Template 1

Algorithm 5.2 is called Template 2, and its parameters are nDec1 and nDec2, that

correspond to the numbers of decision nodes in the �rst and second subparts of the graph

4The UIDs generated have been represented in Elvira system under the assumption exposed by Jensen
and Vomlelova (2002) that states that each decision nodeD has a cost, which does not have be represented
graphically when only depends on D.
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respectively. Figure 5.4 presents an example of UID generated according to Template 2,

when nDec1 = 2 and nDec2 = 2.

Algorithm 5.2 Template 2

Input: nDec1 and nDec2 are parameters described in Section 5.5.1.
Output: the graph of a new UID.
1. create an observable node O0;
2. for i = 1 to nDec1 do
3. create a new decision node Di,a new observable node Oi and a new utility node Ui;
4. add the arcs (Di, Oi), (Oi, O0) and (Oi, Ui);
5. end for
6. create a utility node U0;
7. for i =nDec1+1 to nDec1+nDec2 do
8. create a new decision node Di and a new observable node Oi;
9. add the arcs (Di, Oi), (Oi, U0) and (O0, Oi);

10. end for

Figure 5.4: Example of Template 2

Algorithm 5.3 is called Template 3, and its parameters are nDec1 and nDec2, that

correspond to the numbers of decision nodes in the �rst and second subparts of the graph

respectively. Figure 5.5 presents an example of UID generated according to Template 3,

when nDec1 = 2 and nDec2 = 2.

Algorithm 5.4 is called Template 4, and its parameter is nDec, the number of decision

nodes. Figure 5.6 presents an example of UID generated according to Template 4, when

nDec = 3.

Finally, the complete method for generating a UID is presented in Algorithm 5.5.
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Algorithm 5.3 Template 3

Input: nDec1 and nDec2 are parameters described in Section 5.5.1.
Output: the graph of a new UID.
1. create a non-observable node H;
2. for i = 1 to nDec1 do
3. create a new decision node Di,a new observable node Oi and a new utility node Ui;
4. add the arcs (Di, Oi), (Di, Ui), (Oi, H) and (Oi, Ui);
5. end for
6. create a new decision node D0 and a new utility node U0;
7. for i =nDec1+1 to nDec1+nDec2 do
8. create a new decision node Di, a new observable node Oi;
9. add the arcs (Di, Oi), (Oi, U0), (Oi, D0), (H,Oi) and (Di, U0);

10. end for
11. create a new utility node U and add the arcs (O0, U) and (D0, U);

Algorithm 5.4 Template 4

Input: nDec is a parameter described in Section 5.5.1.
Output: the graph of a new UID.
1. create a non-observable node H and a utility node U ;
2. add the arc (H,U);
3. for i = 1 to nDec do
4. create a new decision node Di and a new observable node Oi;
5. add the arcs (Di, Oi) and (Oi, H);
6. end for

5.5.2 Experimental results

Using the procedures for generating a UID from the templates (see Algorithms 5.1 to

5.4), we have created four di�erent graphs of UID according to Template 1, and three

graphs for each of the other three templates (numbered 2, 3 and 4). We have obtained

50 realizations for each graph by generating randomly the numbers of the probability and

utility potentials. That amounts a total of (4 + 3× 3)× 50 = 650 UIDs.

Each UID was evaluated with three algorithms: the dynamic programming-based

(DP), breadth �rst search with admissible heuristic (BF-A) and with non-admissible

heuristic (BF-N).

The algorithms were implemented in Java 6.0 with the Elvira software package.5 The

tests were run on an Intel Core 2 computer (2.4 GHz) with 2 GB of memory under

Windows XP.

5The Elvira program was developed as a collaborative project of several Spanish universities (Elvira
Consortium, 2002). The source code, a user manual, and other documents can be downloaded from
www.ia.uned.es/~elvira.
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Figure 5.5: Example of Template 3

Algorithm 5.5 Generate a UID

Input: the template to use to create the graph of the UID and its corresponding param-
eters;

Output: a generated UID;
1. create the graph of the UID by using a template (see Algorithms 5.1, 5.2, 5.3 and

5.4);
2. randomly generate a probability table for each chance node (observable or non-

observable);
3. randomly generate a utility table for each utility node;

Experimental results

It is important to emphasize that all results are normalized as we have described in

Section 5.4.3.

Comparison of DP and BF-A Appendix B contains all the �gures and table of this

comparison. Figures B.3 to B.5 shows the comparison of EUn(t), n = 1, 2, 3, between DP

and BF-A. Moreover, Figures B.6 to B.8 shows the value of AccFreqDecn(t), n = 1, 2, 3.

The results obtained by letting the anytime algorithm run for e.g. 25% of the time

required by dynamic programming are listed in the second column in Table B.1; EUi(t) and

AccFreqDeci(t) correspond to the two measures described in Section 5.4.2. In particular,

AccFreqDec1(t) denotes the frequency of selecting the best initial decision (i.e., a branching

point decision).
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Figure 5.6: Example of Template 4

0.0 % 25.0 % 50.0 % 75.0 % 100.0 %
EU1(t) 0 0,538 0,613 0,56 0,586
EU2(t) 0 0,64 0,754 0,891 0,94
EU3(t) 0 0,609 0,724 0,83 0,872

AccFreqDec1(t) 0 0,475 0,522 0,483 0,531
AccFreqDec2(t) 0 0,464 0,536 0,558 0,607
AccFreqDec3(t) 0 0,34 0,413 0,439 0,484

Table 5.1: Table for BF-N

Comparison of DP and BF-N Figures 5.17 to 5.19 shows the comparison of EUn(t),

n = 1, 2, 3, between DP and BF-N. Moreover, Figures 5.20 to 5.22 shows the value of

AccFreqDecn(t), n = 1, 2, 3.

The results obtained by letting the anytime algorithm run for e.g. 25% of the time

required by dynamic programming are listed in the second column in Table 5.1; EU i(t)

and AccFreqDeci(t) correspond to the two measures described in Section 5.4.2. In par-

ticular, AccFreqDec1(t) denotes the frequency of selecting the best initial decision (i.e.,

a branching point decision).

From the results we clearly see that the algorithm improves over time with respect to

all the recorded characteristics. Moreover, if we perform a careful analysis of Table 5.1

we can obtain additional conclusions. Then, let us clarify �rst the table and, after that,

we will analyze it.

Let us focus on AccFreqDec3(t). This metrics accumulates the number of decisions

right in the �rst 3 levels with decision in the decision tree. Then, the value 0 in the table

for AccFreqDec3(t) would correspond to the number of decisions right when we assign
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Figure 5.7: Comparison of FreqDec(t) between DP and BF-A

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

F
re

qu
en

cy

 

 
BF−A
DP

Figure 5.8: Comparison of FreqOpt(t) between DP and BF-A
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Figure 5.9: Comparison of EU1(t) between DP and BF-A
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Figure 5.10: Comparison of EU2(t) between DP and BF-A
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Figure 5.11: Comparison of EU3(t) between DP and BF-A
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Figure 5.12: Comparison of AccFreqDec1(t) between DP and BF-A
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Figure 5.13: Comparison of AccFreqDec2(t) between DP and BF-A
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Figure 5.14: Comparison of AccFreqDec3(t) between DP and BF-A
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Figure 5.15: Comparison of FreqDec(t) between DP and BF-N
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Figure 5.16: Comparison of FreqOpt(t) between DP and BF-N
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Figure 5.17: Comparison of EU1(t) between DP and BF-N
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Figure 5.18: Comparison of EU2(t) between DP and BF-N
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Figure 5.19: Comparison of EU3(t) between DP and BF-N
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Figure 5.20: Comparison of AccFreqDec1(t) between DP and BF-N
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Figure 5.21: Comparison of AccFreqDec2(t) between DP and BF-N

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

F
re

qu
en

cy

 

 
BF−N
DP

Figure 5.22: Comparison of AccFreqDec3(t) between DP and BF-N



154 Chapter 5: An anytime algorithm for evaluating unconstrained in�uence diagrams

random policies in the decisions of the �rst 3 levels of the tree. For example, if all those

decisions in the �rst 3 levels are binary, random policies in those decisions would give us

a value for AccFreqDec3(t) of 3/2, which is the expected number of decisions right in the

�rst 3 levels of decisions having uniform strategy. And with optimal strategy the value

1 in the table would be assigned to the value of 3 for AccFreqDec3(t). For example, for

the cell of 25% in AccFreqDec3(t) in the table, the value 0.291 comes from normalizing

3/2 + (3 − 3/2) × 0.291 = 1.9365 (see Equation 5.4.3), which would be the number of

decisions right in the �rst 3 levels of the tree.

Showing an example for EU i(t) would be similar to the example of AccFreqDec3(t).

For example, the value 0 in the table for EU i(t) would correspond to the expected utility

of a strategy where we have random policies for the �rst i levels of decisions. That value

would obviously depend on the particular UID realization, i.e. its probability and utility

potentials. The value 1 would correspond to the expected utility having optimal strategy,

i.e. the maximum expected utility.

The interpretation of the table is direct from the explanation of these examples. It

shows how much better is the following strategy provided by the anytime algorithm,

compared in a scale delimited by a real interval speci�ed by two extremes: (i) the lower

extreme is what we obtain having random policies in the decision nodes in question, and

(ii) the upper extreme is what we obtain having the optimal policies. A positive value

in the table would therefore means that the policies computed are better than just using

random policies.

If we analyze the table carefully, we can appreciate the tendency of AccFreqDeci(t) or

EU i(t) for a speci�c instant of time when i increases. Given that the algorithm performs

a breadth �rst search, we should expect to have that the lower i the better the results

values in the table. The anytime algorithm was designed to have an answer to the �rst

decisions of the tree, so we would expect not to have so promising results for the last

decisions because we assume that we would then have the possibility of calculating its

policies with enough time. That tendency can be observed by checking AccFreqDec1(t)

and AccFreqDec3(t) in the table.

However, we have an increase of value from AccFreqDec1(t) to AccFreqDec2(t) that

contradicts that general rule. The reason can be found by thinking in the topology of the

GS-DAGs of the UIDs generated. The UIDs present several initial decisions whose order

is unspeci�ed. That means that the �rst level of decisions correspond to a branch point

for deciding the �rst decision, the second level corresponds to choosing a decision option,

the third corresponds again to a branch point, and so on. So, the �rst and the third
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levels correspond to branch points, while the second one corresponds to a decision node

choosing its decision option. Moreover, the minimum number of initial decisions in the

UIDs generated is 2, and even for some UIDs we have more initial decisions. However, all

the decision variables are binary. Consequently, choosing the best decision to be made is

more di�cult than choosing the best decision option, as the number of possible decisions

is greater than the number of possible options. That makes the values for AccFreqDec2(t)

in the table be better than for AccFreqDec1(t) and AccFreqDec3(t).

The behavior for EU i(t) for a speci�c instant of time when i increases can be justi�ed

with the same reasoning as for AccFreqDeci(t).

We can extract other conclusion from the table. The results for AccFreqDeci(t) are

better than for EU i(t), by �xing a speci�c level i and a instant time t. When computing

EU i(t), it is positive that the policies of the algorithm for the decisions are good in terms of

expected utility, in spite of not being optimal. However, when computing AccFreqDeci(t),

choosing a good decision is not enough as we require it to choose the correct decision; and

discern which decision is the best one can be di�cult when the di�erences in expected

utility between the di�erent decisions are small.

Finally, we must summarize the two main important conclusions from the table: the

algorithm improves over time with respect to all the recorded characteristics, and always

gives better results than using a uniform strategy.

5.6 Applications of the proposed method

At the beginning of the chapter we described the problem that we wanted to address.

The origin was that many real world problems have an inherent complexity that makes

evaluation through exact methods intractable when time is scarce. Moreover, even if

you had the time for solving the problem, storing the solution as a simple lookup table

may be a problem: the number of possible past scenarios to consider in a policy may

be intractably large. However, the user needs to take the �rst decision, so it needs the

algorithm to give her any clue on what to do �rst. That was the objective of our proposed

algorithm. Here we are going to describe some real applications of our proposed method.

The �rst scenario of application was brie�y mentioned previously. It corresponds to

a medical decision problem. Bielza et al. (1999) proposed a system for the jaundice

management in infants. The system, named Ictneo, includes a large number of uncer-

tain factors and decisions, to better de�ne when treatment is required and/or should be

changed, to decrease the costs and risks, and to take into account the preferences of par-
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Figure 5.23: Ictneo

ents and doctors. An in�uence diagram representation of Ictneo is shown in Figure 5.23.

In the jaundice management in infants, the doctor �rst decides whether or not to

admit the baby to hospital and, possibly, con�nes it to the Intensive Care Unit. If the

baby is admitted, it is necessary to control the bilirubin levels, carrying out di�erent tests

and giving the patient some of the prescribed treatments. After each treatment stage, the

e�ects on the baby are observed repeating the process as many times as necessary until

the problem is over, i.e., the infant is discharged or she receives a treatment that falls

outside of the scope of the problem.

The maximum storage space requirements during the problem-solving process were

1.66× 1014 positions. The authors had to reduce the enormous complexity through:

• evidence propagation operations;

• incorporating asymmetries;

• simplifying the sequence of treatments: to have a sequence of 12 decision nodes for

at most 72 nodes. Thus, the time between consecutive treatments was established

to 6 hours.



5.6. Applications of the proposed method 157

These modi�cations make the in�uence diagram could be evaluated. However, light mod-

i�cations to the requirements of the model can easily make it intractable. For example,

we could be interested in re�ning the sequence of treatments to consider not only ther-

apies separated by 6 hours, but by less hours. Furthermore, we could want to introduce

additional medical tests in each slice of time of the decision process, and to look for what

is the best ordering of them. These are situations that can appear in a real medical deci-

sion problem and would easily make the problem intractable because of the exponential

growth of the space and time complexity. Moreover, even if the in�uence diagram can be

evaluated, the doctor, who is interested in taking the �rst decision, could not wait until

the end of the evaluation by the dynamic programming algorithm.

The situation could be more complicated if we consider for example the emergency

room of a hospital. Doctors and nurses have to make decisions very quickly when a

patient arrives to the emergency room. As in Ictneo, they can have a diagnosis problem

with several available tests which could be performed in di�erent orders. In the emergency

room, making the right decisions in a short time could be decisive for saving the life of

the patient.

Other situation can appear in the �eld of economy. In the stock market, every

weekday, investors have to make decisions about how to invest their money. They typically

have screens to receive information about the prices in the market, information about

political, economic and social events that could in�uence the prices, or even the evolution

of the prices in other stock markets. Thus, they have to make quick decisions to adapt

their portfolio to the changing situation.

A similar situation appears when a person is betting in real-time on the Internet

while watching a sport event, which usually usually last less than two hours. Signi�cant

actions during the match that could in�uence the result can happen in few minutes.

The simultaneous availability of information to the audience through television, radio or

Internet is an additional di�culty for people willing to win money in bets. They have to

be extremely intelligent and make the right decisions about their bets very quickly if they

want to win money.

Other scenarios appear in natural disasters. Forest �res, earthquakes and tsunamis

are some examples of natural disasters that human beings have su�ered along history.

Nowadays it is still quite di�cult to predict when and where can happen the next natural

disaster. The decisions made by authorities of countries or regions during the �rst hours of

the disaster in�uence highly the death toll as a consequence of the disaster. Thus, reducing

the time of response of the authorities and making the right decisions for minimizing the



158 Chapter 5: An anytime algorithm for evaluating unconstrained in�uence diagrams

e�ects could save many lives.

We can also �nd industrial applications. Failures in the mains electricity or in nu-

clear plants can require responses with di�erent time constraints. However, they have in

common that the faster the response the smaller the e�ects caused by the failure. Other

applications include automatic cars or autonomous robots, which have to make quick

decisions when they are navigating through changing environments.

Recommender systems on the Internet are other example of application of our

method. These systems use information �ltering techniques to attempt to present infor-

mation items (movies, music, books, web pages, etc.) that are likely of interest to the

user. The recommendations are chosen automatically by the system typically in less than

a second. Thus, the decisions about what to recommend must be made within severe

temporal constraints.

We could also �nd many other �elds of application. We would just to think in real

situations when we have to make decisions and the temporal constraints impose us to

make decisions as fast as possible.

Finally, it is important to notice that some of the situations presented here, or other

that can be imagined by the reader, could present decision making where all the decisions

are totally ordered. However, our method can still be applied to these situations because

an in�uence diagram with a total order of decisions is a particular case of unconstrained

in�uence diagram.

5.7 Discussion

We have presented an anytime algorithm for evaluating unconstrained in�uence diagrams.

Our method performs a breadth �rst search in the decision tree, and, by using a non-

admissible heuristic provides a quali�ed recommendation for the �rst decision. The use

of an admissible heuristic was disregarded. We also presented an outline of some possible

applications of the method.

We have performed some experiments to assess the performance of the algorithms.

The quality of the recommendations were measured by considering:

• the frequency with which the anytime algorithm returns the correct decision options

(relative to the optimal strategy) for all decisions down to the ith level in the decision

tree;

• the expected utility of following the strategy prescribed by the anytime algorithm
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or dynamic programming for the �rst i levels of decisions, followed by the optimal

strategy for the remaining decisions.

From the results we could see that the anytime algorithm improves over time with respect

to all the recorded characteristics. We have thus reached our initial objective.

As a future work, after performing the experiments, we can clearly see that if the pur-

pose is to compute the entire optimal strategy then the backward evaluation performed by

dynamic programming approach is more e�cient. However, our method has demonstrated

that forward search can give quali�ed recommendations for the �rst decisions without any

information about the policies for the last ones.

Thus, it appears as a possible future work to �nd a forward-backward method that

could combine:

• the e�ciency of the backward propagation given by dynamic programming; and

• the possibility of having quali�ed recommendations for the �rst decisions when using

our forward search-based approach.

We could also do research about the equation of our non-admissible heuristic. We are

using a linear combination of the lower and upper bounds, but we could look for more

sophisticated combinations.

In this way, the form of our heuristic only depends on the ratio of chance and decision

variables in the UID, while there can also be other parameters that would make the

heuristic to be more precise. For example, it is reasonable to think that the higher the

number of possible paths in the GS-DAG the higher the maximum expected utility because

we would have more maximizations in the evaluation.

Studying techniques for exploiting the coalescence in the decision tree could also accel-

erate the convergence of our algorithm and would improve the recommendations for the

�rst decisions. This would require a careful analysis of the UID, much more than what

we are doing now in the correct implementation of the algorithm.
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Chapter 6

Application: Mediastinal staging of

non-small cell lung cancer

Lung cancer is a frequent and devastating disease with a complex evaluation for deciding

the best treatment for patients. In this chapter we describe the di�cult assessment of

operability of a variant of non-small cell lung cancer and present a decision support system

built for �nding the optimal strategies for this problem, more speci�cally, to �nd the most

e�cient selection of tests and therapy for each patient.

6.1 Introduction

Lung cancer is a very frequent tumor in the developed world and the leading cause of

cancer death. Smoking is the main risk factor of lung cancer, with more than 90 per cent

of lung cancers thought to be a result of smoking (Alberg and Samet, 2003). Broadly

lung cancer can be classi�ed into two major types: small-cell lung cancer (SCLC) and

non-small cell lung cancer (NSCLC). The �rst one appears in 20% of cases and is usually

inoperable and only treatable with chemotherapy or chemo-radiotherapy. In contrast,

surgery resection remains the optimal treatment for NSCLC when it is limited to the

lung, certain adjacent structures, and lymph nodes proximal to the lung (N1-hilar-lymph

nodes). However, more than 80% of NSCLC patients can not be treated with surgery

because the disease is out of control due to an advanced local extension of the tumor

or spreading to other parts of the body (metastasis). A disappointing fact is that a

high percentage of surgical patients die of lung cancer during their lifetime. A correct

assessment in an early stage of the disease and an accurate selection of patients for surgery

(staging phase) is very important to avoid dangerous, painful, and unnecessary surgery

in bad prognosis patients.

When there are no distant metastases (i.e. spread to brain, kidney, bones, etc.) medi-
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astinal staging, i.e., determining whether malignant mediastinal lymph nodes are present

or absent, positive or negative N2-N3 status) is the most important prognostic factor in

patients with NSCLC and, consequently, determine the therapeutic strategy. Di�erent

techniques are available to study the mediastinum and potentially malignant lymph nodes.

There exist non-invasive imaging techniques, such as CT-scan and PET, with high sensi-

tivity but low speci�city; there are also minimally invasive endoscopic techniques (TBNA,

EBUS, EUS)1, with low risk, high speci�city and varying degrees of sensitivities, as well

as more invasive surgical techniques, such as mediastinoscopy, which are considered as

the gold standard.

Because of this variety of available tests, each one having pros and cons, there is a

vivid debate among specialists about which technologies should be used and in shat order.

For this reason, we have developed a decision support-system for the mediastinal staging

of non-small cell lung cancer. The system basically consists of an in�uence diagram built.

We have relied on the expert advice of Dr. Carlos Disdier, pneumologist at the Hospital

San Pedro de Alcántara, in Cáceres (Spain).

6.2 Medical problem: mediastinal evaluation (staging)

of lung cancer

The lungs are a pair of cone-shaped organs made up of spongy, pinkish-gray tissue. They

occupy most of the space in the thorax (the part of the body between the base of the

neck and diaphragm).

The mediastinum is the space between the lungs, in the middle portion of the up-

per chest, and contains the heart and its large vessels, trachea, esophagus, thymus, and

lymph nodes. The latter are located within and around the lungs and mediastinum (see

Figure 6.1). Other anatomical considerations are out of the scope of this thesis. For

a more detailed description of the respiratory system, see, for instance, the web site

http://healthcare.utah.edu/healthinfo/adult/respiratory/sitemap.htm.

Lung cancer is one of the most frequent pathologies of the respiratory system. Cancer

is a term used for naming a family of diseases in which abnormal cells divide without

control. Cancer cells can invade nearby tissues and can spread to other parts of the body

through the blood and lymph system. Metastasis is the spreading of cancer to other parts

of the body.

1CT-scan stands for computer tomography, PET for position emission tomography, TBNA for trans-
bronchial needle aspiration, EBUS for endobronchial ultrasound, and EUS for endoscopic ultrasound.

http://healthcare.utah.edu/healthinfo/adult/respiratory/sitemap.htm
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Figure 6.1: Anatomy of the lungs.
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Tumor is an abnormal mass of tissue that results when cells divide more frequently

than normal cells or do not die when they should. Tumors may be benign (not cancerous)

or malignant (cancerous).

Lung cancer usually initiates in the lining of the bronchi, but can also start in other

areas of the respiratory system, including the trachea, bronchioles, or alveoli. Lung cancer

usually does not cause symptoms when it �rst develops, but they often become present

after the tumor begins growing and develop over a period of many years. A cough is one

the most common symptoms of lung cancer.

When a patient is suspected of having lung cancer, in the light of the symptoms and

an abnormal chest radiograph, the �rst step is to con�rm with biopsies the nature of the

tumor lesions. Then, the most frequently technique used for diagnosis is bronchoscopy,

which allows the doctor to view the inside of the airways and obtain samples.

After the diagnosis phase, it is necessary to assess the overall state of health to un-

derstand the capacity to resist the aggressive treatments for cancer. At the same time,

we need to obtain an accurate knowledge about the degree of extension of the tumor and

the absence or presence of spread of distant metastasis (staging phase). That knowledge

will allow us to select the best treatment for the patient.

6.3 Mediastinal staging of non-small cell lung cancer

6.3.1 Grading and staging of cancer (in general)

The grading of cancer consists of classifying tumor cells in terms of how abnormal they

appear when examined under a microscope. The objective of a grading system is to

provide information about the probable growth rate of the tumor and its tendency to

spread. Grading plays an important role when selecting the best treatment for the patient.

The systems used to grade tumors vary with each type of cancer.

Staging is the process of determining a descriptor of how much the cancer has spread.

The common elements considered in most staging systems are:

• Location of the primary tumor.

• Tumor size and number of tumors.

• Lymph node involvement (spread of cancer into lymph nodes).

• Cell type and tumor grade (how closely the cancer cells resemble normal tissue).
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• Presence or absence of metastasis.

Staging is important because:

• it helps the doctor plan a person's treatment;

• it can be used to establish the person's prognosis (likely outcome or course of the

disease).

• it contributes to identify the most suitable trials (research studies) that may be

suitable for a particular patient.

Staging helps researchers and health care providers exchange information about patients.

It also gives them a common language for evaluating the results of clinical trials and

comparing the results of di�erent trials.

6.3.2 Types (grading) and staging of lung cancer

Types of lung cancer

Nearly all lung cancers are carcinomas, a type of cancer that begins in the lining or

covering tissues of an organ. The tumor cells of each type of lung cancer grow and spread

di�erently, and each type requires di�erent treatment. More than 95 percent of lung

cancers belong to the group called bronchogenic carcinoma.

Lung cancers are generally divided into two types:

• Small cell lung cancer (SCLC). Sometimes called oat cell cancer because the

cancer cells may look like oats when viewed under a microscope. It grows rapidly

and quickly spreads to other organs. SCLC, which amounts the 20% of patients

with lung cancer, is usually non-operable and must be treated with chemotherapy

or chemo-radiotherapy.

• Non small cell lung cancer (NSCLC). It is more common than SCLC (80%

of patients with lung cancer). The three main kinds of NSCLC are named for the

type of cells in the tumor: squamous cell carcinoma, adenocarcinoma, and large cell

carcinoma. If this cancer is diagnosed early, patients can be cured by surgery.

TNM staging

The TNM staging system for lung cancer (Lababede et al., 1999), developed by the

American Joint Committee on Cancer, remains an important guide to the treatment and
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Factor Meaning

T The characteristics of primary tumor: size, endobronchial loca-
tion, local invasion, and other characteristics

N Regional lymph node involvement
M Presence of metastasis

Table 6.1: Meaning of T, N and M factors.

prognosis of lung cancer. It de�nes three factors for achieving a consistent reproducible

description of the extent of anatomic involvement:

The T factor indicates the characteristics of the primary tumor in size (the smaller,

the better), location within the bronchi (better when it is more peripheral), local invasion

(better if it is only located in the lung and does not invade nearby structures such as pleura,

ribs, and central cardiac, vascular and digestive structures, preventing the removal of the

tumor). The classi�cation of the T factor from T1 to T4 is in ascending order of severity.

The N factor describes whether or not the cancer has reached lymph nodes. N0

means that there is no cancer in any lymph nodes. N1 refers that there is cancer in the

lymph nodes nearest the a�ected lung. N2 indicates that there is cancer in lymph nodes

in the mediastinum but on the same side as the a�ected lung or there is cancer in lymph

nodes just under where the trachea branches o� to each lung. N3 implies that there is

cancer in lymph nodes on the opposite side of the chest from the a�ected lung or in the

lymph nodes above either collar bone or in the lymph nodes at the top of the lung.

The M factor refers to distant metastases. M0 indicates that and involves the inop-

erability of the patient. They are classi�ed as M0 and M1.

The meaning of each factor is summarized in Table 6.1. The di�erent categories T, N

and M are presented in Table 6.2(Lababede et al., 1999).

6.3.3 Preoperative lymph node staging for non-small cell lung

cancer

We present in this Section a brief outline of the di�erent diagnostic techniques.

Imaging techniques

Computer tomography It is also called CT (computed tomography) or CAT (com-

puterized axial tomography) scan. It is a diagnostic imaging procedure that uses a combi-

nation of X-rays and computer technology to produce cross-sectional images (often called

�slices�) of the body. A CT scan shows detailed images of structures inside of the body,
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T (Primary Tumor)
Tx No primary tumor
T0 Tumor which cannot be assessed or is not apparent radiologically or bronchoscopically

(malignant cells in bronchopulmonary secretions)
Tis Carcinoma in situ
T1 Tumor with the following characteristics:

1. size: ≤ 3 cm

2. airway location: in lobar (relative to lobe) bronchus or distal (anatomically
located far) airways

3. local invasion: none, surrounded by lung or visceral pleura (membrane around
the lungs)

T2 Tumor with the following characteristics:

1. size: > 3 cm

2. airway location: involvement of the main bronchus, whose distance to the carina
(where the trachea divides into the left and right bronchus) is 2 cm or more, or
presence of atelectasis (total or partial collapse of the lung) or obstructive pneu-
monitis (in�ammation of lung tissue) that extends to hilar region but doesn't
involve the entire lung

3. local invasion: involvement of visceral pleura

T3 Tumor with the following location or invasion:

1. size: any

2. airway location: tumor in the main bronchus (within 2 cm to the carina), or
tumor with atelectasis (lungs are not fully in�ated) or obstructive pneumonitis
of the entire lung

3. local invasion: invasion of mediastinum, heart, great vessels, trachea, esophagus,
vertebral body, or carina; or presence of malignant pleural/pericardial e�usion
(bloody �uid into the area located around the heart or the pericardium)

T4 Tumor with the following location or invasion:

1. size: any

2. airway location: satellite tumor nodule(s) within the ipsilateral (on the same
side) primary-tumor lobe of the lung

3. local invasion: invasion of mediastinum, heart, great vessels, trachea, esophagus,
vertebral body, or carina; or presence of malignant pleural/pericardial e�usion

N (Lymph Nodes)
Nx Regional lymph nodes cannot be assessed
N0 Absence of regional lymph nodes involvement
N1 Presence of metastasis to lymph nodes nearest the a�ected lung: ipsilateral peri-

bronchial (surrounding a bronchus or the bronchi) and/or ipsilateral hilar lymph
nodes (the lymph nodes in the hilum or the triangular depression or indented region
at the junction of each lung and its bronchi)

N2 Presence of metastasis to ipsilateral mediastinal lymph nodes (in the mediastinum
but on the same side as the a�ected lung) and/or subcarinal lymph nodes (just under
the carina, where the trachea branches o� to each lung)

N3 Presence of metastasis to any of the following lymph node groups: contralateral
(opposite side) mediastinal, contralateral hilar, ipsilateral or contralateral scalene
(relative to one of the scalenous muscles), or supraclavicular (above collar bone)

M (Distant metastasis)
Mx Metastasis cannot be assessed
M0 Absence of distant metastasis
M1 Presence of distant metastasis (separate metastatic tumor nodule(s) in the ipsilateral

nonprimary-tumor lobe(s) of the lung also are grouped as M1)

Table 6.2: Categories T, N, and M. See also Figures 6.1 and 6.2 for a better understanding
of the anatomy of the lungs and the regional lymph nodes.
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Figure 6.2: Regional lymph node stations for lung cancer staging. [Taken from http:

//ejcts.ctsnetjournals.org].

http://ejcts.ctsnetjournals.org
http://ejcts.ctsnetjournals.org
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Figure 6.3: Image of a CT scan. [Taken from http://www.tobacco-facts.info/images_

html/lung_cancer_ct-scan-1.htm].

including the bones, muscles, fat, and organs. CT scans are more detailed than general

X-rays.

Computed tomography is currently used to radiographically stage the mediastinum

in patients with primary bronchogenic cancer. The accuracy of CT in staging the me-

diastinum has been controversial over the last years, largely due to variability of patient

selection and study design (Lloyd and Silvestri, 2001). Mediastinal nodes larger than 1

cm on the short axis are de�ned as pathologic.

Several factors a�ect the accuracy of CT for staging bronchogenic carcinoma. Accuracy

is lessened by central tumors, obstructive pneumonia, and prior granulomatous disease.

Figure 6.3 presents the image of a CT scan.

The sensitivity and speci�city of CT for mediastinal staging is approximately only

50-70% and 60-80%, respectively (data taken from http://www.oncoline.nl).

Position Emission Tomography Positron emission tomography (PET) (see Figure 6.4)

was introduced as an alternative or complementary technique for mediastinal staging. Pa-

tients are injected with �uorine-18 �uorodeoxyglucose (FDG) and imaged using PET. To

http://www.tobacco-facts.info/images_html/lung_cancer_ct-scan-1.htm
http://www.tobacco-facts.info/images_html/lung_cancer_ct-scan-1.htm
http://www.oncoline.nl
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Figure 6.4: A PET image.

identify malignancy, PET depends on demonstrating metabolic di�erences between tu-

mor and normal tissue. Potential advantages of PET imaging include the identi�cation

of tumor foci in normal-sized lymph nodes.

PET appears to be more accurate than conventional CT scanning for staging the

mediastinum. Unlike CT, PET relies on increased metabolic activity rather than solely

on the size of the lymph nodes. It can identify not only disease in nodes smaller than 1

cm, but also unsuspected extrathoracic metastases. Disadvantages include di�culty with

accurate anatomic placement of lesions as well as with extent of local tumor involvement,

both necessary for staging.

Figure 6.4 presents the image of a PET.

The sensitivity and speci�city of PET for mediastinal staging is approximately 83%

and 64% respectively (data taken from http://www.ncpic.info).

http://www.ncpic.info


6.3. Mediastinal staging of non-small cell lung cancer 173

Figure 6.5: A mediastinoscopy image.[Taken from http://visuals.nci.nih.gov/

preview.cfm?imageid=7242&fileformat=jpg].

Invasive techniques

Mediastinoscopy It is a process in which a small incision is made in the neck (see

Figure 6.5). Then a thin scope (mediastinoscope) is inserted through the opening. A

tissue sample can be collected through the mediastinoscope and then examined under a

microscope. Mediastinoscopy is the historic gold standard for mediastinal staging.

Mediastinoscopy provides access to mediastinal lymph nodes of stations 2, 4, and

7, according to the regional division of lymph nodes presented in Figure 6.2. Lymph

nodes of stations 5 and 6 are accessible by cervical extended mediastinoscopy and anterior

mediastinoscopy (see Figure 6.5).

Overall, mediastinoscopy has a reported sensitivity of 87% and speci�city of 100%

(data taken from (Luke et al., 1986)).

Transbronchial needle aspiration Transbronchial needle aspiration (TBNA) was de-

veloped in the 1980s as a method of sampling extrabronchial lesions through a �exible

http://visuals.nci.nih.gov/preview.cfm?imageid=7242&fileformat=jpg
http://visuals.nci.nih.gov/preview.cfm?imageid=7242&fileformat=jpg
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tube, called bronchoscope. TBNA requires the same preparation as bronchoscopy2, i.e,

conscious sedation, and has a low risk of morbidity and mortality. TBNA can be per-

formed at the same time as diagnostic bronchoscopy, thus avoiding a separate staging

intervention. During the TBNA, a needle is passed through the working channel of the

bronchoscope and through the wall of the trachea or bronchus into the underlying lymph

node. Needles are currently available for both cytology and histology.

A factor limiting the widespread use of TBNA is training. TBNA is the most operator-

dependent of the bronchoscopic procedures.

Overall, the sensitivity of TBNA is between 40% and 80% and its speci�city is ap-

proximately 99% (Lloyd and Silvestri, 2001).

Endobronchial ultrasound (EBUS) The EBUS technology combines ultrasound

guidance and a bronchoscopy, which permits to perform real-time transbronchial nee-

dle aspiration. Biopsies using EBUS are performed through the trachea using ultrasound,

which is less invasive than surgical incisions. EBUS allows the physician to look in areas

of the chest where it is traditionally di�cult to biopsy. It o�ers a more precise way of

assessing a patient's lymph nodes and determining if lung cancer has spread to other parts

of the body. EBUS allows for complete staging of the mediastinum through a less invasive

approach.

In an EBUS, the patient is placed under general anesthesia and a small bronchoscope

with a special ultrasound at its tip is passed through the patient's mouth down into the

trachea (see Figure 6.6). The scope has a small instrument at its tip called a transducer,

which can be pointed in di�erent directions to produce images of lymph nodes and other

structures in the mediastinum.

In many cases, EBUS o�ers better sensitivity and speci�city without the need to make

an incision.

The sensitivity of EBUS is between 90 and 94% and its speci�city is 100% (Yasufuku

et al., 2006).

Endoscopic ultrasound (EUS) It is an endoscopic technique that allows a miniatur-

ized ultrasound probe to be driven though the mouth into the upper gastrointestinal tract

to investigate organs and structures close to the esophagus, stomach, or duodenum, such

as the lung (see Figure 6.7). When staging lung cancer, it is done by advancing a �ne

2A bronchoscopy is the examination of the bronchi using a bronchoscope. Bronchoscopy helps to
evaluate and diagnose lung problems, assess blockages, obtain samples of tissue and/or �uid, and/or to
help remove a foreign body.
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Figure 6.6: EBUS image.[Taken from http://www.ctsnet.org/graphics/experts/

Thoracic/d_rice_endobronc_ultrasnd/Figure-3.jpg].

http://www.ctsnet.org/graphics/experts/Thoracic/d_rice_endobronc_ultrasnd/Figure-3.jpg
http://www.ctsnet.org/graphics/experts/Thoracic/d_rice_endobronc_ultrasnd/Figure-3.jpg
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needle through the esophagus into adjacent lymph nodes. EUS provides accurate images

of the entire posterior mediastinum, including lymph nodes in the subcarinal, aortopul-

monary, and paraesophageal regions. This has led to studies of its diagnostic accuracy

for mediastinal malignancy.

Some advantages of EUS are its low cost and morbidity. It can be used to biopsy lymph

nodes levels that are inaccessible or di�cult to access by mediastinoscopy, including the

para-aortic and paraesophageal regions. Its advantages over TBNA include the ability

to visualize and biopsy nodes smaller than 1 cm with good accuracy. However, EUS

cannot biopsy right paratracheal (adjacent to the trachea) and pretracheal nodes due to

the air-�lled trachea, which blocks the ultrasound signal.

The sensitivity of EUS is 89% and its sensitivity is 100% (Silvestri et al., 1996).

6.3.4 Treatment of lung cancer

We describe in this section the main treatment options for lung cancer, namely surgery,

chemotherapy, radiation therapy, combination therapy, and palliative and supportive care.

The applicability of each treatment depends on the stage of the tumor.

Surgery

Depending on the type and stage of the cancer, surgery may be used to remove the tumor

and some of the lung tissue around it. If a lobe (section) of the lung is removed, the surgery

is called a lobectomy. If the entire lung is removed, the surgery is called a pneumonectomy.

These operations are done with the patient asleep under general anesthesia. A hospital

stay of about 1 week is usually needed. The patient will have some pain after the surgery

because the surgeon has to cut through the ribs to get to the lungs.

People who do not have any other lung problems (other than cancer) can often return

to their normal activities after a lobe or even an entire lung is removed. However, if

they also have diseases such as emphysema or chronic bronchitis (common among heavy

smokers), then they may �nd that their shortness of breath gets worse. For people who

cannot have the usual surgery because they have lung disease or other medical problems

or because the cancer is widespread, other types of surgery (for example, laser surgery)

can be done to relieve symptoms.
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Figure 6.7: EUS image.[Taken from http://www.meb.uni-bonn.de/cancer.gov/Media/

CDR0000466552.jpg].

http://www.meb.uni-bonn.de/cancer.gov/Media/CDR0000466552.jpg
http://www.meb.uni-bonn.de/cancer.gov/Media/CDR0000466552.jpg
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Chemotherapy

Chemotherapy refers to the use of drugs to kill cancer cells. The drugs are usually given

into a vein or by mouth. Once the drugs enter the bloodstream, they reach all parts of

the body. Often several drugs are given at the same time. Depending on the type and

stage of lung cancer, chemotherapy may be given as the main treatment or in addition to

surgery and/or radiation therapy. Chemotherapy is referred to an adjuvant therapy (that

enhances the e�ectiveness of a medical treatment) when it is used along with surgery or

radiation therapy. It is used in this way to reduce the risk that the cancer will recur or

spread outside the lung. Doctors who prescribe these drugs generally use a combination

of medicines that have proven to be more e�ective than a single drug. Doctors give

chemotherapy in cycles, with each period of treatment followed by a recovery period.

Chemotherapy has side e�ects. Temporary side e�ects might include loss of appetite,

nausea and vomiting, mouth sores, and hair loss. Because chemotherapy can damage

the blood-producing cells of the bone marrow, a drop in white blood cells increases the

risk of infection; a shortage of blood platelets can cause bleeding or bruising after minor

cuts or injuries; and a decrease in red blood cells (low blood hemoglobin levels) can lead

to fatigue. Other e�ects from anticancer drugs are premature menopause, infertility, or

heart or lung damage.

Radiation Therapy

Radiation therapy uses high-energy rays (such as X-rays) to kill or shrink cancer cells. The

radiation may come from outside the body (external radiation) or from radioactive materi-

als placed directly in the tumor (internal or implant radiation, also called brachytherapy).

External radiation is the type most often used to treat lung cancer.

External beam radiation is sometimes used as the main treatment of lung cancer, for

example, for those who may not be healthy enough to have surgery or whose cancer has

spread too far to be removed by surgery. For other patients, radiation might be used

after surgery to kill small areas of cancer that can't be seen and removed during surgery.

Radiation can also be used to relieve symptoms such as pain, bleeding, or blockage of air

passages by the cancer; or as a treatment of lung cancer that has spread to other organs,

such as the bone or brain.

Side e�ects of external radiation therapy to the chest area may include mild skin

reactions, nausea, tiredness, pain on swallowing, and a cough. Radiation to the chest

may also cause lung damage and di�culty breathing. Side e�ects of radiation therapy to

the brain usually become most serious 1 or 2 years after treatment and include headaches
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and trouble thinking.

Brachytherapy, also known as internal radiation therapy, is rarely used as the initial

treatment for a lung cancer, but is sometimes recommended if cancer has returned and is

blocking one of the airways.

Combined Therapy

Lung cancer is often initially treated with combination therapy; that is, the combination

of surgery with chemotherapy, or radiation therapy, or both, either before or after the

surgery. Chemotherapy and radiation therapy may be used before surgery to shrink the

tumor so that it can be removed surgically. Chemotherapy and radiation therapy may be

given after surgery if there is a chance that the entire tumor was not removed at surgery.

Palliative and Supportive Care

Sometimes patients receive cancer treatment intended to reduce or prevent symptoms,

even though is not expected to cure the cancer. Palliative care may include radiation

or chemotherapy treatments that relieve symptoms by shrinking the tumor. Some other

palliative treatments for lung cancer include laser surgery and photodynamic therapy.

Cancer treatments identify ways to cure some people with lung cancer and to help

others live longer by removing or destroying lung cancer cells. Nevertheless, another

important goal is controlling symptoms and helping a patient continue to do the things

important to her. There are e�ective and safe ways to treat pain, most other symptoms

of lung cancer, and most of the side e�ects caused by lung cancer treatments. Care to

help relieve symptoms is sometimes called palliative care, or supportive care.

Pain is a signi�cant concern for patients with lung cancer. Growth of the cancer around

certain nerves may cause severe pain. For most patients, treatment with morphine or other

opioids will reduce the pain considerably.

In addition to the supportive care measures for people with advanced cancer, a patient

may also bene�t from speci�c measures that relieve some symptoms of lung cancer that

are relatively rare with other cancers.

6.4 Construction of Mediastinet

In this section, we describe the construction of Mediastinet, a decision support-system

(DSS) for the mediastinal staging of non-small cell lung cancer (NSCLC). The system
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Figure 6.8: In�uence diagram of Mediastinet.

basically consists of an in�uence diagram built using Elvira, a free-software package de-

veloped as a joint project of several Spanish universities (Elvira Consortium, 2002).

6.4.1 Construction of the structure of the graph

A graph is basically a set of nodes (or variables) and set of arcs relating them (see

Section 2.1). We describe in this section how we have built the graph of the model (see

Figure 6.8). The process of identifying the variables of the problem, their domains and

their relations in Mediastinet has been performed with the expert's help. We describe

now that work.

Identi�cation of variables

We have identi�ed three types of variables, which correspond to the three types of nodes

that can appear in an in�uence diagram: chance, decision and utility (see Section 2.3).

Chance variables In medical diagnosis, chance variables usually correspond to possible

causes and risk factors of a disease, as well as the symptoms, signs and laboratory tests

that allow us to con�rm or discard the presence of the disease.

Given that our objective is the mediastinal staging of NSCLC, we have included a

variable representing the value of N in the TNM classi�cation (see Section 6.3.2). Even
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though the N factor takes on four possible values, from N0 to N3, we have modeled it as

a binary variable: we have grouped N0 and N1 into a state, which means that the cancer

is operable, and N2 and N3 into another state, which means that it is inoperable. This

variable has been named N2N3, and its domain is present / absent.

The laboratory tests that can be performed are represented by the following variables:

• CT_scan: the result of computer tomography;

• TBNA: the result of TBNA;

• PET : the result of PET;

• EBUS : the result of EBUS;

• EUS : the result of EUS;

• MED : the result of mediastinoscopy.

Each of these variables has two states: positive and negative.

When the mediastinoscopy is performed, there is a small probability that the patient

does not survive. We have therefore created the variable MED_Sv, whose states are yes

and no, representing whether the patient has survived mediastinoscopy.

Decision variables The decisions are whether to perform a medical test and what

possible treatments to apply to a patient.

The set of possible treatments are represented by the variable Treatment. Its states

are thoracotomy, chemotherapy, and palliative.

The decisions about whether to perform the di�erent laboratory tests have been rep-

resented by the following variables:

• Decision_TBNA, Decision_PET, and Decision_MED, whose states are yes and

no.

• Decision_EBUS_EUS : The decision about whether to perform EBUS, EUS, both

of them, or none. It has four states: ebus, eus, ebus+eus and none.

These decisions force us to introduce a new state to some of the chance variables to re�ect

that when we do not perform a medical test its result is not available. Thus, the state

no_result is added to the variables TBNA, PET, EBUS, EUS, and MED.

CT scan is always performed to a patient because it gives very useful information

about the thorax and can inform about patients which can be discarded initially from

being treated with surgery.
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Ordinary utility nodes The decision maker's preferences have been represented by a

set of utility nodes.

The QALE (quality-adjusted life expectancy) of the survivors to the medical tests (ex-

cept the mediastinoscopy) and the treatment is represented by the node Survivors_QALE.

The morbidities due to TBNA, EBUS, EUS, and mediastinoscopy, are depicted by

TBNA_Morbidity, EBUS_Morbidity, EUS_Morbidity, and Med_Morbidity respectively,

and measured in QALYs.

Med_Survival indicates if the patient has survived to the mediastinoscopy.

The probability of survival to the treatment is represented by Immediate_Survival.

Super value nodes The ordinary utility nodes presented above have been combined

by using super-value nodes, as proposed by Tatman and Shachter (1990). Nodes Sur-

vivors_QALE,Med_Survival and Immediate_Survival have been combined into the prod-

uct node Net_QALE. We have used a product because Survivors_QALE indicate the

QALE of the survivors to the medical tests (except to the mediastinoscopy) and the

treatments, and we need to multiply it by the probability of survival to the medi-

astinoscopy (MED_Survival) and to the treatment (Immediate_Survival) to obtain a

net qale (Net_QALE ).

The nodes Net_QALE, TBNA_Morbidity, EBUS_Morbidity, EUS_Morbidity, and

Med_Morbidity have been added into the node Total_QALE. We have used a sum

node because morbidities decreases of the medical tests decrease the QALE of patients

(Net_QALE ), what have to been re�ected in the diagram by a sum, considering that the

utilities of nodes representing morbidities will take non-positive values.

Arcs of the graph

In�uence diagram of Figure 6.8 contains four kinds of arcs (see Section 2.3):

1. Arcs into chance nodes. They represent probabilistic dependencies. In our

diagram, an arc from a node representing the decision of a test , such as the arc

Decision_TBNA→ TBNA, indicates that the result (in this case TBNA) is only

available whether we perform the test (Decision_TBNA = yes).

2. Arcs into decision nodes. They imply informational precedence. Based on the

�no-forgetting� assumption we have speci�ed in our diagram the minimum set of

informational arcs (Nielsen and Jensen, 1999). For example, the arc CT_scan →
Decision_TBNA has been included in Mediastinet (see Figure 6.8) to indi-

cate that CT_scan is known in Decision_TBNA. However, the arc CT_scan →
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Decision_PET has not been speci�ed because we are using the no-forgetting as-

sumption.

3. Arcs into ordinary utility nodes. They represent functional dependencies. The

parents of a utility node indicate the domain of the associated utility function. For

example, the arcs into the node Immediate_Survival means that the domain of its

utility function consists of nodes N2N3 and Treatment.

4. Arcs into super value nodes. They indicate the set of utility nodes that are com-

bined into the super value node. For instance, arcs into super value node Net_QALE

indicate that is the combination of Survivors_QALE, MED_Survival and Immedi-

ate_Survival.

6.4.2 Numerical values

When the graph of the ID has been constructed, it is necessary to complete the quanti-

tative part of the ID (see Section 2.3), which consists of a set of probability and utility

potentials. For example, for each chance node C we must give a conditional probability

potential p(C|pa(C)) for each con�guration of its parents, pa(C). Then, the table for

p(C|pa(C)) requires |dom(C)| ·
∏

X∈pa(C)

|dom(X)| numbers, but given the restriction that∑
c

P (c|pa(C)) = 1, only some of them are independent.

When trying to elicit the parameters of the model, we asked the expert to estimate

only a certain number of independent parameters. In our study we have chosen a set

of 61 independent parameters (see Table 6.3). One of them is the prior probability of

metastasis (N2N3 ); 46 parameters are conditioned probabilities of the tests; one is the

probability of surviving MED ; 10 are utilities measured in QALYs, and 3 parameters are

also utilities that represent the probability of surviving the treatment.

Table 6.3: Independent parameters of Mediastinet.

Name of the parameter Value assigned

prevalence_N2_N3 0.281

sens_CT_scan 0.510

spec_CT_scan 0.857

sens_TBNA_CT_scan_pos 0.460

spec_TBNA_CT_scan_pos 0.904

Continued on next page
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Table 6.3 � continued from previous page

Name of the parameter Value assigned

sens_TBNA_CT_scan_neg 0.020

spec_TBNA_CT_scan_neg 0.921

sens_PET_CT_scan_pos 0.905

spec_PET_CT_scan_pos 0.775

sens_PET_CT_scan_neg 0.740

spec_PET_CT_scan_neg 0.925

sens_EBUS_CT_scan_pos_PET_pos 0.879

sens_EBUS_CT_scan_pos_PET_neg 0.889

sens_EBUS_CT_scan_neg_PET_pos 0.892

sens_EBUS_CT_scan_neg_PET_neg 0.881

spec_EBUS_CT_scan_pos_PET_pos 0.966

spec_EBUS_CT_scan_pos_PET_neg 0.976

spec_EBUS_CT_scan_neg_PET_pos 0.967

spec_EBUS_CT_scan_neg_PET_neg 0.975

sens_EBUS_CT_scan_pos 0.919

spec_EBUS_CT_scan_pos 0.974

sens_EBUS_CT_scan_neg 0.892

spec_EBUS_CT_scan_neg 0.978

sens_EUS_CT_scan_pos_PET_pos 0.861

sens_EUS_CT_scan_pos_PET_neg 0.868

sens_EUS_CT_scan_neg_PET_pos 0.581

sens_EUS_CT_scan_neg_PET_neg 0.567

spec_EUS_CT_scan_pos_PET_pos 0.935

spec_EUS_CT_scan_pos_PET_neg 0.933

spec_EUS_CT_scan_neg_PET_pos 0.926

spec_EUS_CT_scan_neg_PET_neg 0.938

sens_EUS_CT_scan_pos 0.857

spec_EUS_CT_scan_pos 0.929

sens_EUS_CT_scan_neg 0.762

spec_EUS_CT_scan_neg 0.923

sens_MED_CT_scan_pos_PET_pos 0.800

spec_MED_CT_scan_pos_PET_pos 0.950

Continued on next page
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Table 6.3 � continued from previous page

Name of the parameter Value assigned

sens_MED_CT_scan_pos_PET_neg 0.813

spec_MED_CT_scan_pos_PET_neg 0.941

sens_MED_CT_scan_neg_PET_pos 0.786

spec_MED_CT_scan_neg_PET_pos 0.947

sens_MED_CT_scan_neg_PET_neg 0.800

spec_MED_CT_scan_neg_PET_neg 0.938

sens_MED_CT_scan_pos 0.813

spec_MED_CT_scan_pos 0.929

sens_MED_CT_scan_neg 0.727

spec_MED_CT_scan_neg 0.944

MED_sv_Decision_MED_yes 0.963

morbidity_MED −0.050

morbidity_EBUS −0.030

morbidity_EUS −0.030

morbidity_TBNA 0.000

thor_inmediate_survival 0.909

chem_inmediate_survival 0.980

pall_inmediate_survival 0.981

survivors_qale_N2_N3_pos_thor 0.660

survivors_qale_N2_N3_pos_chem 0.830

survivors_qale_N2_N3_pos_pall 0.500

survivors_qale_N2_N3_neg_thor 3.000

survivors_qale_N2_N3_neg_chem 2.000

survivors_qale_N2_N3_neg_pall 1.250

Data in Table 6.3 were assessed by the expert based on the literature.

We have used a convention for naming the parameters of Mediastinet. For example,

the parameter sens_EBUS_CT_scan_po_PET_po refers to the sensitivity of EBUS

when the CT scan is positive positive and the PET is also positive. In contrast, the

parameter sens_EBUS_CT_scan_po refers to the sensitivity of EBUS when the CT

scan is positive and the PET has not been performed.
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6.4.3 Cost-e�ectiveness with Mediastinet

The version of Mediastinet presented above does not include the economic costs of the

diagnostic tests and the treatments. However, in medical decision making costs cannot

be ignored. Including the economic cost turns our medical problem into a multiobjective

optimization problem (Steuer, 1986). In Section 2.6.1 presented the basic techniques of

cost-e�ectiveness analysis (CEA).

Nevertheless, instead of basing our CEA on the incremental cost-e�ectiveness ratios

(ICERs), which is the standard method, we will apply a di�erent perspective: the maxi-

mization of the net bene�t, de�ned in Equation 2.20, because it is easier to integrate with

IDs. As we explained in that section, both approaches are equivalent, .i.e, they return

the same selection of interventions.

Actually, instead of applying Equation 2.20, we have built our ID by using an equiva-

lent equation obtained by dividing it by λ:

NE = E − λ∗C, (6.1)

where λ∗ = 1/λ, and NE denotes the net e�ectiveness, which can be interpreted as the

medical bene�t minus the economic costs (converted into medical units). The reason for

using this equation instead of Equation 2.20 is explained below.

The integration of Equation 6.1 in Mediastinet is as follows (see Figure 6.9):

• The cost, C, is represented by a super value node, Total_Economic_Cost, whose

parents are the utility nodes Economic_Cost_CT_scan, Economic_Cost_PET,

Economic_Cost_TBNA, Economic_Cost_EBUS, economic_Cost_EUS, and eco-

nomic_Cost_MED.

• The e�ectiveness, E, is represented by another super value node, Total_QALE,

whose structure of utility nodes was explained in Section 6.4.1.

• The parameter λ∗, the inverse of λ, is represented by an ordinary utility node, C2E

(cost to e�ectiveness), without parents.

• The node Weighted_Economic_Cost is a super value node of type product, which

represents λ∗C.

• Net_E�ectiveness is a super value node of type sum, which represents the net

e�ectiveness (Equation 6.1).
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Figure 6.9: A new version of Mediastinet, including economic costs.

If we make λ∗ = 0 the evaluation of the ID returns the strategy that maximizes the e�ec-

tiveness, without taking into account the economic costs. The human expert collaborating

with us was very interested in knowing this strategy, which turns out to be di�erent from

the one obtained with the value of λ = 30, 000 e/QALY, used as a reference point for

the Spanish public health system (Sacristán et al., 2002) (see Section 6.5). In fact, the

strategy that maximizes the e�ectiveness can be seen as a component of the explanation

of reasoning.

This justi�es why in our ID we have used Equation 6.1 instead of 2.23: because when

looking for the maximum-e�ectiveness strategy (without caring about the costs), it su�ces

to make λ∗ = 0. In contrast, making λ = +∞ in Equation 2.20 would lead to an in�nite

net bene�t (NB = +∞) for any strategy having positive e�ectiveness, thus turning the

maximization into an intractable problem.

Numerical values

Analogously to the the case of Section 6.4.2, we have de�ned a set of minimal parameters

for the new nodes added in the new version of Mediastinet (Figure 6.9). The new

parameters are shown in Table 6.4. The names of the parameters use a similar convention

to those in Table 6.3. For example, cost_pall denotes the economic cost of palliative
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Name of the parameter Value assigned
cost_CT 670 e
cost_TBNA 80 e
cost_MED 1620 e
cost_PET 2250 e
cost_EBUS 620 e
cost_EUS 620 e
cost_thor 19646 e
cost_chem 11242 e
cost_pall 3000 e
lambda 30000 e/QALY

Table 6.4: Parameters of economic costs of Mediastinet.

treatment. The last parameter in table, lambda, denotes the term λ in Equation 2.23,

which is the inverse of λ∗.

.

Data in Table 6.4 were assessed by the expert based on the literature.

6.5 Optimal strategies

In this section we show two strategies returned by Mediastinet with two di�erent

criteria: the maximization of the e�ectiveness (disregarding costs) and the net bene�t.

6.5.1 Maximum-e�ectiveness strategy

The strategy that maximizes the e�ectiveness can be obtained from the version of Me-

diastinet that does not include economic costs (see Figure 6.8). However, instead of

maintaining two versions of the ID, with and without costs, we have only the one with

costs (see Fig. 6.9). As explained above, the maximum-e�ectiveness strategy can be ob-

tained from this ID by making λ∗ = 0 (see Eq. 6.1), i.e., by setting the utility node C2E

to 0.

The policy tree of Figure 6.10, which corresponds to the decision Treatment, depicts

the whole optimal strategy obtained by evaluating Mediastinet disregarding costs. We

examine each policy:

• Decision_TBNA: Perform the TBNA only when CT scan is positive.

• Decision_PET: Perform the PET.
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• Decision_EBUS_EUS: Perform the EBUS if we have negative CT scan and

positive PET, or if we have positive CT scan, and the PET and the TBNA have

contrary result, i.e., positive PET and negative TBNA, or viceversa. It recommends

never to perform the EUS.

• Decision_MED: Never perform the mediastinoscopy.

• Treatment: Apply chemotherapy if the last test performed is positive; otherwise,

it is better to apply thoracotomy.

Our expert's judgment

After obtaining the optimal strategy we have presented it to the expert to know his opinion

about the policies obtained. We have examined the scenarios presented in the policy tree

to �nd out the coincidences between what the expert would do and the recommendations

given by the policies. We told the expert to imagine a hypothetical situation in which

economic costs are disregarded.

Let us focus on Figure 6.10, which contains the entire strategy. The expert agreed

completely with the policies for decisions Decision_TBNA and Treatment. Additionally,

he agreed in never performing the EUS (which is decided in Decision_EBUS_EUS ).

Then, discussion with the expert focused on seeing which of the tests PET, EBUS,

and MED, should be performed. He agreed in the tests performed for the case of CT scan

being positive. However, when CT scan is negative, he would slightly vary the decisions

made after performing the TBNA:

• If the result is positive, then he would not perform any additional tests.

• Otherwise, he would perform the EBUS instead of the PET, and would also perform

the mediastinoscopy if the EBUS is negative.

With respect to the main discrepancy between the expert and our strategy, which

is the decision of performing the PET, he told us that the system looks intelligent by

deciding to perform it, because according to the information encoded it does not take

into account that performing the PET causes a delay and forces the patient to go again

to the hospital a di�erent day.

6.5.2 Maximum-bene�t strategy

Analogously we have evaluatedMediastinet with economic costs. In the reference case,

we have set the parameter lambda to a value of λ = 30, 000 e/QALY, used as a reference
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Figure 6.10: Optimal strategy for Mediastinet (disregarding costs).
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point for the Spanish public health system (Sacristán et al., 2002). A di�erent value of

lambda could lead to a di�erent strategy, as we would see in Section 6.6.

The policy tree of Figure 6.11, which corresponds to the decision Treatment, depicts

the optimal strategy. We can examine in Figure 6.11 the optimal policy for the 5 decisions

in Mediastinet.

We describe the 5 policies:

• Decision_TBNA: Perform the TBNA if CT scan is positive.

• Decision_PET: Never perform the PET.

• Decision_EBUS_EUS: Perform the EBUS if CT scan or the TBNA are negative.

It also prescribes never to perform the EUS.

• Decision_MED: Never perform the mediastinoscopy.

• Treatment: Apply chemotherapy if the last test performed is positive; otherwise,

it is better to apply thoracotomy.

Our expert's judgment In this case, which is more realistic (in practice costs cannot

be ignored) the expert agreed completely with the strategy given by Mediastinet.

However, he would vary some policies in some situations:

• If the hospital does not have the possibility of performing EBUS then it would

replace it by the PET.

• In the scenario of positive CT scan and negative results in the TBNA and the

EBUS, he would decide initially not to perform the mediastinoscopy, would perform

the PET and then would perform the mediastinoscopy if the PET is positive.

The �rst situation could be analyzed in the GUI of Elvira by forcing the policy of the

EBUS to never to perform it. Analyzing the second situation would require to modify the

structure of Mediastinet by changing the sequence of decision nodes and test results.

6.5.3 Comparison of both strategies

If we read carefully the two optimal strategies returned byMediastinet with the criteria

of the maximization of the e�ectiveness (disregarding costs) and the net bene�t, presented

above, we �nd some discrepancies in the recommendations. We review the optimal policy

given for each decision to see the di�erences.
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Figure 6.11: Optimal strategy for Mediastinet with economic costs.
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The policies for Decision_TBNA, Decision_MED and Treatment are identical, and

the EUS is never performed.

With respect to the discrepancies, when we disregard costs the PET is always per-

formed, but never performed if we consider them. When CT scan is negative, the EBUS

is not performed if the PET is negative when disregarding costs, but it is performed if we

considering them.

6.6 Sensitivity analysis in Mediastinet

We are interested in determining whether the conclusions obtained (optimal strategy and

MEU) for Mediastinet hold in spite of the uncertainty relative to the construction of

the model. We therefore needs to perform SA in the ID of Mediastinet.

6.6.1 Uncertainty on the numerical parameters of Mediastinet

Section 6.4.2 presents the numerical parameters of Mediastinet. We have performed

SA over each of these parameters by following the methodology described in Section 4.5.

Thus, we have built an augmented ID for each parameter. For example, Figure 6.12 shows

the graph of the augmented ID of Mediastinet for performing SA on the prevalence

of the N2N3. Node named Iteration, corresponds to the node that was called Θ in the

formal exposition of Section 4.5.

Each uncertain parameter of Mediastinet has been characterized with a probability

distribution. To indicate that a parameter is modeled with a normal distribution with

mean m and variance sv2, we write N (µ, σ2). To present that a parameter is attached to

a beta distribution with parameters α and β we use the notation B(α, β). Finally, if it is

modeled with a log-normal distribution we write Log-N (µ, σ2).

Table 6.5 displays the distribution used for each parameter. The second columns refers

to the Parameter Number (PN), which is a number used to identify each parameter in

following tables and �gures. Using the PN instead of the parameter name will allows us

to save space specially in tables.

The parameters of distributions have been assessed by the expert based on medical

literature. He usually found in the literature that there had values for the mean and

con�dence interval for each parameter. These values were used to determine the necessary

parameters for each distribution. For each parameter we have the mean as reference value.
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Figure 6.12: Augmented in�uence diagram of Mediastinet for performing SA over the
prevalence of node N2N3.

Table 6.5: Probability distribution assigned to each parameter of Mediastinet. The
second columns refers to the Parameter Number (PN), which is a number used to indentify
each parameter in following tables and �gures.

Name of the parameter PN Probability distribution

prevalence_N2N3 1 B(144.0, 369.0)

sens_CT 2 B(74.0, 71.0)

spec_CT 3 B(317.0, 53.0)

sens_TBNA_CT_po 4 B(57.0, 67.0)

spec_TBNA_CT_po 5 B(104.0, 11.0)

sens_TBNA_CT_ne 6 B(2.0, 98.0)

spec_TBNA_CT_ne 7 B(129.0, 11.0)

sens_PET_CT_po 8 B(76.0, 8.0)

spec_PET_CT_po 9 B(62.0, 18.0)

sens_PET_CT_ne 10 B(57.0, 20.0)

spec_PET_CT_ne 11 B(86.0, 7.0)

sens_EBUS_CT_po_PET_po 12 B(29.0, 4.0)

Continued on next page
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Table 6.5 � continued from previous page

Name of the parameter PN Probability distribution

sens_EBUS_CT_po_PET_ne 13 B(32.0, 4.0)

sens_EBUS_CT_ne_PET_po 14 B(33.0, 4.0)

sens_EBUS_CT_ne_PET_ne 15 B(37.0, 5.0)

spec_EBUS_CT_po_PET_po 16 B(28.0, 1.0)

spec_EBUS_CT_po_PET_ne 17 B(40.0, 1.0)

spec_EBUS_CT_ne_PET_po 18 B(29.0, 1.0)

spec_EBUS_CT_ne_PET_ne 19 B(39.0, 1.0)

sens_EBUS_CT_po 20 B(34.0, 3.0)

spec_EBUS_CT_po 21 B(37.0, 1.0)

sens_EBUS_CT_ne 22 B(33.0, 4.0)

spec_EBUS_CT_ne 23 B(44.0, 1.0)

sens_EUS_CT_po_PET_po 24 B(31.0, 5.0)

sens_EUS_CT_po_PET_ne 25 B(33.0, 5.0)

sens_EUS_CT_ne_PET_po 26 B(18.0, 13.0)

sens_EUS_CT_ne_PET_ne 27 B(17.0, 13.0)

spec_EUS_CT_po_PET_po 28 B(29.0, 2.0)

spec_EUS_CT_po_PET_ne 29 B(28.0, 2.0)

spec_EUS_CT_ne_PET_po 30 B(25.0, 2.0)

spec_EUS_CT_ne_PET_ne 31 B(30.0, 2.0)

sens_EUS_CT_po 32 B(24.0, 4.0)

spec_EUS_CT_po 33 B(26.0, 2.0)

sens_EUS_CT_ne 34 B(16.0, 5.0)

spec_EUS_CT_ne 35 B(24.0, 2.0)

sens_MED_CT_po_PET_po 36 B(12.0, 3.0)

spec_MED_CT_po_PET_po 37 B(19.0, 1.0)

sens_MED_CT_po_PET_ne 38 B(13.0, 3.0)

spec_MED_CT_po_PET_ne 39 B(16.0, 1.0)

sens_MED_CT_ne_PET_po 40 B(11.0, 3.0)

spec_MED_CT_ne_PET_po 41 B(18.0, 1.0)

sens_MED_CT_ne_PET_ne 42 B(12.0, 3.0)

spec_MED_CT_ne_PET_ne 43 B(15.0, 1.0)

sens_MED_CT_po 44 B(13.0, 3.0)

Continued on next page
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Table 6.5 � continued from previous page

Name of the parameter PN Probability distribution

spec_MED_CT_po 45 B(13.0, 1.0)

sens_MED_CT_ne 46 B(8.0, 3.0)

spec_MED_CT_ne 47 B(17.0, 1.0)

MED_sv_Decision_MED_yes 48 B(52.0, 2.0)

morbidity_MED 49 N (−0.05, 1.0E − 4)

morbidity_EBUS 50 N (−0.03, 3.6E − 5)

morbidity_EUS 51 N (−0.03, 3.6E − 5)

morbidity_TBNA 52 N (−1.0E − 4, 4.0E − 10)

thor_inmediate_survival 53 B(20.0, 2.0)

chem_inmediate_survival 54 B(100.0, 2.0)

pall_inmediate_survival 55 B(52.0, 1.0)

surv_qale_N2_N3_po_thor 56 N (0.66, 0.017424)

surv_qale_N2_N3_po_chem 57 N (0.83, 0.027556)

surv_qale_N2_N3_po_pall 58 N (0.5, 0.01)

surv_qale_N2_N3_ne_thor 59 N (3.0, 0.36)

surv_qale_N2_N3_ne_chem 60 N (2.0, 0.16)

surv_qale_N2_N3_ne_pall 61 N (1.25, 0.0625)

cost_CT 62 N (670.0, 17956.0)

cost_TBNA 63 N (80.0, 256.0)

cost_MED 64 N (1620.0, 104976.0)

cost_PET 65 N (2250.0, 202500.0)

cost_EBUS 66 N (620.0, 15376.0)

cost_EUS 67 N (620.0, 15376.0)

cost_thor 68 N (19646.0, 9223372.036854776)

cost_chem 69 N (11242.0, 5055302.560000001)

cost_pall 70 N (3000.0, 360000.0)

lambda 71 Log-N (30000.0, 9223372.036854776)

We have used discrete variables in the ID. Thus, each continuous distribution has

been discretized by taking 100 points of an interval of the domain of the parameter as

explained in Section 4.5. The intervals partitioned for normal and log-normal distributions

of parameters µ and σ2 have been [µ− k · σ, µ+ k · σ] and [eµ−k·σ, eµ+k·σ] respectively, by
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using k = 3.5, which accumulates 99.953 % of the probability mass.

6.6.2 Results of the SA

We have performed a SA of Mediastinet by recording the metrics de�ned in Section 4.5.

We present here the results.

Policy change thresholds

Table 6.6 presents the policy change thresholds (PCTs) for every parameter of the in�uence

diagram. For each parameter, its PCT in the table is the intersection of the PCTs obtained

for the di�erent decisions of Mediastinet. The second column indicates the reference

value for the parameter.

Table 6.6: Intervals where the optimal strategy changes. The correspondence of the �rst
column (PN) is given by Table 6.5. Each of the rest columns indicates the interval where
the optimal policy of the corresponding decision changes. Each row shows the results for
each parameter of Mediastinet.

PN Ref. value Intervals

prevalence_N2N3 0.281 [0.259,0.284], [0.864,1.0]

sens_CT 0.510 [0.407,0.531]

spec_CT 0.857 [0.0,0.099], [0.815,0.864]

sens_TBNA_CT_po 0.460 [0.37,0.815]

spec_TBNA_CT_po 0.904 [0.877,0.914], [0.975,1.0]

sens_TBNA_CT_ne 0.020 [0.012,0.383]

spec_TBNA_CT_ne 0.921 [0.914,1.0]

sens_PET_CT_po 0.905 [0.0,1.0]

spec_PET_CT_po 0.775 [0.0,1.0]

sens_PET_CT_ne 0.740 [0.0,1.0]

spec_PET_CT_ne 0.925 [0.0,1.0]

sens_EBUS_CT_po_PET_po 0.879 [0.0,1.0]

sens_EBUS_CT_po_PET_ne 0.889 [0.0,1.0]

sens_EBUS_CT_ne_PET_po 0.892 [0.0,1.0]

sens_EBUS_CT_ne_PET_ne 0.881 [0.0,1.0]

spec_EBUS_CT_po_PET_po 0.966 [0.0,1.0]

spec_EBUS_CT_po_PET_ne 0.976 [0.0,1.0]

Continued on next page
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Table 6.6 � continued from previous page

PN Ref. value Intervals

spec_EBUS_CT_ne_PET_po 0.967 [0.0,1.0]

spec_EBUS_CT_ne_PET_ne 0.975 [0.0,1.0]

sens_EBUS_CT_po 0.919 [0.914,0.951]

spec_EBUS_CT_po 0.974 [0.938,1.0]

sens_EBUS_CT_ne 0.892 [0.765,1.0]

spec_EBUS_CT_ne 0.978 [0.975,1.0]

sens_EUS_CT_po_PET_po 0.861 [0.0,1.0]

sens_EUS_CT_po_PET_ne 0.868 [0.0,1.0]

sens_EUS_CT_ne_PET_po 0.581 [0.0,1.0]

sens_EUS_CT_ne_PET_ne 0.567 [0.0,1.0]

spec_EUS_CT_po_PET_po 0.935 [0.0,1.0]

spec_EUS_CT_po_PET_ne 0.933 [0.0,1.0]

spec_EUS_CT_ne_PET_po 0.926 [0.0,1.0]

spec_EUS_CT_ne_PET_ne 0.938 [0.0,1.0]

sens_EUS_CT_po 0.857 [0.0,0.963]

spec_EUS_CT_po 0.929 [0.0,1.0]

sens_EUS_CT_ne 0.762 [0.0,1.0]

spec_EUS_CT_ne 0.923 [0.0,1.0]

sens_MED_CT_po_PET_po 0.800 [0.0,1.0]

spec_MED_CT_po_PET_po 0.950 [0.0,1.0]

sens_MED_CT_po_PET_ne 0.813 [0.0,1.0]

spec_MED_CT_po_PET_ne 0.941 [0.0,1.0]

sens_MED_CT_ne_PET_po 0.786 [0.0,1.0]

spec_MED_CT_ne_PET_po 0.947 [0.0,1.0]

sens_MED_CT_ne_PET_ne 0.800 [0.0,1.0]

spec_MED_CT_ne_PET_ne 0.938 [0.0,1.0]

sens_MED_CT_po 0.813 [0.0,1.0]

spec_MED_CT_po 0.929 [0.0,0.951]

sens_MED_CT_ne 0.727 [0.0,1.0]

spec_MED_CT_ne 0.944 [0.0,1.0]

MED_sv_Decision_MED_yes 0.963 [0.0,0.963]

morbidity_MED −0.050 [-0.085,-0.015]

Continued on next page
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Table 6.6 � continued from previous page

PN Ref. value Intervals

morbidity_EBUS −0.030 [-0.033,-0.015]

morbidity_EUS −0.030 [-0.051,-0.0090]

morbidity_TBNA 0.000 [0.0,0.0]

thor_inmediate_survival 0.909 [0.79,0.84], [0.901,0.938]

chem_inmediate_survival 0.980 [0.938,1.0]

pall_inmediate_survival 0.981 [0.0,1.0]

surv_qale_N2_N3_po_thor 0.660 [0.643,0.734]

surv_qale_N2_N3_po_chem 0.830 [0.78,0.852]

surv_qale_N2_N3_po_pall 0.500 [0.15,0.548]

surv_qale_N2_N3_ne_thor 3.000 [2.611,2.767], [2.922,3.13]

surv_qale_N2_N3_ne_chem 2.000 [1.879,2.363]

surv_qale_N2_N3_ne_pall 1.250 [0.375,2.103]

cost_CT 670.000 [201.0,1139.0]

cost_TBNA 80.000 [73.78,136.0]

cost_MED 1620.000 [1466.0,2754.0]

cost_PET 2250.000 [1025.0,3825.0]

cost_EBUS 620.000 [186.0,721.8]

cost_EUS 620.000 [186.0,1054.0]

cost_thor 19646.000 [18118.0,20155.0], [25588.0,29323.0]

cost_chem 11242.000 [10756.0,12699.0]

cost_pall 3000.000 [1159.0,5100.0]

lambda 30000.000 [26217.0,32591.0]

We can see that there are many parameters whose PCT is the entire interval of its

domain. For example, all the parameters of PET has the interval [0, 1] has PCT.

In contrast, there are some parameters whose PCT is more restrictive. For example,

the reference value for the sensitivity of CT scan is 0.51. The PCT given by the table is

[0.41, 0.574]. It means the reference value of sensitivity of CT scan is not very far from

the thresholds, and some policy could change if the value of sensitivity varies.
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EVPI

Table 6.7 shows the EVPI of each parameter of Mediastinet. Most of the parameters

presents a value of 0.0 when presenting their EVPI rounded to 3 decimals. The parameter

with the highest EVPI is lambda, whose value 0.503 is much higher than the second

parameter with highest EVPI (surv_qale_N2_N3_ne_thor with a value of 0.052).

Other important observation is obtained from columns of EUF and EUV (see Sec-

tion 4.5.2). Most of the cells in these two columns have a value of 1.471 or similar values,

except the two cells for lambda. Its value of EUF is 0.471, very far from the obtained for

the rest of parameters.

Table 6.7: EVPI in Mediastinet.

Name of the parameter EUF EUV EVPI (EUV−EUF )
prevalence_N2N3 1.471 1.471 0.000

sens_CT 1.471 1.471 0.000

spec_CT 1.471 1.471 0.000

sens_TBNA_CT_po 1.471 1.471 0.000

spec_TBNA_CT_po 1.471 1.471 0.000

sens_TBNA_CT_ne 1.471 1.471 0.000

spec_TBNA_CT_ne 1.471 1.471 0.000

sens_PET_CT_po 1.471 1.471 0.000

spec_PET_CT_po 1.471 1.471 0.000

sens_PET_CT_ne 1.471 1.471 0.000

spec_PET_CT_ne 1.471 1.471 0.000

sens_EBUS_CT_po_PET_po 1.471 1.471 0.000

sens_EBUS_CT_po_PET_ne 1.471 1.471 0.000

sens_EBUS_CT_ne_PET_po 1.471 1.471 0.000

sens_EBUS_CT_ne_PET_ne 1.471 1.471 0.000

spec_EBUS_CT_po_PET_po 1.471 1.471 0.000

spec_EBUS_CT_po_PET_ne 1.471 1.471 0.000

spec_EBUS_CT_ne_PET_po 1.471 1.471 0.000

spec_EBUS_CT_ne_PET_ne 1.471 1.471 0.000

sens_EBUS_CT_po 1.471 1.471 0.000

spec_EBUS_CT_po 1.471 1.471 0.000

sens_EBUS_CT_ne 1.471 1.471 0.000

Continued on next page
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Table 6.7 � continued from previous page

Name of the parameter EUF EUV EVPI (EUV−EUF )
spec_EBUS_CT_ne 1.471 1.471 0.000

sens_EUS_CT_po_PET_po 1.471 1.471 0.000

sens_EUS_CT_po_PET_ne 1.471 1.471 0.000

sens_EUS_CT_ne_PET_po 1.471 1.471 0.000

sens_EUS_CT_ne_PET_ne 1.471 1.471 0.000

spec_EUS_CT_po_PET_po 1.471 1.471 0.000

spec_EUS_CT_po_PET_ne 1.471 1.471 0.000

spec_EUS_CT_ne_PET_po 1.471 1.471 0.000

spec_EUS_CT_ne_PET_ne 1.471 1.471 0.000

sens_EUS_CT_po 1.471 1.471 0.000

spec_EUS_CT_po 1.471 1.471 0.000

sens_EUS_CT_ne 1.471 1.471 0.000

spec_EUS_CT_ne 1.471 1.471 0.000

sens_MED_CT_po_PET_po 1.471 1.471 0.000

spec_MED_CT_po_PET_po 1.471 1.471 0.000

sens_MED_CT_po_PET_ne 1.471 1.471 0.000

spec_MED_CT_po_PET_ne 1.471 1.471 0.000

sens_MED_CT_ne_PET_po 1.471 1.471 0.000

spec_MED_CT_ne_PET_po 1.471 1.471 0.000

sens_MED_CT_ne_PET_ne 1.471 1.471 0.000

spec_MED_CT_ne_PET_ne 1.471 1.471 0.000

sens_MED_CT_po 1.471 1.471 0.000

spec_MED_CT_po 1.471 1.471 0.000

sens_MED_CT_ne 1.471 1.471 0.000

spec_MED_CT_ne 1.471 1.471 0.000

MED_sv_Decision_MED_yes 1.471 1.471 0.000

morbidity_MED 1.471 1.471 0.000

morbidity_EBUS 1.471 1.471 0.000

morbidity_EUS 1.471 1.471 0.000

morbidity_TBNA 1.471 1.471 0.000

thor_inmediate_survival 1.471 1.475 0.003

chem_inmediate_survival 1.471 1.471 0.000

Continued on next page
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Table 6.7 � continued from previous page

Name of the parameter EUF EUV EVPI (EUV−EUF )
pall_inmediate_survival 1.471 1.471 0.000

surv_qale_N2_N3_po_thor 1.471 1.472 0.001

surv_qale_N2_N3_po_chem 1.471 1.480 0.009

surv_qale_N2_N3_po_pall 1.471 1.474 0.003

surv_qale_N2_N3_ne_thor 1.471 1.523 0.052

surv_qale_N2_N3_ne_chem 1.471 1.494 0.023

surv_qale_N2_N3_ne_pall 1.471 1.471 0.000

cost_CT 1.471 1.471 0.000

cost_TBNA 1.471 1.471 0.000

cost_MED 1.471 1.471 0.000

cost_PET 1.471 1.471 0.000

cost_EBUS 1.471 1.471 0.000

cost_EUS 1.471 1.471 0.000

cost_thor 1.471 1.473 0.002

cost_chem 1.471 1.473 0.002

cost_pall 1.471 1.471 0.000

lambda 0.544 1.047 0.503

Sensitivities

Table 6.8 presents the values of sensitivities for each decision and each parameter of

Mediastinet. Last column indicates the maximum of the sensitivities of each parameter,

while last row indicates the maximum of the sensitivities of each decision. Cell in the last

row and last column indicates the maximum of the table.

Table 6.8: Sensitivities in Mediastinet. The correspondence of the �rst column (PN)
is given by Table 6.5.

Parameter TBNA PET EB/EU MED Treat. Max.

prevalence_N2N3 0.105 0.000 0.000 0.033 0.000 0.105

sens_CT 0.061 0.000 0.000 0.025 0.000 0.061

spec_CT 0.004 0.000 0.000 0.026 0.000 0.026

Continued on next page
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Table 6.8 � continued from previous page

Parameter TBNA PET EB/EU MED Treat. Max.

sens_TBNA_CT_po 0.005 0.000 0.000 0.000 0.000 0.005

spec_TBNA_CT_po 0.037 0.000 0.000 0.029 0.000 0.037

sens_TBNA_CT_ne 0.290 0.000 0.000 0.000 0.052 0.290

spec_TBNA_CT_ne 0.252 0.000 0.000 0.000 0.000 0.252

sens_PET_CT_po 0.000 0.000 0.000 0.000 0.000 0.000

spec_PET_CT_po 0.000 0.000 0.000 0.000 0.000 0.000

sens_PET_CT_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_PET_CT_ne 0.000 0.000 0.000 0.000 0.000 0.000

sens_EBUS_CT_po_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

sens_EBUS_CT_po_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

sens_EBUS_CT_ne_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

sens_EBUS_CT_ne_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_EBUS_CT_po_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

spec_EBUS_CT_po_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_EBUS_CT_ne_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

spec_EBUS_CT_ne_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

sens_EBUS_CT_po 0.064 0.000 0.003 0.026 0.000 0.064

spec_EBUS_CT_po 0.000 0.000 0.001 0.007 0.000 0.007

sens_EBUS_CT_ne 0.014 0.000 0.000 0.000 0.000 0.014

spec_EBUS_CT_ne 0.225 0.000 0.025 0.000 0.011 0.225

sens_EUS_CT_po_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

sens_EUS_CT_po_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

sens_EUS_CT_ne_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

sens_EUS_CT_ne_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_EUS_CT_po_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

spec_EUS_CT_po_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_EUS_CT_ne_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

spec_EUS_CT_ne_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

sens_EUS_CT_po 0.004 0.000 0.004 0.000 0.000 0.004

spec_EUS_CT_po 0.000 0.000 0.000 0.000 0.000 0.000

sens_EUS_CT_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_EUS_CT_ne 0.000 0.000 0.000 0.000 0.000 0.000

Continued on next page
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Table 6.8 � continued from previous page

Parameter TBNA PET EB/EU MED Treat. Max.

sens_MED_CT_po_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

spec_MED_CT_po_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

sens_MED_CT_po_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_MED_CT_po_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

sens_MED_CT_ne_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

spec_MED_CT_ne_PET_po 0.000 0.000 0.000 0.000 0.000 0.000

sens_MED_CT_ne_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_MED_CT_ne_PET_ne 0.000 0.000 0.000 0.000 0.000 0.000

sens_MED_CT_po 0.000 0.000 0.000 0.000 0.000 0.000

spec_MED_CT_po 0.000 0.000 0.000 0.035 0.000 0.035

sens_MED_CT_ne 0.000 0.000 0.000 0.000 0.000 0.000

spec_MED_CT_ne 0.000 0.000 0.000 0.000 0.000 0.000

MED_sv_Decision_MED_yes 0.000 0.000 0.000 0.044 0.000 0.044

morbidity_MED 0.000 0.000 0.000 0.000 0.000 0.000

morbidity_EBUS 0.218 0.000 0.000 0.000 0.000 0.218

morbidity_EUS 0.000 0.000 0.000 0.000 0.000 0.000

morbidity_TBNA 0.000 0.000 0.000 0.000 0.000 0.000

thor_inmediate_survival 0.315 0.000 0.038 0.029 0.027 0.315

chem_inmediate_survival 0.011 0.000 0.000 0.000 0.000 0.011

pall_inmediate_survival 0.000 0.000 0.000 0.000 0.000 0.000

surv_qale_N2_N3_po_thor 0.120 0.000 0.106 0.033 0.000 0.120

surv_qale_N2_N3_po_chem 0.325 0.000 0.000 0.033 0.040 0.325

surv_qale_N2_N3_po_pall 0.154 0.000 0.000 0.000 0.042 0.154

surv_qale_N2_N3_ne_thor 0.445 0.000 0.246 0.071 0.237 0.445

surv_qale_N2_N3_ne_chem 0.401 0.000 0.150 0.045 0.149 0.401

surv_qale_N2_N3_ne_pall 0.000 0.000 0.000 0.000 0.000 0.000

cost_CT 0.000 0.000 0.000 0.000 0.000 0.000

cost_TBNA 0.263 0.000 0.000 0.000 0.000 0.263

cost_MED 0.000 0.000 0.000 0.023 0.000 0.023

cost_PET 0.000 0.001 0.000 0.000 0.000 0.001

cost_EBUS 0.155 0.000 0.000 0.000 0.000 0.155

cost_EUS 0.000 0.000 0.000 0.000 0.000 0.000

Continued on next page
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Table 6.8 � continued from previous page

Parameter TBNA PET EB/EU MED Treat. Max.

cost_thor 0.197 0.000 0.140 0.030 0.001 0.197

cost_chem 0.245 0.000 0.000 0.030 0.003 0.245

cost_pall 0.000 0.000 0.000 0.000 0.000 0.000

lambda 0.337 0.047 0.366 0.099 0.423 0.423

Maximum 0.445 0.047 0.366 0.099 0.423 0.445

We can observe in Table 6.8 how the sensitivities are 0.0 in most of cases, which in-

dicates that the optimal strategy would not change when varying these parameters. The

highest value of sensitivity corresponds to surv_qale_N2_N3_ne_thor, which presents

a sensitivity of 0.445 when analyzing the policy changes of Decision_TBNA. Other

parameters with high sensitivity are lambda (0.382) when analyzing Treatment, and

sens_TBNA_CT_ne (0.29) when considering the changes in Decision_TBNA. We can

observe that the only parameter that a�ects the policies of all the decisions is lambda.

With regards to the decisions, the policy that can be more a�ected by changes in the

parameters is Decision_TBNA (0.445), Treatment (0.382) and Decision_EBUS_EUS

(0.366). Sensitivities of Decision_PET and Decision_MED are very small.

6.7 Discussion

We have built an in�uence diagram, Mediastinet for the mediastinal staging of non-

small cell lung cancer. The parameter λ, which in cost-e�ectiveness analyses represents the

amount of money that the decision maker is willing to pay to obtain a unit of e�ectiveness,

has been included in the ID by introducing a utility node that represents 1/λ.

First, we have evaluated the ID with λ = +∞, i.e., (1/λ) = 0, to obtain the strategy

that maximizes the e�ectiveness, disregarding economic costs. Then, we have evaluated

it again with λ = 30, 000 e/QALY, which is accepted as the shadow cost-e�ectiveness

equivalence in Spain.3

The expert said that the optimal strategies yielded by Mediastinet were very rea-

sonable and �logic�, and that the system was �quite intelligent.�

3In this context, shadow means that this value has not been explicitly stated by the health authorities;
but, it has been estimated by some researchers (Sacristán et al., 2002) by analyzing which interventions
are included in the Spanish public health system and which have been excluded.



206 Chapter 6: Application: Mediastinal staging of non-small cell lung cancer

Given that we do not know with precision the values of the parameters, we have rep-

resented this uncertainty by assigning, with the expert's help, a probability distribution

to each independent parameter of the model (see Section 6.6.1). We were glad to realize,

after performing the sensitivity analysis, that the optimal policies resulting from Medi-

astinet were very robust to the variations in the parameters (see Section 6.6.2) because

they:

• present policy change tresholds with enough range of variation in most of the cases;

• generally have a value of 0.0 for the EVPI;

• the sensivities are 0.0 or a very small value in most of the cases.

There are are only two parameters that can have signi�cant on the strategy: surv_qale_N2_N3_ne_thor

and lambda. In spite of the fact that surv_qale_N2_N3_ne_thor is the parameter with

the highest sensitivity in a decision, the parameter that re�ects to have more impact is

lambda, as is shown by the value of sensitivity for three decisions, and its high value

of EVPI. This indicates us that knowing with more certainty the value of λ has very

important bene�ts for the strategy because it increases its expected value.

As future work, the expert suggested us two possible research lines regarding to the ap-

plication. First, he is very interested in considering the possibility of having partial order

among the decisions of the in�uence diagrams. Thus, a representation like unconstrained

in�uence diagrams would be one possibility for that purpose.

Second, he would like to include in the model the possibility of repeat some decisions,

which is named by the expert as restaging.

We want to emphasize that all the in�uence diagrams of Mediastinet and the aug-

mented IDs for the SA, the tables and �gures of the strategies of this chapter have been

generated automatically by a Java program whose entries are the numerical values of

probability distributions of parameters and their type (normal, log-normal, beta). These

values are contained in a �le, which can easily modi�ed to obtain in few minutes all the

in�uence diagrams, their optimal strategies and the SA tables and �gures. Parameters

were provided by the expert, which made a reasonable search in the literature. Other

experts could disagree in a numerical parameter of distributions or even in its type. How-

ever, we have tried to implement the decision-support system to have the possibility of

modifying it easily.
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Chapter 7

Conclusions

We end this dissertation by presenting the main contributions (Section 7.1) and the lines

open for future research (Section 7.2).

7.1 Main contributions

In this dissertation we have considered the representation, solution, and analysis of med-

ical decision problems with probabilistic graphical models.

We have proposed a new algorithm for evaluating in�uence diagrams (IDs) with super-

value (SV) nodes, which has �ve advantages over the arc reversal (AR) algorithm of

Tatman and Shachter (1990): it is faster in general, requires less memory in most of the

cases, introduces fewer redundant variables, simpli�es sensitivity analysis, and can achieve

further savings of time and memory space for IDs containing canonical models, such as

the noisy OR or the noisy MAX (see Chapter 3).

We have developed new explanation methods�see Chapter 4�for both the model (the

knowledge encoded in the in�uence diagram) and the reasoning (the strategies returned by

the in�uence diagram), which proved to be very useful in the construction and debugging

of Mediastinet, and helped to convince the expert that the recommendations given by

our model are reasonable. In particular, policy trees, which we have been proposed as

a compact way of representing the optimal policies returned by the ID, have been very

useful for a model such asMediastinet, in which the biggest policy table contains 15552

columns, while the corresponding policy tree contains only 5 or 9 leaves, depending on

the evaluation criterion. In the future these explanation facilities could be used to convert

in�uence diagrams into tutoring systems.

We have implemented some sensitivity analysis algorithms (see Section 4.5) which,

given the uncertainty in the parameters, allow us to compute:

• the probability of a change in the strategy;

209
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• the intervals of the parameters where the optimal policies do not change; and

• the expected value of perfect information for each parameter.

We have developed an anytime algorithm for evaluating unconstrained in�uence di-

agrams, a type of probabilistic graphical model that admits a partial ordering of the

decisions. The purpose of the method was to provide a quali�ed recommendation for the

�rst decisions when the decision maker has no time to wait until the standard algorithm

had computed the optimal strategy (see Chapter 5). The quality of the recommendations

were measured by considering:

• the frequency with which the anytime algorithm returns the correct decision options

(relative to the optimal strategy) for all decisions down to the ith level in the decision

tree;

• the expected utility of following the strategy prescribed by the anytime algorithm

or dynamic programming for the �rst i levels of decisions, followed by the optimal

strategy for the remaining decisions.

From the results we could see that the algorithm improves over time with respect to all

the recorded characteristics.

As an application of probabilistic graphical models, we have built a decision-support

system for the mediastinal staging of non-small cell lung cancer (Chapter 6). The

parameter λ, which in cost-e�ectiveness analyses represents the amount of money that

the decision maker is willing to pay to obtain a unit of e�ectiveness, has been included in

the ID by introducing a utility node that represents 1/λ.

First, we have evaluated the ID with λ = +∞, i.e., (1/λ) = 0, to obtain the strategy

that maximizes the e�ectiveness, disregarding economic costs. Then, we have evaluated

it again with λ = 30, 000 e/QALY, which is accepted as the shadow cost-e�ectiveness

equivalence in Spain.1

The expert said that the optimal strategies yielded by Mediastinet were very rea-

sonable and �logic�, and that the system was �quite intelligent.�

Given that we do not know with precision the values of the parameters, we have rep-

resented this uncertainty by assigning, with the expert's help, a probability distribution

to each independent parameter of the model (see Section 6.6.1). We were glad to realize,

1In this context, shadow means that this value has not been explicitly stated by the health authorities;
but, it has been estimated by some researchers (Sacristán et al., 2002) by analyzing which interventions
are included in the Spanish public health system and which have been excluded.
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after performing the sensitivity analysis, that the optimal policies resulting from Medi-

astinet were very robust to the variations in the parameters (see Section 6.6.1): the

parameter with the highest impact on the strategy is λ, as expected.

7.2 Future work

There are some open lines for future research.

With respect to the variable-elimination algorithm for IDs with SV nodes, presented

in Chapter 3, the three main issues that should be investigated are the following:

1. to avoid introducing all redundant variables, if possible;

2. to develop heuristic rules for this algorithm, mainly to �nd near-optimal elimination

orderings, but also to decide how to distribute potentials in sum-product combina-

tions; and

3. how to combine our algorithm with the proposals for lazy evaluation of traditional

IDs, in order to reduce the computational cost.

With respect to the explanation of the reasoning in IDs (Chapter 4) there are also

three main issues to be investigated:

1. to �nd some method that could help to explain to the expert which variables are

having more in�uence in the optimal strategy and in the maximum expected utility;

2. to �nd very simple representations of optimal policies not only by assuming that the

decision maker acts optimally in every decision, but also considering the non-optimal

scenarios of the problem.

3. to solve two questions related with SA in IDs with SV nodes: how to perform

n-way joint analysis; and how to calculate with exact methods the policy change

thresholds.

The anytime algorithm proposed, presented in Chapter 5, could be improved in three

ways:

1. to combine our method with some dynamic programming-based approach that could

accelerate the convergence towards to the optimal strategy;

2. to �nd alternative forms for the non-admissible heuristic used in the search; and



212 Chapter 7: Conclusions

3. to exploit the coalescence when building the decision tree.

With respect to the application of Mediastinet (Chapter 6) we have two research

lines suggested by the expert:

1. to consider the possibility of having partial order among the decisions of the in�uence

diagram;

2. to represent in the model the possibility of repeat some medical tests.
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Appendix of Chapter 3

A.0.1 Proof of Theorem 3.2.1

Before proving the theorem, we introduce a de�nition and a lemma.

De�nition A.0.1 The number of summands of the expansion of a ToP rooted at node n,

denoted by s(n), is de�ned recursively as follows. If n is a terminal node, then s(n) = 1.

If n has m children, n1, . . . , nm, and n is of type sum, then s(n) =
∑m

i=1 s(ni); if n is of

type product, s(n) =
∏m

i=1 s(ni).

Lemma A.0.1 When the method distribute (Algorithm 3.1) is applied to a node n having

a child of type sum, n1, then s(n
′
1,l) < s(n) for each child n′1,l of n1 in the new ToP (see

Figure 3.4).

Proof. We have that s(n) = s(n1) · . . . · s(nm), which implies that s(n) ≥ s(n1).

Given that n1 has more than one child and s(n1) =
∑k

l=1 s(n1,l), then s(n1) > s(n1,l) for

all l, s(n1) > 1, and s(n) > s(n2). If n1,l was a terminal node, then s(n′1,l) = s(n2) and

s(n′1,l) < s(n). If n1,l was a non-terminal node then s(n′1,l) = s(n1,l)·s(n2) < s(n1)·s(n2) ≤
s(n1) · . . . · s(nm) = s(n), which proves the lemma.

Proof. [Proof of Theorem 3.2.1]We prove it by induction on the number of summands

of the root of the tree, s(r), taking into account that the number of children of every node

is �nite. If s(r) = 1 then the tree has only one terminal node or one product node having a

�nite number of leaves, and clearly the algorithm terminates. Let us now assume that the

theorem holds for every tree such that s(r) ≤ k and let us examine a tree such that s(r) =

k + 1, where k ≥ 1. If r is of type sum, then each subtree of r has at most k summands

(because r has at least two children), and therefore the unfork method terminates for

each child of r and for r itself. If r is of type product, then at least one of the children

of r, say ni, must be of type sum (otherwise s(r) would be 1). Therefore, the number
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of summands for the other children of r is at most (k + 1)/2, and (k + 1)/2 ≤ k, which

means that unfork terminates for those children. Similarly, the number of summands of

each child of ni is at most k, which means that the algorithm terminates for each child of

ni and for ni itself. When all the children of r have processed the unfork message, it may

happen that two of them, say n1 and n2, depend on A. It is then necessary to distribute

one of them, say n2, wrt the other, as shown in Figure 3.4, and to send again the message

unfork to n1. Since the lemma above states that s(n′1,l) < s(n), then s(n′1,l) ≤ k, and

the unfork method terminates for the children of n1 and, consequently, for n1 itself. If r

has still other children that depend on A, they must also be distributed wrt n1, but the

process terminates for each of those other children, and given that the number of children

of r is �nite, the whole process terminates.

A.0.2 Proof of Theorem 3.2.2

Proof. We prove the theorem by induction on the depth of the ToP, d. Clearly, the

theorem holds for d = 1. Let us assume that the theorem holds for any tree whose depth

is not greater than d and that there is a tree t of depth d+1, whose root r has m children,

n1, . . . , nm, such that each node ni represents a potential ψi. If r is a sum node, the

potential represented by r is:

ψ = ψ1 + . . .+ ψm .

Therefore, ∑
A

ψ =
∑
A

ψ1 + . . .+
∑
A

ψm ,

and, according with the induction hypothesis, each potential
∑

A ψi can be obtained by

summing out A on the terminal nodes that depend of A. If r is a product node, at most

one of its children will depend on A, because the tree is non-forked. If none of them

depends on A, then
∑

A ψ = ψ and the theorem holds. If one potential, say ψj, depends

on A, then ∑
A

ψ =
∑
A

m∏
i=1

ψi =

(∏
i 6=j

ψi

)∑
A

ψj .

Since the depth of the tree rooted at nj is d, the theorem holds because of the induction

hypothesis.



223

A.0.3 Correctness of the algorithm VE-D

We prove now the correctness of VE-D (cf. Section 3.4.1), which eliminates the variables

by applying Algorithm 3.7 iteratively.

Given an ID, let {V1, . . . , Vn} be a valid elimination sequence for that ID, i.e., a

sequence in which the �rst variables are those in Cn, then Dn, then those in Cn−1, and

so on; the last variables are D1 and those in C0. Because of Equations 3.1 and 3.2,

MEU = op
vn

. . . op
v1

P (vC : vD) · ψU0(fPred(U0)) , (A.1)

where op is an operator that depends on the type of variable to be eliminated,

op
vi

=

{ ∑
vi

if Vi ∈ VC

maxvi if Vi ∈ VD ,
(A.2)

and P (vC |vD) is a family of probability distributions de�ned as follows:

P (vC |vD) =
∏

Vi∈VC

P (vi|pa(Vi)) (A.3)

i.e., for each con�guration vD we have a probability distribution de�ned on VC .

We de�ne V0 as the set of all the variables, V0 = VC ∪ VD, and Vi as the set of

variables remaining after eliminating Vi:

∀i, 1 ≤ i ≤ n, Vi = Vi−1\{Vi} . (A.4)

Clearly, Vn = ∅. Analogously, Vi
C is the set of chance variables remaining after elimi-

nating Vi, Vi
C = Vi ∩VC , and Vi

D = Vi ∩VD. Therefore, Vi−1
C contains all the variables

remaining when Vi is to be eliminated.

Lemma A.0.2 If Vi is a decision, then P (vi−1
C |vD) does not depend on V̌i

D, where V̌i
D =

VD\Vi
D.

Please note that Vi−1
C is the set of chance variables remaining before eliminating Vi,

Vi
D is the set of decisions remaining after eliminating Vi, and therefore V̌i

D includes Vi

and the decisions eliminated before Vi.

Before proving the lemma, we illustrate it with an example.
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Example A.0.1 Coming back to the ID in Example 3.4.1 on page 77 (Fig. 3.9), Equa-

tion A.3 tells us that

P (vC |vD) = P (a, b, c, e|d1, d2) = P (a) · P (b|a) · P (c|a, d1) . (A.5)

The only valid elimination sequence is {V1 = A, V2 = D2, V3 = C, V4 = D1, V5 = B}.
The �rst decision eliminated is V2 (D2) and the second one is V4 (D1). Let us fo-

cus on the former. In this case, i = 2, Vi−1 = {D2, C,D1, B}, Vi−1
C = {C,B}, and

P (vi−1
C |vD) = P (c, b|d1, d2). We also have Vi

D = {D1} and V̌i
D = {D2}. The lemma

states that P (c, b|d1, d2) does not depend on d2, which is obvious, because P (c, b|d1, d2) =∑
a P (a, b, c|d1, d2) =

∑
a P (a) · P (b|a) · P (c|a, d1) and none of the factors inside the

last summatory depends on d2. Let us focus now on the second decision eliminated, D1.

Then, i = 4, Vi−1 = {D1, B}, Vi−1
C = {B}, and P (vi−1

C |vD) = P (b|d1, d2). We also have

Vi
D = ∅ and V̌i

D = {D1, D2}. The lemma states that P (b|d1, d2) does not depend on d1

nor on d2. This result is not obvious, because apparently P (b|d1, d2) depends on d1:

P (b|d1, d2) =
∑
a

∑
c

P (a, b, c, e|d1, d2) =
∑
a

∑
c

P (a) · P (b|a) · P (c|a, d1) . (A.6)

Now, we prove the lemma.

Proof. We build a Bayesian network (BN) as follows: we create a chance node for

each variable in V. If Vi is a chance variable in the ID, we draw a link from each node

that was a parent of Vi in the ID; the conditional probability distribution of Vi in the BN

is the same as in the ID. If Vi is a decision in the ID, then Vi has no parents in the BN;

we assign it an arbitrary distribution, for instance, a uniform probability. [The BN for

the ID in Figure 3.9 is shown in Figure A.1.] If PBN(v) is the join probability of the BN,

then it follows from Equation A.3 that

P (vC |vD) = PBN(vC |vD) (A.7)

and, consequently,

P (vi−1
C |vD) = PBN(vi−1

C |vD) . (A.8)

Now we focus on the decision Vi. In the BN, Vi−1
C is conditionally independent of V̌i

D

given Vi
D, for the following reason: In the BN the nodes that correspond to decisions in

the ID do not have parents. Therefore, any path departing from a decision Vj in V̌i
D (Vj

can be Vi itself) must pass through a child of Vj, that we call X, which was a chance

variable in the ID. This node X and its descendants have been eliminated before Vi and
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B CAD1 D2
Figure A.1: Bayesian network for the ID in Figure 3.9 (see the proof of Lemma A.0.2).

before Vj, because a descendant of Vj can not be an informational predecessor of any of

these decisions. Additionally, no node in Vi
D is a descendant of Vj. This implies that any

path from any node in V̌i
D to the any node in Vi−1

C is inactive given Vi
D, in the sense

of d-separation Pearl (1988), and consequently Vi−1
C is conditionally independent of V̌i

D

given Vi
D.

1 From the fact that Vi−1
C is conditionally independent of V̌i

D given Vi
D, we

conclude thatp

P (vi−1
C |vD) = PBN(vi−1

C |v
i
D, v̌

i
D︸ ︷︷ ︸

vD

) = PBN(vi−1
C |v

i
D) , (A.9)

which proves that P (vi−1
C |vD) does not depend on V̌i

D.

We de�ne φ0 as the set of all the probability potentials, φ0 = {P (vi|pa(Vi)) |Vi ∈ VC},
and φi as the list of probability potentials (LoPP) handled by VE-D after eliminating

variable Vi. We denote by Πφi the product of all the potentials in φi.

Proposition A.0.1 At each step of algorithm VE-D, the list of probability potentials

(LoPP) represents the probability of the chance variables that have not been eliminated

yet:

∀i, 0 ≤ i ≤ n, Πφi = P (vi−1
C |vD) . (A.10)

Proof. We prove it by induction on i. When i = 0, i.e., before eliminating any

variable, the LoPP contains all the conditional probability potentials that de�ne the ID,

i.e., φ0; in this case, the proposition holds because of Equation A.3. Let us assume that

it holds for i− 1:

Πφi−1 = P (vi−1
C |vD) . (A.11)

1Coming back to Example A.0.1, when eliminating D2 (i = 2), we have P (vi−1
C |vD) = P (b, c|d1, d2) =

PBN (b, c|d1, d2). Because of d-separation (see Figure A.1), PBN (b, c|d1, d2) = PBN (b, c|d1), which explains
why P (b, c|d1, d2) does not depend on D2.
When eliminating D1 (i = 4), we have P (vi−1

C |vD) = P (b|d1, d2) = PBN (b|d1, d2). Again, because of
d-separation, PBN (b|d1, d2) = PBN (b), which explains why P (b|d1, d2) does not depend on D1 nor on D2.
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We divide φi−1 in two sets: φi−1
+ contains the potentials that depend on Vi and φ

i−1
− those

that do not. If Vi is a chance variable, then Vi
C = Vi−1

C \{Vi} and

P (viC |vD) =
∑
vi

P (viC , vi︸ ︷︷ ︸
vi−1
C

|vD) =
∑
vi

Πφi−1 = Πφi−1
−

∑
vi

Πφi−1
+︸ ︷︷ ︸

φ∗Vi

= Πφi . (A.12)

Algorithm 3.7 just implements this equation, because it leaves in the LoPP the potentials

that do not depend on Vi, namely φi−1
− , and replaces those that depend on Vi with a new

potential φ∗Vi computed by multiplying all those potentials and summing out Vi. If Vi is

a decision, then P (vi−1
C |vD) does not depend on Vi, because of Lemma A.0.2. Given that

P (vi−1
C |vD) = Πφi−1

+ · Πφi−1
− and no potential in φi−1

− depends on Vi, then Πφi−1
+ can not

depend on Vi. Therefore,

P (vi−1
C |vD) = Πφi−1 = Πφi−1

− · projectViΠφ
i−1
+︸ ︷︷ ︸

φ∗Vi

= Πφi . (A.13)

Given that Vi = Vi−1\{Vi} and Vi is a decision, then Vi
C = Vi−1

C and

P (viC |vD) = P (vi−1
C |vD) = Πφi . (A.14)

Theorem A.0.1 We have

∀i, 0 ≤ i ≤ n, MEU = op
vn

. . . op
vi+1

Πφi · ψi , (A.15)

where ψi is the potential represented by the ADG of utility potentials (ADGoUP) after

algorithm VE-D has eliminated variable Vi.

Proof. We prove it by induction on i. The theorem holds for i = 0 because

Πφ0 = P (vC |vD) and originally the ADGoUP represents the utility of the ID: ψ0 =

ψU0(fPred(U0)). Let us assume that it holds for i− 1:

MEU = op
vn

. . . op
vi

Πφi−1 · ψi−1 . (A.16)
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If Vi is a chance variable,

op
vi

Πφi−1 · ψi−1 =
∑
vi

Πφi−1 · ψi−1 (A.17)

= φi−1
−

∑
vi

Πφi−1
+ · ψi−1 (A.18)

= φi−1
− · φ∗Vi︸ ︷︷ ︸

φi

∑
vi

φVi
φ∗Vi
· ψi−1

︸ ︷︷ ︸
ψi

, (A.19)

where φVi and φ∗Vi are de�ned as in Algorithm 3.7: φVi = Πφi−1
+ and φ∗Vi = φVi . When

comparing this equation with Algorithm 3.7, is is clear that

op
vi

Πφi−1 · ψi−1 = φi · ψi (A.20)

If Vi is a decision, then Πφi−1 does not depend on Vi and

op
vi

Πφi−1 · ψi−1 = max
vi

Πφi−1 · ψi−1 (A.21)

= Πφi−1 max
vi

ψi−1 (A.22)

= Πφi−1
− · Πφi−1

+︸ ︷︷ ︸
φ∗Vi

·max
vi

ψi−1︸ ︷︷ ︸
ψi

. (A.23)

As Πφi−1
+ does not depend on Vi, Πφi−1

+ = projectViΠφ
i−1
+ = φ∗Vi . On the other hand,

ψi = maxvi ψ
i, which implies that Equation A.20 also holds when Vi is a decision. This

result, together with Equation A.16, proves the theorem.

Corollary A.0.1 For every ID, Algorithm 3.7 returns the MEU and an optimal policy.
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Appendix B

Appendix of Chapter 5

B.1 Figures and table of experimental results for com-

paring DP and BF-A

0.0 % 25.0 % 50.0 % 75.0 % 100.0 %
EU1(t) 0 -0,026 -0,04 -0,028 0,052
EU2(t) 0 0,434 0,645 0,745 0,716
EU3(t) 0 0,363 0,502 0,59 0,598

AccFreqDec1(t) 0 0,011 -0,017 -0,024 0,029
AccFreqDec2(t) 0 0,127 0,18 0,215 0,244
AccFreqDec3(t) 0 0,086 0,124 0,149 0,169

Table B.1: Table for BF-A
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Figure B.1: Comparison of FreqDec(t) between DP and BF-A
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Figure B.2: Comparison of FreqOpt(t) between DP and BF-A
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Figure B.3: Comparison of EU1(t) between DP and BF-A
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Figure B.4: Comparison of EU2(t) between DP and BF-A
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Figure B.5: Comparison of EU3(t) between DP and BF-A
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Figure B.6: Comparison of AccFreqDec1(t) between DP and BF-A
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Figure B.7: Comparison of AccFreqDec2(t) between DP and BF-A
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Figure B.8: Comparison of AccFreqDec3(t) between DP and BF-A



234 Chapter B: Appendix of Chapter 5



Appendix C

Software developed in Elvira

We have used Elvira for most of the software developed in this thesis. The author of

this thesis has been an Elvira developer during the doctorate period1, having full access

to Elvira repository and with permissions for modifying the source code. Most of the

algorithms implemented in this thesis have been uploaded to Elvira repository and made

publicly available. They are usually accessible through both the GUI and the API. The

main contributions of this thesis to Elvira software are the next:

• Functionalities for IDs with SVNs, which can be accessed through Elvira GUI and

its API:

� Edition and evaluation of IDs with SVNs.

� Two solution algorithms:

∗ Tatman and Shachter's algorithm.

∗ Variable elimination for IDs with SVNs.

• Explanation capabilities for IDs through Elvira GUI and its API. Since most of the

explanations integrated are graphical we recommend the user to access them via

Elvira GUI.

• Functionalities of UIDs through the API of Elvira:

� Edition and evaluation of UIDs.

� Two evaluation algorithms:

∗ Dynamic programming algorithm.

∗ Anytime algorithm for solving UIDs.

1The author was granted by Elvira project during the �rst months of the thesis and his work in that
period consisted basically in programming in Elvira.
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The integration of the functionalities of UIDs in Elvira GUI is in an advanced stage, but

it has not still been uploaded to Elvira repository.

Apart from the software developed in Elvira, we have also built an ID for the medi-

astinal staging of non-small lung cancer. It is stored in a �le that can be edited, debugged

and evaluated with Elvira.



Apéndice D

Resumen en Español (Spanish

Summary)

D.1 Motivación

Los modelos grá�cos probabilísticos (MGP), en particular las redes bayesianas y los di-

agramas de in�uencia, fueron desarrollados en los años 80 por investigadores del campo

de Inteligencia Arti�cial, Matemáticas y Economía con el propósito de resolver proble-

mas cuya complejidad excede la capacidad de los métodos existentes hasta entonces. Hoy

en día los MGP son aplicados a muchas áreas y existe un interés creciente en el campo

académico y en el mundo empresarial. Los MGP permiten resolver problemas que no po-

drían ser abordados con los método probabilísticos tradicionales o con otras técnicas de

Inteligencia Arti�cial.

Varios grupos de investigación españoles interesados en los MGP fueron surgiendo de

forma independiente en diferentes universidades. El trabajo en MGP comenzó en la UNED

en 1990 con la tesis doctoral de Díez (1994), que consistió en la construcción del sistema

experto DIAVAL, una red bayesiana para el diagnóstico de enfermedades cardíacas por

ecocardiografía.

Algunos años más tarde, el Dr. Carlos Disdier Vicente, un neumólogo en el Hospital

San Pedro de Alcántara, en Cáceres (España), y Javier Díez, en la UNED, comenzaron la

construcción de un diagrama de in�uencia para la estadi�cación mediastínica del cáncer

de pulmón. Cuando el autor de esta tesis entró a formar parte del grupo de investigación,

en la UNED, en 2003, se le asignó como tema de investigación completar la construcción

del diagrama de in�uencia, que se encontraba en un estado muy incipiente.

La investigación de este grupo siempre ha estado guiada por problemas médicos con-

cretos: las necesidades surgidas al construirlos ha motivado el desarrollo de nuevos mod-

elos, algoritmos, y herramientas software, que posteriormente han sido aplicados a otros
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problemas, no solamente en medicina. Ha sido también el caso de la presente tesis.

En primer lugar, la forma de la la función que combina las utilidades (esto es, las

preferencias del decisor, en nuestro caso, la cantidad y calidad de vida de pacientes con

cáncer de pulmón) nos llevó a una estructura de nodos de utilidad en nuestro diagrama

de in�uencia. Esto nos llevó a desarrollar un nuevo algoritmo de evaluación que pudiera

mejorar el único algoritmo existente hasta ese momento para ese tipo de diagramas de

in�uencia.

En segundo lugar, durante la interacción con el experto vimos la necesidad de contar

con capacidades de explicación para diagramas de in�uencia, que nos ayudarían en la

construcción del modelo y en su depuración. Además, serian también útiles al intentar

convencer al experto de los resultados. Por esta razón implementamos nuevos métodos de

explicación en Elvira.

Tercero, debido a la incertidumbre en los parámetros del diagrama de in�uencia, asig-

nados por el experto basado en la literatura y en sus propios datos, implementamos

algunas técnicas de análisis de sensibilidad.

Y cuarto, debido a la discusión en la literatura médica acerca del orden óptimo en

que los tests para la estadi�cación mediastínica del cáncer de pulmón deberían ser real-

izados, y dado que los diagramas in�uencia requieren un orden total, exploramos el uso

de los diagramas de in�uencia no restringidos (Jensen and Vomlelova, 2002), una rep-

resentación que permite un orden parcial entre las decisiones, y desarrollamos un nuevo

algoritmo �anytime� que proporcionara una recomendación para las primeras decisiones

cuando encontrar la estrategia óptima requiriese una excesiva cantidad de tiempo.

En esta tesis describimos los algoritmos y métodos, que no son especí�cos de medicina,

y también el sistema de apoyo a la toma de decisiones para la estadi�cación mediastínica

del cáncer de pulmón, llamado Mediastinet.

D.2 Objetivos

Debido a las necesidades descritas en la sección previa, los objetivos de esta investigación

pueden resumirse como sigue:

• Desarrollar un algoritmo de eliminación de variables para diagramas de in�uencia

(DIs) con nodos super valor (SV), y compararlo con el algoritmo de inversión de

arcos de Tatman and Shachter (1990).

• Tener capacidades de explicación y herramientas de análisis de sensibilidad para DI

con nodos SV.
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RECOPILACIÓN DE 

BIBLIOGRAFÍA

ANÁLISIS DEL 

ESTADO DEL ARTE

CONSTRUCCIÓN DE 

MEDIASTINET

DISEÑO DE NUEVOS 

MÉTODOS

IMPLEMENTACIÓN DE 

LOS MÉTODOS

VALIDACIÓN DE 

MEDIASTINET

Figura D.1: Fases en el desarrollo de esta tesis doctoral.

• Desarrollar un algoritmo anytime para diagramas de in�uencia no restringidos.

• Construir y evaluar un sistema para el apoyo a la toma de decisiones para la estadi-

�cación mediastínica del cáncer de pulmón, al que hemos denominadoMedistinet.

D.3 Metodología

La metodología seguida para lograr los objetivos corresponde a varias fases, mostradas en

la �gura Figure D.1.

La primera fase consistió en la recopilación de la bibliografía sobre modelos grá�cos

probabilísticos aplicados a la resolución de problemas de decisión. La siguiente fase con-

sistió en el estudio y análisis del estado del arte. A continuación vino la etapa de comenzar

la construcción el diagrama de in�uencia Mediastinet con la ayuda del neumólogo, el

Dr. Carlos Disdier Vicente. La construcción del diagrama de in�uencia nos llevó a de-

sarrollar nuevos métodos y a implementarlos como herramientas software. La última fase

consistió en la validación del sistema, que llevó a la modi�cación del modelo con la ayuda
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del experto en un proceso iterativo.

Es importante señalar que, después de las fases iniciales (coloreadas en verde en la �gu-

ra D.1) correspondientes a la recopilación y análisis de la bibliografía, el trabajo estuvo

guiado por las necesidades que fueron apareciendo durante la construcción de Medi-

astinet. Por tanto, la realimentación entre las diferentes fases de la investigación fue

esencial.

D.4 Organización de la tesis

Hemos estructurado la tesis en cuatro partes.

La parte I explica motivación, objetivos, y metodología de la tesis.

La parte II revisa el estado del arte y presenta los fundamentos matemáticos para el

resto de la tesis.

La parte III contiene los avances metodológicos de la tesis. El capítulo 3 describe un

algoritmo de eliminación de variables para diagramas de in�uencia con nodos super-valor.

El capítulo 4 presenta las capacidades de explicación y las técnicas de análisis de sensi-

bilidad implementadas para diagramas de in�uencia con nodos super-valor. El capítulo 4

explica un algoritmo anytime para evaluar diagramas de in�uencia no restringidos.

La parte IV presenta un sistema de ayuda a la decisión para la estadi�cación medi-

astínica del cáncer de pulmón.

Los capítulos de la parte III y IV han sido escritos siguiendo la jerarquía de niveles,

introducida por Marr (1982). En Ciencias de la Computación, Marr propuso la siguiente

jerarquía de niveles para cualquier problema computacional:

• Teoría computacional, que indica el objetivo de la computación, su justi�cación

y la teoría que es necesaria para su implementación. En nuestro caso, corresponde

básicamente al estudio de los modelos grá�cos probabilísticos.

• Algoritmos, que consiste en establecer cuáles son las entradas y las salidas, y cuál

es el algoritmo que las relaciona.

• Implementación, que traduce los algoritmos a un programa que se ejecuta en un

ordenador.

Finalmente, la parte ?? presenta las conclusiones y el trabajo futuro.
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D.5 Principales contribuciones

En esta tesis hemos considerado la representación, solución de problemas de decisión

médicos con modelos grá�cos probabilísticos.

Hemos propuesto un nuevo algoritmo para evaluar diagramas de in�uencia (DI) con

nodos super valor (SV), que tiene cinco ventajas sobre el algoritmo de inversión de arcos

de Tatman and Shachter (1990): es más rápido en general, requiere menos memoria en

la mayoría de los casos, introduce menos variables redundantes, simpli�ca el análisis de

sensibilidad, y puedo conseguir ahorros adicionales de tiempo y espacio de memoria en

diagramas de in�uencia que contengan modelos canónicos, tales como la puerta OR o la

puerta MAX con ruido (ver el capítulo 3).

Hemos desarrollado nuevos métodos de explicación�ver el capítulo 4�para el modelo

(el conocimiento codi�cado en el diagrama de in�uencia) y el razonamiento (las estrategias

obtenidas del diagrama de in�uencia), que han probado ser muy útiles en la construcción

y depuración de Mediastinet, y ayudaron a convencer al experto de que las recomenda-

ciones dadas por nuestro modelo eran razonables. En particular, los árboles de políticas,

que han sido propuestos como una forma compacta de representar las políticas óptimas

del DI, han sido muy útiles para un modelo como Mediastinet, en el que la tabla de la

política mayor contiene 15552 columnas, mientras que el correspondiente árbol de política

contiene 5 ó 9 hojas, dependiendo del criterio de evaluación. En el futuro estas capacidades

de explicación podrían ser usadas para convertir los diagramas de in�uencia en sistemas

de tutorización.

Hemos implementado algunos algoritmos de análisis de sensibilidad (ver la sección 4.5)

que, dada la incertidumbre en los parámetros, nos permiten computar:

• la probabilidad de cambio en la estrategia;

• los intervalos de los parámetros donde las políticas no cambian; y

• el valor esperado de la información perfecta para cada parámetro.

Hemos desarrollado un algoritmo anytime para la evaluación de diagramas de in�uen-

cia no restringidos, y tipo de modelos grá�cos probabilísticos que permite una ordenación

parcial de las decisiones. El objetivo del método propuesto es proporcionar una recomen-

dación cuali�cada para las primeras decisiones cuando el decisor no tiene tiempo para

esperar hasta que el algoritmo estándar haya computado la estrategia óptima (ver capí-

tulo 5). La calidad de las recomendaciones fue medida considerando:
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• la frecuencia con que el algoritmo anytime devuelve la elección correcta (relativa a

la estrategia óptima) para todas las decisiones desde la raíz hasta el nivel i en el

árbol de decisión;

• la utilidad esperada de seguir la estrategia recomendada por el algoritmo anytime

o por programación dinámica para los primeros i niveles de decisiones, seguida por

la estrategia óptima para las decisiones restantes.

De los resultados podemos ver que el algoritmo mejora a medida que avanza el tiempo,

con respecto a todas las características registradas.

Como aplicación de los modelos grá�cos probabilísticos, hemos construido un sistema

de ayuda a la decisión para la estadi�cación mediastínica del cáncer de pulmón (capítu-

lo 6). El parámetro λ, que en análisis coste efectividad representa la cantidad de dinero

que el decisor está dispuesto a pagar para obtener una unidad de efectividad, ha sido

incluido en el diagrama de in�uencia introduciendo un nodo de utilidad que representa

1/λ.

Primero, hemos evaluado el diagrama de in�uencia con λ = +∞, es decir, (1/λ) = 0,

para obtener la estrategia que maximiza la efectividad, sin tener en cuenta los costes

económicos. Entonces, lo hemos evaluado otra vez con λ = 30, 000 e/AVAC, que es

aceptado como la equivalencia coste-efectividad en la �sombra� en España.1

El experto dijo que las estrategias óptimas generadas por Mediastinet eran muy

razonables y �lógicas�, y que el sistema era �bastante inteligente�.

Dado que no sabemos con precisión los valores de los parámetros, hemos representado

esta incertidumbre asignando, con la ayuda del experto, una distribución de probabilidad

a cada parámetro independiente del modelo (ver sección 6.6.1). Nos alegramos al darnos

cuenta de que, después de realizar el análisis de sensibilidad, las políticas óptimas re-

sultantes de Mediastinet eran muy robustas a las variaciones en los parámetros (ver

sección 6.6.1): el parámetro con el mayor impacto es λ, como se esperaba.

D.6 Trabajo futuro

Hay algunas líneas abiertas para trabajo futuro.

1En este contexto, sombra signi�ca que este valor no ha sido explícitamente establecido por las au-
toridades sanitarias, sino que ha sido estimado por algunos investigadores (Sacristán et al., 2002) tras
analizar qué intervenciones son incluidas en el sistema público de saludo de España y cuáles han sido
excluidas.
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Respecto al algoritmo de eliminación de variables para DIs con nodos SV, presentado

en el capítulo 3, las tras principales cuestiones que deberían ser investigadas son las

siguientes:

1. evitar introducir todas las variables redundantes, si es posible;

2. desarrollar reglas heurísticas para este algoritmo, principalmente para encontrar

ordenaciones de eliminación casi óptimas, y también decidir cómo distribuir los

potenciales en combinaciones suma-producto; y

3. cómo combinar nuestro algoritmo con las propuestas para evaluación perezosa de

los DIs tradicionales, con el �n de reducir el coste computacional.

Con respecto a la explicación del razonamiento en DIs (capítulo 4) hay tres principales

cuestions a investigar:

1. encontrar algún método que pudiera ayudar a explicar al experto qué variables están

teniendo más in�uencia en la estrategia óptima y en la máxima utilidad esperada;

2. encontrar representaciones muy simples de políticas óptimas no sólo asumiendo que

el decisor actúa de forma óptima en cada decisión, sino también considerando los

escenarios no óptimos.

3. resolver dos cuestiones relacionadas con análisis de sensibilidad en DIs con nodos

SV: cómo realizar análisis n-way conjunto; y cómo calcular con métodos exactos los

umbrales de cambio de política.

El algoritmo anytime propuesto, presentado en el capítulo 5, podría ser mejorado de

varias formas:

1. combinar nuestro método con algún enfoque basado en programación dinámica, que

podría acelerar la convergencia hacia la estrategia óptima;

2. encontrar formas alternativas para el heurístico no-admisible usado en la búsqueda;

y

3. explotar la coalescencia al construir el árbol de decisión.

Con respecto a la aplicación de Mediastinet (capítulo 6) tenemos dos líneas de

investigación sugeridas por el experto:

1. considerar la posibilidad de tener un orden parcial entre las decisiones del diagrama

de in�uencia;
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2. representar en el modelo explícitamente la posibilidad de repetir algunos tests médi-

cos.
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